1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/aer.h>
13 #include <linux/skbuff.h>
14 #include <linux/sctp.h>
15 #include <linux/vermagic.h>
16 #include <net/gre.h>
17 #include <net/pkt_cls.h>
18 #include <net/tcp.h>
19 #include <net/vxlan.h>
20 
21 #include "hnae3.h"
22 #include "hns3_enet.h"
23 
24 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
25 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
26 
27 static void hns3_clear_all_ring(struct hnae3_handle *h);
28 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
29 static void hns3_remove_hw_addr(struct net_device *netdev);
30 
31 static const char hns3_driver_name[] = "hns3";
32 const char hns3_driver_version[] = VERMAGIC_STRING;
33 static const char hns3_driver_string[] =
34 			"Hisilicon Ethernet Network Driver for Hip08 Family";
35 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
36 static struct hnae3_client client;
37 
38 /* hns3_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
43  *   Class, Class Mask, private data (not used) }
44  */
45 static const struct pci_device_id hns3_pci_tbl[] = {
46 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
47 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
48 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
49 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
50 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
51 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
52 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
53 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
54 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
55 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
56 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
57 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
58 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
59 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
60 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
61 	/* required last entry */
62 	{0, }
63 };
64 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
65 
66 static irqreturn_t hns3_irq_handle(int irq, void *vector)
67 {
68 	struct hns3_enet_tqp_vector *tqp_vector = vector;
69 
70 	napi_schedule(&tqp_vector->napi);
71 
72 	return IRQ_HANDLED;
73 }
74 
75 /* This callback function is used to set affinity changes to the irq affinity
76  * masks when the irq_set_affinity_notifier function is used.
77  */
78 static void hns3_nic_irq_affinity_notify(struct irq_affinity_notify *notify,
79 					 const cpumask_t *mask)
80 {
81 	struct hns3_enet_tqp_vector *tqp_vectors =
82 		container_of(notify, struct hns3_enet_tqp_vector,
83 			     affinity_notify);
84 
85 	tqp_vectors->affinity_mask = *mask;
86 }
87 
88 static void hns3_nic_irq_affinity_release(struct kref *ref)
89 {
90 }
91 
92 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
93 {
94 	struct hns3_enet_tqp_vector *tqp_vectors;
95 	unsigned int i;
96 
97 	for (i = 0; i < priv->vector_num; i++) {
98 		tqp_vectors = &priv->tqp_vector[i];
99 
100 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
101 			continue;
102 
103 		/* clear the affinity notifier and affinity mask */
104 		irq_set_affinity_notifier(tqp_vectors->vector_irq, NULL);
105 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
106 
107 		/* release the irq resource */
108 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
109 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
110 	}
111 }
112 
113 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
114 {
115 	struct hns3_enet_tqp_vector *tqp_vectors;
116 	int txrx_int_idx = 0;
117 	int rx_int_idx = 0;
118 	int tx_int_idx = 0;
119 	unsigned int i;
120 	int ret;
121 
122 	for (i = 0; i < priv->vector_num; i++) {
123 		tqp_vectors = &priv->tqp_vector[i];
124 
125 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
126 			continue;
127 
128 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
129 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
130 				 "%s-%s-%d", priv->netdev->name, "TxRx",
131 				 txrx_int_idx++);
132 			txrx_int_idx++;
133 		} else if (tqp_vectors->rx_group.ring) {
134 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
135 				 "%s-%s-%d", priv->netdev->name, "Rx",
136 				 rx_int_idx++);
137 		} else if (tqp_vectors->tx_group.ring) {
138 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
139 				 "%s-%s-%d", priv->netdev->name, "Tx",
140 				 tx_int_idx++);
141 		} else {
142 			/* Skip this unused q_vector */
143 			continue;
144 		}
145 
146 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
147 
148 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
149 				  tqp_vectors->name,
150 				       tqp_vectors);
151 		if (ret) {
152 			netdev_err(priv->netdev, "request irq(%d) fail\n",
153 				   tqp_vectors->vector_irq);
154 			return ret;
155 		}
156 
157 		tqp_vectors->affinity_notify.notify =
158 					hns3_nic_irq_affinity_notify;
159 		tqp_vectors->affinity_notify.release =
160 					hns3_nic_irq_affinity_release;
161 		irq_set_affinity_notifier(tqp_vectors->vector_irq,
162 					  &tqp_vectors->affinity_notify);
163 		irq_set_affinity_hint(tqp_vectors->vector_irq,
164 				      &tqp_vectors->affinity_mask);
165 
166 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
167 	}
168 
169 	return 0;
170 }
171 
172 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
173 				 u32 mask_en)
174 {
175 	writel(mask_en, tqp_vector->mask_addr);
176 }
177 
178 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
179 {
180 	napi_enable(&tqp_vector->napi);
181 
182 	/* enable vector */
183 	hns3_mask_vector_irq(tqp_vector, 1);
184 }
185 
186 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
187 {
188 	/* disable vector */
189 	hns3_mask_vector_irq(tqp_vector, 0);
190 
191 	disable_irq(tqp_vector->vector_irq);
192 	napi_disable(&tqp_vector->napi);
193 }
194 
195 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
196 				 u32 rl_value)
197 {
198 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
199 
200 	/* this defines the configuration for RL (Interrupt Rate Limiter).
201 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
202 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
203 	 */
204 
205 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
206 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
207 		/* According to the hardware, the range of rl_reg is
208 		 * 0-59 and the unit is 4.
209 		 */
210 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
211 
212 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
213 }
214 
215 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
216 				    u32 gl_value)
217 {
218 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
219 
220 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
221 }
222 
223 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
224 				    u32 gl_value)
225 {
226 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
227 
228 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
229 }
230 
231 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
232 				   struct hns3_nic_priv *priv)
233 {
234 	/* initialize the configuration for interrupt coalescing.
235 	 * 1. GL (Interrupt Gap Limiter)
236 	 * 2. RL (Interrupt Rate Limiter)
237 	 */
238 
239 	/* Default: enable interrupt coalescing self-adaptive and GL */
240 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
241 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
242 
243 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
244 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
245 
246 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
247 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
248 }
249 
250 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
251 				      struct hns3_nic_priv *priv)
252 {
253 	struct hnae3_handle *h = priv->ae_handle;
254 
255 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
256 				       tqp_vector->tx_group.coal.int_gl);
257 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
258 				       tqp_vector->rx_group.coal.int_gl);
259 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
260 }
261 
262 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
263 {
264 	struct hnae3_handle *h = hns3_get_handle(netdev);
265 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
266 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
267 	int i, ret;
268 
269 	if (kinfo->num_tc <= 1) {
270 		netdev_reset_tc(netdev);
271 	} else {
272 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
273 		if (ret) {
274 			netdev_err(netdev,
275 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
276 			return ret;
277 		}
278 
279 		for (i = 0; i < HNAE3_MAX_TC; i++) {
280 			if (!kinfo->tc_info[i].enable)
281 				continue;
282 
283 			netdev_set_tc_queue(netdev,
284 					    kinfo->tc_info[i].tc,
285 					    kinfo->tc_info[i].tqp_count,
286 					    kinfo->tc_info[i].tqp_offset);
287 		}
288 	}
289 
290 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
291 	if (ret) {
292 		netdev_err(netdev,
293 			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
294 			   ret);
295 		return ret;
296 	}
297 
298 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
299 	if (ret) {
300 		netdev_err(netdev,
301 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
302 		return ret;
303 	}
304 
305 	return 0;
306 }
307 
308 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
309 {
310 	u16 alloc_tqps, max_rss_size, rss_size;
311 
312 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
313 	rss_size = alloc_tqps / h->kinfo.num_tc;
314 
315 	return min_t(u16, rss_size, max_rss_size);
316 }
317 
318 static void hns3_tqp_enable(struct hnae3_queue *tqp)
319 {
320 	u32 rcb_reg;
321 
322 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
323 	rcb_reg |= BIT(HNS3_RING_EN_B);
324 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
325 }
326 
327 static void hns3_tqp_disable(struct hnae3_queue *tqp)
328 {
329 	u32 rcb_reg;
330 
331 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
332 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
333 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
334 }
335 
336 static int hns3_nic_net_up(struct net_device *netdev)
337 {
338 	struct hns3_nic_priv *priv = netdev_priv(netdev);
339 	struct hnae3_handle *h = priv->ae_handle;
340 	int i, j;
341 	int ret;
342 
343 	ret = hns3_nic_reset_all_ring(h);
344 	if (ret)
345 		return ret;
346 
347 	/* get irq resource for all vectors */
348 	ret = hns3_nic_init_irq(priv);
349 	if (ret) {
350 		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
351 		return ret;
352 	}
353 
354 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
355 
356 	/* enable the vectors */
357 	for (i = 0; i < priv->vector_num; i++)
358 		hns3_vector_enable(&priv->tqp_vector[i]);
359 
360 	/* enable rcb */
361 	for (j = 0; j < h->kinfo.num_tqps; j++)
362 		hns3_tqp_enable(h->kinfo.tqp[j]);
363 
364 	/* start the ae_dev */
365 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
366 	if (ret)
367 		goto out_start_err;
368 
369 	return 0;
370 
371 out_start_err:
372 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
373 	while (j--)
374 		hns3_tqp_disable(h->kinfo.tqp[j]);
375 
376 	for (j = i - 1; j >= 0; j--)
377 		hns3_vector_disable(&priv->tqp_vector[j]);
378 
379 	hns3_nic_uninit_irq(priv);
380 
381 	return ret;
382 }
383 
384 static void hns3_config_xps(struct hns3_nic_priv *priv)
385 {
386 	int i;
387 
388 	for (i = 0; i < priv->vector_num; i++) {
389 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
390 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
391 
392 		while (ring) {
393 			int ret;
394 
395 			ret = netif_set_xps_queue(priv->netdev,
396 						  &tqp_vector->affinity_mask,
397 						  ring->tqp->tqp_index);
398 			if (ret)
399 				netdev_warn(priv->netdev,
400 					    "set xps queue failed: %d", ret);
401 
402 			ring = ring->next;
403 		}
404 	}
405 }
406 
407 static int hns3_nic_net_open(struct net_device *netdev)
408 {
409 	struct hns3_nic_priv *priv = netdev_priv(netdev);
410 	struct hnae3_handle *h = hns3_get_handle(netdev);
411 	struct hnae3_knic_private_info *kinfo;
412 	int i, ret;
413 
414 	if (hns3_nic_resetting(netdev))
415 		return -EBUSY;
416 
417 	netif_carrier_off(netdev);
418 
419 	ret = hns3_nic_set_real_num_queue(netdev);
420 	if (ret)
421 		return ret;
422 
423 	ret = hns3_nic_net_up(netdev);
424 	if (ret) {
425 		netdev_err(netdev,
426 			   "hns net up fail, ret=%d!\n", ret);
427 		return ret;
428 	}
429 
430 	kinfo = &h->kinfo;
431 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
432 		netdev_set_prio_tc_map(netdev, i,
433 				       kinfo->prio_tc[i]);
434 	}
435 
436 	if (h->ae_algo->ops->set_timer_task)
437 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
438 
439 	hns3_config_xps(priv);
440 	return 0;
441 }
442 
443 static void hns3_nic_net_down(struct net_device *netdev)
444 {
445 	struct hns3_nic_priv *priv = netdev_priv(netdev);
446 	struct hnae3_handle *h = hns3_get_handle(netdev);
447 	const struct hnae3_ae_ops *ops;
448 	int i;
449 
450 	/* disable vectors */
451 	for (i = 0; i < priv->vector_num; i++)
452 		hns3_vector_disable(&priv->tqp_vector[i]);
453 
454 	/* disable rcb */
455 	for (i = 0; i < h->kinfo.num_tqps; i++)
456 		hns3_tqp_disable(h->kinfo.tqp[i]);
457 
458 	/* stop ae_dev */
459 	ops = priv->ae_handle->ae_algo->ops;
460 	if (ops->stop)
461 		ops->stop(priv->ae_handle);
462 
463 	/* free irq resources */
464 	hns3_nic_uninit_irq(priv);
465 
466 	hns3_clear_all_ring(priv->ae_handle);
467 }
468 
469 static int hns3_nic_net_stop(struct net_device *netdev)
470 {
471 	struct hns3_nic_priv *priv = netdev_priv(netdev);
472 	struct hnae3_handle *h = hns3_get_handle(netdev);
473 
474 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
475 		return 0;
476 
477 	if (h->ae_algo->ops->set_timer_task)
478 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
479 
480 	netif_tx_stop_all_queues(netdev);
481 	netif_carrier_off(netdev);
482 
483 	hns3_nic_net_down(netdev);
484 
485 	return 0;
486 }
487 
488 static int hns3_nic_uc_sync(struct net_device *netdev,
489 			    const unsigned char *addr)
490 {
491 	struct hnae3_handle *h = hns3_get_handle(netdev);
492 
493 	if (h->ae_algo->ops->add_uc_addr)
494 		return h->ae_algo->ops->add_uc_addr(h, addr);
495 
496 	return 0;
497 }
498 
499 static int hns3_nic_uc_unsync(struct net_device *netdev,
500 			      const unsigned char *addr)
501 {
502 	struct hnae3_handle *h = hns3_get_handle(netdev);
503 
504 	if (h->ae_algo->ops->rm_uc_addr)
505 		return h->ae_algo->ops->rm_uc_addr(h, addr);
506 
507 	return 0;
508 }
509 
510 static int hns3_nic_mc_sync(struct net_device *netdev,
511 			    const unsigned char *addr)
512 {
513 	struct hnae3_handle *h = hns3_get_handle(netdev);
514 
515 	if (h->ae_algo->ops->add_mc_addr)
516 		return h->ae_algo->ops->add_mc_addr(h, addr);
517 
518 	return 0;
519 }
520 
521 static int hns3_nic_mc_unsync(struct net_device *netdev,
522 			      const unsigned char *addr)
523 {
524 	struct hnae3_handle *h = hns3_get_handle(netdev);
525 
526 	if (h->ae_algo->ops->rm_mc_addr)
527 		return h->ae_algo->ops->rm_mc_addr(h, addr);
528 
529 	return 0;
530 }
531 
532 static u8 hns3_get_netdev_flags(struct net_device *netdev)
533 {
534 	u8 flags = 0;
535 
536 	if (netdev->flags & IFF_PROMISC) {
537 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
538 	} else {
539 		flags |= HNAE3_VLAN_FLTR;
540 		if (netdev->flags & IFF_ALLMULTI)
541 			flags |= HNAE3_USER_MPE;
542 	}
543 
544 	return flags;
545 }
546 
547 static void hns3_nic_set_rx_mode(struct net_device *netdev)
548 {
549 	struct hnae3_handle *h = hns3_get_handle(netdev);
550 	u8 new_flags;
551 	int ret;
552 
553 	new_flags = hns3_get_netdev_flags(netdev);
554 
555 	ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
556 	if (ret) {
557 		netdev_err(netdev, "sync uc address fail\n");
558 		if (ret == -ENOSPC)
559 			new_flags |= HNAE3_OVERFLOW_UPE;
560 	}
561 
562 	if (netdev->flags & IFF_MULTICAST) {
563 		ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
564 				    hns3_nic_mc_unsync);
565 		if (ret) {
566 			netdev_err(netdev, "sync mc address fail\n");
567 			if (ret == -ENOSPC)
568 				new_flags |= HNAE3_OVERFLOW_MPE;
569 		}
570 	}
571 
572 	/* User mode Promisc mode enable and vlan filtering is disabled to
573 	 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
574 	 * vlan fitering is enabled
575 	 */
576 	hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
577 	h->netdev_flags = new_flags;
578 	hns3_update_promisc_mode(netdev, new_flags);
579 }
580 
581 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
582 {
583 	struct hns3_nic_priv *priv = netdev_priv(netdev);
584 	struct hnae3_handle *h = priv->ae_handle;
585 
586 	if (h->ae_algo->ops->set_promisc_mode) {
587 		return h->ae_algo->ops->set_promisc_mode(h,
588 						promisc_flags & HNAE3_UPE,
589 						promisc_flags & HNAE3_MPE);
590 	}
591 
592 	return 0;
593 }
594 
595 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
596 {
597 	struct hns3_nic_priv *priv = netdev_priv(netdev);
598 	struct hnae3_handle *h = priv->ae_handle;
599 	bool last_state;
600 
601 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
602 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
603 		if (enable != last_state) {
604 			netdev_info(netdev,
605 				    "%s vlan filter\n",
606 				    enable ? "enable" : "disable");
607 			h->ae_algo->ops->enable_vlan_filter(h, enable);
608 		}
609 	}
610 }
611 
612 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
613 			u16 *mss, u32 *type_cs_vlan_tso)
614 {
615 	u32 l4_offset, hdr_len;
616 	union l3_hdr_info l3;
617 	union l4_hdr_info l4;
618 	u32 l4_paylen;
619 	int ret;
620 
621 	if (!skb_is_gso(skb))
622 		return 0;
623 
624 	ret = skb_cow_head(skb, 0);
625 	if (unlikely(ret))
626 		return ret;
627 
628 	l3.hdr = skb_network_header(skb);
629 	l4.hdr = skb_transport_header(skb);
630 
631 	/* Software should clear the IPv4's checksum field when tso is
632 	 * needed.
633 	 */
634 	if (l3.v4->version == 4)
635 		l3.v4->check = 0;
636 
637 	/* tunnel packet.*/
638 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
639 					 SKB_GSO_GRE_CSUM |
640 					 SKB_GSO_UDP_TUNNEL |
641 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
642 		if ((!(skb_shinfo(skb)->gso_type &
643 		    SKB_GSO_PARTIAL)) &&
644 		    (skb_shinfo(skb)->gso_type &
645 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
646 			/* Software should clear the udp's checksum
647 			 * field when tso is needed.
648 			 */
649 			l4.udp->check = 0;
650 		}
651 		/* reset l3&l4 pointers from outer to inner headers */
652 		l3.hdr = skb_inner_network_header(skb);
653 		l4.hdr = skb_inner_transport_header(skb);
654 
655 		/* Software should clear the IPv4's checksum field when
656 		 * tso is needed.
657 		 */
658 		if (l3.v4->version == 4)
659 			l3.v4->check = 0;
660 	}
661 
662 	/* normal or tunnel packet*/
663 	l4_offset = l4.hdr - skb->data;
664 	hdr_len = (l4.tcp->doff << 2) + l4_offset;
665 
666 	/* remove payload length from inner pseudo checksum when tso*/
667 	l4_paylen = skb->len - l4_offset;
668 	csum_replace_by_diff(&l4.tcp->check,
669 			     (__force __wsum)htonl(l4_paylen));
670 
671 	/* find the txbd field values */
672 	*paylen = skb->len - hdr_len;
673 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
674 
675 	/* get MSS for TSO */
676 	*mss = skb_shinfo(skb)->gso_size;
677 
678 	return 0;
679 }
680 
681 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
682 				u8 *il4_proto)
683 {
684 	union l3_hdr_info l3;
685 	unsigned char *l4_hdr;
686 	unsigned char *exthdr;
687 	u8 l4_proto_tmp;
688 	__be16 frag_off;
689 
690 	/* find outer header point */
691 	l3.hdr = skb_network_header(skb);
692 	l4_hdr = skb_transport_header(skb);
693 
694 	if (skb->protocol == htons(ETH_P_IPV6)) {
695 		exthdr = l3.hdr + sizeof(*l3.v6);
696 		l4_proto_tmp = l3.v6->nexthdr;
697 		if (l4_hdr != exthdr)
698 			ipv6_skip_exthdr(skb, exthdr - skb->data,
699 					 &l4_proto_tmp, &frag_off);
700 	} else if (skb->protocol == htons(ETH_P_IP)) {
701 		l4_proto_tmp = l3.v4->protocol;
702 	} else {
703 		return -EINVAL;
704 	}
705 
706 	*ol4_proto = l4_proto_tmp;
707 
708 	/* tunnel packet */
709 	if (!skb->encapsulation) {
710 		*il4_proto = 0;
711 		return 0;
712 	}
713 
714 	/* find inner header point */
715 	l3.hdr = skb_inner_network_header(skb);
716 	l4_hdr = skb_inner_transport_header(skb);
717 
718 	if (l3.v6->version == 6) {
719 		exthdr = l3.hdr + sizeof(*l3.v6);
720 		l4_proto_tmp = l3.v6->nexthdr;
721 		if (l4_hdr != exthdr)
722 			ipv6_skip_exthdr(skb, exthdr - skb->data,
723 					 &l4_proto_tmp, &frag_off);
724 	} else if (l3.v4->version == 4) {
725 		l4_proto_tmp = l3.v4->protocol;
726 	}
727 
728 	*il4_proto = l4_proto_tmp;
729 
730 	return 0;
731 }
732 
733 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
734 				u8 il4_proto, u32 *type_cs_vlan_tso,
735 				u32 *ol_type_vlan_len_msec)
736 {
737 	union l3_hdr_info l3;
738 	union l4_hdr_info l4;
739 	unsigned char *l2_hdr;
740 	u8 l4_proto = ol4_proto;
741 	u32 ol2_len;
742 	u32 ol3_len;
743 	u32 ol4_len;
744 	u32 l2_len;
745 	u32 l3_len;
746 
747 	l3.hdr = skb_network_header(skb);
748 	l4.hdr = skb_transport_header(skb);
749 
750 	/* compute L2 header size for normal packet, defined in 2 Bytes */
751 	l2_len = l3.hdr - skb->data;
752 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
753 
754 	/* tunnel packet*/
755 	if (skb->encapsulation) {
756 		/* compute OL2 header size, defined in 2 Bytes */
757 		ol2_len = l2_len;
758 		hns3_set_field(*ol_type_vlan_len_msec,
759 			       HNS3_TXD_L2LEN_S, ol2_len >> 1);
760 
761 		/* compute OL3 header size, defined in 4 Bytes */
762 		ol3_len = l4.hdr - l3.hdr;
763 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S,
764 			       ol3_len >> 2);
765 
766 		/* MAC in UDP, MAC in GRE (0x6558)*/
767 		if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
768 			/* switch MAC header ptr from outer to inner header.*/
769 			l2_hdr = skb_inner_mac_header(skb);
770 
771 			/* compute OL4 header size, defined in 4 Bytes. */
772 			ol4_len = l2_hdr - l4.hdr;
773 			hns3_set_field(*ol_type_vlan_len_msec,
774 				       HNS3_TXD_L4LEN_S, ol4_len >> 2);
775 
776 			/* switch IP header ptr from outer to inner header */
777 			l3.hdr = skb_inner_network_header(skb);
778 
779 			/* compute inner l2 header size, defined in 2 Bytes. */
780 			l2_len = l3.hdr - l2_hdr;
781 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S,
782 				       l2_len >> 1);
783 		} else {
784 			/* skb packet types not supported by hardware,
785 			 * txbd len fild doesn't be filled.
786 			 */
787 			return;
788 		}
789 
790 		/* switch L4 header pointer from outer to inner */
791 		l4.hdr = skb_inner_transport_header(skb);
792 
793 		l4_proto = il4_proto;
794 	}
795 
796 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
797 	l3_len = l4.hdr - l3.hdr;
798 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
799 
800 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
801 	switch (l4_proto) {
802 	case IPPROTO_TCP:
803 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
804 			       l4.tcp->doff);
805 		break;
806 	case IPPROTO_SCTP:
807 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
808 			       (sizeof(struct sctphdr) >> 2));
809 		break;
810 	case IPPROTO_UDP:
811 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
812 			       (sizeof(struct udphdr) >> 2));
813 		break;
814 	default:
815 		/* skb packet types not supported by hardware,
816 		 * txbd len fild doesn't be filled.
817 		 */
818 		return;
819 	}
820 }
821 
822 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
823  * and it is udp packet, which has a dest port as the IANA assigned.
824  * the hardware is expected to do the checksum offload, but the
825  * hardware will not do the checksum offload when udp dest port is
826  * 4789.
827  */
828 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
829 {
830 	union l4_hdr_info l4;
831 
832 	l4.hdr = skb_transport_header(skb);
833 
834 	if (!(!skb->encapsulation &&
835 	      l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
836 		return false;
837 
838 	skb_checksum_help(skb);
839 
840 	return true;
841 }
842 
843 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
844 				   u8 il4_proto, u32 *type_cs_vlan_tso,
845 				   u32 *ol_type_vlan_len_msec)
846 {
847 	union l3_hdr_info l3;
848 	u32 l4_proto = ol4_proto;
849 
850 	l3.hdr = skb_network_header(skb);
851 
852 	/* define OL3 type and tunnel type(OL4).*/
853 	if (skb->encapsulation) {
854 		/* define outer network header type.*/
855 		if (skb->protocol == htons(ETH_P_IP)) {
856 			if (skb_is_gso(skb))
857 				hns3_set_field(*ol_type_vlan_len_msec,
858 					       HNS3_TXD_OL3T_S,
859 					       HNS3_OL3T_IPV4_CSUM);
860 			else
861 				hns3_set_field(*ol_type_vlan_len_msec,
862 					       HNS3_TXD_OL3T_S,
863 					       HNS3_OL3T_IPV4_NO_CSUM);
864 
865 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
866 			hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
867 				       HNS3_OL3T_IPV6);
868 		}
869 
870 		/* define tunnel type(OL4).*/
871 		switch (l4_proto) {
872 		case IPPROTO_UDP:
873 			hns3_set_field(*ol_type_vlan_len_msec,
874 				       HNS3_TXD_TUNTYPE_S,
875 				       HNS3_TUN_MAC_IN_UDP);
876 			break;
877 		case IPPROTO_GRE:
878 			hns3_set_field(*ol_type_vlan_len_msec,
879 				       HNS3_TXD_TUNTYPE_S,
880 				       HNS3_TUN_NVGRE);
881 			break;
882 		default:
883 			/* drop the skb tunnel packet if hardware don't support,
884 			 * because hardware can't calculate csum when TSO.
885 			 */
886 			if (skb_is_gso(skb))
887 				return -EDOM;
888 
889 			/* the stack computes the IP header already,
890 			 * driver calculate l4 checksum when not TSO.
891 			 */
892 			skb_checksum_help(skb);
893 			return 0;
894 		}
895 
896 		l3.hdr = skb_inner_network_header(skb);
897 		l4_proto = il4_proto;
898 	}
899 
900 	if (l3.v4->version == 4) {
901 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
902 			       HNS3_L3T_IPV4);
903 
904 		/* the stack computes the IP header already, the only time we
905 		 * need the hardware to recompute it is in the case of TSO.
906 		 */
907 		if (skb_is_gso(skb))
908 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
909 	} else if (l3.v6->version == 6) {
910 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
911 			       HNS3_L3T_IPV6);
912 	}
913 
914 	switch (l4_proto) {
915 	case IPPROTO_TCP:
916 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
917 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
918 			       HNS3_L4T_TCP);
919 		break;
920 	case IPPROTO_UDP:
921 		if (hns3_tunnel_csum_bug(skb))
922 			break;
923 
924 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
925 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
926 			       HNS3_L4T_UDP);
927 		break;
928 	case IPPROTO_SCTP:
929 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
930 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
931 			       HNS3_L4T_SCTP);
932 		break;
933 	default:
934 		/* drop the skb tunnel packet if hardware don't support,
935 		 * because hardware can't calculate csum when TSO.
936 		 */
937 		if (skb_is_gso(skb))
938 			return -EDOM;
939 
940 		/* the stack computes the IP header already,
941 		 * driver calculate l4 checksum when not TSO.
942 		 */
943 		skb_checksum_help(skb);
944 		return 0;
945 	}
946 
947 	return 0;
948 }
949 
950 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
951 {
952 	/* Config bd buffer end */
953 	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
954 	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
955 }
956 
957 static int hns3_fill_desc_vtags(struct sk_buff *skb,
958 				struct hns3_enet_ring *tx_ring,
959 				u32 *inner_vlan_flag,
960 				u32 *out_vlan_flag,
961 				u16 *inner_vtag,
962 				u16 *out_vtag)
963 {
964 #define HNS3_TX_VLAN_PRIO_SHIFT 13
965 
966 	if (skb->protocol == htons(ETH_P_8021Q) &&
967 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
968 	    NETIF_F_HW_VLAN_CTAG_TX)) {
969 		/* When HW VLAN acceleration is turned off, and the stack
970 		 * sets the protocol to 802.1q, the driver just need to
971 		 * set the protocol to the encapsulated ethertype.
972 		 */
973 		skb->protocol = vlan_get_protocol(skb);
974 		return 0;
975 	}
976 
977 	if (skb_vlan_tag_present(skb)) {
978 		u16 vlan_tag;
979 
980 		vlan_tag = skb_vlan_tag_get(skb);
981 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
982 
983 		/* Based on hw strategy, use out_vtag in two layer tag case,
984 		 * and use inner_vtag in one tag case.
985 		 */
986 		if (skb->protocol == htons(ETH_P_8021Q)) {
987 			hns3_set_field(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
988 			*out_vtag = vlan_tag;
989 		} else {
990 			hns3_set_field(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
991 			*inner_vtag = vlan_tag;
992 		}
993 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
994 		struct vlan_ethhdr *vhdr;
995 		int rc;
996 
997 		rc = skb_cow_head(skb, 0);
998 		if (unlikely(rc < 0))
999 			return rc;
1000 		vhdr = (struct vlan_ethhdr *)skb->data;
1001 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
1002 					<< HNS3_TX_VLAN_PRIO_SHIFT);
1003 	}
1004 
1005 	skb->protocol = vlan_get_protocol(skb);
1006 	return 0;
1007 }
1008 
1009 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1010 			  int size, int frag_end, enum hns_desc_type type)
1011 {
1012 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1013 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1014 	struct device *dev = ring_to_dev(ring);
1015 	struct skb_frag_struct *frag;
1016 	unsigned int frag_buf_num;
1017 	int k, sizeoflast;
1018 	dma_addr_t dma;
1019 
1020 	if (type == DESC_TYPE_SKB) {
1021 		struct sk_buff *skb = (struct sk_buff *)priv;
1022 		u32 ol_type_vlan_len_msec = 0;
1023 		u32 type_cs_vlan_tso = 0;
1024 		u32 paylen = skb->len;
1025 		u16 inner_vtag = 0;
1026 		u16 out_vtag = 0;
1027 		u16 mss = 0;
1028 		int ret;
1029 
1030 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
1031 					   &ol_type_vlan_len_msec,
1032 					   &inner_vtag, &out_vtag);
1033 		if (unlikely(ret))
1034 			return ret;
1035 
1036 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1037 			u8 ol4_proto, il4_proto;
1038 
1039 			skb_reset_mac_len(skb);
1040 
1041 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1042 			if (unlikely(ret))
1043 				return ret;
1044 			hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
1045 					    &type_cs_vlan_tso,
1046 					    &ol_type_vlan_len_msec);
1047 			ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
1048 						      &type_cs_vlan_tso,
1049 						      &ol_type_vlan_len_msec);
1050 			if (unlikely(ret))
1051 				return ret;
1052 
1053 			ret = hns3_set_tso(skb, &paylen, &mss,
1054 					   &type_cs_vlan_tso);
1055 			if (unlikely(ret))
1056 				return ret;
1057 		}
1058 
1059 		/* Set txbd */
1060 		desc->tx.ol_type_vlan_len_msec =
1061 			cpu_to_le32(ol_type_vlan_len_msec);
1062 		desc->tx.type_cs_vlan_tso_len =
1063 			cpu_to_le32(type_cs_vlan_tso);
1064 		desc->tx.paylen = cpu_to_le32(paylen);
1065 		desc->tx.mss = cpu_to_le16(mss);
1066 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1067 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1068 
1069 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1070 	} else {
1071 		frag = (struct skb_frag_struct *)priv;
1072 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1073 	}
1074 
1075 	if (unlikely(dma_mapping_error(ring->dev, dma))) {
1076 		ring->stats.sw_err_cnt++;
1077 		return -ENOMEM;
1078 	}
1079 
1080 	desc_cb->length = size;
1081 
1082 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1083 		u16 bdtp_fe_sc_vld_ra_ri = 0;
1084 
1085 		desc_cb->priv = priv;
1086 		desc_cb->dma = dma;
1087 		desc_cb->type = type;
1088 		desc->addr = cpu_to_le64(dma);
1089 		desc->tx.send_size = cpu_to_le16(size);
1090 		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
1091 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1092 			cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1093 
1094 		ring_ptr_move_fw(ring, next_to_use);
1095 		return 0;
1096 	}
1097 
1098 	frag_buf_num = hns3_tx_bd_count(size);
1099 	sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1100 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1101 
1102 	/* When frag size is bigger than hardware limit, split this frag */
1103 	for (k = 0; k < frag_buf_num; k++) {
1104 		u16 bdtp_fe_sc_vld_ra_ri = 0;
1105 
1106 		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1107 		desc_cb->priv = priv;
1108 		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1109 		desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1110 					DESC_TYPE_SKB : DESC_TYPE_PAGE;
1111 
1112 		/* now, fill the descriptor */
1113 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1114 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1115 				(u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1116 		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1117 				       frag_end && (k == frag_buf_num - 1) ?
1118 						1 : 0);
1119 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1120 				cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1121 
1122 		/* move ring pointer to next.*/
1123 		ring_ptr_move_fw(ring, next_to_use);
1124 
1125 		desc_cb = &ring->desc_cb[ring->next_to_use];
1126 		desc = &ring->desc[ring->next_to_use];
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1133 				   struct hns3_enet_ring *ring)
1134 {
1135 	struct sk_buff *skb = *out_skb;
1136 	struct sk_buff *new_skb = NULL;
1137 	struct skb_frag_struct *frag;
1138 	int bdnum_for_frag;
1139 	int frag_num;
1140 	int buf_num;
1141 	int size;
1142 	int i;
1143 
1144 	size = skb_headlen(skb);
1145 	buf_num = hns3_tx_bd_count(size);
1146 
1147 	frag_num = skb_shinfo(skb)->nr_frags;
1148 	for (i = 0; i < frag_num; i++) {
1149 		frag = &skb_shinfo(skb)->frags[i];
1150 		size = skb_frag_size(frag);
1151 		bdnum_for_frag = hns3_tx_bd_count(size);
1152 		if (unlikely(bdnum_for_frag > HNS3_MAX_BD_PER_FRAG))
1153 			return -ENOMEM;
1154 
1155 		buf_num += bdnum_for_frag;
1156 	}
1157 
1158 	if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1159 		buf_num = hns3_tx_bd_count(skb->len);
1160 		if (ring_space(ring) < buf_num)
1161 			return -EBUSY;
1162 		/* manual split the send packet */
1163 		new_skb = skb_copy(skb, GFP_ATOMIC);
1164 		if (!new_skb)
1165 			return -ENOMEM;
1166 		dev_kfree_skb_any(skb);
1167 		*out_skb = new_skb;
1168 	}
1169 
1170 	if (unlikely(ring_space(ring) < buf_num))
1171 		return -EBUSY;
1172 
1173 	*bnum = buf_num;
1174 	return 0;
1175 }
1176 
1177 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1178 				  struct hns3_enet_ring *ring)
1179 {
1180 	struct sk_buff *skb = *out_skb;
1181 	struct sk_buff *new_skb = NULL;
1182 	int buf_num;
1183 
1184 	/* No. of segments (plus a header) */
1185 	buf_num = skb_shinfo(skb)->nr_frags + 1;
1186 
1187 	if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1188 		buf_num = hns3_tx_bd_count(skb->len);
1189 		if (ring_space(ring) < buf_num)
1190 			return -EBUSY;
1191 		/* manual split the send packet */
1192 		new_skb = skb_copy(skb, GFP_ATOMIC);
1193 		if (!new_skb)
1194 			return -ENOMEM;
1195 		dev_kfree_skb_any(skb);
1196 		*out_skb = new_skb;
1197 	}
1198 
1199 	if (unlikely(ring_space(ring) < buf_num))
1200 		return -EBUSY;
1201 
1202 	*bnum = buf_num;
1203 
1204 	return 0;
1205 }
1206 
1207 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1208 {
1209 	struct device *dev = ring_to_dev(ring);
1210 	unsigned int i;
1211 
1212 	for (i = 0; i < ring->desc_num; i++) {
1213 		/* check if this is where we started */
1214 		if (ring->next_to_use == next_to_use_orig)
1215 			break;
1216 
1217 		/* unmap the descriptor dma address */
1218 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1219 			dma_unmap_single(dev,
1220 					 ring->desc_cb[ring->next_to_use].dma,
1221 					ring->desc_cb[ring->next_to_use].length,
1222 					DMA_TO_DEVICE);
1223 		else if (ring->desc_cb[ring->next_to_use].length)
1224 			dma_unmap_page(dev,
1225 				       ring->desc_cb[ring->next_to_use].dma,
1226 				       ring->desc_cb[ring->next_to_use].length,
1227 				       DMA_TO_DEVICE);
1228 
1229 		ring->desc_cb[ring->next_to_use].length = 0;
1230 
1231 		/* rollback one */
1232 		ring_ptr_move_bw(ring, next_to_use);
1233 	}
1234 }
1235 
1236 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1237 {
1238 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1239 	struct hns3_nic_ring_data *ring_data =
1240 		&tx_ring_data(priv, skb->queue_mapping);
1241 	struct hns3_enet_ring *ring = ring_data->ring;
1242 	struct netdev_queue *dev_queue;
1243 	struct skb_frag_struct *frag;
1244 	int next_to_use_head;
1245 	int next_to_use_frag;
1246 	int buf_num;
1247 	int seg_num;
1248 	int size;
1249 	int ret;
1250 	int i;
1251 
1252 	/* Prefetch the data used later */
1253 	prefetch(skb->data);
1254 
1255 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1256 	case -EBUSY:
1257 		u64_stats_update_begin(&ring->syncp);
1258 		ring->stats.tx_busy++;
1259 		u64_stats_update_end(&ring->syncp);
1260 
1261 		goto out_net_tx_busy;
1262 	case -ENOMEM:
1263 		u64_stats_update_begin(&ring->syncp);
1264 		ring->stats.sw_err_cnt++;
1265 		u64_stats_update_end(&ring->syncp);
1266 		netdev_err(netdev, "no memory to xmit!\n");
1267 
1268 		goto out_err_tx_ok;
1269 	default:
1270 		break;
1271 	}
1272 
1273 	/* No. of segments (plus a header) */
1274 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1275 	/* Fill the first part */
1276 	size = skb_headlen(skb);
1277 
1278 	next_to_use_head = ring->next_to_use;
1279 
1280 	ret = hns3_fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1281 			     DESC_TYPE_SKB);
1282 	if (unlikely(ret))
1283 		goto head_fill_err;
1284 
1285 	next_to_use_frag = ring->next_to_use;
1286 	/* Fill the fragments */
1287 	for (i = 1; i < seg_num; i++) {
1288 		frag = &skb_shinfo(skb)->frags[i - 1];
1289 		size = skb_frag_size(frag);
1290 
1291 		ret = hns3_fill_desc(ring, frag, size,
1292 				     seg_num - 1 == i ? 1 : 0,
1293 				     DESC_TYPE_PAGE);
1294 
1295 		if (unlikely(ret))
1296 			goto frag_fill_err;
1297 	}
1298 
1299 	/* Complete translate all packets */
1300 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1301 	netdev_tx_sent_queue(dev_queue, skb->len);
1302 
1303 	wmb(); /* Commit all data before submit */
1304 
1305 	hnae3_queue_xmit(ring->tqp, buf_num);
1306 
1307 	return NETDEV_TX_OK;
1308 
1309 frag_fill_err:
1310 	hns3_clear_desc(ring, next_to_use_frag);
1311 
1312 head_fill_err:
1313 	hns3_clear_desc(ring, next_to_use_head);
1314 
1315 out_err_tx_ok:
1316 	dev_kfree_skb_any(skb);
1317 	return NETDEV_TX_OK;
1318 
1319 out_net_tx_busy:
1320 	netif_stop_subqueue(netdev, ring_data->queue_index);
1321 	smp_mb(); /* Commit all data before submit */
1322 
1323 	return NETDEV_TX_BUSY;
1324 }
1325 
1326 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1327 {
1328 	struct hnae3_handle *h = hns3_get_handle(netdev);
1329 	struct sockaddr *mac_addr = p;
1330 	int ret;
1331 
1332 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1333 		return -EADDRNOTAVAIL;
1334 
1335 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1336 		netdev_info(netdev, "already using mac address %pM\n",
1337 			    mac_addr->sa_data);
1338 		return 0;
1339 	}
1340 
1341 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1342 	if (ret) {
1343 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1344 		return ret;
1345 	}
1346 
1347 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1348 
1349 	return 0;
1350 }
1351 
1352 static int hns3_nic_do_ioctl(struct net_device *netdev,
1353 			     struct ifreq *ifr, int cmd)
1354 {
1355 	struct hnae3_handle *h = hns3_get_handle(netdev);
1356 
1357 	if (!netif_running(netdev))
1358 		return -EINVAL;
1359 
1360 	if (!h->ae_algo->ops->do_ioctl)
1361 		return -EOPNOTSUPP;
1362 
1363 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1364 }
1365 
1366 static int hns3_nic_set_features(struct net_device *netdev,
1367 				 netdev_features_t features)
1368 {
1369 	netdev_features_t changed = netdev->features ^ features;
1370 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1371 	struct hnae3_handle *h = priv->ae_handle;
1372 	bool enable;
1373 	int ret;
1374 
1375 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1376 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1377 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1378 		else
1379 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1380 	}
1381 
1382 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1383 		enable = !!(features & NETIF_F_GRO_HW);
1384 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1385 		if (ret)
1386 			return ret;
1387 	}
1388 
1389 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1390 	    h->ae_algo->ops->enable_vlan_filter) {
1391 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1392 		h->ae_algo->ops->enable_vlan_filter(h, enable);
1393 	}
1394 
1395 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1396 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1397 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1398 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1399 		if (ret)
1400 			return ret;
1401 	}
1402 
1403 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1404 		enable = !!(features & NETIF_F_NTUPLE);
1405 		h->ae_algo->ops->enable_fd(h, enable);
1406 	}
1407 
1408 	netdev->features = features;
1409 	return 0;
1410 }
1411 
1412 static void hns3_nic_get_stats64(struct net_device *netdev,
1413 				 struct rtnl_link_stats64 *stats)
1414 {
1415 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1416 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1417 	struct hnae3_handle *handle = priv->ae_handle;
1418 	struct hns3_enet_ring *ring;
1419 	u64 rx_length_errors = 0;
1420 	u64 rx_crc_errors = 0;
1421 	u64 rx_multicast = 0;
1422 	unsigned int start;
1423 	u64 tx_errors = 0;
1424 	u64 rx_errors = 0;
1425 	unsigned int idx;
1426 	u64 tx_bytes = 0;
1427 	u64 rx_bytes = 0;
1428 	u64 tx_pkts = 0;
1429 	u64 rx_pkts = 0;
1430 	u64 tx_drop = 0;
1431 	u64 rx_drop = 0;
1432 
1433 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1434 		return;
1435 
1436 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1437 
1438 	for (idx = 0; idx < queue_num; idx++) {
1439 		/* fetch the tx stats */
1440 		ring = priv->ring_data[idx].ring;
1441 		do {
1442 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1443 			tx_bytes += ring->stats.tx_bytes;
1444 			tx_pkts += ring->stats.tx_pkts;
1445 			tx_drop += ring->stats.sw_err_cnt;
1446 			tx_errors += ring->stats.sw_err_cnt;
1447 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1448 
1449 		/* fetch the rx stats */
1450 		ring = priv->ring_data[idx + queue_num].ring;
1451 		do {
1452 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1453 			rx_bytes += ring->stats.rx_bytes;
1454 			rx_pkts += ring->stats.rx_pkts;
1455 			rx_drop += ring->stats.non_vld_descs;
1456 			rx_drop += ring->stats.l2_err;
1457 			rx_errors += ring->stats.non_vld_descs;
1458 			rx_errors += ring->stats.l2_err;
1459 			rx_crc_errors += ring->stats.l2_err;
1460 			rx_crc_errors += ring->stats.l3l4_csum_err;
1461 			rx_multicast += ring->stats.rx_multicast;
1462 			rx_length_errors += ring->stats.err_pkt_len;
1463 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1464 	}
1465 
1466 	stats->tx_bytes = tx_bytes;
1467 	stats->tx_packets = tx_pkts;
1468 	stats->rx_bytes = rx_bytes;
1469 	stats->rx_packets = rx_pkts;
1470 
1471 	stats->rx_errors = rx_errors;
1472 	stats->multicast = rx_multicast;
1473 	stats->rx_length_errors = rx_length_errors;
1474 	stats->rx_crc_errors = rx_crc_errors;
1475 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1476 
1477 	stats->tx_errors = tx_errors;
1478 	stats->rx_dropped = rx_drop;
1479 	stats->tx_dropped = tx_drop;
1480 	stats->collisions = netdev->stats.collisions;
1481 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1482 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1483 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1484 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1485 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1486 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1487 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1488 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1489 	stats->rx_compressed = netdev->stats.rx_compressed;
1490 	stats->tx_compressed = netdev->stats.tx_compressed;
1491 }
1492 
1493 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1494 {
1495 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1496 	struct hnae3_handle *h = hns3_get_handle(netdev);
1497 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1498 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1499 	u8 tc = mqprio_qopt->qopt.num_tc;
1500 	u16 mode = mqprio_qopt->mode;
1501 	u8 hw = mqprio_qopt->qopt.hw;
1502 
1503 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1504 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1505 		return -EOPNOTSUPP;
1506 
1507 	if (tc > HNAE3_MAX_TC)
1508 		return -EINVAL;
1509 
1510 	if (!netdev)
1511 		return -EINVAL;
1512 
1513 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1514 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1515 }
1516 
1517 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1518 			     void *type_data)
1519 {
1520 	if (type != TC_SETUP_QDISC_MQPRIO)
1521 		return -EOPNOTSUPP;
1522 
1523 	return hns3_setup_tc(dev, type_data);
1524 }
1525 
1526 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1527 				__be16 proto, u16 vid)
1528 {
1529 	struct hnae3_handle *h = hns3_get_handle(netdev);
1530 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1531 	int ret = -EIO;
1532 
1533 	if (h->ae_algo->ops->set_vlan_filter)
1534 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1535 
1536 	if (!ret)
1537 		set_bit(vid, priv->active_vlans);
1538 
1539 	return ret;
1540 }
1541 
1542 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1543 				 __be16 proto, u16 vid)
1544 {
1545 	struct hnae3_handle *h = hns3_get_handle(netdev);
1546 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1547 	int ret = -EIO;
1548 
1549 	if (h->ae_algo->ops->set_vlan_filter)
1550 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1551 
1552 	if (!ret)
1553 		clear_bit(vid, priv->active_vlans);
1554 
1555 	return ret;
1556 }
1557 
1558 static int hns3_restore_vlan(struct net_device *netdev)
1559 {
1560 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1561 	int ret = 0;
1562 	u16 vid;
1563 
1564 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1565 		ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1566 		if (ret) {
1567 			netdev_err(netdev, "Restore vlan: %d filter, ret:%d\n",
1568 				   vid, ret);
1569 			return ret;
1570 		}
1571 	}
1572 
1573 	return ret;
1574 }
1575 
1576 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1577 				u8 qos, __be16 vlan_proto)
1578 {
1579 	struct hnae3_handle *h = hns3_get_handle(netdev);
1580 	int ret = -EIO;
1581 
1582 	if (h->ae_algo->ops->set_vf_vlan_filter)
1583 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1584 						   qos, vlan_proto);
1585 
1586 	return ret;
1587 }
1588 
1589 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1590 {
1591 	struct hnae3_handle *h = hns3_get_handle(netdev);
1592 	int ret;
1593 
1594 	if (hns3_nic_resetting(netdev))
1595 		return -EBUSY;
1596 
1597 	if (!h->ae_algo->ops->set_mtu)
1598 		return -EOPNOTSUPP;
1599 
1600 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1601 	if (ret)
1602 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1603 			   ret);
1604 	else
1605 		netdev->mtu = new_mtu;
1606 
1607 	return ret;
1608 }
1609 
1610 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1611 {
1612 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1613 	struct hns3_enet_ring *tx_ring = NULL;
1614 	int timeout_queue = 0;
1615 	int hw_head, hw_tail;
1616 	int i;
1617 
1618 	/* Find the stopped queue the same way the stack does */
1619 	for (i = 0; i < ndev->real_num_tx_queues; i++) {
1620 		struct netdev_queue *q;
1621 		unsigned long trans_start;
1622 
1623 		q = netdev_get_tx_queue(ndev, i);
1624 		trans_start = q->trans_start;
1625 		if (netif_xmit_stopped(q) &&
1626 		    time_after(jiffies,
1627 			       (trans_start + ndev->watchdog_timeo))) {
1628 			timeout_queue = i;
1629 			break;
1630 		}
1631 	}
1632 
1633 	if (i == ndev->num_tx_queues) {
1634 		netdev_info(ndev,
1635 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1636 			    priv->tx_timeout_count);
1637 		return false;
1638 	}
1639 
1640 	tx_ring = priv->ring_data[timeout_queue].ring;
1641 
1642 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1643 				HNS3_RING_TX_RING_HEAD_REG);
1644 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1645 				HNS3_RING_TX_RING_TAIL_REG);
1646 	netdev_info(ndev,
1647 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1648 		    priv->tx_timeout_count,
1649 		    timeout_queue,
1650 		    tx_ring->next_to_use,
1651 		    tx_ring->next_to_clean,
1652 		    hw_head,
1653 		    hw_tail,
1654 		    readl(tx_ring->tqp_vector->mask_addr));
1655 
1656 	return true;
1657 }
1658 
1659 static void hns3_nic_net_timeout(struct net_device *ndev)
1660 {
1661 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1662 	struct hnae3_handle *h = priv->ae_handle;
1663 
1664 	if (!hns3_get_tx_timeo_queue_info(ndev))
1665 		return;
1666 
1667 	priv->tx_timeout_count++;
1668 
1669 	/* request the reset, and let the hclge to determine
1670 	 * which reset level should be done
1671 	 */
1672 	if (h->ae_algo->ops->reset_event)
1673 		h->ae_algo->ops->reset_event(h->pdev, h);
1674 }
1675 
1676 static const struct net_device_ops hns3_nic_netdev_ops = {
1677 	.ndo_open		= hns3_nic_net_open,
1678 	.ndo_stop		= hns3_nic_net_stop,
1679 	.ndo_start_xmit		= hns3_nic_net_xmit,
1680 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1681 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1682 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
1683 	.ndo_change_mtu		= hns3_nic_change_mtu,
1684 	.ndo_set_features	= hns3_nic_set_features,
1685 	.ndo_get_stats64	= hns3_nic_get_stats64,
1686 	.ndo_setup_tc		= hns3_nic_setup_tc,
1687 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1688 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1689 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1690 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1691 };
1692 
1693 static bool hns3_is_phys_func(struct pci_dev *pdev)
1694 {
1695 	u32 dev_id = pdev->device;
1696 
1697 	switch (dev_id) {
1698 	case HNAE3_DEV_ID_GE:
1699 	case HNAE3_DEV_ID_25GE:
1700 	case HNAE3_DEV_ID_25GE_RDMA:
1701 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1702 	case HNAE3_DEV_ID_50GE_RDMA:
1703 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1704 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1705 		return true;
1706 	case HNAE3_DEV_ID_100G_VF:
1707 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1708 		return false;
1709 	default:
1710 		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1711 			 dev_id);
1712 	}
1713 
1714 	return false;
1715 }
1716 
1717 static void hns3_disable_sriov(struct pci_dev *pdev)
1718 {
1719 	/* If our VFs are assigned we cannot shut down SR-IOV
1720 	 * without causing issues, so just leave the hardware
1721 	 * available but disabled
1722 	 */
1723 	if (pci_vfs_assigned(pdev)) {
1724 		dev_warn(&pdev->dev,
1725 			 "disabling driver while VFs are assigned\n");
1726 		return;
1727 	}
1728 
1729 	pci_disable_sriov(pdev);
1730 }
1731 
1732 static void hns3_get_dev_capability(struct pci_dev *pdev,
1733 				    struct hnae3_ae_dev *ae_dev)
1734 {
1735 	if (pdev->revision >= 0x21) {
1736 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1737 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1738 	}
1739 }
1740 
1741 /* hns3_probe - Device initialization routine
1742  * @pdev: PCI device information struct
1743  * @ent: entry in hns3_pci_tbl
1744  *
1745  * hns3_probe initializes a PF identified by a pci_dev structure.
1746  * The OS initialization, configuring of the PF private structure,
1747  * and a hardware reset occur.
1748  *
1749  * Returns 0 on success, negative on failure
1750  */
1751 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1752 {
1753 	struct hnae3_ae_dev *ae_dev;
1754 	int ret;
1755 
1756 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1757 			      GFP_KERNEL);
1758 	if (!ae_dev) {
1759 		ret = -ENOMEM;
1760 		return ret;
1761 	}
1762 
1763 	ae_dev->pdev = pdev;
1764 	ae_dev->flag = ent->driver_data;
1765 	ae_dev->dev_type = HNAE3_DEV_KNIC;
1766 	ae_dev->reset_type = HNAE3_NONE_RESET;
1767 	hns3_get_dev_capability(pdev, ae_dev);
1768 	pci_set_drvdata(pdev, ae_dev);
1769 
1770 	ret = hnae3_register_ae_dev(ae_dev);
1771 	if (ret) {
1772 		devm_kfree(&pdev->dev, ae_dev);
1773 		pci_set_drvdata(pdev, NULL);
1774 	}
1775 
1776 	return ret;
1777 }
1778 
1779 /* hns3_remove - Device removal routine
1780  * @pdev: PCI device information struct
1781  */
1782 static void hns3_remove(struct pci_dev *pdev)
1783 {
1784 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1785 
1786 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1787 		hns3_disable_sriov(pdev);
1788 
1789 	hnae3_unregister_ae_dev(ae_dev);
1790 	pci_set_drvdata(pdev, NULL);
1791 }
1792 
1793 /**
1794  * hns3_pci_sriov_configure
1795  * @pdev: pointer to a pci_dev structure
1796  * @num_vfs: number of VFs to allocate
1797  *
1798  * Enable or change the number of VFs. Called when the user updates the number
1799  * of VFs in sysfs.
1800  **/
1801 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1802 {
1803 	int ret;
1804 
1805 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1806 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
1807 		return -EINVAL;
1808 	}
1809 
1810 	if (num_vfs) {
1811 		ret = pci_enable_sriov(pdev, num_vfs);
1812 		if (ret)
1813 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1814 		else
1815 			return num_vfs;
1816 	} else if (!pci_vfs_assigned(pdev)) {
1817 		pci_disable_sriov(pdev);
1818 	} else {
1819 		dev_warn(&pdev->dev,
1820 			 "Unable to free VFs because some are assigned to VMs.\n");
1821 	}
1822 
1823 	return 0;
1824 }
1825 
1826 static void hns3_shutdown(struct pci_dev *pdev)
1827 {
1828 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1829 
1830 	hnae3_unregister_ae_dev(ae_dev);
1831 	devm_kfree(&pdev->dev, ae_dev);
1832 	pci_set_drvdata(pdev, NULL);
1833 
1834 	if (system_state == SYSTEM_POWER_OFF)
1835 		pci_set_power_state(pdev, PCI_D3hot);
1836 }
1837 
1838 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1839 					    pci_channel_state_t state)
1840 {
1841 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1842 	pci_ers_result_t ret;
1843 
1844 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1845 
1846 	if (state == pci_channel_io_perm_failure)
1847 		return PCI_ERS_RESULT_DISCONNECT;
1848 
1849 	if (!ae_dev) {
1850 		dev_err(&pdev->dev,
1851 			"Can't recover - error happened during device init\n");
1852 		return PCI_ERS_RESULT_NONE;
1853 	}
1854 
1855 	if (ae_dev->ops->handle_hw_ras_error)
1856 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
1857 	else
1858 		return PCI_ERS_RESULT_NONE;
1859 
1860 	return ret;
1861 }
1862 
1863 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
1864 {
1865 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1866 	struct device *dev = &pdev->dev;
1867 
1868 	dev_info(dev, "requesting reset due to PCI error\n");
1869 
1870 	/* request the reset */
1871 	if (ae_dev->ops->reset_event) {
1872 		if (!ae_dev->override_pci_need_reset)
1873 			ae_dev->ops->reset_event(pdev, NULL);
1874 
1875 		return PCI_ERS_RESULT_RECOVERED;
1876 	}
1877 
1878 	return PCI_ERS_RESULT_DISCONNECT;
1879 }
1880 
1881 static void hns3_reset_prepare(struct pci_dev *pdev)
1882 {
1883 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1884 
1885 	dev_info(&pdev->dev, "hns3 flr prepare\n");
1886 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
1887 		ae_dev->ops->flr_prepare(ae_dev);
1888 }
1889 
1890 static void hns3_reset_done(struct pci_dev *pdev)
1891 {
1892 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1893 
1894 	dev_info(&pdev->dev, "hns3 flr done\n");
1895 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
1896 		ae_dev->ops->flr_done(ae_dev);
1897 }
1898 
1899 static const struct pci_error_handlers hns3_err_handler = {
1900 	.error_detected = hns3_error_detected,
1901 	.slot_reset     = hns3_slot_reset,
1902 	.reset_prepare	= hns3_reset_prepare,
1903 	.reset_done	= hns3_reset_done,
1904 };
1905 
1906 static struct pci_driver hns3_driver = {
1907 	.name     = hns3_driver_name,
1908 	.id_table = hns3_pci_tbl,
1909 	.probe    = hns3_probe,
1910 	.remove   = hns3_remove,
1911 	.shutdown = hns3_shutdown,
1912 	.sriov_configure = hns3_pci_sriov_configure,
1913 	.err_handler    = &hns3_err_handler,
1914 };
1915 
1916 /* set default feature to hns3 */
1917 static void hns3_set_default_feature(struct net_device *netdev)
1918 {
1919 	struct hnae3_handle *h = hns3_get_handle(netdev);
1920 	struct pci_dev *pdev = h->pdev;
1921 
1922 	netdev->priv_flags |= IFF_UNICAST_FLT;
1923 
1924 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1925 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1926 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1927 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1928 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1929 
1930 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1931 
1932 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1933 
1934 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1935 		NETIF_F_HW_VLAN_CTAG_FILTER |
1936 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1937 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1938 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1939 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1940 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1941 
1942 	netdev->vlan_features |=
1943 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1944 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1945 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1946 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1947 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1948 
1949 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1950 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1951 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1952 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1953 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1954 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1955 
1956 	if (pdev->revision >= 0x21) {
1957 		netdev->hw_features |= NETIF_F_GRO_HW;
1958 		netdev->features |= NETIF_F_GRO_HW;
1959 
1960 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
1961 			netdev->hw_features |= NETIF_F_NTUPLE;
1962 			netdev->features |= NETIF_F_NTUPLE;
1963 		}
1964 	}
1965 }
1966 
1967 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1968 			     struct hns3_desc_cb *cb)
1969 {
1970 	unsigned int order = hnae3_page_order(ring);
1971 	struct page *p;
1972 
1973 	p = dev_alloc_pages(order);
1974 	if (!p)
1975 		return -ENOMEM;
1976 
1977 	cb->priv = p;
1978 	cb->page_offset = 0;
1979 	cb->reuse_flag = 0;
1980 	cb->buf  = page_address(p);
1981 	cb->length = hnae3_page_size(ring);
1982 	cb->type = DESC_TYPE_PAGE;
1983 
1984 	return 0;
1985 }
1986 
1987 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1988 			     struct hns3_desc_cb *cb)
1989 {
1990 	if (cb->type == DESC_TYPE_SKB)
1991 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
1992 	else if (!HNAE3_IS_TX_RING(ring))
1993 		put_page((struct page *)cb->priv);
1994 	memset(cb, 0, sizeof(*cb));
1995 }
1996 
1997 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1998 {
1999 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2000 			       cb->length, ring_to_dma_dir(ring));
2001 
2002 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2003 		return -EIO;
2004 
2005 	return 0;
2006 }
2007 
2008 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2009 			      struct hns3_desc_cb *cb)
2010 {
2011 	if (cb->type == DESC_TYPE_SKB)
2012 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2013 				 ring_to_dma_dir(ring));
2014 	else if (cb->length)
2015 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2016 			       ring_to_dma_dir(ring));
2017 }
2018 
2019 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2020 {
2021 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2022 	ring->desc[i].addr = 0;
2023 }
2024 
2025 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2026 {
2027 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2028 
2029 	if (!ring->desc_cb[i].dma)
2030 		return;
2031 
2032 	hns3_buffer_detach(ring, i);
2033 	hns3_free_buffer(ring, cb);
2034 }
2035 
2036 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2037 {
2038 	int i;
2039 
2040 	for (i = 0; i < ring->desc_num; i++)
2041 		hns3_free_buffer_detach(ring, i);
2042 }
2043 
2044 /* free desc along with its attached buffer */
2045 static void hns3_free_desc(struct hns3_enet_ring *ring)
2046 {
2047 	int size = ring->desc_num * sizeof(ring->desc[0]);
2048 
2049 	hns3_free_buffers(ring);
2050 
2051 	if (ring->desc) {
2052 		dma_free_coherent(ring_to_dev(ring), size,
2053 				  ring->desc, ring->desc_dma_addr);
2054 		ring->desc = NULL;
2055 	}
2056 }
2057 
2058 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2059 {
2060 	int size = ring->desc_num * sizeof(ring->desc[0]);
2061 
2062 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2063 					&ring->desc_dma_addr, GFP_KERNEL);
2064 	if (!ring->desc)
2065 		return -ENOMEM;
2066 
2067 	return 0;
2068 }
2069 
2070 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2071 				   struct hns3_desc_cb *cb)
2072 {
2073 	int ret;
2074 
2075 	ret = hns3_alloc_buffer(ring, cb);
2076 	if (ret)
2077 		goto out;
2078 
2079 	ret = hns3_map_buffer(ring, cb);
2080 	if (ret)
2081 		goto out_with_buf;
2082 
2083 	return 0;
2084 
2085 out_with_buf:
2086 	hns3_free_buffer(ring, cb);
2087 out:
2088 	return ret;
2089 }
2090 
2091 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2092 {
2093 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2094 
2095 	if (ret)
2096 		return ret;
2097 
2098 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2099 
2100 	return 0;
2101 }
2102 
2103 /* Allocate memory for raw pkg, and map with dma */
2104 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2105 {
2106 	int i, j, ret;
2107 
2108 	for (i = 0; i < ring->desc_num; i++) {
2109 		ret = hns3_alloc_buffer_attach(ring, i);
2110 		if (ret)
2111 			goto out_buffer_fail;
2112 	}
2113 
2114 	return 0;
2115 
2116 out_buffer_fail:
2117 	for (j = i - 1; j >= 0; j--)
2118 		hns3_free_buffer_detach(ring, j);
2119 	return ret;
2120 }
2121 
2122 /* detach a in-used buffer and replace with a reserved one  */
2123 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2124 				struct hns3_desc_cb *res_cb)
2125 {
2126 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2127 	ring->desc_cb[i] = *res_cb;
2128 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2129 	ring->desc[i].rx.bd_base_info = 0;
2130 }
2131 
2132 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2133 {
2134 	ring->desc_cb[i].reuse_flag = 0;
2135 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
2136 		+ ring->desc_cb[i].page_offset);
2137 	ring->desc[i].rx.bd_base_info = 0;
2138 }
2139 
2140 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
2141 				      int *pkts)
2142 {
2143 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2144 
2145 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2146 	(*bytes) += desc_cb->length;
2147 	/* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
2148 	hns3_free_buffer_detach(ring, ring->next_to_clean);
2149 
2150 	ring_ptr_move_fw(ring, next_to_clean);
2151 }
2152 
2153 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2154 {
2155 	int u = ring->next_to_use;
2156 	int c = ring->next_to_clean;
2157 
2158 	if (unlikely(h > ring->desc_num))
2159 		return 0;
2160 
2161 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2162 }
2163 
2164 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2165 {
2166 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2167 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2168 	struct netdev_queue *dev_queue;
2169 	int bytes, pkts;
2170 	int head;
2171 
2172 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2173 	rmb(); /* Make sure head is ready before touch any data */
2174 
2175 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2176 		return; /* no data to poll */
2177 
2178 	if (unlikely(!is_valid_clean_head(ring, head))) {
2179 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2180 			   ring->next_to_use, ring->next_to_clean);
2181 
2182 		u64_stats_update_begin(&ring->syncp);
2183 		ring->stats.io_err_cnt++;
2184 		u64_stats_update_end(&ring->syncp);
2185 		return;
2186 	}
2187 
2188 	bytes = 0;
2189 	pkts = 0;
2190 	while (head != ring->next_to_clean) {
2191 		hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
2192 		/* Issue prefetch for next Tx descriptor */
2193 		prefetch(&ring->desc_cb[ring->next_to_clean]);
2194 	}
2195 
2196 	ring->tqp_vector->tx_group.total_bytes += bytes;
2197 	ring->tqp_vector->tx_group.total_packets += pkts;
2198 
2199 	u64_stats_update_begin(&ring->syncp);
2200 	ring->stats.tx_bytes += bytes;
2201 	ring->stats.tx_pkts += pkts;
2202 	u64_stats_update_end(&ring->syncp);
2203 
2204 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2205 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2206 
2207 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
2208 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2209 		/* Make sure that anybody stopping the queue after this
2210 		 * sees the new next_to_clean.
2211 		 */
2212 		smp_mb();
2213 		if (netif_tx_queue_stopped(dev_queue) &&
2214 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2215 			netif_tx_wake_queue(dev_queue);
2216 			ring->stats.restart_queue++;
2217 		}
2218 	}
2219 }
2220 
2221 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2222 {
2223 	int ntc = ring->next_to_clean;
2224 	int ntu = ring->next_to_use;
2225 
2226 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2227 }
2228 
2229 static void
2230 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
2231 {
2232 	struct hns3_desc_cb *desc_cb;
2233 	struct hns3_desc_cb res_cbs;
2234 	int i, ret;
2235 
2236 	for (i = 0; i < cleand_count; i++) {
2237 		desc_cb = &ring->desc_cb[ring->next_to_use];
2238 		if (desc_cb->reuse_flag) {
2239 			u64_stats_update_begin(&ring->syncp);
2240 			ring->stats.reuse_pg_cnt++;
2241 			u64_stats_update_end(&ring->syncp);
2242 
2243 			hns3_reuse_buffer(ring, ring->next_to_use);
2244 		} else {
2245 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
2246 			if (ret) {
2247 				u64_stats_update_begin(&ring->syncp);
2248 				ring->stats.sw_err_cnt++;
2249 				u64_stats_update_end(&ring->syncp);
2250 
2251 				netdev_err(ring->tqp->handle->kinfo.netdev,
2252 					   "hnae reserve buffer map failed.\n");
2253 				break;
2254 			}
2255 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2256 		}
2257 
2258 		ring_ptr_move_fw(ring, next_to_use);
2259 	}
2260 
2261 	wmb(); /* Make all data has been write before submit */
2262 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2263 }
2264 
2265 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2266 				struct hns3_enet_ring *ring, int pull_len,
2267 				struct hns3_desc_cb *desc_cb)
2268 {
2269 	struct hns3_desc *desc;
2270 	u32 truesize;
2271 	int size;
2272 	int last_offset;
2273 	bool twobufs;
2274 
2275 	twobufs = ((PAGE_SIZE < 8192) &&
2276 		hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2277 
2278 	desc = &ring->desc[ring->next_to_clean];
2279 	size = le16_to_cpu(desc->rx.size);
2280 
2281 	truesize = hnae3_buf_size(ring);
2282 
2283 	if (!twobufs)
2284 		last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2285 
2286 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2287 			size - pull_len, truesize);
2288 
2289 	 /* Avoid re-using remote pages,flag default unreuse */
2290 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2291 		return;
2292 
2293 	if (twobufs) {
2294 		/* If we are only owner of page we can reuse it */
2295 		if (likely(page_count(desc_cb->priv) == 1)) {
2296 			/* Flip page offset to other buffer */
2297 			desc_cb->page_offset ^= truesize;
2298 
2299 			desc_cb->reuse_flag = 1;
2300 			/* bump ref count on page before it is given*/
2301 			get_page(desc_cb->priv);
2302 		}
2303 		return;
2304 	}
2305 
2306 	/* Move offset up to the next cache line */
2307 	desc_cb->page_offset += truesize;
2308 
2309 	if (desc_cb->page_offset <= last_offset) {
2310 		desc_cb->reuse_flag = 1;
2311 		/* Bump ref count on page before it is given*/
2312 		get_page(desc_cb->priv);
2313 	}
2314 }
2315 
2316 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2317 			     struct hns3_desc *desc)
2318 {
2319 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2320 	int l3_type, l4_type;
2321 	u32 bd_base_info;
2322 	int ol4_type;
2323 	u32 l234info;
2324 
2325 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2326 	l234info = le32_to_cpu(desc->rx.l234_info);
2327 
2328 	skb->ip_summed = CHECKSUM_NONE;
2329 
2330 	skb_checksum_none_assert(skb);
2331 
2332 	if (!(netdev->features & NETIF_F_RXCSUM))
2333 		return;
2334 
2335 	/* We MUST enable hardware checksum before enabling hardware GRO */
2336 	if (skb_shinfo(skb)->gso_size) {
2337 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2338 		return;
2339 	}
2340 
2341 	/* check if hardware has done checksum */
2342 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2343 		return;
2344 
2345 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2346 				 BIT(HNS3_RXD_OL3E_B) |
2347 				 BIT(HNS3_RXD_OL4E_B)))) {
2348 		u64_stats_update_begin(&ring->syncp);
2349 		ring->stats.l3l4_csum_err++;
2350 		u64_stats_update_end(&ring->syncp);
2351 
2352 		return;
2353 	}
2354 
2355 	ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2356 				   HNS3_RXD_OL4ID_S);
2357 	switch (ol4_type) {
2358 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2359 	case HNS3_OL4_TYPE_NVGRE:
2360 		skb->csum_level = 1;
2361 		/* fall through */
2362 	case HNS3_OL4_TYPE_NO_TUN:
2363 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2364 					  HNS3_RXD_L3ID_S);
2365 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2366 					  HNS3_RXD_L4ID_S);
2367 
2368 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2369 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2370 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2371 		    (l4_type == HNS3_L4_TYPE_UDP ||
2372 		     l4_type == HNS3_L4_TYPE_TCP ||
2373 		     l4_type == HNS3_L4_TYPE_SCTP))
2374 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2375 		break;
2376 	default:
2377 		break;
2378 	}
2379 }
2380 
2381 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2382 {
2383 	if (skb_has_frag_list(skb))
2384 		napi_gro_flush(&ring->tqp_vector->napi, false);
2385 
2386 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2387 }
2388 
2389 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2390 				struct hns3_desc *desc, u32 l234info,
2391 				u16 *vlan_tag)
2392 {
2393 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2394 
2395 	if (pdev->revision == 0x20) {
2396 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2397 		if (!(*vlan_tag & VLAN_VID_MASK))
2398 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2399 
2400 		return (*vlan_tag != 0);
2401 	}
2402 
2403 #define HNS3_STRP_OUTER_VLAN	0x1
2404 #define HNS3_STRP_INNER_VLAN	0x2
2405 
2406 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2407 				HNS3_RXD_STRP_TAGP_S)) {
2408 	case HNS3_STRP_OUTER_VLAN:
2409 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2410 		return true;
2411 	case HNS3_STRP_INNER_VLAN:
2412 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2413 		return true;
2414 	default:
2415 		return false;
2416 	}
2417 }
2418 
2419 static int hns3_alloc_skb(struct hns3_enet_ring *ring, int length,
2420 			  unsigned char *va)
2421 {
2422 #define HNS3_NEED_ADD_FRAG	1
2423 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2424 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2425 	struct sk_buff *skb;
2426 
2427 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2428 	skb = ring->skb;
2429 	if (unlikely(!skb)) {
2430 		netdev_err(netdev, "alloc rx skb fail\n");
2431 
2432 		u64_stats_update_begin(&ring->syncp);
2433 		ring->stats.sw_err_cnt++;
2434 		u64_stats_update_end(&ring->syncp);
2435 
2436 		return -ENOMEM;
2437 	}
2438 
2439 	prefetchw(skb->data);
2440 
2441 	ring->pending_buf = 1;
2442 	ring->frag_num = 0;
2443 	ring->tail_skb = NULL;
2444 	if (length <= HNS3_RX_HEAD_SIZE) {
2445 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2446 
2447 		/* We can reuse buffer as-is, just make sure it is local */
2448 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2449 			desc_cb->reuse_flag = 1;
2450 		else /* This page cannot be reused so discard it */
2451 			put_page(desc_cb->priv);
2452 
2453 		ring_ptr_move_fw(ring, next_to_clean);
2454 		return 0;
2455 	}
2456 	u64_stats_update_begin(&ring->syncp);
2457 	ring->stats.seg_pkt_cnt++;
2458 	u64_stats_update_end(&ring->syncp);
2459 
2460 	ring->pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2461 	__skb_put(skb, ring->pull_len);
2462 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2463 			    desc_cb);
2464 	ring_ptr_move_fw(ring, next_to_clean);
2465 
2466 	return HNS3_NEED_ADD_FRAG;
2467 }
2468 
2469 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2470 			 struct sk_buff **out_skb, bool pending)
2471 {
2472 	struct sk_buff *skb = *out_skb;
2473 	struct sk_buff *head_skb = *out_skb;
2474 	struct sk_buff *new_skb;
2475 	struct hns3_desc_cb *desc_cb;
2476 	struct hns3_desc *pre_desc;
2477 	u32 bd_base_info;
2478 	int pre_bd;
2479 
2480 	/* if there is pending bd, the SW param next_to_clean has moved
2481 	 * to next and the next is NULL
2482 	 */
2483 	if (pending) {
2484 		pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2485 			ring->desc_num;
2486 		pre_desc = &ring->desc[pre_bd];
2487 		bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2488 	} else {
2489 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2490 	}
2491 
2492 	while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2493 		desc = &ring->desc[ring->next_to_clean];
2494 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2495 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2496 		/* make sure HW write desc complete */
2497 		dma_rmb();
2498 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2499 			return -ENXIO;
2500 
2501 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2502 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2503 						 HNS3_RX_HEAD_SIZE);
2504 			if (unlikely(!new_skb)) {
2505 				netdev_err(ring->tqp->handle->kinfo.netdev,
2506 					   "alloc rx skb frag fail\n");
2507 				return -ENXIO;
2508 			}
2509 			ring->frag_num = 0;
2510 
2511 			if (ring->tail_skb) {
2512 				ring->tail_skb->next = new_skb;
2513 				ring->tail_skb = new_skb;
2514 			} else {
2515 				skb_shinfo(skb)->frag_list = new_skb;
2516 				ring->tail_skb = new_skb;
2517 			}
2518 		}
2519 
2520 		if (ring->tail_skb) {
2521 			head_skb->truesize += hnae3_buf_size(ring);
2522 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2523 			head_skb->len += le16_to_cpu(desc->rx.size);
2524 			skb = ring->tail_skb;
2525 		}
2526 
2527 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2528 		ring_ptr_move_fw(ring, next_to_clean);
2529 		ring->pending_buf++;
2530 	}
2531 
2532 	return 0;
2533 }
2534 
2535 static void hns3_set_gro_param(struct sk_buff *skb, u32 l234info,
2536 			       u32 bd_base_info)
2537 {
2538 	u16 gro_count;
2539 	u32 l3_type;
2540 
2541 	gro_count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M,
2542 				    HNS3_RXD_GRO_COUNT_S);
2543 	/* if there is no HW GRO, do not set gro params */
2544 	if (!gro_count)
2545 		return;
2546 
2547 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
2548 	 * to skb_shinfo(skb)->gso_segs
2549 	 */
2550 	NAPI_GRO_CB(skb)->count = gro_count;
2551 
2552 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2553 				  HNS3_RXD_L3ID_S);
2554 	if (l3_type == HNS3_L3_TYPE_IPV4)
2555 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2556 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2557 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2558 	else
2559 		return;
2560 
2561 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2562 						    HNS3_RXD_GRO_SIZE_M,
2563 						    HNS3_RXD_GRO_SIZE_S);
2564 	if (skb_shinfo(skb)->gso_size)
2565 		tcp_gro_complete(skb);
2566 }
2567 
2568 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2569 				     struct sk_buff *skb)
2570 {
2571 	struct hnae3_handle *handle = ring->tqp->handle;
2572 	enum pkt_hash_types rss_type;
2573 	struct hns3_desc *desc;
2574 	int last_bd;
2575 
2576 	/* When driver handle the rss type, ring->next_to_clean indicates the
2577 	 * first descriptor of next packet, need -1 here.
2578 	 */
2579 	last_bd = (ring->next_to_clean - 1 + ring->desc_num) % ring->desc_num;
2580 	desc = &ring->desc[last_bd];
2581 
2582 	if (le32_to_cpu(desc->rx.rss_hash))
2583 		rss_type = handle->kinfo.rss_type;
2584 	else
2585 		rss_type = PKT_HASH_TYPE_NONE;
2586 
2587 	skb_set_hash(skb, le32_to_cpu(desc->rx.rss_hash), rss_type);
2588 }
2589 
2590 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2591 			     struct sk_buff **out_skb)
2592 {
2593 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2594 	enum hns3_pkt_l2t_type l2_frame_type;
2595 	struct sk_buff *skb = ring->skb;
2596 	struct hns3_desc_cb *desc_cb;
2597 	struct hns3_desc *desc;
2598 	u32 bd_base_info;
2599 	u32 l234info;
2600 	int length;
2601 	int ret;
2602 
2603 	desc = &ring->desc[ring->next_to_clean];
2604 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2605 
2606 	prefetch(desc);
2607 
2608 	length = le16_to_cpu(desc->rx.size);
2609 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2610 
2611 	/* Check valid BD */
2612 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2613 		return -ENXIO;
2614 
2615 	if (!skb)
2616 		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2617 
2618 	/* Prefetch first cache line of first page
2619 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2620 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2621 	 * actual we can have greater size of caches with 128B Level 1 cache
2622 	 * lines. In such a case, single fetch would suffice to cache in the
2623 	 * relevant part of the header.
2624 	 */
2625 	prefetch(ring->va);
2626 #if L1_CACHE_BYTES < 128
2627 	prefetch(ring->va + L1_CACHE_BYTES);
2628 #endif
2629 
2630 	if (!skb) {
2631 		ret = hns3_alloc_skb(ring, length, ring->va);
2632 		*out_skb = skb = ring->skb;
2633 
2634 		if (ret < 0) /* alloc buffer fail */
2635 			return ret;
2636 		if (ret > 0) { /* need add frag */
2637 			ret = hns3_add_frag(ring, desc, &skb, false);
2638 			if (ret)
2639 				return ret;
2640 
2641 			/* As the head data may be changed when GRO enable, copy
2642 			 * the head data in after other data rx completed
2643 			 */
2644 			memcpy(skb->data, ring->va,
2645 			       ALIGN(ring->pull_len, sizeof(long)));
2646 		}
2647 	} else {
2648 		ret = hns3_add_frag(ring, desc, &skb, true);
2649 		if (ret)
2650 			return ret;
2651 
2652 		/* As the head data may be changed when GRO enable, copy
2653 		 * the head data in after other data rx completed
2654 		 */
2655 		memcpy(skb->data, ring->va,
2656 		       ALIGN(ring->pull_len, sizeof(long)));
2657 	}
2658 
2659 	l234info = le32_to_cpu(desc->rx.l234_info);
2660 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2661 
2662 	/* Based on hw strategy, the tag offloaded will be stored at
2663 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2664 	 * in one layer tag case.
2665 	 */
2666 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2667 		u16 vlan_tag;
2668 
2669 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2670 			__vlan_hwaccel_put_tag(skb,
2671 					       htons(ETH_P_8021Q),
2672 					       vlan_tag);
2673 	}
2674 
2675 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) {
2676 		u64_stats_update_begin(&ring->syncp);
2677 		ring->stats.non_vld_descs++;
2678 		u64_stats_update_end(&ring->syncp);
2679 
2680 		dev_kfree_skb_any(skb);
2681 		return -EINVAL;
2682 	}
2683 
2684 	if (unlikely((!desc->rx.pkt_len) ||
2685 		     (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
2686 				  BIT(HNS3_RXD_L2E_B))))) {
2687 		u64_stats_update_begin(&ring->syncp);
2688 		if (l234info & BIT(HNS3_RXD_L2E_B))
2689 			ring->stats.l2_err++;
2690 		else
2691 			ring->stats.err_pkt_len++;
2692 		u64_stats_update_end(&ring->syncp);
2693 
2694 		dev_kfree_skb_any(skb);
2695 		return -EFAULT;
2696 	}
2697 
2698 
2699 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
2700 					HNS3_RXD_DMAC_S);
2701 	u64_stats_update_begin(&ring->syncp);
2702 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
2703 		ring->stats.rx_multicast++;
2704 
2705 	ring->stats.rx_pkts++;
2706 	ring->stats.rx_bytes += skb->len;
2707 	u64_stats_update_end(&ring->syncp);
2708 
2709 	ring->tqp_vector->rx_group.total_bytes += skb->len;
2710 
2711 	/* This is needed in order to enable forwarding support */
2712 	hns3_set_gro_param(skb, l234info, bd_base_info);
2713 
2714 	hns3_rx_checksum(ring, skb, desc);
2715 	*out_skb = skb;
2716 	hns3_set_rx_skb_rss_type(ring, skb);
2717 
2718 	return 0;
2719 }
2720 
2721 int hns3_clean_rx_ring(
2722 		struct hns3_enet_ring *ring, int budget,
2723 		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2724 {
2725 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2726 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2727 	int recv_pkts, recv_bds, clean_count, err;
2728 	int unused_count = hns3_desc_unused(ring) - ring->pending_buf;
2729 	struct sk_buff *skb = ring->skb;
2730 	int num;
2731 
2732 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2733 	rmb(); /* Make sure num taken effect before the other data is touched */
2734 
2735 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2736 	num -= unused_count;
2737 
2738 	while (recv_pkts < budget && recv_bds < num) {
2739 		/* Reuse or realloc buffers */
2740 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2741 			hns3_nic_alloc_rx_buffers(ring,
2742 						  clean_count + unused_count);
2743 			clean_count = 0;
2744 			unused_count = hns3_desc_unused(ring) -
2745 					ring->pending_buf;
2746 		}
2747 
2748 		/* Poll one pkt */
2749 		err = hns3_handle_rx_bd(ring, &skb);
2750 		if (unlikely(!skb)) /* This fault cannot be repaired */
2751 			goto out;
2752 
2753 		if (err == -ENXIO) { /* Do not get FE for the packet */
2754 			goto out;
2755 		} else if (unlikely(err)) {  /* Do jump the err */
2756 			recv_bds += ring->pending_buf;
2757 			clean_count += ring->pending_buf;
2758 			ring->skb = NULL;
2759 			ring->pending_buf = 0;
2760 			continue;
2761 		}
2762 
2763 		/* Do update ip stack process */
2764 		skb->protocol = eth_type_trans(skb, netdev);
2765 		rx_fn(ring, skb);
2766 		recv_bds += ring->pending_buf;
2767 		clean_count += ring->pending_buf;
2768 		ring->skb = NULL;
2769 		ring->pending_buf = 0;
2770 
2771 		recv_pkts++;
2772 	}
2773 
2774 out:
2775 	/* Make all data has been write before submit */
2776 	if (clean_count + unused_count > 0)
2777 		hns3_nic_alloc_rx_buffers(ring,
2778 					  clean_count + unused_count);
2779 
2780 	return recv_pkts;
2781 }
2782 
2783 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2784 {
2785 	struct hns3_enet_tqp_vector *tqp_vector =
2786 					ring_group->ring->tqp_vector;
2787 	enum hns3_flow_level_range new_flow_level;
2788 	int packets_per_msecs;
2789 	int bytes_per_msecs;
2790 	u32 time_passed_ms;
2791 	u16 new_int_gl;
2792 
2793 	if (!tqp_vector->last_jiffies)
2794 		return false;
2795 
2796 	if (ring_group->total_packets == 0) {
2797 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
2798 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
2799 		return true;
2800 	}
2801 
2802 	/* Simple throttlerate management
2803 	 * 0-10MB/s   lower     (50000 ints/s)
2804 	 * 10-20MB/s   middle    (20000 ints/s)
2805 	 * 20-1249MB/s high      (18000 ints/s)
2806 	 * > 40000pps  ultra     (8000 ints/s)
2807 	 */
2808 	new_flow_level = ring_group->coal.flow_level;
2809 	new_int_gl = ring_group->coal.int_gl;
2810 	time_passed_ms =
2811 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2812 
2813 	if (!time_passed_ms)
2814 		return false;
2815 
2816 	do_div(ring_group->total_packets, time_passed_ms);
2817 	packets_per_msecs = ring_group->total_packets;
2818 
2819 	do_div(ring_group->total_bytes, time_passed_ms);
2820 	bytes_per_msecs = ring_group->total_bytes;
2821 
2822 #define HNS3_RX_LOW_BYTE_RATE 10000
2823 #define HNS3_RX_MID_BYTE_RATE 20000
2824 
2825 	switch (new_flow_level) {
2826 	case HNS3_FLOW_LOW:
2827 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2828 			new_flow_level = HNS3_FLOW_MID;
2829 		break;
2830 	case HNS3_FLOW_MID:
2831 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2832 			new_flow_level = HNS3_FLOW_HIGH;
2833 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2834 			new_flow_level = HNS3_FLOW_LOW;
2835 		break;
2836 	case HNS3_FLOW_HIGH:
2837 	case HNS3_FLOW_ULTRA:
2838 	default:
2839 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2840 			new_flow_level = HNS3_FLOW_MID;
2841 		break;
2842 	}
2843 
2844 #define HNS3_RX_ULTRA_PACKET_RATE 40
2845 
2846 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2847 	    &tqp_vector->rx_group == ring_group)
2848 		new_flow_level = HNS3_FLOW_ULTRA;
2849 
2850 	switch (new_flow_level) {
2851 	case HNS3_FLOW_LOW:
2852 		new_int_gl = HNS3_INT_GL_50K;
2853 		break;
2854 	case HNS3_FLOW_MID:
2855 		new_int_gl = HNS3_INT_GL_20K;
2856 		break;
2857 	case HNS3_FLOW_HIGH:
2858 		new_int_gl = HNS3_INT_GL_18K;
2859 		break;
2860 	case HNS3_FLOW_ULTRA:
2861 		new_int_gl = HNS3_INT_GL_8K;
2862 		break;
2863 	default:
2864 		break;
2865 	}
2866 
2867 	ring_group->total_bytes = 0;
2868 	ring_group->total_packets = 0;
2869 	ring_group->coal.flow_level = new_flow_level;
2870 	if (new_int_gl != ring_group->coal.int_gl) {
2871 		ring_group->coal.int_gl = new_int_gl;
2872 		return true;
2873 	}
2874 	return false;
2875 }
2876 
2877 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2878 {
2879 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2880 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2881 	bool rx_update, tx_update;
2882 
2883 	/* update param every 1000ms */
2884 	if (time_before(jiffies,
2885 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
2886 		return;
2887 
2888 	if (rx_group->coal.gl_adapt_enable) {
2889 		rx_update = hns3_get_new_int_gl(rx_group);
2890 		if (rx_update)
2891 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
2892 						       rx_group->coal.int_gl);
2893 	}
2894 
2895 	if (tx_group->coal.gl_adapt_enable) {
2896 		tx_update = hns3_get_new_int_gl(tx_group);
2897 		if (tx_update)
2898 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
2899 						       tx_group->coal.int_gl);
2900 	}
2901 
2902 	tqp_vector->last_jiffies = jiffies;
2903 }
2904 
2905 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2906 {
2907 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
2908 	struct hns3_enet_ring *ring;
2909 	int rx_pkt_total = 0;
2910 
2911 	struct hns3_enet_tqp_vector *tqp_vector =
2912 		container_of(napi, struct hns3_enet_tqp_vector, napi);
2913 	bool clean_complete = true;
2914 	int rx_budget = budget;
2915 
2916 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2917 		napi_complete(napi);
2918 		return 0;
2919 	}
2920 
2921 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2922 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2923 	 */
2924 	hns3_for_each_ring(ring, tqp_vector->tx_group)
2925 		hns3_clean_tx_ring(ring);
2926 
2927 	/* make sure rx ring budget not smaller than 1 */
2928 	if (tqp_vector->num_tqps > 1)
2929 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
2930 
2931 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
2932 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2933 						    hns3_rx_skb);
2934 
2935 		if (rx_cleaned >= rx_budget)
2936 			clean_complete = false;
2937 
2938 		rx_pkt_total += rx_cleaned;
2939 	}
2940 
2941 	tqp_vector->rx_group.total_packets += rx_pkt_total;
2942 
2943 	if (!clean_complete)
2944 		return budget;
2945 
2946 	if (napi_complete(napi) &&
2947 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2948 		hns3_update_new_int_gl(tqp_vector);
2949 		hns3_mask_vector_irq(tqp_vector, 1);
2950 	}
2951 
2952 	return rx_pkt_total;
2953 }
2954 
2955 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2956 				      struct hnae3_ring_chain_node *head)
2957 {
2958 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2959 	struct hnae3_ring_chain_node *cur_chain = head;
2960 	struct hnae3_ring_chain_node *chain;
2961 	struct hns3_enet_ring *tx_ring;
2962 	struct hns3_enet_ring *rx_ring;
2963 
2964 	tx_ring = tqp_vector->tx_group.ring;
2965 	if (tx_ring) {
2966 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2967 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2968 			      HNAE3_RING_TYPE_TX);
2969 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2970 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2971 
2972 		cur_chain->next = NULL;
2973 
2974 		while (tx_ring->next) {
2975 			tx_ring = tx_ring->next;
2976 
2977 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2978 					     GFP_KERNEL);
2979 			if (!chain)
2980 				goto err_free_chain;
2981 
2982 			cur_chain->next = chain;
2983 			chain->tqp_index = tx_ring->tqp->tqp_index;
2984 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2985 				      HNAE3_RING_TYPE_TX);
2986 			hnae3_set_field(chain->int_gl_idx,
2987 					HNAE3_RING_GL_IDX_M,
2988 					HNAE3_RING_GL_IDX_S,
2989 					HNAE3_RING_GL_TX);
2990 
2991 			cur_chain = chain;
2992 		}
2993 	}
2994 
2995 	rx_ring = tqp_vector->rx_group.ring;
2996 	if (!tx_ring && rx_ring) {
2997 		cur_chain->next = NULL;
2998 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2999 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3000 			      HNAE3_RING_TYPE_RX);
3001 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3002 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3003 
3004 		rx_ring = rx_ring->next;
3005 	}
3006 
3007 	while (rx_ring) {
3008 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3009 		if (!chain)
3010 			goto err_free_chain;
3011 
3012 		cur_chain->next = chain;
3013 		chain->tqp_index = rx_ring->tqp->tqp_index;
3014 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3015 			      HNAE3_RING_TYPE_RX);
3016 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3017 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3018 
3019 		cur_chain = chain;
3020 
3021 		rx_ring = rx_ring->next;
3022 	}
3023 
3024 	return 0;
3025 
3026 err_free_chain:
3027 	cur_chain = head->next;
3028 	while (cur_chain) {
3029 		chain = cur_chain->next;
3030 		devm_kfree(&pdev->dev, cur_chain);
3031 		cur_chain = chain;
3032 	}
3033 	head->next = NULL;
3034 
3035 	return -ENOMEM;
3036 }
3037 
3038 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3039 					struct hnae3_ring_chain_node *head)
3040 {
3041 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3042 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3043 
3044 	chain = head->next;
3045 
3046 	while (chain) {
3047 		chain_tmp = chain->next;
3048 		devm_kfree(&pdev->dev, chain);
3049 		chain = chain_tmp;
3050 	}
3051 }
3052 
3053 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3054 				   struct hns3_enet_ring *ring)
3055 {
3056 	ring->next = group->ring;
3057 	group->ring = ring;
3058 
3059 	group->count++;
3060 }
3061 
3062 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3063 {
3064 	struct pci_dev *pdev = priv->ae_handle->pdev;
3065 	struct hns3_enet_tqp_vector *tqp_vector;
3066 	int num_vectors = priv->vector_num;
3067 	int numa_node;
3068 	int vector_i;
3069 
3070 	numa_node = dev_to_node(&pdev->dev);
3071 
3072 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3073 		tqp_vector = &priv->tqp_vector[vector_i];
3074 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3075 				&tqp_vector->affinity_mask);
3076 	}
3077 }
3078 
3079 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3080 {
3081 	struct hnae3_ring_chain_node vector_ring_chain;
3082 	struct hnae3_handle *h = priv->ae_handle;
3083 	struct hns3_enet_tqp_vector *tqp_vector;
3084 	int ret = 0;
3085 	int i;
3086 
3087 	hns3_nic_set_cpumask(priv);
3088 
3089 	for (i = 0; i < priv->vector_num; i++) {
3090 		tqp_vector = &priv->tqp_vector[i];
3091 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3092 		tqp_vector->num_tqps = 0;
3093 	}
3094 
3095 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3096 		u16 vector_i = i % priv->vector_num;
3097 		u16 tqp_num = h->kinfo.num_tqps;
3098 
3099 		tqp_vector = &priv->tqp_vector[vector_i];
3100 
3101 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3102 				       priv->ring_data[i].ring);
3103 
3104 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3105 				       priv->ring_data[i + tqp_num].ring);
3106 
3107 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
3108 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3109 		tqp_vector->num_tqps++;
3110 	}
3111 
3112 	for (i = 0; i < priv->vector_num; i++) {
3113 		tqp_vector = &priv->tqp_vector[i];
3114 
3115 		tqp_vector->rx_group.total_bytes = 0;
3116 		tqp_vector->rx_group.total_packets = 0;
3117 		tqp_vector->tx_group.total_bytes = 0;
3118 		tqp_vector->tx_group.total_packets = 0;
3119 		tqp_vector->handle = h;
3120 
3121 		ret = hns3_get_vector_ring_chain(tqp_vector,
3122 						 &vector_ring_chain);
3123 		if (ret)
3124 			goto map_ring_fail;
3125 
3126 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3127 			tqp_vector->vector_irq, &vector_ring_chain);
3128 
3129 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3130 
3131 		if (ret)
3132 			goto map_ring_fail;
3133 
3134 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3135 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3136 	}
3137 
3138 	return 0;
3139 
3140 map_ring_fail:
3141 	while (i--)
3142 		netif_napi_del(&priv->tqp_vector[i].napi);
3143 
3144 	return ret;
3145 }
3146 
3147 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3148 {
3149 #define HNS3_VECTOR_PF_MAX_NUM		64
3150 
3151 	struct hnae3_handle *h = priv->ae_handle;
3152 	struct hns3_enet_tqp_vector *tqp_vector;
3153 	struct hnae3_vector_info *vector;
3154 	struct pci_dev *pdev = h->pdev;
3155 	u16 tqp_num = h->kinfo.num_tqps;
3156 	u16 vector_num;
3157 	int ret = 0;
3158 	u16 i;
3159 
3160 	/* RSS size, cpu online and vector_num should be the same */
3161 	/* Should consider 2p/4p later */
3162 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3163 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3164 
3165 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3166 			      GFP_KERNEL);
3167 	if (!vector)
3168 		return -ENOMEM;
3169 
3170 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3171 
3172 	priv->vector_num = vector_num;
3173 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3174 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3175 			     GFP_KERNEL);
3176 	if (!priv->tqp_vector) {
3177 		ret = -ENOMEM;
3178 		goto out;
3179 	}
3180 
3181 	for (i = 0; i < priv->vector_num; i++) {
3182 		tqp_vector = &priv->tqp_vector[i];
3183 		tqp_vector->idx = i;
3184 		tqp_vector->mask_addr = vector[i].io_addr;
3185 		tqp_vector->vector_irq = vector[i].vector;
3186 		hns3_vector_gl_rl_init(tqp_vector, priv);
3187 	}
3188 
3189 out:
3190 	devm_kfree(&pdev->dev, vector);
3191 	return ret;
3192 }
3193 
3194 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3195 {
3196 	group->ring = NULL;
3197 	group->count = 0;
3198 }
3199 
3200 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3201 {
3202 	struct hnae3_ring_chain_node vector_ring_chain;
3203 	struct hnae3_handle *h = priv->ae_handle;
3204 	struct hns3_enet_tqp_vector *tqp_vector;
3205 	int i;
3206 
3207 	for (i = 0; i < priv->vector_num; i++) {
3208 		tqp_vector = &priv->tqp_vector[i];
3209 
3210 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3211 			continue;
3212 
3213 		hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3214 
3215 		h->ae_algo->ops->unmap_ring_from_vector(h,
3216 			tqp_vector->vector_irq, &vector_ring_chain);
3217 
3218 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3219 
3220 		if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
3221 			irq_set_affinity_notifier(tqp_vector->vector_irq,
3222 						  NULL);
3223 			irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
3224 			free_irq(tqp_vector->vector_irq, tqp_vector);
3225 			tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3226 		}
3227 
3228 		hns3_clear_ring_group(&tqp_vector->rx_group);
3229 		hns3_clear_ring_group(&tqp_vector->tx_group);
3230 		netif_napi_del(&priv->tqp_vector[i].napi);
3231 	}
3232 }
3233 
3234 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3235 {
3236 	struct hnae3_handle *h = priv->ae_handle;
3237 	struct pci_dev *pdev = h->pdev;
3238 	int i, ret;
3239 
3240 	for (i = 0; i < priv->vector_num; i++) {
3241 		struct hns3_enet_tqp_vector *tqp_vector;
3242 
3243 		tqp_vector = &priv->tqp_vector[i];
3244 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3245 		if (ret)
3246 			return ret;
3247 	}
3248 
3249 	devm_kfree(&pdev->dev, priv->tqp_vector);
3250 	return 0;
3251 }
3252 
3253 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3254 			     int ring_type)
3255 {
3256 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
3257 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3258 	struct pci_dev *pdev = priv->ae_handle->pdev;
3259 	struct hns3_enet_ring *ring;
3260 	int desc_num;
3261 
3262 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3263 	if (!ring)
3264 		return -ENOMEM;
3265 
3266 	if (ring_type == HNAE3_RING_TYPE_TX) {
3267 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3268 		ring_data[q->tqp_index].ring = ring;
3269 		ring_data[q->tqp_index].queue_index = q->tqp_index;
3270 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3271 	} else {
3272 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3273 		ring_data[q->tqp_index + queue_num].ring = ring;
3274 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3275 		ring->io_base = q->io_base;
3276 	}
3277 
3278 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3279 
3280 	ring->tqp = q;
3281 	ring->desc = NULL;
3282 	ring->desc_cb = NULL;
3283 	ring->dev = priv->dev;
3284 	ring->desc_dma_addr = 0;
3285 	ring->buf_size = q->buf_size;
3286 	ring->desc_num = desc_num;
3287 	ring->next_to_use = 0;
3288 	ring->next_to_clean = 0;
3289 
3290 	return 0;
3291 }
3292 
3293 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3294 			      struct hns3_nic_priv *priv)
3295 {
3296 	int ret;
3297 
3298 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3299 	if (ret)
3300 		return ret;
3301 
3302 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3303 	if (ret) {
3304 		devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3305 		return ret;
3306 	}
3307 
3308 	return 0;
3309 }
3310 
3311 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3312 {
3313 	struct hnae3_handle *h = priv->ae_handle;
3314 	struct pci_dev *pdev = h->pdev;
3315 	int i, ret;
3316 
3317 	priv->ring_data =  devm_kzalloc(&pdev->dev,
3318 					array3_size(h->kinfo.num_tqps,
3319 						    sizeof(*priv->ring_data),
3320 						    2),
3321 					GFP_KERNEL);
3322 	if (!priv->ring_data)
3323 		return -ENOMEM;
3324 
3325 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3326 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3327 		if (ret)
3328 			goto err;
3329 	}
3330 
3331 	return 0;
3332 err:
3333 	while (i--) {
3334 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3335 		devm_kfree(priv->dev,
3336 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3337 	}
3338 
3339 	devm_kfree(&pdev->dev, priv->ring_data);
3340 	return ret;
3341 }
3342 
3343 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3344 {
3345 	struct hnae3_handle *h = priv->ae_handle;
3346 	int i;
3347 
3348 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3349 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3350 		devm_kfree(priv->dev,
3351 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3352 	}
3353 	devm_kfree(priv->dev, priv->ring_data);
3354 }
3355 
3356 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3357 {
3358 	int ret;
3359 
3360 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3361 		return -EINVAL;
3362 
3363 	ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
3364 				GFP_KERNEL);
3365 	if (!ring->desc_cb) {
3366 		ret = -ENOMEM;
3367 		goto out;
3368 	}
3369 
3370 	ret = hns3_alloc_desc(ring);
3371 	if (ret)
3372 		goto out_with_desc_cb;
3373 
3374 	if (!HNAE3_IS_TX_RING(ring)) {
3375 		ret = hns3_alloc_ring_buffers(ring);
3376 		if (ret)
3377 			goto out_with_desc;
3378 	}
3379 
3380 	return 0;
3381 
3382 out_with_desc:
3383 	hns3_free_desc(ring);
3384 out_with_desc_cb:
3385 	kfree(ring->desc_cb);
3386 	ring->desc_cb = NULL;
3387 out:
3388 	return ret;
3389 }
3390 
3391 static void hns3_fini_ring(struct hns3_enet_ring *ring)
3392 {
3393 	hns3_free_desc(ring);
3394 	kfree(ring->desc_cb);
3395 	ring->desc_cb = NULL;
3396 	ring->next_to_clean = 0;
3397 	ring->next_to_use = 0;
3398 	ring->pending_buf = 0;
3399 	if (ring->skb) {
3400 		dev_kfree_skb_any(ring->skb);
3401 		ring->skb = NULL;
3402 	}
3403 }
3404 
3405 static int hns3_buf_size2type(u32 buf_size)
3406 {
3407 	int bd_size_type;
3408 
3409 	switch (buf_size) {
3410 	case 512:
3411 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3412 		break;
3413 	case 1024:
3414 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3415 		break;
3416 	case 2048:
3417 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3418 		break;
3419 	case 4096:
3420 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3421 		break;
3422 	default:
3423 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3424 	}
3425 
3426 	return bd_size_type;
3427 }
3428 
3429 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3430 {
3431 	dma_addr_t dma = ring->desc_dma_addr;
3432 	struct hnae3_queue *q = ring->tqp;
3433 
3434 	if (!HNAE3_IS_TX_RING(ring)) {
3435 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
3436 			       (u32)dma);
3437 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3438 			       (u32)((dma >> 31) >> 1));
3439 
3440 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3441 			       hns3_buf_size2type(ring->buf_size));
3442 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3443 			       ring->desc_num / 8 - 1);
3444 
3445 	} else {
3446 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3447 			       (u32)dma);
3448 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3449 			       (u32)((dma >> 31) >> 1));
3450 
3451 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3452 			       ring->desc_num / 8 - 1);
3453 	}
3454 }
3455 
3456 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3457 {
3458 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3459 	int i;
3460 
3461 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3462 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3463 		int j;
3464 
3465 		if (!tc_info->enable)
3466 			continue;
3467 
3468 		for (j = 0; j < tc_info->tqp_count; j++) {
3469 			struct hnae3_queue *q;
3470 
3471 			q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3472 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3473 				       tc_info->tc);
3474 		}
3475 	}
3476 }
3477 
3478 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3479 {
3480 	struct hnae3_handle *h = priv->ae_handle;
3481 	int ring_num = h->kinfo.num_tqps * 2;
3482 	int i, j;
3483 	int ret;
3484 
3485 	for (i = 0; i < ring_num; i++) {
3486 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3487 		if (ret) {
3488 			dev_err(priv->dev,
3489 				"Alloc ring memory fail! ret=%d\n", ret);
3490 			goto out_when_alloc_ring_memory;
3491 		}
3492 
3493 		u64_stats_init(&priv->ring_data[i].ring->syncp);
3494 	}
3495 
3496 	return 0;
3497 
3498 out_when_alloc_ring_memory:
3499 	for (j = i - 1; j >= 0; j--)
3500 		hns3_fini_ring(priv->ring_data[j].ring);
3501 
3502 	return -ENOMEM;
3503 }
3504 
3505 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3506 {
3507 	struct hnae3_handle *h = priv->ae_handle;
3508 	int i;
3509 
3510 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3511 		hns3_fini_ring(priv->ring_data[i].ring);
3512 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3513 	}
3514 	return 0;
3515 }
3516 
3517 /* Set mac addr if it is configured. or leave it to the AE driver */
3518 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3519 {
3520 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3521 	struct hnae3_handle *h = priv->ae_handle;
3522 	u8 mac_addr_temp[ETH_ALEN];
3523 	int ret = 0;
3524 
3525 	if (h->ae_algo->ops->get_mac_addr && init) {
3526 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3527 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3528 	}
3529 
3530 	/* Check if the MAC address is valid, if not get a random one */
3531 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3532 		eth_hw_addr_random(netdev);
3533 		dev_warn(priv->dev, "using random MAC address %pM\n",
3534 			 netdev->dev_addr);
3535 	}
3536 
3537 	if (h->ae_algo->ops->set_mac_addr)
3538 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3539 
3540 	return ret;
3541 }
3542 
3543 static int hns3_init_phy(struct net_device *netdev)
3544 {
3545 	struct hnae3_handle *h = hns3_get_handle(netdev);
3546 	int ret = 0;
3547 
3548 	if (h->ae_algo->ops->mac_connect_phy)
3549 		ret = h->ae_algo->ops->mac_connect_phy(h);
3550 
3551 	return ret;
3552 }
3553 
3554 static void hns3_uninit_phy(struct net_device *netdev)
3555 {
3556 	struct hnae3_handle *h = hns3_get_handle(netdev);
3557 
3558 	if (h->ae_algo->ops->mac_disconnect_phy)
3559 		h->ae_algo->ops->mac_disconnect_phy(h);
3560 }
3561 
3562 static int hns3_restore_fd_rules(struct net_device *netdev)
3563 {
3564 	struct hnae3_handle *h = hns3_get_handle(netdev);
3565 	int ret = 0;
3566 
3567 	if (h->ae_algo->ops->restore_fd_rules)
3568 		ret = h->ae_algo->ops->restore_fd_rules(h);
3569 
3570 	return ret;
3571 }
3572 
3573 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3574 {
3575 	struct hnae3_handle *h = hns3_get_handle(netdev);
3576 
3577 	if (h->ae_algo->ops->del_all_fd_entries)
3578 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3579 }
3580 
3581 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3582 {
3583 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3584 
3585 	if ((netdev->features & NETIF_F_TSO) ||
3586 	    (netdev->features & NETIF_F_TSO6))
3587 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3588 	else
3589 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3590 }
3591 
3592 static int hns3_client_start(struct hnae3_handle *handle)
3593 {
3594 	if (!handle->ae_algo->ops->client_start)
3595 		return 0;
3596 
3597 	return handle->ae_algo->ops->client_start(handle);
3598 }
3599 
3600 static void hns3_client_stop(struct hnae3_handle *handle)
3601 {
3602 	if (!handle->ae_algo->ops->client_stop)
3603 		return;
3604 
3605 	handle->ae_algo->ops->client_stop(handle);
3606 }
3607 
3608 static int hns3_client_init(struct hnae3_handle *handle)
3609 {
3610 	struct pci_dev *pdev = handle->pdev;
3611 	u16 alloc_tqps, max_rss_size;
3612 	struct hns3_nic_priv *priv;
3613 	struct net_device *netdev;
3614 	int ret;
3615 
3616 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3617 						    &max_rss_size);
3618 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3619 	if (!netdev)
3620 		return -ENOMEM;
3621 
3622 	priv = netdev_priv(netdev);
3623 	priv->dev = &pdev->dev;
3624 	priv->netdev = netdev;
3625 	priv->ae_handle = handle;
3626 	priv->tx_timeout_count = 0;
3627 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3628 
3629 	handle->kinfo.netdev = netdev;
3630 	handle->priv = (void *)priv;
3631 
3632 	hns3_init_mac_addr(netdev, true);
3633 
3634 	hns3_set_default_feature(netdev);
3635 
3636 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3637 	netdev->priv_flags |= IFF_UNICAST_FLT;
3638 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3639 	SET_NETDEV_DEV(netdev, &pdev->dev);
3640 	hns3_ethtool_set_ops(netdev);
3641 	hns3_nic_set_priv_ops(netdev);
3642 
3643 	/* Carrier off reporting is important to ethtool even BEFORE open */
3644 	netif_carrier_off(netdev);
3645 
3646 	ret = hns3_get_ring_config(priv);
3647 	if (ret) {
3648 		ret = -ENOMEM;
3649 		goto out_get_ring_cfg;
3650 	}
3651 
3652 	ret = hns3_nic_alloc_vector_data(priv);
3653 	if (ret) {
3654 		ret = -ENOMEM;
3655 		goto out_alloc_vector_data;
3656 	}
3657 
3658 	ret = hns3_nic_init_vector_data(priv);
3659 	if (ret) {
3660 		ret = -ENOMEM;
3661 		goto out_init_vector_data;
3662 	}
3663 
3664 	ret = hns3_init_all_ring(priv);
3665 	if (ret) {
3666 		ret = -ENOMEM;
3667 		goto out_init_ring_data;
3668 	}
3669 
3670 	ret = hns3_init_phy(netdev);
3671 	if (ret)
3672 		goto out_init_phy;
3673 
3674 	ret = register_netdev(netdev);
3675 	if (ret) {
3676 		dev_err(priv->dev, "probe register netdev fail!\n");
3677 		goto out_reg_netdev_fail;
3678 	}
3679 
3680 	ret = hns3_client_start(handle);
3681 	if (ret) {
3682 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3683 			goto out_client_start;
3684 	}
3685 
3686 	hns3_dcbnl_setup(handle);
3687 
3688 	hns3_dbg_init(handle);
3689 
3690 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3691 	netdev->max_mtu = HNS3_MAX_MTU;
3692 
3693 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3694 
3695 	return ret;
3696 
3697 out_client_start:
3698 	unregister_netdev(netdev);
3699 out_reg_netdev_fail:
3700 	hns3_uninit_phy(netdev);
3701 out_init_phy:
3702 	hns3_uninit_all_ring(priv);
3703 out_init_ring_data:
3704 	hns3_nic_uninit_vector_data(priv);
3705 out_init_vector_data:
3706 	hns3_nic_dealloc_vector_data(priv);
3707 out_alloc_vector_data:
3708 	priv->ring_data = NULL;
3709 out_get_ring_cfg:
3710 	priv->ae_handle = NULL;
3711 	free_netdev(netdev);
3712 	return ret;
3713 }
3714 
3715 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3716 {
3717 	struct net_device *netdev = handle->kinfo.netdev;
3718 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3719 	int ret;
3720 
3721 	hns3_remove_hw_addr(netdev);
3722 
3723 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3724 		unregister_netdev(netdev);
3725 
3726 	hns3_client_stop(handle);
3727 
3728 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3729 		netdev_warn(netdev, "already uninitialized\n");
3730 		goto out_netdev_free;
3731 	}
3732 
3733 	hns3_del_all_fd_rules(netdev, true);
3734 
3735 	hns3_force_clear_all_rx_ring(handle);
3736 
3737 	hns3_uninit_phy(netdev);
3738 
3739 	hns3_nic_uninit_vector_data(priv);
3740 
3741 	ret = hns3_nic_dealloc_vector_data(priv);
3742 	if (ret)
3743 		netdev_err(netdev, "dealloc vector error\n");
3744 
3745 	ret = hns3_uninit_all_ring(priv);
3746 	if (ret)
3747 		netdev_err(netdev, "uninit ring error\n");
3748 
3749 	hns3_put_ring_config(priv);
3750 
3751 	hns3_dbg_uninit(handle);
3752 
3753 	priv->ring_data = NULL;
3754 
3755 out_netdev_free:
3756 	free_netdev(netdev);
3757 }
3758 
3759 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3760 {
3761 	struct net_device *netdev = handle->kinfo.netdev;
3762 
3763 	if (!netdev)
3764 		return;
3765 
3766 	if (linkup) {
3767 		netif_carrier_on(netdev);
3768 		netif_tx_wake_all_queues(netdev);
3769 		netdev_info(netdev, "link up\n");
3770 	} else {
3771 		netif_carrier_off(netdev);
3772 		netif_tx_stop_all_queues(netdev);
3773 		netdev_info(netdev, "link down\n");
3774 	}
3775 }
3776 
3777 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3778 {
3779 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3780 	struct net_device *ndev = kinfo->netdev;
3781 
3782 	if (tc > HNAE3_MAX_TC)
3783 		return -EINVAL;
3784 
3785 	if (!ndev)
3786 		return -ENODEV;
3787 
3788 	return hns3_nic_set_real_num_queue(ndev);
3789 }
3790 
3791 static int hns3_recover_hw_addr(struct net_device *ndev)
3792 {
3793 	struct netdev_hw_addr_list *list;
3794 	struct netdev_hw_addr *ha, *tmp;
3795 	int ret = 0;
3796 
3797 	netif_addr_lock_bh(ndev);
3798 	/* go through and sync uc_addr entries to the device */
3799 	list = &ndev->uc;
3800 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3801 		ret = hns3_nic_uc_sync(ndev, ha->addr);
3802 		if (ret)
3803 			goto out;
3804 	}
3805 
3806 	/* go through and sync mc_addr entries to the device */
3807 	list = &ndev->mc;
3808 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3809 		ret = hns3_nic_mc_sync(ndev, ha->addr);
3810 		if (ret)
3811 			goto out;
3812 	}
3813 
3814 out:
3815 	netif_addr_unlock_bh(ndev);
3816 	return ret;
3817 }
3818 
3819 static void hns3_remove_hw_addr(struct net_device *netdev)
3820 {
3821 	struct netdev_hw_addr_list *list;
3822 	struct netdev_hw_addr *ha, *tmp;
3823 
3824 	hns3_nic_uc_unsync(netdev, netdev->dev_addr);
3825 
3826 	netif_addr_lock_bh(netdev);
3827 	/* go through and unsync uc_addr entries to the device */
3828 	list = &netdev->uc;
3829 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3830 		hns3_nic_uc_unsync(netdev, ha->addr);
3831 
3832 	/* go through and unsync mc_addr entries to the device */
3833 	list = &netdev->mc;
3834 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3835 		if (ha->refcount > 1)
3836 			hns3_nic_mc_unsync(netdev, ha->addr);
3837 
3838 	netif_addr_unlock_bh(netdev);
3839 }
3840 
3841 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3842 {
3843 	while (ring->next_to_clean != ring->next_to_use) {
3844 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3845 		hns3_free_buffer_detach(ring, ring->next_to_clean);
3846 		ring_ptr_move_fw(ring, next_to_clean);
3847 	}
3848 }
3849 
3850 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3851 {
3852 	struct hns3_desc_cb res_cbs;
3853 	int ret;
3854 
3855 	while (ring->next_to_use != ring->next_to_clean) {
3856 		/* When a buffer is not reused, it's memory has been
3857 		 * freed in hns3_handle_rx_bd or will be freed by
3858 		 * stack, so we need to replace the buffer here.
3859 		 */
3860 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3861 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
3862 			if (ret) {
3863 				u64_stats_update_begin(&ring->syncp);
3864 				ring->stats.sw_err_cnt++;
3865 				u64_stats_update_end(&ring->syncp);
3866 				/* if alloc new buffer fail, exit directly
3867 				 * and reclear in up flow.
3868 				 */
3869 				netdev_warn(ring->tqp->handle->kinfo.netdev,
3870 					    "reserve buffer map failed, ret = %d\n",
3871 					    ret);
3872 				return ret;
3873 			}
3874 			hns3_replace_buffer(ring, ring->next_to_use,
3875 					    &res_cbs);
3876 		}
3877 		ring_ptr_move_fw(ring, next_to_use);
3878 	}
3879 
3880 	return 0;
3881 }
3882 
3883 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3884 {
3885 	while (ring->next_to_use != ring->next_to_clean) {
3886 		/* When a buffer is not reused, it's memory has been
3887 		 * freed in hns3_handle_rx_bd or will be freed by
3888 		 * stack, so only need to unmap the buffer here.
3889 		 */
3890 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3891 			hns3_unmap_buffer(ring,
3892 					  &ring->desc_cb[ring->next_to_use]);
3893 			ring->desc_cb[ring->next_to_use].dma = 0;
3894 		}
3895 
3896 		ring_ptr_move_fw(ring, next_to_use);
3897 	}
3898 }
3899 
3900 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3901 {
3902 	struct net_device *ndev = h->kinfo.netdev;
3903 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3904 	struct hns3_enet_ring *ring;
3905 	u32 i;
3906 
3907 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3908 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3909 		hns3_force_clear_rx_ring(ring);
3910 	}
3911 }
3912 
3913 static void hns3_clear_all_ring(struct hnae3_handle *h)
3914 {
3915 	struct net_device *ndev = h->kinfo.netdev;
3916 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3917 	u32 i;
3918 
3919 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3920 		struct netdev_queue *dev_queue;
3921 		struct hns3_enet_ring *ring;
3922 
3923 		ring = priv->ring_data[i].ring;
3924 		hns3_clear_tx_ring(ring);
3925 		dev_queue = netdev_get_tx_queue(ndev,
3926 						priv->ring_data[i].queue_index);
3927 		netdev_tx_reset_queue(dev_queue);
3928 
3929 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3930 		/* Continue to clear other rings even if clearing some
3931 		 * rings failed.
3932 		 */
3933 		hns3_clear_rx_ring(ring);
3934 	}
3935 }
3936 
3937 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3938 {
3939 	struct net_device *ndev = h->kinfo.netdev;
3940 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3941 	struct hns3_enet_ring *rx_ring;
3942 	int i, j;
3943 	int ret;
3944 
3945 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3946 		ret = h->ae_algo->ops->reset_queue(h, i);
3947 		if (ret)
3948 			return ret;
3949 
3950 		hns3_init_ring_hw(priv->ring_data[i].ring);
3951 
3952 		/* We need to clear tx ring here because self test will
3953 		 * use the ring and will not run down before up
3954 		 */
3955 		hns3_clear_tx_ring(priv->ring_data[i].ring);
3956 		priv->ring_data[i].ring->next_to_clean = 0;
3957 		priv->ring_data[i].ring->next_to_use = 0;
3958 
3959 		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3960 		hns3_init_ring_hw(rx_ring);
3961 		ret = hns3_clear_rx_ring(rx_ring);
3962 		if (ret)
3963 			return ret;
3964 
3965 		/* We can not know the hardware head and tail when this
3966 		 * function is called in reset flow, so we reuse all desc.
3967 		 */
3968 		for (j = 0; j < rx_ring->desc_num; j++)
3969 			hns3_reuse_buffer(rx_ring, j);
3970 
3971 		rx_ring->next_to_clean = 0;
3972 		rx_ring->next_to_use = 0;
3973 	}
3974 
3975 	hns3_init_tx_ring_tc(priv);
3976 
3977 	return 0;
3978 }
3979 
3980 static void hns3_store_coal(struct hns3_nic_priv *priv)
3981 {
3982 	/* ethtool only support setting and querying one coal
3983 	 * configuation for now, so save the vector 0' coal
3984 	 * configuation here in order to restore it.
3985 	 */
3986 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
3987 	       sizeof(struct hns3_enet_coalesce));
3988 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
3989 	       sizeof(struct hns3_enet_coalesce));
3990 }
3991 
3992 static void hns3_restore_coal(struct hns3_nic_priv *priv)
3993 {
3994 	u16 vector_num = priv->vector_num;
3995 	int i;
3996 
3997 	for (i = 0; i < vector_num; i++) {
3998 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
3999 		       sizeof(struct hns3_enet_coalesce));
4000 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4001 		       sizeof(struct hns3_enet_coalesce));
4002 	}
4003 }
4004 
4005 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4006 {
4007 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4008 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4009 	struct net_device *ndev = kinfo->netdev;
4010 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4011 
4012 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4013 		return 0;
4014 
4015 	/* it is cumbersome for hardware to pick-and-choose entries for deletion
4016 	 * from table space. Hence, for function reset software intervention is
4017 	 * required to delete the entries
4018 	 */
4019 	if (hns3_dev_ongoing_func_reset(ae_dev)) {
4020 		hns3_remove_hw_addr(ndev);
4021 		hns3_del_all_fd_rules(ndev, false);
4022 	}
4023 
4024 	if (!netif_running(ndev))
4025 		return 0;
4026 
4027 	return hns3_nic_net_stop(ndev);
4028 }
4029 
4030 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4031 {
4032 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4033 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4034 	int ret = 0;
4035 
4036 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4037 
4038 	if (netif_running(kinfo->netdev)) {
4039 		ret = hns3_nic_net_open(kinfo->netdev);
4040 		if (ret) {
4041 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4042 			netdev_err(kinfo->netdev,
4043 				   "hns net up fail, ret=%d!\n", ret);
4044 			return ret;
4045 		}
4046 	}
4047 
4048 	return ret;
4049 }
4050 
4051 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4052 {
4053 	struct net_device *netdev = handle->kinfo.netdev;
4054 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4055 	int ret;
4056 
4057 	/* Carrier off reporting is important to ethtool even BEFORE open */
4058 	netif_carrier_off(netdev);
4059 
4060 	ret = hns3_get_ring_config(priv);
4061 	if (ret)
4062 		return ret;
4063 
4064 	ret = hns3_nic_alloc_vector_data(priv);
4065 	if (ret)
4066 		goto err_put_ring;
4067 
4068 	hns3_restore_coal(priv);
4069 
4070 	ret = hns3_nic_init_vector_data(priv);
4071 	if (ret)
4072 		goto err_dealloc_vector;
4073 
4074 	ret = hns3_init_all_ring(priv);
4075 	if (ret)
4076 		goto err_uninit_vector;
4077 
4078 	ret = hns3_client_start(handle);
4079 	if (ret) {
4080 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4081 		goto err_uninit_ring;
4082 	}
4083 
4084 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4085 
4086 	return ret;
4087 
4088 err_uninit_ring:
4089 	hns3_uninit_all_ring(priv);
4090 err_uninit_vector:
4091 	hns3_nic_uninit_vector_data(priv);
4092 	priv->ring_data = NULL;
4093 err_dealloc_vector:
4094 	hns3_nic_dealloc_vector_data(priv);
4095 err_put_ring:
4096 	hns3_put_ring_config(priv);
4097 	priv->ring_data = NULL;
4098 
4099 	return ret;
4100 }
4101 
4102 static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
4103 {
4104 	struct net_device *netdev = handle->kinfo.netdev;
4105 	bool vlan_filter_enable;
4106 	int ret;
4107 
4108 	ret = hns3_init_mac_addr(netdev, false);
4109 	if (ret)
4110 		return ret;
4111 
4112 	ret = hns3_recover_hw_addr(netdev);
4113 	if (ret)
4114 		return ret;
4115 
4116 	ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4117 	if (ret)
4118 		return ret;
4119 
4120 	vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4121 	hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4122 
4123 	/* Hardware table is only clear when pf resets */
4124 	if (!(handle->flags & HNAE3_SUPPORT_VF)) {
4125 		ret = hns3_restore_vlan(netdev);
4126 		if (ret)
4127 			return ret;
4128 	}
4129 
4130 	return hns3_restore_fd_rules(netdev);
4131 }
4132 
4133 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4134 {
4135 	struct net_device *netdev = handle->kinfo.netdev;
4136 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4137 	int ret;
4138 
4139 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4140 		netdev_warn(netdev, "already uninitialized\n");
4141 		return 0;
4142 	}
4143 
4144 	hns3_force_clear_all_rx_ring(handle);
4145 
4146 	hns3_nic_uninit_vector_data(priv);
4147 
4148 	hns3_store_coal(priv);
4149 
4150 	ret = hns3_nic_dealloc_vector_data(priv);
4151 	if (ret)
4152 		netdev_err(netdev, "dealloc vector error\n");
4153 
4154 	ret = hns3_uninit_all_ring(priv);
4155 	if (ret)
4156 		netdev_err(netdev, "uninit ring error\n");
4157 
4158 	hns3_put_ring_config(priv);
4159 	priv->ring_data = NULL;
4160 
4161 	return ret;
4162 }
4163 
4164 static int hns3_reset_notify(struct hnae3_handle *handle,
4165 			     enum hnae3_reset_notify_type type)
4166 {
4167 	int ret = 0;
4168 
4169 	switch (type) {
4170 	case HNAE3_UP_CLIENT:
4171 		ret = hns3_reset_notify_up_enet(handle);
4172 		break;
4173 	case HNAE3_DOWN_CLIENT:
4174 		ret = hns3_reset_notify_down_enet(handle);
4175 		break;
4176 	case HNAE3_INIT_CLIENT:
4177 		ret = hns3_reset_notify_init_enet(handle);
4178 		break;
4179 	case HNAE3_UNINIT_CLIENT:
4180 		ret = hns3_reset_notify_uninit_enet(handle);
4181 		break;
4182 	case HNAE3_RESTORE_CLIENT:
4183 		ret = hns3_reset_notify_restore_enet(handle);
4184 		break;
4185 	default:
4186 		break;
4187 	}
4188 
4189 	return ret;
4190 }
4191 
4192 int hns3_set_channels(struct net_device *netdev,
4193 		      struct ethtool_channels *ch)
4194 {
4195 	struct hnae3_handle *h = hns3_get_handle(netdev);
4196 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4197 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4198 	u32 new_tqp_num = ch->combined_count;
4199 	u16 org_tqp_num;
4200 	int ret;
4201 
4202 	if (ch->rx_count || ch->tx_count)
4203 		return -EINVAL;
4204 
4205 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4206 	    new_tqp_num < 1) {
4207 		dev_err(&netdev->dev,
4208 			"Change tqps fail, the tqp range is from 1 to %d",
4209 			hns3_get_max_available_channels(h));
4210 		return -EINVAL;
4211 	}
4212 
4213 	if (kinfo->rss_size == new_tqp_num)
4214 		return 0;
4215 
4216 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4217 	if (ret)
4218 		return ret;
4219 
4220 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4221 	if (ret)
4222 		return ret;
4223 
4224 	org_tqp_num = h->kinfo.num_tqps;
4225 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num, rxfh_configured);
4226 	if (ret) {
4227 		ret = h->ae_algo->ops->set_channels(h, org_tqp_num,
4228 						    rxfh_configured);
4229 		if (ret) {
4230 			/* If revert to old tqp failed, fatal error occurred */
4231 			dev_err(&netdev->dev,
4232 				"Revert to old tqp num fail, ret=%d", ret);
4233 			return ret;
4234 		}
4235 		dev_info(&netdev->dev,
4236 			 "Change tqp num fail, Revert to old tqp num");
4237 	}
4238 	ret = hns3_reset_notify(h, HNAE3_INIT_CLIENT);
4239 	if (ret)
4240 		return ret;
4241 
4242 	return hns3_reset_notify(h, HNAE3_UP_CLIENT);
4243 }
4244 
4245 static const struct hnae3_client_ops client_ops = {
4246 	.init_instance = hns3_client_init,
4247 	.uninit_instance = hns3_client_uninit,
4248 	.link_status_change = hns3_link_status_change,
4249 	.setup_tc = hns3_client_setup_tc,
4250 	.reset_notify = hns3_reset_notify,
4251 };
4252 
4253 /* hns3_init_module - Driver registration routine
4254  * hns3_init_module is the first routine called when the driver is
4255  * loaded. All it does is register with the PCI subsystem.
4256  */
4257 static int __init hns3_init_module(void)
4258 {
4259 	int ret;
4260 
4261 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4262 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4263 
4264 	client.type = HNAE3_CLIENT_KNIC;
4265 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4266 		 hns3_driver_name);
4267 
4268 	client.ops = &client_ops;
4269 
4270 	INIT_LIST_HEAD(&client.node);
4271 
4272 	hns3_dbg_register_debugfs(hns3_driver_name);
4273 
4274 	ret = hnae3_register_client(&client);
4275 	if (ret)
4276 		goto err_reg_client;
4277 
4278 	ret = pci_register_driver(&hns3_driver);
4279 	if (ret)
4280 		goto err_reg_driver;
4281 
4282 	return ret;
4283 
4284 err_reg_driver:
4285 	hnae3_unregister_client(&client);
4286 err_reg_client:
4287 	hns3_dbg_unregister_debugfs();
4288 	return ret;
4289 }
4290 module_init(hns3_init_module);
4291 
4292 /* hns3_exit_module - Driver exit cleanup routine
4293  * hns3_exit_module is called just before the driver is removed
4294  * from memory.
4295  */
4296 static void __exit hns3_exit_module(void)
4297 {
4298 	pci_unregister_driver(&hns3_driver);
4299 	hnae3_unregister_client(&client);
4300 	hns3_dbg_unregister_debugfs();
4301 }
4302 module_exit(hns3_exit_module);
4303 
4304 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4305 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4306 MODULE_LICENSE("GPL");
4307 MODULE_ALIAS("pci:hns-nic");
4308 MODULE_VERSION(HNS3_MOD_VERSION);
4309