1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/aer.h>
16 #include <linux/skbuff.h>
17 #include <linux/sctp.h>
18 #include <linux/vermagic.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 
25 #include "hnae3.h"
26 #include "hns3_enet.h"
27 
28 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
29 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
30 
31 #define hns3_rl_err(fmt, ...)						\
32 	do {								\
33 		if (net_ratelimit())					\
34 			netdev_err(fmt, ##__VA_ARGS__);			\
35 	} while (0)
36 
37 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
38 static void hns3_remove_hw_addr(struct net_device *netdev);
39 
40 static const char hns3_driver_name[] = "hns3";
41 const char hns3_driver_version[] = VERMAGIC_STRING;
42 static const char hns3_driver_string[] =
43 			"Hisilicon Ethernet Network Driver for Hip08 Family";
44 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
45 static struct hnae3_client client;
46 
47 static int debug = -1;
48 module_param(debug, int, 0);
49 MODULE_PARM_DESC(debug, " Network interface message level setting");
50 
51 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
52 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
53 
54 #define HNS3_INNER_VLAN_TAG	1
55 #define HNS3_OUTER_VLAN_TAG	2
56 
57 /* hns3_pci_tbl - PCI Device ID Table
58  *
59  * Last entry must be all 0s
60  *
61  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
62  *   Class, Class Mask, private data (not used) }
63  */
64 static const struct pci_device_id hns3_pci_tbl[] = {
65 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
66 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
67 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
68 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
69 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
70 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
71 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
72 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
73 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
74 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
75 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
76 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
77 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
78 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
79 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80 	/* required last entry */
81 	{0, }
82 };
83 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
84 
85 static irqreturn_t hns3_irq_handle(int irq, void *vector)
86 {
87 	struct hns3_enet_tqp_vector *tqp_vector = vector;
88 
89 	napi_schedule_irqoff(&tqp_vector->napi);
90 
91 	return IRQ_HANDLED;
92 }
93 
94 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
95 {
96 	struct hns3_enet_tqp_vector *tqp_vectors;
97 	unsigned int i;
98 
99 	for (i = 0; i < priv->vector_num; i++) {
100 		tqp_vectors = &priv->tqp_vector[i];
101 
102 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
103 			continue;
104 
105 		/* clear the affinity mask */
106 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
107 
108 		/* release the irq resource */
109 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
110 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
111 	}
112 }
113 
114 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
115 {
116 	struct hns3_enet_tqp_vector *tqp_vectors;
117 	int txrx_int_idx = 0;
118 	int rx_int_idx = 0;
119 	int tx_int_idx = 0;
120 	unsigned int i;
121 	int ret;
122 
123 	for (i = 0; i < priv->vector_num; i++) {
124 		tqp_vectors = &priv->tqp_vector[i];
125 
126 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
127 			continue;
128 
129 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
130 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
131 				 "%s-%s-%d", priv->netdev->name, "TxRx",
132 				 txrx_int_idx++);
133 			txrx_int_idx++;
134 		} else if (tqp_vectors->rx_group.ring) {
135 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
136 				 "%s-%s-%d", priv->netdev->name, "Rx",
137 				 rx_int_idx++);
138 		} else if (tqp_vectors->tx_group.ring) {
139 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
140 				 "%s-%s-%d", priv->netdev->name, "Tx",
141 				 tx_int_idx++);
142 		} else {
143 			/* Skip this unused q_vector */
144 			continue;
145 		}
146 
147 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
148 
149 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
150 				  tqp_vectors->name, tqp_vectors);
151 		if (ret) {
152 			netdev_err(priv->netdev, "request irq(%d) fail\n",
153 				   tqp_vectors->vector_irq);
154 			hns3_nic_uninit_irq(priv);
155 			return ret;
156 		}
157 
158 		irq_set_affinity_hint(tqp_vectors->vector_irq,
159 				      &tqp_vectors->affinity_mask);
160 
161 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
162 	}
163 
164 	return 0;
165 }
166 
167 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
168 				 u32 mask_en)
169 {
170 	writel(mask_en, tqp_vector->mask_addr);
171 }
172 
173 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
174 {
175 	napi_enable(&tqp_vector->napi);
176 
177 	/* enable vector */
178 	hns3_mask_vector_irq(tqp_vector, 1);
179 }
180 
181 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
182 {
183 	/* disable vector */
184 	hns3_mask_vector_irq(tqp_vector, 0);
185 
186 	disable_irq(tqp_vector->vector_irq);
187 	napi_disable(&tqp_vector->napi);
188 }
189 
190 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
191 				 u32 rl_value)
192 {
193 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
194 
195 	/* this defines the configuration for RL (Interrupt Rate Limiter).
196 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
197 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
198 	 */
199 
200 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
201 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
202 		/* According to the hardware, the range of rl_reg is
203 		 * 0-59 and the unit is 4.
204 		 */
205 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
206 
207 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
208 }
209 
210 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
211 				    u32 gl_value)
212 {
213 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
214 
215 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
216 }
217 
218 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
219 				    u32 gl_value)
220 {
221 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
222 
223 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
224 }
225 
226 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
227 				   struct hns3_nic_priv *priv)
228 {
229 	/* initialize the configuration for interrupt coalescing.
230 	 * 1. GL (Interrupt Gap Limiter)
231 	 * 2. RL (Interrupt Rate Limiter)
232 	 *
233 	 * Default: enable interrupt coalescing self-adaptive and GL
234 	 */
235 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
236 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
237 
238 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
239 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
240 
241 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
242 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
243 }
244 
245 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
246 				      struct hns3_nic_priv *priv)
247 {
248 	struct hnae3_handle *h = priv->ae_handle;
249 
250 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
251 				       tqp_vector->tx_group.coal.int_gl);
252 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
253 				       tqp_vector->rx_group.coal.int_gl);
254 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
255 }
256 
257 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
258 {
259 	struct hnae3_handle *h = hns3_get_handle(netdev);
260 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
261 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
262 	int i, ret;
263 
264 	if (kinfo->num_tc <= 1) {
265 		netdev_reset_tc(netdev);
266 	} else {
267 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
268 		if (ret) {
269 			netdev_err(netdev,
270 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
271 			return ret;
272 		}
273 
274 		for (i = 0; i < HNAE3_MAX_TC; i++) {
275 			if (!kinfo->tc_info[i].enable)
276 				continue;
277 
278 			netdev_set_tc_queue(netdev,
279 					    kinfo->tc_info[i].tc,
280 					    kinfo->tc_info[i].tqp_count,
281 					    kinfo->tc_info[i].tqp_offset);
282 		}
283 	}
284 
285 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
286 	if (ret) {
287 		netdev_err(netdev,
288 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
289 		return ret;
290 	}
291 
292 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
293 	if (ret) {
294 		netdev_err(netdev,
295 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
296 		return ret;
297 	}
298 
299 	return 0;
300 }
301 
302 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
303 {
304 	u16 alloc_tqps, max_rss_size, rss_size;
305 
306 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
307 	rss_size = alloc_tqps / h->kinfo.num_tc;
308 
309 	return min_t(u16, rss_size, max_rss_size);
310 }
311 
312 static void hns3_tqp_enable(struct hnae3_queue *tqp)
313 {
314 	u32 rcb_reg;
315 
316 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
317 	rcb_reg |= BIT(HNS3_RING_EN_B);
318 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
319 }
320 
321 static void hns3_tqp_disable(struct hnae3_queue *tqp)
322 {
323 	u32 rcb_reg;
324 
325 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
326 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
327 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
328 }
329 
330 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
331 {
332 #ifdef CONFIG_RFS_ACCEL
333 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
334 	netdev->rx_cpu_rmap = NULL;
335 #endif
336 }
337 
338 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
339 {
340 #ifdef CONFIG_RFS_ACCEL
341 	struct hns3_nic_priv *priv = netdev_priv(netdev);
342 	struct hns3_enet_tqp_vector *tqp_vector;
343 	int i, ret;
344 
345 	if (!netdev->rx_cpu_rmap) {
346 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
347 		if (!netdev->rx_cpu_rmap)
348 			return -ENOMEM;
349 	}
350 
351 	for (i = 0; i < priv->vector_num; i++) {
352 		tqp_vector = &priv->tqp_vector[i];
353 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
354 				       tqp_vector->vector_irq);
355 		if (ret) {
356 			hns3_free_rx_cpu_rmap(netdev);
357 			return ret;
358 		}
359 	}
360 #endif
361 	return 0;
362 }
363 
364 static int hns3_nic_net_up(struct net_device *netdev)
365 {
366 	struct hns3_nic_priv *priv = netdev_priv(netdev);
367 	struct hnae3_handle *h = priv->ae_handle;
368 	int i, j;
369 	int ret;
370 
371 	ret = hns3_nic_reset_all_ring(h);
372 	if (ret)
373 		return ret;
374 
375 	/* the device can work without cpu rmap, only aRFS needs it */
376 	ret = hns3_set_rx_cpu_rmap(netdev);
377 	if (ret)
378 		netdev_warn(netdev, "set rx cpu rmap fail, ret=%d!\n", ret);
379 
380 	/* get irq resource for all vectors */
381 	ret = hns3_nic_init_irq(priv);
382 	if (ret) {
383 		netdev_err(netdev, "init irq failed! ret=%d\n", ret);
384 		goto free_rmap;
385 	}
386 
387 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
388 
389 	/* enable the vectors */
390 	for (i = 0; i < priv->vector_num; i++)
391 		hns3_vector_enable(&priv->tqp_vector[i]);
392 
393 	/* enable rcb */
394 	for (j = 0; j < h->kinfo.num_tqps; j++)
395 		hns3_tqp_enable(h->kinfo.tqp[j]);
396 
397 	/* start the ae_dev */
398 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
399 	if (ret)
400 		goto out_start_err;
401 
402 	return 0;
403 
404 out_start_err:
405 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
406 	while (j--)
407 		hns3_tqp_disable(h->kinfo.tqp[j]);
408 
409 	for (j = i - 1; j >= 0; j--)
410 		hns3_vector_disable(&priv->tqp_vector[j]);
411 
412 	hns3_nic_uninit_irq(priv);
413 free_rmap:
414 	hns3_free_rx_cpu_rmap(netdev);
415 	return ret;
416 }
417 
418 static void hns3_config_xps(struct hns3_nic_priv *priv)
419 {
420 	int i;
421 
422 	for (i = 0; i < priv->vector_num; i++) {
423 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
424 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
425 
426 		while (ring) {
427 			int ret;
428 
429 			ret = netif_set_xps_queue(priv->netdev,
430 						  &tqp_vector->affinity_mask,
431 						  ring->tqp->tqp_index);
432 			if (ret)
433 				netdev_warn(priv->netdev,
434 					    "set xps queue failed: %d", ret);
435 
436 			ring = ring->next;
437 		}
438 	}
439 }
440 
441 static int hns3_nic_net_open(struct net_device *netdev)
442 {
443 	struct hns3_nic_priv *priv = netdev_priv(netdev);
444 	struct hnae3_handle *h = hns3_get_handle(netdev);
445 	struct hnae3_knic_private_info *kinfo;
446 	int i, ret;
447 
448 	if (hns3_nic_resetting(netdev))
449 		return -EBUSY;
450 
451 	netif_carrier_off(netdev);
452 
453 	ret = hns3_nic_set_real_num_queue(netdev);
454 	if (ret)
455 		return ret;
456 
457 	ret = hns3_nic_net_up(netdev);
458 	if (ret) {
459 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
460 		return ret;
461 	}
462 
463 	kinfo = &h->kinfo;
464 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
465 		netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
466 
467 	if (h->ae_algo->ops->set_timer_task)
468 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
469 
470 	hns3_config_xps(priv);
471 
472 	netif_dbg(h, drv, netdev, "net open\n");
473 
474 	return 0;
475 }
476 
477 static void hns3_reset_tx_queue(struct hnae3_handle *h)
478 {
479 	struct net_device *ndev = h->kinfo.netdev;
480 	struct hns3_nic_priv *priv = netdev_priv(ndev);
481 	struct netdev_queue *dev_queue;
482 	u32 i;
483 
484 	for (i = 0; i < h->kinfo.num_tqps; i++) {
485 		dev_queue = netdev_get_tx_queue(ndev,
486 						priv->ring[i].queue_index);
487 		netdev_tx_reset_queue(dev_queue);
488 	}
489 }
490 
491 static void hns3_nic_net_down(struct net_device *netdev)
492 {
493 	struct hns3_nic_priv *priv = netdev_priv(netdev);
494 	struct hnae3_handle *h = hns3_get_handle(netdev);
495 	const struct hnae3_ae_ops *ops;
496 	int i;
497 
498 	/* disable vectors */
499 	for (i = 0; i < priv->vector_num; i++)
500 		hns3_vector_disable(&priv->tqp_vector[i]);
501 
502 	/* disable rcb */
503 	for (i = 0; i < h->kinfo.num_tqps; i++)
504 		hns3_tqp_disable(h->kinfo.tqp[i]);
505 
506 	/* stop ae_dev */
507 	ops = priv->ae_handle->ae_algo->ops;
508 	if (ops->stop)
509 		ops->stop(priv->ae_handle);
510 
511 	hns3_free_rx_cpu_rmap(netdev);
512 
513 	/* free irq resources */
514 	hns3_nic_uninit_irq(priv);
515 
516 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
517 	 * during reset process, because driver may not be able
518 	 * to disable the ring through firmware when downing the netdev.
519 	 */
520 	if (!hns3_nic_resetting(netdev))
521 		hns3_clear_all_ring(priv->ae_handle, false);
522 
523 	hns3_reset_tx_queue(priv->ae_handle);
524 }
525 
526 static int hns3_nic_net_stop(struct net_device *netdev)
527 {
528 	struct hns3_nic_priv *priv = netdev_priv(netdev);
529 	struct hnae3_handle *h = hns3_get_handle(netdev);
530 
531 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
532 		return 0;
533 
534 	netif_dbg(h, drv, netdev, "net stop\n");
535 
536 	if (h->ae_algo->ops->set_timer_task)
537 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
538 
539 	netif_tx_stop_all_queues(netdev);
540 	netif_carrier_off(netdev);
541 
542 	hns3_nic_net_down(netdev);
543 
544 	return 0;
545 }
546 
547 static int hns3_nic_uc_sync(struct net_device *netdev,
548 			    const unsigned char *addr)
549 {
550 	struct hnae3_handle *h = hns3_get_handle(netdev);
551 
552 	if (h->ae_algo->ops->add_uc_addr)
553 		return h->ae_algo->ops->add_uc_addr(h, addr);
554 
555 	return 0;
556 }
557 
558 static int hns3_nic_uc_unsync(struct net_device *netdev,
559 			      const unsigned char *addr)
560 {
561 	struct hnae3_handle *h = hns3_get_handle(netdev);
562 
563 	if (h->ae_algo->ops->rm_uc_addr)
564 		return h->ae_algo->ops->rm_uc_addr(h, addr);
565 
566 	return 0;
567 }
568 
569 static int hns3_nic_mc_sync(struct net_device *netdev,
570 			    const unsigned char *addr)
571 {
572 	struct hnae3_handle *h = hns3_get_handle(netdev);
573 
574 	if (h->ae_algo->ops->add_mc_addr)
575 		return h->ae_algo->ops->add_mc_addr(h, addr);
576 
577 	return 0;
578 }
579 
580 static int hns3_nic_mc_unsync(struct net_device *netdev,
581 			      const unsigned char *addr)
582 {
583 	struct hnae3_handle *h = hns3_get_handle(netdev);
584 
585 	if (h->ae_algo->ops->rm_mc_addr)
586 		return h->ae_algo->ops->rm_mc_addr(h, addr);
587 
588 	return 0;
589 }
590 
591 static u8 hns3_get_netdev_flags(struct net_device *netdev)
592 {
593 	u8 flags = 0;
594 
595 	if (netdev->flags & IFF_PROMISC) {
596 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
597 	} else {
598 		flags |= HNAE3_VLAN_FLTR;
599 		if (netdev->flags & IFF_ALLMULTI)
600 			flags |= HNAE3_USER_MPE;
601 	}
602 
603 	return flags;
604 }
605 
606 static void hns3_nic_set_rx_mode(struct net_device *netdev)
607 {
608 	struct hnae3_handle *h = hns3_get_handle(netdev);
609 	u8 new_flags;
610 	int ret;
611 
612 	new_flags = hns3_get_netdev_flags(netdev);
613 
614 	ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
615 	if (ret) {
616 		netdev_err(netdev, "sync uc address fail\n");
617 		if (ret == -ENOSPC)
618 			new_flags |= HNAE3_OVERFLOW_UPE;
619 	}
620 
621 	if (netdev->flags & IFF_MULTICAST) {
622 		ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
623 				    hns3_nic_mc_unsync);
624 		if (ret) {
625 			netdev_err(netdev, "sync mc address fail\n");
626 			if (ret == -ENOSPC)
627 				new_flags |= HNAE3_OVERFLOW_MPE;
628 		}
629 	}
630 
631 	/* User mode Promisc mode enable and vlan filtering is disabled to
632 	 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
633 	 * vlan fitering is enabled
634 	 */
635 	hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
636 	h->netdev_flags = new_flags;
637 	hns3_update_promisc_mode(netdev, new_flags);
638 }
639 
640 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
641 {
642 	struct hns3_nic_priv *priv = netdev_priv(netdev);
643 	struct hnae3_handle *h = priv->ae_handle;
644 
645 	if (h->ae_algo->ops->set_promisc_mode) {
646 		return h->ae_algo->ops->set_promisc_mode(h,
647 						promisc_flags & HNAE3_UPE,
648 						promisc_flags & HNAE3_MPE);
649 	}
650 
651 	return 0;
652 }
653 
654 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
655 {
656 	struct hns3_nic_priv *priv = netdev_priv(netdev);
657 	struct hnae3_handle *h = priv->ae_handle;
658 	bool last_state;
659 
660 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
661 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
662 		if (enable != last_state) {
663 			netdev_info(netdev,
664 				    "%s vlan filter\n",
665 				    enable ? "enable" : "disable");
666 			h->ae_algo->ops->enable_vlan_filter(h, enable);
667 		}
668 	}
669 }
670 
671 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
672 			u16 *mss, u32 *type_cs_vlan_tso)
673 {
674 	u32 l4_offset, hdr_len;
675 	union l3_hdr_info l3;
676 	union l4_hdr_info l4;
677 	u32 l4_paylen;
678 	int ret;
679 
680 	if (!skb_is_gso(skb))
681 		return 0;
682 
683 	ret = skb_cow_head(skb, 0);
684 	if (unlikely(ret < 0))
685 		return ret;
686 
687 	l3.hdr = skb_network_header(skb);
688 	l4.hdr = skb_transport_header(skb);
689 
690 	/* Software should clear the IPv4's checksum field when tso is
691 	 * needed.
692 	 */
693 	if (l3.v4->version == 4)
694 		l3.v4->check = 0;
695 
696 	/* tunnel packet */
697 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
698 					 SKB_GSO_GRE_CSUM |
699 					 SKB_GSO_UDP_TUNNEL |
700 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
701 		if ((!(skb_shinfo(skb)->gso_type &
702 		    SKB_GSO_PARTIAL)) &&
703 		    (skb_shinfo(skb)->gso_type &
704 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
705 			/* Software should clear the udp's checksum
706 			 * field when tso is needed.
707 			 */
708 			l4.udp->check = 0;
709 		}
710 		/* reset l3&l4 pointers from outer to inner headers */
711 		l3.hdr = skb_inner_network_header(skb);
712 		l4.hdr = skb_inner_transport_header(skb);
713 
714 		/* Software should clear the IPv4's checksum field when
715 		 * tso is needed.
716 		 */
717 		if (l3.v4->version == 4)
718 			l3.v4->check = 0;
719 	}
720 
721 	/* normal or tunnel packet */
722 	l4_offset = l4.hdr - skb->data;
723 	hdr_len = (l4.tcp->doff << 2) + l4_offset;
724 
725 	/* remove payload length from inner pseudo checksum when tso */
726 	l4_paylen = skb->len - l4_offset;
727 	csum_replace_by_diff(&l4.tcp->check,
728 			     (__force __wsum)htonl(l4_paylen));
729 
730 	/* find the txbd field values */
731 	*paylen = skb->len - hdr_len;
732 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
733 
734 	/* get MSS for TSO */
735 	*mss = skb_shinfo(skb)->gso_size;
736 
737 	return 0;
738 }
739 
740 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
741 				u8 *il4_proto)
742 {
743 	union l3_hdr_info l3;
744 	unsigned char *l4_hdr;
745 	unsigned char *exthdr;
746 	u8 l4_proto_tmp;
747 	__be16 frag_off;
748 
749 	/* find outer header point */
750 	l3.hdr = skb_network_header(skb);
751 	l4_hdr = skb_transport_header(skb);
752 
753 	if (skb->protocol == htons(ETH_P_IPV6)) {
754 		exthdr = l3.hdr + sizeof(*l3.v6);
755 		l4_proto_tmp = l3.v6->nexthdr;
756 		if (l4_hdr != exthdr)
757 			ipv6_skip_exthdr(skb, exthdr - skb->data,
758 					 &l4_proto_tmp, &frag_off);
759 	} else if (skb->protocol == htons(ETH_P_IP)) {
760 		l4_proto_tmp = l3.v4->protocol;
761 	} else {
762 		return -EINVAL;
763 	}
764 
765 	*ol4_proto = l4_proto_tmp;
766 
767 	/* tunnel packet */
768 	if (!skb->encapsulation) {
769 		*il4_proto = 0;
770 		return 0;
771 	}
772 
773 	/* find inner header point */
774 	l3.hdr = skb_inner_network_header(skb);
775 	l4_hdr = skb_inner_transport_header(skb);
776 
777 	if (l3.v6->version == 6) {
778 		exthdr = l3.hdr + sizeof(*l3.v6);
779 		l4_proto_tmp = l3.v6->nexthdr;
780 		if (l4_hdr != exthdr)
781 			ipv6_skip_exthdr(skb, exthdr - skb->data,
782 					 &l4_proto_tmp, &frag_off);
783 	} else if (l3.v4->version == 4) {
784 		l4_proto_tmp = l3.v4->protocol;
785 	}
786 
787 	*il4_proto = l4_proto_tmp;
788 
789 	return 0;
790 }
791 
792 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
793  * and it is udp packet, which has a dest port as the IANA assigned.
794  * the hardware is expected to do the checksum offload, but the
795  * hardware will not do the checksum offload when udp dest port is
796  * 4789.
797  */
798 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
799 {
800 	union l4_hdr_info l4;
801 
802 	l4.hdr = skb_transport_header(skb);
803 
804 	if (!(!skb->encapsulation &&
805 	      l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
806 		return false;
807 
808 	skb_checksum_help(skb);
809 
810 	return true;
811 }
812 
813 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
814 				  u32 *ol_type_vlan_len_msec)
815 {
816 	u32 l2_len, l3_len, l4_len;
817 	unsigned char *il2_hdr;
818 	union l3_hdr_info l3;
819 	union l4_hdr_info l4;
820 
821 	l3.hdr = skb_network_header(skb);
822 	l4.hdr = skb_transport_header(skb);
823 
824 	/* compute OL2 header size, defined in 2 Bytes */
825 	l2_len = l3.hdr - skb->data;
826 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
827 
828 	/* compute OL3 header size, defined in 4 Bytes */
829 	l3_len = l4.hdr - l3.hdr;
830 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
831 
832 	il2_hdr = skb_inner_mac_header(skb);
833 	/* compute OL4 header size, defined in 4 Bytes */
834 	l4_len = il2_hdr - l4.hdr;
835 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
836 
837 	/* define outer network header type */
838 	if (skb->protocol == htons(ETH_P_IP)) {
839 		if (skb_is_gso(skb))
840 			hns3_set_field(*ol_type_vlan_len_msec,
841 				       HNS3_TXD_OL3T_S,
842 				       HNS3_OL3T_IPV4_CSUM);
843 		else
844 			hns3_set_field(*ol_type_vlan_len_msec,
845 				       HNS3_TXD_OL3T_S,
846 				       HNS3_OL3T_IPV4_NO_CSUM);
847 
848 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
849 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
850 			       HNS3_OL3T_IPV6);
851 	}
852 
853 	if (ol4_proto == IPPROTO_UDP)
854 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
855 			       HNS3_TUN_MAC_IN_UDP);
856 	else if (ol4_proto == IPPROTO_GRE)
857 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
858 			       HNS3_TUN_NVGRE);
859 }
860 
861 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
862 			   u8 il4_proto, u32 *type_cs_vlan_tso,
863 			   u32 *ol_type_vlan_len_msec)
864 {
865 	unsigned char *l2_hdr = skb->data;
866 	u32 l4_proto = ol4_proto;
867 	union l4_hdr_info l4;
868 	union l3_hdr_info l3;
869 	u32 l2_len, l3_len;
870 
871 	l4.hdr = skb_transport_header(skb);
872 	l3.hdr = skb_network_header(skb);
873 
874 	/* handle encapsulation skb */
875 	if (skb->encapsulation) {
876 		/* If this is a not UDP/GRE encapsulation skb */
877 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
878 			/* drop the skb tunnel packet if hardware don't support,
879 			 * because hardware can't calculate csum when TSO.
880 			 */
881 			if (skb_is_gso(skb))
882 				return -EDOM;
883 
884 			/* the stack computes the IP header already,
885 			 * driver calculate l4 checksum when not TSO.
886 			 */
887 			skb_checksum_help(skb);
888 			return 0;
889 		}
890 
891 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
892 
893 		/* switch to inner header */
894 		l2_hdr = skb_inner_mac_header(skb);
895 		l3.hdr = skb_inner_network_header(skb);
896 		l4.hdr = skb_inner_transport_header(skb);
897 		l4_proto = il4_proto;
898 	}
899 
900 	if (l3.v4->version == 4) {
901 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
902 			       HNS3_L3T_IPV4);
903 
904 		/* the stack computes the IP header already, the only time we
905 		 * need the hardware to recompute it is in the case of TSO.
906 		 */
907 		if (skb_is_gso(skb))
908 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
909 	} else if (l3.v6->version == 6) {
910 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
911 			       HNS3_L3T_IPV6);
912 	}
913 
914 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
915 	l2_len = l3.hdr - l2_hdr;
916 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
917 
918 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
919 	l3_len = l4.hdr - l3.hdr;
920 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
921 
922 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
923 	switch (l4_proto) {
924 	case IPPROTO_TCP:
925 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
926 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
927 			       HNS3_L4T_TCP);
928 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
929 			       l4.tcp->doff);
930 		break;
931 	case IPPROTO_UDP:
932 		if (hns3_tunnel_csum_bug(skb))
933 			break;
934 
935 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
936 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
937 			       HNS3_L4T_UDP);
938 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
939 			       (sizeof(struct udphdr) >> 2));
940 		break;
941 	case IPPROTO_SCTP:
942 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
943 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
944 			       HNS3_L4T_SCTP);
945 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
946 			       (sizeof(struct sctphdr) >> 2));
947 		break;
948 	default:
949 		/* drop the skb tunnel packet if hardware don't support,
950 		 * because hardware can't calculate csum when TSO.
951 		 */
952 		if (skb_is_gso(skb))
953 			return -EDOM;
954 
955 		/* the stack computes the IP header already,
956 		 * driver calculate l4 checksum when not TSO.
957 		 */
958 		skb_checksum_help(skb);
959 		return 0;
960 	}
961 
962 	return 0;
963 }
964 
965 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
966 			     struct sk_buff *skb)
967 {
968 	struct hnae3_handle *handle = tx_ring->tqp->handle;
969 	struct vlan_ethhdr *vhdr;
970 	int rc;
971 
972 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
973 	      skb_vlan_tag_present(skb)))
974 		return 0;
975 
976 	/* Since HW limitation, if port based insert VLAN enabled, only one VLAN
977 	 * header is allowed in skb, otherwise it will cause RAS error.
978 	 */
979 	if (unlikely(skb_vlan_tagged_multi(skb) &&
980 		     handle->port_base_vlan_state ==
981 		     HNAE3_PORT_BASE_VLAN_ENABLE))
982 		return -EINVAL;
983 
984 	if (skb->protocol == htons(ETH_P_8021Q) &&
985 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
986 		/* When HW VLAN acceleration is turned off, and the stack
987 		 * sets the protocol to 802.1q, the driver just need to
988 		 * set the protocol to the encapsulated ethertype.
989 		 */
990 		skb->protocol = vlan_get_protocol(skb);
991 		return 0;
992 	}
993 
994 	if (skb_vlan_tag_present(skb)) {
995 		/* Based on hw strategy, use out_vtag in two layer tag case,
996 		 * and use inner_vtag in one tag case.
997 		 */
998 		if (skb->protocol == htons(ETH_P_8021Q) &&
999 		    handle->port_base_vlan_state ==
1000 		    HNAE3_PORT_BASE_VLAN_DISABLE)
1001 			rc = HNS3_OUTER_VLAN_TAG;
1002 		else
1003 			rc = HNS3_INNER_VLAN_TAG;
1004 
1005 		skb->protocol = vlan_get_protocol(skb);
1006 		return rc;
1007 	}
1008 
1009 	rc = skb_cow_head(skb, 0);
1010 	if (unlikely(rc < 0))
1011 		return rc;
1012 
1013 	vhdr = (struct vlan_ethhdr *)skb->data;
1014 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1015 					 & VLAN_PRIO_MASK);
1016 
1017 	skb->protocol = vlan_get_protocol(skb);
1018 	return 0;
1019 }
1020 
1021 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1022 			      struct sk_buff *skb, struct hns3_desc *desc)
1023 {
1024 	u32 ol_type_vlan_len_msec = 0;
1025 	u32 type_cs_vlan_tso = 0;
1026 	u32 paylen = skb->len;
1027 	u16 inner_vtag = 0;
1028 	u16 out_vtag = 0;
1029 	u16 mss = 0;
1030 	int ret;
1031 
1032 	ret = hns3_handle_vtags(ring, skb);
1033 	if (unlikely(ret < 0)) {
1034 		u64_stats_update_begin(&ring->syncp);
1035 		ring->stats.tx_vlan_err++;
1036 		u64_stats_update_end(&ring->syncp);
1037 		return ret;
1038 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1039 		inner_vtag = skb_vlan_tag_get(skb);
1040 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1041 				VLAN_PRIO_MASK;
1042 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1043 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1044 		out_vtag = skb_vlan_tag_get(skb);
1045 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1046 				VLAN_PRIO_MASK;
1047 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1048 			       1);
1049 	}
1050 
1051 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1052 		u8 ol4_proto, il4_proto;
1053 
1054 		skb_reset_mac_len(skb);
1055 
1056 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1057 		if (unlikely(ret < 0)) {
1058 			u64_stats_update_begin(&ring->syncp);
1059 			ring->stats.tx_l4_proto_err++;
1060 			u64_stats_update_end(&ring->syncp);
1061 			return ret;
1062 		}
1063 
1064 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1065 				      &type_cs_vlan_tso,
1066 				      &ol_type_vlan_len_msec);
1067 		if (unlikely(ret < 0)) {
1068 			u64_stats_update_begin(&ring->syncp);
1069 			ring->stats.tx_l2l3l4_err++;
1070 			u64_stats_update_end(&ring->syncp);
1071 			return ret;
1072 		}
1073 
1074 		ret = hns3_set_tso(skb, &paylen, &mss,
1075 				   &type_cs_vlan_tso);
1076 		if (unlikely(ret < 0)) {
1077 			u64_stats_update_begin(&ring->syncp);
1078 			ring->stats.tx_tso_err++;
1079 			u64_stats_update_end(&ring->syncp);
1080 			return ret;
1081 		}
1082 	}
1083 
1084 	/* Set txbd */
1085 	desc->tx.ol_type_vlan_len_msec =
1086 		cpu_to_le32(ol_type_vlan_len_msec);
1087 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1088 	desc->tx.paylen = cpu_to_le32(paylen);
1089 	desc->tx.mss = cpu_to_le16(mss);
1090 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1091 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1092 
1093 	return 0;
1094 }
1095 
1096 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1097 			  unsigned int size, enum hns_desc_type type)
1098 {
1099 #define HNS3_LIKELY_BD_NUM	1
1100 
1101 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1102 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1103 	struct device *dev = ring_to_dev(ring);
1104 	skb_frag_t *frag;
1105 	unsigned int frag_buf_num;
1106 	int k, sizeoflast;
1107 	dma_addr_t dma;
1108 
1109 	if (type == DESC_TYPE_SKB) {
1110 		struct sk_buff *skb = (struct sk_buff *)priv;
1111 		int ret;
1112 
1113 		ret = hns3_fill_skb_desc(ring, skb, desc);
1114 		if (unlikely(ret < 0))
1115 			return ret;
1116 
1117 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1118 	} else {
1119 		frag = (skb_frag_t *)priv;
1120 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1121 	}
1122 
1123 	if (unlikely(dma_mapping_error(dev, dma))) {
1124 		u64_stats_update_begin(&ring->syncp);
1125 		ring->stats.sw_err_cnt++;
1126 		u64_stats_update_end(&ring->syncp);
1127 		return -ENOMEM;
1128 	}
1129 
1130 	desc_cb->length = size;
1131 
1132 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1133 		desc_cb->priv = priv;
1134 		desc_cb->dma = dma;
1135 		desc_cb->type = type;
1136 		desc->addr = cpu_to_le64(dma);
1137 		desc->tx.send_size = cpu_to_le16(size);
1138 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1139 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1140 
1141 		ring_ptr_move_fw(ring, next_to_use);
1142 		return HNS3_LIKELY_BD_NUM;
1143 	}
1144 
1145 	frag_buf_num = hns3_tx_bd_count(size);
1146 	sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1147 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1148 
1149 	/* When frag size is bigger than hardware limit, split this frag */
1150 	for (k = 0; k < frag_buf_num; k++) {
1151 		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1152 		desc_cb->priv = priv;
1153 		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1154 		desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1155 				DESC_TYPE_SKB : DESC_TYPE_PAGE;
1156 
1157 		/* now, fill the descriptor */
1158 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1159 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1160 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1161 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1162 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1163 
1164 		/* move ring pointer to next */
1165 		ring_ptr_move_fw(ring, next_to_use);
1166 
1167 		desc_cb = &ring->desc_cb[ring->next_to_use];
1168 		desc = &ring->desc[ring->next_to_use];
1169 	}
1170 
1171 	return frag_buf_num;
1172 }
1173 
1174 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1175 				    unsigned int bd_num)
1176 {
1177 	unsigned int size;
1178 	int i;
1179 
1180 	size = skb_headlen(skb);
1181 	while (size > HNS3_MAX_BD_SIZE) {
1182 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1183 		size -= HNS3_MAX_BD_SIZE;
1184 
1185 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1186 			return bd_num;
1187 	}
1188 
1189 	if (size) {
1190 		bd_size[bd_num++] = size;
1191 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1192 			return bd_num;
1193 	}
1194 
1195 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1196 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1197 		size = skb_frag_size(frag);
1198 		if (!size)
1199 			continue;
1200 
1201 		while (size > HNS3_MAX_BD_SIZE) {
1202 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1203 			size -= HNS3_MAX_BD_SIZE;
1204 
1205 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1206 				return bd_num;
1207 		}
1208 
1209 		bd_size[bd_num++] = size;
1210 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1211 			return bd_num;
1212 	}
1213 
1214 	return bd_num;
1215 }
1216 
1217 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size)
1218 {
1219 	struct sk_buff *frag_skb;
1220 	unsigned int bd_num = 0;
1221 
1222 	/* If the total len is within the max bd limit */
1223 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
1224 		   skb_shinfo(skb)->nr_frags < HNS3_MAX_NON_TSO_BD_NUM))
1225 		return skb_shinfo(skb)->nr_frags + 1U;
1226 
1227 	/* The below case will always be linearized, return
1228 	 * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
1229 	 */
1230 	if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
1231 		     (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)))
1232 		return HNS3_MAX_TSO_BD_NUM + 1U;
1233 
1234 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1235 
1236 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1237 		return bd_num;
1238 
1239 	skb_walk_frags(skb, frag_skb) {
1240 		bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
1241 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1242 			return bd_num;
1243 	}
1244 
1245 	return bd_num;
1246 }
1247 
1248 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1249 {
1250 	if (!skb->encapsulation)
1251 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1252 
1253 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1254 }
1255 
1256 /* HW need every continuous 8 buffer data to be larger than MSS,
1257  * we simplify it by ensuring skb_headlen + the first continuous
1258  * 7 frags to to be larger than gso header len + mss, and the remaining
1259  * continuous 7 frags to be larger than MSS except the last 7 frags.
1260  */
1261 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1262 				     unsigned int bd_num)
1263 {
1264 	unsigned int tot_len = 0;
1265 	int i;
1266 
1267 	for (i = 0; i < HNS3_MAX_NON_TSO_BD_NUM - 1U; i++)
1268 		tot_len += bd_size[i];
1269 
1270 	/* ensure the first 8 frags is greater than mss + header */
1271 	if (tot_len + bd_size[HNS3_MAX_NON_TSO_BD_NUM - 1U] <
1272 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1273 		return true;
1274 
1275 	/* ensure every continuous 7 buffer is greater than mss
1276 	 * except the last one.
1277 	 */
1278 	for (i = 0; i < bd_num - HNS3_MAX_NON_TSO_BD_NUM; i++) {
1279 		tot_len -= bd_size[i];
1280 		tot_len += bd_size[i + HNS3_MAX_NON_TSO_BD_NUM - 1U];
1281 
1282 		if (tot_len < skb_shinfo(skb)->gso_size)
1283 			return true;
1284 	}
1285 
1286 	return false;
1287 }
1288 
1289 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1290 				  struct net_device *netdev,
1291 				  struct sk_buff *skb)
1292 {
1293 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1294 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1295 	unsigned int bd_num;
1296 
1297 	bd_num = hns3_tx_bd_num(skb, bd_size);
1298 	if (unlikely(bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1299 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1300 		    !hns3_skb_need_linearized(skb, bd_size, bd_num))
1301 			goto out;
1302 
1303 		if (__skb_linearize(skb))
1304 			return -ENOMEM;
1305 
1306 		bd_num = hns3_tx_bd_count(skb->len);
1307 		if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
1308 		    (!skb_is_gso(skb) &&
1309 		     bd_num > HNS3_MAX_NON_TSO_BD_NUM))
1310 			return -ENOMEM;
1311 
1312 		u64_stats_update_begin(&ring->syncp);
1313 		ring->stats.tx_copy++;
1314 		u64_stats_update_end(&ring->syncp);
1315 	}
1316 
1317 out:
1318 	if (likely(ring_space(ring) >= bd_num))
1319 		return bd_num;
1320 
1321 	netif_stop_subqueue(netdev, ring->queue_index);
1322 	smp_mb(); /* Memory barrier before checking ring_space */
1323 
1324 	/* Start queue in case hns3_clean_tx_ring has just made room
1325 	 * available and has not seen the queue stopped state performed
1326 	 * by netif_stop_subqueue above.
1327 	 */
1328 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1329 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1330 		netif_start_subqueue(netdev, ring->queue_index);
1331 		return bd_num;
1332 	}
1333 
1334 	return -EBUSY;
1335 }
1336 
1337 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1338 {
1339 	struct device *dev = ring_to_dev(ring);
1340 	unsigned int i;
1341 
1342 	for (i = 0; i < ring->desc_num; i++) {
1343 		/* check if this is where we started */
1344 		if (ring->next_to_use == next_to_use_orig)
1345 			break;
1346 
1347 		/* rollback one */
1348 		ring_ptr_move_bw(ring, next_to_use);
1349 
1350 		/* unmap the descriptor dma address */
1351 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1352 			dma_unmap_single(dev,
1353 					 ring->desc_cb[ring->next_to_use].dma,
1354 					ring->desc_cb[ring->next_to_use].length,
1355 					DMA_TO_DEVICE);
1356 		else if (ring->desc_cb[ring->next_to_use].length)
1357 			dma_unmap_page(dev,
1358 				       ring->desc_cb[ring->next_to_use].dma,
1359 				       ring->desc_cb[ring->next_to_use].length,
1360 				       DMA_TO_DEVICE);
1361 
1362 		ring->desc_cb[ring->next_to_use].length = 0;
1363 		ring->desc_cb[ring->next_to_use].dma = 0;
1364 	}
1365 }
1366 
1367 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1368 				 struct sk_buff *skb, enum hns_desc_type type)
1369 {
1370 	unsigned int size = skb_headlen(skb);
1371 	int i, ret, bd_num = 0;
1372 
1373 	if (size) {
1374 		ret = hns3_fill_desc(ring, skb, size, type);
1375 		if (unlikely(ret < 0))
1376 			return ret;
1377 
1378 		bd_num += ret;
1379 	}
1380 
1381 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1382 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1383 
1384 		size = skb_frag_size(frag);
1385 		if (!size)
1386 			continue;
1387 
1388 		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1389 		if (unlikely(ret < 0))
1390 			return ret;
1391 
1392 		bd_num += ret;
1393 	}
1394 
1395 	return bd_num;
1396 }
1397 
1398 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1399 {
1400 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1401 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1402 	struct netdev_queue *dev_queue;
1403 	int pre_ntu, next_to_use_head;
1404 	struct sk_buff *frag_skb;
1405 	int bd_num = 0;
1406 	int ret;
1407 
1408 	/* Prefetch the data used later */
1409 	prefetch(skb->data);
1410 
1411 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1412 	if (unlikely(ret <= 0)) {
1413 		if (ret == -EBUSY) {
1414 			u64_stats_update_begin(&ring->syncp);
1415 			ring->stats.tx_busy++;
1416 			u64_stats_update_end(&ring->syncp);
1417 			return NETDEV_TX_BUSY;
1418 		} else if (ret == -ENOMEM) {
1419 			u64_stats_update_begin(&ring->syncp);
1420 			ring->stats.sw_err_cnt++;
1421 			u64_stats_update_end(&ring->syncp);
1422 		}
1423 
1424 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1425 		goto out_err_tx_ok;
1426 	}
1427 
1428 	next_to_use_head = ring->next_to_use;
1429 
1430 	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1431 	if (unlikely(ret < 0))
1432 		goto fill_err;
1433 
1434 	bd_num += ret;
1435 
1436 	if (!skb_has_frag_list(skb))
1437 		goto out;
1438 
1439 	skb_walk_frags(skb, frag_skb) {
1440 		ret = hns3_fill_skb_to_desc(ring, frag_skb, DESC_TYPE_PAGE);
1441 		if (unlikely(ret < 0))
1442 			goto fill_err;
1443 
1444 		bd_num += ret;
1445 	}
1446 out:
1447 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1448 					(ring->desc_num - 1);
1449 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1450 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1451 
1452 	/* Complete translate all packets */
1453 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1454 	netdev_tx_sent_queue(dev_queue, skb->len);
1455 
1456 	wmb(); /* Commit all data before submit */
1457 
1458 	hnae3_queue_xmit(ring->tqp, bd_num);
1459 
1460 	return NETDEV_TX_OK;
1461 
1462 fill_err:
1463 	hns3_clear_desc(ring, next_to_use_head);
1464 
1465 out_err_tx_ok:
1466 	dev_kfree_skb_any(skb);
1467 	return NETDEV_TX_OK;
1468 }
1469 
1470 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1471 {
1472 	struct hnae3_handle *h = hns3_get_handle(netdev);
1473 	struct sockaddr *mac_addr = p;
1474 	int ret;
1475 
1476 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1477 		return -EADDRNOTAVAIL;
1478 
1479 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1480 		netdev_info(netdev, "already using mac address %pM\n",
1481 			    mac_addr->sa_data);
1482 		return 0;
1483 	}
1484 
1485 	/* For VF device, if there is a perm_addr, then the user will not
1486 	 * be allowed to change the address.
1487 	 */
1488 	if (!hns3_is_phys_func(h->pdev) &&
1489 	    !is_zero_ether_addr(netdev->perm_addr)) {
1490 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1491 			   netdev->perm_addr, mac_addr->sa_data);
1492 		return -EPERM;
1493 	}
1494 
1495 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1496 	if (ret) {
1497 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1498 		return ret;
1499 	}
1500 
1501 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1502 
1503 	return 0;
1504 }
1505 
1506 static int hns3_nic_do_ioctl(struct net_device *netdev,
1507 			     struct ifreq *ifr, int cmd)
1508 {
1509 	struct hnae3_handle *h = hns3_get_handle(netdev);
1510 
1511 	if (!netif_running(netdev))
1512 		return -EINVAL;
1513 
1514 	if (!h->ae_algo->ops->do_ioctl)
1515 		return -EOPNOTSUPP;
1516 
1517 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1518 }
1519 
1520 static int hns3_nic_set_features(struct net_device *netdev,
1521 				 netdev_features_t features)
1522 {
1523 	netdev_features_t changed = netdev->features ^ features;
1524 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1525 	struct hnae3_handle *h = priv->ae_handle;
1526 	bool enable;
1527 	int ret;
1528 
1529 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1530 		enable = !!(features & NETIF_F_GRO_HW);
1531 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1532 		if (ret)
1533 			return ret;
1534 	}
1535 
1536 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1537 	    h->ae_algo->ops->enable_vlan_filter) {
1538 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1539 		h->ae_algo->ops->enable_vlan_filter(h, enable);
1540 	}
1541 
1542 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1543 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1544 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1545 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1546 		if (ret)
1547 			return ret;
1548 	}
1549 
1550 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1551 		enable = !!(features & NETIF_F_NTUPLE);
1552 		h->ae_algo->ops->enable_fd(h, enable);
1553 	}
1554 
1555 	netdev->features = features;
1556 	return 0;
1557 }
1558 
1559 static void hns3_nic_get_stats64(struct net_device *netdev,
1560 				 struct rtnl_link_stats64 *stats)
1561 {
1562 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1563 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1564 	struct hnae3_handle *handle = priv->ae_handle;
1565 	struct hns3_enet_ring *ring;
1566 	u64 rx_length_errors = 0;
1567 	u64 rx_crc_errors = 0;
1568 	u64 rx_multicast = 0;
1569 	unsigned int start;
1570 	u64 tx_errors = 0;
1571 	u64 rx_errors = 0;
1572 	unsigned int idx;
1573 	u64 tx_bytes = 0;
1574 	u64 rx_bytes = 0;
1575 	u64 tx_pkts = 0;
1576 	u64 rx_pkts = 0;
1577 	u64 tx_drop = 0;
1578 	u64 rx_drop = 0;
1579 
1580 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1581 		return;
1582 
1583 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1584 
1585 	for (idx = 0; idx < queue_num; idx++) {
1586 		/* fetch the tx stats */
1587 		ring = &priv->ring[idx];
1588 		do {
1589 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1590 			tx_bytes += ring->stats.tx_bytes;
1591 			tx_pkts += ring->stats.tx_pkts;
1592 			tx_drop += ring->stats.sw_err_cnt;
1593 			tx_drop += ring->stats.tx_vlan_err;
1594 			tx_drop += ring->stats.tx_l4_proto_err;
1595 			tx_drop += ring->stats.tx_l2l3l4_err;
1596 			tx_drop += ring->stats.tx_tso_err;
1597 			tx_errors += ring->stats.sw_err_cnt;
1598 			tx_errors += ring->stats.tx_vlan_err;
1599 			tx_errors += ring->stats.tx_l4_proto_err;
1600 			tx_errors += ring->stats.tx_l2l3l4_err;
1601 			tx_errors += ring->stats.tx_tso_err;
1602 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1603 
1604 		/* fetch the rx stats */
1605 		ring = &priv->ring[idx + queue_num];
1606 		do {
1607 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1608 			rx_bytes += ring->stats.rx_bytes;
1609 			rx_pkts += ring->stats.rx_pkts;
1610 			rx_drop += ring->stats.l2_err;
1611 			rx_errors += ring->stats.l2_err;
1612 			rx_errors += ring->stats.l3l4_csum_err;
1613 			rx_crc_errors += ring->stats.l2_err;
1614 			rx_multicast += ring->stats.rx_multicast;
1615 			rx_length_errors += ring->stats.err_pkt_len;
1616 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1617 	}
1618 
1619 	stats->tx_bytes = tx_bytes;
1620 	stats->tx_packets = tx_pkts;
1621 	stats->rx_bytes = rx_bytes;
1622 	stats->rx_packets = rx_pkts;
1623 
1624 	stats->rx_errors = rx_errors;
1625 	stats->multicast = rx_multicast;
1626 	stats->rx_length_errors = rx_length_errors;
1627 	stats->rx_crc_errors = rx_crc_errors;
1628 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1629 
1630 	stats->tx_errors = tx_errors;
1631 	stats->rx_dropped = rx_drop;
1632 	stats->tx_dropped = tx_drop;
1633 	stats->collisions = netdev->stats.collisions;
1634 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1635 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1636 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1637 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1638 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1639 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1640 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1641 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1642 	stats->rx_compressed = netdev->stats.rx_compressed;
1643 	stats->tx_compressed = netdev->stats.tx_compressed;
1644 }
1645 
1646 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1647 {
1648 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1649 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1650 	struct hnae3_knic_private_info *kinfo;
1651 	u8 tc = mqprio_qopt->qopt.num_tc;
1652 	u16 mode = mqprio_qopt->mode;
1653 	u8 hw = mqprio_qopt->qopt.hw;
1654 	struct hnae3_handle *h;
1655 
1656 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1657 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1658 		return -EOPNOTSUPP;
1659 
1660 	if (tc > HNAE3_MAX_TC)
1661 		return -EINVAL;
1662 
1663 	if (!netdev)
1664 		return -EINVAL;
1665 
1666 	h = hns3_get_handle(netdev);
1667 	kinfo = &h->kinfo;
1668 
1669 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1670 
1671 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1672 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1673 }
1674 
1675 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1676 			     void *type_data)
1677 {
1678 	if (type != TC_SETUP_QDISC_MQPRIO)
1679 		return -EOPNOTSUPP;
1680 
1681 	return hns3_setup_tc(dev, type_data);
1682 }
1683 
1684 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1685 				__be16 proto, u16 vid)
1686 {
1687 	struct hnae3_handle *h = hns3_get_handle(netdev);
1688 	int ret = -EIO;
1689 
1690 	if (h->ae_algo->ops->set_vlan_filter)
1691 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1692 
1693 	return ret;
1694 }
1695 
1696 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1697 				 __be16 proto, u16 vid)
1698 {
1699 	struct hnae3_handle *h = hns3_get_handle(netdev);
1700 	int ret = -EIO;
1701 
1702 	if (h->ae_algo->ops->set_vlan_filter)
1703 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1704 
1705 	return ret;
1706 }
1707 
1708 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1709 				u8 qos, __be16 vlan_proto)
1710 {
1711 	struct hnae3_handle *h = hns3_get_handle(netdev);
1712 	int ret = -EIO;
1713 
1714 	netif_dbg(h, drv, netdev,
1715 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1716 		  vf, vlan, qos, ntohs(vlan_proto));
1717 
1718 	if (h->ae_algo->ops->set_vf_vlan_filter)
1719 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1720 							  qos, vlan_proto);
1721 
1722 	return ret;
1723 }
1724 
1725 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1726 {
1727 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1728 
1729 	if (hns3_nic_resetting(netdev))
1730 		return -EBUSY;
1731 
1732 	if (!handle->ae_algo->ops->set_vf_spoofchk)
1733 		return -EOPNOTSUPP;
1734 
1735 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1736 }
1737 
1738 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1739 {
1740 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1741 
1742 	if (!handle->ae_algo->ops->set_vf_trust)
1743 		return -EOPNOTSUPP;
1744 
1745 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1746 }
1747 
1748 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1749 {
1750 	struct hnae3_handle *h = hns3_get_handle(netdev);
1751 	int ret;
1752 
1753 	if (hns3_nic_resetting(netdev))
1754 		return -EBUSY;
1755 
1756 	if (!h->ae_algo->ops->set_mtu)
1757 		return -EOPNOTSUPP;
1758 
1759 	netif_dbg(h, drv, netdev,
1760 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1761 
1762 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1763 	if (ret)
1764 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1765 			   ret);
1766 	else
1767 		netdev->mtu = new_mtu;
1768 
1769 	return ret;
1770 }
1771 
1772 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1773 {
1774 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1775 	struct hnae3_handle *h = hns3_get_handle(ndev);
1776 	struct hns3_enet_ring *tx_ring;
1777 	struct napi_struct *napi;
1778 	int timeout_queue = 0;
1779 	int hw_head, hw_tail;
1780 	int fbd_num, fbd_oft;
1781 	int ebd_num, ebd_oft;
1782 	int bd_num, bd_err;
1783 	int ring_en, tc;
1784 	int i;
1785 
1786 	/* Find the stopped queue the same way the stack does */
1787 	for (i = 0; i < ndev->num_tx_queues; i++) {
1788 		struct netdev_queue *q;
1789 		unsigned long trans_start;
1790 
1791 		q = netdev_get_tx_queue(ndev, i);
1792 		trans_start = q->trans_start;
1793 		if (netif_xmit_stopped(q) &&
1794 		    time_after(jiffies,
1795 			       (trans_start + ndev->watchdog_timeo))) {
1796 			timeout_queue = i;
1797 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
1798 				    q->state,
1799 				    jiffies_to_msecs(jiffies - trans_start));
1800 			break;
1801 		}
1802 	}
1803 
1804 	if (i == ndev->num_tx_queues) {
1805 		netdev_info(ndev,
1806 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1807 			    priv->tx_timeout_count);
1808 		return false;
1809 	}
1810 
1811 	priv->tx_timeout_count++;
1812 
1813 	tx_ring = &priv->ring[timeout_queue];
1814 	napi = &tx_ring->tqp_vector->napi;
1815 
1816 	netdev_info(ndev,
1817 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1818 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1819 		    tx_ring->next_to_clean, napi->state);
1820 
1821 	netdev_info(ndev,
1822 		    "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
1823 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1824 		    tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);
1825 
1826 	netdev_info(ndev,
1827 		    "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
1828 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
1829 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1830 
1831 	/* When mac received many pause frames continuous, it's unable to send
1832 	 * packets, which may cause tx timeout
1833 	 */
1834 	if (h->ae_algo->ops->get_mac_stats) {
1835 		struct hns3_mac_stats mac_stats;
1836 
1837 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1838 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1839 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1840 	}
1841 
1842 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1843 				HNS3_RING_TX_RING_HEAD_REG);
1844 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1845 				HNS3_RING_TX_RING_TAIL_REG);
1846 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1847 				HNS3_RING_TX_RING_FBDNUM_REG);
1848 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1849 				HNS3_RING_TX_RING_OFFSET_REG);
1850 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1851 				HNS3_RING_TX_RING_EBDNUM_REG);
1852 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
1853 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
1854 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
1855 			       HNS3_RING_TX_RING_BD_NUM_REG);
1856 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
1857 			       HNS3_RING_TX_RING_BD_ERR_REG);
1858 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
1859 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
1860 
1861 	netdev_info(ndev,
1862 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
1863 		    bd_num, hw_head, hw_tail, bd_err,
1864 		    readl(tx_ring->tqp_vector->mask_addr));
1865 	netdev_info(ndev,
1866 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
1867 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1868 
1869 	return true;
1870 }
1871 
1872 static void hns3_nic_net_timeout(struct net_device *ndev)
1873 {
1874 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1875 	struct hnae3_handle *h = priv->ae_handle;
1876 
1877 	if (!hns3_get_tx_timeo_queue_info(ndev))
1878 		return;
1879 
1880 	/* request the reset, and let the hclge to determine
1881 	 * which reset level should be done
1882 	 */
1883 	if (h->ae_algo->ops->reset_event)
1884 		h->ae_algo->ops->reset_event(h->pdev, h);
1885 }
1886 
1887 #ifdef CONFIG_RFS_ACCEL
1888 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
1889 			      u16 rxq_index, u32 flow_id)
1890 {
1891 	struct hnae3_handle *h = hns3_get_handle(dev);
1892 	struct flow_keys fkeys;
1893 
1894 	if (!h->ae_algo->ops->add_arfs_entry)
1895 		return -EOPNOTSUPP;
1896 
1897 	if (skb->encapsulation)
1898 		return -EPROTONOSUPPORT;
1899 
1900 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
1901 		return -EPROTONOSUPPORT;
1902 
1903 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
1904 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
1905 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
1906 	     fkeys.basic.ip_proto != IPPROTO_UDP))
1907 		return -EPROTONOSUPPORT;
1908 
1909 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
1910 }
1911 #endif
1912 
1913 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
1914 				  struct ifla_vf_info *ivf)
1915 {
1916 	struct hnae3_handle *h = hns3_get_handle(ndev);
1917 
1918 	if (!h->ae_algo->ops->get_vf_config)
1919 		return -EOPNOTSUPP;
1920 
1921 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
1922 }
1923 
1924 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
1925 				      int link_state)
1926 {
1927 	struct hnae3_handle *h = hns3_get_handle(ndev);
1928 
1929 	if (!h->ae_algo->ops->set_vf_link_state)
1930 		return -EOPNOTSUPP;
1931 
1932 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
1933 }
1934 
1935 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
1936 				int min_tx_rate, int max_tx_rate)
1937 {
1938 	struct hnae3_handle *h = hns3_get_handle(ndev);
1939 
1940 	if (!h->ae_algo->ops->set_vf_rate)
1941 		return -EOPNOTSUPP;
1942 
1943 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
1944 					    false);
1945 }
1946 
1947 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1948 {
1949 	struct hnae3_handle *h = hns3_get_handle(netdev);
1950 
1951 	if (!h->ae_algo->ops->set_vf_mac)
1952 		return -EOPNOTSUPP;
1953 
1954 	if (is_multicast_ether_addr(mac)) {
1955 		netdev_err(netdev,
1956 			   "Invalid MAC:%pM specified. Could not set MAC\n",
1957 			   mac);
1958 		return -EINVAL;
1959 	}
1960 
1961 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
1962 }
1963 
1964 static const struct net_device_ops hns3_nic_netdev_ops = {
1965 	.ndo_open		= hns3_nic_net_open,
1966 	.ndo_stop		= hns3_nic_net_stop,
1967 	.ndo_start_xmit		= hns3_nic_net_xmit,
1968 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1969 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1970 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
1971 	.ndo_change_mtu		= hns3_nic_change_mtu,
1972 	.ndo_set_features	= hns3_nic_set_features,
1973 	.ndo_get_stats64	= hns3_nic_get_stats64,
1974 	.ndo_setup_tc		= hns3_nic_setup_tc,
1975 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1976 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1977 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1978 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1979 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
1980 	.ndo_set_vf_trust	= hns3_set_vf_trust,
1981 #ifdef CONFIG_RFS_ACCEL
1982 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
1983 #endif
1984 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
1985 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
1986 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
1987 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
1988 };
1989 
1990 bool hns3_is_phys_func(struct pci_dev *pdev)
1991 {
1992 	u32 dev_id = pdev->device;
1993 
1994 	switch (dev_id) {
1995 	case HNAE3_DEV_ID_GE:
1996 	case HNAE3_DEV_ID_25GE:
1997 	case HNAE3_DEV_ID_25GE_RDMA:
1998 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1999 	case HNAE3_DEV_ID_50GE_RDMA:
2000 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2001 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2002 		return true;
2003 	case HNAE3_DEV_ID_100G_VF:
2004 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
2005 		return false;
2006 	default:
2007 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2008 			 dev_id);
2009 	}
2010 
2011 	return false;
2012 }
2013 
2014 static void hns3_disable_sriov(struct pci_dev *pdev)
2015 {
2016 	/* If our VFs are assigned we cannot shut down SR-IOV
2017 	 * without causing issues, so just leave the hardware
2018 	 * available but disabled
2019 	 */
2020 	if (pci_vfs_assigned(pdev)) {
2021 		dev_warn(&pdev->dev,
2022 			 "disabling driver while VFs are assigned\n");
2023 		return;
2024 	}
2025 
2026 	pci_disable_sriov(pdev);
2027 }
2028 
2029 static void hns3_get_dev_capability(struct pci_dev *pdev,
2030 				    struct hnae3_ae_dev *ae_dev)
2031 {
2032 	if (pdev->revision >= 0x21) {
2033 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
2034 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
2035 	}
2036 }
2037 
2038 /* hns3_probe - Device initialization routine
2039  * @pdev: PCI device information struct
2040  * @ent: entry in hns3_pci_tbl
2041  *
2042  * hns3_probe initializes a PF identified by a pci_dev structure.
2043  * The OS initialization, configuring of the PF private structure,
2044  * and a hardware reset occur.
2045  *
2046  * Returns 0 on success, negative on failure
2047  */
2048 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2049 {
2050 	struct hnae3_ae_dev *ae_dev;
2051 	int ret;
2052 
2053 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2054 	if (!ae_dev) {
2055 		ret = -ENOMEM;
2056 		return ret;
2057 	}
2058 
2059 	ae_dev->pdev = pdev;
2060 	ae_dev->flag = ent->driver_data;
2061 	ae_dev->reset_type = HNAE3_NONE_RESET;
2062 	hns3_get_dev_capability(pdev, ae_dev);
2063 	pci_set_drvdata(pdev, ae_dev);
2064 
2065 	ret = hnae3_register_ae_dev(ae_dev);
2066 	if (ret) {
2067 		devm_kfree(&pdev->dev, ae_dev);
2068 		pci_set_drvdata(pdev, NULL);
2069 	}
2070 
2071 	return ret;
2072 }
2073 
2074 /* hns3_remove - Device removal routine
2075  * @pdev: PCI device information struct
2076  */
2077 static void hns3_remove(struct pci_dev *pdev)
2078 {
2079 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2080 
2081 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2082 		hns3_disable_sriov(pdev);
2083 
2084 	hnae3_unregister_ae_dev(ae_dev);
2085 	pci_set_drvdata(pdev, NULL);
2086 }
2087 
2088 /**
2089  * hns3_pci_sriov_configure
2090  * @pdev: pointer to a pci_dev structure
2091  * @num_vfs: number of VFs to allocate
2092  *
2093  * Enable or change the number of VFs. Called when the user updates the number
2094  * of VFs in sysfs.
2095  **/
2096 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2097 {
2098 	int ret;
2099 
2100 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2101 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2102 		return -EINVAL;
2103 	}
2104 
2105 	if (num_vfs) {
2106 		ret = pci_enable_sriov(pdev, num_vfs);
2107 		if (ret)
2108 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2109 		else
2110 			return num_vfs;
2111 	} else if (!pci_vfs_assigned(pdev)) {
2112 		pci_disable_sriov(pdev);
2113 	} else {
2114 		dev_warn(&pdev->dev,
2115 			 "Unable to free VFs because some are assigned to VMs.\n");
2116 	}
2117 
2118 	return 0;
2119 }
2120 
2121 static void hns3_shutdown(struct pci_dev *pdev)
2122 {
2123 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2124 
2125 	hnae3_unregister_ae_dev(ae_dev);
2126 	devm_kfree(&pdev->dev, ae_dev);
2127 	pci_set_drvdata(pdev, NULL);
2128 
2129 	if (system_state == SYSTEM_POWER_OFF)
2130 		pci_set_power_state(pdev, PCI_D3hot);
2131 }
2132 
2133 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2134 					    pci_channel_state_t state)
2135 {
2136 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2137 	pci_ers_result_t ret;
2138 
2139 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
2140 
2141 	if (state == pci_channel_io_perm_failure)
2142 		return PCI_ERS_RESULT_DISCONNECT;
2143 
2144 	if (!ae_dev || !ae_dev->ops) {
2145 		dev_err(&pdev->dev,
2146 			"Can't recover - error happened before device initialized\n");
2147 		return PCI_ERS_RESULT_NONE;
2148 	}
2149 
2150 	if (ae_dev->ops->handle_hw_ras_error)
2151 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2152 	else
2153 		return PCI_ERS_RESULT_NONE;
2154 
2155 	return ret;
2156 }
2157 
2158 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2159 {
2160 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2161 	const struct hnae3_ae_ops *ops;
2162 	enum hnae3_reset_type reset_type;
2163 	struct device *dev = &pdev->dev;
2164 
2165 	if (!ae_dev || !ae_dev->ops)
2166 		return PCI_ERS_RESULT_NONE;
2167 
2168 	ops = ae_dev->ops;
2169 	/* request the reset */
2170 	if (ops->reset_event && ops->get_reset_level &&
2171 	    ops->set_default_reset_request) {
2172 		if (ae_dev->hw_err_reset_req) {
2173 			reset_type = ops->get_reset_level(ae_dev,
2174 						&ae_dev->hw_err_reset_req);
2175 			ops->set_default_reset_request(ae_dev, reset_type);
2176 			dev_info(dev, "requesting reset due to PCI error\n");
2177 			ops->reset_event(pdev, NULL);
2178 		}
2179 
2180 		return PCI_ERS_RESULT_RECOVERED;
2181 	}
2182 
2183 	return PCI_ERS_RESULT_DISCONNECT;
2184 }
2185 
2186 static void hns3_reset_prepare(struct pci_dev *pdev)
2187 {
2188 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2189 
2190 	dev_info(&pdev->dev, "hns3 flr prepare\n");
2191 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2192 		ae_dev->ops->flr_prepare(ae_dev);
2193 }
2194 
2195 static void hns3_reset_done(struct pci_dev *pdev)
2196 {
2197 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2198 
2199 	dev_info(&pdev->dev, "hns3 flr done\n");
2200 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2201 		ae_dev->ops->flr_done(ae_dev);
2202 }
2203 
2204 static const struct pci_error_handlers hns3_err_handler = {
2205 	.error_detected = hns3_error_detected,
2206 	.slot_reset     = hns3_slot_reset,
2207 	.reset_prepare	= hns3_reset_prepare,
2208 	.reset_done	= hns3_reset_done,
2209 };
2210 
2211 static struct pci_driver hns3_driver = {
2212 	.name     = hns3_driver_name,
2213 	.id_table = hns3_pci_tbl,
2214 	.probe    = hns3_probe,
2215 	.remove   = hns3_remove,
2216 	.shutdown = hns3_shutdown,
2217 	.sriov_configure = hns3_pci_sriov_configure,
2218 	.err_handler    = &hns3_err_handler,
2219 };
2220 
2221 /* set default feature to hns3 */
2222 static void hns3_set_default_feature(struct net_device *netdev)
2223 {
2224 	struct hnae3_handle *h = hns3_get_handle(netdev);
2225 	struct pci_dev *pdev = h->pdev;
2226 
2227 	netdev->priv_flags |= IFF_UNICAST_FLT;
2228 
2229 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2230 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2231 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2232 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2233 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2234 		NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2235 
2236 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2237 
2238 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2239 		NETIF_F_HW_VLAN_CTAG_FILTER |
2240 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2241 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2242 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2243 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2244 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2245 		NETIF_F_FRAGLIST;
2246 
2247 	netdev->vlan_features |=
2248 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
2249 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2250 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2251 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2252 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2253 		NETIF_F_FRAGLIST;
2254 
2255 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2256 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2257 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2258 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2259 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2260 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2261 		NETIF_F_FRAGLIST;
2262 
2263 	if (pdev->revision >= 0x21) {
2264 		netdev->hw_features |= NETIF_F_GRO_HW;
2265 		netdev->features |= NETIF_F_GRO_HW;
2266 
2267 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2268 			netdev->hw_features |= NETIF_F_NTUPLE;
2269 			netdev->features |= NETIF_F_NTUPLE;
2270 		}
2271 	}
2272 }
2273 
2274 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2275 			     struct hns3_desc_cb *cb)
2276 {
2277 	unsigned int order = hns3_page_order(ring);
2278 	struct page *p;
2279 
2280 	p = dev_alloc_pages(order);
2281 	if (!p)
2282 		return -ENOMEM;
2283 
2284 	cb->priv = p;
2285 	cb->page_offset = 0;
2286 	cb->reuse_flag = 0;
2287 	cb->buf  = page_address(p);
2288 	cb->length = hns3_page_size(ring);
2289 	cb->type = DESC_TYPE_PAGE;
2290 
2291 	return 0;
2292 }
2293 
2294 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2295 			     struct hns3_desc_cb *cb)
2296 {
2297 	if (cb->type == DESC_TYPE_SKB)
2298 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
2299 	else if (!HNAE3_IS_TX_RING(ring))
2300 		put_page((struct page *)cb->priv);
2301 	memset(cb, 0, sizeof(*cb));
2302 }
2303 
2304 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2305 {
2306 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2307 			       cb->length, ring_to_dma_dir(ring));
2308 
2309 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2310 		return -EIO;
2311 
2312 	return 0;
2313 }
2314 
2315 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2316 			      struct hns3_desc_cb *cb)
2317 {
2318 	if (cb->type == DESC_TYPE_SKB)
2319 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2320 				 ring_to_dma_dir(ring));
2321 	else if (cb->length)
2322 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2323 			       ring_to_dma_dir(ring));
2324 }
2325 
2326 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2327 {
2328 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2329 	ring->desc[i].addr = 0;
2330 }
2331 
2332 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2333 {
2334 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2335 
2336 	if (!ring->desc_cb[i].dma)
2337 		return;
2338 
2339 	hns3_buffer_detach(ring, i);
2340 	hns3_free_buffer(ring, cb);
2341 }
2342 
2343 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2344 {
2345 	int i;
2346 
2347 	for (i = 0; i < ring->desc_num; i++)
2348 		hns3_free_buffer_detach(ring, i);
2349 }
2350 
2351 /* free desc along with its attached buffer */
2352 static void hns3_free_desc(struct hns3_enet_ring *ring)
2353 {
2354 	int size = ring->desc_num * sizeof(ring->desc[0]);
2355 
2356 	hns3_free_buffers(ring);
2357 
2358 	if (ring->desc) {
2359 		dma_free_coherent(ring_to_dev(ring), size,
2360 				  ring->desc, ring->desc_dma_addr);
2361 		ring->desc = NULL;
2362 	}
2363 }
2364 
2365 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2366 {
2367 	int size = ring->desc_num * sizeof(ring->desc[0]);
2368 
2369 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2370 					&ring->desc_dma_addr, GFP_KERNEL);
2371 	if (!ring->desc)
2372 		return -ENOMEM;
2373 
2374 	return 0;
2375 }
2376 
2377 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2378 				   struct hns3_desc_cb *cb)
2379 {
2380 	int ret;
2381 
2382 	ret = hns3_alloc_buffer(ring, cb);
2383 	if (ret)
2384 		goto out;
2385 
2386 	ret = hns3_map_buffer(ring, cb);
2387 	if (ret)
2388 		goto out_with_buf;
2389 
2390 	return 0;
2391 
2392 out_with_buf:
2393 	hns3_free_buffer(ring, cb);
2394 out:
2395 	return ret;
2396 }
2397 
2398 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2399 {
2400 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2401 
2402 	if (ret)
2403 		return ret;
2404 
2405 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2406 
2407 	return 0;
2408 }
2409 
2410 /* Allocate memory for raw pkg, and map with dma */
2411 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2412 {
2413 	int i, j, ret;
2414 
2415 	for (i = 0; i < ring->desc_num; i++) {
2416 		ret = hns3_alloc_buffer_attach(ring, i);
2417 		if (ret)
2418 			goto out_buffer_fail;
2419 	}
2420 
2421 	return 0;
2422 
2423 out_buffer_fail:
2424 	for (j = i - 1; j >= 0; j--)
2425 		hns3_free_buffer_detach(ring, j);
2426 	return ret;
2427 }
2428 
2429 /* detach a in-used buffer and replace with a reserved one */
2430 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2431 				struct hns3_desc_cb *res_cb)
2432 {
2433 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2434 	ring->desc_cb[i] = *res_cb;
2435 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2436 	ring->desc[i].rx.bd_base_info = 0;
2437 }
2438 
2439 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2440 {
2441 	ring->desc_cb[i].reuse_flag = 0;
2442 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2443 					 ring->desc_cb[i].page_offset);
2444 	ring->desc[i].rx.bd_base_info = 0;
2445 }
2446 
2447 static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
2448 				  int *bytes, int *pkts)
2449 {
2450 	int ntc = ring->next_to_clean;
2451 	struct hns3_desc_cb *desc_cb;
2452 
2453 	while (head != ntc) {
2454 		desc_cb = &ring->desc_cb[ntc];
2455 		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2456 		(*bytes) += desc_cb->length;
2457 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2458 		hns3_free_buffer_detach(ring, ntc);
2459 
2460 		if (++ntc == ring->desc_num)
2461 			ntc = 0;
2462 
2463 		/* Issue prefetch for next Tx descriptor */
2464 		prefetch(&ring->desc_cb[ntc]);
2465 	}
2466 
2467 	/* This smp_store_release() pairs with smp_load_acquire() in
2468 	 * ring_space called by hns3_nic_net_xmit.
2469 	 */
2470 	smp_store_release(&ring->next_to_clean, ntc);
2471 }
2472 
2473 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2474 {
2475 	int u = ring->next_to_use;
2476 	int c = ring->next_to_clean;
2477 
2478 	if (unlikely(h > ring->desc_num))
2479 		return 0;
2480 
2481 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2482 }
2483 
2484 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2485 {
2486 	struct net_device *netdev = ring_to_netdev(ring);
2487 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2488 	struct netdev_queue *dev_queue;
2489 	int bytes, pkts;
2490 	int head;
2491 
2492 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2493 
2494 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2495 		return; /* no data to poll */
2496 
2497 	rmb(); /* Make sure head is ready before touch any data */
2498 
2499 	if (unlikely(!is_valid_clean_head(ring, head))) {
2500 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2501 			   ring->next_to_use, ring->next_to_clean);
2502 
2503 		u64_stats_update_begin(&ring->syncp);
2504 		ring->stats.io_err_cnt++;
2505 		u64_stats_update_end(&ring->syncp);
2506 		return;
2507 	}
2508 
2509 	bytes = 0;
2510 	pkts = 0;
2511 	hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2512 
2513 	ring->tqp_vector->tx_group.total_bytes += bytes;
2514 	ring->tqp_vector->tx_group.total_packets += pkts;
2515 
2516 	u64_stats_update_begin(&ring->syncp);
2517 	ring->stats.tx_bytes += bytes;
2518 	ring->stats.tx_pkts += pkts;
2519 	u64_stats_update_end(&ring->syncp);
2520 
2521 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2522 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2523 
2524 	if (unlikely(netif_carrier_ok(netdev) &&
2525 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2526 		/* Make sure that anybody stopping the queue after this
2527 		 * sees the new next_to_clean.
2528 		 */
2529 		smp_mb();
2530 		if (netif_tx_queue_stopped(dev_queue) &&
2531 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2532 			netif_tx_wake_queue(dev_queue);
2533 			ring->stats.restart_queue++;
2534 		}
2535 	}
2536 }
2537 
2538 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2539 {
2540 	int ntc = ring->next_to_clean;
2541 	int ntu = ring->next_to_use;
2542 
2543 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2544 }
2545 
2546 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2547 				      int cleand_count)
2548 {
2549 	struct hns3_desc_cb *desc_cb;
2550 	struct hns3_desc_cb res_cbs;
2551 	int i, ret;
2552 
2553 	for (i = 0; i < cleand_count; i++) {
2554 		desc_cb = &ring->desc_cb[ring->next_to_use];
2555 		if (desc_cb->reuse_flag) {
2556 			u64_stats_update_begin(&ring->syncp);
2557 			ring->stats.reuse_pg_cnt++;
2558 			u64_stats_update_end(&ring->syncp);
2559 
2560 			hns3_reuse_buffer(ring, ring->next_to_use);
2561 		} else {
2562 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
2563 			if (ret) {
2564 				u64_stats_update_begin(&ring->syncp);
2565 				ring->stats.sw_err_cnt++;
2566 				u64_stats_update_end(&ring->syncp);
2567 
2568 				hns3_rl_err(ring_to_netdev(ring),
2569 					    "alloc rx buffer failed: %d\n",
2570 					    ret);
2571 				break;
2572 			}
2573 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2574 
2575 			u64_stats_update_begin(&ring->syncp);
2576 			ring->stats.non_reuse_pg++;
2577 			u64_stats_update_end(&ring->syncp);
2578 		}
2579 
2580 		ring_ptr_move_fw(ring, next_to_use);
2581 	}
2582 
2583 	wmb(); /* Make all data has been write before submit */
2584 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2585 }
2586 
2587 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2588 				struct hns3_enet_ring *ring, int pull_len,
2589 				struct hns3_desc_cb *desc_cb)
2590 {
2591 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2592 	int size = le16_to_cpu(desc->rx.size);
2593 	u32 truesize = hns3_buf_size(ring);
2594 
2595 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2596 			size - pull_len, truesize);
2597 
2598 	/* Avoid re-using remote pages, or the stack is still using the page
2599 	 * when page_offset rollback to zero, flag default unreuse
2600 	 */
2601 	if (unlikely(page_to_nid(desc_cb->priv) != numa_mem_id()) ||
2602 	    (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2603 		return;
2604 
2605 	/* Move offset up to the next cache line */
2606 	desc_cb->page_offset += truesize;
2607 
2608 	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2609 		desc_cb->reuse_flag = 1;
2610 		/* Bump ref count on page before it is given */
2611 		get_page(desc_cb->priv);
2612 	} else if (page_count(desc_cb->priv) == 1) {
2613 		desc_cb->reuse_flag = 1;
2614 		desc_cb->page_offset = 0;
2615 		get_page(desc_cb->priv);
2616 	}
2617 }
2618 
2619 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2620 {
2621 	__be16 type = skb->protocol;
2622 	struct tcphdr *th;
2623 	int depth = 0;
2624 
2625 	while (eth_type_vlan(type)) {
2626 		struct vlan_hdr *vh;
2627 
2628 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2629 			return -EFAULT;
2630 
2631 		vh = (struct vlan_hdr *)(skb->data + depth);
2632 		type = vh->h_vlan_encapsulated_proto;
2633 		depth += VLAN_HLEN;
2634 	}
2635 
2636 	skb_set_network_header(skb, depth);
2637 
2638 	if (type == htons(ETH_P_IP)) {
2639 		const struct iphdr *iph = ip_hdr(skb);
2640 
2641 		depth += sizeof(struct iphdr);
2642 		skb_set_transport_header(skb, depth);
2643 		th = tcp_hdr(skb);
2644 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2645 					  iph->daddr, 0);
2646 	} else if (type == htons(ETH_P_IPV6)) {
2647 		const struct ipv6hdr *iph = ipv6_hdr(skb);
2648 
2649 		depth += sizeof(struct ipv6hdr);
2650 		skb_set_transport_header(skb, depth);
2651 		th = tcp_hdr(skb);
2652 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2653 					  &iph->daddr, 0);
2654 	} else {
2655 		hns3_rl_err(skb->dev,
2656 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2657 			    be16_to_cpu(type), depth);
2658 		return -EFAULT;
2659 	}
2660 
2661 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2662 	if (th->cwr)
2663 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2664 
2665 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2666 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2667 
2668 	skb->csum_start = (unsigned char *)th - skb->head;
2669 	skb->csum_offset = offsetof(struct tcphdr, check);
2670 	skb->ip_summed = CHECKSUM_PARTIAL;
2671 	return 0;
2672 }
2673 
2674 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2675 			     u32 l234info, u32 bd_base_info, u32 ol_info)
2676 {
2677 	struct net_device *netdev = ring_to_netdev(ring);
2678 	int l3_type, l4_type;
2679 	int ol4_type;
2680 
2681 	skb->ip_summed = CHECKSUM_NONE;
2682 
2683 	skb_checksum_none_assert(skb);
2684 
2685 	if (!(netdev->features & NETIF_F_RXCSUM))
2686 		return;
2687 
2688 	/* check if hardware has done checksum */
2689 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2690 		return;
2691 
2692 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2693 				 BIT(HNS3_RXD_OL3E_B) |
2694 				 BIT(HNS3_RXD_OL4E_B)))) {
2695 		u64_stats_update_begin(&ring->syncp);
2696 		ring->stats.l3l4_csum_err++;
2697 		u64_stats_update_end(&ring->syncp);
2698 
2699 		return;
2700 	}
2701 
2702 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2703 				   HNS3_RXD_OL4ID_S);
2704 	switch (ol4_type) {
2705 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2706 	case HNS3_OL4_TYPE_NVGRE:
2707 		skb->csum_level = 1;
2708 		/* fall through */
2709 	case HNS3_OL4_TYPE_NO_TUN:
2710 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2711 					  HNS3_RXD_L3ID_S);
2712 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2713 					  HNS3_RXD_L4ID_S);
2714 
2715 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2716 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2717 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2718 		    (l4_type == HNS3_L4_TYPE_UDP ||
2719 		     l4_type == HNS3_L4_TYPE_TCP ||
2720 		     l4_type == HNS3_L4_TYPE_SCTP))
2721 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2722 		break;
2723 	default:
2724 		break;
2725 	}
2726 }
2727 
2728 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2729 {
2730 	if (skb_has_frag_list(skb))
2731 		napi_gro_flush(&ring->tqp_vector->napi, false);
2732 
2733 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2734 }
2735 
2736 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2737 				struct hns3_desc *desc, u32 l234info,
2738 				u16 *vlan_tag)
2739 {
2740 	struct hnae3_handle *handle = ring->tqp->handle;
2741 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2742 
2743 	if (pdev->revision == 0x20) {
2744 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2745 		if (!(*vlan_tag & VLAN_VID_MASK))
2746 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2747 
2748 		return (*vlan_tag != 0);
2749 	}
2750 
2751 #define HNS3_STRP_OUTER_VLAN	0x1
2752 #define HNS3_STRP_INNER_VLAN	0x2
2753 #define HNS3_STRP_BOTH		0x3
2754 
2755 	/* Hardware always insert VLAN tag into RX descriptor when
2756 	 * remove the tag from packet, driver needs to determine
2757 	 * reporting which tag to stack.
2758 	 */
2759 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2760 				HNS3_RXD_STRP_TAGP_S)) {
2761 	case HNS3_STRP_OUTER_VLAN:
2762 		if (handle->port_base_vlan_state !=
2763 				HNAE3_PORT_BASE_VLAN_DISABLE)
2764 			return false;
2765 
2766 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2767 		return true;
2768 	case HNS3_STRP_INNER_VLAN:
2769 		if (handle->port_base_vlan_state !=
2770 				HNAE3_PORT_BASE_VLAN_DISABLE)
2771 			return false;
2772 
2773 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2774 		return true;
2775 	case HNS3_STRP_BOTH:
2776 		if (handle->port_base_vlan_state ==
2777 				HNAE3_PORT_BASE_VLAN_DISABLE)
2778 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2779 		else
2780 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2781 
2782 		return true;
2783 	default:
2784 		return false;
2785 	}
2786 }
2787 
2788 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2789 			  unsigned char *va)
2790 {
2791 #define HNS3_NEED_ADD_FRAG	1
2792 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2793 	struct net_device *netdev = ring_to_netdev(ring);
2794 	struct sk_buff *skb;
2795 
2796 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2797 	skb = ring->skb;
2798 	if (unlikely(!skb)) {
2799 		hns3_rl_err(netdev, "alloc rx skb fail\n");
2800 
2801 		u64_stats_update_begin(&ring->syncp);
2802 		ring->stats.sw_err_cnt++;
2803 		u64_stats_update_end(&ring->syncp);
2804 
2805 		return -ENOMEM;
2806 	}
2807 
2808 	prefetchw(skb->data);
2809 
2810 	ring->pending_buf = 1;
2811 	ring->frag_num = 0;
2812 	ring->tail_skb = NULL;
2813 	if (length <= HNS3_RX_HEAD_SIZE) {
2814 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2815 
2816 		/* We can reuse buffer as-is, just make sure it is local */
2817 		if (likely(page_to_nid(desc_cb->priv) == numa_mem_id()))
2818 			desc_cb->reuse_flag = 1;
2819 		else /* This page cannot be reused so discard it */
2820 			put_page(desc_cb->priv);
2821 
2822 		ring_ptr_move_fw(ring, next_to_clean);
2823 		return 0;
2824 	}
2825 	u64_stats_update_begin(&ring->syncp);
2826 	ring->stats.seg_pkt_cnt++;
2827 	u64_stats_update_end(&ring->syncp);
2828 
2829 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2830 	__skb_put(skb, ring->pull_len);
2831 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2832 			    desc_cb);
2833 	ring_ptr_move_fw(ring, next_to_clean);
2834 
2835 	return HNS3_NEED_ADD_FRAG;
2836 }
2837 
2838 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2839 			 bool pending)
2840 {
2841 	struct sk_buff *skb = ring->skb;
2842 	struct sk_buff *head_skb = skb;
2843 	struct sk_buff *new_skb;
2844 	struct hns3_desc_cb *desc_cb;
2845 	struct hns3_desc *pre_desc;
2846 	u32 bd_base_info;
2847 	int pre_bd;
2848 
2849 	/* if there is pending bd, the SW param next_to_clean has moved
2850 	 * to next and the next is NULL
2851 	 */
2852 	if (pending) {
2853 		pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2854 			 ring->desc_num;
2855 		pre_desc = &ring->desc[pre_bd];
2856 		bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2857 	} else {
2858 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2859 	}
2860 
2861 	while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2862 		desc = &ring->desc[ring->next_to_clean];
2863 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2864 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2865 		/* make sure HW write desc complete */
2866 		dma_rmb();
2867 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2868 			return -ENXIO;
2869 
2870 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2871 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
2872 			if (unlikely(!new_skb)) {
2873 				hns3_rl_err(ring_to_netdev(ring),
2874 					    "alloc rx fraglist skb fail\n");
2875 				return -ENXIO;
2876 			}
2877 			ring->frag_num = 0;
2878 
2879 			if (ring->tail_skb) {
2880 				ring->tail_skb->next = new_skb;
2881 				ring->tail_skb = new_skb;
2882 			} else {
2883 				skb_shinfo(skb)->frag_list = new_skb;
2884 				ring->tail_skb = new_skb;
2885 			}
2886 		}
2887 
2888 		if (ring->tail_skb) {
2889 			head_skb->truesize += hns3_buf_size(ring);
2890 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2891 			head_skb->len += le16_to_cpu(desc->rx.size);
2892 			skb = ring->tail_skb;
2893 		}
2894 
2895 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2896 		ring_ptr_move_fw(ring, next_to_clean);
2897 		ring->pending_buf++;
2898 	}
2899 
2900 	return 0;
2901 }
2902 
2903 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
2904 				     struct sk_buff *skb, u32 l234info,
2905 				     u32 bd_base_info, u32 ol_info)
2906 {
2907 	u32 l3_type;
2908 
2909 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2910 						    HNS3_RXD_GRO_SIZE_M,
2911 						    HNS3_RXD_GRO_SIZE_S);
2912 	/* if there is no HW GRO, do not set gro params */
2913 	if (!skb_shinfo(skb)->gso_size) {
2914 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2915 		return 0;
2916 	}
2917 
2918 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
2919 						  HNS3_RXD_GRO_COUNT_M,
2920 						  HNS3_RXD_GRO_COUNT_S);
2921 
2922 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
2923 	if (l3_type == HNS3_L3_TYPE_IPV4)
2924 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2925 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2926 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2927 	else
2928 		return -EFAULT;
2929 
2930 	return  hns3_gro_complete(skb, l234info);
2931 }
2932 
2933 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2934 				     struct sk_buff *skb, u32 rss_hash)
2935 {
2936 	struct hnae3_handle *handle = ring->tqp->handle;
2937 	enum pkt_hash_types rss_type;
2938 
2939 	if (rss_hash)
2940 		rss_type = handle->kinfo.rss_type;
2941 	else
2942 		rss_type = PKT_HASH_TYPE_NONE;
2943 
2944 	skb_set_hash(skb, rss_hash, rss_type);
2945 }
2946 
2947 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2948 {
2949 	struct net_device *netdev = ring_to_netdev(ring);
2950 	enum hns3_pkt_l2t_type l2_frame_type;
2951 	u32 bd_base_info, l234info, ol_info;
2952 	struct hns3_desc *desc;
2953 	unsigned int len;
2954 	int pre_ntc, ret;
2955 
2956 	/* bdinfo handled below is only valid on the last BD of the
2957 	 * current packet, and ring->next_to_clean indicates the first
2958 	 * descriptor of next packet, so need - 1 below.
2959 	 */
2960 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
2961 					(ring->desc_num - 1);
2962 	desc = &ring->desc[pre_ntc];
2963 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2964 	l234info = le32_to_cpu(desc->rx.l234_info);
2965 	ol_info = le32_to_cpu(desc->rx.ol_info);
2966 
2967 	/* Based on hw strategy, the tag offloaded will be stored at
2968 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2969 	 * in one layer tag case.
2970 	 */
2971 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2972 		u16 vlan_tag;
2973 
2974 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2975 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2976 					       vlan_tag);
2977 	}
2978 
2979 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
2980 				  BIT(HNS3_RXD_L2E_B))))) {
2981 		u64_stats_update_begin(&ring->syncp);
2982 		if (l234info & BIT(HNS3_RXD_L2E_B))
2983 			ring->stats.l2_err++;
2984 		else
2985 			ring->stats.err_pkt_len++;
2986 		u64_stats_update_end(&ring->syncp);
2987 
2988 		return -EFAULT;
2989 	}
2990 
2991 	len = skb->len;
2992 
2993 	/* Do update ip stack process */
2994 	skb->protocol = eth_type_trans(skb, netdev);
2995 
2996 	/* This is needed in order to enable forwarding support */
2997 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
2998 					bd_base_info, ol_info);
2999 	if (unlikely(ret)) {
3000 		u64_stats_update_begin(&ring->syncp);
3001 		ring->stats.rx_err_cnt++;
3002 		u64_stats_update_end(&ring->syncp);
3003 		return ret;
3004 	}
3005 
3006 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3007 					HNS3_RXD_DMAC_S);
3008 
3009 	u64_stats_update_begin(&ring->syncp);
3010 	ring->stats.rx_pkts++;
3011 	ring->stats.rx_bytes += len;
3012 
3013 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3014 		ring->stats.rx_multicast++;
3015 
3016 	u64_stats_update_end(&ring->syncp);
3017 
3018 	ring->tqp_vector->rx_group.total_bytes += len;
3019 
3020 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3021 	return 0;
3022 }
3023 
3024 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3025 {
3026 	struct sk_buff *skb = ring->skb;
3027 	struct hns3_desc_cb *desc_cb;
3028 	struct hns3_desc *desc;
3029 	unsigned int length;
3030 	u32 bd_base_info;
3031 	int ret;
3032 
3033 	desc = &ring->desc[ring->next_to_clean];
3034 	desc_cb = &ring->desc_cb[ring->next_to_clean];
3035 
3036 	prefetch(desc);
3037 
3038 	length = le16_to_cpu(desc->rx.size);
3039 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3040 
3041 	/* Check valid BD */
3042 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3043 		return -ENXIO;
3044 
3045 	if (!skb)
3046 		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
3047 
3048 	/* Prefetch first cache line of first page
3049 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
3050 	 * line size is 64B so need to prefetch twice to make it 128B. But in
3051 	 * actual we can have greater size of caches with 128B Level 1 cache
3052 	 * lines. In such a case, single fetch would suffice to cache in the
3053 	 * relevant part of the header.
3054 	 */
3055 	prefetch(ring->va);
3056 #if L1_CACHE_BYTES < 128
3057 	prefetch(ring->va + L1_CACHE_BYTES);
3058 #endif
3059 
3060 	if (!skb) {
3061 		ret = hns3_alloc_skb(ring, length, ring->va);
3062 		skb = ring->skb;
3063 
3064 		if (ret < 0) /* alloc buffer fail */
3065 			return ret;
3066 		if (ret > 0) { /* need add frag */
3067 			ret = hns3_add_frag(ring, desc, false);
3068 			if (ret)
3069 				return ret;
3070 
3071 			/* As the head data may be changed when GRO enable, copy
3072 			 * the head data in after other data rx completed
3073 			 */
3074 			memcpy(skb->data, ring->va,
3075 			       ALIGN(ring->pull_len, sizeof(long)));
3076 		}
3077 	} else {
3078 		ret = hns3_add_frag(ring, desc, true);
3079 		if (ret)
3080 			return ret;
3081 
3082 		/* As the head data may be changed when GRO enable, copy
3083 		 * the head data in after other data rx completed
3084 		 */
3085 		memcpy(skb->data, ring->va,
3086 		       ALIGN(ring->pull_len, sizeof(long)));
3087 	}
3088 
3089 	ret = hns3_handle_bdinfo(ring, skb);
3090 	if (unlikely(ret)) {
3091 		dev_kfree_skb_any(skb);
3092 		return ret;
3093 	}
3094 
3095 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3096 	return 0;
3097 }
3098 
3099 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3100 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3101 {
3102 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3103 	int unused_count = hns3_desc_unused(ring);
3104 	int recv_pkts = 0;
3105 	int recv_bds = 0;
3106 	int err, num;
3107 
3108 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
3109 	num -= unused_count;
3110 	unused_count -= ring->pending_buf;
3111 
3112 	if (num <= 0)
3113 		goto out;
3114 
3115 	rmb(); /* Make sure num taken effect before the other data is touched */
3116 
3117 	while (recv_pkts < budget && recv_bds < num) {
3118 		/* Reuse or realloc buffers */
3119 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3120 			hns3_nic_alloc_rx_buffers(ring, unused_count);
3121 			unused_count = hns3_desc_unused(ring) -
3122 					ring->pending_buf;
3123 		}
3124 
3125 		/* Poll one pkt */
3126 		err = hns3_handle_rx_bd(ring);
3127 		/* Do not get FE for the packet or failed to alloc skb */
3128 		if (unlikely(!ring->skb || err == -ENXIO)) {
3129 			goto out;
3130 		} else if (likely(!err)) {
3131 			rx_fn(ring, ring->skb);
3132 			recv_pkts++;
3133 		}
3134 
3135 		recv_bds += ring->pending_buf;
3136 		unused_count += ring->pending_buf;
3137 		ring->skb = NULL;
3138 		ring->pending_buf = 0;
3139 	}
3140 
3141 out:
3142 	/* Make all data has been write before submit */
3143 	if (unused_count > 0)
3144 		hns3_nic_alloc_rx_buffers(ring, unused_count);
3145 
3146 	return recv_pkts;
3147 }
3148 
3149 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3150 {
3151 #define HNS3_RX_LOW_BYTE_RATE 10000
3152 #define HNS3_RX_MID_BYTE_RATE 20000
3153 #define HNS3_RX_ULTRA_PACKET_RATE 40
3154 
3155 	enum hns3_flow_level_range new_flow_level;
3156 	struct hns3_enet_tqp_vector *tqp_vector;
3157 	int packets_per_msecs, bytes_per_msecs;
3158 	u32 time_passed_ms;
3159 
3160 	tqp_vector = ring_group->ring->tqp_vector;
3161 	time_passed_ms =
3162 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3163 	if (!time_passed_ms)
3164 		return false;
3165 
3166 	do_div(ring_group->total_packets, time_passed_ms);
3167 	packets_per_msecs = ring_group->total_packets;
3168 
3169 	do_div(ring_group->total_bytes, time_passed_ms);
3170 	bytes_per_msecs = ring_group->total_bytes;
3171 
3172 	new_flow_level = ring_group->coal.flow_level;
3173 
3174 	/* Simple throttlerate management
3175 	 * 0-10MB/s   lower     (50000 ints/s)
3176 	 * 10-20MB/s   middle    (20000 ints/s)
3177 	 * 20-1249MB/s high      (18000 ints/s)
3178 	 * > 40000pps  ultra     (8000 ints/s)
3179 	 */
3180 	switch (new_flow_level) {
3181 	case HNS3_FLOW_LOW:
3182 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3183 			new_flow_level = HNS3_FLOW_MID;
3184 		break;
3185 	case HNS3_FLOW_MID:
3186 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3187 			new_flow_level = HNS3_FLOW_HIGH;
3188 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3189 			new_flow_level = HNS3_FLOW_LOW;
3190 		break;
3191 	case HNS3_FLOW_HIGH:
3192 	case HNS3_FLOW_ULTRA:
3193 	default:
3194 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3195 			new_flow_level = HNS3_FLOW_MID;
3196 		break;
3197 	}
3198 
3199 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3200 	    &tqp_vector->rx_group == ring_group)
3201 		new_flow_level = HNS3_FLOW_ULTRA;
3202 
3203 	ring_group->total_bytes = 0;
3204 	ring_group->total_packets = 0;
3205 	ring_group->coal.flow_level = new_flow_level;
3206 
3207 	return true;
3208 }
3209 
3210 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3211 {
3212 	struct hns3_enet_tqp_vector *tqp_vector;
3213 	u16 new_int_gl;
3214 
3215 	if (!ring_group->ring)
3216 		return false;
3217 
3218 	tqp_vector = ring_group->ring->tqp_vector;
3219 	if (!tqp_vector->last_jiffies)
3220 		return false;
3221 
3222 	if (ring_group->total_packets == 0) {
3223 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
3224 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
3225 		return true;
3226 	}
3227 
3228 	if (!hns3_get_new_flow_lvl(ring_group))
3229 		return false;
3230 
3231 	new_int_gl = ring_group->coal.int_gl;
3232 	switch (ring_group->coal.flow_level) {
3233 	case HNS3_FLOW_LOW:
3234 		new_int_gl = HNS3_INT_GL_50K;
3235 		break;
3236 	case HNS3_FLOW_MID:
3237 		new_int_gl = HNS3_INT_GL_20K;
3238 		break;
3239 	case HNS3_FLOW_HIGH:
3240 		new_int_gl = HNS3_INT_GL_18K;
3241 		break;
3242 	case HNS3_FLOW_ULTRA:
3243 		new_int_gl = HNS3_INT_GL_8K;
3244 		break;
3245 	default:
3246 		break;
3247 	}
3248 
3249 	if (new_int_gl != ring_group->coal.int_gl) {
3250 		ring_group->coal.int_gl = new_int_gl;
3251 		return true;
3252 	}
3253 	return false;
3254 }
3255 
3256 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3257 {
3258 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3259 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3260 	bool rx_update, tx_update;
3261 
3262 	/* update param every 1000ms */
3263 	if (time_before(jiffies,
3264 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3265 		return;
3266 
3267 	if (rx_group->coal.gl_adapt_enable) {
3268 		rx_update = hns3_get_new_int_gl(rx_group);
3269 		if (rx_update)
3270 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3271 						       rx_group->coal.int_gl);
3272 	}
3273 
3274 	if (tx_group->coal.gl_adapt_enable) {
3275 		tx_update = hns3_get_new_int_gl(tx_group);
3276 		if (tx_update)
3277 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3278 						       tx_group->coal.int_gl);
3279 	}
3280 
3281 	tqp_vector->last_jiffies = jiffies;
3282 }
3283 
3284 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3285 {
3286 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3287 	struct hns3_enet_ring *ring;
3288 	int rx_pkt_total = 0;
3289 
3290 	struct hns3_enet_tqp_vector *tqp_vector =
3291 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3292 	bool clean_complete = true;
3293 	int rx_budget = budget;
3294 
3295 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3296 		napi_complete(napi);
3297 		return 0;
3298 	}
3299 
3300 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3301 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3302 	 */
3303 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3304 		hns3_clean_tx_ring(ring);
3305 
3306 	/* make sure rx ring budget not smaller than 1 */
3307 	if (tqp_vector->num_tqps > 1)
3308 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3309 
3310 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3311 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3312 						    hns3_rx_skb);
3313 
3314 		if (rx_cleaned >= rx_budget)
3315 			clean_complete = false;
3316 
3317 		rx_pkt_total += rx_cleaned;
3318 	}
3319 
3320 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3321 
3322 	if (!clean_complete)
3323 		return budget;
3324 
3325 	if (napi_complete(napi) &&
3326 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3327 		hns3_update_new_int_gl(tqp_vector);
3328 		hns3_mask_vector_irq(tqp_vector, 1);
3329 	}
3330 
3331 	return rx_pkt_total;
3332 }
3333 
3334 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3335 				      struct hnae3_ring_chain_node *head)
3336 {
3337 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3338 	struct hnae3_ring_chain_node *cur_chain = head;
3339 	struct hnae3_ring_chain_node *chain;
3340 	struct hns3_enet_ring *tx_ring;
3341 	struct hns3_enet_ring *rx_ring;
3342 
3343 	tx_ring = tqp_vector->tx_group.ring;
3344 	if (tx_ring) {
3345 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3346 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3347 			      HNAE3_RING_TYPE_TX);
3348 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3349 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3350 
3351 		cur_chain->next = NULL;
3352 
3353 		while (tx_ring->next) {
3354 			tx_ring = tx_ring->next;
3355 
3356 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3357 					     GFP_KERNEL);
3358 			if (!chain)
3359 				goto err_free_chain;
3360 
3361 			cur_chain->next = chain;
3362 			chain->tqp_index = tx_ring->tqp->tqp_index;
3363 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3364 				      HNAE3_RING_TYPE_TX);
3365 			hnae3_set_field(chain->int_gl_idx,
3366 					HNAE3_RING_GL_IDX_M,
3367 					HNAE3_RING_GL_IDX_S,
3368 					HNAE3_RING_GL_TX);
3369 
3370 			cur_chain = chain;
3371 		}
3372 	}
3373 
3374 	rx_ring = tqp_vector->rx_group.ring;
3375 	if (!tx_ring && rx_ring) {
3376 		cur_chain->next = NULL;
3377 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3378 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3379 			      HNAE3_RING_TYPE_RX);
3380 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3381 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3382 
3383 		rx_ring = rx_ring->next;
3384 	}
3385 
3386 	while (rx_ring) {
3387 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3388 		if (!chain)
3389 			goto err_free_chain;
3390 
3391 		cur_chain->next = chain;
3392 		chain->tqp_index = rx_ring->tqp->tqp_index;
3393 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3394 			      HNAE3_RING_TYPE_RX);
3395 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3396 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3397 
3398 		cur_chain = chain;
3399 
3400 		rx_ring = rx_ring->next;
3401 	}
3402 
3403 	return 0;
3404 
3405 err_free_chain:
3406 	cur_chain = head->next;
3407 	while (cur_chain) {
3408 		chain = cur_chain->next;
3409 		devm_kfree(&pdev->dev, cur_chain);
3410 		cur_chain = chain;
3411 	}
3412 	head->next = NULL;
3413 
3414 	return -ENOMEM;
3415 }
3416 
3417 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3418 					struct hnae3_ring_chain_node *head)
3419 {
3420 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3421 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3422 
3423 	chain = head->next;
3424 
3425 	while (chain) {
3426 		chain_tmp = chain->next;
3427 		devm_kfree(&pdev->dev, chain);
3428 		chain = chain_tmp;
3429 	}
3430 }
3431 
3432 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3433 				   struct hns3_enet_ring *ring)
3434 {
3435 	ring->next = group->ring;
3436 	group->ring = ring;
3437 
3438 	group->count++;
3439 }
3440 
3441 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3442 {
3443 	struct pci_dev *pdev = priv->ae_handle->pdev;
3444 	struct hns3_enet_tqp_vector *tqp_vector;
3445 	int num_vectors = priv->vector_num;
3446 	int numa_node;
3447 	int vector_i;
3448 
3449 	numa_node = dev_to_node(&pdev->dev);
3450 
3451 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3452 		tqp_vector = &priv->tqp_vector[vector_i];
3453 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3454 				&tqp_vector->affinity_mask);
3455 	}
3456 }
3457 
3458 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3459 {
3460 	struct hnae3_ring_chain_node vector_ring_chain;
3461 	struct hnae3_handle *h = priv->ae_handle;
3462 	struct hns3_enet_tqp_vector *tqp_vector;
3463 	int ret = 0;
3464 	int i;
3465 
3466 	hns3_nic_set_cpumask(priv);
3467 
3468 	for (i = 0; i < priv->vector_num; i++) {
3469 		tqp_vector = &priv->tqp_vector[i];
3470 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3471 		tqp_vector->num_tqps = 0;
3472 	}
3473 
3474 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3475 		u16 vector_i = i % priv->vector_num;
3476 		u16 tqp_num = h->kinfo.num_tqps;
3477 
3478 		tqp_vector = &priv->tqp_vector[vector_i];
3479 
3480 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3481 				       &priv->ring[i]);
3482 
3483 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3484 				       &priv->ring[i + tqp_num]);
3485 
3486 		priv->ring[i].tqp_vector = tqp_vector;
3487 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3488 		tqp_vector->num_tqps++;
3489 	}
3490 
3491 	for (i = 0; i < priv->vector_num; i++) {
3492 		tqp_vector = &priv->tqp_vector[i];
3493 
3494 		tqp_vector->rx_group.total_bytes = 0;
3495 		tqp_vector->rx_group.total_packets = 0;
3496 		tqp_vector->tx_group.total_bytes = 0;
3497 		tqp_vector->tx_group.total_packets = 0;
3498 		tqp_vector->handle = h;
3499 
3500 		ret = hns3_get_vector_ring_chain(tqp_vector,
3501 						 &vector_ring_chain);
3502 		if (ret)
3503 			goto map_ring_fail;
3504 
3505 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3506 			tqp_vector->vector_irq, &vector_ring_chain);
3507 
3508 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3509 
3510 		if (ret)
3511 			goto map_ring_fail;
3512 
3513 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3514 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3515 	}
3516 
3517 	return 0;
3518 
3519 map_ring_fail:
3520 	while (i--)
3521 		netif_napi_del(&priv->tqp_vector[i].napi);
3522 
3523 	return ret;
3524 }
3525 
3526 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3527 {
3528 #define HNS3_VECTOR_PF_MAX_NUM		64
3529 
3530 	struct hnae3_handle *h = priv->ae_handle;
3531 	struct hns3_enet_tqp_vector *tqp_vector;
3532 	struct hnae3_vector_info *vector;
3533 	struct pci_dev *pdev = h->pdev;
3534 	u16 tqp_num = h->kinfo.num_tqps;
3535 	u16 vector_num;
3536 	int ret = 0;
3537 	u16 i;
3538 
3539 	/* RSS size, cpu online and vector_num should be the same */
3540 	/* Should consider 2p/4p later */
3541 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3542 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3543 
3544 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3545 			      GFP_KERNEL);
3546 	if (!vector)
3547 		return -ENOMEM;
3548 
3549 	/* save the actual available vector number */
3550 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3551 
3552 	priv->vector_num = vector_num;
3553 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3554 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3555 			     GFP_KERNEL);
3556 	if (!priv->tqp_vector) {
3557 		ret = -ENOMEM;
3558 		goto out;
3559 	}
3560 
3561 	for (i = 0; i < priv->vector_num; i++) {
3562 		tqp_vector = &priv->tqp_vector[i];
3563 		tqp_vector->idx = i;
3564 		tqp_vector->mask_addr = vector[i].io_addr;
3565 		tqp_vector->vector_irq = vector[i].vector;
3566 		hns3_vector_gl_rl_init(tqp_vector, priv);
3567 	}
3568 
3569 out:
3570 	devm_kfree(&pdev->dev, vector);
3571 	return ret;
3572 }
3573 
3574 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3575 {
3576 	group->ring = NULL;
3577 	group->count = 0;
3578 }
3579 
3580 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3581 {
3582 	struct hnae3_ring_chain_node vector_ring_chain;
3583 	struct hnae3_handle *h = priv->ae_handle;
3584 	struct hns3_enet_tqp_vector *tqp_vector;
3585 	int i;
3586 
3587 	for (i = 0; i < priv->vector_num; i++) {
3588 		tqp_vector = &priv->tqp_vector[i];
3589 
3590 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3591 			continue;
3592 
3593 		hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3594 
3595 		h->ae_algo->ops->unmap_ring_from_vector(h,
3596 			tqp_vector->vector_irq, &vector_ring_chain);
3597 
3598 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3599 
3600 		if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
3601 			irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
3602 			free_irq(tqp_vector->vector_irq, tqp_vector);
3603 			tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3604 		}
3605 
3606 		hns3_clear_ring_group(&tqp_vector->rx_group);
3607 		hns3_clear_ring_group(&tqp_vector->tx_group);
3608 		netif_napi_del(&priv->tqp_vector[i].napi);
3609 	}
3610 }
3611 
3612 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3613 {
3614 	struct hnae3_handle *h = priv->ae_handle;
3615 	struct pci_dev *pdev = h->pdev;
3616 	int i, ret;
3617 
3618 	for (i = 0; i < priv->vector_num; i++) {
3619 		struct hns3_enet_tqp_vector *tqp_vector;
3620 
3621 		tqp_vector = &priv->tqp_vector[i];
3622 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3623 		if (ret)
3624 			return ret;
3625 	}
3626 
3627 	devm_kfree(&pdev->dev, priv->tqp_vector);
3628 	return 0;
3629 }
3630 
3631 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3632 			      unsigned int ring_type)
3633 {
3634 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3635 	struct hns3_enet_ring *ring;
3636 	int desc_num;
3637 
3638 	if (ring_type == HNAE3_RING_TYPE_TX) {
3639 		ring = &priv->ring[q->tqp_index];
3640 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3641 		ring->queue_index = q->tqp_index;
3642 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3643 	} else {
3644 		ring = &priv->ring[q->tqp_index + queue_num];
3645 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3646 		ring->queue_index = q->tqp_index;
3647 		ring->io_base = q->io_base;
3648 	}
3649 
3650 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3651 
3652 	ring->tqp = q;
3653 	ring->desc = NULL;
3654 	ring->desc_cb = NULL;
3655 	ring->dev = priv->dev;
3656 	ring->desc_dma_addr = 0;
3657 	ring->buf_size = q->buf_size;
3658 	ring->desc_num = desc_num;
3659 	ring->next_to_use = 0;
3660 	ring->next_to_clean = 0;
3661 }
3662 
3663 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3664 			       struct hns3_nic_priv *priv)
3665 {
3666 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3667 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3668 }
3669 
3670 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3671 {
3672 	struct hnae3_handle *h = priv->ae_handle;
3673 	struct pci_dev *pdev = h->pdev;
3674 	int i;
3675 
3676 	priv->ring = devm_kzalloc(&pdev->dev,
3677 				  array3_size(h->kinfo.num_tqps,
3678 					      sizeof(*priv->ring), 2),
3679 				  GFP_KERNEL);
3680 	if (!priv->ring)
3681 		return -ENOMEM;
3682 
3683 	for (i = 0; i < h->kinfo.num_tqps; i++)
3684 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3685 
3686 	return 0;
3687 }
3688 
3689 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3690 {
3691 	if (!priv->ring)
3692 		return;
3693 
3694 	devm_kfree(priv->dev, priv->ring);
3695 	priv->ring = NULL;
3696 }
3697 
3698 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3699 {
3700 	int ret;
3701 
3702 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3703 		return -EINVAL;
3704 
3705 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3706 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3707 	if (!ring->desc_cb) {
3708 		ret = -ENOMEM;
3709 		goto out;
3710 	}
3711 
3712 	ret = hns3_alloc_desc(ring);
3713 	if (ret)
3714 		goto out_with_desc_cb;
3715 
3716 	if (!HNAE3_IS_TX_RING(ring)) {
3717 		ret = hns3_alloc_ring_buffers(ring);
3718 		if (ret)
3719 			goto out_with_desc;
3720 	}
3721 
3722 	return 0;
3723 
3724 out_with_desc:
3725 	hns3_free_desc(ring);
3726 out_with_desc_cb:
3727 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3728 	ring->desc_cb = NULL;
3729 out:
3730 	return ret;
3731 }
3732 
3733 void hns3_fini_ring(struct hns3_enet_ring *ring)
3734 {
3735 	hns3_free_desc(ring);
3736 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3737 	ring->desc_cb = NULL;
3738 	ring->next_to_clean = 0;
3739 	ring->next_to_use = 0;
3740 	ring->pending_buf = 0;
3741 	if (ring->skb) {
3742 		dev_kfree_skb_any(ring->skb);
3743 		ring->skb = NULL;
3744 	}
3745 }
3746 
3747 static int hns3_buf_size2type(u32 buf_size)
3748 {
3749 	int bd_size_type;
3750 
3751 	switch (buf_size) {
3752 	case 512:
3753 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3754 		break;
3755 	case 1024:
3756 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3757 		break;
3758 	case 2048:
3759 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3760 		break;
3761 	case 4096:
3762 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3763 		break;
3764 	default:
3765 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3766 	}
3767 
3768 	return bd_size_type;
3769 }
3770 
3771 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3772 {
3773 	dma_addr_t dma = ring->desc_dma_addr;
3774 	struct hnae3_queue *q = ring->tqp;
3775 
3776 	if (!HNAE3_IS_TX_RING(ring)) {
3777 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3778 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3779 			       (u32)((dma >> 31) >> 1));
3780 
3781 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3782 			       hns3_buf_size2type(ring->buf_size));
3783 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3784 			       ring->desc_num / 8 - 1);
3785 
3786 	} else {
3787 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3788 			       (u32)dma);
3789 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3790 			       (u32)((dma >> 31) >> 1));
3791 
3792 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3793 			       ring->desc_num / 8 - 1);
3794 	}
3795 }
3796 
3797 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3798 {
3799 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3800 	int i;
3801 
3802 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3803 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3804 		int j;
3805 
3806 		if (!tc_info->enable)
3807 			continue;
3808 
3809 		for (j = 0; j < tc_info->tqp_count; j++) {
3810 			struct hnae3_queue *q;
3811 
3812 			q = priv->ring[tc_info->tqp_offset + j].tqp;
3813 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3814 				       tc_info->tc);
3815 		}
3816 	}
3817 }
3818 
3819 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3820 {
3821 	struct hnae3_handle *h = priv->ae_handle;
3822 	int ring_num = h->kinfo.num_tqps * 2;
3823 	int i, j;
3824 	int ret;
3825 
3826 	for (i = 0; i < ring_num; i++) {
3827 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
3828 		if (ret) {
3829 			dev_err(priv->dev,
3830 				"Alloc ring memory fail! ret=%d\n", ret);
3831 			goto out_when_alloc_ring_memory;
3832 		}
3833 
3834 		u64_stats_init(&priv->ring[i].syncp);
3835 	}
3836 
3837 	return 0;
3838 
3839 out_when_alloc_ring_memory:
3840 	for (j = i - 1; j >= 0; j--)
3841 		hns3_fini_ring(&priv->ring[j]);
3842 
3843 	return -ENOMEM;
3844 }
3845 
3846 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3847 {
3848 	struct hnae3_handle *h = priv->ae_handle;
3849 	int i;
3850 
3851 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3852 		hns3_fini_ring(&priv->ring[i]);
3853 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
3854 	}
3855 	return 0;
3856 }
3857 
3858 /* Set mac addr if it is configured. or leave it to the AE driver */
3859 static int hns3_init_mac_addr(struct net_device *netdev)
3860 {
3861 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3862 	struct hnae3_handle *h = priv->ae_handle;
3863 	u8 mac_addr_temp[ETH_ALEN];
3864 	int ret = 0;
3865 
3866 	if (h->ae_algo->ops->get_mac_addr)
3867 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3868 
3869 	/* Check if the MAC address is valid, if not get a random one */
3870 	if (!is_valid_ether_addr(mac_addr_temp)) {
3871 		eth_hw_addr_random(netdev);
3872 		dev_warn(priv->dev, "using random MAC address %pM\n",
3873 			 netdev->dev_addr);
3874 	} else {
3875 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3876 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
3877 	}
3878 
3879 	if (h->ae_algo->ops->set_mac_addr)
3880 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3881 
3882 	return ret;
3883 }
3884 
3885 static int hns3_init_phy(struct net_device *netdev)
3886 {
3887 	struct hnae3_handle *h = hns3_get_handle(netdev);
3888 	int ret = 0;
3889 
3890 	if (h->ae_algo->ops->mac_connect_phy)
3891 		ret = h->ae_algo->ops->mac_connect_phy(h);
3892 
3893 	return ret;
3894 }
3895 
3896 static void hns3_uninit_phy(struct net_device *netdev)
3897 {
3898 	struct hnae3_handle *h = hns3_get_handle(netdev);
3899 
3900 	if (h->ae_algo->ops->mac_disconnect_phy)
3901 		h->ae_algo->ops->mac_disconnect_phy(h);
3902 }
3903 
3904 static int hns3_restore_fd_rules(struct net_device *netdev)
3905 {
3906 	struct hnae3_handle *h = hns3_get_handle(netdev);
3907 	int ret = 0;
3908 
3909 	if (h->ae_algo->ops->restore_fd_rules)
3910 		ret = h->ae_algo->ops->restore_fd_rules(h);
3911 
3912 	return ret;
3913 }
3914 
3915 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3916 {
3917 	struct hnae3_handle *h = hns3_get_handle(netdev);
3918 
3919 	if (h->ae_algo->ops->del_all_fd_entries)
3920 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3921 }
3922 
3923 static int hns3_client_start(struct hnae3_handle *handle)
3924 {
3925 	if (!handle->ae_algo->ops->client_start)
3926 		return 0;
3927 
3928 	return handle->ae_algo->ops->client_start(handle);
3929 }
3930 
3931 static void hns3_client_stop(struct hnae3_handle *handle)
3932 {
3933 	if (!handle->ae_algo->ops->client_stop)
3934 		return;
3935 
3936 	handle->ae_algo->ops->client_stop(handle);
3937 }
3938 
3939 static void hns3_info_show(struct hns3_nic_priv *priv)
3940 {
3941 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3942 
3943 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
3944 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
3945 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
3946 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
3947 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
3948 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
3949 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
3950 	dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->num_tc);
3951 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
3952 }
3953 
3954 static int hns3_client_init(struct hnae3_handle *handle)
3955 {
3956 	struct pci_dev *pdev = handle->pdev;
3957 	u16 alloc_tqps, max_rss_size;
3958 	struct hns3_nic_priv *priv;
3959 	struct net_device *netdev;
3960 	int ret;
3961 
3962 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3963 						    &max_rss_size);
3964 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3965 	if (!netdev)
3966 		return -ENOMEM;
3967 
3968 	priv = netdev_priv(netdev);
3969 	priv->dev = &pdev->dev;
3970 	priv->netdev = netdev;
3971 	priv->ae_handle = handle;
3972 	priv->tx_timeout_count = 0;
3973 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3974 
3975 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
3976 
3977 	handle->kinfo.netdev = netdev;
3978 	handle->priv = (void *)priv;
3979 
3980 	hns3_init_mac_addr(netdev);
3981 
3982 	hns3_set_default_feature(netdev);
3983 
3984 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3985 	netdev->priv_flags |= IFF_UNICAST_FLT;
3986 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3987 	SET_NETDEV_DEV(netdev, &pdev->dev);
3988 	hns3_ethtool_set_ops(netdev);
3989 
3990 	/* Carrier off reporting is important to ethtool even BEFORE open */
3991 	netif_carrier_off(netdev);
3992 
3993 	ret = hns3_get_ring_config(priv);
3994 	if (ret) {
3995 		ret = -ENOMEM;
3996 		goto out_get_ring_cfg;
3997 	}
3998 
3999 	ret = hns3_nic_alloc_vector_data(priv);
4000 	if (ret) {
4001 		ret = -ENOMEM;
4002 		goto out_alloc_vector_data;
4003 	}
4004 
4005 	ret = hns3_nic_init_vector_data(priv);
4006 	if (ret) {
4007 		ret = -ENOMEM;
4008 		goto out_init_vector_data;
4009 	}
4010 
4011 	ret = hns3_init_all_ring(priv);
4012 	if (ret) {
4013 		ret = -ENOMEM;
4014 		goto out_init_ring;
4015 	}
4016 
4017 	ret = hns3_init_phy(netdev);
4018 	if (ret)
4019 		goto out_init_phy;
4020 
4021 	ret = register_netdev(netdev);
4022 	if (ret) {
4023 		dev_err(priv->dev, "probe register netdev fail!\n");
4024 		goto out_reg_netdev_fail;
4025 	}
4026 
4027 	ret = hns3_client_start(handle);
4028 	if (ret) {
4029 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4030 		goto out_client_start;
4031 	}
4032 
4033 	hns3_dcbnl_setup(handle);
4034 
4035 	hns3_dbg_init(handle);
4036 
4037 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4038 	netdev->max_mtu = HNS3_MAX_MTU;
4039 
4040 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4041 
4042 	if (netif_msg_drv(handle))
4043 		hns3_info_show(priv);
4044 
4045 	return ret;
4046 
4047 out_client_start:
4048 	unregister_netdev(netdev);
4049 out_reg_netdev_fail:
4050 	hns3_uninit_phy(netdev);
4051 out_init_phy:
4052 	hns3_uninit_all_ring(priv);
4053 out_init_ring:
4054 	hns3_nic_uninit_vector_data(priv);
4055 out_init_vector_data:
4056 	hns3_nic_dealloc_vector_data(priv);
4057 out_alloc_vector_data:
4058 	priv->ring = NULL;
4059 out_get_ring_cfg:
4060 	priv->ae_handle = NULL;
4061 	free_netdev(netdev);
4062 	return ret;
4063 }
4064 
4065 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4066 {
4067 	struct net_device *netdev = handle->kinfo.netdev;
4068 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4069 	int ret;
4070 
4071 	hns3_remove_hw_addr(netdev);
4072 
4073 	if (netdev->reg_state != NETREG_UNINITIALIZED)
4074 		unregister_netdev(netdev);
4075 
4076 	hns3_client_stop(handle);
4077 
4078 	hns3_uninit_phy(netdev);
4079 
4080 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4081 		netdev_warn(netdev, "already uninitialized\n");
4082 		goto out_netdev_free;
4083 	}
4084 
4085 	hns3_del_all_fd_rules(netdev, true);
4086 
4087 	hns3_clear_all_ring(handle, true);
4088 
4089 	hns3_nic_uninit_vector_data(priv);
4090 
4091 	ret = hns3_nic_dealloc_vector_data(priv);
4092 	if (ret)
4093 		netdev_err(netdev, "dealloc vector error\n");
4094 
4095 	ret = hns3_uninit_all_ring(priv);
4096 	if (ret)
4097 		netdev_err(netdev, "uninit ring error\n");
4098 
4099 	hns3_put_ring_config(priv);
4100 
4101 	hns3_dbg_uninit(handle);
4102 
4103 out_netdev_free:
4104 	free_netdev(netdev);
4105 }
4106 
4107 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4108 {
4109 	struct net_device *netdev = handle->kinfo.netdev;
4110 
4111 	if (!netdev)
4112 		return;
4113 
4114 	if (linkup) {
4115 		netif_carrier_on(netdev);
4116 		netif_tx_wake_all_queues(netdev);
4117 		if (netif_msg_link(handle))
4118 			netdev_info(netdev, "link up\n");
4119 	} else {
4120 		netif_carrier_off(netdev);
4121 		netif_tx_stop_all_queues(netdev);
4122 		if (netif_msg_link(handle))
4123 			netdev_info(netdev, "link down\n");
4124 	}
4125 }
4126 
4127 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4128 {
4129 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4130 	struct net_device *ndev = kinfo->netdev;
4131 
4132 	if (tc > HNAE3_MAX_TC)
4133 		return -EINVAL;
4134 
4135 	if (!ndev)
4136 		return -ENODEV;
4137 
4138 	return hns3_nic_set_real_num_queue(ndev);
4139 }
4140 
4141 static int hns3_recover_hw_addr(struct net_device *ndev)
4142 {
4143 	struct netdev_hw_addr_list *list;
4144 	struct netdev_hw_addr *ha, *tmp;
4145 	int ret = 0;
4146 
4147 	netif_addr_lock_bh(ndev);
4148 	/* go through and sync uc_addr entries to the device */
4149 	list = &ndev->uc;
4150 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
4151 		ret = hns3_nic_uc_sync(ndev, ha->addr);
4152 		if (ret)
4153 			goto out;
4154 	}
4155 
4156 	/* go through and sync mc_addr entries to the device */
4157 	list = &ndev->mc;
4158 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
4159 		ret = hns3_nic_mc_sync(ndev, ha->addr);
4160 		if (ret)
4161 			goto out;
4162 	}
4163 
4164 out:
4165 	netif_addr_unlock_bh(ndev);
4166 	return ret;
4167 }
4168 
4169 static void hns3_remove_hw_addr(struct net_device *netdev)
4170 {
4171 	struct netdev_hw_addr_list *list;
4172 	struct netdev_hw_addr *ha, *tmp;
4173 
4174 	hns3_nic_uc_unsync(netdev, netdev->dev_addr);
4175 
4176 	netif_addr_lock_bh(netdev);
4177 	/* go through and unsync uc_addr entries to the device */
4178 	list = &netdev->uc;
4179 	list_for_each_entry_safe(ha, tmp, &list->list, list)
4180 		hns3_nic_uc_unsync(netdev, ha->addr);
4181 
4182 	/* go through and unsync mc_addr entries to the device */
4183 	list = &netdev->mc;
4184 	list_for_each_entry_safe(ha, tmp, &list->list, list)
4185 		if (ha->refcount > 1)
4186 			hns3_nic_mc_unsync(netdev, ha->addr);
4187 
4188 	netif_addr_unlock_bh(netdev);
4189 }
4190 
4191 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4192 {
4193 	while (ring->next_to_clean != ring->next_to_use) {
4194 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4195 		hns3_free_buffer_detach(ring, ring->next_to_clean);
4196 		ring_ptr_move_fw(ring, next_to_clean);
4197 	}
4198 }
4199 
4200 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4201 {
4202 	struct hns3_desc_cb res_cbs;
4203 	int ret;
4204 
4205 	while (ring->next_to_use != ring->next_to_clean) {
4206 		/* When a buffer is not reused, it's memory has been
4207 		 * freed in hns3_handle_rx_bd or will be freed by
4208 		 * stack, so we need to replace the buffer here.
4209 		 */
4210 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4211 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
4212 			if (ret) {
4213 				u64_stats_update_begin(&ring->syncp);
4214 				ring->stats.sw_err_cnt++;
4215 				u64_stats_update_end(&ring->syncp);
4216 				/* if alloc new buffer fail, exit directly
4217 				 * and reclear in up flow.
4218 				 */
4219 				netdev_warn(ring_to_netdev(ring),
4220 					    "reserve buffer map failed, ret = %d\n",
4221 					    ret);
4222 				return ret;
4223 			}
4224 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4225 		}
4226 		ring_ptr_move_fw(ring, next_to_use);
4227 	}
4228 
4229 	/* Free the pending skb in rx ring */
4230 	if (ring->skb) {
4231 		dev_kfree_skb_any(ring->skb);
4232 		ring->skb = NULL;
4233 		ring->pending_buf = 0;
4234 	}
4235 
4236 	return 0;
4237 }
4238 
4239 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4240 {
4241 	while (ring->next_to_use != ring->next_to_clean) {
4242 		/* When a buffer is not reused, it's memory has been
4243 		 * freed in hns3_handle_rx_bd or will be freed by
4244 		 * stack, so only need to unmap the buffer here.
4245 		 */
4246 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4247 			hns3_unmap_buffer(ring,
4248 					  &ring->desc_cb[ring->next_to_use]);
4249 			ring->desc_cb[ring->next_to_use].dma = 0;
4250 		}
4251 
4252 		ring_ptr_move_fw(ring, next_to_use);
4253 	}
4254 }
4255 
4256 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4257 {
4258 	struct net_device *ndev = h->kinfo.netdev;
4259 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4260 	u32 i;
4261 
4262 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4263 		struct hns3_enet_ring *ring;
4264 
4265 		ring = &priv->ring[i];
4266 		hns3_clear_tx_ring(ring);
4267 
4268 		ring = &priv->ring[i + h->kinfo.num_tqps];
4269 		/* Continue to clear other rings even if clearing some
4270 		 * rings failed.
4271 		 */
4272 		if (force)
4273 			hns3_force_clear_rx_ring(ring);
4274 		else
4275 			hns3_clear_rx_ring(ring);
4276 	}
4277 }
4278 
4279 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4280 {
4281 	struct net_device *ndev = h->kinfo.netdev;
4282 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4283 	struct hns3_enet_ring *rx_ring;
4284 	int i, j;
4285 	int ret;
4286 
4287 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4288 		ret = h->ae_algo->ops->reset_queue(h, i);
4289 		if (ret)
4290 			return ret;
4291 
4292 		hns3_init_ring_hw(&priv->ring[i]);
4293 
4294 		/* We need to clear tx ring here because self test will
4295 		 * use the ring and will not run down before up
4296 		 */
4297 		hns3_clear_tx_ring(&priv->ring[i]);
4298 		priv->ring[i].next_to_clean = 0;
4299 		priv->ring[i].next_to_use = 0;
4300 
4301 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4302 		hns3_init_ring_hw(rx_ring);
4303 		ret = hns3_clear_rx_ring(rx_ring);
4304 		if (ret)
4305 			return ret;
4306 
4307 		/* We can not know the hardware head and tail when this
4308 		 * function is called in reset flow, so we reuse all desc.
4309 		 */
4310 		for (j = 0; j < rx_ring->desc_num; j++)
4311 			hns3_reuse_buffer(rx_ring, j);
4312 
4313 		rx_ring->next_to_clean = 0;
4314 		rx_ring->next_to_use = 0;
4315 	}
4316 
4317 	hns3_init_tx_ring_tc(priv);
4318 
4319 	return 0;
4320 }
4321 
4322 static void hns3_store_coal(struct hns3_nic_priv *priv)
4323 {
4324 	/* ethtool only support setting and querying one coal
4325 	 * configuration for now, so save the vector 0' coal
4326 	 * configuration here in order to restore it.
4327 	 */
4328 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4329 	       sizeof(struct hns3_enet_coalesce));
4330 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4331 	       sizeof(struct hns3_enet_coalesce));
4332 }
4333 
4334 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4335 {
4336 	u16 vector_num = priv->vector_num;
4337 	int i;
4338 
4339 	for (i = 0; i < vector_num; i++) {
4340 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4341 		       sizeof(struct hns3_enet_coalesce));
4342 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4343 		       sizeof(struct hns3_enet_coalesce));
4344 	}
4345 }
4346 
4347 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4348 {
4349 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4350 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4351 	struct net_device *ndev = kinfo->netdev;
4352 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4353 
4354 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4355 		return 0;
4356 
4357 	/* it is cumbersome for hardware to pick-and-choose entries for deletion
4358 	 * from table space. Hence, for function reset software intervention is
4359 	 * required to delete the entries
4360 	 */
4361 	if (hns3_dev_ongoing_func_reset(ae_dev)) {
4362 		hns3_remove_hw_addr(ndev);
4363 		hns3_del_all_fd_rules(ndev, false);
4364 	}
4365 
4366 	if (!netif_running(ndev))
4367 		return 0;
4368 
4369 	return hns3_nic_net_stop(ndev);
4370 }
4371 
4372 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4373 {
4374 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4375 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4376 	int ret = 0;
4377 
4378 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4379 
4380 	if (netif_running(kinfo->netdev)) {
4381 		ret = hns3_nic_net_open(kinfo->netdev);
4382 		if (ret) {
4383 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4384 			netdev_err(kinfo->netdev,
4385 				   "net up fail, ret=%d!\n", ret);
4386 			return ret;
4387 		}
4388 	}
4389 
4390 	return ret;
4391 }
4392 
4393 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4394 {
4395 	struct net_device *netdev = handle->kinfo.netdev;
4396 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4397 	int ret;
4398 
4399 	/* Carrier off reporting is important to ethtool even BEFORE open */
4400 	netif_carrier_off(netdev);
4401 
4402 	ret = hns3_get_ring_config(priv);
4403 	if (ret)
4404 		return ret;
4405 
4406 	ret = hns3_nic_alloc_vector_data(priv);
4407 	if (ret)
4408 		goto err_put_ring;
4409 
4410 	hns3_restore_coal(priv);
4411 
4412 	ret = hns3_nic_init_vector_data(priv);
4413 	if (ret)
4414 		goto err_dealloc_vector;
4415 
4416 	ret = hns3_init_all_ring(priv);
4417 	if (ret)
4418 		goto err_uninit_vector;
4419 
4420 	ret = hns3_client_start(handle);
4421 	if (ret) {
4422 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4423 		goto err_uninit_ring;
4424 	}
4425 
4426 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4427 
4428 	return ret;
4429 
4430 err_uninit_ring:
4431 	hns3_uninit_all_ring(priv);
4432 err_uninit_vector:
4433 	hns3_nic_uninit_vector_data(priv);
4434 err_dealloc_vector:
4435 	hns3_nic_dealloc_vector_data(priv);
4436 err_put_ring:
4437 	hns3_put_ring_config(priv);
4438 
4439 	return ret;
4440 }
4441 
4442 static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
4443 {
4444 	struct net_device *netdev = handle->kinfo.netdev;
4445 	bool vlan_filter_enable;
4446 	int ret;
4447 
4448 	ret = hns3_init_mac_addr(netdev);
4449 	if (ret)
4450 		return ret;
4451 
4452 	ret = hns3_recover_hw_addr(netdev);
4453 	if (ret)
4454 		return ret;
4455 
4456 	ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4457 	if (ret)
4458 		return ret;
4459 
4460 	vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4461 	hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4462 
4463 	if (handle->ae_algo->ops->restore_vlan_table)
4464 		handle->ae_algo->ops->restore_vlan_table(handle);
4465 
4466 	return hns3_restore_fd_rules(netdev);
4467 }
4468 
4469 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4470 {
4471 	struct net_device *netdev = handle->kinfo.netdev;
4472 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4473 	int ret;
4474 
4475 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4476 		netdev_warn(netdev, "already uninitialized\n");
4477 		return 0;
4478 	}
4479 
4480 	hns3_clear_all_ring(handle, true);
4481 	hns3_reset_tx_queue(priv->ae_handle);
4482 
4483 	hns3_nic_uninit_vector_data(priv);
4484 
4485 	hns3_store_coal(priv);
4486 
4487 	ret = hns3_nic_dealloc_vector_data(priv);
4488 	if (ret)
4489 		netdev_err(netdev, "dealloc vector error\n");
4490 
4491 	ret = hns3_uninit_all_ring(priv);
4492 	if (ret)
4493 		netdev_err(netdev, "uninit ring error\n");
4494 
4495 	hns3_put_ring_config(priv);
4496 
4497 	return ret;
4498 }
4499 
4500 static int hns3_reset_notify(struct hnae3_handle *handle,
4501 			     enum hnae3_reset_notify_type type)
4502 {
4503 	int ret = 0;
4504 
4505 	switch (type) {
4506 	case HNAE3_UP_CLIENT:
4507 		ret = hns3_reset_notify_up_enet(handle);
4508 		break;
4509 	case HNAE3_DOWN_CLIENT:
4510 		ret = hns3_reset_notify_down_enet(handle);
4511 		break;
4512 	case HNAE3_INIT_CLIENT:
4513 		ret = hns3_reset_notify_init_enet(handle);
4514 		break;
4515 	case HNAE3_UNINIT_CLIENT:
4516 		ret = hns3_reset_notify_uninit_enet(handle);
4517 		break;
4518 	case HNAE3_RESTORE_CLIENT:
4519 		ret = hns3_reset_notify_restore_enet(handle);
4520 		break;
4521 	default:
4522 		break;
4523 	}
4524 
4525 	return ret;
4526 }
4527 
4528 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4529 				bool rxfh_configured)
4530 {
4531 	int ret;
4532 
4533 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4534 						 rxfh_configured);
4535 	if (ret) {
4536 		dev_err(&handle->pdev->dev,
4537 			"Change tqp num(%u) fail.\n", new_tqp_num);
4538 		return ret;
4539 	}
4540 
4541 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4542 	if (ret)
4543 		return ret;
4544 
4545 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4546 	if (ret)
4547 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4548 
4549 	return ret;
4550 }
4551 
4552 int hns3_set_channels(struct net_device *netdev,
4553 		      struct ethtool_channels *ch)
4554 {
4555 	struct hnae3_handle *h = hns3_get_handle(netdev);
4556 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4557 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4558 	u32 new_tqp_num = ch->combined_count;
4559 	u16 org_tqp_num;
4560 	int ret;
4561 
4562 	if (hns3_nic_resetting(netdev))
4563 		return -EBUSY;
4564 
4565 	if (ch->rx_count || ch->tx_count)
4566 		return -EINVAL;
4567 
4568 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4569 	    new_tqp_num < 1) {
4570 		dev_err(&netdev->dev,
4571 			"Change tqps fail, the tqp range is from 1 to %u",
4572 			hns3_get_max_available_channels(h));
4573 		return -EINVAL;
4574 	}
4575 
4576 	if (kinfo->rss_size == new_tqp_num)
4577 		return 0;
4578 
4579 	netif_dbg(h, drv, netdev,
4580 		  "set channels: tqp_num=%u, rxfh=%d\n",
4581 		  new_tqp_num, rxfh_configured);
4582 
4583 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4584 	if (ret)
4585 		return ret;
4586 
4587 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4588 	if (ret)
4589 		return ret;
4590 
4591 	org_tqp_num = h->kinfo.num_tqps;
4592 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4593 	if (ret) {
4594 		int ret1;
4595 
4596 		netdev_warn(netdev,
4597 			    "Change channels fail, revert to old value\n");
4598 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4599 		if (ret1) {
4600 			netdev_err(netdev,
4601 				   "revert to old channel fail\n");
4602 			return ret1;
4603 		}
4604 
4605 		return ret;
4606 	}
4607 
4608 	return 0;
4609 }
4610 
4611 static const struct hns3_hw_error_info hns3_hw_err[] = {
4612 	{ .type = HNAE3_PPU_POISON_ERROR,
4613 	  .msg = "PPU poison" },
4614 	{ .type = HNAE3_CMDQ_ECC_ERROR,
4615 	  .msg = "IMP CMDQ error" },
4616 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
4617 	  .msg = "IMP RD poison" },
4618 };
4619 
4620 static void hns3_process_hw_error(struct hnae3_handle *handle,
4621 				  enum hnae3_hw_error_type type)
4622 {
4623 	int i;
4624 
4625 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4626 		if (hns3_hw_err[i].type == type) {
4627 			dev_err(&handle->pdev->dev, "Detected %s!\n",
4628 				hns3_hw_err[i].msg);
4629 			break;
4630 		}
4631 	}
4632 }
4633 
4634 static const struct hnae3_client_ops client_ops = {
4635 	.init_instance = hns3_client_init,
4636 	.uninit_instance = hns3_client_uninit,
4637 	.link_status_change = hns3_link_status_change,
4638 	.setup_tc = hns3_client_setup_tc,
4639 	.reset_notify = hns3_reset_notify,
4640 	.process_hw_error = hns3_process_hw_error,
4641 };
4642 
4643 /* hns3_init_module - Driver registration routine
4644  * hns3_init_module is the first routine called when the driver is
4645  * loaded. All it does is register with the PCI subsystem.
4646  */
4647 static int __init hns3_init_module(void)
4648 {
4649 	int ret;
4650 
4651 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4652 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4653 
4654 	client.type = HNAE3_CLIENT_KNIC;
4655 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4656 		 hns3_driver_name);
4657 
4658 	client.ops = &client_ops;
4659 
4660 	INIT_LIST_HEAD(&client.node);
4661 
4662 	hns3_dbg_register_debugfs(hns3_driver_name);
4663 
4664 	ret = hnae3_register_client(&client);
4665 	if (ret)
4666 		goto err_reg_client;
4667 
4668 	ret = pci_register_driver(&hns3_driver);
4669 	if (ret)
4670 		goto err_reg_driver;
4671 
4672 	return ret;
4673 
4674 err_reg_driver:
4675 	hnae3_unregister_client(&client);
4676 err_reg_client:
4677 	hns3_dbg_unregister_debugfs();
4678 	return ret;
4679 }
4680 module_init(hns3_init_module);
4681 
4682 /* hns3_exit_module - Driver exit cleanup routine
4683  * hns3_exit_module is called just before the driver is removed
4684  * from memory.
4685  */
4686 static void __exit hns3_exit_module(void)
4687 {
4688 	pci_unregister_driver(&hns3_driver);
4689 	hnae3_unregister_client(&client);
4690 	hns3_dbg_unregister_debugfs();
4691 }
4692 module_exit(hns3_exit_module);
4693 
4694 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4695 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4696 MODULE_LICENSE("GPL");
4697 MODULE_ALIAS("pci:hns-nic");
4698 MODULE_VERSION(HNS3_MOD_VERSION);
4699