1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 
25 #include "hnae3.h"
26 #include "hns3_enet.h"
27 /* All hns3 tracepoints are defined by the include below, which
28  * must be included exactly once across the whole kernel with
29  * CREATE_TRACE_POINTS defined
30  */
31 #define CREATE_TRACE_POINTS
32 #include "hns3_trace.h"
33 
34 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
35 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
36 
37 #define hns3_rl_err(fmt, ...)						\
38 	do {								\
39 		if (net_ratelimit())					\
40 			netdev_err(fmt, ##__VA_ARGS__);			\
41 	} while (0)
42 
43 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
44 
45 static const char hns3_driver_name[] = "hns3";
46 static const char hns3_driver_string[] =
47 			"Hisilicon Ethernet Network Driver for Hip08 Family";
48 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
49 static struct hnae3_client client;
50 
51 static int debug = -1;
52 module_param(debug, int, 0);
53 MODULE_PARM_DESC(debug, " Network interface message level setting");
54 
55 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
56 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
57 
58 #define HNS3_INNER_VLAN_TAG	1
59 #define HNS3_OUTER_VLAN_TAG	2
60 
61 #define HNS3_MIN_TX_LEN		33U
62 
63 /* hns3_pci_tbl - PCI Device ID Table
64  *
65  * Last entry must be all 0s
66  *
67  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
68  *   Class, Class Mask, private data (not used) }
69  */
70 static const struct pci_device_id hns3_pci_tbl[] = {
71 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
72 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
73 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
74 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
75 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
76 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
77 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
78 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
79 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
80 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
81 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
82 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
83 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
84 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
85 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
86 	/* required last entry */
87 	{0, }
88 };
89 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
90 
91 static irqreturn_t hns3_irq_handle(int irq, void *vector)
92 {
93 	struct hns3_enet_tqp_vector *tqp_vector = vector;
94 
95 	napi_schedule_irqoff(&tqp_vector->napi);
96 
97 	return IRQ_HANDLED;
98 }
99 
100 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
101 {
102 	struct hns3_enet_tqp_vector *tqp_vectors;
103 	unsigned int i;
104 
105 	for (i = 0; i < priv->vector_num; i++) {
106 		tqp_vectors = &priv->tqp_vector[i];
107 
108 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
109 			continue;
110 
111 		/* clear the affinity mask */
112 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
113 
114 		/* release the irq resource */
115 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
116 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
117 	}
118 }
119 
120 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
121 {
122 	struct hns3_enet_tqp_vector *tqp_vectors;
123 	int txrx_int_idx = 0;
124 	int rx_int_idx = 0;
125 	int tx_int_idx = 0;
126 	unsigned int i;
127 	int ret;
128 
129 	for (i = 0; i < priv->vector_num; i++) {
130 		tqp_vectors = &priv->tqp_vector[i];
131 
132 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
133 			continue;
134 
135 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
136 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
137 				 "%s-%s-%s-%d", hns3_driver_name,
138 				 pci_name(priv->ae_handle->pdev),
139 				 "TxRx", txrx_int_idx++);
140 			txrx_int_idx++;
141 		} else if (tqp_vectors->rx_group.ring) {
142 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
143 				 "%s-%s-%s-%d", hns3_driver_name,
144 				 pci_name(priv->ae_handle->pdev),
145 				 "Rx", rx_int_idx++);
146 		} else if (tqp_vectors->tx_group.ring) {
147 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
148 				 "%s-%s-%s-%d", hns3_driver_name,
149 				 pci_name(priv->ae_handle->pdev),
150 				 "Tx", tx_int_idx++);
151 		} else {
152 			/* Skip this unused q_vector */
153 			continue;
154 		}
155 
156 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
157 
158 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
159 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
160 				  tqp_vectors->name, tqp_vectors);
161 		if (ret) {
162 			netdev_err(priv->netdev, "request irq(%d) fail\n",
163 				   tqp_vectors->vector_irq);
164 			hns3_nic_uninit_irq(priv);
165 			return ret;
166 		}
167 
168 		irq_set_affinity_hint(tqp_vectors->vector_irq,
169 				      &tqp_vectors->affinity_mask);
170 
171 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
172 	}
173 
174 	return 0;
175 }
176 
177 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
178 				 u32 mask_en)
179 {
180 	writel(mask_en, tqp_vector->mask_addr);
181 }
182 
183 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
184 {
185 	napi_enable(&tqp_vector->napi);
186 	enable_irq(tqp_vector->vector_irq);
187 
188 	/* enable vector */
189 	hns3_mask_vector_irq(tqp_vector, 1);
190 }
191 
192 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
193 {
194 	/* disable vector */
195 	hns3_mask_vector_irq(tqp_vector, 0);
196 
197 	disable_irq(tqp_vector->vector_irq);
198 	napi_disable(&tqp_vector->napi);
199 }
200 
201 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
202 				 u32 rl_value)
203 {
204 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
205 
206 	/* this defines the configuration for RL (Interrupt Rate Limiter).
207 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
208 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
209 	 */
210 
211 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
212 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
213 		/* According to the hardware, the range of rl_reg is
214 		 * 0-59 and the unit is 4.
215 		 */
216 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
217 
218 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
219 }
220 
221 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
222 				    u32 gl_value)
223 {
224 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
225 
226 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
227 }
228 
229 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
230 				    u32 gl_value)
231 {
232 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
233 
234 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
235 }
236 
237 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
238 				   struct hns3_nic_priv *priv)
239 {
240 	/* initialize the configuration for interrupt coalescing.
241 	 * 1. GL (Interrupt Gap Limiter)
242 	 * 2. RL (Interrupt Rate Limiter)
243 	 *
244 	 * Default: enable interrupt coalescing self-adaptive and GL
245 	 */
246 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
247 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
248 
249 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
250 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
251 
252 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
253 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
254 }
255 
256 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
257 				      struct hns3_nic_priv *priv)
258 {
259 	struct hnae3_handle *h = priv->ae_handle;
260 
261 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
262 				       tqp_vector->tx_group.coal.int_gl);
263 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
264 				       tqp_vector->rx_group.coal.int_gl);
265 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
266 }
267 
268 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
269 {
270 	struct hnae3_handle *h = hns3_get_handle(netdev);
271 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
272 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
273 	int i, ret;
274 
275 	if (kinfo->num_tc <= 1) {
276 		netdev_reset_tc(netdev);
277 	} else {
278 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
279 		if (ret) {
280 			netdev_err(netdev,
281 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
282 			return ret;
283 		}
284 
285 		for (i = 0; i < HNAE3_MAX_TC; i++) {
286 			if (!kinfo->tc_info[i].enable)
287 				continue;
288 
289 			netdev_set_tc_queue(netdev,
290 					    kinfo->tc_info[i].tc,
291 					    kinfo->tc_info[i].tqp_count,
292 					    kinfo->tc_info[i].tqp_offset);
293 		}
294 	}
295 
296 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
297 	if (ret) {
298 		netdev_err(netdev,
299 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
300 		return ret;
301 	}
302 
303 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
304 	if (ret) {
305 		netdev_err(netdev,
306 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
307 		return ret;
308 	}
309 
310 	return 0;
311 }
312 
313 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
314 {
315 	u16 alloc_tqps, max_rss_size, rss_size;
316 
317 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
318 	rss_size = alloc_tqps / h->kinfo.num_tc;
319 
320 	return min_t(u16, rss_size, max_rss_size);
321 }
322 
323 static void hns3_tqp_enable(struct hnae3_queue *tqp)
324 {
325 	u32 rcb_reg;
326 
327 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
328 	rcb_reg |= BIT(HNS3_RING_EN_B);
329 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
330 }
331 
332 static void hns3_tqp_disable(struct hnae3_queue *tqp)
333 {
334 	u32 rcb_reg;
335 
336 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
337 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
338 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
339 }
340 
341 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
342 {
343 #ifdef CONFIG_RFS_ACCEL
344 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
345 	netdev->rx_cpu_rmap = NULL;
346 #endif
347 }
348 
349 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
350 {
351 #ifdef CONFIG_RFS_ACCEL
352 	struct hns3_nic_priv *priv = netdev_priv(netdev);
353 	struct hns3_enet_tqp_vector *tqp_vector;
354 	int i, ret;
355 
356 	if (!netdev->rx_cpu_rmap) {
357 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
358 		if (!netdev->rx_cpu_rmap)
359 			return -ENOMEM;
360 	}
361 
362 	for (i = 0; i < priv->vector_num; i++) {
363 		tqp_vector = &priv->tqp_vector[i];
364 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
365 				       tqp_vector->vector_irq);
366 		if (ret) {
367 			hns3_free_rx_cpu_rmap(netdev);
368 			return ret;
369 		}
370 	}
371 #endif
372 	return 0;
373 }
374 
375 static int hns3_nic_net_up(struct net_device *netdev)
376 {
377 	struct hns3_nic_priv *priv = netdev_priv(netdev);
378 	struct hnae3_handle *h = priv->ae_handle;
379 	int i, j;
380 	int ret;
381 
382 	ret = hns3_nic_reset_all_ring(h);
383 	if (ret)
384 		return ret;
385 
386 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
387 
388 	/* enable the vectors */
389 	for (i = 0; i < priv->vector_num; i++)
390 		hns3_vector_enable(&priv->tqp_vector[i]);
391 
392 	/* enable rcb */
393 	for (j = 0; j < h->kinfo.num_tqps; j++)
394 		hns3_tqp_enable(h->kinfo.tqp[j]);
395 
396 	/* start the ae_dev */
397 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
398 	if (ret) {
399 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
400 		while (j--)
401 			hns3_tqp_disable(h->kinfo.tqp[j]);
402 
403 		for (j = i - 1; j >= 0; j--)
404 			hns3_vector_disable(&priv->tqp_vector[j]);
405 	}
406 
407 	return ret;
408 }
409 
410 static void hns3_config_xps(struct hns3_nic_priv *priv)
411 {
412 	int i;
413 
414 	for (i = 0; i < priv->vector_num; i++) {
415 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
416 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
417 
418 		while (ring) {
419 			int ret;
420 
421 			ret = netif_set_xps_queue(priv->netdev,
422 						  &tqp_vector->affinity_mask,
423 						  ring->tqp->tqp_index);
424 			if (ret)
425 				netdev_warn(priv->netdev,
426 					    "set xps queue failed: %d", ret);
427 
428 			ring = ring->next;
429 		}
430 	}
431 }
432 
433 static int hns3_nic_net_open(struct net_device *netdev)
434 {
435 	struct hns3_nic_priv *priv = netdev_priv(netdev);
436 	struct hnae3_handle *h = hns3_get_handle(netdev);
437 	struct hnae3_knic_private_info *kinfo;
438 	int i, ret;
439 
440 	if (hns3_nic_resetting(netdev))
441 		return -EBUSY;
442 
443 	netif_carrier_off(netdev);
444 
445 	ret = hns3_nic_set_real_num_queue(netdev);
446 	if (ret)
447 		return ret;
448 
449 	ret = hns3_nic_net_up(netdev);
450 	if (ret) {
451 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
452 		return ret;
453 	}
454 
455 	kinfo = &h->kinfo;
456 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
457 		netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
458 
459 	if (h->ae_algo->ops->set_timer_task)
460 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
461 
462 	hns3_config_xps(priv);
463 
464 	netif_dbg(h, drv, netdev, "net open\n");
465 
466 	return 0;
467 }
468 
469 static void hns3_reset_tx_queue(struct hnae3_handle *h)
470 {
471 	struct net_device *ndev = h->kinfo.netdev;
472 	struct hns3_nic_priv *priv = netdev_priv(ndev);
473 	struct netdev_queue *dev_queue;
474 	u32 i;
475 
476 	for (i = 0; i < h->kinfo.num_tqps; i++) {
477 		dev_queue = netdev_get_tx_queue(ndev,
478 						priv->ring[i].queue_index);
479 		netdev_tx_reset_queue(dev_queue);
480 	}
481 }
482 
483 static void hns3_nic_net_down(struct net_device *netdev)
484 {
485 	struct hns3_nic_priv *priv = netdev_priv(netdev);
486 	struct hnae3_handle *h = hns3_get_handle(netdev);
487 	const struct hnae3_ae_ops *ops;
488 	int i;
489 
490 	/* disable vectors */
491 	for (i = 0; i < priv->vector_num; i++)
492 		hns3_vector_disable(&priv->tqp_vector[i]);
493 
494 	/* disable rcb */
495 	for (i = 0; i < h->kinfo.num_tqps; i++)
496 		hns3_tqp_disable(h->kinfo.tqp[i]);
497 
498 	/* stop ae_dev */
499 	ops = priv->ae_handle->ae_algo->ops;
500 	if (ops->stop)
501 		ops->stop(priv->ae_handle);
502 
503 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
504 	 * during reset process, because driver may not be able
505 	 * to disable the ring through firmware when downing the netdev.
506 	 */
507 	if (!hns3_nic_resetting(netdev))
508 		hns3_clear_all_ring(priv->ae_handle, false);
509 
510 	hns3_reset_tx_queue(priv->ae_handle);
511 }
512 
513 static int hns3_nic_net_stop(struct net_device *netdev)
514 {
515 	struct hns3_nic_priv *priv = netdev_priv(netdev);
516 	struct hnae3_handle *h = hns3_get_handle(netdev);
517 
518 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
519 		return 0;
520 
521 	netif_dbg(h, drv, netdev, "net stop\n");
522 
523 	if (h->ae_algo->ops->set_timer_task)
524 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
525 
526 	netif_tx_stop_all_queues(netdev);
527 	netif_carrier_off(netdev);
528 
529 	hns3_nic_net_down(netdev);
530 
531 	return 0;
532 }
533 
534 static int hns3_nic_uc_sync(struct net_device *netdev,
535 			    const unsigned char *addr)
536 {
537 	struct hnae3_handle *h = hns3_get_handle(netdev);
538 
539 	if (h->ae_algo->ops->add_uc_addr)
540 		return h->ae_algo->ops->add_uc_addr(h, addr);
541 
542 	return 0;
543 }
544 
545 static int hns3_nic_uc_unsync(struct net_device *netdev,
546 			      const unsigned char *addr)
547 {
548 	struct hnae3_handle *h = hns3_get_handle(netdev);
549 
550 	/* need ignore the request of removing device address, because
551 	 * we store the device address and other addresses of uc list
552 	 * in the function's mac filter list.
553 	 */
554 	if (ether_addr_equal(addr, netdev->dev_addr))
555 		return 0;
556 
557 	if (h->ae_algo->ops->rm_uc_addr)
558 		return h->ae_algo->ops->rm_uc_addr(h, addr);
559 
560 	return 0;
561 }
562 
563 static int hns3_nic_mc_sync(struct net_device *netdev,
564 			    const unsigned char *addr)
565 {
566 	struct hnae3_handle *h = hns3_get_handle(netdev);
567 
568 	if (h->ae_algo->ops->add_mc_addr)
569 		return h->ae_algo->ops->add_mc_addr(h, addr);
570 
571 	return 0;
572 }
573 
574 static int hns3_nic_mc_unsync(struct net_device *netdev,
575 			      const unsigned char *addr)
576 {
577 	struct hnae3_handle *h = hns3_get_handle(netdev);
578 
579 	if (h->ae_algo->ops->rm_mc_addr)
580 		return h->ae_algo->ops->rm_mc_addr(h, addr);
581 
582 	return 0;
583 }
584 
585 static u8 hns3_get_netdev_flags(struct net_device *netdev)
586 {
587 	u8 flags = 0;
588 
589 	if (netdev->flags & IFF_PROMISC) {
590 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
591 	} else {
592 		flags |= HNAE3_VLAN_FLTR;
593 		if (netdev->flags & IFF_ALLMULTI)
594 			flags |= HNAE3_USER_MPE;
595 	}
596 
597 	return flags;
598 }
599 
600 static void hns3_nic_set_rx_mode(struct net_device *netdev)
601 {
602 	struct hnae3_handle *h = hns3_get_handle(netdev);
603 	u8 new_flags;
604 
605 	new_flags = hns3_get_netdev_flags(netdev);
606 
607 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
608 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
609 
610 	/* User mode Promisc mode enable and vlan filtering is disabled to
611 	 * let all packets in.
612 	 */
613 	h->netdev_flags = new_flags;
614 	hns3_request_update_promisc_mode(h);
615 }
616 
617 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
618 {
619 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
620 
621 	if (ops->request_update_promisc_mode)
622 		ops->request_update_promisc_mode(handle);
623 }
624 
625 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
626 {
627 	struct hns3_nic_priv *priv = netdev_priv(netdev);
628 	struct hnae3_handle *h = priv->ae_handle;
629 
630 	if (h->ae_algo->ops->set_promisc_mode) {
631 		return h->ae_algo->ops->set_promisc_mode(h,
632 						promisc_flags & HNAE3_UPE,
633 						promisc_flags & HNAE3_MPE);
634 	}
635 
636 	return 0;
637 }
638 
639 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
640 {
641 	struct hns3_nic_priv *priv = netdev_priv(netdev);
642 	struct hnae3_handle *h = priv->ae_handle;
643 	bool last_state;
644 
645 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
646 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
647 		if (enable != last_state) {
648 			netdev_info(netdev,
649 				    "%s vlan filter\n",
650 				    enable ? "enable" : "disable");
651 			h->ae_algo->ops->enable_vlan_filter(h, enable);
652 		}
653 	}
654 }
655 
656 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
657 			u16 *mss, u32 *type_cs_vlan_tso)
658 {
659 	u32 l4_offset, hdr_len;
660 	union l3_hdr_info l3;
661 	union l4_hdr_info l4;
662 	u32 l4_paylen;
663 	int ret;
664 
665 	if (!skb_is_gso(skb))
666 		return 0;
667 
668 	ret = skb_cow_head(skb, 0);
669 	if (unlikely(ret < 0))
670 		return ret;
671 
672 	l3.hdr = skb_network_header(skb);
673 	l4.hdr = skb_transport_header(skb);
674 
675 	/* Software should clear the IPv4's checksum field when tso is
676 	 * needed.
677 	 */
678 	if (l3.v4->version == 4)
679 		l3.v4->check = 0;
680 
681 	/* tunnel packet */
682 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
683 					 SKB_GSO_GRE_CSUM |
684 					 SKB_GSO_UDP_TUNNEL |
685 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
686 		if ((!(skb_shinfo(skb)->gso_type &
687 		    SKB_GSO_PARTIAL)) &&
688 		    (skb_shinfo(skb)->gso_type &
689 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
690 			/* Software should clear the udp's checksum
691 			 * field when tso is needed.
692 			 */
693 			l4.udp->check = 0;
694 		}
695 		/* reset l3&l4 pointers from outer to inner headers */
696 		l3.hdr = skb_inner_network_header(skb);
697 		l4.hdr = skb_inner_transport_header(skb);
698 
699 		/* Software should clear the IPv4's checksum field when
700 		 * tso is needed.
701 		 */
702 		if (l3.v4->version == 4)
703 			l3.v4->check = 0;
704 	}
705 
706 	/* normal or tunnel packet */
707 	l4_offset = l4.hdr - skb->data;
708 	hdr_len = (l4.tcp->doff << 2) + l4_offset;
709 
710 	/* remove payload length from inner pseudo checksum when tso */
711 	l4_paylen = skb->len - l4_offset;
712 	csum_replace_by_diff(&l4.tcp->check,
713 			     (__force __wsum)htonl(l4_paylen));
714 
715 	/* find the txbd field values */
716 	*paylen = skb->len - hdr_len;
717 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
718 
719 	/* get MSS for TSO */
720 	*mss = skb_shinfo(skb)->gso_size;
721 
722 	trace_hns3_tso(skb);
723 
724 	return 0;
725 }
726 
727 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
728 				u8 *il4_proto)
729 {
730 	union l3_hdr_info l3;
731 	unsigned char *l4_hdr;
732 	unsigned char *exthdr;
733 	u8 l4_proto_tmp;
734 	__be16 frag_off;
735 
736 	/* find outer header point */
737 	l3.hdr = skb_network_header(skb);
738 	l4_hdr = skb_transport_header(skb);
739 
740 	if (skb->protocol == htons(ETH_P_IPV6)) {
741 		exthdr = l3.hdr + sizeof(*l3.v6);
742 		l4_proto_tmp = l3.v6->nexthdr;
743 		if (l4_hdr != exthdr)
744 			ipv6_skip_exthdr(skb, exthdr - skb->data,
745 					 &l4_proto_tmp, &frag_off);
746 	} else if (skb->protocol == htons(ETH_P_IP)) {
747 		l4_proto_tmp = l3.v4->protocol;
748 	} else {
749 		return -EINVAL;
750 	}
751 
752 	*ol4_proto = l4_proto_tmp;
753 
754 	/* tunnel packet */
755 	if (!skb->encapsulation) {
756 		*il4_proto = 0;
757 		return 0;
758 	}
759 
760 	/* find inner header point */
761 	l3.hdr = skb_inner_network_header(skb);
762 	l4_hdr = skb_inner_transport_header(skb);
763 
764 	if (l3.v6->version == 6) {
765 		exthdr = l3.hdr + sizeof(*l3.v6);
766 		l4_proto_tmp = l3.v6->nexthdr;
767 		if (l4_hdr != exthdr)
768 			ipv6_skip_exthdr(skb, exthdr - skb->data,
769 					 &l4_proto_tmp, &frag_off);
770 	} else if (l3.v4->version == 4) {
771 		l4_proto_tmp = l3.v4->protocol;
772 	}
773 
774 	*il4_proto = l4_proto_tmp;
775 
776 	return 0;
777 }
778 
779 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
780  * and it is udp packet, which has a dest port as the IANA assigned.
781  * the hardware is expected to do the checksum offload, but the
782  * hardware will not do the checksum offload when udp dest port is
783  * 4789.
784  */
785 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
786 {
787 	union l4_hdr_info l4;
788 
789 	l4.hdr = skb_transport_header(skb);
790 
791 	if (!(!skb->encapsulation &&
792 	      l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
793 		return false;
794 
795 	skb_checksum_help(skb);
796 
797 	return true;
798 }
799 
800 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
801 				  u32 *ol_type_vlan_len_msec)
802 {
803 	u32 l2_len, l3_len, l4_len;
804 	unsigned char *il2_hdr;
805 	union l3_hdr_info l3;
806 	union l4_hdr_info l4;
807 
808 	l3.hdr = skb_network_header(skb);
809 	l4.hdr = skb_transport_header(skb);
810 
811 	/* compute OL2 header size, defined in 2 Bytes */
812 	l2_len = l3.hdr - skb->data;
813 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
814 
815 	/* compute OL3 header size, defined in 4 Bytes */
816 	l3_len = l4.hdr - l3.hdr;
817 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
818 
819 	il2_hdr = skb_inner_mac_header(skb);
820 	/* compute OL4 header size, defined in 4 Bytes */
821 	l4_len = il2_hdr - l4.hdr;
822 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
823 
824 	/* define outer network header type */
825 	if (skb->protocol == htons(ETH_P_IP)) {
826 		if (skb_is_gso(skb))
827 			hns3_set_field(*ol_type_vlan_len_msec,
828 				       HNS3_TXD_OL3T_S,
829 				       HNS3_OL3T_IPV4_CSUM);
830 		else
831 			hns3_set_field(*ol_type_vlan_len_msec,
832 				       HNS3_TXD_OL3T_S,
833 				       HNS3_OL3T_IPV4_NO_CSUM);
834 
835 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
836 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
837 			       HNS3_OL3T_IPV6);
838 	}
839 
840 	if (ol4_proto == IPPROTO_UDP)
841 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
842 			       HNS3_TUN_MAC_IN_UDP);
843 	else if (ol4_proto == IPPROTO_GRE)
844 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
845 			       HNS3_TUN_NVGRE);
846 }
847 
848 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
849 			   u8 il4_proto, u32 *type_cs_vlan_tso,
850 			   u32 *ol_type_vlan_len_msec)
851 {
852 	unsigned char *l2_hdr = skb->data;
853 	u32 l4_proto = ol4_proto;
854 	union l4_hdr_info l4;
855 	union l3_hdr_info l3;
856 	u32 l2_len, l3_len;
857 
858 	l4.hdr = skb_transport_header(skb);
859 	l3.hdr = skb_network_header(skb);
860 
861 	/* handle encapsulation skb */
862 	if (skb->encapsulation) {
863 		/* If this is a not UDP/GRE encapsulation skb */
864 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
865 			/* drop the skb tunnel packet if hardware don't support,
866 			 * because hardware can't calculate csum when TSO.
867 			 */
868 			if (skb_is_gso(skb))
869 				return -EDOM;
870 
871 			/* the stack computes the IP header already,
872 			 * driver calculate l4 checksum when not TSO.
873 			 */
874 			skb_checksum_help(skb);
875 			return 0;
876 		}
877 
878 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
879 
880 		/* switch to inner header */
881 		l2_hdr = skb_inner_mac_header(skb);
882 		l3.hdr = skb_inner_network_header(skb);
883 		l4.hdr = skb_inner_transport_header(skb);
884 		l4_proto = il4_proto;
885 	}
886 
887 	if (l3.v4->version == 4) {
888 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
889 			       HNS3_L3T_IPV4);
890 
891 		/* the stack computes the IP header already, the only time we
892 		 * need the hardware to recompute it is in the case of TSO.
893 		 */
894 		if (skb_is_gso(skb))
895 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
896 	} else if (l3.v6->version == 6) {
897 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
898 			       HNS3_L3T_IPV6);
899 	}
900 
901 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
902 	l2_len = l3.hdr - l2_hdr;
903 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
904 
905 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
906 	l3_len = l4.hdr - l3.hdr;
907 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
908 
909 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
910 	switch (l4_proto) {
911 	case IPPROTO_TCP:
912 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
913 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
914 			       HNS3_L4T_TCP);
915 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
916 			       l4.tcp->doff);
917 		break;
918 	case IPPROTO_UDP:
919 		if (hns3_tunnel_csum_bug(skb))
920 			break;
921 
922 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
923 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
924 			       HNS3_L4T_UDP);
925 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
926 			       (sizeof(struct udphdr) >> 2));
927 		break;
928 	case IPPROTO_SCTP:
929 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
930 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
931 			       HNS3_L4T_SCTP);
932 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
933 			       (sizeof(struct sctphdr) >> 2));
934 		break;
935 	default:
936 		/* drop the skb tunnel packet if hardware don't support,
937 		 * because hardware can't calculate csum when TSO.
938 		 */
939 		if (skb_is_gso(skb))
940 			return -EDOM;
941 
942 		/* the stack computes the IP header already,
943 		 * driver calculate l4 checksum when not TSO.
944 		 */
945 		skb_checksum_help(skb);
946 		return 0;
947 	}
948 
949 	return 0;
950 }
951 
952 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
953 			     struct sk_buff *skb)
954 {
955 	struct hnae3_handle *handle = tx_ring->tqp->handle;
956 	struct vlan_ethhdr *vhdr;
957 	int rc;
958 
959 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
960 	      skb_vlan_tag_present(skb)))
961 		return 0;
962 
963 	/* Since HW limitation, if port based insert VLAN enabled, only one VLAN
964 	 * header is allowed in skb, otherwise it will cause RAS error.
965 	 */
966 	if (unlikely(skb_vlan_tagged_multi(skb) &&
967 		     handle->port_base_vlan_state ==
968 		     HNAE3_PORT_BASE_VLAN_ENABLE))
969 		return -EINVAL;
970 
971 	if (skb->protocol == htons(ETH_P_8021Q) &&
972 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
973 		/* When HW VLAN acceleration is turned off, and the stack
974 		 * sets the protocol to 802.1q, the driver just need to
975 		 * set the protocol to the encapsulated ethertype.
976 		 */
977 		skb->protocol = vlan_get_protocol(skb);
978 		return 0;
979 	}
980 
981 	if (skb_vlan_tag_present(skb)) {
982 		/* Based on hw strategy, use out_vtag in two layer tag case,
983 		 * and use inner_vtag in one tag case.
984 		 */
985 		if (skb->protocol == htons(ETH_P_8021Q) &&
986 		    handle->port_base_vlan_state ==
987 		    HNAE3_PORT_BASE_VLAN_DISABLE)
988 			rc = HNS3_OUTER_VLAN_TAG;
989 		else
990 			rc = HNS3_INNER_VLAN_TAG;
991 
992 		skb->protocol = vlan_get_protocol(skb);
993 		return rc;
994 	}
995 
996 	rc = skb_cow_head(skb, 0);
997 	if (unlikely(rc < 0))
998 		return rc;
999 
1000 	vhdr = (struct vlan_ethhdr *)skb->data;
1001 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1002 					 & VLAN_PRIO_MASK);
1003 
1004 	skb->protocol = vlan_get_protocol(skb);
1005 	return 0;
1006 }
1007 
1008 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1009 			      struct sk_buff *skb, struct hns3_desc *desc)
1010 {
1011 	u32 ol_type_vlan_len_msec = 0;
1012 	u32 type_cs_vlan_tso = 0;
1013 	u32 paylen = skb->len;
1014 	u16 inner_vtag = 0;
1015 	u16 out_vtag = 0;
1016 	u16 mss = 0;
1017 	int ret;
1018 
1019 	ret = hns3_handle_vtags(ring, skb);
1020 	if (unlikely(ret < 0)) {
1021 		u64_stats_update_begin(&ring->syncp);
1022 		ring->stats.tx_vlan_err++;
1023 		u64_stats_update_end(&ring->syncp);
1024 		return ret;
1025 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1026 		inner_vtag = skb_vlan_tag_get(skb);
1027 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1028 				VLAN_PRIO_MASK;
1029 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1030 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1031 		out_vtag = skb_vlan_tag_get(skb);
1032 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1033 				VLAN_PRIO_MASK;
1034 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1035 			       1);
1036 	}
1037 
1038 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1039 		u8 ol4_proto, il4_proto;
1040 
1041 		skb_reset_mac_len(skb);
1042 
1043 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1044 		if (unlikely(ret < 0)) {
1045 			u64_stats_update_begin(&ring->syncp);
1046 			ring->stats.tx_l4_proto_err++;
1047 			u64_stats_update_end(&ring->syncp);
1048 			return ret;
1049 		}
1050 
1051 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1052 				      &type_cs_vlan_tso,
1053 				      &ol_type_vlan_len_msec);
1054 		if (unlikely(ret < 0)) {
1055 			u64_stats_update_begin(&ring->syncp);
1056 			ring->stats.tx_l2l3l4_err++;
1057 			u64_stats_update_end(&ring->syncp);
1058 			return ret;
1059 		}
1060 
1061 		ret = hns3_set_tso(skb, &paylen, &mss,
1062 				   &type_cs_vlan_tso);
1063 		if (unlikely(ret < 0)) {
1064 			u64_stats_update_begin(&ring->syncp);
1065 			ring->stats.tx_tso_err++;
1066 			u64_stats_update_end(&ring->syncp);
1067 			return ret;
1068 		}
1069 	}
1070 
1071 	/* Set txbd */
1072 	desc->tx.ol_type_vlan_len_msec =
1073 		cpu_to_le32(ol_type_vlan_len_msec);
1074 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1075 	desc->tx.paylen = cpu_to_le32(paylen);
1076 	desc->tx.mss = cpu_to_le16(mss);
1077 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1078 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1079 
1080 	return 0;
1081 }
1082 
1083 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1084 			  unsigned int size, enum hns_desc_type type)
1085 {
1086 #define HNS3_LIKELY_BD_NUM	1
1087 
1088 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1089 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1090 	struct device *dev = ring_to_dev(ring);
1091 	skb_frag_t *frag;
1092 	unsigned int frag_buf_num;
1093 	int k, sizeoflast;
1094 	dma_addr_t dma;
1095 
1096 	if (type == DESC_TYPE_FRAGLIST_SKB ||
1097 	    type == DESC_TYPE_SKB) {
1098 		struct sk_buff *skb = (struct sk_buff *)priv;
1099 
1100 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1101 	} else {
1102 		frag = (skb_frag_t *)priv;
1103 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1104 	}
1105 
1106 	if (unlikely(dma_mapping_error(dev, dma))) {
1107 		u64_stats_update_begin(&ring->syncp);
1108 		ring->stats.sw_err_cnt++;
1109 		u64_stats_update_end(&ring->syncp);
1110 		return -ENOMEM;
1111 	}
1112 
1113 	desc_cb->priv = priv;
1114 	desc_cb->length = size;
1115 	desc_cb->dma = dma;
1116 	desc_cb->type = type;
1117 
1118 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1119 		desc->addr = cpu_to_le64(dma);
1120 		desc->tx.send_size = cpu_to_le16(size);
1121 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1122 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1123 
1124 		trace_hns3_tx_desc(ring, ring->next_to_use);
1125 		ring_ptr_move_fw(ring, next_to_use);
1126 		return HNS3_LIKELY_BD_NUM;
1127 	}
1128 
1129 	frag_buf_num = hns3_tx_bd_count(size);
1130 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1131 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1132 
1133 	/* When frag size is bigger than hardware limit, split this frag */
1134 	for (k = 0; k < frag_buf_num; k++) {
1135 		/* now, fill the descriptor */
1136 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1137 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1138 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1139 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1140 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1141 
1142 		trace_hns3_tx_desc(ring, ring->next_to_use);
1143 		/* move ring pointer to next */
1144 		ring_ptr_move_fw(ring, next_to_use);
1145 
1146 		desc = &ring->desc[ring->next_to_use];
1147 	}
1148 
1149 	return frag_buf_num;
1150 }
1151 
1152 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1153 				    unsigned int bd_num)
1154 {
1155 	unsigned int size;
1156 	int i;
1157 
1158 	size = skb_headlen(skb);
1159 	while (size > HNS3_MAX_BD_SIZE) {
1160 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1161 		size -= HNS3_MAX_BD_SIZE;
1162 
1163 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1164 			return bd_num;
1165 	}
1166 
1167 	if (size) {
1168 		bd_size[bd_num++] = size;
1169 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1170 			return bd_num;
1171 	}
1172 
1173 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1174 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1175 		size = skb_frag_size(frag);
1176 		if (!size)
1177 			continue;
1178 
1179 		while (size > HNS3_MAX_BD_SIZE) {
1180 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1181 			size -= HNS3_MAX_BD_SIZE;
1182 
1183 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1184 				return bd_num;
1185 		}
1186 
1187 		bd_size[bd_num++] = size;
1188 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1189 			return bd_num;
1190 	}
1191 
1192 	return bd_num;
1193 }
1194 
1195 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size)
1196 {
1197 	struct sk_buff *frag_skb;
1198 	unsigned int bd_num = 0;
1199 
1200 	/* If the total len is within the max bd limit */
1201 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
1202 		   skb_shinfo(skb)->nr_frags < HNS3_MAX_NON_TSO_BD_NUM))
1203 		return skb_shinfo(skb)->nr_frags + 1U;
1204 
1205 	/* The below case will always be linearized, return
1206 	 * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
1207 	 */
1208 	if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
1209 		     (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)))
1210 		return HNS3_MAX_TSO_BD_NUM + 1U;
1211 
1212 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1213 
1214 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1215 		return bd_num;
1216 
1217 	skb_walk_frags(skb, frag_skb) {
1218 		bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
1219 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1220 			return bd_num;
1221 	}
1222 
1223 	return bd_num;
1224 }
1225 
1226 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1227 {
1228 	if (!skb->encapsulation)
1229 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1230 
1231 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1232 }
1233 
1234 /* HW need every continuous 8 buffer data to be larger than MSS,
1235  * we simplify it by ensuring skb_headlen + the first continuous
1236  * 7 frags to to be larger than gso header len + mss, and the remaining
1237  * continuous 7 frags to be larger than MSS except the last 7 frags.
1238  */
1239 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1240 				     unsigned int bd_num)
1241 {
1242 	unsigned int tot_len = 0;
1243 	int i;
1244 
1245 	for (i = 0; i < HNS3_MAX_NON_TSO_BD_NUM - 1U; i++)
1246 		tot_len += bd_size[i];
1247 
1248 	/* ensure the first 8 frags is greater than mss + header */
1249 	if (tot_len + bd_size[HNS3_MAX_NON_TSO_BD_NUM - 1U] <
1250 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1251 		return true;
1252 
1253 	/* ensure every continuous 7 buffer is greater than mss
1254 	 * except the last one.
1255 	 */
1256 	for (i = 0; i < bd_num - HNS3_MAX_NON_TSO_BD_NUM; i++) {
1257 		tot_len -= bd_size[i];
1258 		tot_len += bd_size[i + HNS3_MAX_NON_TSO_BD_NUM - 1U];
1259 
1260 		if (tot_len < skb_shinfo(skb)->gso_size)
1261 			return true;
1262 	}
1263 
1264 	return false;
1265 }
1266 
1267 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1268 {
1269 	int i = 0;
1270 
1271 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1272 		size[i] = skb_frag_size(&shinfo->frags[i]);
1273 }
1274 
1275 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1276 				  struct net_device *netdev,
1277 				  struct sk_buff *skb)
1278 {
1279 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1280 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1281 	unsigned int bd_num;
1282 
1283 	bd_num = hns3_tx_bd_num(skb, bd_size);
1284 	if (unlikely(bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1285 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1286 		    !hns3_skb_need_linearized(skb, bd_size, bd_num)) {
1287 			trace_hns3_over_8bd(skb);
1288 			goto out;
1289 		}
1290 
1291 		if (__skb_linearize(skb))
1292 			return -ENOMEM;
1293 
1294 		bd_num = hns3_tx_bd_count(skb->len);
1295 		if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
1296 		    (!skb_is_gso(skb) &&
1297 		     bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1298 			trace_hns3_over_8bd(skb);
1299 			return -ENOMEM;
1300 		}
1301 
1302 		u64_stats_update_begin(&ring->syncp);
1303 		ring->stats.tx_copy++;
1304 		u64_stats_update_end(&ring->syncp);
1305 	}
1306 
1307 out:
1308 	if (likely(ring_space(ring) >= bd_num))
1309 		return bd_num;
1310 
1311 	netif_stop_subqueue(netdev, ring->queue_index);
1312 	smp_mb(); /* Memory barrier before checking ring_space */
1313 
1314 	/* Start queue in case hns3_clean_tx_ring has just made room
1315 	 * available and has not seen the queue stopped state performed
1316 	 * by netif_stop_subqueue above.
1317 	 */
1318 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1319 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1320 		netif_start_subqueue(netdev, ring->queue_index);
1321 		return bd_num;
1322 	}
1323 
1324 	return -EBUSY;
1325 }
1326 
1327 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1328 {
1329 	struct device *dev = ring_to_dev(ring);
1330 	unsigned int i;
1331 
1332 	for (i = 0; i < ring->desc_num; i++) {
1333 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1334 
1335 		memset(desc, 0, sizeof(*desc));
1336 
1337 		/* check if this is where we started */
1338 		if (ring->next_to_use == next_to_use_orig)
1339 			break;
1340 
1341 		/* rollback one */
1342 		ring_ptr_move_bw(ring, next_to_use);
1343 
1344 		if (!ring->desc_cb[ring->next_to_use].dma)
1345 			continue;
1346 
1347 		/* unmap the descriptor dma address */
1348 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1349 		    ring->desc_cb[ring->next_to_use].type ==
1350 		    DESC_TYPE_FRAGLIST_SKB)
1351 			dma_unmap_single(dev,
1352 					 ring->desc_cb[ring->next_to_use].dma,
1353 					ring->desc_cb[ring->next_to_use].length,
1354 					DMA_TO_DEVICE);
1355 		else if (ring->desc_cb[ring->next_to_use].length)
1356 			dma_unmap_page(dev,
1357 				       ring->desc_cb[ring->next_to_use].dma,
1358 				       ring->desc_cb[ring->next_to_use].length,
1359 				       DMA_TO_DEVICE);
1360 
1361 		ring->desc_cb[ring->next_to_use].length = 0;
1362 		ring->desc_cb[ring->next_to_use].dma = 0;
1363 		ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1364 	}
1365 }
1366 
1367 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1368 				 struct sk_buff *skb, enum hns_desc_type type)
1369 {
1370 	unsigned int size = skb_headlen(skb);
1371 	int i, ret, bd_num = 0;
1372 
1373 	if (size) {
1374 		ret = hns3_fill_desc(ring, skb, size, type);
1375 		if (unlikely(ret < 0))
1376 			return ret;
1377 
1378 		bd_num += ret;
1379 	}
1380 
1381 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1382 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1383 
1384 		size = skb_frag_size(frag);
1385 		if (!size)
1386 			continue;
1387 
1388 		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1389 		if (unlikely(ret < 0))
1390 			return ret;
1391 
1392 		bd_num += ret;
1393 	}
1394 
1395 	return bd_num;
1396 }
1397 
1398 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1399 {
1400 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1401 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1402 	struct netdev_queue *dev_queue;
1403 	int pre_ntu, next_to_use_head;
1404 	struct sk_buff *frag_skb;
1405 	int bd_num = 0;
1406 	int ret;
1407 
1408 	/* Hardware can only handle short frames above 32 bytes */
1409 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN))
1410 		return NETDEV_TX_OK;
1411 
1412 	/* Prefetch the data used later */
1413 	prefetch(skb->data);
1414 
1415 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1416 	if (unlikely(ret <= 0)) {
1417 		if (ret == -EBUSY) {
1418 			u64_stats_update_begin(&ring->syncp);
1419 			ring->stats.tx_busy++;
1420 			u64_stats_update_end(&ring->syncp);
1421 			return NETDEV_TX_BUSY;
1422 		} else if (ret == -ENOMEM) {
1423 			u64_stats_update_begin(&ring->syncp);
1424 			ring->stats.sw_err_cnt++;
1425 			u64_stats_update_end(&ring->syncp);
1426 		}
1427 
1428 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1429 		goto out_err_tx_ok;
1430 	}
1431 
1432 	next_to_use_head = ring->next_to_use;
1433 
1434 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use]);
1435 	if (unlikely(ret < 0))
1436 		goto fill_err;
1437 
1438 	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1439 	if (unlikely(ret < 0))
1440 		goto fill_err;
1441 
1442 	bd_num += ret;
1443 
1444 	skb_walk_frags(skb, frag_skb) {
1445 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
1446 					    DESC_TYPE_FRAGLIST_SKB);
1447 		if (unlikely(ret < 0))
1448 			goto fill_err;
1449 
1450 		bd_num += ret;
1451 	}
1452 
1453 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1454 					(ring->desc_num - 1);
1455 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1456 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1457 	trace_hns3_tx_desc(ring, pre_ntu);
1458 
1459 	/* Complete translate all packets */
1460 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1461 	netdev_tx_sent_queue(dev_queue, skb->len);
1462 
1463 	wmb(); /* Commit all data before submit */
1464 
1465 	hnae3_queue_xmit(ring->tqp, bd_num);
1466 
1467 	return NETDEV_TX_OK;
1468 
1469 fill_err:
1470 	hns3_clear_desc(ring, next_to_use_head);
1471 
1472 out_err_tx_ok:
1473 	dev_kfree_skb_any(skb);
1474 	return NETDEV_TX_OK;
1475 }
1476 
1477 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1478 {
1479 	struct hnae3_handle *h = hns3_get_handle(netdev);
1480 	struct sockaddr *mac_addr = p;
1481 	int ret;
1482 
1483 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1484 		return -EADDRNOTAVAIL;
1485 
1486 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1487 		netdev_info(netdev, "already using mac address %pM\n",
1488 			    mac_addr->sa_data);
1489 		return 0;
1490 	}
1491 
1492 	/* For VF device, if there is a perm_addr, then the user will not
1493 	 * be allowed to change the address.
1494 	 */
1495 	if (!hns3_is_phys_func(h->pdev) &&
1496 	    !is_zero_ether_addr(netdev->perm_addr)) {
1497 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1498 			   netdev->perm_addr, mac_addr->sa_data);
1499 		return -EPERM;
1500 	}
1501 
1502 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1503 	if (ret) {
1504 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1505 		return ret;
1506 	}
1507 
1508 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1509 
1510 	return 0;
1511 }
1512 
1513 static int hns3_nic_do_ioctl(struct net_device *netdev,
1514 			     struct ifreq *ifr, int cmd)
1515 {
1516 	struct hnae3_handle *h = hns3_get_handle(netdev);
1517 
1518 	if (!netif_running(netdev))
1519 		return -EINVAL;
1520 
1521 	if (!h->ae_algo->ops->do_ioctl)
1522 		return -EOPNOTSUPP;
1523 
1524 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1525 }
1526 
1527 static int hns3_nic_set_features(struct net_device *netdev,
1528 				 netdev_features_t features)
1529 {
1530 	netdev_features_t changed = netdev->features ^ features;
1531 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1532 	struct hnae3_handle *h = priv->ae_handle;
1533 	bool enable;
1534 	int ret;
1535 
1536 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1537 		enable = !!(features & NETIF_F_GRO_HW);
1538 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1539 		if (ret)
1540 			return ret;
1541 	}
1542 
1543 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1544 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1545 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1546 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1547 		if (ret)
1548 			return ret;
1549 	}
1550 
1551 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1552 		enable = !!(features & NETIF_F_NTUPLE);
1553 		h->ae_algo->ops->enable_fd(h, enable);
1554 	}
1555 
1556 	netdev->features = features;
1557 	return 0;
1558 }
1559 
1560 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1561 					     struct net_device *dev,
1562 					     netdev_features_t features)
1563 {
1564 #define HNS3_MAX_HDR_LEN	480U
1565 #define HNS3_MAX_L4_HDR_LEN	60U
1566 
1567 	size_t len;
1568 
1569 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1570 		return features;
1571 
1572 	if (skb->encapsulation)
1573 		len = skb_inner_transport_header(skb) - skb->data;
1574 	else
1575 		len = skb_transport_header(skb) - skb->data;
1576 
1577 	/* Assume L4 is 60 byte as TCP is the only protocol with a
1578 	 * a flexible value, and it's max len is 60 bytes.
1579 	 */
1580 	len += HNS3_MAX_L4_HDR_LEN;
1581 
1582 	/* Hardware only supports checksum on the skb with a max header
1583 	 * len of 480 bytes.
1584 	 */
1585 	if (len > HNS3_MAX_HDR_LEN)
1586 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1587 
1588 	return features;
1589 }
1590 
1591 static void hns3_nic_get_stats64(struct net_device *netdev,
1592 				 struct rtnl_link_stats64 *stats)
1593 {
1594 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1595 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1596 	struct hnae3_handle *handle = priv->ae_handle;
1597 	struct hns3_enet_ring *ring;
1598 	u64 rx_length_errors = 0;
1599 	u64 rx_crc_errors = 0;
1600 	u64 rx_multicast = 0;
1601 	unsigned int start;
1602 	u64 tx_errors = 0;
1603 	u64 rx_errors = 0;
1604 	unsigned int idx;
1605 	u64 tx_bytes = 0;
1606 	u64 rx_bytes = 0;
1607 	u64 tx_pkts = 0;
1608 	u64 rx_pkts = 0;
1609 	u64 tx_drop = 0;
1610 	u64 rx_drop = 0;
1611 
1612 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1613 		return;
1614 
1615 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1616 
1617 	for (idx = 0; idx < queue_num; idx++) {
1618 		/* fetch the tx stats */
1619 		ring = &priv->ring[idx];
1620 		do {
1621 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1622 			tx_bytes += ring->stats.tx_bytes;
1623 			tx_pkts += ring->stats.tx_pkts;
1624 			tx_drop += ring->stats.sw_err_cnt;
1625 			tx_drop += ring->stats.tx_vlan_err;
1626 			tx_drop += ring->stats.tx_l4_proto_err;
1627 			tx_drop += ring->stats.tx_l2l3l4_err;
1628 			tx_drop += ring->stats.tx_tso_err;
1629 			tx_errors += ring->stats.sw_err_cnt;
1630 			tx_errors += ring->stats.tx_vlan_err;
1631 			tx_errors += ring->stats.tx_l4_proto_err;
1632 			tx_errors += ring->stats.tx_l2l3l4_err;
1633 			tx_errors += ring->stats.tx_tso_err;
1634 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1635 
1636 		/* fetch the rx stats */
1637 		ring = &priv->ring[idx + queue_num];
1638 		do {
1639 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1640 			rx_bytes += ring->stats.rx_bytes;
1641 			rx_pkts += ring->stats.rx_pkts;
1642 			rx_drop += ring->stats.l2_err;
1643 			rx_errors += ring->stats.l2_err;
1644 			rx_errors += ring->stats.l3l4_csum_err;
1645 			rx_crc_errors += ring->stats.l2_err;
1646 			rx_multicast += ring->stats.rx_multicast;
1647 			rx_length_errors += ring->stats.err_pkt_len;
1648 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1649 	}
1650 
1651 	stats->tx_bytes = tx_bytes;
1652 	stats->tx_packets = tx_pkts;
1653 	stats->rx_bytes = rx_bytes;
1654 	stats->rx_packets = rx_pkts;
1655 
1656 	stats->rx_errors = rx_errors;
1657 	stats->multicast = rx_multicast;
1658 	stats->rx_length_errors = rx_length_errors;
1659 	stats->rx_crc_errors = rx_crc_errors;
1660 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1661 
1662 	stats->tx_errors = tx_errors;
1663 	stats->rx_dropped = rx_drop;
1664 	stats->tx_dropped = tx_drop;
1665 	stats->collisions = netdev->stats.collisions;
1666 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1667 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1668 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1669 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1670 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1671 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1672 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1673 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1674 	stats->rx_compressed = netdev->stats.rx_compressed;
1675 	stats->tx_compressed = netdev->stats.tx_compressed;
1676 }
1677 
1678 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1679 {
1680 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1681 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1682 	struct hnae3_knic_private_info *kinfo;
1683 	u8 tc = mqprio_qopt->qopt.num_tc;
1684 	u16 mode = mqprio_qopt->mode;
1685 	u8 hw = mqprio_qopt->qopt.hw;
1686 	struct hnae3_handle *h;
1687 
1688 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1689 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1690 		return -EOPNOTSUPP;
1691 
1692 	if (tc > HNAE3_MAX_TC)
1693 		return -EINVAL;
1694 
1695 	if (!netdev)
1696 		return -EINVAL;
1697 
1698 	h = hns3_get_handle(netdev);
1699 	kinfo = &h->kinfo;
1700 
1701 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1702 
1703 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1704 		kinfo->dcb_ops->setup_tc(h, tc ? tc : 1, prio_tc) : -EOPNOTSUPP;
1705 }
1706 
1707 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1708 			     void *type_data)
1709 {
1710 	if (type != TC_SETUP_QDISC_MQPRIO)
1711 		return -EOPNOTSUPP;
1712 
1713 	return hns3_setup_tc(dev, type_data);
1714 }
1715 
1716 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1717 				__be16 proto, u16 vid)
1718 {
1719 	struct hnae3_handle *h = hns3_get_handle(netdev);
1720 	int ret = -EIO;
1721 
1722 	if (h->ae_algo->ops->set_vlan_filter)
1723 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1724 
1725 	return ret;
1726 }
1727 
1728 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1729 				 __be16 proto, u16 vid)
1730 {
1731 	struct hnae3_handle *h = hns3_get_handle(netdev);
1732 	int ret = -EIO;
1733 
1734 	if (h->ae_algo->ops->set_vlan_filter)
1735 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1736 
1737 	return ret;
1738 }
1739 
1740 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1741 				u8 qos, __be16 vlan_proto)
1742 {
1743 	struct hnae3_handle *h = hns3_get_handle(netdev);
1744 	int ret = -EIO;
1745 
1746 	netif_dbg(h, drv, netdev,
1747 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1748 		  vf, vlan, qos, ntohs(vlan_proto));
1749 
1750 	if (h->ae_algo->ops->set_vf_vlan_filter)
1751 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1752 							  qos, vlan_proto);
1753 
1754 	return ret;
1755 }
1756 
1757 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1758 {
1759 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1760 
1761 	if (hns3_nic_resetting(netdev))
1762 		return -EBUSY;
1763 
1764 	if (!handle->ae_algo->ops->set_vf_spoofchk)
1765 		return -EOPNOTSUPP;
1766 
1767 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1768 }
1769 
1770 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1771 {
1772 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1773 
1774 	if (!handle->ae_algo->ops->set_vf_trust)
1775 		return -EOPNOTSUPP;
1776 
1777 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1778 }
1779 
1780 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1781 {
1782 	struct hnae3_handle *h = hns3_get_handle(netdev);
1783 	int ret;
1784 
1785 	if (hns3_nic_resetting(netdev))
1786 		return -EBUSY;
1787 
1788 	if (!h->ae_algo->ops->set_mtu)
1789 		return -EOPNOTSUPP;
1790 
1791 	netif_dbg(h, drv, netdev,
1792 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1793 
1794 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1795 	if (ret)
1796 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1797 			   ret);
1798 	else
1799 		netdev->mtu = new_mtu;
1800 
1801 	return ret;
1802 }
1803 
1804 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1805 {
1806 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1807 	struct hnae3_handle *h = hns3_get_handle(ndev);
1808 	struct hns3_enet_ring *tx_ring;
1809 	struct napi_struct *napi;
1810 	int timeout_queue = 0;
1811 	int hw_head, hw_tail;
1812 	int fbd_num, fbd_oft;
1813 	int ebd_num, ebd_oft;
1814 	int bd_num, bd_err;
1815 	int ring_en, tc;
1816 	int i;
1817 
1818 	/* Find the stopped queue the same way the stack does */
1819 	for (i = 0; i < ndev->num_tx_queues; i++) {
1820 		struct netdev_queue *q;
1821 		unsigned long trans_start;
1822 
1823 		q = netdev_get_tx_queue(ndev, i);
1824 		trans_start = q->trans_start;
1825 		if (netif_xmit_stopped(q) &&
1826 		    time_after(jiffies,
1827 			       (trans_start + ndev->watchdog_timeo))) {
1828 			timeout_queue = i;
1829 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
1830 				    q->state,
1831 				    jiffies_to_msecs(jiffies - trans_start));
1832 			break;
1833 		}
1834 	}
1835 
1836 	if (i == ndev->num_tx_queues) {
1837 		netdev_info(ndev,
1838 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1839 			    priv->tx_timeout_count);
1840 		return false;
1841 	}
1842 
1843 	priv->tx_timeout_count++;
1844 
1845 	tx_ring = &priv->ring[timeout_queue];
1846 	napi = &tx_ring->tqp_vector->napi;
1847 
1848 	netdev_info(ndev,
1849 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1850 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1851 		    tx_ring->next_to_clean, napi->state);
1852 
1853 	netdev_info(ndev,
1854 		    "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
1855 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1856 		    tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);
1857 
1858 	netdev_info(ndev,
1859 		    "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
1860 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
1861 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1862 
1863 	/* When mac received many pause frames continuous, it's unable to send
1864 	 * packets, which may cause tx timeout
1865 	 */
1866 	if (h->ae_algo->ops->get_mac_stats) {
1867 		struct hns3_mac_stats mac_stats;
1868 
1869 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1870 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1871 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1872 	}
1873 
1874 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1875 				HNS3_RING_TX_RING_HEAD_REG);
1876 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1877 				HNS3_RING_TX_RING_TAIL_REG);
1878 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1879 				HNS3_RING_TX_RING_FBDNUM_REG);
1880 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1881 				HNS3_RING_TX_RING_OFFSET_REG);
1882 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1883 				HNS3_RING_TX_RING_EBDNUM_REG);
1884 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
1885 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
1886 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
1887 			       HNS3_RING_TX_RING_BD_NUM_REG);
1888 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
1889 			       HNS3_RING_TX_RING_BD_ERR_REG);
1890 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
1891 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
1892 
1893 	netdev_info(ndev,
1894 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
1895 		    bd_num, hw_head, hw_tail, bd_err,
1896 		    readl(tx_ring->tqp_vector->mask_addr));
1897 	netdev_info(ndev,
1898 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
1899 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1900 
1901 	return true;
1902 }
1903 
1904 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1905 {
1906 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1907 	struct hnae3_handle *h = priv->ae_handle;
1908 
1909 	if (!hns3_get_tx_timeo_queue_info(ndev))
1910 		return;
1911 
1912 	/* request the reset, and let the hclge to determine
1913 	 * which reset level should be done
1914 	 */
1915 	if (h->ae_algo->ops->reset_event)
1916 		h->ae_algo->ops->reset_event(h->pdev, h);
1917 }
1918 
1919 #ifdef CONFIG_RFS_ACCEL
1920 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
1921 			      u16 rxq_index, u32 flow_id)
1922 {
1923 	struct hnae3_handle *h = hns3_get_handle(dev);
1924 	struct flow_keys fkeys;
1925 
1926 	if (!h->ae_algo->ops->add_arfs_entry)
1927 		return -EOPNOTSUPP;
1928 
1929 	if (skb->encapsulation)
1930 		return -EPROTONOSUPPORT;
1931 
1932 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
1933 		return -EPROTONOSUPPORT;
1934 
1935 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
1936 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
1937 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
1938 	     fkeys.basic.ip_proto != IPPROTO_UDP))
1939 		return -EPROTONOSUPPORT;
1940 
1941 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
1942 }
1943 #endif
1944 
1945 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
1946 				  struct ifla_vf_info *ivf)
1947 {
1948 	struct hnae3_handle *h = hns3_get_handle(ndev);
1949 
1950 	if (!h->ae_algo->ops->get_vf_config)
1951 		return -EOPNOTSUPP;
1952 
1953 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
1954 }
1955 
1956 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
1957 				      int link_state)
1958 {
1959 	struct hnae3_handle *h = hns3_get_handle(ndev);
1960 
1961 	if (!h->ae_algo->ops->set_vf_link_state)
1962 		return -EOPNOTSUPP;
1963 
1964 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
1965 }
1966 
1967 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
1968 				int min_tx_rate, int max_tx_rate)
1969 {
1970 	struct hnae3_handle *h = hns3_get_handle(ndev);
1971 
1972 	if (!h->ae_algo->ops->set_vf_rate)
1973 		return -EOPNOTSUPP;
1974 
1975 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
1976 					    false);
1977 }
1978 
1979 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1980 {
1981 	struct hnae3_handle *h = hns3_get_handle(netdev);
1982 
1983 	if (!h->ae_algo->ops->set_vf_mac)
1984 		return -EOPNOTSUPP;
1985 
1986 	if (is_multicast_ether_addr(mac)) {
1987 		netdev_err(netdev,
1988 			   "Invalid MAC:%pM specified. Could not set MAC\n",
1989 			   mac);
1990 		return -EINVAL;
1991 	}
1992 
1993 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
1994 }
1995 
1996 static const struct net_device_ops hns3_nic_netdev_ops = {
1997 	.ndo_open		= hns3_nic_net_open,
1998 	.ndo_stop		= hns3_nic_net_stop,
1999 	.ndo_start_xmit		= hns3_nic_net_xmit,
2000 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2001 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2002 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
2003 	.ndo_change_mtu		= hns3_nic_change_mtu,
2004 	.ndo_set_features	= hns3_nic_set_features,
2005 	.ndo_features_check	= hns3_features_check,
2006 	.ndo_get_stats64	= hns3_nic_get_stats64,
2007 	.ndo_setup_tc		= hns3_nic_setup_tc,
2008 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2009 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2010 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2011 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2012 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2013 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2014 #ifdef CONFIG_RFS_ACCEL
2015 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2016 #endif
2017 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2018 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2019 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2020 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2021 };
2022 
2023 bool hns3_is_phys_func(struct pci_dev *pdev)
2024 {
2025 	u32 dev_id = pdev->device;
2026 
2027 	switch (dev_id) {
2028 	case HNAE3_DEV_ID_GE:
2029 	case HNAE3_DEV_ID_25GE:
2030 	case HNAE3_DEV_ID_25GE_RDMA:
2031 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2032 	case HNAE3_DEV_ID_50GE_RDMA:
2033 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2034 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2035 		return true;
2036 	case HNAE3_DEV_ID_100G_VF:
2037 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
2038 		return false;
2039 	default:
2040 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2041 			 dev_id);
2042 	}
2043 
2044 	return false;
2045 }
2046 
2047 static void hns3_disable_sriov(struct pci_dev *pdev)
2048 {
2049 	/* If our VFs are assigned we cannot shut down SR-IOV
2050 	 * without causing issues, so just leave the hardware
2051 	 * available but disabled
2052 	 */
2053 	if (pci_vfs_assigned(pdev)) {
2054 		dev_warn(&pdev->dev,
2055 			 "disabling driver while VFs are assigned\n");
2056 		return;
2057 	}
2058 
2059 	pci_disable_sriov(pdev);
2060 }
2061 
2062 static void hns3_get_dev_capability(struct pci_dev *pdev,
2063 				    struct hnae3_ae_dev *ae_dev)
2064 {
2065 	if (pdev->revision >= 0x21) {
2066 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
2067 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
2068 	}
2069 }
2070 
2071 /* hns3_probe - Device initialization routine
2072  * @pdev: PCI device information struct
2073  * @ent: entry in hns3_pci_tbl
2074  *
2075  * hns3_probe initializes a PF identified by a pci_dev structure.
2076  * The OS initialization, configuring of the PF private structure,
2077  * and a hardware reset occur.
2078  *
2079  * Returns 0 on success, negative on failure
2080  */
2081 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2082 {
2083 	struct hnae3_ae_dev *ae_dev;
2084 	int ret;
2085 
2086 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2087 	if (!ae_dev)
2088 		return -ENOMEM;
2089 
2090 	ae_dev->pdev = pdev;
2091 	ae_dev->flag = ent->driver_data;
2092 	hns3_get_dev_capability(pdev, ae_dev);
2093 	pci_set_drvdata(pdev, ae_dev);
2094 
2095 	ret = hnae3_register_ae_dev(ae_dev);
2096 	if (ret)
2097 		pci_set_drvdata(pdev, NULL);
2098 
2099 	return ret;
2100 }
2101 
2102 /* hns3_remove - Device removal routine
2103  * @pdev: PCI device information struct
2104  */
2105 static void hns3_remove(struct pci_dev *pdev)
2106 {
2107 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2108 
2109 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2110 		hns3_disable_sriov(pdev);
2111 
2112 	hnae3_unregister_ae_dev(ae_dev);
2113 	pci_set_drvdata(pdev, NULL);
2114 }
2115 
2116 /**
2117  * hns3_pci_sriov_configure
2118  * @pdev: pointer to a pci_dev structure
2119  * @num_vfs: number of VFs to allocate
2120  *
2121  * Enable or change the number of VFs. Called when the user updates the number
2122  * of VFs in sysfs.
2123  **/
2124 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2125 {
2126 	int ret;
2127 
2128 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2129 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2130 		return -EINVAL;
2131 	}
2132 
2133 	if (num_vfs) {
2134 		ret = pci_enable_sriov(pdev, num_vfs);
2135 		if (ret)
2136 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2137 		else
2138 			return num_vfs;
2139 	} else if (!pci_vfs_assigned(pdev)) {
2140 		pci_disable_sriov(pdev);
2141 	} else {
2142 		dev_warn(&pdev->dev,
2143 			 "Unable to free VFs because some are assigned to VMs.\n");
2144 	}
2145 
2146 	return 0;
2147 }
2148 
2149 static void hns3_shutdown(struct pci_dev *pdev)
2150 {
2151 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2152 
2153 	hnae3_unregister_ae_dev(ae_dev);
2154 	pci_set_drvdata(pdev, NULL);
2155 
2156 	if (system_state == SYSTEM_POWER_OFF)
2157 		pci_set_power_state(pdev, PCI_D3hot);
2158 }
2159 
2160 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2161 					    pci_channel_state_t state)
2162 {
2163 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2164 	pci_ers_result_t ret;
2165 
2166 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
2167 
2168 	if (state == pci_channel_io_perm_failure)
2169 		return PCI_ERS_RESULT_DISCONNECT;
2170 
2171 	if (!ae_dev || !ae_dev->ops) {
2172 		dev_err(&pdev->dev,
2173 			"Can't recover - error happened before device initialized\n");
2174 		return PCI_ERS_RESULT_NONE;
2175 	}
2176 
2177 	if (ae_dev->ops->handle_hw_ras_error)
2178 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2179 	else
2180 		return PCI_ERS_RESULT_NONE;
2181 
2182 	return ret;
2183 }
2184 
2185 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2186 {
2187 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2188 	const struct hnae3_ae_ops *ops;
2189 	enum hnae3_reset_type reset_type;
2190 	struct device *dev = &pdev->dev;
2191 
2192 	if (!ae_dev || !ae_dev->ops)
2193 		return PCI_ERS_RESULT_NONE;
2194 
2195 	ops = ae_dev->ops;
2196 	/* request the reset */
2197 	if (ops->reset_event && ops->get_reset_level &&
2198 	    ops->set_default_reset_request) {
2199 		if (ae_dev->hw_err_reset_req) {
2200 			reset_type = ops->get_reset_level(ae_dev,
2201 						&ae_dev->hw_err_reset_req);
2202 			ops->set_default_reset_request(ae_dev, reset_type);
2203 			dev_info(dev, "requesting reset due to PCI error\n");
2204 			ops->reset_event(pdev, NULL);
2205 		}
2206 
2207 		return PCI_ERS_RESULT_RECOVERED;
2208 	}
2209 
2210 	return PCI_ERS_RESULT_DISCONNECT;
2211 }
2212 
2213 static void hns3_reset_prepare(struct pci_dev *pdev)
2214 {
2215 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2216 
2217 	dev_info(&pdev->dev, "FLR prepare\n");
2218 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2219 		ae_dev->ops->flr_prepare(ae_dev);
2220 }
2221 
2222 static void hns3_reset_done(struct pci_dev *pdev)
2223 {
2224 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2225 
2226 	dev_info(&pdev->dev, "FLR done\n");
2227 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2228 		ae_dev->ops->flr_done(ae_dev);
2229 }
2230 
2231 static const struct pci_error_handlers hns3_err_handler = {
2232 	.error_detected = hns3_error_detected,
2233 	.slot_reset     = hns3_slot_reset,
2234 	.reset_prepare	= hns3_reset_prepare,
2235 	.reset_done	= hns3_reset_done,
2236 };
2237 
2238 static struct pci_driver hns3_driver = {
2239 	.name     = hns3_driver_name,
2240 	.id_table = hns3_pci_tbl,
2241 	.probe    = hns3_probe,
2242 	.remove   = hns3_remove,
2243 	.shutdown = hns3_shutdown,
2244 	.sriov_configure = hns3_pci_sriov_configure,
2245 	.err_handler    = &hns3_err_handler,
2246 };
2247 
2248 /* set default feature to hns3 */
2249 static void hns3_set_default_feature(struct net_device *netdev)
2250 {
2251 	struct hnae3_handle *h = hns3_get_handle(netdev);
2252 	struct pci_dev *pdev = h->pdev;
2253 
2254 	netdev->priv_flags |= IFF_UNICAST_FLT;
2255 
2256 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2257 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2258 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2259 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2260 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2261 		NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2262 
2263 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2264 
2265 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2266 		NETIF_F_HW_VLAN_CTAG_FILTER |
2267 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2268 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2269 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2270 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2271 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2272 		NETIF_F_FRAGLIST;
2273 
2274 	netdev->vlan_features |=
2275 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
2276 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2277 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2278 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2279 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2280 		NETIF_F_FRAGLIST;
2281 
2282 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2283 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2284 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2285 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2286 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2287 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2288 		NETIF_F_FRAGLIST;
2289 
2290 	if (pdev->revision >= 0x21) {
2291 		netdev->hw_features |= NETIF_F_GRO_HW;
2292 		netdev->features |= NETIF_F_GRO_HW;
2293 
2294 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2295 			netdev->hw_features |= NETIF_F_NTUPLE;
2296 			netdev->features |= NETIF_F_NTUPLE;
2297 		}
2298 	}
2299 }
2300 
2301 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2302 			     struct hns3_desc_cb *cb)
2303 {
2304 	unsigned int order = hns3_page_order(ring);
2305 	struct page *p;
2306 
2307 	p = dev_alloc_pages(order);
2308 	if (!p)
2309 		return -ENOMEM;
2310 
2311 	cb->priv = p;
2312 	cb->page_offset = 0;
2313 	cb->reuse_flag = 0;
2314 	cb->buf  = page_address(p);
2315 	cb->length = hns3_page_size(ring);
2316 	cb->type = DESC_TYPE_PAGE;
2317 
2318 	return 0;
2319 }
2320 
2321 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2322 			     struct hns3_desc_cb *cb)
2323 {
2324 	if (cb->type == DESC_TYPE_SKB)
2325 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
2326 	else if (!HNAE3_IS_TX_RING(ring))
2327 		put_page((struct page *)cb->priv);
2328 	memset(cb, 0, sizeof(*cb));
2329 }
2330 
2331 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2332 {
2333 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2334 			       cb->length, ring_to_dma_dir(ring));
2335 
2336 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2337 		return -EIO;
2338 
2339 	return 0;
2340 }
2341 
2342 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2343 			      struct hns3_desc_cb *cb)
2344 {
2345 	if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2346 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2347 				 ring_to_dma_dir(ring));
2348 	else if (cb->length)
2349 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2350 			       ring_to_dma_dir(ring));
2351 }
2352 
2353 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2354 {
2355 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2356 	ring->desc[i].addr = 0;
2357 }
2358 
2359 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2360 {
2361 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2362 
2363 	if (!ring->desc_cb[i].dma)
2364 		return;
2365 
2366 	hns3_buffer_detach(ring, i);
2367 	hns3_free_buffer(ring, cb);
2368 }
2369 
2370 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2371 {
2372 	int i;
2373 
2374 	for (i = 0; i < ring->desc_num; i++)
2375 		hns3_free_buffer_detach(ring, i);
2376 }
2377 
2378 /* free desc along with its attached buffer */
2379 static void hns3_free_desc(struct hns3_enet_ring *ring)
2380 {
2381 	int size = ring->desc_num * sizeof(ring->desc[0]);
2382 
2383 	hns3_free_buffers(ring);
2384 
2385 	if (ring->desc) {
2386 		dma_free_coherent(ring_to_dev(ring), size,
2387 				  ring->desc, ring->desc_dma_addr);
2388 		ring->desc = NULL;
2389 	}
2390 }
2391 
2392 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2393 {
2394 	int size = ring->desc_num * sizeof(ring->desc[0]);
2395 
2396 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2397 					&ring->desc_dma_addr, GFP_KERNEL);
2398 	if (!ring->desc)
2399 		return -ENOMEM;
2400 
2401 	return 0;
2402 }
2403 
2404 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2405 				   struct hns3_desc_cb *cb)
2406 {
2407 	int ret;
2408 
2409 	ret = hns3_alloc_buffer(ring, cb);
2410 	if (ret)
2411 		goto out;
2412 
2413 	ret = hns3_map_buffer(ring, cb);
2414 	if (ret)
2415 		goto out_with_buf;
2416 
2417 	return 0;
2418 
2419 out_with_buf:
2420 	hns3_free_buffer(ring, cb);
2421 out:
2422 	return ret;
2423 }
2424 
2425 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2426 {
2427 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2428 
2429 	if (ret)
2430 		return ret;
2431 
2432 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2433 
2434 	return 0;
2435 }
2436 
2437 /* Allocate memory for raw pkg, and map with dma */
2438 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2439 {
2440 	int i, j, ret;
2441 
2442 	for (i = 0; i < ring->desc_num; i++) {
2443 		ret = hns3_alloc_and_attach_buffer(ring, i);
2444 		if (ret)
2445 			goto out_buffer_fail;
2446 	}
2447 
2448 	return 0;
2449 
2450 out_buffer_fail:
2451 	for (j = i - 1; j >= 0; j--)
2452 		hns3_free_buffer_detach(ring, j);
2453 	return ret;
2454 }
2455 
2456 /* detach a in-used buffer and replace with a reserved one */
2457 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2458 				struct hns3_desc_cb *res_cb)
2459 {
2460 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2461 	ring->desc_cb[i] = *res_cb;
2462 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2463 	ring->desc[i].rx.bd_base_info = 0;
2464 }
2465 
2466 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2467 {
2468 	ring->desc_cb[i].reuse_flag = 0;
2469 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2470 					 ring->desc_cb[i].page_offset);
2471 	ring->desc[i].rx.bd_base_info = 0;
2472 
2473 	dma_sync_single_for_device(ring_to_dev(ring),
2474 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
2475 			hns3_buf_size(ring),
2476 			DMA_FROM_DEVICE);
2477 }
2478 
2479 static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
2480 				  int *bytes, int *pkts)
2481 {
2482 	int ntc = ring->next_to_clean;
2483 	struct hns3_desc_cb *desc_cb;
2484 
2485 	while (head != ntc) {
2486 		desc_cb = &ring->desc_cb[ntc];
2487 		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2488 		(*bytes) += desc_cb->length;
2489 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2490 		hns3_free_buffer_detach(ring, ntc);
2491 
2492 		if (++ntc == ring->desc_num)
2493 			ntc = 0;
2494 
2495 		/* Issue prefetch for next Tx descriptor */
2496 		prefetch(&ring->desc_cb[ntc]);
2497 	}
2498 
2499 	/* This smp_store_release() pairs with smp_load_acquire() in
2500 	 * ring_space called by hns3_nic_net_xmit.
2501 	 */
2502 	smp_store_release(&ring->next_to_clean, ntc);
2503 }
2504 
2505 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2506 {
2507 	int u = ring->next_to_use;
2508 	int c = ring->next_to_clean;
2509 
2510 	if (unlikely(h > ring->desc_num))
2511 		return 0;
2512 
2513 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2514 }
2515 
2516 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2517 {
2518 	struct net_device *netdev = ring_to_netdev(ring);
2519 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2520 	struct netdev_queue *dev_queue;
2521 	int bytes, pkts;
2522 	int head;
2523 
2524 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2525 
2526 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2527 		return; /* no data to poll */
2528 
2529 	rmb(); /* Make sure head is ready before touch any data */
2530 
2531 	if (unlikely(!is_valid_clean_head(ring, head))) {
2532 		hns3_rl_err(netdev, "wrong head (%d, %d-%d)\n", head,
2533 			    ring->next_to_use, ring->next_to_clean);
2534 
2535 		u64_stats_update_begin(&ring->syncp);
2536 		ring->stats.io_err_cnt++;
2537 		u64_stats_update_end(&ring->syncp);
2538 		return;
2539 	}
2540 
2541 	bytes = 0;
2542 	pkts = 0;
2543 	hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2544 
2545 	ring->tqp_vector->tx_group.total_bytes += bytes;
2546 	ring->tqp_vector->tx_group.total_packets += pkts;
2547 
2548 	u64_stats_update_begin(&ring->syncp);
2549 	ring->stats.tx_bytes += bytes;
2550 	ring->stats.tx_pkts += pkts;
2551 	u64_stats_update_end(&ring->syncp);
2552 
2553 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2554 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2555 
2556 	if (unlikely(netif_carrier_ok(netdev) &&
2557 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2558 		/* Make sure that anybody stopping the queue after this
2559 		 * sees the new next_to_clean.
2560 		 */
2561 		smp_mb();
2562 		if (netif_tx_queue_stopped(dev_queue) &&
2563 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2564 			netif_tx_wake_queue(dev_queue);
2565 			ring->stats.restart_queue++;
2566 		}
2567 	}
2568 }
2569 
2570 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2571 {
2572 	int ntc = ring->next_to_clean;
2573 	int ntu = ring->next_to_use;
2574 
2575 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2576 }
2577 
2578 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2579 				      int cleand_count)
2580 {
2581 	struct hns3_desc_cb *desc_cb;
2582 	struct hns3_desc_cb res_cbs;
2583 	int i, ret;
2584 
2585 	for (i = 0; i < cleand_count; i++) {
2586 		desc_cb = &ring->desc_cb[ring->next_to_use];
2587 		if (desc_cb->reuse_flag) {
2588 			u64_stats_update_begin(&ring->syncp);
2589 			ring->stats.reuse_pg_cnt++;
2590 			u64_stats_update_end(&ring->syncp);
2591 
2592 			hns3_reuse_buffer(ring, ring->next_to_use);
2593 		} else {
2594 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2595 			if (ret) {
2596 				u64_stats_update_begin(&ring->syncp);
2597 				ring->stats.sw_err_cnt++;
2598 				u64_stats_update_end(&ring->syncp);
2599 
2600 				hns3_rl_err(ring_to_netdev(ring),
2601 					    "alloc rx buffer failed: %d\n",
2602 					    ret);
2603 				break;
2604 			}
2605 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2606 
2607 			u64_stats_update_begin(&ring->syncp);
2608 			ring->stats.non_reuse_pg++;
2609 			u64_stats_update_end(&ring->syncp);
2610 		}
2611 
2612 		ring_ptr_move_fw(ring, next_to_use);
2613 	}
2614 
2615 	wmb(); /* Make all data has been write before submit */
2616 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2617 }
2618 
2619 static bool hns3_page_is_reusable(struct page *page)
2620 {
2621 	return page_to_nid(page) == numa_mem_id() &&
2622 		!page_is_pfmemalloc(page);
2623 }
2624 
2625 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2626 				struct hns3_enet_ring *ring, int pull_len,
2627 				struct hns3_desc_cb *desc_cb)
2628 {
2629 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2630 	int size = le16_to_cpu(desc->rx.size);
2631 	u32 truesize = hns3_buf_size(ring);
2632 
2633 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2634 			size - pull_len, truesize);
2635 
2636 	/* Avoid re-using remote pages, or the stack is still using the page
2637 	 * when page_offset rollback to zero, flag default unreuse
2638 	 */
2639 	if (unlikely(!hns3_page_is_reusable(desc_cb->priv)) ||
2640 	    (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2641 		return;
2642 
2643 	/* Move offset up to the next cache line */
2644 	desc_cb->page_offset += truesize;
2645 
2646 	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2647 		desc_cb->reuse_flag = 1;
2648 		/* Bump ref count on page before it is given */
2649 		get_page(desc_cb->priv);
2650 	} else if (page_count(desc_cb->priv) == 1) {
2651 		desc_cb->reuse_flag = 1;
2652 		desc_cb->page_offset = 0;
2653 		get_page(desc_cb->priv);
2654 	}
2655 }
2656 
2657 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2658 {
2659 	__be16 type = skb->protocol;
2660 	struct tcphdr *th;
2661 	int depth = 0;
2662 
2663 	while (eth_type_vlan(type)) {
2664 		struct vlan_hdr *vh;
2665 
2666 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2667 			return -EFAULT;
2668 
2669 		vh = (struct vlan_hdr *)(skb->data + depth);
2670 		type = vh->h_vlan_encapsulated_proto;
2671 		depth += VLAN_HLEN;
2672 	}
2673 
2674 	skb_set_network_header(skb, depth);
2675 
2676 	if (type == htons(ETH_P_IP)) {
2677 		const struct iphdr *iph = ip_hdr(skb);
2678 
2679 		depth += sizeof(struct iphdr);
2680 		skb_set_transport_header(skb, depth);
2681 		th = tcp_hdr(skb);
2682 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2683 					  iph->daddr, 0);
2684 	} else if (type == htons(ETH_P_IPV6)) {
2685 		const struct ipv6hdr *iph = ipv6_hdr(skb);
2686 
2687 		depth += sizeof(struct ipv6hdr);
2688 		skb_set_transport_header(skb, depth);
2689 		th = tcp_hdr(skb);
2690 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2691 					  &iph->daddr, 0);
2692 	} else {
2693 		hns3_rl_err(skb->dev,
2694 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2695 			    be16_to_cpu(type), depth);
2696 		return -EFAULT;
2697 	}
2698 
2699 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2700 	if (th->cwr)
2701 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2702 
2703 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2704 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2705 
2706 	skb->csum_start = (unsigned char *)th - skb->head;
2707 	skb->csum_offset = offsetof(struct tcphdr, check);
2708 	skb->ip_summed = CHECKSUM_PARTIAL;
2709 
2710 	trace_hns3_gro(skb);
2711 
2712 	return 0;
2713 }
2714 
2715 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2716 			     u32 l234info, u32 bd_base_info, u32 ol_info)
2717 {
2718 	struct net_device *netdev = ring_to_netdev(ring);
2719 	int l3_type, l4_type;
2720 	int ol4_type;
2721 
2722 	skb->ip_summed = CHECKSUM_NONE;
2723 
2724 	skb_checksum_none_assert(skb);
2725 
2726 	if (!(netdev->features & NETIF_F_RXCSUM))
2727 		return;
2728 
2729 	/* check if hardware has done checksum */
2730 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2731 		return;
2732 
2733 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2734 				 BIT(HNS3_RXD_OL3E_B) |
2735 				 BIT(HNS3_RXD_OL4E_B)))) {
2736 		u64_stats_update_begin(&ring->syncp);
2737 		ring->stats.l3l4_csum_err++;
2738 		u64_stats_update_end(&ring->syncp);
2739 
2740 		return;
2741 	}
2742 
2743 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2744 				   HNS3_RXD_OL4ID_S);
2745 	switch (ol4_type) {
2746 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2747 	case HNS3_OL4_TYPE_NVGRE:
2748 		skb->csum_level = 1;
2749 		fallthrough;
2750 	case HNS3_OL4_TYPE_NO_TUN:
2751 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2752 					  HNS3_RXD_L3ID_S);
2753 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2754 					  HNS3_RXD_L4ID_S);
2755 
2756 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2757 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2758 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2759 		    (l4_type == HNS3_L4_TYPE_UDP ||
2760 		     l4_type == HNS3_L4_TYPE_TCP ||
2761 		     l4_type == HNS3_L4_TYPE_SCTP))
2762 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2763 		break;
2764 	default:
2765 		break;
2766 	}
2767 }
2768 
2769 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2770 {
2771 	if (skb_has_frag_list(skb))
2772 		napi_gro_flush(&ring->tqp_vector->napi, false);
2773 
2774 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2775 }
2776 
2777 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2778 				struct hns3_desc *desc, u32 l234info,
2779 				u16 *vlan_tag)
2780 {
2781 	struct hnae3_handle *handle = ring->tqp->handle;
2782 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2783 
2784 	if (pdev->revision == 0x20) {
2785 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2786 		if (!(*vlan_tag & VLAN_VID_MASK))
2787 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2788 
2789 		return (*vlan_tag != 0);
2790 	}
2791 
2792 #define HNS3_STRP_OUTER_VLAN	0x1
2793 #define HNS3_STRP_INNER_VLAN	0x2
2794 #define HNS3_STRP_BOTH		0x3
2795 
2796 	/* Hardware always insert VLAN tag into RX descriptor when
2797 	 * remove the tag from packet, driver needs to determine
2798 	 * reporting which tag to stack.
2799 	 */
2800 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2801 				HNS3_RXD_STRP_TAGP_S)) {
2802 	case HNS3_STRP_OUTER_VLAN:
2803 		if (handle->port_base_vlan_state !=
2804 				HNAE3_PORT_BASE_VLAN_DISABLE)
2805 			return false;
2806 
2807 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2808 		return true;
2809 	case HNS3_STRP_INNER_VLAN:
2810 		if (handle->port_base_vlan_state !=
2811 				HNAE3_PORT_BASE_VLAN_DISABLE)
2812 			return false;
2813 
2814 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2815 		return true;
2816 	case HNS3_STRP_BOTH:
2817 		if (handle->port_base_vlan_state ==
2818 				HNAE3_PORT_BASE_VLAN_DISABLE)
2819 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2820 		else
2821 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2822 
2823 		return true;
2824 	default:
2825 		return false;
2826 	}
2827 }
2828 
2829 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2830 			  unsigned char *va)
2831 {
2832 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2833 	struct net_device *netdev = ring_to_netdev(ring);
2834 	struct sk_buff *skb;
2835 
2836 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2837 	skb = ring->skb;
2838 	if (unlikely(!skb)) {
2839 		hns3_rl_err(netdev, "alloc rx skb fail\n");
2840 
2841 		u64_stats_update_begin(&ring->syncp);
2842 		ring->stats.sw_err_cnt++;
2843 		u64_stats_update_end(&ring->syncp);
2844 
2845 		return -ENOMEM;
2846 	}
2847 
2848 	trace_hns3_rx_desc(ring);
2849 	prefetchw(skb->data);
2850 
2851 	ring->pending_buf = 1;
2852 	ring->frag_num = 0;
2853 	ring->tail_skb = NULL;
2854 	if (length <= HNS3_RX_HEAD_SIZE) {
2855 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2856 
2857 		/* We can reuse buffer as-is, just make sure it is local */
2858 		if (likely(hns3_page_is_reusable(desc_cb->priv)))
2859 			desc_cb->reuse_flag = 1;
2860 		else /* This page cannot be reused so discard it */
2861 			put_page(desc_cb->priv);
2862 
2863 		ring_ptr_move_fw(ring, next_to_clean);
2864 		return 0;
2865 	}
2866 	u64_stats_update_begin(&ring->syncp);
2867 	ring->stats.seg_pkt_cnt++;
2868 	u64_stats_update_end(&ring->syncp);
2869 
2870 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2871 	__skb_put(skb, ring->pull_len);
2872 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2873 			    desc_cb);
2874 	ring_ptr_move_fw(ring, next_to_clean);
2875 
2876 	return 0;
2877 }
2878 
2879 static int hns3_add_frag(struct hns3_enet_ring *ring)
2880 {
2881 	struct sk_buff *skb = ring->skb;
2882 	struct sk_buff *head_skb = skb;
2883 	struct sk_buff *new_skb;
2884 	struct hns3_desc_cb *desc_cb;
2885 	struct hns3_desc *desc;
2886 	u32 bd_base_info;
2887 
2888 	do {
2889 		desc = &ring->desc[ring->next_to_clean];
2890 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2891 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2892 		/* make sure HW write desc complete */
2893 		dma_rmb();
2894 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2895 			return -ENXIO;
2896 
2897 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2898 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
2899 			if (unlikely(!new_skb)) {
2900 				hns3_rl_err(ring_to_netdev(ring),
2901 					    "alloc rx fraglist skb fail\n");
2902 				return -ENXIO;
2903 			}
2904 			ring->frag_num = 0;
2905 
2906 			if (ring->tail_skb) {
2907 				ring->tail_skb->next = new_skb;
2908 				ring->tail_skb = new_skb;
2909 			} else {
2910 				skb_shinfo(skb)->frag_list = new_skb;
2911 				ring->tail_skb = new_skb;
2912 			}
2913 		}
2914 
2915 		if (ring->tail_skb) {
2916 			head_skb->truesize += hns3_buf_size(ring);
2917 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2918 			head_skb->len += le16_to_cpu(desc->rx.size);
2919 			skb = ring->tail_skb;
2920 		}
2921 
2922 		dma_sync_single_for_cpu(ring_to_dev(ring),
2923 				desc_cb->dma + desc_cb->page_offset,
2924 				hns3_buf_size(ring),
2925 				DMA_FROM_DEVICE);
2926 
2927 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2928 		trace_hns3_rx_desc(ring);
2929 		ring_ptr_move_fw(ring, next_to_clean);
2930 		ring->pending_buf++;
2931 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
2932 
2933 	return 0;
2934 }
2935 
2936 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
2937 				     struct sk_buff *skb, u32 l234info,
2938 				     u32 bd_base_info, u32 ol_info)
2939 {
2940 	u32 l3_type;
2941 
2942 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2943 						    HNS3_RXD_GRO_SIZE_M,
2944 						    HNS3_RXD_GRO_SIZE_S);
2945 	/* if there is no HW GRO, do not set gro params */
2946 	if (!skb_shinfo(skb)->gso_size) {
2947 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2948 		return 0;
2949 	}
2950 
2951 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
2952 						  HNS3_RXD_GRO_COUNT_M,
2953 						  HNS3_RXD_GRO_COUNT_S);
2954 
2955 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
2956 	if (l3_type == HNS3_L3_TYPE_IPV4)
2957 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2958 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2959 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2960 	else
2961 		return -EFAULT;
2962 
2963 	return  hns3_gro_complete(skb, l234info);
2964 }
2965 
2966 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2967 				     struct sk_buff *skb, u32 rss_hash)
2968 {
2969 	struct hnae3_handle *handle = ring->tqp->handle;
2970 	enum pkt_hash_types rss_type;
2971 
2972 	if (rss_hash)
2973 		rss_type = handle->kinfo.rss_type;
2974 	else
2975 		rss_type = PKT_HASH_TYPE_NONE;
2976 
2977 	skb_set_hash(skb, rss_hash, rss_type);
2978 }
2979 
2980 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2981 {
2982 	struct net_device *netdev = ring_to_netdev(ring);
2983 	enum hns3_pkt_l2t_type l2_frame_type;
2984 	u32 bd_base_info, l234info, ol_info;
2985 	struct hns3_desc *desc;
2986 	unsigned int len;
2987 	int pre_ntc, ret;
2988 
2989 	/* bdinfo handled below is only valid on the last BD of the
2990 	 * current packet, and ring->next_to_clean indicates the first
2991 	 * descriptor of next packet, so need - 1 below.
2992 	 */
2993 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
2994 					(ring->desc_num - 1);
2995 	desc = &ring->desc[pre_ntc];
2996 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2997 	l234info = le32_to_cpu(desc->rx.l234_info);
2998 	ol_info = le32_to_cpu(desc->rx.ol_info);
2999 
3000 	/* Based on hw strategy, the tag offloaded will be stored at
3001 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3002 	 * in one layer tag case.
3003 	 */
3004 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3005 		u16 vlan_tag;
3006 
3007 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3008 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3009 					       vlan_tag);
3010 	}
3011 
3012 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3013 				  BIT(HNS3_RXD_L2E_B))))) {
3014 		u64_stats_update_begin(&ring->syncp);
3015 		if (l234info & BIT(HNS3_RXD_L2E_B))
3016 			ring->stats.l2_err++;
3017 		else
3018 			ring->stats.err_pkt_len++;
3019 		u64_stats_update_end(&ring->syncp);
3020 
3021 		return -EFAULT;
3022 	}
3023 
3024 	len = skb->len;
3025 
3026 	/* Do update ip stack process */
3027 	skb->protocol = eth_type_trans(skb, netdev);
3028 
3029 	/* This is needed in order to enable forwarding support */
3030 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3031 					bd_base_info, ol_info);
3032 	if (unlikely(ret)) {
3033 		u64_stats_update_begin(&ring->syncp);
3034 		ring->stats.rx_err_cnt++;
3035 		u64_stats_update_end(&ring->syncp);
3036 		return ret;
3037 	}
3038 
3039 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3040 					HNS3_RXD_DMAC_S);
3041 
3042 	u64_stats_update_begin(&ring->syncp);
3043 	ring->stats.rx_pkts++;
3044 	ring->stats.rx_bytes += len;
3045 
3046 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3047 		ring->stats.rx_multicast++;
3048 
3049 	u64_stats_update_end(&ring->syncp);
3050 
3051 	ring->tqp_vector->rx_group.total_bytes += len;
3052 
3053 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3054 	return 0;
3055 }
3056 
3057 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3058 {
3059 	struct sk_buff *skb = ring->skb;
3060 	struct hns3_desc_cb *desc_cb;
3061 	struct hns3_desc *desc;
3062 	unsigned int length;
3063 	u32 bd_base_info;
3064 	int ret;
3065 
3066 	desc = &ring->desc[ring->next_to_clean];
3067 	desc_cb = &ring->desc_cb[ring->next_to_clean];
3068 
3069 	prefetch(desc);
3070 
3071 	length = le16_to_cpu(desc->rx.size);
3072 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3073 
3074 	/* Check valid BD */
3075 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3076 		return -ENXIO;
3077 
3078 	if (!skb) {
3079 		ring->va = desc_cb->buf + desc_cb->page_offset;
3080 
3081 		dma_sync_single_for_cpu(ring_to_dev(ring),
3082 				desc_cb->dma + desc_cb->page_offset,
3083 				hns3_buf_size(ring),
3084 				DMA_FROM_DEVICE);
3085 	}
3086 
3087 	/* Prefetch first cache line of first page
3088 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
3089 	 * line size is 64B so need to prefetch twice to make it 128B. But in
3090 	 * actual we can have greater size of caches with 128B Level 1 cache
3091 	 * lines. In such a case, single fetch would suffice to cache in the
3092 	 * relevant part of the header.
3093 	 */
3094 	prefetch(ring->va);
3095 #if L1_CACHE_BYTES < 128
3096 	prefetch(ring->va + L1_CACHE_BYTES);
3097 #endif
3098 
3099 	if (!skb) {
3100 		ret = hns3_alloc_skb(ring, length, ring->va);
3101 		skb = ring->skb;
3102 
3103 		if (ret < 0) /* alloc buffer fail */
3104 			return ret;
3105 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3106 			ret = hns3_add_frag(ring);
3107 			if (ret)
3108 				return ret;
3109 		}
3110 	} else {
3111 		ret = hns3_add_frag(ring);
3112 		if (ret)
3113 			return ret;
3114 	}
3115 
3116 	/* As the head data may be changed when GRO enable, copy
3117 	 * the head data in after other data rx completed
3118 	 */
3119 	if (skb->len > HNS3_RX_HEAD_SIZE)
3120 		memcpy(skb->data, ring->va,
3121 		       ALIGN(ring->pull_len, sizeof(long)));
3122 
3123 	ret = hns3_handle_bdinfo(ring, skb);
3124 	if (unlikely(ret)) {
3125 		dev_kfree_skb_any(skb);
3126 		return ret;
3127 	}
3128 
3129 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3130 	return 0;
3131 }
3132 
3133 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3134 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3135 {
3136 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3137 	int unused_count = hns3_desc_unused(ring);
3138 	int recv_pkts = 0;
3139 	int recv_bds = 0;
3140 	int err, num;
3141 
3142 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
3143 	num -= unused_count;
3144 	unused_count -= ring->pending_buf;
3145 
3146 	if (num <= 0)
3147 		goto out;
3148 
3149 	rmb(); /* Make sure num taken effect before the other data is touched */
3150 
3151 	while (recv_pkts < budget && recv_bds < num) {
3152 		/* Reuse or realloc buffers */
3153 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3154 			hns3_nic_alloc_rx_buffers(ring, unused_count);
3155 			unused_count = hns3_desc_unused(ring) -
3156 					ring->pending_buf;
3157 		}
3158 
3159 		/* Poll one pkt */
3160 		err = hns3_handle_rx_bd(ring);
3161 		/* Do not get FE for the packet or failed to alloc skb */
3162 		if (unlikely(!ring->skb || err == -ENXIO)) {
3163 			goto out;
3164 		} else if (likely(!err)) {
3165 			rx_fn(ring, ring->skb);
3166 			recv_pkts++;
3167 		}
3168 
3169 		recv_bds += ring->pending_buf;
3170 		unused_count += ring->pending_buf;
3171 		ring->skb = NULL;
3172 		ring->pending_buf = 0;
3173 	}
3174 
3175 out:
3176 	/* Make all data has been write before submit */
3177 	if (unused_count > 0)
3178 		hns3_nic_alloc_rx_buffers(ring, unused_count);
3179 
3180 	return recv_pkts;
3181 }
3182 
3183 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3184 {
3185 #define HNS3_RX_LOW_BYTE_RATE 10000
3186 #define HNS3_RX_MID_BYTE_RATE 20000
3187 #define HNS3_RX_ULTRA_PACKET_RATE 40
3188 
3189 	enum hns3_flow_level_range new_flow_level;
3190 	struct hns3_enet_tqp_vector *tqp_vector;
3191 	int packets_per_msecs, bytes_per_msecs;
3192 	u32 time_passed_ms;
3193 
3194 	tqp_vector = ring_group->ring->tqp_vector;
3195 	time_passed_ms =
3196 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3197 	if (!time_passed_ms)
3198 		return false;
3199 
3200 	do_div(ring_group->total_packets, time_passed_ms);
3201 	packets_per_msecs = ring_group->total_packets;
3202 
3203 	do_div(ring_group->total_bytes, time_passed_ms);
3204 	bytes_per_msecs = ring_group->total_bytes;
3205 
3206 	new_flow_level = ring_group->coal.flow_level;
3207 
3208 	/* Simple throttlerate management
3209 	 * 0-10MB/s   lower     (50000 ints/s)
3210 	 * 10-20MB/s   middle    (20000 ints/s)
3211 	 * 20-1249MB/s high      (18000 ints/s)
3212 	 * > 40000pps  ultra     (8000 ints/s)
3213 	 */
3214 	switch (new_flow_level) {
3215 	case HNS3_FLOW_LOW:
3216 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3217 			new_flow_level = HNS3_FLOW_MID;
3218 		break;
3219 	case HNS3_FLOW_MID:
3220 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3221 			new_flow_level = HNS3_FLOW_HIGH;
3222 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3223 			new_flow_level = HNS3_FLOW_LOW;
3224 		break;
3225 	case HNS3_FLOW_HIGH:
3226 	case HNS3_FLOW_ULTRA:
3227 	default:
3228 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3229 			new_flow_level = HNS3_FLOW_MID;
3230 		break;
3231 	}
3232 
3233 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3234 	    &tqp_vector->rx_group == ring_group)
3235 		new_flow_level = HNS3_FLOW_ULTRA;
3236 
3237 	ring_group->total_bytes = 0;
3238 	ring_group->total_packets = 0;
3239 	ring_group->coal.flow_level = new_flow_level;
3240 
3241 	return true;
3242 }
3243 
3244 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3245 {
3246 	struct hns3_enet_tqp_vector *tqp_vector;
3247 	u16 new_int_gl;
3248 
3249 	if (!ring_group->ring)
3250 		return false;
3251 
3252 	tqp_vector = ring_group->ring->tqp_vector;
3253 	if (!tqp_vector->last_jiffies)
3254 		return false;
3255 
3256 	if (ring_group->total_packets == 0) {
3257 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
3258 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
3259 		return true;
3260 	}
3261 
3262 	if (!hns3_get_new_flow_lvl(ring_group))
3263 		return false;
3264 
3265 	new_int_gl = ring_group->coal.int_gl;
3266 	switch (ring_group->coal.flow_level) {
3267 	case HNS3_FLOW_LOW:
3268 		new_int_gl = HNS3_INT_GL_50K;
3269 		break;
3270 	case HNS3_FLOW_MID:
3271 		new_int_gl = HNS3_INT_GL_20K;
3272 		break;
3273 	case HNS3_FLOW_HIGH:
3274 		new_int_gl = HNS3_INT_GL_18K;
3275 		break;
3276 	case HNS3_FLOW_ULTRA:
3277 		new_int_gl = HNS3_INT_GL_8K;
3278 		break;
3279 	default:
3280 		break;
3281 	}
3282 
3283 	if (new_int_gl != ring_group->coal.int_gl) {
3284 		ring_group->coal.int_gl = new_int_gl;
3285 		return true;
3286 	}
3287 	return false;
3288 }
3289 
3290 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3291 {
3292 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3293 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3294 	bool rx_update, tx_update;
3295 
3296 	/* update param every 1000ms */
3297 	if (time_before(jiffies,
3298 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3299 		return;
3300 
3301 	if (rx_group->coal.gl_adapt_enable) {
3302 		rx_update = hns3_get_new_int_gl(rx_group);
3303 		if (rx_update)
3304 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3305 						       rx_group->coal.int_gl);
3306 	}
3307 
3308 	if (tx_group->coal.gl_adapt_enable) {
3309 		tx_update = hns3_get_new_int_gl(tx_group);
3310 		if (tx_update)
3311 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3312 						       tx_group->coal.int_gl);
3313 	}
3314 
3315 	tqp_vector->last_jiffies = jiffies;
3316 }
3317 
3318 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3319 {
3320 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3321 	struct hns3_enet_ring *ring;
3322 	int rx_pkt_total = 0;
3323 
3324 	struct hns3_enet_tqp_vector *tqp_vector =
3325 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3326 	bool clean_complete = true;
3327 	int rx_budget = budget;
3328 
3329 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3330 		napi_complete(napi);
3331 		return 0;
3332 	}
3333 
3334 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3335 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3336 	 */
3337 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3338 		hns3_clean_tx_ring(ring);
3339 
3340 	/* make sure rx ring budget not smaller than 1 */
3341 	if (tqp_vector->num_tqps > 1)
3342 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3343 
3344 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3345 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3346 						    hns3_rx_skb);
3347 
3348 		if (rx_cleaned >= rx_budget)
3349 			clean_complete = false;
3350 
3351 		rx_pkt_total += rx_cleaned;
3352 	}
3353 
3354 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3355 
3356 	if (!clean_complete)
3357 		return budget;
3358 
3359 	if (napi_complete(napi) &&
3360 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3361 		hns3_update_new_int_gl(tqp_vector);
3362 		hns3_mask_vector_irq(tqp_vector, 1);
3363 	}
3364 
3365 	return rx_pkt_total;
3366 }
3367 
3368 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3369 				      struct hnae3_ring_chain_node *head)
3370 {
3371 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3372 	struct hnae3_ring_chain_node *cur_chain = head;
3373 	struct hnae3_ring_chain_node *chain;
3374 	struct hns3_enet_ring *tx_ring;
3375 	struct hns3_enet_ring *rx_ring;
3376 
3377 	tx_ring = tqp_vector->tx_group.ring;
3378 	if (tx_ring) {
3379 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3380 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3381 			      HNAE3_RING_TYPE_TX);
3382 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3383 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3384 
3385 		cur_chain->next = NULL;
3386 
3387 		while (tx_ring->next) {
3388 			tx_ring = tx_ring->next;
3389 
3390 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3391 					     GFP_KERNEL);
3392 			if (!chain)
3393 				goto err_free_chain;
3394 
3395 			cur_chain->next = chain;
3396 			chain->tqp_index = tx_ring->tqp->tqp_index;
3397 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3398 				      HNAE3_RING_TYPE_TX);
3399 			hnae3_set_field(chain->int_gl_idx,
3400 					HNAE3_RING_GL_IDX_M,
3401 					HNAE3_RING_GL_IDX_S,
3402 					HNAE3_RING_GL_TX);
3403 
3404 			cur_chain = chain;
3405 		}
3406 	}
3407 
3408 	rx_ring = tqp_vector->rx_group.ring;
3409 	if (!tx_ring && rx_ring) {
3410 		cur_chain->next = NULL;
3411 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3412 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3413 			      HNAE3_RING_TYPE_RX);
3414 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3415 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3416 
3417 		rx_ring = rx_ring->next;
3418 	}
3419 
3420 	while (rx_ring) {
3421 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3422 		if (!chain)
3423 			goto err_free_chain;
3424 
3425 		cur_chain->next = chain;
3426 		chain->tqp_index = rx_ring->tqp->tqp_index;
3427 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3428 			      HNAE3_RING_TYPE_RX);
3429 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3430 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3431 
3432 		cur_chain = chain;
3433 
3434 		rx_ring = rx_ring->next;
3435 	}
3436 
3437 	return 0;
3438 
3439 err_free_chain:
3440 	cur_chain = head->next;
3441 	while (cur_chain) {
3442 		chain = cur_chain->next;
3443 		devm_kfree(&pdev->dev, cur_chain);
3444 		cur_chain = chain;
3445 	}
3446 	head->next = NULL;
3447 
3448 	return -ENOMEM;
3449 }
3450 
3451 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3452 					struct hnae3_ring_chain_node *head)
3453 {
3454 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3455 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3456 
3457 	chain = head->next;
3458 
3459 	while (chain) {
3460 		chain_tmp = chain->next;
3461 		devm_kfree(&pdev->dev, chain);
3462 		chain = chain_tmp;
3463 	}
3464 }
3465 
3466 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3467 				   struct hns3_enet_ring *ring)
3468 {
3469 	ring->next = group->ring;
3470 	group->ring = ring;
3471 
3472 	group->count++;
3473 }
3474 
3475 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3476 {
3477 	struct pci_dev *pdev = priv->ae_handle->pdev;
3478 	struct hns3_enet_tqp_vector *tqp_vector;
3479 	int num_vectors = priv->vector_num;
3480 	int numa_node;
3481 	int vector_i;
3482 
3483 	numa_node = dev_to_node(&pdev->dev);
3484 
3485 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3486 		tqp_vector = &priv->tqp_vector[vector_i];
3487 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3488 				&tqp_vector->affinity_mask);
3489 	}
3490 }
3491 
3492 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3493 {
3494 	struct hnae3_ring_chain_node vector_ring_chain;
3495 	struct hnae3_handle *h = priv->ae_handle;
3496 	struct hns3_enet_tqp_vector *tqp_vector;
3497 	int ret = 0;
3498 	int i;
3499 
3500 	hns3_nic_set_cpumask(priv);
3501 
3502 	for (i = 0; i < priv->vector_num; i++) {
3503 		tqp_vector = &priv->tqp_vector[i];
3504 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3505 		tqp_vector->num_tqps = 0;
3506 	}
3507 
3508 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3509 		u16 vector_i = i % priv->vector_num;
3510 		u16 tqp_num = h->kinfo.num_tqps;
3511 
3512 		tqp_vector = &priv->tqp_vector[vector_i];
3513 
3514 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3515 				       &priv->ring[i]);
3516 
3517 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3518 				       &priv->ring[i + tqp_num]);
3519 
3520 		priv->ring[i].tqp_vector = tqp_vector;
3521 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3522 		tqp_vector->num_tqps++;
3523 	}
3524 
3525 	for (i = 0; i < priv->vector_num; i++) {
3526 		tqp_vector = &priv->tqp_vector[i];
3527 
3528 		tqp_vector->rx_group.total_bytes = 0;
3529 		tqp_vector->rx_group.total_packets = 0;
3530 		tqp_vector->tx_group.total_bytes = 0;
3531 		tqp_vector->tx_group.total_packets = 0;
3532 		tqp_vector->handle = h;
3533 
3534 		ret = hns3_get_vector_ring_chain(tqp_vector,
3535 						 &vector_ring_chain);
3536 		if (ret)
3537 			goto map_ring_fail;
3538 
3539 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3540 			tqp_vector->vector_irq, &vector_ring_chain);
3541 
3542 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3543 
3544 		if (ret)
3545 			goto map_ring_fail;
3546 
3547 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3548 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3549 	}
3550 
3551 	return 0;
3552 
3553 map_ring_fail:
3554 	while (i--)
3555 		netif_napi_del(&priv->tqp_vector[i].napi);
3556 
3557 	return ret;
3558 }
3559 
3560 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3561 {
3562 #define HNS3_VECTOR_PF_MAX_NUM		64
3563 
3564 	struct hnae3_handle *h = priv->ae_handle;
3565 	struct hns3_enet_tqp_vector *tqp_vector;
3566 	struct hnae3_vector_info *vector;
3567 	struct pci_dev *pdev = h->pdev;
3568 	u16 tqp_num = h->kinfo.num_tqps;
3569 	u16 vector_num;
3570 	int ret = 0;
3571 	u16 i;
3572 
3573 	/* RSS size, cpu online and vector_num should be the same */
3574 	/* Should consider 2p/4p later */
3575 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3576 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3577 
3578 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3579 			      GFP_KERNEL);
3580 	if (!vector)
3581 		return -ENOMEM;
3582 
3583 	/* save the actual available vector number */
3584 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3585 
3586 	priv->vector_num = vector_num;
3587 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3588 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3589 			     GFP_KERNEL);
3590 	if (!priv->tqp_vector) {
3591 		ret = -ENOMEM;
3592 		goto out;
3593 	}
3594 
3595 	for (i = 0; i < priv->vector_num; i++) {
3596 		tqp_vector = &priv->tqp_vector[i];
3597 		tqp_vector->idx = i;
3598 		tqp_vector->mask_addr = vector[i].io_addr;
3599 		tqp_vector->vector_irq = vector[i].vector;
3600 		hns3_vector_gl_rl_init(tqp_vector, priv);
3601 	}
3602 
3603 out:
3604 	devm_kfree(&pdev->dev, vector);
3605 	return ret;
3606 }
3607 
3608 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3609 {
3610 	group->ring = NULL;
3611 	group->count = 0;
3612 }
3613 
3614 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3615 {
3616 	struct hnae3_ring_chain_node vector_ring_chain;
3617 	struct hnae3_handle *h = priv->ae_handle;
3618 	struct hns3_enet_tqp_vector *tqp_vector;
3619 	int i;
3620 
3621 	for (i = 0; i < priv->vector_num; i++) {
3622 		tqp_vector = &priv->tqp_vector[i];
3623 
3624 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3625 			continue;
3626 
3627 		/* Since the mapping can be overwritten, when fail to get the
3628 		 * chain between vector and ring, we should go on to deal with
3629 		 * the remaining options.
3630 		 */
3631 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3632 			dev_warn(priv->dev, "failed to get ring chain\n");
3633 
3634 		h->ae_algo->ops->unmap_ring_from_vector(h,
3635 			tqp_vector->vector_irq, &vector_ring_chain);
3636 
3637 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3638 
3639 		hns3_clear_ring_group(&tqp_vector->rx_group);
3640 		hns3_clear_ring_group(&tqp_vector->tx_group);
3641 		netif_napi_del(&priv->tqp_vector[i].napi);
3642 	}
3643 }
3644 
3645 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3646 {
3647 	struct hnae3_handle *h = priv->ae_handle;
3648 	struct pci_dev *pdev = h->pdev;
3649 	int i, ret;
3650 
3651 	for (i = 0; i < priv->vector_num; i++) {
3652 		struct hns3_enet_tqp_vector *tqp_vector;
3653 
3654 		tqp_vector = &priv->tqp_vector[i];
3655 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3656 		if (ret)
3657 			return;
3658 	}
3659 
3660 	devm_kfree(&pdev->dev, priv->tqp_vector);
3661 }
3662 
3663 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3664 			      unsigned int ring_type)
3665 {
3666 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3667 	struct hns3_enet_ring *ring;
3668 	int desc_num;
3669 
3670 	if (ring_type == HNAE3_RING_TYPE_TX) {
3671 		ring = &priv->ring[q->tqp_index];
3672 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3673 		ring->queue_index = q->tqp_index;
3674 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3675 	} else {
3676 		ring = &priv->ring[q->tqp_index + queue_num];
3677 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3678 		ring->queue_index = q->tqp_index;
3679 		ring->io_base = q->io_base;
3680 	}
3681 
3682 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3683 
3684 	ring->tqp = q;
3685 	ring->desc = NULL;
3686 	ring->desc_cb = NULL;
3687 	ring->dev = priv->dev;
3688 	ring->desc_dma_addr = 0;
3689 	ring->buf_size = q->buf_size;
3690 	ring->desc_num = desc_num;
3691 	ring->next_to_use = 0;
3692 	ring->next_to_clean = 0;
3693 }
3694 
3695 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3696 			       struct hns3_nic_priv *priv)
3697 {
3698 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3699 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3700 }
3701 
3702 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3703 {
3704 	struct hnae3_handle *h = priv->ae_handle;
3705 	struct pci_dev *pdev = h->pdev;
3706 	int i;
3707 
3708 	priv->ring = devm_kzalloc(&pdev->dev,
3709 				  array3_size(h->kinfo.num_tqps,
3710 					      sizeof(*priv->ring), 2),
3711 				  GFP_KERNEL);
3712 	if (!priv->ring)
3713 		return -ENOMEM;
3714 
3715 	for (i = 0; i < h->kinfo.num_tqps; i++)
3716 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3717 
3718 	return 0;
3719 }
3720 
3721 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3722 {
3723 	if (!priv->ring)
3724 		return;
3725 
3726 	devm_kfree(priv->dev, priv->ring);
3727 	priv->ring = NULL;
3728 }
3729 
3730 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3731 {
3732 	int ret;
3733 
3734 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3735 		return -EINVAL;
3736 
3737 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3738 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3739 	if (!ring->desc_cb) {
3740 		ret = -ENOMEM;
3741 		goto out;
3742 	}
3743 
3744 	ret = hns3_alloc_desc(ring);
3745 	if (ret)
3746 		goto out_with_desc_cb;
3747 
3748 	if (!HNAE3_IS_TX_RING(ring)) {
3749 		ret = hns3_alloc_ring_buffers(ring);
3750 		if (ret)
3751 			goto out_with_desc;
3752 	}
3753 
3754 	return 0;
3755 
3756 out_with_desc:
3757 	hns3_free_desc(ring);
3758 out_with_desc_cb:
3759 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3760 	ring->desc_cb = NULL;
3761 out:
3762 	return ret;
3763 }
3764 
3765 void hns3_fini_ring(struct hns3_enet_ring *ring)
3766 {
3767 	hns3_free_desc(ring);
3768 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3769 	ring->desc_cb = NULL;
3770 	ring->next_to_clean = 0;
3771 	ring->next_to_use = 0;
3772 	ring->pending_buf = 0;
3773 	if (ring->skb) {
3774 		dev_kfree_skb_any(ring->skb);
3775 		ring->skb = NULL;
3776 	}
3777 }
3778 
3779 static int hns3_buf_size2type(u32 buf_size)
3780 {
3781 	int bd_size_type;
3782 
3783 	switch (buf_size) {
3784 	case 512:
3785 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3786 		break;
3787 	case 1024:
3788 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3789 		break;
3790 	case 2048:
3791 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3792 		break;
3793 	case 4096:
3794 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3795 		break;
3796 	default:
3797 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3798 	}
3799 
3800 	return bd_size_type;
3801 }
3802 
3803 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3804 {
3805 	dma_addr_t dma = ring->desc_dma_addr;
3806 	struct hnae3_queue *q = ring->tqp;
3807 
3808 	if (!HNAE3_IS_TX_RING(ring)) {
3809 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3810 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3811 			       (u32)((dma >> 31) >> 1));
3812 
3813 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3814 			       hns3_buf_size2type(ring->buf_size));
3815 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3816 			       ring->desc_num / 8 - 1);
3817 
3818 	} else {
3819 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3820 			       (u32)dma);
3821 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3822 			       (u32)((dma >> 31) >> 1));
3823 
3824 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3825 			       ring->desc_num / 8 - 1);
3826 	}
3827 }
3828 
3829 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3830 {
3831 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3832 	int i;
3833 
3834 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3835 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3836 		int j;
3837 
3838 		if (!tc_info->enable)
3839 			continue;
3840 
3841 		for (j = 0; j < tc_info->tqp_count; j++) {
3842 			struct hnae3_queue *q;
3843 
3844 			q = priv->ring[tc_info->tqp_offset + j].tqp;
3845 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3846 				       tc_info->tc);
3847 		}
3848 	}
3849 }
3850 
3851 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3852 {
3853 	struct hnae3_handle *h = priv->ae_handle;
3854 	int ring_num = h->kinfo.num_tqps * 2;
3855 	int i, j;
3856 	int ret;
3857 
3858 	for (i = 0; i < ring_num; i++) {
3859 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
3860 		if (ret) {
3861 			dev_err(priv->dev,
3862 				"Alloc ring memory fail! ret=%d\n", ret);
3863 			goto out_when_alloc_ring_memory;
3864 		}
3865 
3866 		u64_stats_init(&priv->ring[i].syncp);
3867 	}
3868 
3869 	return 0;
3870 
3871 out_when_alloc_ring_memory:
3872 	for (j = i - 1; j >= 0; j--)
3873 		hns3_fini_ring(&priv->ring[j]);
3874 
3875 	return -ENOMEM;
3876 }
3877 
3878 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3879 {
3880 	struct hnae3_handle *h = priv->ae_handle;
3881 	int i;
3882 
3883 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3884 		hns3_fini_ring(&priv->ring[i]);
3885 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
3886 	}
3887 	return 0;
3888 }
3889 
3890 /* Set mac addr if it is configured. or leave it to the AE driver */
3891 static int hns3_init_mac_addr(struct net_device *netdev)
3892 {
3893 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3894 	struct hnae3_handle *h = priv->ae_handle;
3895 	u8 mac_addr_temp[ETH_ALEN];
3896 	int ret = 0;
3897 
3898 	if (h->ae_algo->ops->get_mac_addr)
3899 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3900 
3901 	/* Check if the MAC address is valid, if not get a random one */
3902 	if (!is_valid_ether_addr(mac_addr_temp)) {
3903 		eth_hw_addr_random(netdev);
3904 		dev_warn(priv->dev, "using random MAC address %pM\n",
3905 			 netdev->dev_addr);
3906 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
3907 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3908 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
3909 	} else {
3910 		return 0;
3911 	}
3912 
3913 	if (h->ae_algo->ops->set_mac_addr)
3914 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3915 
3916 	return ret;
3917 }
3918 
3919 static int hns3_init_phy(struct net_device *netdev)
3920 {
3921 	struct hnae3_handle *h = hns3_get_handle(netdev);
3922 	int ret = 0;
3923 
3924 	if (h->ae_algo->ops->mac_connect_phy)
3925 		ret = h->ae_algo->ops->mac_connect_phy(h);
3926 
3927 	return ret;
3928 }
3929 
3930 static void hns3_uninit_phy(struct net_device *netdev)
3931 {
3932 	struct hnae3_handle *h = hns3_get_handle(netdev);
3933 
3934 	if (h->ae_algo->ops->mac_disconnect_phy)
3935 		h->ae_algo->ops->mac_disconnect_phy(h);
3936 }
3937 
3938 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3939 {
3940 	struct hnae3_handle *h = hns3_get_handle(netdev);
3941 
3942 	if (h->ae_algo->ops->del_all_fd_entries)
3943 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3944 }
3945 
3946 static int hns3_client_start(struct hnae3_handle *handle)
3947 {
3948 	if (!handle->ae_algo->ops->client_start)
3949 		return 0;
3950 
3951 	return handle->ae_algo->ops->client_start(handle);
3952 }
3953 
3954 static void hns3_client_stop(struct hnae3_handle *handle)
3955 {
3956 	if (!handle->ae_algo->ops->client_stop)
3957 		return;
3958 
3959 	handle->ae_algo->ops->client_stop(handle);
3960 }
3961 
3962 static void hns3_info_show(struct hns3_nic_priv *priv)
3963 {
3964 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3965 
3966 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
3967 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
3968 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
3969 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
3970 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
3971 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
3972 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
3973 	dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->num_tc);
3974 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
3975 }
3976 
3977 static int hns3_client_init(struct hnae3_handle *handle)
3978 {
3979 	struct pci_dev *pdev = handle->pdev;
3980 	u16 alloc_tqps, max_rss_size;
3981 	struct hns3_nic_priv *priv;
3982 	struct net_device *netdev;
3983 	int ret;
3984 
3985 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3986 						    &max_rss_size);
3987 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3988 	if (!netdev)
3989 		return -ENOMEM;
3990 
3991 	priv = netdev_priv(netdev);
3992 	priv->dev = &pdev->dev;
3993 	priv->netdev = netdev;
3994 	priv->ae_handle = handle;
3995 	priv->tx_timeout_count = 0;
3996 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3997 
3998 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
3999 
4000 	handle->kinfo.netdev = netdev;
4001 	handle->priv = (void *)priv;
4002 
4003 	hns3_init_mac_addr(netdev);
4004 
4005 	hns3_set_default_feature(netdev);
4006 
4007 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4008 	netdev->priv_flags |= IFF_UNICAST_FLT;
4009 	netdev->netdev_ops = &hns3_nic_netdev_ops;
4010 	SET_NETDEV_DEV(netdev, &pdev->dev);
4011 	hns3_ethtool_set_ops(netdev);
4012 
4013 	/* Carrier off reporting is important to ethtool even BEFORE open */
4014 	netif_carrier_off(netdev);
4015 
4016 	ret = hns3_get_ring_config(priv);
4017 	if (ret) {
4018 		ret = -ENOMEM;
4019 		goto out_get_ring_cfg;
4020 	}
4021 
4022 	ret = hns3_nic_alloc_vector_data(priv);
4023 	if (ret) {
4024 		ret = -ENOMEM;
4025 		goto out_alloc_vector_data;
4026 	}
4027 
4028 	ret = hns3_nic_init_vector_data(priv);
4029 	if (ret) {
4030 		ret = -ENOMEM;
4031 		goto out_init_vector_data;
4032 	}
4033 
4034 	ret = hns3_init_all_ring(priv);
4035 	if (ret) {
4036 		ret = -ENOMEM;
4037 		goto out_init_ring;
4038 	}
4039 
4040 	ret = hns3_init_phy(netdev);
4041 	if (ret)
4042 		goto out_init_phy;
4043 
4044 	ret = register_netdev(netdev);
4045 	if (ret) {
4046 		dev_err(priv->dev, "probe register netdev fail!\n");
4047 		goto out_reg_netdev_fail;
4048 	}
4049 
4050 	/* the device can work without cpu rmap, only aRFS needs it */
4051 	ret = hns3_set_rx_cpu_rmap(netdev);
4052 	if (ret)
4053 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4054 
4055 	ret = hns3_nic_init_irq(priv);
4056 	if (ret) {
4057 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4058 		hns3_free_rx_cpu_rmap(netdev);
4059 		goto out_init_irq_fail;
4060 	}
4061 
4062 	ret = hns3_client_start(handle);
4063 	if (ret) {
4064 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4065 		goto out_client_start;
4066 	}
4067 
4068 	hns3_dcbnl_setup(handle);
4069 
4070 	hns3_dbg_init(handle);
4071 
4072 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4073 	netdev->max_mtu = HNS3_MAX_MTU;
4074 
4075 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4076 
4077 	if (netif_msg_drv(handle))
4078 		hns3_info_show(priv);
4079 
4080 	return ret;
4081 
4082 out_client_start:
4083 	hns3_free_rx_cpu_rmap(netdev);
4084 	hns3_nic_uninit_irq(priv);
4085 out_init_irq_fail:
4086 	unregister_netdev(netdev);
4087 out_reg_netdev_fail:
4088 	hns3_uninit_phy(netdev);
4089 out_init_phy:
4090 	hns3_uninit_all_ring(priv);
4091 out_init_ring:
4092 	hns3_nic_uninit_vector_data(priv);
4093 out_init_vector_data:
4094 	hns3_nic_dealloc_vector_data(priv);
4095 out_alloc_vector_data:
4096 	priv->ring = NULL;
4097 out_get_ring_cfg:
4098 	priv->ae_handle = NULL;
4099 	free_netdev(netdev);
4100 	return ret;
4101 }
4102 
4103 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4104 {
4105 	struct net_device *netdev = handle->kinfo.netdev;
4106 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4107 	int ret;
4108 
4109 	if (netdev->reg_state != NETREG_UNINITIALIZED)
4110 		unregister_netdev(netdev);
4111 
4112 	hns3_client_stop(handle);
4113 
4114 	hns3_uninit_phy(netdev);
4115 
4116 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4117 		netdev_warn(netdev, "already uninitialized\n");
4118 		goto out_netdev_free;
4119 	}
4120 
4121 	hns3_free_rx_cpu_rmap(netdev);
4122 
4123 	hns3_nic_uninit_irq(priv);
4124 
4125 	hns3_del_all_fd_rules(netdev, true);
4126 
4127 	hns3_clear_all_ring(handle, true);
4128 
4129 	hns3_nic_uninit_vector_data(priv);
4130 
4131 	hns3_nic_dealloc_vector_data(priv);
4132 
4133 	ret = hns3_uninit_all_ring(priv);
4134 	if (ret)
4135 		netdev_err(netdev, "uninit ring error\n");
4136 
4137 	hns3_put_ring_config(priv);
4138 
4139 out_netdev_free:
4140 	hns3_dbg_uninit(handle);
4141 	free_netdev(netdev);
4142 }
4143 
4144 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4145 {
4146 	struct net_device *netdev = handle->kinfo.netdev;
4147 
4148 	if (!netdev)
4149 		return;
4150 
4151 	if (linkup) {
4152 		netif_tx_wake_all_queues(netdev);
4153 		netif_carrier_on(netdev);
4154 		if (netif_msg_link(handle))
4155 			netdev_info(netdev, "link up\n");
4156 	} else {
4157 		netif_carrier_off(netdev);
4158 		netif_tx_stop_all_queues(netdev);
4159 		if (netif_msg_link(handle))
4160 			netdev_info(netdev, "link down\n");
4161 	}
4162 }
4163 
4164 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4165 {
4166 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4167 	struct net_device *ndev = kinfo->netdev;
4168 
4169 	if (tc > HNAE3_MAX_TC)
4170 		return -EINVAL;
4171 
4172 	if (!ndev)
4173 		return -ENODEV;
4174 
4175 	return hns3_nic_set_real_num_queue(ndev);
4176 }
4177 
4178 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4179 {
4180 	while (ring->next_to_clean != ring->next_to_use) {
4181 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4182 		hns3_free_buffer_detach(ring, ring->next_to_clean);
4183 		ring_ptr_move_fw(ring, next_to_clean);
4184 	}
4185 }
4186 
4187 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4188 {
4189 	struct hns3_desc_cb res_cbs;
4190 	int ret;
4191 
4192 	while (ring->next_to_use != ring->next_to_clean) {
4193 		/* When a buffer is not reused, it's memory has been
4194 		 * freed in hns3_handle_rx_bd or will be freed by
4195 		 * stack, so we need to replace the buffer here.
4196 		 */
4197 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4198 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4199 			if (ret) {
4200 				u64_stats_update_begin(&ring->syncp);
4201 				ring->stats.sw_err_cnt++;
4202 				u64_stats_update_end(&ring->syncp);
4203 				/* if alloc new buffer fail, exit directly
4204 				 * and reclear in up flow.
4205 				 */
4206 				netdev_warn(ring_to_netdev(ring),
4207 					    "reserve buffer map failed, ret = %d\n",
4208 					    ret);
4209 				return ret;
4210 			}
4211 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4212 		}
4213 		ring_ptr_move_fw(ring, next_to_use);
4214 	}
4215 
4216 	/* Free the pending skb in rx ring */
4217 	if (ring->skb) {
4218 		dev_kfree_skb_any(ring->skb);
4219 		ring->skb = NULL;
4220 		ring->pending_buf = 0;
4221 	}
4222 
4223 	return 0;
4224 }
4225 
4226 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4227 {
4228 	while (ring->next_to_use != ring->next_to_clean) {
4229 		/* When a buffer is not reused, it's memory has been
4230 		 * freed in hns3_handle_rx_bd or will be freed by
4231 		 * stack, so only need to unmap the buffer here.
4232 		 */
4233 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4234 			hns3_unmap_buffer(ring,
4235 					  &ring->desc_cb[ring->next_to_use]);
4236 			ring->desc_cb[ring->next_to_use].dma = 0;
4237 		}
4238 
4239 		ring_ptr_move_fw(ring, next_to_use);
4240 	}
4241 }
4242 
4243 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4244 {
4245 	struct net_device *ndev = h->kinfo.netdev;
4246 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4247 	u32 i;
4248 
4249 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4250 		struct hns3_enet_ring *ring;
4251 
4252 		ring = &priv->ring[i];
4253 		hns3_clear_tx_ring(ring);
4254 
4255 		ring = &priv->ring[i + h->kinfo.num_tqps];
4256 		/* Continue to clear other rings even if clearing some
4257 		 * rings failed.
4258 		 */
4259 		if (force)
4260 			hns3_force_clear_rx_ring(ring);
4261 		else
4262 			hns3_clear_rx_ring(ring);
4263 	}
4264 }
4265 
4266 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4267 {
4268 	struct net_device *ndev = h->kinfo.netdev;
4269 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4270 	struct hns3_enet_ring *rx_ring;
4271 	int i, j;
4272 	int ret;
4273 
4274 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4275 		ret = h->ae_algo->ops->reset_queue(h, i);
4276 		if (ret)
4277 			return ret;
4278 
4279 		hns3_init_ring_hw(&priv->ring[i]);
4280 
4281 		/* We need to clear tx ring here because self test will
4282 		 * use the ring and will not run down before up
4283 		 */
4284 		hns3_clear_tx_ring(&priv->ring[i]);
4285 		priv->ring[i].next_to_clean = 0;
4286 		priv->ring[i].next_to_use = 0;
4287 
4288 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4289 		hns3_init_ring_hw(rx_ring);
4290 		ret = hns3_clear_rx_ring(rx_ring);
4291 		if (ret)
4292 			return ret;
4293 
4294 		/* We can not know the hardware head and tail when this
4295 		 * function is called in reset flow, so we reuse all desc.
4296 		 */
4297 		for (j = 0; j < rx_ring->desc_num; j++)
4298 			hns3_reuse_buffer(rx_ring, j);
4299 
4300 		rx_ring->next_to_clean = 0;
4301 		rx_ring->next_to_use = 0;
4302 	}
4303 
4304 	hns3_init_tx_ring_tc(priv);
4305 
4306 	return 0;
4307 }
4308 
4309 static void hns3_store_coal(struct hns3_nic_priv *priv)
4310 {
4311 	/* ethtool only support setting and querying one coal
4312 	 * configuration for now, so save the vector 0' coal
4313 	 * configuration here in order to restore it.
4314 	 */
4315 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4316 	       sizeof(struct hns3_enet_coalesce));
4317 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4318 	       sizeof(struct hns3_enet_coalesce));
4319 }
4320 
4321 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4322 {
4323 	u16 vector_num = priv->vector_num;
4324 	int i;
4325 
4326 	for (i = 0; i < vector_num; i++) {
4327 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4328 		       sizeof(struct hns3_enet_coalesce));
4329 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4330 		       sizeof(struct hns3_enet_coalesce));
4331 	}
4332 }
4333 
4334 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4335 {
4336 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4337 	struct net_device *ndev = kinfo->netdev;
4338 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4339 
4340 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4341 		return 0;
4342 
4343 	if (!netif_running(ndev))
4344 		return 0;
4345 
4346 	return hns3_nic_net_stop(ndev);
4347 }
4348 
4349 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4350 {
4351 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4352 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4353 	int ret = 0;
4354 
4355 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4356 
4357 	if (netif_running(kinfo->netdev)) {
4358 		ret = hns3_nic_net_open(kinfo->netdev);
4359 		if (ret) {
4360 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4361 			netdev_err(kinfo->netdev,
4362 				   "net up fail, ret=%d!\n", ret);
4363 			return ret;
4364 		}
4365 	}
4366 
4367 	return ret;
4368 }
4369 
4370 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4371 {
4372 	struct net_device *netdev = handle->kinfo.netdev;
4373 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4374 	int ret;
4375 
4376 	/* Carrier off reporting is important to ethtool even BEFORE open */
4377 	netif_carrier_off(netdev);
4378 
4379 	ret = hns3_get_ring_config(priv);
4380 	if (ret)
4381 		return ret;
4382 
4383 	ret = hns3_nic_alloc_vector_data(priv);
4384 	if (ret)
4385 		goto err_put_ring;
4386 
4387 	hns3_restore_coal(priv);
4388 
4389 	ret = hns3_nic_init_vector_data(priv);
4390 	if (ret)
4391 		goto err_dealloc_vector;
4392 
4393 	ret = hns3_init_all_ring(priv);
4394 	if (ret)
4395 		goto err_uninit_vector;
4396 
4397 	/* the device can work without cpu rmap, only aRFS needs it */
4398 	ret = hns3_set_rx_cpu_rmap(netdev);
4399 	if (ret)
4400 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4401 
4402 	ret = hns3_nic_init_irq(priv);
4403 	if (ret) {
4404 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4405 		hns3_free_rx_cpu_rmap(netdev);
4406 		goto err_init_irq_fail;
4407 	}
4408 
4409 	if (!hns3_is_phys_func(handle->pdev))
4410 		hns3_init_mac_addr(netdev);
4411 
4412 	ret = hns3_client_start(handle);
4413 	if (ret) {
4414 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4415 		goto err_client_start_fail;
4416 	}
4417 
4418 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4419 
4420 	return ret;
4421 
4422 err_client_start_fail:
4423 	hns3_free_rx_cpu_rmap(netdev);
4424 	hns3_nic_uninit_irq(priv);
4425 err_init_irq_fail:
4426 	hns3_uninit_all_ring(priv);
4427 err_uninit_vector:
4428 	hns3_nic_uninit_vector_data(priv);
4429 err_dealloc_vector:
4430 	hns3_nic_dealloc_vector_data(priv);
4431 err_put_ring:
4432 	hns3_put_ring_config(priv);
4433 
4434 	return ret;
4435 }
4436 
4437 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4438 {
4439 	struct net_device *netdev = handle->kinfo.netdev;
4440 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4441 	int ret;
4442 
4443 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4444 		netdev_warn(netdev, "already uninitialized\n");
4445 		return 0;
4446 	}
4447 
4448 	hns3_free_rx_cpu_rmap(netdev);
4449 	hns3_nic_uninit_irq(priv);
4450 	hns3_clear_all_ring(handle, true);
4451 	hns3_reset_tx_queue(priv->ae_handle);
4452 
4453 	hns3_nic_uninit_vector_data(priv);
4454 
4455 	hns3_store_coal(priv);
4456 
4457 	hns3_nic_dealloc_vector_data(priv);
4458 
4459 	ret = hns3_uninit_all_ring(priv);
4460 	if (ret)
4461 		netdev_err(netdev, "uninit ring error\n");
4462 
4463 	hns3_put_ring_config(priv);
4464 
4465 	return ret;
4466 }
4467 
4468 static int hns3_reset_notify(struct hnae3_handle *handle,
4469 			     enum hnae3_reset_notify_type type)
4470 {
4471 	int ret = 0;
4472 
4473 	switch (type) {
4474 	case HNAE3_UP_CLIENT:
4475 		ret = hns3_reset_notify_up_enet(handle);
4476 		break;
4477 	case HNAE3_DOWN_CLIENT:
4478 		ret = hns3_reset_notify_down_enet(handle);
4479 		break;
4480 	case HNAE3_INIT_CLIENT:
4481 		ret = hns3_reset_notify_init_enet(handle);
4482 		break;
4483 	case HNAE3_UNINIT_CLIENT:
4484 		ret = hns3_reset_notify_uninit_enet(handle);
4485 		break;
4486 	default:
4487 		break;
4488 	}
4489 
4490 	return ret;
4491 }
4492 
4493 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4494 				bool rxfh_configured)
4495 {
4496 	int ret;
4497 
4498 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4499 						 rxfh_configured);
4500 	if (ret) {
4501 		dev_err(&handle->pdev->dev,
4502 			"Change tqp num(%u) fail.\n", new_tqp_num);
4503 		return ret;
4504 	}
4505 
4506 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4507 	if (ret)
4508 		return ret;
4509 
4510 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4511 	if (ret)
4512 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4513 
4514 	return ret;
4515 }
4516 
4517 int hns3_set_channels(struct net_device *netdev,
4518 		      struct ethtool_channels *ch)
4519 {
4520 	struct hnae3_handle *h = hns3_get_handle(netdev);
4521 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4522 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4523 	u32 new_tqp_num = ch->combined_count;
4524 	u16 org_tqp_num;
4525 	int ret;
4526 
4527 	if (hns3_nic_resetting(netdev))
4528 		return -EBUSY;
4529 
4530 	if (ch->rx_count || ch->tx_count)
4531 		return -EINVAL;
4532 
4533 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4534 	    new_tqp_num < 1) {
4535 		dev_err(&netdev->dev,
4536 			"Change tqps fail, the tqp range is from 1 to %u",
4537 			hns3_get_max_available_channels(h));
4538 		return -EINVAL;
4539 	}
4540 
4541 	if (kinfo->rss_size == new_tqp_num)
4542 		return 0;
4543 
4544 	netif_dbg(h, drv, netdev,
4545 		  "set channels: tqp_num=%u, rxfh=%d\n",
4546 		  new_tqp_num, rxfh_configured);
4547 
4548 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4549 	if (ret)
4550 		return ret;
4551 
4552 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4553 	if (ret)
4554 		return ret;
4555 
4556 	org_tqp_num = h->kinfo.num_tqps;
4557 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4558 	if (ret) {
4559 		int ret1;
4560 
4561 		netdev_warn(netdev,
4562 			    "Change channels fail, revert to old value\n");
4563 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4564 		if (ret1) {
4565 			netdev_err(netdev,
4566 				   "revert to old channel fail\n");
4567 			return ret1;
4568 		}
4569 
4570 		return ret;
4571 	}
4572 
4573 	return 0;
4574 }
4575 
4576 static const struct hns3_hw_error_info hns3_hw_err[] = {
4577 	{ .type = HNAE3_PPU_POISON_ERROR,
4578 	  .msg = "PPU poison" },
4579 	{ .type = HNAE3_CMDQ_ECC_ERROR,
4580 	  .msg = "IMP CMDQ error" },
4581 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
4582 	  .msg = "IMP RD poison" },
4583 };
4584 
4585 static void hns3_process_hw_error(struct hnae3_handle *handle,
4586 				  enum hnae3_hw_error_type type)
4587 {
4588 	int i;
4589 
4590 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4591 		if (hns3_hw_err[i].type == type) {
4592 			dev_err(&handle->pdev->dev, "Detected %s!\n",
4593 				hns3_hw_err[i].msg);
4594 			break;
4595 		}
4596 	}
4597 }
4598 
4599 static const struct hnae3_client_ops client_ops = {
4600 	.init_instance = hns3_client_init,
4601 	.uninit_instance = hns3_client_uninit,
4602 	.link_status_change = hns3_link_status_change,
4603 	.setup_tc = hns3_client_setup_tc,
4604 	.reset_notify = hns3_reset_notify,
4605 	.process_hw_error = hns3_process_hw_error,
4606 };
4607 
4608 /* hns3_init_module - Driver registration routine
4609  * hns3_init_module is the first routine called when the driver is
4610  * loaded. All it does is register with the PCI subsystem.
4611  */
4612 static int __init hns3_init_module(void)
4613 {
4614 	int ret;
4615 
4616 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4617 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4618 
4619 	client.type = HNAE3_CLIENT_KNIC;
4620 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4621 		 hns3_driver_name);
4622 
4623 	client.ops = &client_ops;
4624 
4625 	INIT_LIST_HEAD(&client.node);
4626 
4627 	hns3_dbg_register_debugfs(hns3_driver_name);
4628 
4629 	ret = hnae3_register_client(&client);
4630 	if (ret)
4631 		goto err_reg_client;
4632 
4633 	ret = pci_register_driver(&hns3_driver);
4634 	if (ret)
4635 		goto err_reg_driver;
4636 
4637 	return ret;
4638 
4639 err_reg_driver:
4640 	hnae3_unregister_client(&client);
4641 err_reg_client:
4642 	hns3_dbg_unregister_debugfs();
4643 	return ret;
4644 }
4645 module_init(hns3_init_module);
4646 
4647 /* hns3_exit_module - Driver exit cleanup routine
4648  * hns3_exit_module is called just before the driver is removed
4649  * from memory.
4650  */
4651 static void __exit hns3_exit_module(void)
4652 {
4653 	pci_unregister_driver(&hns3_driver);
4654 	hnae3_unregister_client(&client);
4655 	hns3_dbg_unregister_debugfs();
4656 }
4657 module_exit(hns3_exit_module);
4658 
4659 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4660 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4661 MODULE_LICENSE("GPL");
4662 MODULE_ALIAS("pci:hns-nic");
4663