1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25 
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29  * must be included exactly once across the whole kernel with
30  * CREATE_TRACE_POINTS defined
31  */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34 
35 #define hns3_set_field(origin, shift, val)	((origin) |= (val) << (shift))
36 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37 
38 #define hns3_rl_err(fmt, ...)						\
39 	do {								\
40 		if (net_ratelimit())					\
41 			netdev_err(fmt, ##__VA_ARGS__);			\
42 	} while (0)
43 
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45 
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48 			"Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51 
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55 
56 static unsigned int tx_spare_buf_size;
57 module_param(tx_spare_buf_size, uint, 0400);
58 MODULE_PARM_DESC(tx_spare_buf_size, "Size used to allocate tx spare buffer");
59 
60 static unsigned int tx_sgl = 1;
61 module_param(tx_sgl, uint, 0600);
62 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping");
63 
64 static bool page_pool_enabled = true;
65 module_param(page_pool_enabled, bool, 0400);
66 
67 #define HNS3_SGL_SIZE(nfrag)	(sizeof(struct scatterlist) * (nfrag) +	\
68 				 sizeof(struct sg_table))
69 #define HNS3_MAX_SGL_SIZE	ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \
70 				      dma_get_cache_alignment())
71 
72 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
73 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
74 
75 #define HNS3_INNER_VLAN_TAG	1
76 #define HNS3_OUTER_VLAN_TAG	2
77 
78 #define HNS3_MIN_TX_LEN		33U
79 #define HNS3_MIN_TUN_PKT_LEN	65U
80 
81 /* hns3_pci_tbl - PCI Device ID Table
82  *
83  * Last entry must be all 0s
84  *
85  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
86  *   Class, Class Mask, private data (not used) }
87  */
88 static const struct pci_device_id hns3_pci_tbl[] = {
89 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
90 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
91 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
92 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
93 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
94 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
95 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
96 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
97 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
98 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
99 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
100 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
101 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
102 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
103 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
104 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
105 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
106 	/* required last entry */
107 	{0,}
108 };
109 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
110 
111 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t) \
112 	{	ptype, \
113 		l, \
114 		CHECKSUM_##s, \
115 		HNS3_L3_TYPE_##t, \
116 		1 }
117 
118 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
119 		{ ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0 }
120 
121 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
122 	HNS3_RX_PTYPE_UNUSED_ENTRY(0),
123 	HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP),
124 	HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP),
125 	HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP),
126 	HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL),
127 	HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL),
128 	HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL),
129 	HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM),
130 	HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL),
131 	HNS3_RX_PTYPE_UNUSED_ENTRY(9),
132 	HNS3_RX_PTYPE_UNUSED_ENTRY(10),
133 	HNS3_RX_PTYPE_UNUSED_ENTRY(11),
134 	HNS3_RX_PTYPE_UNUSED_ENTRY(12),
135 	HNS3_RX_PTYPE_UNUSED_ENTRY(13),
136 	HNS3_RX_PTYPE_UNUSED_ENTRY(14),
137 	HNS3_RX_PTYPE_UNUSED_ENTRY(15),
138 	HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL),
139 	HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4),
140 	HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4),
141 	HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4),
142 	HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4),
143 	HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4),
144 	HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4),
145 	HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4),
146 	HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4),
147 	HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4),
148 	HNS3_RX_PTYPE_UNUSED_ENTRY(26),
149 	HNS3_RX_PTYPE_UNUSED_ENTRY(27),
150 	HNS3_RX_PTYPE_UNUSED_ENTRY(28),
151 	HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL),
152 	HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL),
153 	HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4),
154 	HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4),
155 	HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4),
156 	HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4),
157 	HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4),
158 	HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4),
159 	HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4),
160 	HNS3_RX_PTYPE_UNUSED_ENTRY(38),
161 	HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6),
162 	HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6),
163 	HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6),
164 	HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6),
165 	HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6),
166 	HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6),
167 	HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6),
168 	HNS3_RX_PTYPE_UNUSED_ENTRY(46),
169 	HNS3_RX_PTYPE_UNUSED_ENTRY(47),
170 	HNS3_RX_PTYPE_UNUSED_ENTRY(48),
171 	HNS3_RX_PTYPE_UNUSED_ENTRY(49),
172 	HNS3_RX_PTYPE_UNUSED_ENTRY(50),
173 	HNS3_RX_PTYPE_UNUSED_ENTRY(51),
174 	HNS3_RX_PTYPE_UNUSED_ENTRY(52),
175 	HNS3_RX_PTYPE_UNUSED_ENTRY(53),
176 	HNS3_RX_PTYPE_UNUSED_ENTRY(54),
177 	HNS3_RX_PTYPE_UNUSED_ENTRY(55),
178 	HNS3_RX_PTYPE_UNUSED_ENTRY(56),
179 	HNS3_RX_PTYPE_UNUSED_ENTRY(57),
180 	HNS3_RX_PTYPE_UNUSED_ENTRY(58),
181 	HNS3_RX_PTYPE_UNUSED_ENTRY(59),
182 	HNS3_RX_PTYPE_UNUSED_ENTRY(60),
183 	HNS3_RX_PTYPE_UNUSED_ENTRY(61),
184 	HNS3_RX_PTYPE_UNUSED_ENTRY(62),
185 	HNS3_RX_PTYPE_UNUSED_ENTRY(63),
186 	HNS3_RX_PTYPE_UNUSED_ENTRY(64),
187 	HNS3_RX_PTYPE_UNUSED_ENTRY(65),
188 	HNS3_RX_PTYPE_UNUSED_ENTRY(66),
189 	HNS3_RX_PTYPE_UNUSED_ENTRY(67),
190 	HNS3_RX_PTYPE_UNUSED_ENTRY(68),
191 	HNS3_RX_PTYPE_UNUSED_ENTRY(69),
192 	HNS3_RX_PTYPE_UNUSED_ENTRY(70),
193 	HNS3_RX_PTYPE_UNUSED_ENTRY(71),
194 	HNS3_RX_PTYPE_UNUSED_ENTRY(72),
195 	HNS3_RX_PTYPE_UNUSED_ENTRY(73),
196 	HNS3_RX_PTYPE_UNUSED_ENTRY(74),
197 	HNS3_RX_PTYPE_UNUSED_ENTRY(75),
198 	HNS3_RX_PTYPE_UNUSED_ENTRY(76),
199 	HNS3_RX_PTYPE_UNUSED_ENTRY(77),
200 	HNS3_RX_PTYPE_UNUSED_ENTRY(78),
201 	HNS3_RX_PTYPE_UNUSED_ENTRY(79),
202 	HNS3_RX_PTYPE_UNUSED_ENTRY(80),
203 	HNS3_RX_PTYPE_UNUSED_ENTRY(81),
204 	HNS3_RX_PTYPE_UNUSED_ENTRY(82),
205 	HNS3_RX_PTYPE_UNUSED_ENTRY(83),
206 	HNS3_RX_PTYPE_UNUSED_ENTRY(84),
207 	HNS3_RX_PTYPE_UNUSED_ENTRY(85),
208 	HNS3_RX_PTYPE_UNUSED_ENTRY(86),
209 	HNS3_RX_PTYPE_UNUSED_ENTRY(87),
210 	HNS3_RX_PTYPE_UNUSED_ENTRY(88),
211 	HNS3_RX_PTYPE_UNUSED_ENTRY(89),
212 	HNS3_RX_PTYPE_UNUSED_ENTRY(90),
213 	HNS3_RX_PTYPE_UNUSED_ENTRY(91),
214 	HNS3_RX_PTYPE_UNUSED_ENTRY(92),
215 	HNS3_RX_PTYPE_UNUSED_ENTRY(93),
216 	HNS3_RX_PTYPE_UNUSED_ENTRY(94),
217 	HNS3_RX_PTYPE_UNUSED_ENTRY(95),
218 	HNS3_RX_PTYPE_UNUSED_ENTRY(96),
219 	HNS3_RX_PTYPE_UNUSED_ENTRY(97),
220 	HNS3_RX_PTYPE_UNUSED_ENTRY(98),
221 	HNS3_RX_PTYPE_UNUSED_ENTRY(99),
222 	HNS3_RX_PTYPE_UNUSED_ENTRY(100),
223 	HNS3_RX_PTYPE_UNUSED_ENTRY(101),
224 	HNS3_RX_PTYPE_UNUSED_ENTRY(102),
225 	HNS3_RX_PTYPE_UNUSED_ENTRY(103),
226 	HNS3_RX_PTYPE_UNUSED_ENTRY(104),
227 	HNS3_RX_PTYPE_UNUSED_ENTRY(105),
228 	HNS3_RX_PTYPE_UNUSED_ENTRY(106),
229 	HNS3_RX_PTYPE_UNUSED_ENTRY(107),
230 	HNS3_RX_PTYPE_UNUSED_ENTRY(108),
231 	HNS3_RX_PTYPE_UNUSED_ENTRY(109),
232 	HNS3_RX_PTYPE_UNUSED_ENTRY(110),
233 	HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6),
234 	HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6),
235 	HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6),
236 	HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6),
237 	HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6),
238 	HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6),
239 	HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6),
240 	HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6),
241 	HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6),
242 	HNS3_RX_PTYPE_UNUSED_ENTRY(120),
243 	HNS3_RX_PTYPE_UNUSED_ENTRY(121),
244 	HNS3_RX_PTYPE_UNUSED_ENTRY(122),
245 	HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL),
246 	HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL),
247 	HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4),
248 	HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4),
249 	HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4),
250 	HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4),
251 	HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4),
252 	HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4),
253 	HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4),
254 	HNS3_RX_PTYPE_UNUSED_ENTRY(132),
255 	HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6),
256 	HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6),
257 	HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6),
258 	HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6),
259 	HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6),
260 	HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6),
261 	HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6),
262 	HNS3_RX_PTYPE_UNUSED_ENTRY(140),
263 	HNS3_RX_PTYPE_UNUSED_ENTRY(141),
264 	HNS3_RX_PTYPE_UNUSED_ENTRY(142),
265 	HNS3_RX_PTYPE_UNUSED_ENTRY(143),
266 	HNS3_RX_PTYPE_UNUSED_ENTRY(144),
267 	HNS3_RX_PTYPE_UNUSED_ENTRY(145),
268 	HNS3_RX_PTYPE_UNUSED_ENTRY(146),
269 	HNS3_RX_PTYPE_UNUSED_ENTRY(147),
270 	HNS3_RX_PTYPE_UNUSED_ENTRY(148),
271 	HNS3_RX_PTYPE_UNUSED_ENTRY(149),
272 	HNS3_RX_PTYPE_UNUSED_ENTRY(150),
273 	HNS3_RX_PTYPE_UNUSED_ENTRY(151),
274 	HNS3_RX_PTYPE_UNUSED_ENTRY(152),
275 	HNS3_RX_PTYPE_UNUSED_ENTRY(153),
276 	HNS3_RX_PTYPE_UNUSED_ENTRY(154),
277 	HNS3_RX_PTYPE_UNUSED_ENTRY(155),
278 	HNS3_RX_PTYPE_UNUSED_ENTRY(156),
279 	HNS3_RX_PTYPE_UNUSED_ENTRY(157),
280 	HNS3_RX_PTYPE_UNUSED_ENTRY(158),
281 	HNS3_RX_PTYPE_UNUSED_ENTRY(159),
282 	HNS3_RX_PTYPE_UNUSED_ENTRY(160),
283 	HNS3_RX_PTYPE_UNUSED_ENTRY(161),
284 	HNS3_RX_PTYPE_UNUSED_ENTRY(162),
285 	HNS3_RX_PTYPE_UNUSED_ENTRY(163),
286 	HNS3_RX_PTYPE_UNUSED_ENTRY(164),
287 	HNS3_RX_PTYPE_UNUSED_ENTRY(165),
288 	HNS3_RX_PTYPE_UNUSED_ENTRY(166),
289 	HNS3_RX_PTYPE_UNUSED_ENTRY(167),
290 	HNS3_RX_PTYPE_UNUSED_ENTRY(168),
291 	HNS3_RX_PTYPE_UNUSED_ENTRY(169),
292 	HNS3_RX_PTYPE_UNUSED_ENTRY(170),
293 	HNS3_RX_PTYPE_UNUSED_ENTRY(171),
294 	HNS3_RX_PTYPE_UNUSED_ENTRY(172),
295 	HNS3_RX_PTYPE_UNUSED_ENTRY(173),
296 	HNS3_RX_PTYPE_UNUSED_ENTRY(174),
297 	HNS3_RX_PTYPE_UNUSED_ENTRY(175),
298 	HNS3_RX_PTYPE_UNUSED_ENTRY(176),
299 	HNS3_RX_PTYPE_UNUSED_ENTRY(177),
300 	HNS3_RX_PTYPE_UNUSED_ENTRY(178),
301 	HNS3_RX_PTYPE_UNUSED_ENTRY(179),
302 	HNS3_RX_PTYPE_UNUSED_ENTRY(180),
303 	HNS3_RX_PTYPE_UNUSED_ENTRY(181),
304 	HNS3_RX_PTYPE_UNUSED_ENTRY(182),
305 	HNS3_RX_PTYPE_UNUSED_ENTRY(183),
306 	HNS3_RX_PTYPE_UNUSED_ENTRY(184),
307 	HNS3_RX_PTYPE_UNUSED_ENTRY(185),
308 	HNS3_RX_PTYPE_UNUSED_ENTRY(186),
309 	HNS3_RX_PTYPE_UNUSED_ENTRY(187),
310 	HNS3_RX_PTYPE_UNUSED_ENTRY(188),
311 	HNS3_RX_PTYPE_UNUSED_ENTRY(189),
312 	HNS3_RX_PTYPE_UNUSED_ENTRY(190),
313 	HNS3_RX_PTYPE_UNUSED_ENTRY(191),
314 	HNS3_RX_PTYPE_UNUSED_ENTRY(192),
315 	HNS3_RX_PTYPE_UNUSED_ENTRY(193),
316 	HNS3_RX_PTYPE_UNUSED_ENTRY(194),
317 	HNS3_RX_PTYPE_UNUSED_ENTRY(195),
318 	HNS3_RX_PTYPE_UNUSED_ENTRY(196),
319 	HNS3_RX_PTYPE_UNUSED_ENTRY(197),
320 	HNS3_RX_PTYPE_UNUSED_ENTRY(198),
321 	HNS3_RX_PTYPE_UNUSED_ENTRY(199),
322 	HNS3_RX_PTYPE_UNUSED_ENTRY(200),
323 	HNS3_RX_PTYPE_UNUSED_ENTRY(201),
324 	HNS3_RX_PTYPE_UNUSED_ENTRY(202),
325 	HNS3_RX_PTYPE_UNUSED_ENTRY(203),
326 	HNS3_RX_PTYPE_UNUSED_ENTRY(204),
327 	HNS3_RX_PTYPE_UNUSED_ENTRY(205),
328 	HNS3_RX_PTYPE_UNUSED_ENTRY(206),
329 	HNS3_RX_PTYPE_UNUSED_ENTRY(207),
330 	HNS3_RX_PTYPE_UNUSED_ENTRY(208),
331 	HNS3_RX_PTYPE_UNUSED_ENTRY(209),
332 	HNS3_RX_PTYPE_UNUSED_ENTRY(210),
333 	HNS3_RX_PTYPE_UNUSED_ENTRY(211),
334 	HNS3_RX_PTYPE_UNUSED_ENTRY(212),
335 	HNS3_RX_PTYPE_UNUSED_ENTRY(213),
336 	HNS3_RX_PTYPE_UNUSED_ENTRY(214),
337 	HNS3_RX_PTYPE_UNUSED_ENTRY(215),
338 	HNS3_RX_PTYPE_UNUSED_ENTRY(216),
339 	HNS3_RX_PTYPE_UNUSED_ENTRY(217),
340 	HNS3_RX_PTYPE_UNUSED_ENTRY(218),
341 	HNS3_RX_PTYPE_UNUSED_ENTRY(219),
342 	HNS3_RX_PTYPE_UNUSED_ENTRY(220),
343 	HNS3_RX_PTYPE_UNUSED_ENTRY(221),
344 	HNS3_RX_PTYPE_UNUSED_ENTRY(222),
345 	HNS3_RX_PTYPE_UNUSED_ENTRY(223),
346 	HNS3_RX_PTYPE_UNUSED_ENTRY(224),
347 	HNS3_RX_PTYPE_UNUSED_ENTRY(225),
348 	HNS3_RX_PTYPE_UNUSED_ENTRY(226),
349 	HNS3_RX_PTYPE_UNUSED_ENTRY(227),
350 	HNS3_RX_PTYPE_UNUSED_ENTRY(228),
351 	HNS3_RX_PTYPE_UNUSED_ENTRY(229),
352 	HNS3_RX_PTYPE_UNUSED_ENTRY(230),
353 	HNS3_RX_PTYPE_UNUSED_ENTRY(231),
354 	HNS3_RX_PTYPE_UNUSED_ENTRY(232),
355 	HNS3_RX_PTYPE_UNUSED_ENTRY(233),
356 	HNS3_RX_PTYPE_UNUSED_ENTRY(234),
357 	HNS3_RX_PTYPE_UNUSED_ENTRY(235),
358 	HNS3_RX_PTYPE_UNUSED_ENTRY(236),
359 	HNS3_RX_PTYPE_UNUSED_ENTRY(237),
360 	HNS3_RX_PTYPE_UNUSED_ENTRY(238),
361 	HNS3_RX_PTYPE_UNUSED_ENTRY(239),
362 	HNS3_RX_PTYPE_UNUSED_ENTRY(240),
363 	HNS3_RX_PTYPE_UNUSED_ENTRY(241),
364 	HNS3_RX_PTYPE_UNUSED_ENTRY(242),
365 	HNS3_RX_PTYPE_UNUSED_ENTRY(243),
366 	HNS3_RX_PTYPE_UNUSED_ENTRY(244),
367 	HNS3_RX_PTYPE_UNUSED_ENTRY(245),
368 	HNS3_RX_PTYPE_UNUSED_ENTRY(246),
369 	HNS3_RX_PTYPE_UNUSED_ENTRY(247),
370 	HNS3_RX_PTYPE_UNUSED_ENTRY(248),
371 	HNS3_RX_PTYPE_UNUSED_ENTRY(249),
372 	HNS3_RX_PTYPE_UNUSED_ENTRY(250),
373 	HNS3_RX_PTYPE_UNUSED_ENTRY(251),
374 	HNS3_RX_PTYPE_UNUSED_ENTRY(252),
375 	HNS3_RX_PTYPE_UNUSED_ENTRY(253),
376 	HNS3_RX_PTYPE_UNUSED_ENTRY(254),
377 	HNS3_RX_PTYPE_UNUSED_ENTRY(255),
378 };
379 
380 #define HNS3_INVALID_PTYPE \
381 		ARRAY_SIZE(hns3_rx_ptype_tbl)
382 
383 static irqreturn_t hns3_irq_handle(int irq, void *vector)
384 {
385 	struct hns3_enet_tqp_vector *tqp_vector = vector;
386 
387 	napi_schedule_irqoff(&tqp_vector->napi);
388 	tqp_vector->event_cnt++;
389 
390 	return IRQ_HANDLED;
391 }
392 
393 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
394 {
395 	struct hns3_enet_tqp_vector *tqp_vectors;
396 	unsigned int i;
397 
398 	for (i = 0; i < priv->vector_num; i++) {
399 		tqp_vectors = &priv->tqp_vector[i];
400 
401 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
402 			continue;
403 
404 		/* clear the affinity mask */
405 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
406 
407 		/* release the irq resource */
408 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
409 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
410 	}
411 }
412 
413 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
414 {
415 	struct hns3_enet_tqp_vector *tqp_vectors;
416 	int txrx_int_idx = 0;
417 	int rx_int_idx = 0;
418 	int tx_int_idx = 0;
419 	unsigned int i;
420 	int ret;
421 
422 	for (i = 0; i < priv->vector_num; i++) {
423 		tqp_vectors = &priv->tqp_vector[i];
424 
425 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
426 			continue;
427 
428 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
429 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
430 				 "%s-%s-%s-%d", hns3_driver_name,
431 				 pci_name(priv->ae_handle->pdev),
432 				 "TxRx", txrx_int_idx++);
433 			txrx_int_idx++;
434 		} else if (tqp_vectors->rx_group.ring) {
435 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
436 				 "%s-%s-%s-%d", hns3_driver_name,
437 				 pci_name(priv->ae_handle->pdev),
438 				 "Rx", rx_int_idx++);
439 		} else if (tqp_vectors->tx_group.ring) {
440 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
441 				 "%s-%s-%s-%d", hns3_driver_name,
442 				 pci_name(priv->ae_handle->pdev),
443 				 "Tx", tx_int_idx++);
444 		} else {
445 			/* Skip this unused q_vector */
446 			continue;
447 		}
448 
449 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
450 
451 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
452 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
453 				  tqp_vectors->name, tqp_vectors);
454 		if (ret) {
455 			netdev_err(priv->netdev, "request irq(%d) fail\n",
456 				   tqp_vectors->vector_irq);
457 			hns3_nic_uninit_irq(priv);
458 			return ret;
459 		}
460 
461 		irq_set_affinity_hint(tqp_vectors->vector_irq,
462 				      &tqp_vectors->affinity_mask);
463 
464 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
465 	}
466 
467 	return 0;
468 }
469 
470 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
471 				 u32 mask_en)
472 {
473 	writel(mask_en, tqp_vector->mask_addr);
474 }
475 
476 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
477 {
478 	napi_enable(&tqp_vector->napi);
479 	enable_irq(tqp_vector->vector_irq);
480 
481 	/* enable vector */
482 	hns3_mask_vector_irq(tqp_vector, 1);
483 }
484 
485 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
486 {
487 	/* disable vector */
488 	hns3_mask_vector_irq(tqp_vector, 0);
489 
490 	disable_irq(tqp_vector->vector_irq);
491 	napi_disable(&tqp_vector->napi);
492 	cancel_work_sync(&tqp_vector->rx_group.dim.work);
493 	cancel_work_sync(&tqp_vector->tx_group.dim.work);
494 }
495 
496 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
497 				 u32 rl_value)
498 {
499 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
500 
501 	/* this defines the configuration for RL (Interrupt Rate Limiter).
502 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
503 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
504 	 */
505 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
506 	    !tqp_vector->rx_group.coal.adapt_enable)
507 		/* According to the hardware, the range of rl_reg is
508 		 * 0-59 and the unit is 4.
509 		 */
510 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
511 
512 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
513 }
514 
515 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
516 				    u32 gl_value)
517 {
518 	u32 new_val;
519 
520 	if (tqp_vector->rx_group.coal.unit_1us)
521 		new_val = gl_value | HNS3_INT_GL_1US;
522 	else
523 		new_val = hns3_gl_usec_to_reg(gl_value);
524 
525 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
526 }
527 
528 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
529 				    u32 gl_value)
530 {
531 	u32 new_val;
532 
533 	if (tqp_vector->tx_group.coal.unit_1us)
534 		new_val = gl_value | HNS3_INT_GL_1US;
535 	else
536 		new_val = hns3_gl_usec_to_reg(gl_value);
537 
538 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
539 }
540 
541 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
542 				    u32 ql_value)
543 {
544 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
545 }
546 
547 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
548 				    u32 ql_value)
549 {
550 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
551 }
552 
553 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
554 				      struct hns3_nic_priv *priv)
555 {
556 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
557 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
558 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
559 	struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
560 	struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
561 
562 	tx_coal->adapt_enable = ptx_coal->adapt_enable;
563 	rx_coal->adapt_enable = prx_coal->adapt_enable;
564 
565 	tx_coal->int_gl = ptx_coal->int_gl;
566 	rx_coal->int_gl = prx_coal->int_gl;
567 
568 	rx_coal->flow_level = prx_coal->flow_level;
569 	tx_coal->flow_level = ptx_coal->flow_level;
570 
571 	/* device version above V3(include V3), GL can configure 1us
572 	 * unit, so uses 1us unit.
573 	 */
574 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
575 		tx_coal->unit_1us = 1;
576 		rx_coal->unit_1us = 1;
577 	}
578 
579 	if (ae_dev->dev_specs.int_ql_max) {
580 		tx_coal->ql_enable = 1;
581 		rx_coal->ql_enable = 1;
582 		tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
583 		rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
584 		tx_coal->int_ql = ptx_coal->int_ql;
585 		rx_coal->int_ql = prx_coal->int_ql;
586 	}
587 }
588 
589 static void
590 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
591 			     struct hns3_nic_priv *priv)
592 {
593 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
594 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
595 	struct hnae3_handle *h = priv->ae_handle;
596 
597 	hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
598 	hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
599 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
600 
601 	if (tx_coal->ql_enable)
602 		hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
603 
604 	if (rx_coal->ql_enable)
605 		hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
606 }
607 
608 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
609 {
610 	struct hnae3_handle *h = hns3_get_handle(netdev);
611 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
612 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
613 	unsigned int queue_size = kinfo->num_tqps;
614 	int i, ret;
615 
616 	if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
617 		netdev_reset_tc(netdev);
618 	} else {
619 		ret = netdev_set_num_tc(netdev, tc_info->num_tc);
620 		if (ret) {
621 			netdev_err(netdev,
622 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
623 			return ret;
624 		}
625 
626 		for (i = 0; i < HNAE3_MAX_TC; i++) {
627 			if (!test_bit(i, &tc_info->tc_en))
628 				continue;
629 
630 			netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
631 					    tc_info->tqp_offset[i]);
632 		}
633 	}
634 
635 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
636 	if (ret) {
637 		netdev_err(netdev,
638 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
639 		return ret;
640 	}
641 
642 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
643 	if (ret) {
644 		netdev_err(netdev,
645 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
646 		return ret;
647 	}
648 
649 	return 0;
650 }
651 
652 u16 hns3_get_max_available_channels(struct hnae3_handle *h)
653 {
654 	u16 alloc_tqps, max_rss_size, rss_size;
655 
656 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
657 	rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
658 
659 	return min_t(u16, rss_size, max_rss_size);
660 }
661 
662 static void hns3_tqp_enable(struct hnae3_queue *tqp)
663 {
664 	u32 rcb_reg;
665 
666 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
667 	rcb_reg |= BIT(HNS3_RING_EN_B);
668 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
669 }
670 
671 static void hns3_tqp_disable(struct hnae3_queue *tqp)
672 {
673 	u32 rcb_reg;
674 
675 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
676 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
677 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
678 }
679 
680 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
681 {
682 #ifdef CONFIG_RFS_ACCEL
683 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
684 	netdev->rx_cpu_rmap = NULL;
685 #endif
686 }
687 
688 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
689 {
690 #ifdef CONFIG_RFS_ACCEL
691 	struct hns3_nic_priv *priv = netdev_priv(netdev);
692 	struct hns3_enet_tqp_vector *tqp_vector;
693 	int i, ret;
694 
695 	if (!netdev->rx_cpu_rmap) {
696 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
697 		if (!netdev->rx_cpu_rmap)
698 			return -ENOMEM;
699 	}
700 
701 	for (i = 0; i < priv->vector_num; i++) {
702 		tqp_vector = &priv->tqp_vector[i];
703 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
704 				       tqp_vector->vector_irq);
705 		if (ret) {
706 			hns3_free_rx_cpu_rmap(netdev);
707 			return ret;
708 		}
709 	}
710 #endif
711 	return 0;
712 }
713 
714 static int hns3_nic_net_up(struct net_device *netdev)
715 {
716 	struct hns3_nic_priv *priv = netdev_priv(netdev);
717 	struct hnae3_handle *h = priv->ae_handle;
718 	int i, j;
719 	int ret;
720 
721 	ret = hns3_nic_reset_all_ring(h);
722 	if (ret)
723 		return ret;
724 
725 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
726 
727 	/* enable the vectors */
728 	for (i = 0; i < priv->vector_num; i++)
729 		hns3_vector_enable(&priv->tqp_vector[i]);
730 
731 	/* enable rcb */
732 	for (j = 0; j < h->kinfo.num_tqps; j++)
733 		hns3_tqp_enable(h->kinfo.tqp[j]);
734 
735 	/* start the ae_dev */
736 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
737 	if (ret) {
738 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
739 		while (j--)
740 			hns3_tqp_disable(h->kinfo.tqp[j]);
741 
742 		for (j = i - 1; j >= 0; j--)
743 			hns3_vector_disable(&priv->tqp_vector[j]);
744 	}
745 
746 	return ret;
747 }
748 
749 static void hns3_config_xps(struct hns3_nic_priv *priv)
750 {
751 	int i;
752 
753 	for (i = 0; i < priv->vector_num; i++) {
754 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
755 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
756 
757 		while (ring) {
758 			int ret;
759 
760 			ret = netif_set_xps_queue(priv->netdev,
761 						  &tqp_vector->affinity_mask,
762 						  ring->tqp->tqp_index);
763 			if (ret)
764 				netdev_warn(priv->netdev,
765 					    "set xps queue failed: %d", ret);
766 
767 			ring = ring->next;
768 		}
769 	}
770 }
771 
772 static int hns3_nic_net_open(struct net_device *netdev)
773 {
774 	struct hns3_nic_priv *priv = netdev_priv(netdev);
775 	struct hnae3_handle *h = hns3_get_handle(netdev);
776 	struct hnae3_knic_private_info *kinfo;
777 	int i, ret;
778 
779 	if (hns3_nic_resetting(netdev))
780 		return -EBUSY;
781 
782 	netif_carrier_off(netdev);
783 
784 	ret = hns3_nic_set_real_num_queue(netdev);
785 	if (ret)
786 		return ret;
787 
788 	ret = hns3_nic_net_up(netdev);
789 	if (ret) {
790 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
791 		return ret;
792 	}
793 
794 	kinfo = &h->kinfo;
795 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
796 		netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
797 
798 	if (h->ae_algo->ops->set_timer_task)
799 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
800 
801 	hns3_config_xps(priv);
802 
803 	netif_dbg(h, drv, netdev, "net open\n");
804 
805 	return 0;
806 }
807 
808 static void hns3_reset_tx_queue(struct hnae3_handle *h)
809 {
810 	struct net_device *ndev = h->kinfo.netdev;
811 	struct hns3_nic_priv *priv = netdev_priv(ndev);
812 	struct netdev_queue *dev_queue;
813 	u32 i;
814 
815 	for (i = 0; i < h->kinfo.num_tqps; i++) {
816 		dev_queue = netdev_get_tx_queue(ndev,
817 						priv->ring[i].queue_index);
818 		netdev_tx_reset_queue(dev_queue);
819 	}
820 }
821 
822 static void hns3_nic_net_down(struct net_device *netdev)
823 {
824 	struct hns3_nic_priv *priv = netdev_priv(netdev);
825 	struct hnae3_handle *h = hns3_get_handle(netdev);
826 	const struct hnae3_ae_ops *ops;
827 	int i;
828 
829 	/* disable vectors */
830 	for (i = 0; i < priv->vector_num; i++)
831 		hns3_vector_disable(&priv->tqp_vector[i]);
832 
833 	/* disable rcb */
834 	for (i = 0; i < h->kinfo.num_tqps; i++)
835 		hns3_tqp_disable(h->kinfo.tqp[i]);
836 
837 	/* stop ae_dev */
838 	ops = priv->ae_handle->ae_algo->ops;
839 	if (ops->stop)
840 		ops->stop(priv->ae_handle);
841 
842 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
843 	 * during reset process, because driver may not be able
844 	 * to disable the ring through firmware when downing the netdev.
845 	 */
846 	if (!hns3_nic_resetting(netdev))
847 		hns3_clear_all_ring(priv->ae_handle, false);
848 
849 	hns3_reset_tx_queue(priv->ae_handle);
850 }
851 
852 static int hns3_nic_net_stop(struct net_device *netdev)
853 {
854 	struct hns3_nic_priv *priv = netdev_priv(netdev);
855 	struct hnae3_handle *h = hns3_get_handle(netdev);
856 
857 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
858 		return 0;
859 
860 	netif_dbg(h, drv, netdev, "net stop\n");
861 
862 	if (h->ae_algo->ops->set_timer_task)
863 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
864 
865 	netif_carrier_off(netdev);
866 	netif_tx_disable(netdev);
867 
868 	hns3_nic_net_down(netdev);
869 
870 	return 0;
871 }
872 
873 static int hns3_nic_uc_sync(struct net_device *netdev,
874 			    const unsigned char *addr)
875 {
876 	struct hnae3_handle *h = hns3_get_handle(netdev);
877 
878 	if (h->ae_algo->ops->add_uc_addr)
879 		return h->ae_algo->ops->add_uc_addr(h, addr);
880 
881 	return 0;
882 }
883 
884 static int hns3_nic_uc_unsync(struct net_device *netdev,
885 			      const unsigned char *addr)
886 {
887 	struct hnae3_handle *h = hns3_get_handle(netdev);
888 
889 	/* need ignore the request of removing device address, because
890 	 * we store the device address and other addresses of uc list
891 	 * in the function's mac filter list.
892 	 */
893 	if (ether_addr_equal(addr, netdev->dev_addr))
894 		return 0;
895 
896 	if (h->ae_algo->ops->rm_uc_addr)
897 		return h->ae_algo->ops->rm_uc_addr(h, addr);
898 
899 	return 0;
900 }
901 
902 static int hns3_nic_mc_sync(struct net_device *netdev,
903 			    const unsigned char *addr)
904 {
905 	struct hnae3_handle *h = hns3_get_handle(netdev);
906 
907 	if (h->ae_algo->ops->add_mc_addr)
908 		return h->ae_algo->ops->add_mc_addr(h, addr);
909 
910 	return 0;
911 }
912 
913 static int hns3_nic_mc_unsync(struct net_device *netdev,
914 			      const unsigned char *addr)
915 {
916 	struct hnae3_handle *h = hns3_get_handle(netdev);
917 
918 	if (h->ae_algo->ops->rm_mc_addr)
919 		return h->ae_algo->ops->rm_mc_addr(h, addr);
920 
921 	return 0;
922 }
923 
924 static u8 hns3_get_netdev_flags(struct net_device *netdev)
925 {
926 	u8 flags = 0;
927 
928 	if (netdev->flags & IFF_PROMISC)
929 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
930 	else if (netdev->flags & IFF_ALLMULTI)
931 		flags = HNAE3_USER_MPE;
932 
933 	return flags;
934 }
935 
936 static void hns3_nic_set_rx_mode(struct net_device *netdev)
937 {
938 	struct hnae3_handle *h = hns3_get_handle(netdev);
939 	u8 new_flags;
940 
941 	new_flags = hns3_get_netdev_flags(netdev);
942 
943 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
944 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
945 
946 	/* User mode Promisc mode enable and vlan filtering is disabled to
947 	 * let all packets in.
948 	 */
949 	h->netdev_flags = new_flags;
950 	hns3_request_update_promisc_mode(h);
951 }
952 
953 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
954 {
955 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
956 
957 	if (ops->request_update_promisc_mode)
958 		ops->request_update_promisc_mode(handle);
959 }
960 
961 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring)
962 {
963 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
964 	u32 ntc, ntu;
965 
966 	/* This smp_load_acquire() pairs with smp_store_release() in
967 	 * hns3_tx_spare_update() called in tx desc cleaning process.
968 	 */
969 	ntc = smp_load_acquire(&tx_spare->last_to_clean);
970 	ntu = tx_spare->next_to_use;
971 
972 	if (ntc > ntu)
973 		return ntc - ntu - 1;
974 
975 	/* The free tx buffer is divided into two part, so pick the
976 	 * larger one.
977 	 */
978 	return max(ntc, tx_spare->len - ntu) - 1;
979 }
980 
981 static void hns3_tx_spare_update(struct hns3_enet_ring *ring)
982 {
983 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
984 
985 	if (!tx_spare ||
986 	    tx_spare->last_to_clean == tx_spare->next_to_clean)
987 		return;
988 
989 	/* This smp_store_release() pairs with smp_load_acquire() in
990 	 * hns3_tx_spare_space() called in xmit process.
991 	 */
992 	smp_store_release(&tx_spare->last_to_clean,
993 			  tx_spare->next_to_clean);
994 }
995 
996 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring,
997 				   struct sk_buff *skb,
998 				   u32 space)
999 {
1000 	u32 len = skb->len <= ring->tx_copybreak ? skb->len :
1001 				skb_headlen(skb);
1002 
1003 	if (len > ring->tx_copybreak)
1004 		return false;
1005 
1006 	if (ALIGN(len, dma_get_cache_alignment()) > space) {
1007 		u64_stats_update_begin(&ring->syncp);
1008 		ring->stats.tx_spare_full++;
1009 		u64_stats_update_end(&ring->syncp);
1010 		return false;
1011 	}
1012 
1013 	return true;
1014 }
1015 
1016 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
1017 				struct sk_buff *skb,
1018 				u32 space)
1019 {
1020 	if (skb->len <= ring->tx_copybreak || !tx_sgl ||
1021 	    (!skb_has_frag_list(skb) &&
1022 	     skb_shinfo(skb)->nr_frags < tx_sgl))
1023 		return false;
1024 
1025 	if (space < HNS3_MAX_SGL_SIZE) {
1026 		u64_stats_update_begin(&ring->syncp);
1027 		ring->stats.tx_spare_full++;
1028 		u64_stats_update_end(&ring->syncp);
1029 		return false;
1030 	}
1031 
1032 	return true;
1033 }
1034 
1035 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
1036 {
1037 	struct hns3_tx_spare *tx_spare;
1038 	struct page *page;
1039 	u32 alloc_size;
1040 	dma_addr_t dma;
1041 	int order;
1042 
1043 	alloc_size = tx_spare_buf_size ? tx_spare_buf_size :
1044 		     ring->tqp->handle->kinfo.tx_spare_buf_size;
1045 	if (!alloc_size)
1046 		return;
1047 
1048 	order = get_order(alloc_size);
1049 	tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare),
1050 				GFP_KERNEL);
1051 	if (!tx_spare) {
1052 		/* The driver still work without the tx spare buffer */
1053 		dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n");
1054 		return;
1055 	}
1056 
1057 	page = alloc_pages_node(dev_to_node(ring_to_dev(ring)),
1058 				GFP_KERNEL, order);
1059 	if (!page) {
1060 		dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n");
1061 		devm_kfree(ring_to_dev(ring), tx_spare);
1062 		return;
1063 	}
1064 
1065 	dma = dma_map_page(ring_to_dev(ring), page, 0,
1066 			   PAGE_SIZE << order, DMA_TO_DEVICE);
1067 	if (dma_mapping_error(ring_to_dev(ring), dma)) {
1068 		dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n");
1069 		put_page(page);
1070 		devm_kfree(ring_to_dev(ring), tx_spare);
1071 		return;
1072 	}
1073 
1074 	tx_spare->dma = dma;
1075 	tx_spare->buf = page_address(page);
1076 	tx_spare->len = PAGE_SIZE << order;
1077 	ring->tx_spare = tx_spare;
1078 }
1079 
1080 /* Use hns3_tx_spare_space() to make sure there is enough buffer
1081  * before calling below function to allocate tx buffer.
1082  */
1083 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring,
1084 				 unsigned int size, dma_addr_t *dma,
1085 				 u32 *cb_len)
1086 {
1087 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1088 	u32 ntu = tx_spare->next_to_use;
1089 
1090 	size = ALIGN(size, dma_get_cache_alignment());
1091 	*cb_len = size;
1092 
1093 	/* Tx spare buffer wraps back here because the end of
1094 	 * freed tx buffer is not enough.
1095 	 */
1096 	if (ntu + size > tx_spare->len) {
1097 		*cb_len += (tx_spare->len - ntu);
1098 		ntu = 0;
1099 	}
1100 
1101 	tx_spare->next_to_use = ntu + size;
1102 	if (tx_spare->next_to_use == tx_spare->len)
1103 		tx_spare->next_to_use = 0;
1104 
1105 	*dma = tx_spare->dma + ntu;
1106 
1107 	return tx_spare->buf + ntu;
1108 }
1109 
1110 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len)
1111 {
1112 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1113 
1114 	if (len > tx_spare->next_to_use) {
1115 		len -= tx_spare->next_to_use;
1116 		tx_spare->next_to_use = tx_spare->len - len;
1117 	} else {
1118 		tx_spare->next_to_use -= len;
1119 	}
1120 }
1121 
1122 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring,
1123 				     struct hns3_desc_cb *cb)
1124 {
1125 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1126 	u32 ntc = tx_spare->next_to_clean;
1127 	u32 len = cb->length;
1128 
1129 	tx_spare->next_to_clean += len;
1130 
1131 	if (tx_spare->next_to_clean >= tx_spare->len) {
1132 		tx_spare->next_to_clean -= tx_spare->len;
1133 
1134 		if (tx_spare->next_to_clean) {
1135 			ntc = 0;
1136 			len = tx_spare->next_to_clean;
1137 		}
1138 	}
1139 
1140 	/* This tx spare buffer is only really reclaimed after calling
1141 	 * hns3_tx_spare_update(), so it is still safe to use the info in
1142 	 * the tx buffer to do the dma sync or sg unmapping after
1143 	 * tx_spare->next_to_clean is moved forword.
1144 	 */
1145 	if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) {
1146 		dma_addr_t dma = tx_spare->dma + ntc;
1147 
1148 		dma_sync_single_for_cpu(ring_to_dev(ring), dma, len,
1149 					DMA_TO_DEVICE);
1150 	} else {
1151 		struct sg_table *sgt = tx_spare->buf + ntc;
1152 
1153 		dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
1154 			     DMA_TO_DEVICE);
1155 	}
1156 }
1157 
1158 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
1159 			u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
1160 {
1161 	u32 l4_offset, hdr_len;
1162 	union l3_hdr_info l3;
1163 	union l4_hdr_info l4;
1164 	u32 l4_paylen;
1165 	int ret;
1166 
1167 	if (!skb_is_gso(skb))
1168 		return 0;
1169 
1170 	ret = skb_cow_head(skb, 0);
1171 	if (unlikely(ret < 0))
1172 		return ret;
1173 
1174 	l3.hdr = skb_network_header(skb);
1175 	l4.hdr = skb_transport_header(skb);
1176 
1177 	/* Software should clear the IPv4's checksum field when tso is
1178 	 * needed.
1179 	 */
1180 	if (l3.v4->version == 4)
1181 		l3.v4->check = 0;
1182 
1183 	/* tunnel packet */
1184 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1185 					 SKB_GSO_GRE_CSUM |
1186 					 SKB_GSO_UDP_TUNNEL |
1187 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1188 		/* reset l3&l4 pointers from outer to inner headers */
1189 		l3.hdr = skb_inner_network_header(skb);
1190 		l4.hdr = skb_inner_transport_header(skb);
1191 
1192 		/* Software should clear the IPv4's checksum field when
1193 		 * tso is needed.
1194 		 */
1195 		if (l3.v4->version == 4)
1196 			l3.v4->check = 0;
1197 	}
1198 
1199 	/* normal or tunnel packet */
1200 	l4_offset = l4.hdr - skb->data;
1201 
1202 	/* remove payload length from inner pseudo checksum when tso */
1203 	l4_paylen = skb->len - l4_offset;
1204 
1205 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1206 		hdr_len = sizeof(*l4.udp) + l4_offset;
1207 		csum_replace_by_diff(&l4.udp->check,
1208 				     (__force __wsum)htonl(l4_paylen));
1209 	} else {
1210 		hdr_len = (l4.tcp->doff << 2) + l4_offset;
1211 		csum_replace_by_diff(&l4.tcp->check,
1212 				     (__force __wsum)htonl(l4_paylen));
1213 	}
1214 
1215 	*send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
1216 
1217 	/* find the txbd field values */
1218 	*paylen_fdop_ol4cs = skb->len - hdr_len;
1219 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
1220 
1221 	/* offload outer UDP header checksum */
1222 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
1223 		hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
1224 
1225 	/* get MSS for TSO */
1226 	*mss = skb_shinfo(skb)->gso_size;
1227 
1228 	trace_hns3_tso(skb);
1229 
1230 	return 0;
1231 }
1232 
1233 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
1234 				u8 *il4_proto)
1235 {
1236 	union l3_hdr_info l3;
1237 	unsigned char *l4_hdr;
1238 	unsigned char *exthdr;
1239 	u8 l4_proto_tmp;
1240 	__be16 frag_off;
1241 
1242 	/* find outer header point */
1243 	l3.hdr = skb_network_header(skb);
1244 	l4_hdr = skb_transport_header(skb);
1245 
1246 	if (skb->protocol == htons(ETH_P_IPV6)) {
1247 		exthdr = l3.hdr + sizeof(*l3.v6);
1248 		l4_proto_tmp = l3.v6->nexthdr;
1249 		if (l4_hdr != exthdr)
1250 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1251 					 &l4_proto_tmp, &frag_off);
1252 	} else if (skb->protocol == htons(ETH_P_IP)) {
1253 		l4_proto_tmp = l3.v4->protocol;
1254 	} else {
1255 		return -EINVAL;
1256 	}
1257 
1258 	*ol4_proto = l4_proto_tmp;
1259 
1260 	/* tunnel packet */
1261 	if (!skb->encapsulation) {
1262 		*il4_proto = 0;
1263 		return 0;
1264 	}
1265 
1266 	/* find inner header point */
1267 	l3.hdr = skb_inner_network_header(skb);
1268 	l4_hdr = skb_inner_transport_header(skb);
1269 
1270 	if (l3.v6->version == 6) {
1271 		exthdr = l3.hdr + sizeof(*l3.v6);
1272 		l4_proto_tmp = l3.v6->nexthdr;
1273 		if (l4_hdr != exthdr)
1274 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1275 					 &l4_proto_tmp, &frag_off);
1276 	} else if (l3.v4->version == 4) {
1277 		l4_proto_tmp = l3.v4->protocol;
1278 	}
1279 
1280 	*il4_proto = l4_proto_tmp;
1281 
1282 	return 0;
1283 }
1284 
1285 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
1286  * and it is udp packet, which has a dest port as the IANA assigned.
1287  * the hardware is expected to do the checksum offload, but the
1288  * hardware will not do the checksum offload when udp dest port is
1289  * 4789, 4790 or 6081.
1290  */
1291 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
1292 {
1293 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1294 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
1295 	union l4_hdr_info l4;
1296 
1297 	/* device version above V3(include V3), the hardware can
1298 	 * do this checksum offload.
1299 	 */
1300 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1301 		return false;
1302 
1303 	l4.hdr = skb_transport_header(skb);
1304 
1305 	if (!(!skb->encapsulation &&
1306 	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
1307 	      l4.udp->dest == htons(GENEVE_UDP_PORT) ||
1308 	      l4.udp->dest == htons(4790))))
1309 		return false;
1310 
1311 	return true;
1312 }
1313 
1314 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1315 				  u32 *ol_type_vlan_len_msec)
1316 {
1317 	u32 l2_len, l3_len, l4_len;
1318 	unsigned char *il2_hdr;
1319 	union l3_hdr_info l3;
1320 	union l4_hdr_info l4;
1321 
1322 	l3.hdr = skb_network_header(skb);
1323 	l4.hdr = skb_transport_header(skb);
1324 
1325 	/* compute OL2 header size, defined in 2 Bytes */
1326 	l2_len = l3.hdr - skb->data;
1327 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
1328 
1329 	/* compute OL3 header size, defined in 4 Bytes */
1330 	l3_len = l4.hdr - l3.hdr;
1331 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
1332 
1333 	il2_hdr = skb_inner_mac_header(skb);
1334 	/* compute OL4 header size, defined in 4 Bytes */
1335 	l4_len = il2_hdr - l4.hdr;
1336 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
1337 
1338 	/* define outer network header type */
1339 	if (skb->protocol == htons(ETH_P_IP)) {
1340 		if (skb_is_gso(skb))
1341 			hns3_set_field(*ol_type_vlan_len_msec,
1342 				       HNS3_TXD_OL3T_S,
1343 				       HNS3_OL3T_IPV4_CSUM);
1344 		else
1345 			hns3_set_field(*ol_type_vlan_len_msec,
1346 				       HNS3_TXD_OL3T_S,
1347 				       HNS3_OL3T_IPV4_NO_CSUM);
1348 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
1349 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
1350 			       HNS3_OL3T_IPV6);
1351 	}
1352 
1353 	if (ol4_proto == IPPROTO_UDP)
1354 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1355 			       HNS3_TUN_MAC_IN_UDP);
1356 	else if (ol4_proto == IPPROTO_GRE)
1357 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1358 			       HNS3_TUN_NVGRE);
1359 }
1360 
1361 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1362 			   u8 il4_proto, u32 *type_cs_vlan_tso,
1363 			   u32 *ol_type_vlan_len_msec)
1364 {
1365 	unsigned char *l2_hdr = skb->data;
1366 	u32 l4_proto = ol4_proto;
1367 	union l4_hdr_info l4;
1368 	union l3_hdr_info l3;
1369 	u32 l2_len, l3_len;
1370 
1371 	l4.hdr = skb_transport_header(skb);
1372 	l3.hdr = skb_network_header(skb);
1373 
1374 	/* handle encapsulation skb */
1375 	if (skb->encapsulation) {
1376 		/* If this is a not UDP/GRE encapsulation skb */
1377 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
1378 			/* drop the skb tunnel packet if hardware don't support,
1379 			 * because hardware can't calculate csum when TSO.
1380 			 */
1381 			if (skb_is_gso(skb))
1382 				return -EDOM;
1383 
1384 			/* the stack computes the IP header already,
1385 			 * driver calculate l4 checksum when not TSO.
1386 			 */
1387 			return skb_checksum_help(skb);
1388 		}
1389 
1390 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
1391 
1392 		/* switch to inner header */
1393 		l2_hdr = skb_inner_mac_header(skb);
1394 		l3.hdr = skb_inner_network_header(skb);
1395 		l4.hdr = skb_inner_transport_header(skb);
1396 		l4_proto = il4_proto;
1397 	}
1398 
1399 	if (l3.v4->version == 4) {
1400 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1401 			       HNS3_L3T_IPV4);
1402 
1403 		/* the stack computes the IP header already, the only time we
1404 		 * need the hardware to recompute it is in the case of TSO.
1405 		 */
1406 		if (skb_is_gso(skb))
1407 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
1408 	} else if (l3.v6->version == 6) {
1409 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1410 			       HNS3_L3T_IPV6);
1411 	}
1412 
1413 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
1414 	l2_len = l3.hdr - l2_hdr;
1415 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
1416 
1417 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
1418 	l3_len = l4.hdr - l3.hdr;
1419 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
1420 
1421 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
1422 	switch (l4_proto) {
1423 	case IPPROTO_TCP:
1424 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1425 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1426 			       HNS3_L4T_TCP);
1427 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1428 			       l4.tcp->doff);
1429 		break;
1430 	case IPPROTO_UDP:
1431 		if (hns3_tunnel_csum_bug(skb)) {
1432 			int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
1433 
1434 			return ret ? ret : skb_checksum_help(skb);
1435 		}
1436 
1437 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1438 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1439 			       HNS3_L4T_UDP);
1440 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1441 			       (sizeof(struct udphdr) >> 2));
1442 		break;
1443 	case IPPROTO_SCTP:
1444 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1445 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1446 			       HNS3_L4T_SCTP);
1447 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1448 			       (sizeof(struct sctphdr) >> 2));
1449 		break;
1450 	default:
1451 		/* drop the skb tunnel packet if hardware don't support,
1452 		 * because hardware can't calculate csum when TSO.
1453 		 */
1454 		if (skb_is_gso(skb))
1455 			return -EDOM;
1456 
1457 		/* the stack computes the IP header already,
1458 		 * driver calculate l4 checksum when not TSO.
1459 		 */
1460 		return skb_checksum_help(skb);
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1467 			     struct sk_buff *skb)
1468 {
1469 	struct hnae3_handle *handle = tx_ring->tqp->handle;
1470 	struct hnae3_ae_dev *ae_dev;
1471 	struct vlan_ethhdr *vhdr;
1472 	int rc;
1473 
1474 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
1475 	      skb_vlan_tag_present(skb)))
1476 		return 0;
1477 
1478 	/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1479 	 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1480 	 * will cause RAS error.
1481 	 */
1482 	ae_dev = pci_get_drvdata(handle->pdev);
1483 	if (unlikely(skb_vlan_tagged_multi(skb) &&
1484 		     ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1485 		     handle->port_base_vlan_state ==
1486 		     HNAE3_PORT_BASE_VLAN_ENABLE))
1487 		return -EINVAL;
1488 
1489 	if (skb->protocol == htons(ETH_P_8021Q) &&
1490 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1491 		/* When HW VLAN acceleration is turned off, and the stack
1492 		 * sets the protocol to 802.1q, the driver just need to
1493 		 * set the protocol to the encapsulated ethertype.
1494 		 */
1495 		skb->protocol = vlan_get_protocol(skb);
1496 		return 0;
1497 	}
1498 
1499 	if (skb_vlan_tag_present(skb)) {
1500 		/* Based on hw strategy, use out_vtag in two layer tag case,
1501 		 * and use inner_vtag in one tag case.
1502 		 */
1503 		if (skb->protocol == htons(ETH_P_8021Q) &&
1504 		    handle->port_base_vlan_state ==
1505 		    HNAE3_PORT_BASE_VLAN_DISABLE)
1506 			rc = HNS3_OUTER_VLAN_TAG;
1507 		else
1508 			rc = HNS3_INNER_VLAN_TAG;
1509 
1510 		skb->protocol = vlan_get_protocol(skb);
1511 		return rc;
1512 	}
1513 
1514 	rc = skb_cow_head(skb, 0);
1515 	if (unlikely(rc < 0))
1516 		return rc;
1517 
1518 	vhdr = (struct vlan_ethhdr *)skb->data;
1519 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1520 					 & VLAN_PRIO_MASK);
1521 
1522 	skb->protocol = vlan_get_protocol(skb);
1523 	return 0;
1524 }
1525 
1526 /* check if the hardware is capable of checksum offloading */
1527 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1528 {
1529 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1530 
1531 	/* Kindly note, due to backward compatibility of the TX descriptor,
1532 	 * HW checksum of the non-IP packets and GSO packets is handled at
1533 	 * different place in the following code
1534 	 */
1535 	if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1536 	    !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1537 		return false;
1538 
1539 	return true;
1540 }
1541 
1542 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1543 			      struct sk_buff *skb, struct hns3_desc *desc,
1544 			      struct hns3_desc_cb *desc_cb)
1545 {
1546 	u32 ol_type_vlan_len_msec = 0;
1547 	u32 paylen_ol4cs = skb->len;
1548 	u32 type_cs_vlan_tso = 0;
1549 	u16 mss_hw_csum = 0;
1550 	u16 inner_vtag = 0;
1551 	u16 out_vtag = 0;
1552 	int ret;
1553 
1554 	ret = hns3_handle_vtags(ring, skb);
1555 	if (unlikely(ret < 0)) {
1556 		u64_stats_update_begin(&ring->syncp);
1557 		ring->stats.tx_vlan_err++;
1558 		u64_stats_update_end(&ring->syncp);
1559 		return ret;
1560 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1561 		inner_vtag = skb_vlan_tag_get(skb);
1562 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1563 				VLAN_PRIO_MASK;
1564 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1565 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1566 		out_vtag = skb_vlan_tag_get(skb);
1567 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1568 				VLAN_PRIO_MASK;
1569 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1570 			       1);
1571 	}
1572 
1573 	desc_cb->send_bytes = skb->len;
1574 
1575 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1576 		u8 ol4_proto, il4_proto;
1577 
1578 		if (hns3_check_hw_tx_csum(skb)) {
1579 			/* set checksum start and offset, defined in 2 Bytes */
1580 			hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1581 				       skb_checksum_start_offset(skb) >> 1);
1582 			hns3_set_field(ol_type_vlan_len_msec,
1583 				       HNS3_TXD_CSUM_OFFSET_S,
1584 				       skb->csum_offset >> 1);
1585 			mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1586 			goto out_hw_tx_csum;
1587 		}
1588 
1589 		skb_reset_mac_len(skb);
1590 
1591 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1592 		if (unlikely(ret < 0)) {
1593 			u64_stats_update_begin(&ring->syncp);
1594 			ring->stats.tx_l4_proto_err++;
1595 			u64_stats_update_end(&ring->syncp);
1596 			return ret;
1597 		}
1598 
1599 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1600 				      &type_cs_vlan_tso,
1601 				      &ol_type_vlan_len_msec);
1602 		if (unlikely(ret < 0)) {
1603 			u64_stats_update_begin(&ring->syncp);
1604 			ring->stats.tx_l2l3l4_err++;
1605 			u64_stats_update_end(&ring->syncp);
1606 			return ret;
1607 		}
1608 
1609 		ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum,
1610 				   &type_cs_vlan_tso, &desc_cb->send_bytes);
1611 		if (unlikely(ret < 0)) {
1612 			u64_stats_update_begin(&ring->syncp);
1613 			ring->stats.tx_tso_err++;
1614 			u64_stats_update_end(&ring->syncp);
1615 			return ret;
1616 		}
1617 	}
1618 
1619 out_hw_tx_csum:
1620 	/* Set txbd */
1621 	desc->tx.ol_type_vlan_len_msec =
1622 		cpu_to_le32(ol_type_vlan_len_msec);
1623 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1624 	desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs);
1625 	desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum);
1626 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1627 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1628 
1629 	return 0;
1630 }
1631 
1632 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma,
1633 			  unsigned int size)
1634 {
1635 #define HNS3_LIKELY_BD_NUM	1
1636 
1637 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1638 	unsigned int frag_buf_num;
1639 	int k, sizeoflast;
1640 
1641 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1642 		desc->addr = cpu_to_le64(dma);
1643 		desc->tx.send_size = cpu_to_le16(size);
1644 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1645 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1646 
1647 		trace_hns3_tx_desc(ring, ring->next_to_use);
1648 		ring_ptr_move_fw(ring, next_to_use);
1649 		return HNS3_LIKELY_BD_NUM;
1650 	}
1651 
1652 	frag_buf_num = hns3_tx_bd_count(size);
1653 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1654 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1655 
1656 	/* When frag size is bigger than hardware limit, split this frag */
1657 	for (k = 0; k < frag_buf_num; k++) {
1658 		/* now, fill the descriptor */
1659 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1660 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1661 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1662 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1663 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1664 
1665 		trace_hns3_tx_desc(ring, ring->next_to_use);
1666 		/* move ring pointer to next */
1667 		ring_ptr_move_fw(ring, next_to_use);
1668 
1669 		desc = &ring->desc[ring->next_to_use];
1670 	}
1671 
1672 	return frag_buf_num;
1673 }
1674 
1675 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
1676 				  unsigned int type)
1677 {
1678 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1679 	struct device *dev = ring_to_dev(ring);
1680 	unsigned int size;
1681 	dma_addr_t dma;
1682 
1683 	if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) {
1684 		struct sk_buff *skb = (struct sk_buff *)priv;
1685 
1686 		size = skb_headlen(skb);
1687 		if (!size)
1688 			return 0;
1689 
1690 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1691 	} else if (type & DESC_TYPE_BOUNCE_HEAD) {
1692 		/* Head data has been filled in hns3_handle_tx_bounce(),
1693 		 * just return 0 here.
1694 		 */
1695 		return 0;
1696 	} else {
1697 		skb_frag_t *frag = (skb_frag_t *)priv;
1698 
1699 		size = skb_frag_size(frag);
1700 		if (!size)
1701 			return 0;
1702 
1703 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1704 	}
1705 
1706 	if (unlikely(dma_mapping_error(dev, dma))) {
1707 		u64_stats_update_begin(&ring->syncp);
1708 		ring->stats.sw_err_cnt++;
1709 		u64_stats_update_end(&ring->syncp);
1710 		return -ENOMEM;
1711 	}
1712 
1713 	desc_cb->priv = priv;
1714 	desc_cb->length = size;
1715 	desc_cb->dma = dma;
1716 	desc_cb->type = type;
1717 
1718 	return hns3_fill_desc(ring, dma, size);
1719 }
1720 
1721 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1722 				    unsigned int bd_num)
1723 {
1724 	unsigned int size;
1725 	int i;
1726 
1727 	size = skb_headlen(skb);
1728 	while (size > HNS3_MAX_BD_SIZE) {
1729 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1730 		size -= HNS3_MAX_BD_SIZE;
1731 
1732 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1733 			return bd_num;
1734 	}
1735 
1736 	if (size) {
1737 		bd_size[bd_num++] = size;
1738 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1739 			return bd_num;
1740 	}
1741 
1742 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1743 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1744 		size = skb_frag_size(frag);
1745 		if (!size)
1746 			continue;
1747 
1748 		while (size > HNS3_MAX_BD_SIZE) {
1749 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1750 			size -= HNS3_MAX_BD_SIZE;
1751 
1752 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1753 				return bd_num;
1754 		}
1755 
1756 		bd_size[bd_num++] = size;
1757 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1758 			return bd_num;
1759 	}
1760 
1761 	return bd_num;
1762 }
1763 
1764 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1765 				   u8 max_non_tso_bd_num, unsigned int bd_num,
1766 				   unsigned int recursion_level)
1767 {
1768 #define HNS3_MAX_RECURSION_LEVEL	24
1769 
1770 	struct sk_buff *frag_skb;
1771 
1772 	/* If the total len is within the max bd limit */
1773 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1774 		   !skb_has_frag_list(skb) &&
1775 		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1776 		return skb_shinfo(skb)->nr_frags + 1U;
1777 
1778 	if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1779 		return UINT_MAX;
1780 
1781 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1782 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1783 		return bd_num;
1784 
1785 	skb_walk_frags(skb, frag_skb) {
1786 		bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1787 					bd_num, recursion_level + 1);
1788 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1789 			return bd_num;
1790 	}
1791 
1792 	return bd_num;
1793 }
1794 
1795 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1796 {
1797 	if (!skb->encapsulation)
1798 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1799 
1800 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1801 }
1802 
1803 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1804  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1805  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1806  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1807  * than MSS except the last max_non_tso_bd_num - 1 frags.
1808  */
1809 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1810 				     unsigned int bd_num, u8 max_non_tso_bd_num)
1811 {
1812 	unsigned int tot_len = 0;
1813 	int i;
1814 
1815 	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1816 		tot_len += bd_size[i];
1817 
1818 	/* ensure the first max_non_tso_bd_num frags is greater than
1819 	 * mss + header
1820 	 */
1821 	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1822 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1823 		return true;
1824 
1825 	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1826 	 * than mss except the last one.
1827 	 */
1828 	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1829 		tot_len -= bd_size[i];
1830 		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1831 
1832 		if (tot_len < skb_shinfo(skb)->gso_size)
1833 			return true;
1834 	}
1835 
1836 	return false;
1837 }
1838 
1839 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1840 {
1841 	int i;
1842 
1843 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1844 		size[i] = skb_frag_size(&shinfo->frags[i]);
1845 }
1846 
1847 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1848 			      struct sk_buff *skb,
1849 			      u8 max_non_tso_bd_num,
1850 			      unsigned int bd_num)
1851 {
1852 	/* 'bd_num == UINT_MAX' means the skb' fraglist has a
1853 	 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1854 	 */
1855 	if (bd_num == UINT_MAX) {
1856 		u64_stats_update_begin(&ring->syncp);
1857 		ring->stats.over_max_recursion++;
1858 		u64_stats_update_end(&ring->syncp);
1859 		return -ENOMEM;
1860 	}
1861 
1862 	/* The skb->len has exceeded the hw limitation, linearization
1863 	 * will not help.
1864 	 */
1865 	if (skb->len > HNS3_MAX_TSO_SIZE ||
1866 	    (!skb_is_gso(skb) && skb->len >
1867 	     HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))) {
1868 		u64_stats_update_begin(&ring->syncp);
1869 		ring->stats.hw_limitation++;
1870 		u64_stats_update_end(&ring->syncp);
1871 		return -ENOMEM;
1872 	}
1873 
1874 	if (__skb_linearize(skb)) {
1875 		u64_stats_update_begin(&ring->syncp);
1876 		ring->stats.sw_err_cnt++;
1877 		u64_stats_update_end(&ring->syncp);
1878 		return -ENOMEM;
1879 	}
1880 
1881 	return 0;
1882 }
1883 
1884 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1885 				  struct net_device *netdev,
1886 				  struct sk_buff *skb)
1887 {
1888 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1889 	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1890 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1891 	unsigned int bd_num;
1892 
1893 	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1894 	if (unlikely(bd_num > max_non_tso_bd_num)) {
1895 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1896 		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
1897 					      max_non_tso_bd_num)) {
1898 			trace_hns3_over_max_bd(skb);
1899 			goto out;
1900 		}
1901 
1902 		if (hns3_skb_linearize(ring, skb, max_non_tso_bd_num,
1903 				       bd_num))
1904 			return -ENOMEM;
1905 
1906 		bd_num = hns3_tx_bd_count(skb->len);
1907 
1908 		u64_stats_update_begin(&ring->syncp);
1909 		ring->stats.tx_copy++;
1910 		u64_stats_update_end(&ring->syncp);
1911 	}
1912 
1913 out:
1914 	if (likely(ring_space(ring) >= bd_num))
1915 		return bd_num;
1916 
1917 	netif_stop_subqueue(netdev, ring->queue_index);
1918 	smp_mb(); /* Memory barrier before checking ring_space */
1919 
1920 	/* Start queue in case hns3_clean_tx_ring has just made room
1921 	 * available and has not seen the queue stopped state performed
1922 	 * by netif_stop_subqueue above.
1923 	 */
1924 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1925 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1926 		netif_start_subqueue(netdev, ring->queue_index);
1927 		return bd_num;
1928 	}
1929 
1930 	u64_stats_update_begin(&ring->syncp);
1931 	ring->stats.tx_busy++;
1932 	u64_stats_update_end(&ring->syncp);
1933 
1934 	return -EBUSY;
1935 }
1936 
1937 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1938 {
1939 	struct device *dev = ring_to_dev(ring);
1940 	unsigned int i;
1941 
1942 	for (i = 0; i < ring->desc_num; i++) {
1943 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1944 		struct hns3_desc_cb *desc_cb;
1945 
1946 		memset(desc, 0, sizeof(*desc));
1947 
1948 		/* check if this is where we started */
1949 		if (ring->next_to_use == next_to_use_orig)
1950 			break;
1951 
1952 		/* rollback one */
1953 		ring_ptr_move_bw(ring, next_to_use);
1954 
1955 		desc_cb = &ring->desc_cb[ring->next_to_use];
1956 
1957 		if (!desc_cb->dma)
1958 			continue;
1959 
1960 		/* unmap the descriptor dma address */
1961 		if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
1962 			dma_unmap_single(dev, desc_cb->dma, desc_cb->length,
1963 					 DMA_TO_DEVICE);
1964 		else if (desc_cb->type &
1965 			 (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL))
1966 			hns3_tx_spare_rollback(ring, desc_cb->length);
1967 		else if (desc_cb->length)
1968 			dma_unmap_page(dev, desc_cb->dma, desc_cb->length,
1969 				       DMA_TO_DEVICE);
1970 
1971 		desc_cb->length = 0;
1972 		desc_cb->dma = 0;
1973 		desc_cb->type = DESC_TYPE_UNKNOWN;
1974 	}
1975 }
1976 
1977 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1978 				 struct sk_buff *skb, unsigned int type)
1979 {
1980 	struct sk_buff *frag_skb;
1981 	int i, ret, bd_num = 0;
1982 
1983 	ret = hns3_map_and_fill_desc(ring, skb, type);
1984 	if (unlikely(ret < 0))
1985 		return ret;
1986 
1987 	bd_num += ret;
1988 
1989 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1990 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1991 
1992 		ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE);
1993 		if (unlikely(ret < 0))
1994 			return ret;
1995 
1996 		bd_num += ret;
1997 	}
1998 
1999 	skb_walk_frags(skb, frag_skb) {
2000 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
2001 					    DESC_TYPE_FRAGLIST_SKB);
2002 		if (unlikely(ret < 0))
2003 			return ret;
2004 
2005 		bd_num += ret;
2006 	}
2007 
2008 	return bd_num;
2009 }
2010 
2011 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
2012 			     bool doorbell)
2013 {
2014 	ring->pending_buf += num;
2015 
2016 	if (!doorbell) {
2017 		u64_stats_update_begin(&ring->syncp);
2018 		ring->stats.tx_more++;
2019 		u64_stats_update_end(&ring->syncp);
2020 		return;
2021 	}
2022 
2023 	if (!ring->pending_buf)
2024 		return;
2025 
2026 	writel(ring->pending_buf,
2027 	       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
2028 	ring->pending_buf = 0;
2029 	WRITE_ONCE(ring->last_to_use, ring->next_to_use);
2030 }
2031 
2032 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
2033 		      struct hns3_desc *desc)
2034 {
2035 	struct hnae3_handle *h = hns3_get_handle(netdev);
2036 
2037 	if (!(h->ae_algo->ops->set_tx_hwts_info &&
2038 	      h->ae_algo->ops->set_tx_hwts_info(h, skb)))
2039 		return;
2040 
2041 	desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
2042 }
2043 
2044 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring,
2045 				 struct sk_buff *skb)
2046 {
2047 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2048 	unsigned int type = DESC_TYPE_BOUNCE_HEAD;
2049 	unsigned int size = skb_headlen(skb);
2050 	dma_addr_t dma;
2051 	int bd_num = 0;
2052 	u32 cb_len;
2053 	void *buf;
2054 	int ret;
2055 
2056 	if (skb->len <= ring->tx_copybreak) {
2057 		size = skb->len;
2058 		type = DESC_TYPE_BOUNCE_ALL;
2059 	}
2060 
2061 	/* hns3_can_use_tx_bounce() is called to ensure the below
2062 	 * function can always return the tx buffer.
2063 	 */
2064 	buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len);
2065 
2066 	ret = skb_copy_bits(skb, 0, buf, size);
2067 	if (unlikely(ret < 0)) {
2068 		hns3_tx_spare_rollback(ring, cb_len);
2069 		u64_stats_update_begin(&ring->syncp);
2070 		ring->stats.copy_bits_err++;
2071 		u64_stats_update_end(&ring->syncp);
2072 		return ret;
2073 	}
2074 
2075 	desc_cb->priv = skb;
2076 	desc_cb->length = cb_len;
2077 	desc_cb->dma = dma;
2078 	desc_cb->type = type;
2079 
2080 	bd_num += hns3_fill_desc(ring, dma, size);
2081 
2082 	if (type == DESC_TYPE_BOUNCE_HEAD) {
2083 		ret = hns3_fill_skb_to_desc(ring, skb,
2084 					    DESC_TYPE_BOUNCE_HEAD);
2085 		if (unlikely(ret < 0))
2086 			return ret;
2087 
2088 		bd_num += ret;
2089 	}
2090 
2091 	dma_sync_single_for_device(ring_to_dev(ring), dma, size,
2092 				   DMA_TO_DEVICE);
2093 
2094 	u64_stats_update_begin(&ring->syncp);
2095 	ring->stats.tx_bounce++;
2096 	u64_stats_update_end(&ring->syncp);
2097 	return bd_num;
2098 }
2099 
2100 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring,
2101 			      struct sk_buff *skb)
2102 {
2103 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2104 	u32 nfrag = skb_shinfo(skb)->nr_frags + 1;
2105 	struct sg_table *sgt;
2106 	int i, bd_num = 0;
2107 	dma_addr_t dma;
2108 	u32 cb_len;
2109 	int nents;
2110 
2111 	if (skb_has_frag_list(skb))
2112 		nfrag = HNS3_MAX_TSO_BD_NUM;
2113 
2114 	/* hns3_can_use_tx_sgl() is called to ensure the below
2115 	 * function can always return the tx buffer.
2116 	 */
2117 	sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag),
2118 				  &dma, &cb_len);
2119 
2120 	/* scatterlist follows by the sg table */
2121 	sgt->sgl = (struct scatterlist *)(sgt + 1);
2122 	sg_init_table(sgt->sgl, nfrag);
2123 	nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len);
2124 	if (unlikely(nents < 0)) {
2125 		hns3_tx_spare_rollback(ring, cb_len);
2126 		u64_stats_update_begin(&ring->syncp);
2127 		ring->stats.skb2sgl_err++;
2128 		u64_stats_update_end(&ring->syncp);
2129 		return -ENOMEM;
2130 	}
2131 
2132 	sgt->orig_nents = nents;
2133 	sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
2134 				DMA_TO_DEVICE);
2135 	if (unlikely(!sgt->nents)) {
2136 		hns3_tx_spare_rollback(ring, cb_len);
2137 		u64_stats_update_begin(&ring->syncp);
2138 		ring->stats.map_sg_err++;
2139 		u64_stats_update_end(&ring->syncp);
2140 		return -ENOMEM;
2141 	}
2142 
2143 	desc_cb->priv = skb;
2144 	desc_cb->length = cb_len;
2145 	desc_cb->dma = dma;
2146 	desc_cb->type = DESC_TYPE_SGL_SKB;
2147 
2148 	for (i = 0; i < sgt->nents; i++)
2149 		bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i),
2150 					 sg_dma_len(sgt->sgl + i));
2151 
2152 	u64_stats_update_begin(&ring->syncp);
2153 	ring->stats.tx_sgl++;
2154 	u64_stats_update_end(&ring->syncp);
2155 
2156 	return bd_num;
2157 }
2158 
2159 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring,
2160 				    struct sk_buff *skb)
2161 {
2162 	u32 space;
2163 
2164 	if (!ring->tx_spare)
2165 		goto out;
2166 
2167 	space = hns3_tx_spare_space(ring);
2168 
2169 	if (hns3_can_use_tx_sgl(ring, skb, space))
2170 		return hns3_handle_tx_sgl(ring, skb);
2171 
2172 	if (hns3_can_use_tx_bounce(ring, skb, space))
2173 		return hns3_handle_tx_bounce(ring, skb);
2174 
2175 out:
2176 	return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
2177 }
2178 
2179 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
2180 {
2181 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2182 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
2183 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2184 	struct netdev_queue *dev_queue;
2185 	int pre_ntu, next_to_use_head;
2186 	bool doorbell;
2187 	int ret;
2188 
2189 	/* Hardware can only handle short frames above 32 bytes */
2190 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
2191 		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2192 
2193 		u64_stats_update_begin(&ring->syncp);
2194 		ring->stats.sw_err_cnt++;
2195 		u64_stats_update_end(&ring->syncp);
2196 
2197 		return NETDEV_TX_OK;
2198 	}
2199 
2200 	/* Prefetch the data used later */
2201 	prefetch(skb->data);
2202 
2203 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
2204 	if (unlikely(ret <= 0)) {
2205 		if (ret == -EBUSY) {
2206 			hns3_tx_doorbell(ring, 0, true);
2207 			return NETDEV_TX_BUSY;
2208 		}
2209 
2210 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
2211 		goto out_err_tx_ok;
2212 	}
2213 
2214 	next_to_use_head = ring->next_to_use;
2215 
2216 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
2217 				 desc_cb);
2218 	if (unlikely(ret < 0))
2219 		goto fill_err;
2220 
2221 	/* 'ret < 0' means filling error, 'ret == 0' means skb->len is
2222 	 * zero, which is unlikely, and 'ret > 0' means how many tx desc
2223 	 * need to be notified to the hw.
2224 	 */
2225 	ret = hns3_handle_desc_filling(ring, skb);
2226 	if (unlikely(ret <= 0))
2227 		goto fill_err;
2228 
2229 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
2230 					(ring->desc_num - 1);
2231 
2232 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
2233 		hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
2234 
2235 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
2236 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
2237 	trace_hns3_tx_desc(ring, pre_ntu);
2238 
2239 	skb_tx_timestamp(skb);
2240 
2241 	/* Complete translate all packets */
2242 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
2243 	doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
2244 					  netdev_xmit_more());
2245 	hns3_tx_doorbell(ring, ret, doorbell);
2246 
2247 	return NETDEV_TX_OK;
2248 
2249 fill_err:
2250 	hns3_clear_desc(ring, next_to_use_head);
2251 
2252 out_err_tx_ok:
2253 	dev_kfree_skb_any(skb);
2254 	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2255 	return NETDEV_TX_OK;
2256 }
2257 
2258 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
2259 {
2260 	struct hnae3_handle *h = hns3_get_handle(netdev);
2261 	struct sockaddr *mac_addr = p;
2262 	int ret;
2263 
2264 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
2265 		return -EADDRNOTAVAIL;
2266 
2267 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
2268 		netdev_info(netdev, "already using mac address %pM\n",
2269 			    mac_addr->sa_data);
2270 		return 0;
2271 	}
2272 
2273 	/* For VF device, if there is a perm_addr, then the user will not
2274 	 * be allowed to change the address.
2275 	 */
2276 	if (!hns3_is_phys_func(h->pdev) &&
2277 	    !is_zero_ether_addr(netdev->perm_addr)) {
2278 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
2279 			   netdev->perm_addr, mac_addr->sa_data);
2280 		return -EPERM;
2281 	}
2282 
2283 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
2284 	if (ret) {
2285 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
2286 		return ret;
2287 	}
2288 
2289 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
2290 
2291 	return 0;
2292 }
2293 
2294 static int hns3_nic_do_ioctl(struct net_device *netdev,
2295 			     struct ifreq *ifr, int cmd)
2296 {
2297 	struct hnae3_handle *h = hns3_get_handle(netdev);
2298 
2299 	if (!netif_running(netdev))
2300 		return -EINVAL;
2301 
2302 	if (!h->ae_algo->ops->do_ioctl)
2303 		return -EOPNOTSUPP;
2304 
2305 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
2306 }
2307 
2308 static int hns3_nic_set_features(struct net_device *netdev,
2309 				 netdev_features_t features)
2310 {
2311 	netdev_features_t changed = netdev->features ^ features;
2312 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2313 	struct hnae3_handle *h = priv->ae_handle;
2314 	bool enable;
2315 	int ret;
2316 
2317 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
2318 		enable = !!(features & NETIF_F_GRO_HW);
2319 		ret = h->ae_algo->ops->set_gro_en(h, enable);
2320 		if (ret)
2321 			return ret;
2322 	}
2323 
2324 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
2325 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
2326 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
2327 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
2328 		if (ret)
2329 			return ret;
2330 	}
2331 
2332 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
2333 		enable = !!(features & NETIF_F_NTUPLE);
2334 		h->ae_algo->ops->enable_fd(h, enable);
2335 	}
2336 
2337 	if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
2338 	    h->ae_algo->ops->cls_flower_active(h)) {
2339 		netdev_err(netdev,
2340 			   "there are offloaded TC filters active, cannot disable HW TC offload");
2341 		return -EINVAL;
2342 	}
2343 
2344 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2345 	    h->ae_algo->ops->enable_vlan_filter) {
2346 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
2347 		ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
2348 		if (ret)
2349 			return ret;
2350 	}
2351 
2352 	netdev->features = features;
2353 	return 0;
2354 }
2355 
2356 static netdev_features_t hns3_features_check(struct sk_buff *skb,
2357 					     struct net_device *dev,
2358 					     netdev_features_t features)
2359 {
2360 #define HNS3_MAX_HDR_LEN	480U
2361 #define HNS3_MAX_L4_HDR_LEN	60U
2362 
2363 	size_t len;
2364 
2365 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2366 		return features;
2367 
2368 	if (skb->encapsulation)
2369 		len = skb_inner_transport_header(skb) - skb->data;
2370 	else
2371 		len = skb_transport_header(skb) - skb->data;
2372 
2373 	/* Assume L4 is 60 byte as TCP is the only protocol with a
2374 	 * a flexible value, and it's max len is 60 bytes.
2375 	 */
2376 	len += HNS3_MAX_L4_HDR_LEN;
2377 
2378 	/* Hardware only supports checksum on the skb with a max header
2379 	 * len of 480 bytes.
2380 	 */
2381 	if (len > HNS3_MAX_HDR_LEN)
2382 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2383 
2384 	return features;
2385 }
2386 
2387 static void hns3_nic_get_stats64(struct net_device *netdev,
2388 				 struct rtnl_link_stats64 *stats)
2389 {
2390 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2391 	int queue_num = priv->ae_handle->kinfo.num_tqps;
2392 	struct hnae3_handle *handle = priv->ae_handle;
2393 	struct hns3_enet_ring *ring;
2394 	u64 rx_length_errors = 0;
2395 	u64 rx_crc_errors = 0;
2396 	u64 rx_multicast = 0;
2397 	unsigned int start;
2398 	u64 tx_errors = 0;
2399 	u64 rx_errors = 0;
2400 	unsigned int idx;
2401 	u64 tx_bytes = 0;
2402 	u64 rx_bytes = 0;
2403 	u64 tx_pkts = 0;
2404 	u64 rx_pkts = 0;
2405 	u64 tx_drop = 0;
2406 	u64 rx_drop = 0;
2407 
2408 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
2409 		return;
2410 
2411 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
2412 
2413 	for (idx = 0; idx < queue_num; idx++) {
2414 		/* fetch the tx stats */
2415 		ring = &priv->ring[idx];
2416 		do {
2417 			start = u64_stats_fetch_begin_irq(&ring->syncp);
2418 			tx_bytes += ring->stats.tx_bytes;
2419 			tx_pkts += ring->stats.tx_pkts;
2420 			tx_drop += ring->stats.sw_err_cnt;
2421 			tx_drop += ring->stats.tx_vlan_err;
2422 			tx_drop += ring->stats.tx_l4_proto_err;
2423 			tx_drop += ring->stats.tx_l2l3l4_err;
2424 			tx_drop += ring->stats.tx_tso_err;
2425 			tx_drop += ring->stats.over_max_recursion;
2426 			tx_drop += ring->stats.hw_limitation;
2427 			tx_drop += ring->stats.copy_bits_err;
2428 			tx_drop += ring->stats.skb2sgl_err;
2429 			tx_drop += ring->stats.map_sg_err;
2430 			tx_errors += ring->stats.sw_err_cnt;
2431 			tx_errors += ring->stats.tx_vlan_err;
2432 			tx_errors += ring->stats.tx_l4_proto_err;
2433 			tx_errors += ring->stats.tx_l2l3l4_err;
2434 			tx_errors += ring->stats.tx_tso_err;
2435 			tx_errors += ring->stats.over_max_recursion;
2436 			tx_errors += ring->stats.hw_limitation;
2437 			tx_errors += ring->stats.copy_bits_err;
2438 			tx_errors += ring->stats.skb2sgl_err;
2439 			tx_errors += ring->stats.map_sg_err;
2440 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
2441 
2442 		/* fetch the rx stats */
2443 		ring = &priv->ring[idx + queue_num];
2444 		do {
2445 			start = u64_stats_fetch_begin_irq(&ring->syncp);
2446 			rx_bytes += ring->stats.rx_bytes;
2447 			rx_pkts += ring->stats.rx_pkts;
2448 			rx_drop += ring->stats.l2_err;
2449 			rx_errors += ring->stats.l2_err;
2450 			rx_errors += ring->stats.l3l4_csum_err;
2451 			rx_crc_errors += ring->stats.l2_err;
2452 			rx_multicast += ring->stats.rx_multicast;
2453 			rx_length_errors += ring->stats.err_pkt_len;
2454 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
2455 	}
2456 
2457 	stats->tx_bytes = tx_bytes;
2458 	stats->tx_packets = tx_pkts;
2459 	stats->rx_bytes = rx_bytes;
2460 	stats->rx_packets = rx_pkts;
2461 
2462 	stats->rx_errors = rx_errors;
2463 	stats->multicast = rx_multicast;
2464 	stats->rx_length_errors = rx_length_errors;
2465 	stats->rx_crc_errors = rx_crc_errors;
2466 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
2467 
2468 	stats->tx_errors = tx_errors;
2469 	stats->rx_dropped = rx_drop;
2470 	stats->tx_dropped = tx_drop;
2471 	stats->collisions = netdev->stats.collisions;
2472 	stats->rx_over_errors = netdev->stats.rx_over_errors;
2473 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
2474 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
2475 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
2476 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
2477 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
2478 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
2479 	stats->tx_window_errors = netdev->stats.tx_window_errors;
2480 	stats->rx_compressed = netdev->stats.rx_compressed;
2481 	stats->tx_compressed = netdev->stats.tx_compressed;
2482 }
2483 
2484 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
2485 {
2486 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2487 	struct hnae3_knic_private_info *kinfo;
2488 	u8 tc = mqprio_qopt->qopt.num_tc;
2489 	u16 mode = mqprio_qopt->mode;
2490 	u8 hw = mqprio_qopt->qopt.hw;
2491 	struct hnae3_handle *h;
2492 
2493 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
2494 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
2495 		return -EOPNOTSUPP;
2496 
2497 	if (tc > HNAE3_MAX_TC)
2498 		return -EINVAL;
2499 
2500 	if (!netdev)
2501 		return -EINVAL;
2502 
2503 	h = hns3_get_handle(netdev);
2504 	kinfo = &h->kinfo;
2505 
2506 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
2507 
2508 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
2509 		kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
2510 }
2511 
2512 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
2513 				    struct flow_cls_offload *flow)
2514 {
2515 	int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
2516 	struct hnae3_handle *h = hns3_get_handle(priv->netdev);
2517 
2518 	switch (flow->command) {
2519 	case FLOW_CLS_REPLACE:
2520 		if (h->ae_algo->ops->add_cls_flower)
2521 			return h->ae_algo->ops->add_cls_flower(h, flow, tc);
2522 		break;
2523 	case FLOW_CLS_DESTROY:
2524 		if (h->ae_algo->ops->del_cls_flower)
2525 			return h->ae_algo->ops->del_cls_flower(h, flow);
2526 		break;
2527 	default:
2528 		break;
2529 	}
2530 
2531 	return -EOPNOTSUPP;
2532 }
2533 
2534 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2535 				  void *cb_priv)
2536 {
2537 	struct hns3_nic_priv *priv = cb_priv;
2538 
2539 	if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
2540 		return -EOPNOTSUPP;
2541 
2542 	switch (type) {
2543 	case TC_SETUP_CLSFLOWER:
2544 		return hns3_setup_tc_cls_flower(priv, type_data);
2545 	default:
2546 		return -EOPNOTSUPP;
2547 	}
2548 }
2549 
2550 static LIST_HEAD(hns3_block_cb_list);
2551 
2552 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
2553 			     void *type_data)
2554 {
2555 	struct hns3_nic_priv *priv = netdev_priv(dev);
2556 	int ret;
2557 
2558 	switch (type) {
2559 	case TC_SETUP_QDISC_MQPRIO:
2560 		ret = hns3_setup_tc(dev, type_data);
2561 		break;
2562 	case TC_SETUP_BLOCK:
2563 		ret = flow_block_cb_setup_simple(type_data,
2564 						 &hns3_block_cb_list,
2565 						 hns3_setup_tc_block_cb,
2566 						 priv, priv, true);
2567 		break;
2568 	default:
2569 		return -EOPNOTSUPP;
2570 	}
2571 
2572 	return ret;
2573 }
2574 
2575 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
2576 				__be16 proto, u16 vid)
2577 {
2578 	struct hnae3_handle *h = hns3_get_handle(netdev);
2579 	int ret = -EIO;
2580 
2581 	if (h->ae_algo->ops->set_vlan_filter)
2582 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
2583 
2584 	return ret;
2585 }
2586 
2587 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
2588 				 __be16 proto, u16 vid)
2589 {
2590 	struct hnae3_handle *h = hns3_get_handle(netdev);
2591 	int ret = -EIO;
2592 
2593 	if (h->ae_algo->ops->set_vlan_filter)
2594 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
2595 
2596 	return ret;
2597 }
2598 
2599 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
2600 				u8 qos, __be16 vlan_proto)
2601 {
2602 	struct hnae3_handle *h = hns3_get_handle(netdev);
2603 	int ret = -EIO;
2604 
2605 	netif_dbg(h, drv, netdev,
2606 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
2607 		  vf, vlan, qos, ntohs(vlan_proto));
2608 
2609 	if (h->ae_algo->ops->set_vf_vlan_filter)
2610 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
2611 							  qos, vlan_proto);
2612 
2613 	return ret;
2614 }
2615 
2616 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
2617 {
2618 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2619 
2620 	if (hns3_nic_resetting(netdev))
2621 		return -EBUSY;
2622 
2623 	if (!handle->ae_algo->ops->set_vf_spoofchk)
2624 		return -EOPNOTSUPP;
2625 
2626 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
2627 }
2628 
2629 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
2630 {
2631 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2632 
2633 	if (!handle->ae_algo->ops->set_vf_trust)
2634 		return -EOPNOTSUPP;
2635 
2636 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
2637 }
2638 
2639 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
2640 {
2641 	struct hnae3_handle *h = hns3_get_handle(netdev);
2642 	int ret;
2643 
2644 	if (hns3_nic_resetting(netdev))
2645 		return -EBUSY;
2646 
2647 	if (!h->ae_algo->ops->set_mtu)
2648 		return -EOPNOTSUPP;
2649 
2650 	netif_dbg(h, drv, netdev,
2651 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2652 
2653 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2654 	if (ret)
2655 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
2656 			   ret);
2657 	else
2658 		netdev->mtu = new_mtu;
2659 
2660 	return ret;
2661 }
2662 
2663 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2664 {
2665 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2666 	struct hnae3_handle *h = hns3_get_handle(ndev);
2667 	struct hns3_enet_ring *tx_ring;
2668 	struct napi_struct *napi;
2669 	int timeout_queue = 0;
2670 	int hw_head, hw_tail;
2671 	int fbd_num, fbd_oft;
2672 	int ebd_num, ebd_oft;
2673 	int bd_num, bd_err;
2674 	int ring_en, tc;
2675 	int i;
2676 
2677 	/* Find the stopped queue the same way the stack does */
2678 	for (i = 0; i < ndev->num_tx_queues; i++) {
2679 		struct netdev_queue *q;
2680 		unsigned long trans_start;
2681 
2682 		q = netdev_get_tx_queue(ndev, i);
2683 		trans_start = q->trans_start;
2684 		if (netif_xmit_stopped(q) &&
2685 		    time_after(jiffies,
2686 			       (trans_start + ndev->watchdog_timeo))) {
2687 			timeout_queue = i;
2688 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2689 				    q->state,
2690 				    jiffies_to_msecs(jiffies - trans_start));
2691 			break;
2692 		}
2693 	}
2694 
2695 	if (i == ndev->num_tx_queues) {
2696 		netdev_info(ndev,
2697 			    "no netdev TX timeout queue found, timeout count: %llu\n",
2698 			    priv->tx_timeout_count);
2699 		return false;
2700 	}
2701 
2702 	priv->tx_timeout_count++;
2703 
2704 	tx_ring = &priv->ring[timeout_queue];
2705 	napi = &tx_ring->tqp_vector->napi;
2706 
2707 	netdev_info(ndev,
2708 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2709 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2710 		    tx_ring->next_to_clean, napi->state);
2711 
2712 	netdev_info(ndev,
2713 		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2714 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2715 		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2716 
2717 	netdev_info(ndev,
2718 		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2719 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2720 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2721 
2722 	/* When mac received many pause frames continuous, it's unable to send
2723 	 * packets, which may cause tx timeout
2724 	 */
2725 	if (h->ae_algo->ops->get_mac_stats) {
2726 		struct hns3_mac_stats mac_stats;
2727 
2728 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2729 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2730 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2731 	}
2732 
2733 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
2734 				HNS3_RING_TX_RING_HEAD_REG);
2735 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
2736 				HNS3_RING_TX_RING_TAIL_REG);
2737 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
2738 				HNS3_RING_TX_RING_FBDNUM_REG);
2739 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
2740 				HNS3_RING_TX_RING_OFFSET_REG);
2741 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
2742 				HNS3_RING_TX_RING_EBDNUM_REG);
2743 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
2744 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
2745 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
2746 			       HNS3_RING_TX_RING_BD_NUM_REG);
2747 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
2748 			       HNS3_RING_TX_RING_BD_ERR_REG);
2749 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
2750 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
2751 
2752 	netdev_info(ndev,
2753 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2754 		    bd_num, hw_head, hw_tail, bd_err,
2755 		    readl(tx_ring->tqp_vector->mask_addr));
2756 	netdev_info(ndev,
2757 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2758 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
2759 
2760 	return true;
2761 }
2762 
2763 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2764 {
2765 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2766 	struct hnae3_handle *h = priv->ae_handle;
2767 
2768 	if (!hns3_get_tx_timeo_queue_info(ndev))
2769 		return;
2770 
2771 	/* request the reset, and let the hclge to determine
2772 	 * which reset level should be done
2773 	 */
2774 	if (h->ae_algo->ops->reset_event)
2775 		h->ae_algo->ops->reset_event(h->pdev, h);
2776 }
2777 
2778 #ifdef CONFIG_RFS_ACCEL
2779 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2780 			      u16 rxq_index, u32 flow_id)
2781 {
2782 	struct hnae3_handle *h = hns3_get_handle(dev);
2783 	struct flow_keys fkeys;
2784 
2785 	if (!h->ae_algo->ops->add_arfs_entry)
2786 		return -EOPNOTSUPP;
2787 
2788 	if (skb->encapsulation)
2789 		return -EPROTONOSUPPORT;
2790 
2791 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2792 		return -EPROTONOSUPPORT;
2793 
2794 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2795 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2796 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
2797 	     fkeys.basic.ip_proto != IPPROTO_UDP))
2798 		return -EPROTONOSUPPORT;
2799 
2800 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2801 }
2802 #endif
2803 
2804 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2805 				  struct ifla_vf_info *ivf)
2806 {
2807 	struct hnae3_handle *h = hns3_get_handle(ndev);
2808 
2809 	if (!h->ae_algo->ops->get_vf_config)
2810 		return -EOPNOTSUPP;
2811 
2812 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2813 }
2814 
2815 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2816 				      int link_state)
2817 {
2818 	struct hnae3_handle *h = hns3_get_handle(ndev);
2819 
2820 	if (!h->ae_algo->ops->set_vf_link_state)
2821 		return -EOPNOTSUPP;
2822 
2823 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2824 }
2825 
2826 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2827 				int min_tx_rate, int max_tx_rate)
2828 {
2829 	struct hnae3_handle *h = hns3_get_handle(ndev);
2830 
2831 	if (!h->ae_algo->ops->set_vf_rate)
2832 		return -EOPNOTSUPP;
2833 
2834 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2835 					    false);
2836 }
2837 
2838 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2839 {
2840 	struct hnae3_handle *h = hns3_get_handle(netdev);
2841 
2842 	if (!h->ae_algo->ops->set_vf_mac)
2843 		return -EOPNOTSUPP;
2844 
2845 	if (is_multicast_ether_addr(mac)) {
2846 		netdev_err(netdev,
2847 			   "Invalid MAC:%pM specified. Could not set MAC\n",
2848 			   mac);
2849 		return -EINVAL;
2850 	}
2851 
2852 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2853 }
2854 
2855 static const struct net_device_ops hns3_nic_netdev_ops = {
2856 	.ndo_open		= hns3_nic_net_open,
2857 	.ndo_stop		= hns3_nic_net_stop,
2858 	.ndo_start_xmit		= hns3_nic_net_xmit,
2859 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2860 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2861 	.ndo_eth_ioctl		= hns3_nic_do_ioctl,
2862 	.ndo_change_mtu		= hns3_nic_change_mtu,
2863 	.ndo_set_features	= hns3_nic_set_features,
2864 	.ndo_features_check	= hns3_features_check,
2865 	.ndo_get_stats64	= hns3_nic_get_stats64,
2866 	.ndo_setup_tc		= hns3_nic_setup_tc,
2867 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2868 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2869 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2870 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2871 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2872 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2873 #ifdef CONFIG_RFS_ACCEL
2874 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2875 #endif
2876 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2877 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2878 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2879 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2880 };
2881 
2882 bool hns3_is_phys_func(struct pci_dev *pdev)
2883 {
2884 	u32 dev_id = pdev->device;
2885 
2886 	switch (dev_id) {
2887 	case HNAE3_DEV_ID_GE:
2888 	case HNAE3_DEV_ID_25GE:
2889 	case HNAE3_DEV_ID_25GE_RDMA:
2890 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2891 	case HNAE3_DEV_ID_50GE_RDMA:
2892 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2893 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2894 	case HNAE3_DEV_ID_200G_RDMA:
2895 		return true;
2896 	case HNAE3_DEV_ID_VF:
2897 	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2898 		return false;
2899 	default:
2900 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2901 			 dev_id);
2902 	}
2903 
2904 	return false;
2905 }
2906 
2907 static void hns3_disable_sriov(struct pci_dev *pdev)
2908 {
2909 	/* If our VFs are assigned we cannot shut down SR-IOV
2910 	 * without causing issues, so just leave the hardware
2911 	 * available but disabled
2912 	 */
2913 	if (pci_vfs_assigned(pdev)) {
2914 		dev_warn(&pdev->dev,
2915 			 "disabling driver while VFs are assigned\n");
2916 		return;
2917 	}
2918 
2919 	pci_disable_sriov(pdev);
2920 }
2921 
2922 /* hns3_probe - Device initialization routine
2923  * @pdev: PCI device information struct
2924  * @ent: entry in hns3_pci_tbl
2925  *
2926  * hns3_probe initializes a PF identified by a pci_dev structure.
2927  * The OS initialization, configuring of the PF private structure,
2928  * and a hardware reset occur.
2929  *
2930  * Returns 0 on success, negative on failure
2931  */
2932 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2933 {
2934 	struct hnae3_ae_dev *ae_dev;
2935 	int ret;
2936 
2937 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2938 	if (!ae_dev)
2939 		return -ENOMEM;
2940 
2941 	ae_dev->pdev = pdev;
2942 	ae_dev->flag = ent->driver_data;
2943 	pci_set_drvdata(pdev, ae_dev);
2944 
2945 	ret = hnae3_register_ae_dev(ae_dev);
2946 	if (ret)
2947 		pci_set_drvdata(pdev, NULL);
2948 
2949 	return ret;
2950 }
2951 
2952 /* hns3_remove - Device removal routine
2953  * @pdev: PCI device information struct
2954  */
2955 static void hns3_remove(struct pci_dev *pdev)
2956 {
2957 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2958 
2959 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2960 		hns3_disable_sriov(pdev);
2961 
2962 	hnae3_unregister_ae_dev(ae_dev);
2963 	pci_set_drvdata(pdev, NULL);
2964 }
2965 
2966 /**
2967  * hns3_pci_sriov_configure
2968  * @pdev: pointer to a pci_dev structure
2969  * @num_vfs: number of VFs to allocate
2970  *
2971  * Enable or change the number of VFs. Called when the user updates the number
2972  * of VFs in sysfs.
2973  **/
2974 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2975 {
2976 	int ret;
2977 
2978 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2979 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2980 		return -EINVAL;
2981 	}
2982 
2983 	if (num_vfs) {
2984 		ret = pci_enable_sriov(pdev, num_vfs);
2985 		if (ret)
2986 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2987 		else
2988 			return num_vfs;
2989 	} else if (!pci_vfs_assigned(pdev)) {
2990 		pci_disable_sriov(pdev);
2991 	} else {
2992 		dev_warn(&pdev->dev,
2993 			 "Unable to free VFs because some are assigned to VMs.\n");
2994 	}
2995 
2996 	return 0;
2997 }
2998 
2999 static void hns3_shutdown(struct pci_dev *pdev)
3000 {
3001 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3002 
3003 	hnae3_unregister_ae_dev(ae_dev);
3004 	pci_set_drvdata(pdev, NULL);
3005 
3006 	if (system_state == SYSTEM_POWER_OFF)
3007 		pci_set_power_state(pdev, PCI_D3hot);
3008 }
3009 
3010 static int __maybe_unused hns3_suspend(struct device *dev)
3011 {
3012 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3013 
3014 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3015 		dev_info(dev, "Begin to suspend.\n");
3016 		if (ae_dev->ops && ae_dev->ops->reset_prepare)
3017 			ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
3018 	}
3019 
3020 	return 0;
3021 }
3022 
3023 static int __maybe_unused hns3_resume(struct device *dev)
3024 {
3025 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3026 
3027 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3028 		dev_info(dev, "Begin to resume.\n");
3029 		if (ae_dev->ops && ae_dev->ops->reset_done)
3030 			ae_dev->ops->reset_done(ae_dev);
3031 	}
3032 
3033 	return 0;
3034 }
3035 
3036 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
3037 					    pci_channel_state_t state)
3038 {
3039 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3040 	pci_ers_result_t ret;
3041 
3042 	dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
3043 
3044 	if (state == pci_channel_io_perm_failure)
3045 		return PCI_ERS_RESULT_DISCONNECT;
3046 
3047 	if (!ae_dev || !ae_dev->ops) {
3048 		dev_err(&pdev->dev,
3049 			"Can't recover - error happened before device initialized\n");
3050 		return PCI_ERS_RESULT_NONE;
3051 	}
3052 
3053 	if (ae_dev->ops->handle_hw_ras_error)
3054 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
3055 	else
3056 		return PCI_ERS_RESULT_NONE;
3057 
3058 	return ret;
3059 }
3060 
3061 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
3062 {
3063 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3064 	const struct hnae3_ae_ops *ops;
3065 	enum hnae3_reset_type reset_type;
3066 	struct device *dev = &pdev->dev;
3067 
3068 	if (!ae_dev || !ae_dev->ops)
3069 		return PCI_ERS_RESULT_NONE;
3070 
3071 	ops = ae_dev->ops;
3072 	/* request the reset */
3073 	if (ops->reset_event && ops->get_reset_level &&
3074 	    ops->set_default_reset_request) {
3075 		if (ae_dev->hw_err_reset_req) {
3076 			reset_type = ops->get_reset_level(ae_dev,
3077 						&ae_dev->hw_err_reset_req);
3078 			ops->set_default_reset_request(ae_dev, reset_type);
3079 			dev_info(dev, "requesting reset due to PCI error\n");
3080 			ops->reset_event(pdev, NULL);
3081 		}
3082 
3083 		return PCI_ERS_RESULT_RECOVERED;
3084 	}
3085 
3086 	return PCI_ERS_RESULT_DISCONNECT;
3087 }
3088 
3089 static void hns3_reset_prepare(struct pci_dev *pdev)
3090 {
3091 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3092 
3093 	dev_info(&pdev->dev, "FLR prepare\n");
3094 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
3095 		ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
3096 }
3097 
3098 static void hns3_reset_done(struct pci_dev *pdev)
3099 {
3100 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3101 
3102 	dev_info(&pdev->dev, "FLR done\n");
3103 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
3104 		ae_dev->ops->reset_done(ae_dev);
3105 }
3106 
3107 static const struct pci_error_handlers hns3_err_handler = {
3108 	.error_detected = hns3_error_detected,
3109 	.slot_reset     = hns3_slot_reset,
3110 	.reset_prepare	= hns3_reset_prepare,
3111 	.reset_done	= hns3_reset_done,
3112 };
3113 
3114 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
3115 
3116 static struct pci_driver hns3_driver = {
3117 	.name     = hns3_driver_name,
3118 	.id_table = hns3_pci_tbl,
3119 	.probe    = hns3_probe,
3120 	.remove   = hns3_remove,
3121 	.shutdown = hns3_shutdown,
3122 	.driver.pm  = &hns3_pm_ops,
3123 	.sriov_configure = hns3_pci_sriov_configure,
3124 	.err_handler    = &hns3_err_handler,
3125 };
3126 
3127 /* set default feature to hns3 */
3128 static void hns3_set_default_feature(struct net_device *netdev)
3129 {
3130 	struct hnae3_handle *h = hns3_get_handle(netdev);
3131 	struct pci_dev *pdev = h->pdev;
3132 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3133 
3134 	netdev->priv_flags |= IFF_UNICAST_FLT;
3135 
3136 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3137 
3138 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3139 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
3140 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
3141 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
3142 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
3143 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
3144 
3145 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
3146 		netdev->features |= NETIF_F_GRO_HW;
3147 
3148 		if (!(h->flags & HNAE3_SUPPORT_VF))
3149 			netdev->features |= NETIF_F_NTUPLE;
3150 	}
3151 
3152 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps))
3153 		netdev->features |= NETIF_F_GSO_UDP_L4;
3154 
3155 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
3156 		netdev->features |= NETIF_F_HW_CSUM;
3157 	else
3158 		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3159 
3160 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps))
3161 		netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
3162 
3163 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps))
3164 		netdev->features |= NETIF_F_HW_TC;
3165 
3166 	netdev->hw_features |= netdev->features;
3167 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
3168 		netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3169 
3170 	netdev->vlan_features |= netdev->features &
3171 		~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX |
3172 		  NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE |
3173 		  NETIF_F_HW_TC);
3174 
3175 	netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID;
3176 }
3177 
3178 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
3179 			     struct hns3_desc_cb *cb)
3180 {
3181 	unsigned int order = hns3_page_order(ring);
3182 	struct page *p;
3183 
3184 	if (ring->page_pool) {
3185 		p = page_pool_dev_alloc_frag(ring->page_pool,
3186 					     &cb->page_offset,
3187 					     hns3_buf_size(ring));
3188 		if (unlikely(!p))
3189 			return -ENOMEM;
3190 
3191 		cb->priv = p;
3192 		cb->buf = page_address(p);
3193 		cb->dma = page_pool_get_dma_addr(p);
3194 		cb->type = DESC_TYPE_PP_FRAG;
3195 		cb->reuse_flag = 0;
3196 		return 0;
3197 	}
3198 
3199 	p = dev_alloc_pages(order);
3200 	if (!p)
3201 		return -ENOMEM;
3202 
3203 	cb->priv = p;
3204 	cb->page_offset = 0;
3205 	cb->reuse_flag = 0;
3206 	cb->buf  = page_address(p);
3207 	cb->length = hns3_page_size(ring);
3208 	cb->type = DESC_TYPE_PAGE;
3209 	page_ref_add(p, USHRT_MAX - 1);
3210 	cb->pagecnt_bias = USHRT_MAX;
3211 
3212 	return 0;
3213 }
3214 
3215 static void hns3_free_buffer(struct hns3_enet_ring *ring,
3216 			     struct hns3_desc_cb *cb, int budget)
3217 {
3218 	if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD |
3219 			DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB))
3220 		napi_consume_skb(cb->priv, budget);
3221 	else if (!HNAE3_IS_TX_RING(ring)) {
3222 		if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias)
3223 			__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
3224 		else if (cb->type & DESC_TYPE_PP_FRAG)
3225 			page_pool_put_full_page(ring->page_pool, cb->priv,
3226 						false);
3227 	}
3228 	memset(cb, 0, sizeof(*cb));
3229 }
3230 
3231 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
3232 {
3233 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
3234 			       cb->length, ring_to_dma_dir(ring));
3235 
3236 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
3237 		return -EIO;
3238 
3239 	return 0;
3240 }
3241 
3242 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
3243 			      struct hns3_desc_cb *cb)
3244 {
3245 	if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
3246 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
3247 				 ring_to_dma_dir(ring));
3248 	else if ((cb->type & DESC_TYPE_PAGE) && cb->length)
3249 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
3250 			       ring_to_dma_dir(ring));
3251 	else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD |
3252 			     DESC_TYPE_SGL_SKB))
3253 		hns3_tx_spare_reclaim_cb(ring, cb);
3254 }
3255 
3256 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
3257 {
3258 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3259 	ring->desc[i].addr = 0;
3260 }
3261 
3262 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
3263 				    int budget)
3264 {
3265 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
3266 
3267 	if (!ring->desc_cb[i].dma)
3268 		return;
3269 
3270 	hns3_buffer_detach(ring, i);
3271 	hns3_free_buffer(ring, cb, budget);
3272 }
3273 
3274 static void hns3_free_buffers(struct hns3_enet_ring *ring)
3275 {
3276 	int i;
3277 
3278 	for (i = 0; i < ring->desc_num; i++)
3279 		hns3_free_buffer_detach(ring, i, 0);
3280 }
3281 
3282 /* free desc along with its attached buffer */
3283 static void hns3_free_desc(struct hns3_enet_ring *ring)
3284 {
3285 	int size = ring->desc_num * sizeof(ring->desc[0]);
3286 
3287 	hns3_free_buffers(ring);
3288 
3289 	if (ring->desc) {
3290 		dma_free_coherent(ring_to_dev(ring), size,
3291 				  ring->desc, ring->desc_dma_addr);
3292 		ring->desc = NULL;
3293 	}
3294 }
3295 
3296 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
3297 {
3298 	int size = ring->desc_num * sizeof(ring->desc[0]);
3299 
3300 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
3301 					&ring->desc_dma_addr, GFP_KERNEL);
3302 	if (!ring->desc)
3303 		return -ENOMEM;
3304 
3305 	return 0;
3306 }
3307 
3308 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
3309 				   struct hns3_desc_cb *cb)
3310 {
3311 	int ret;
3312 
3313 	ret = hns3_alloc_buffer(ring, cb);
3314 	if (ret || ring->page_pool)
3315 		goto out;
3316 
3317 	ret = hns3_map_buffer(ring, cb);
3318 	if (ret)
3319 		goto out_with_buf;
3320 
3321 	return 0;
3322 
3323 out_with_buf:
3324 	hns3_free_buffer(ring, cb, 0);
3325 out:
3326 	return ret;
3327 }
3328 
3329 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
3330 {
3331 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
3332 
3333 	if (ret)
3334 		return ret;
3335 
3336 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3337 					 ring->desc_cb[i].page_offset);
3338 
3339 	return 0;
3340 }
3341 
3342 /* Allocate memory for raw pkg, and map with dma */
3343 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
3344 {
3345 	int i, j, ret;
3346 
3347 	for (i = 0; i < ring->desc_num; i++) {
3348 		ret = hns3_alloc_and_attach_buffer(ring, i);
3349 		if (ret)
3350 			goto out_buffer_fail;
3351 	}
3352 
3353 	return 0;
3354 
3355 out_buffer_fail:
3356 	for (j = i - 1; j >= 0; j--)
3357 		hns3_free_buffer_detach(ring, j, 0);
3358 	return ret;
3359 }
3360 
3361 /* detach a in-used buffer and replace with a reserved one */
3362 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
3363 				struct hns3_desc_cb *res_cb)
3364 {
3365 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3366 	ring->desc_cb[i] = *res_cb;
3367 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3368 					 ring->desc_cb[i].page_offset);
3369 	ring->desc[i].rx.bd_base_info = 0;
3370 }
3371 
3372 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
3373 {
3374 	ring->desc_cb[i].reuse_flag = 0;
3375 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3376 					 ring->desc_cb[i].page_offset);
3377 	ring->desc[i].rx.bd_base_info = 0;
3378 
3379 	dma_sync_single_for_device(ring_to_dev(ring),
3380 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
3381 			hns3_buf_size(ring),
3382 			DMA_FROM_DEVICE);
3383 }
3384 
3385 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
3386 				  int *bytes, int *pkts, int budget)
3387 {
3388 	/* pair with ring->last_to_use update in hns3_tx_doorbell(),
3389 	 * smp_store_release() is not used in hns3_tx_doorbell() because
3390 	 * the doorbell operation already have the needed barrier operation.
3391 	 */
3392 	int ltu = smp_load_acquire(&ring->last_to_use);
3393 	int ntc = ring->next_to_clean;
3394 	struct hns3_desc_cb *desc_cb;
3395 	bool reclaimed = false;
3396 	struct hns3_desc *desc;
3397 
3398 	while (ltu != ntc) {
3399 		desc = &ring->desc[ntc];
3400 
3401 		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
3402 				BIT(HNS3_TXD_VLD_B))
3403 			break;
3404 
3405 		desc_cb = &ring->desc_cb[ntc];
3406 
3407 		if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL |
3408 				     DESC_TYPE_BOUNCE_HEAD |
3409 				     DESC_TYPE_SGL_SKB)) {
3410 			(*pkts)++;
3411 			(*bytes) += desc_cb->send_bytes;
3412 		}
3413 
3414 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
3415 		hns3_free_buffer_detach(ring, ntc, budget);
3416 
3417 		if (++ntc == ring->desc_num)
3418 			ntc = 0;
3419 
3420 		/* Issue prefetch for next Tx descriptor */
3421 		prefetch(&ring->desc_cb[ntc]);
3422 		reclaimed = true;
3423 	}
3424 
3425 	if (unlikely(!reclaimed))
3426 		return false;
3427 
3428 	/* This smp_store_release() pairs with smp_load_acquire() in
3429 	 * ring_space called by hns3_nic_net_xmit.
3430 	 */
3431 	smp_store_release(&ring->next_to_clean, ntc);
3432 
3433 	hns3_tx_spare_update(ring);
3434 
3435 	return true;
3436 }
3437 
3438 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
3439 {
3440 	struct net_device *netdev = ring_to_netdev(ring);
3441 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3442 	struct netdev_queue *dev_queue;
3443 	int bytes, pkts;
3444 
3445 	bytes = 0;
3446 	pkts = 0;
3447 
3448 	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
3449 		return;
3450 
3451 	ring->tqp_vector->tx_group.total_bytes += bytes;
3452 	ring->tqp_vector->tx_group.total_packets += pkts;
3453 
3454 	u64_stats_update_begin(&ring->syncp);
3455 	ring->stats.tx_bytes += bytes;
3456 	ring->stats.tx_pkts += pkts;
3457 	u64_stats_update_end(&ring->syncp);
3458 
3459 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
3460 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
3461 
3462 	if (unlikely(netif_carrier_ok(netdev) &&
3463 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
3464 		/* Make sure that anybody stopping the queue after this
3465 		 * sees the new next_to_clean.
3466 		 */
3467 		smp_mb();
3468 		if (netif_tx_queue_stopped(dev_queue) &&
3469 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
3470 			netif_tx_wake_queue(dev_queue);
3471 			ring->stats.restart_queue++;
3472 		}
3473 	}
3474 }
3475 
3476 static int hns3_desc_unused(struct hns3_enet_ring *ring)
3477 {
3478 	int ntc = ring->next_to_clean;
3479 	int ntu = ring->next_to_use;
3480 
3481 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
3482 }
3483 
3484 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
3485 				      int cleand_count)
3486 {
3487 	struct hns3_desc_cb *desc_cb;
3488 	struct hns3_desc_cb res_cbs;
3489 	int i, ret;
3490 
3491 	for (i = 0; i < cleand_count; i++) {
3492 		desc_cb = &ring->desc_cb[ring->next_to_use];
3493 		if (desc_cb->reuse_flag) {
3494 			u64_stats_update_begin(&ring->syncp);
3495 			ring->stats.reuse_pg_cnt++;
3496 			u64_stats_update_end(&ring->syncp);
3497 
3498 			hns3_reuse_buffer(ring, ring->next_to_use);
3499 		} else {
3500 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
3501 			if (ret) {
3502 				u64_stats_update_begin(&ring->syncp);
3503 				ring->stats.sw_err_cnt++;
3504 				u64_stats_update_end(&ring->syncp);
3505 
3506 				hns3_rl_err(ring_to_netdev(ring),
3507 					    "alloc rx buffer failed: %d\n",
3508 					    ret);
3509 				break;
3510 			}
3511 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
3512 
3513 			u64_stats_update_begin(&ring->syncp);
3514 			ring->stats.non_reuse_pg++;
3515 			u64_stats_update_end(&ring->syncp);
3516 		}
3517 
3518 		ring_ptr_move_fw(ring, next_to_use);
3519 	}
3520 
3521 	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
3522 }
3523 
3524 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
3525 {
3526 	return page_count(cb->priv) == cb->pagecnt_bias;
3527 }
3528 
3529 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
3530 				struct hns3_enet_ring *ring, int pull_len,
3531 				struct hns3_desc_cb *desc_cb)
3532 {
3533 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3534 	u32 frag_offset = desc_cb->page_offset + pull_len;
3535 	int size = le16_to_cpu(desc->rx.size);
3536 	u32 truesize = hns3_buf_size(ring);
3537 	u32 frag_size = size - pull_len;
3538 	bool reused;
3539 
3540 	if (ring->page_pool) {
3541 		skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3542 				frag_size, truesize);
3543 		return;
3544 	}
3545 
3546 	/* Avoid re-using remote or pfmem page */
3547 	if (unlikely(!dev_page_is_reusable(desc_cb->priv)))
3548 		goto out;
3549 
3550 	reused = hns3_can_reuse_page(desc_cb);
3551 
3552 	/* Rx page can be reused when:
3553 	 * 1. Rx page is only owned by the driver when page_offset
3554 	 *    is zero, which means 0 @ truesize will be used by
3555 	 *    stack after skb_add_rx_frag() is called, and the rest
3556 	 *    of rx page can be reused by driver.
3557 	 * Or
3558 	 * 2. Rx page is only owned by the driver when page_offset
3559 	 *    is non-zero, which means page_offset @ truesize will
3560 	 *    be used by stack after skb_add_rx_frag() is called,
3561 	 *    and 0 @ truesize can be reused by driver.
3562 	 */
3563 	if ((!desc_cb->page_offset && reused) ||
3564 	    ((desc_cb->page_offset + truesize + truesize) <=
3565 	     hns3_page_size(ring) && desc_cb->page_offset)) {
3566 		desc_cb->page_offset += truesize;
3567 		desc_cb->reuse_flag = 1;
3568 	} else if (desc_cb->page_offset && reused) {
3569 		desc_cb->page_offset = 0;
3570 		desc_cb->reuse_flag = 1;
3571 	} else if (frag_size <= ring->rx_copybreak) {
3572 		void *frag = napi_alloc_frag(frag_size);
3573 
3574 		if (unlikely(!frag)) {
3575 			u64_stats_update_begin(&ring->syncp);
3576 			ring->stats.frag_alloc_err++;
3577 			u64_stats_update_end(&ring->syncp);
3578 
3579 			hns3_rl_err(ring_to_netdev(ring),
3580 				    "failed to allocate rx frag\n");
3581 			goto out;
3582 		}
3583 
3584 		desc_cb->reuse_flag = 1;
3585 		memcpy(frag, desc_cb->buf + frag_offset, frag_size);
3586 		skb_add_rx_frag(skb, i, virt_to_page(frag),
3587 				offset_in_page(frag), frag_size, frag_size);
3588 
3589 		u64_stats_update_begin(&ring->syncp);
3590 		ring->stats.frag_alloc++;
3591 		u64_stats_update_end(&ring->syncp);
3592 		return;
3593 	}
3594 
3595 out:
3596 	desc_cb->pagecnt_bias--;
3597 
3598 	if (unlikely(!desc_cb->pagecnt_bias)) {
3599 		page_ref_add(desc_cb->priv, USHRT_MAX);
3600 		desc_cb->pagecnt_bias = USHRT_MAX;
3601 	}
3602 
3603 	skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3604 			frag_size, truesize);
3605 
3606 	if (unlikely(!desc_cb->reuse_flag))
3607 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3608 }
3609 
3610 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
3611 {
3612 	__be16 type = skb->protocol;
3613 	struct tcphdr *th;
3614 	int depth = 0;
3615 
3616 	while (eth_type_vlan(type)) {
3617 		struct vlan_hdr *vh;
3618 
3619 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
3620 			return -EFAULT;
3621 
3622 		vh = (struct vlan_hdr *)(skb->data + depth);
3623 		type = vh->h_vlan_encapsulated_proto;
3624 		depth += VLAN_HLEN;
3625 	}
3626 
3627 	skb_set_network_header(skb, depth);
3628 
3629 	if (type == htons(ETH_P_IP)) {
3630 		const struct iphdr *iph = ip_hdr(skb);
3631 
3632 		depth += sizeof(struct iphdr);
3633 		skb_set_transport_header(skb, depth);
3634 		th = tcp_hdr(skb);
3635 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
3636 					  iph->daddr, 0);
3637 	} else if (type == htons(ETH_P_IPV6)) {
3638 		const struct ipv6hdr *iph = ipv6_hdr(skb);
3639 
3640 		depth += sizeof(struct ipv6hdr);
3641 		skb_set_transport_header(skb, depth);
3642 		th = tcp_hdr(skb);
3643 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
3644 					  &iph->daddr, 0);
3645 	} else {
3646 		hns3_rl_err(skb->dev,
3647 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
3648 			    be16_to_cpu(type), depth);
3649 		return -EFAULT;
3650 	}
3651 
3652 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3653 	if (th->cwr)
3654 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3655 
3656 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
3657 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
3658 
3659 	skb->csum_start = (unsigned char *)th - skb->head;
3660 	skb->csum_offset = offsetof(struct tcphdr, check);
3661 	skb->ip_summed = CHECKSUM_PARTIAL;
3662 
3663 	trace_hns3_gro(skb);
3664 
3665 	return 0;
3666 }
3667 
3668 static bool hns3_checksum_complete(struct hns3_enet_ring *ring,
3669 				   struct sk_buff *skb, u32 ptype, u16 csum)
3670 {
3671 	if (ptype == HNS3_INVALID_PTYPE ||
3672 	    hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
3673 		return false;
3674 
3675 	u64_stats_update_begin(&ring->syncp);
3676 	ring->stats.csum_complete++;
3677 	u64_stats_update_end(&ring->syncp);
3678 	skb->ip_summed = CHECKSUM_COMPLETE;
3679 	skb->csum = csum_unfold((__force __sum16)csum);
3680 
3681 	return true;
3682 }
3683 
3684 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
3685 				u32 ol_info, u32 ptype)
3686 {
3687 	int l3_type, l4_type;
3688 	int ol4_type;
3689 
3690 	if (ptype != HNS3_INVALID_PTYPE) {
3691 		skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
3692 		skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
3693 
3694 		return;
3695 	}
3696 
3697 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3698 				   HNS3_RXD_OL4ID_S);
3699 	switch (ol4_type) {
3700 	case HNS3_OL4_TYPE_MAC_IN_UDP:
3701 	case HNS3_OL4_TYPE_NVGRE:
3702 		skb->csum_level = 1;
3703 		fallthrough;
3704 	case HNS3_OL4_TYPE_NO_TUN:
3705 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3706 					  HNS3_RXD_L3ID_S);
3707 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3708 					  HNS3_RXD_L4ID_S);
3709 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3710 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3711 		     l3_type == HNS3_L3_TYPE_IPV6) &&
3712 		    (l4_type == HNS3_L4_TYPE_UDP ||
3713 		     l4_type == HNS3_L4_TYPE_TCP ||
3714 		     l4_type == HNS3_L4_TYPE_SCTP))
3715 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3716 		break;
3717 	default:
3718 		break;
3719 	}
3720 }
3721 
3722 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3723 			     u32 l234info, u32 bd_base_info, u32 ol_info,
3724 			     u16 csum)
3725 {
3726 	struct net_device *netdev = ring_to_netdev(ring);
3727 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3728 	u32 ptype = HNS3_INVALID_PTYPE;
3729 
3730 	skb->ip_summed = CHECKSUM_NONE;
3731 
3732 	skb_checksum_none_assert(skb);
3733 
3734 	if (!(netdev->features & NETIF_F_RXCSUM))
3735 		return;
3736 
3737 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
3738 		ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3739 					HNS3_RXD_PTYPE_S);
3740 
3741 	if (hns3_checksum_complete(ring, skb, ptype, csum))
3742 		return;
3743 
3744 	/* check if hardware has done checksum */
3745 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3746 		return;
3747 
3748 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3749 				 BIT(HNS3_RXD_OL3E_B) |
3750 				 BIT(HNS3_RXD_OL4E_B)))) {
3751 		u64_stats_update_begin(&ring->syncp);
3752 		ring->stats.l3l4_csum_err++;
3753 		u64_stats_update_end(&ring->syncp);
3754 
3755 		return;
3756 	}
3757 
3758 	hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
3759 }
3760 
3761 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3762 {
3763 	if (skb_has_frag_list(skb))
3764 		napi_gro_flush(&ring->tqp_vector->napi, false);
3765 
3766 	napi_gro_receive(&ring->tqp_vector->napi, skb);
3767 }
3768 
3769 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3770 				struct hns3_desc *desc, u32 l234info,
3771 				u16 *vlan_tag)
3772 {
3773 	struct hnae3_handle *handle = ring->tqp->handle;
3774 	struct pci_dev *pdev = ring->tqp->handle->pdev;
3775 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3776 
3777 	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3778 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3779 		if (!(*vlan_tag & VLAN_VID_MASK))
3780 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3781 
3782 		return (*vlan_tag != 0);
3783 	}
3784 
3785 #define HNS3_STRP_OUTER_VLAN	0x1
3786 #define HNS3_STRP_INNER_VLAN	0x2
3787 #define HNS3_STRP_BOTH		0x3
3788 
3789 	/* Hardware always insert VLAN tag into RX descriptor when
3790 	 * remove the tag from packet, driver needs to determine
3791 	 * reporting which tag to stack.
3792 	 */
3793 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3794 				HNS3_RXD_STRP_TAGP_S)) {
3795 	case HNS3_STRP_OUTER_VLAN:
3796 		if (handle->port_base_vlan_state !=
3797 				HNAE3_PORT_BASE_VLAN_DISABLE)
3798 			return false;
3799 
3800 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3801 		return true;
3802 	case HNS3_STRP_INNER_VLAN:
3803 		if (handle->port_base_vlan_state !=
3804 				HNAE3_PORT_BASE_VLAN_DISABLE)
3805 			return false;
3806 
3807 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3808 		return true;
3809 	case HNS3_STRP_BOTH:
3810 		if (handle->port_base_vlan_state ==
3811 				HNAE3_PORT_BASE_VLAN_DISABLE)
3812 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3813 		else
3814 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3815 
3816 		return true;
3817 	default:
3818 		return false;
3819 	}
3820 }
3821 
3822 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
3823 {
3824 	ring->desc[ring->next_to_clean].rx.bd_base_info &=
3825 		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
3826 	ring->next_to_clean += 1;
3827 
3828 	if (unlikely(ring->next_to_clean == ring->desc_num))
3829 		ring->next_to_clean = 0;
3830 }
3831 
3832 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
3833 			  unsigned char *va)
3834 {
3835 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
3836 	struct net_device *netdev = ring_to_netdev(ring);
3837 	struct sk_buff *skb;
3838 
3839 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3840 	skb = ring->skb;
3841 	if (unlikely(!skb)) {
3842 		hns3_rl_err(netdev, "alloc rx skb fail\n");
3843 
3844 		u64_stats_update_begin(&ring->syncp);
3845 		ring->stats.sw_err_cnt++;
3846 		u64_stats_update_end(&ring->syncp);
3847 
3848 		return -ENOMEM;
3849 	}
3850 
3851 	trace_hns3_rx_desc(ring);
3852 	prefetchw(skb->data);
3853 
3854 	ring->pending_buf = 1;
3855 	ring->frag_num = 0;
3856 	ring->tail_skb = NULL;
3857 	if (length <= HNS3_RX_HEAD_SIZE) {
3858 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3859 
3860 		/* We can reuse buffer as-is, just make sure it is reusable */
3861 		if (dev_page_is_reusable(desc_cb->priv))
3862 			desc_cb->reuse_flag = 1;
3863 		else if (desc_cb->type & DESC_TYPE_PP_FRAG)
3864 			page_pool_put_full_page(ring->page_pool, desc_cb->priv,
3865 						false);
3866 		else /* This page cannot be reused so discard it */
3867 			__page_frag_cache_drain(desc_cb->priv,
3868 						desc_cb->pagecnt_bias);
3869 
3870 		hns3_rx_ring_move_fw(ring);
3871 		return 0;
3872 	}
3873 
3874 	if (ring->page_pool)
3875 		skb_mark_for_recycle(skb);
3876 
3877 	u64_stats_update_begin(&ring->syncp);
3878 	ring->stats.seg_pkt_cnt++;
3879 	u64_stats_update_end(&ring->syncp);
3880 
3881 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3882 	__skb_put(skb, ring->pull_len);
3883 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3884 			    desc_cb);
3885 	hns3_rx_ring_move_fw(ring);
3886 
3887 	return 0;
3888 }
3889 
3890 static int hns3_add_frag(struct hns3_enet_ring *ring)
3891 {
3892 	struct sk_buff *skb = ring->skb;
3893 	struct sk_buff *head_skb = skb;
3894 	struct sk_buff *new_skb;
3895 	struct hns3_desc_cb *desc_cb;
3896 	struct hns3_desc *desc;
3897 	u32 bd_base_info;
3898 
3899 	do {
3900 		desc = &ring->desc[ring->next_to_clean];
3901 		desc_cb = &ring->desc_cb[ring->next_to_clean];
3902 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3903 		/* make sure HW write desc complete */
3904 		dma_rmb();
3905 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3906 			return -ENXIO;
3907 
3908 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3909 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3910 			if (unlikely(!new_skb)) {
3911 				hns3_rl_err(ring_to_netdev(ring),
3912 					    "alloc rx fraglist skb fail\n");
3913 				return -ENXIO;
3914 			}
3915 
3916 			if (ring->page_pool)
3917 				skb_mark_for_recycle(new_skb);
3918 
3919 			ring->frag_num = 0;
3920 
3921 			if (ring->tail_skb) {
3922 				ring->tail_skb->next = new_skb;
3923 				ring->tail_skb = new_skb;
3924 			} else {
3925 				skb_shinfo(skb)->frag_list = new_skb;
3926 				ring->tail_skb = new_skb;
3927 			}
3928 		}
3929 
3930 		if (ring->tail_skb) {
3931 			head_skb->truesize += hns3_buf_size(ring);
3932 			head_skb->data_len += le16_to_cpu(desc->rx.size);
3933 			head_skb->len += le16_to_cpu(desc->rx.size);
3934 			skb = ring->tail_skb;
3935 		}
3936 
3937 		dma_sync_single_for_cpu(ring_to_dev(ring),
3938 				desc_cb->dma + desc_cb->page_offset,
3939 				hns3_buf_size(ring),
3940 				DMA_FROM_DEVICE);
3941 
3942 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3943 		trace_hns3_rx_desc(ring);
3944 		hns3_rx_ring_move_fw(ring);
3945 		ring->pending_buf++;
3946 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3947 
3948 	return 0;
3949 }
3950 
3951 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3952 				     struct sk_buff *skb, u32 l234info,
3953 				     u32 bd_base_info, u32 ol_info, u16 csum)
3954 {
3955 	struct net_device *netdev = ring_to_netdev(ring);
3956 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3957 	u32 l3_type;
3958 
3959 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3960 						    HNS3_RXD_GRO_SIZE_M,
3961 						    HNS3_RXD_GRO_SIZE_S);
3962 	/* if there is no HW GRO, do not set gro params */
3963 	if (!skb_shinfo(skb)->gso_size) {
3964 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
3965 				 csum);
3966 		return 0;
3967 	}
3968 
3969 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3970 						  HNS3_RXD_GRO_COUNT_M,
3971 						  HNS3_RXD_GRO_COUNT_S);
3972 
3973 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
3974 		u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3975 					    HNS3_RXD_PTYPE_S);
3976 
3977 		l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
3978 	} else {
3979 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3980 					  HNS3_RXD_L3ID_S);
3981 	}
3982 
3983 	if (l3_type == HNS3_L3_TYPE_IPV4)
3984 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3985 	else if (l3_type == HNS3_L3_TYPE_IPV6)
3986 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3987 	else
3988 		return -EFAULT;
3989 
3990 	return  hns3_gro_complete(skb, l234info);
3991 }
3992 
3993 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3994 				     struct sk_buff *skb, u32 rss_hash)
3995 {
3996 	struct hnae3_handle *handle = ring->tqp->handle;
3997 	enum pkt_hash_types rss_type;
3998 
3999 	if (rss_hash)
4000 		rss_type = handle->kinfo.rss_type;
4001 	else
4002 		rss_type = PKT_HASH_TYPE_NONE;
4003 
4004 	skb_set_hash(skb, rss_hash, rss_type);
4005 }
4006 
4007 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
4008 {
4009 	struct net_device *netdev = ring_to_netdev(ring);
4010 	enum hns3_pkt_l2t_type l2_frame_type;
4011 	u32 bd_base_info, l234info, ol_info;
4012 	struct hns3_desc *desc;
4013 	unsigned int len;
4014 	int pre_ntc, ret;
4015 	u16 csum;
4016 
4017 	/* bdinfo handled below is only valid on the last BD of the
4018 	 * current packet, and ring->next_to_clean indicates the first
4019 	 * descriptor of next packet, so need - 1 below.
4020 	 */
4021 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
4022 					(ring->desc_num - 1);
4023 	desc = &ring->desc[pre_ntc];
4024 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4025 	l234info = le32_to_cpu(desc->rx.l234_info);
4026 	ol_info = le32_to_cpu(desc->rx.ol_info);
4027 	csum = le16_to_cpu(desc->csum);
4028 
4029 	if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
4030 		struct hnae3_handle *h = hns3_get_handle(netdev);
4031 		u32 nsec = le32_to_cpu(desc->ts_nsec);
4032 		u32 sec = le32_to_cpu(desc->ts_sec);
4033 
4034 		if (h->ae_algo->ops->get_rx_hwts)
4035 			h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
4036 	}
4037 
4038 	/* Based on hw strategy, the tag offloaded will be stored at
4039 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
4040 	 * in one layer tag case.
4041 	 */
4042 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
4043 		u16 vlan_tag;
4044 
4045 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
4046 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
4047 					       vlan_tag);
4048 	}
4049 
4050 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
4051 				  BIT(HNS3_RXD_L2E_B))))) {
4052 		u64_stats_update_begin(&ring->syncp);
4053 		if (l234info & BIT(HNS3_RXD_L2E_B))
4054 			ring->stats.l2_err++;
4055 		else
4056 			ring->stats.err_pkt_len++;
4057 		u64_stats_update_end(&ring->syncp);
4058 
4059 		return -EFAULT;
4060 	}
4061 
4062 	len = skb->len;
4063 
4064 	/* Do update ip stack process */
4065 	skb->protocol = eth_type_trans(skb, netdev);
4066 
4067 	/* This is needed in order to enable forwarding support */
4068 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
4069 					bd_base_info, ol_info, csum);
4070 	if (unlikely(ret)) {
4071 		u64_stats_update_begin(&ring->syncp);
4072 		ring->stats.rx_err_cnt++;
4073 		u64_stats_update_end(&ring->syncp);
4074 		return ret;
4075 	}
4076 
4077 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
4078 					HNS3_RXD_DMAC_S);
4079 
4080 	u64_stats_update_begin(&ring->syncp);
4081 	ring->stats.rx_pkts++;
4082 	ring->stats.rx_bytes += len;
4083 
4084 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
4085 		ring->stats.rx_multicast++;
4086 
4087 	u64_stats_update_end(&ring->syncp);
4088 
4089 	ring->tqp_vector->rx_group.total_bytes += len;
4090 
4091 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
4092 	return 0;
4093 }
4094 
4095 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
4096 {
4097 	struct sk_buff *skb = ring->skb;
4098 	struct hns3_desc_cb *desc_cb;
4099 	struct hns3_desc *desc;
4100 	unsigned int length;
4101 	u32 bd_base_info;
4102 	int ret;
4103 
4104 	desc = &ring->desc[ring->next_to_clean];
4105 	desc_cb = &ring->desc_cb[ring->next_to_clean];
4106 
4107 	prefetch(desc);
4108 
4109 	if (!skb) {
4110 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4111 		/* Check valid BD */
4112 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
4113 			return -ENXIO;
4114 
4115 		dma_rmb();
4116 		length = le16_to_cpu(desc->rx.size);
4117 
4118 		ring->va = desc_cb->buf + desc_cb->page_offset;
4119 
4120 		dma_sync_single_for_cpu(ring_to_dev(ring),
4121 				desc_cb->dma + desc_cb->page_offset,
4122 				hns3_buf_size(ring),
4123 				DMA_FROM_DEVICE);
4124 
4125 		/* Prefetch first cache line of first page.
4126 		 * Idea is to cache few bytes of the header of the packet.
4127 		 * Our L1 Cache line size is 64B so need to prefetch twice to make
4128 		 * it 128B. But in actual we can have greater size of caches with
4129 		 * 128B Level 1 cache lines. In such a case, single fetch would
4130 		 * suffice to cache in the relevant part of the header.
4131 		 */
4132 		net_prefetch(ring->va);
4133 
4134 		ret = hns3_alloc_skb(ring, length, ring->va);
4135 		skb = ring->skb;
4136 
4137 		if (ret < 0) /* alloc buffer fail */
4138 			return ret;
4139 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
4140 			ret = hns3_add_frag(ring);
4141 			if (ret)
4142 				return ret;
4143 		}
4144 	} else {
4145 		ret = hns3_add_frag(ring);
4146 		if (ret)
4147 			return ret;
4148 	}
4149 
4150 	/* As the head data may be changed when GRO enable, copy
4151 	 * the head data in after other data rx completed
4152 	 */
4153 	if (skb->len > HNS3_RX_HEAD_SIZE)
4154 		memcpy(skb->data, ring->va,
4155 		       ALIGN(ring->pull_len, sizeof(long)));
4156 
4157 	ret = hns3_handle_bdinfo(ring, skb);
4158 	if (unlikely(ret)) {
4159 		dev_kfree_skb_any(skb);
4160 		return ret;
4161 	}
4162 
4163 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
4164 	return 0;
4165 }
4166 
4167 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
4168 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
4169 {
4170 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
4171 	int unused_count = hns3_desc_unused(ring);
4172 	int recv_pkts = 0;
4173 	int err;
4174 
4175 	unused_count -= ring->pending_buf;
4176 
4177 	while (recv_pkts < budget) {
4178 		/* Reuse or realloc buffers */
4179 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
4180 			hns3_nic_alloc_rx_buffers(ring, unused_count);
4181 			unused_count = hns3_desc_unused(ring) -
4182 					ring->pending_buf;
4183 		}
4184 
4185 		/* Poll one pkt */
4186 		err = hns3_handle_rx_bd(ring);
4187 		/* Do not get FE for the packet or failed to alloc skb */
4188 		if (unlikely(!ring->skb || err == -ENXIO)) {
4189 			goto out;
4190 		} else if (likely(!err)) {
4191 			rx_fn(ring, ring->skb);
4192 			recv_pkts++;
4193 		}
4194 
4195 		unused_count += ring->pending_buf;
4196 		ring->skb = NULL;
4197 		ring->pending_buf = 0;
4198 	}
4199 
4200 out:
4201 	/* Make all data has been write before submit */
4202 	if (unused_count > 0)
4203 		hns3_nic_alloc_rx_buffers(ring, unused_count);
4204 
4205 	return recv_pkts;
4206 }
4207 
4208 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4209 {
4210 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
4211 	struct dim_sample sample = {};
4212 
4213 	if (!rx_group->coal.adapt_enable)
4214 		return;
4215 
4216 	dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
4217 			  rx_group->total_bytes, &sample);
4218 	net_dim(&rx_group->dim, sample);
4219 }
4220 
4221 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4222 {
4223 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
4224 	struct dim_sample sample = {};
4225 
4226 	if (!tx_group->coal.adapt_enable)
4227 		return;
4228 
4229 	dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
4230 			  tx_group->total_bytes, &sample);
4231 	net_dim(&tx_group->dim, sample);
4232 }
4233 
4234 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
4235 {
4236 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
4237 	struct hns3_enet_ring *ring;
4238 	int rx_pkt_total = 0;
4239 
4240 	struct hns3_enet_tqp_vector *tqp_vector =
4241 		container_of(napi, struct hns3_enet_tqp_vector, napi);
4242 	bool clean_complete = true;
4243 	int rx_budget = budget;
4244 
4245 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4246 		napi_complete(napi);
4247 		return 0;
4248 	}
4249 
4250 	/* Since the actual Tx work is minimal, we can give the Tx a larger
4251 	 * budget and be more aggressive about cleaning up the Tx descriptors.
4252 	 */
4253 	hns3_for_each_ring(ring, tqp_vector->tx_group)
4254 		hns3_clean_tx_ring(ring, budget);
4255 
4256 	/* make sure rx ring budget not smaller than 1 */
4257 	if (tqp_vector->num_tqps > 1)
4258 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
4259 
4260 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
4261 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
4262 						    hns3_rx_skb);
4263 		if (rx_cleaned >= rx_budget)
4264 			clean_complete = false;
4265 
4266 		rx_pkt_total += rx_cleaned;
4267 	}
4268 
4269 	tqp_vector->rx_group.total_packets += rx_pkt_total;
4270 
4271 	if (!clean_complete)
4272 		return budget;
4273 
4274 	if (napi_complete(napi) &&
4275 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4276 		hns3_update_rx_int_coalesce(tqp_vector);
4277 		hns3_update_tx_int_coalesce(tqp_vector);
4278 
4279 		hns3_mask_vector_irq(tqp_vector, 1);
4280 	}
4281 
4282 	return rx_pkt_total;
4283 }
4284 
4285 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4286 				      struct hnae3_ring_chain_node *head)
4287 {
4288 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4289 	struct hnae3_ring_chain_node *cur_chain = head;
4290 	struct hnae3_ring_chain_node *chain;
4291 	struct hns3_enet_ring *tx_ring;
4292 	struct hns3_enet_ring *rx_ring;
4293 
4294 	tx_ring = tqp_vector->tx_group.ring;
4295 	if (tx_ring) {
4296 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
4297 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
4298 			      HNAE3_RING_TYPE_TX);
4299 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
4300 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
4301 
4302 		cur_chain->next = NULL;
4303 
4304 		while (tx_ring->next) {
4305 			tx_ring = tx_ring->next;
4306 
4307 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
4308 					     GFP_KERNEL);
4309 			if (!chain)
4310 				goto err_free_chain;
4311 
4312 			cur_chain->next = chain;
4313 			chain->tqp_index = tx_ring->tqp->tqp_index;
4314 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4315 				      HNAE3_RING_TYPE_TX);
4316 			hnae3_set_field(chain->int_gl_idx,
4317 					HNAE3_RING_GL_IDX_M,
4318 					HNAE3_RING_GL_IDX_S,
4319 					HNAE3_RING_GL_TX);
4320 
4321 			cur_chain = chain;
4322 		}
4323 	}
4324 
4325 	rx_ring = tqp_vector->rx_group.ring;
4326 	if (!tx_ring && rx_ring) {
4327 		cur_chain->next = NULL;
4328 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
4329 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
4330 			      HNAE3_RING_TYPE_RX);
4331 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
4332 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
4333 
4334 		rx_ring = rx_ring->next;
4335 	}
4336 
4337 	while (rx_ring) {
4338 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
4339 		if (!chain)
4340 			goto err_free_chain;
4341 
4342 		cur_chain->next = chain;
4343 		chain->tqp_index = rx_ring->tqp->tqp_index;
4344 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4345 			      HNAE3_RING_TYPE_RX);
4346 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
4347 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
4348 
4349 		cur_chain = chain;
4350 
4351 		rx_ring = rx_ring->next;
4352 	}
4353 
4354 	return 0;
4355 
4356 err_free_chain:
4357 	cur_chain = head->next;
4358 	while (cur_chain) {
4359 		chain = cur_chain->next;
4360 		devm_kfree(&pdev->dev, cur_chain);
4361 		cur_chain = chain;
4362 	}
4363 	head->next = NULL;
4364 
4365 	return -ENOMEM;
4366 }
4367 
4368 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4369 					struct hnae3_ring_chain_node *head)
4370 {
4371 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4372 	struct hnae3_ring_chain_node *chain_tmp, *chain;
4373 
4374 	chain = head->next;
4375 
4376 	while (chain) {
4377 		chain_tmp = chain->next;
4378 		devm_kfree(&pdev->dev, chain);
4379 		chain = chain_tmp;
4380 	}
4381 }
4382 
4383 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
4384 				   struct hns3_enet_ring *ring)
4385 {
4386 	ring->next = group->ring;
4387 	group->ring = ring;
4388 
4389 	group->count++;
4390 }
4391 
4392 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
4393 {
4394 	struct pci_dev *pdev = priv->ae_handle->pdev;
4395 	struct hns3_enet_tqp_vector *tqp_vector;
4396 	int num_vectors = priv->vector_num;
4397 	int numa_node;
4398 	int vector_i;
4399 
4400 	numa_node = dev_to_node(&pdev->dev);
4401 
4402 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
4403 		tqp_vector = &priv->tqp_vector[vector_i];
4404 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
4405 				&tqp_vector->affinity_mask);
4406 	}
4407 }
4408 
4409 static void hns3_rx_dim_work(struct work_struct *work)
4410 {
4411 	struct dim *dim = container_of(work, struct dim, work);
4412 	struct hns3_enet_ring_group *group = container_of(dim,
4413 		struct hns3_enet_ring_group, dim);
4414 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4415 	struct dim_cq_moder cur_moder =
4416 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
4417 
4418 	hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
4419 	tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
4420 
4421 	if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
4422 		hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
4423 		tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
4424 	}
4425 
4426 	dim->state = DIM_START_MEASURE;
4427 }
4428 
4429 static void hns3_tx_dim_work(struct work_struct *work)
4430 {
4431 	struct dim *dim = container_of(work, struct dim, work);
4432 	struct hns3_enet_ring_group *group = container_of(dim,
4433 		struct hns3_enet_ring_group, dim);
4434 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4435 	struct dim_cq_moder cur_moder =
4436 		net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
4437 
4438 	hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
4439 	tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
4440 
4441 	if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
4442 		hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
4443 		tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
4444 	}
4445 
4446 	dim->state = DIM_START_MEASURE;
4447 }
4448 
4449 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
4450 {
4451 	INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
4452 	INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
4453 }
4454 
4455 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
4456 {
4457 	struct hnae3_handle *h = priv->ae_handle;
4458 	struct hns3_enet_tqp_vector *tqp_vector;
4459 	int ret;
4460 	int i;
4461 
4462 	hns3_nic_set_cpumask(priv);
4463 
4464 	for (i = 0; i < priv->vector_num; i++) {
4465 		tqp_vector = &priv->tqp_vector[i];
4466 		hns3_vector_coalesce_init_hw(tqp_vector, priv);
4467 		tqp_vector->num_tqps = 0;
4468 		hns3_nic_init_dim(tqp_vector);
4469 	}
4470 
4471 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4472 		u16 vector_i = i % priv->vector_num;
4473 		u16 tqp_num = h->kinfo.num_tqps;
4474 
4475 		tqp_vector = &priv->tqp_vector[vector_i];
4476 
4477 		hns3_add_ring_to_group(&tqp_vector->tx_group,
4478 				       &priv->ring[i]);
4479 
4480 		hns3_add_ring_to_group(&tqp_vector->rx_group,
4481 				       &priv->ring[i + tqp_num]);
4482 
4483 		priv->ring[i].tqp_vector = tqp_vector;
4484 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
4485 		tqp_vector->num_tqps++;
4486 	}
4487 
4488 	for (i = 0; i < priv->vector_num; i++) {
4489 		struct hnae3_ring_chain_node vector_ring_chain;
4490 
4491 		tqp_vector = &priv->tqp_vector[i];
4492 
4493 		tqp_vector->rx_group.total_bytes = 0;
4494 		tqp_vector->rx_group.total_packets = 0;
4495 		tqp_vector->tx_group.total_bytes = 0;
4496 		tqp_vector->tx_group.total_packets = 0;
4497 		tqp_vector->handle = h;
4498 
4499 		ret = hns3_get_vector_ring_chain(tqp_vector,
4500 						 &vector_ring_chain);
4501 		if (ret)
4502 			goto map_ring_fail;
4503 
4504 		ret = h->ae_algo->ops->map_ring_to_vector(h,
4505 			tqp_vector->vector_irq, &vector_ring_chain);
4506 
4507 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
4508 
4509 		if (ret)
4510 			goto map_ring_fail;
4511 
4512 		netif_napi_add(priv->netdev, &tqp_vector->napi,
4513 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
4514 	}
4515 
4516 	return 0;
4517 
4518 map_ring_fail:
4519 	while (i--)
4520 		netif_napi_del(&priv->tqp_vector[i].napi);
4521 
4522 	return ret;
4523 }
4524 
4525 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
4526 {
4527 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
4528 	struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
4529 	struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
4530 
4531 	/* initialize the configuration for interrupt coalescing.
4532 	 * 1. GL (Interrupt Gap Limiter)
4533 	 * 2. RL (Interrupt Rate Limiter)
4534 	 * 3. QL (Interrupt Quantity Limiter)
4535 	 *
4536 	 * Default: enable interrupt coalescing self-adaptive and GL
4537 	 */
4538 	tx_coal->adapt_enable = 1;
4539 	rx_coal->adapt_enable = 1;
4540 
4541 	tx_coal->int_gl = HNS3_INT_GL_50K;
4542 	rx_coal->int_gl = HNS3_INT_GL_50K;
4543 
4544 	rx_coal->flow_level = HNS3_FLOW_LOW;
4545 	tx_coal->flow_level = HNS3_FLOW_LOW;
4546 
4547 	if (ae_dev->dev_specs.int_ql_max) {
4548 		tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4549 		rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4550 	}
4551 }
4552 
4553 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
4554 {
4555 	struct hnae3_handle *h = priv->ae_handle;
4556 	struct hns3_enet_tqp_vector *tqp_vector;
4557 	struct hnae3_vector_info *vector;
4558 	struct pci_dev *pdev = h->pdev;
4559 	u16 tqp_num = h->kinfo.num_tqps;
4560 	u16 vector_num;
4561 	int ret = 0;
4562 	u16 i;
4563 
4564 	/* RSS size, cpu online and vector_num should be the same */
4565 	/* Should consider 2p/4p later */
4566 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
4567 
4568 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
4569 			      GFP_KERNEL);
4570 	if (!vector)
4571 		return -ENOMEM;
4572 
4573 	/* save the actual available vector number */
4574 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
4575 
4576 	priv->vector_num = vector_num;
4577 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
4578 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
4579 			     GFP_KERNEL);
4580 	if (!priv->tqp_vector) {
4581 		ret = -ENOMEM;
4582 		goto out;
4583 	}
4584 
4585 	for (i = 0; i < priv->vector_num; i++) {
4586 		tqp_vector = &priv->tqp_vector[i];
4587 		tqp_vector->idx = i;
4588 		tqp_vector->mask_addr = vector[i].io_addr;
4589 		tqp_vector->vector_irq = vector[i].vector;
4590 		hns3_vector_coalesce_init(tqp_vector, priv);
4591 	}
4592 
4593 out:
4594 	devm_kfree(&pdev->dev, vector);
4595 	return ret;
4596 }
4597 
4598 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
4599 {
4600 	group->ring = NULL;
4601 	group->count = 0;
4602 }
4603 
4604 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
4605 {
4606 	struct hnae3_ring_chain_node vector_ring_chain;
4607 	struct hnae3_handle *h = priv->ae_handle;
4608 	struct hns3_enet_tqp_vector *tqp_vector;
4609 	int i;
4610 
4611 	for (i = 0; i < priv->vector_num; i++) {
4612 		tqp_vector = &priv->tqp_vector[i];
4613 
4614 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
4615 			continue;
4616 
4617 		/* Since the mapping can be overwritten, when fail to get the
4618 		 * chain between vector and ring, we should go on to deal with
4619 		 * the remaining options.
4620 		 */
4621 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
4622 			dev_warn(priv->dev, "failed to get ring chain\n");
4623 
4624 		h->ae_algo->ops->unmap_ring_from_vector(h,
4625 			tqp_vector->vector_irq, &vector_ring_chain);
4626 
4627 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
4628 
4629 		hns3_clear_ring_group(&tqp_vector->rx_group);
4630 		hns3_clear_ring_group(&tqp_vector->tx_group);
4631 		netif_napi_del(&priv->tqp_vector[i].napi);
4632 	}
4633 }
4634 
4635 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
4636 {
4637 	struct hnae3_handle *h = priv->ae_handle;
4638 	struct pci_dev *pdev = h->pdev;
4639 	int i, ret;
4640 
4641 	for (i = 0; i < priv->vector_num; i++) {
4642 		struct hns3_enet_tqp_vector *tqp_vector;
4643 
4644 		tqp_vector = &priv->tqp_vector[i];
4645 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
4646 		if (ret)
4647 			return;
4648 	}
4649 
4650 	devm_kfree(&pdev->dev, priv->tqp_vector);
4651 }
4652 
4653 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
4654 			      unsigned int ring_type)
4655 {
4656 	int queue_num = priv->ae_handle->kinfo.num_tqps;
4657 	struct hns3_enet_ring *ring;
4658 	int desc_num;
4659 
4660 	if (ring_type == HNAE3_RING_TYPE_TX) {
4661 		ring = &priv->ring[q->tqp_index];
4662 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
4663 		ring->queue_index = q->tqp_index;
4664 		ring->tx_copybreak = priv->tx_copybreak;
4665 		ring->last_to_use = 0;
4666 	} else {
4667 		ring = &priv->ring[q->tqp_index + queue_num];
4668 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
4669 		ring->queue_index = q->tqp_index;
4670 		ring->rx_copybreak = priv->rx_copybreak;
4671 	}
4672 
4673 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
4674 
4675 	ring->tqp = q;
4676 	ring->desc = NULL;
4677 	ring->desc_cb = NULL;
4678 	ring->dev = priv->dev;
4679 	ring->desc_dma_addr = 0;
4680 	ring->buf_size = q->buf_size;
4681 	ring->desc_num = desc_num;
4682 	ring->next_to_use = 0;
4683 	ring->next_to_clean = 0;
4684 }
4685 
4686 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
4687 			       struct hns3_nic_priv *priv)
4688 {
4689 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4690 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4691 }
4692 
4693 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4694 {
4695 	struct hnae3_handle *h = priv->ae_handle;
4696 	struct pci_dev *pdev = h->pdev;
4697 	int i;
4698 
4699 	priv->ring = devm_kzalloc(&pdev->dev,
4700 				  array3_size(h->kinfo.num_tqps,
4701 					      sizeof(*priv->ring), 2),
4702 				  GFP_KERNEL);
4703 	if (!priv->ring)
4704 		return -ENOMEM;
4705 
4706 	for (i = 0; i < h->kinfo.num_tqps; i++)
4707 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4708 
4709 	return 0;
4710 }
4711 
4712 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4713 {
4714 	if (!priv->ring)
4715 		return;
4716 
4717 	devm_kfree(priv->dev, priv->ring);
4718 	priv->ring = NULL;
4719 }
4720 
4721 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring)
4722 {
4723 	struct page_pool_params pp_params = {
4724 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_PAGE_FRAG |
4725 				PP_FLAG_DMA_SYNC_DEV,
4726 		.order = hns3_page_order(ring),
4727 		.pool_size = ring->desc_num * hns3_buf_size(ring) /
4728 				(PAGE_SIZE << hns3_page_order(ring)),
4729 		.nid = dev_to_node(ring_to_dev(ring)),
4730 		.dev = ring_to_dev(ring),
4731 		.dma_dir = DMA_FROM_DEVICE,
4732 		.offset = 0,
4733 		.max_len = PAGE_SIZE << hns3_page_order(ring),
4734 	};
4735 
4736 	ring->page_pool = page_pool_create(&pp_params);
4737 	if (IS_ERR(ring->page_pool)) {
4738 		dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n",
4739 			 PTR_ERR(ring->page_pool));
4740 		ring->page_pool = NULL;
4741 	}
4742 }
4743 
4744 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4745 {
4746 	int ret;
4747 
4748 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
4749 		return -EINVAL;
4750 
4751 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4752 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
4753 	if (!ring->desc_cb) {
4754 		ret = -ENOMEM;
4755 		goto out;
4756 	}
4757 
4758 	ret = hns3_alloc_desc(ring);
4759 	if (ret)
4760 		goto out_with_desc_cb;
4761 
4762 	if (!HNAE3_IS_TX_RING(ring)) {
4763 		if (page_pool_enabled)
4764 			hns3_alloc_page_pool(ring);
4765 
4766 		ret = hns3_alloc_ring_buffers(ring);
4767 		if (ret)
4768 			goto out_with_desc;
4769 	} else {
4770 		hns3_init_tx_spare_buffer(ring);
4771 	}
4772 
4773 	return 0;
4774 
4775 out_with_desc:
4776 	hns3_free_desc(ring);
4777 out_with_desc_cb:
4778 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
4779 	ring->desc_cb = NULL;
4780 out:
4781 	return ret;
4782 }
4783 
4784 void hns3_fini_ring(struct hns3_enet_ring *ring)
4785 {
4786 	hns3_free_desc(ring);
4787 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
4788 	ring->desc_cb = NULL;
4789 	ring->next_to_clean = 0;
4790 	ring->next_to_use = 0;
4791 	ring->last_to_use = 0;
4792 	ring->pending_buf = 0;
4793 	if (!HNAE3_IS_TX_RING(ring) && ring->skb) {
4794 		dev_kfree_skb_any(ring->skb);
4795 		ring->skb = NULL;
4796 	} else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) {
4797 		struct hns3_tx_spare *tx_spare = ring->tx_spare;
4798 
4799 		dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len,
4800 			       DMA_TO_DEVICE);
4801 		free_pages((unsigned long)tx_spare->buf,
4802 			   get_order(tx_spare->len));
4803 		devm_kfree(ring_to_dev(ring), tx_spare);
4804 		ring->tx_spare = NULL;
4805 	}
4806 
4807 	if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) {
4808 		page_pool_destroy(ring->page_pool);
4809 		ring->page_pool = NULL;
4810 	}
4811 }
4812 
4813 static int hns3_buf_size2type(u32 buf_size)
4814 {
4815 	int bd_size_type;
4816 
4817 	switch (buf_size) {
4818 	case 512:
4819 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
4820 		break;
4821 	case 1024:
4822 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
4823 		break;
4824 	case 2048:
4825 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4826 		break;
4827 	case 4096:
4828 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
4829 		break;
4830 	default:
4831 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4832 	}
4833 
4834 	return bd_size_type;
4835 }
4836 
4837 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
4838 {
4839 	dma_addr_t dma = ring->desc_dma_addr;
4840 	struct hnae3_queue *q = ring->tqp;
4841 
4842 	if (!HNAE3_IS_TX_RING(ring)) {
4843 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
4844 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
4845 			       (u32)((dma >> 31) >> 1));
4846 
4847 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
4848 			       hns3_buf_size2type(ring->buf_size));
4849 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
4850 			       ring->desc_num / 8 - 1);
4851 	} else {
4852 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
4853 			       (u32)dma);
4854 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
4855 			       (u32)((dma >> 31) >> 1));
4856 
4857 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
4858 			       ring->desc_num / 8 - 1);
4859 	}
4860 }
4861 
4862 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
4863 {
4864 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4865 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
4866 	int i;
4867 
4868 	for (i = 0; i < HNAE3_MAX_TC; i++) {
4869 		int j;
4870 
4871 		if (!test_bit(i, &tc_info->tc_en))
4872 			continue;
4873 
4874 		for (j = 0; j < tc_info->tqp_count[i]; j++) {
4875 			struct hnae3_queue *q;
4876 
4877 			q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
4878 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
4879 		}
4880 	}
4881 }
4882 
4883 int hns3_init_all_ring(struct hns3_nic_priv *priv)
4884 {
4885 	struct hnae3_handle *h = priv->ae_handle;
4886 	int ring_num = h->kinfo.num_tqps * 2;
4887 	int i, j;
4888 	int ret;
4889 
4890 	for (i = 0; i < ring_num; i++) {
4891 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
4892 		if (ret) {
4893 			dev_err(priv->dev,
4894 				"Alloc ring memory fail! ret=%d\n", ret);
4895 			goto out_when_alloc_ring_memory;
4896 		}
4897 
4898 		u64_stats_init(&priv->ring[i].syncp);
4899 	}
4900 
4901 	return 0;
4902 
4903 out_when_alloc_ring_memory:
4904 	for (j = i - 1; j >= 0; j--)
4905 		hns3_fini_ring(&priv->ring[j]);
4906 
4907 	return -ENOMEM;
4908 }
4909 
4910 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4911 {
4912 	struct hnae3_handle *h = priv->ae_handle;
4913 	int i;
4914 
4915 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4916 		hns3_fini_ring(&priv->ring[i]);
4917 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4918 	}
4919 }
4920 
4921 /* Set mac addr if it is configured. or leave it to the AE driver */
4922 static int hns3_init_mac_addr(struct net_device *netdev)
4923 {
4924 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4925 	struct hnae3_handle *h = priv->ae_handle;
4926 	u8 mac_addr_temp[ETH_ALEN];
4927 	int ret = 0;
4928 
4929 	if (h->ae_algo->ops->get_mac_addr)
4930 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
4931 
4932 	/* Check if the MAC address is valid, if not get a random one */
4933 	if (!is_valid_ether_addr(mac_addr_temp)) {
4934 		eth_hw_addr_random(netdev);
4935 		dev_warn(priv->dev, "using random MAC address %pM\n",
4936 			 netdev->dev_addr);
4937 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4938 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
4939 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4940 	} else {
4941 		return 0;
4942 	}
4943 
4944 	if (h->ae_algo->ops->set_mac_addr)
4945 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4946 
4947 	return ret;
4948 }
4949 
4950 static int hns3_init_phy(struct net_device *netdev)
4951 {
4952 	struct hnae3_handle *h = hns3_get_handle(netdev);
4953 	int ret = 0;
4954 
4955 	if (h->ae_algo->ops->mac_connect_phy)
4956 		ret = h->ae_algo->ops->mac_connect_phy(h);
4957 
4958 	return ret;
4959 }
4960 
4961 static void hns3_uninit_phy(struct net_device *netdev)
4962 {
4963 	struct hnae3_handle *h = hns3_get_handle(netdev);
4964 
4965 	if (h->ae_algo->ops->mac_disconnect_phy)
4966 		h->ae_algo->ops->mac_disconnect_phy(h);
4967 }
4968 
4969 static int hns3_client_start(struct hnae3_handle *handle)
4970 {
4971 	if (!handle->ae_algo->ops->client_start)
4972 		return 0;
4973 
4974 	return handle->ae_algo->ops->client_start(handle);
4975 }
4976 
4977 static void hns3_client_stop(struct hnae3_handle *handle)
4978 {
4979 	if (!handle->ae_algo->ops->client_stop)
4980 		return;
4981 
4982 	handle->ae_algo->ops->client_stop(handle);
4983 }
4984 
4985 static void hns3_info_show(struct hns3_nic_priv *priv)
4986 {
4987 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4988 
4989 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4990 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4991 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4992 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4993 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4994 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4995 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4996 	dev_info(priv->dev, "Total number of enabled TCs: %u\n",
4997 		 kinfo->tc_info.num_tc);
4998 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4999 }
5000 
5001 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv,
5002 				    enum dim_cq_period_mode mode, bool is_tx)
5003 {
5004 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
5005 	struct hnae3_handle *handle = priv->ae_handle;
5006 	int i;
5007 
5008 	if (is_tx) {
5009 		priv->tx_cqe_mode = mode;
5010 
5011 		for (i = 0; i < priv->vector_num; i++)
5012 			priv->tqp_vector[i].tx_group.dim.mode = mode;
5013 	} else {
5014 		priv->rx_cqe_mode = mode;
5015 
5016 		for (i = 0; i < priv->vector_num; i++)
5017 			priv->tqp_vector[i].rx_group.dim.mode = mode;
5018 	}
5019 
5020 	/* only device version above V3(include V3), GL can switch CQ/EQ
5021 	 * period mode.
5022 	 */
5023 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
5024 		u32 new_mode;
5025 		u64 reg;
5026 
5027 		new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ?
5028 			HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE;
5029 		reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG;
5030 
5031 		writel(new_mode, handle->kinfo.io_base + reg);
5032 	}
5033 }
5034 
5035 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv,
5036 			      enum dim_cq_period_mode tx_mode,
5037 			      enum dim_cq_period_mode rx_mode)
5038 {
5039 	hns3_set_cq_period_mode(priv, tx_mode, true);
5040 	hns3_set_cq_period_mode(priv, rx_mode, false);
5041 }
5042 
5043 static void hns3_state_init(struct hnae3_handle *handle)
5044 {
5045 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
5046 	struct net_device *netdev = handle->kinfo.netdev;
5047 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5048 
5049 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5050 
5051 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5052 		set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
5053 
5054 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
5055 		set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
5056 
5057 	if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
5058 		set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
5059 }
5060 
5061 static int hns3_client_init(struct hnae3_handle *handle)
5062 {
5063 	struct pci_dev *pdev = handle->pdev;
5064 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
5065 	u16 alloc_tqps, max_rss_size;
5066 	struct hns3_nic_priv *priv;
5067 	struct net_device *netdev;
5068 	int ret;
5069 
5070 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
5071 						    &max_rss_size);
5072 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
5073 	if (!netdev)
5074 		return -ENOMEM;
5075 
5076 	priv = netdev_priv(netdev);
5077 	priv->dev = &pdev->dev;
5078 	priv->netdev = netdev;
5079 	priv->ae_handle = handle;
5080 	priv->tx_timeout_count = 0;
5081 	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
5082 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5083 
5084 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
5085 
5086 	handle->kinfo.netdev = netdev;
5087 	handle->priv = (void *)priv;
5088 
5089 	hns3_init_mac_addr(netdev);
5090 
5091 	hns3_set_default_feature(netdev);
5092 
5093 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
5094 	netdev->priv_flags |= IFF_UNICAST_FLT;
5095 	netdev->netdev_ops = &hns3_nic_netdev_ops;
5096 	SET_NETDEV_DEV(netdev, &pdev->dev);
5097 	hns3_ethtool_set_ops(netdev);
5098 
5099 	/* Carrier off reporting is important to ethtool even BEFORE open */
5100 	netif_carrier_off(netdev);
5101 
5102 	ret = hns3_get_ring_config(priv);
5103 	if (ret) {
5104 		ret = -ENOMEM;
5105 		goto out_get_ring_cfg;
5106 	}
5107 
5108 	hns3_nic_init_coal_cfg(priv);
5109 
5110 	ret = hns3_nic_alloc_vector_data(priv);
5111 	if (ret) {
5112 		ret = -ENOMEM;
5113 		goto out_alloc_vector_data;
5114 	}
5115 
5116 	ret = hns3_nic_init_vector_data(priv);
5117 	if (ret) {
5118 		ret = -ENOMEM;
5119 		goto out_init_vector_data;
5120 	}
5121 
5122 	ret = hns3_init_all_ring(priv);
5123 	if (ret) {
5124 		ret = -ENOMEM;
5125 		goto out_init_ring;
5126 	}
5127 
5128 	hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE,
5129 				 DIM_CQ_PERIOD_MODE_START_FROM_EQE);
5130 
5131 	ret = hns3_init_phy(netdev);
5132 	if (ret)
5133 		goto out_init_phy;
5134 
5135 	/* the device can work without cpu rmap, only aRFS needs it */
5136 	ret = hns3_set_rx_cpu_rmap(netdev);
5137 	if (ret)
5138 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5139 
5140 	ret = hns3_nic_init_irq(priv);
5141 	if (ret) {
5142 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5143 		hns3_free_rx_cpu_rmap(netdev);
5144 		goto out_init_irq_fail;
5145 	}
5146 
5147 	ret = hns3_client_start(handle);
5148 	if (ret) {
5149 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5150 		goto out_client_start;
5151 	}
5152 
5153 	hns3_dcbnl_setup(handle);
5154 
5155 	ret = hns3_dbg_init(handle);
5156 	if (ret) {
5157 		dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
5158 			ret);
5159 		goto out_client_start;
5160 	}
5161 
5162 	netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
5163 
5164 	hns3_state_init(handle);
5165 
5166 	ret = register_netdev(netdev);
5167 	if (ret) {
5168 		dev_err(priv->dev, "probe register netdev fail!\n");
5169 		goto out_reg_netdev_fail;
5170 	}
5171 
5172 	if (netif_msg_drv(handle))
5173 		hns3_info_show(priv);
5174 
5175 	return ret;
5176 
5177 out_reg_netdev_fail:
5178 	hns3_dbg_uninit(handle);
5179 out_client_start:
5180 	hns3_free_rx_cpu_rmap(netdev);
5181 	hns3_nic_uninit_irq(priv);
5182 out_init_irq_fail:
5183 	hns3_uninit_phy(netdev);
5184 out_init_phy:
5185 	hns3_uninit_all_ring(priv);
5186 out_init_ring:
5187 	hns3_nic_uninit_vector_data(priv);
5188 out_init_vector_data:
5189 	hns3_nic_dealloc_vector_data(priv);
5190 out_alloc_vector_data:
5191 	priv->ring = NULL;
5192 out_get_ring_cfg:
5193 	priv->ae_handle = NULL;
5194 	free_netdev(netdev);
5195 	return ret;
5196 }
5197 
5198 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
5199 {
5200 	struct net_device *netdev = handle->kinfo.netdev;
5201 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5202 
5203 	if (netdev->reg_state != NETREG_UNINITIALIZED)
5204 		unregister_netdev(netdev);
5205 
5206 	hns3_client_stop(handle);
5207 
5208 	hns3_uninit_phy(netdev);
5209 
5210 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5211 		netdev_warn(netdev, "already uninitialized\n");
5212 		goto out_netdev_free;
5213 	}
5214 
5215 	hns3_free_rx_cpu_rmap(netdev);
5216 
5217 	hns3_nic_uninit_irq(priv);
5218 
5219 	hns3_clear_all_ring(handle, true);
5220 
5221 	hns3_nic_uninit_vector_data(priv);
5222 
5223 	hns3_nic_dealloc_vector_data(priv);
5224 
5225 	hns3_uninit_all_ring(priv);
5226 
5227 	hns3_put_ring_config(priv);
5228 
5229 out_netdev_free:
5230 	hns3_dbg_uninit(handle);
5231 	free_netdev(netdev);
5232 }
5233 
5234 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
5235 {
5236 	struct net_device *netdev = handle->kinfo.netdev;
5237 
5238 	if (!netdev)
5239 		return;
5240 
5241 	if (linkup) {
5242 		netif_tx_wake_all_queues(netdev);
5243 		netif_carrier_on(netdev);
5244 		if (netif_msg_link(handle))
5245 			netdev_info(netdev, "link up\n");
5246 	} else {
5247 		netif_carrier_off(netdev);
5248 		netif_tx_stop_all_queues(netdev);
5249 		if (netif_msg_link(handle))
5250 			netdev_info(netdev, "link down\n");
5251 	}
5252 }
5253 
5254 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
5255 {
5256 	while (ring->next_to_clean != ring->next_to_use) {
5257 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
5258 		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
5259 		ring_ptr_move_fw(ring, next_to_clean);
5260 	}
5261 
5262 	ring->pending_buf = 0;
5263 }
5264 
5265 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
5266 {
5267 	struct hns3_desc_cb res_cbs;
5268 	int ret;
5269 
5270 	while (ring->next_to_use != ring->next_to_clean) {
5271 		/* When a buffer is not reused, it's memory has been
5272 		 * freed in hns3_handle_rx_bd or will be freed by
5273 		 * stack, so we need to replace the buffer here.
5274 		 */
5275 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5276 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
5277 			if (ret) {
5278 				u64_stats_update_begin(&ring->syncp);
5279 				ring->stats.sw_err_cnt++;
5280 				u64_stats_update_end(&ring->syncp);
5281 				/* if alloc new buffer fail, exit directly
5282 				 * and reclear in up flow.
5283 				 */
5284 				netdev_warn(ring_to_netdev(ring),
5285 					    "reserve buffer map failed, ret = %d\n",
5286 					    ret);
5287 				return ret;
5288 			}
5289 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
5290 		}
5291 		ring_ptr_move_fw(ring, next_to_use);
5292 	}
5293 
5294 	/* Free the pending skb in rx ring */
5295 	if (ring->skb) {
5296 		dev_kfree_skb_any(ring->skb);
5297 		ring->skb = NULL;
5298 		ring->pending_buf = 0;
5299 	}
5300 
5301 	return 0;
5302 }
5303 
5304 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
5305 {
5306 	while (ring->next_to_use != ring->next_to_clean) {
5307 		/* When a buffer is not reused, it's memory has been
5308 		 * freed in hns3_handle_rx_bd or will be freed by
5309 		 * stack, so only need to unmap the buffer here.
5310 		 */
5311 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5312 			hns3_unmap_buffer(ring,
5313 					  &ring->desc_cb[ring->next_to_use]);
5314 			ring->desc_cb[ring->next_to_use].dma = 0;
5315 		}
5316 
5317 		ring_ptr_move_fw(ring, next_to_use);
5318 	}
5319 }
5320 
5321 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
5322 {
5323 	struct net_device *ndev = h->kinfo.netdev;
5324 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5325 	u32 i;
5326 
5327 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5328 		struct hns3_enet_ring *ring;
5329 
5330 		ring = &priv->ring[i];
5331 		hns3_clear_tx_ring(ring);
5332 
5333 		ring = &priv->ring[i + h->kinfo.num_tqps];
5334 		/* Continue to clear other rings even if clearing some
5335 		 * rings failed.
5336 		 */
5337 		if (force)
5338 			hns3_force_clear_rx_ring(ring);
5339 		else
5340 			hns3_clear_rx_ring(ring);
5341 	}
5342 }
5343 
5344 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
5345 {
5346 	struct net_device *ndev = h->kinfo.netdev;
5347 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5348 	struct hns3_enet_ring *rx_ring;
5349 	int i, j;
5350 	int ret;
5351 
5352 	ret = h->ae_algo->ops->reset_queue(h);
5353 	if (ret)
5354 		return ret;
5355 
5356 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5357 		hns3_init_ring_hw(&priv->ring[i]);
5358 
5359 		/* We need to clear tx ring here because self test will
5360 		 * use the ring and will not run down before up
5361 		 */
5362 		hns3_clear_tx_ring(&priv->ring[i]);
5363 		priv->ring[i].next_to_clean = 0;
5364 		priv->ring[i].next_to_use = 0;
5365 		priv->ring[i].last_to_use = 0;
5366 
5367 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
5368 		hns3_init_ring_hw(rx_ring);
5369 		ret = hns3_clear_rx_ring(rx_ring);
5370 		if (ret)
5371 			return ret;
5372 
5373 		/* We can not know the hardware head and tail when this
5374 		 * function is called in reset flow, so we reuse all desc.
5375 		 */
5376 		for (j = 0; j < rx_ring->desc_num; j++)
5377 			hns3_reuse_buffer(rx_ring, j);
5378 
5379 		rx_ring->next_to_clean = 0;
5380 		rx_ring->next_to_use = 0;
5381 	}
5382 
5383 	hns3_init_tx_ring_tc(priv);
5384 
5385 	return 0;
5386 }
5387 
5388 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
5389 {
5390 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5391 	struct net_device *ndev = kinfo->netdev;
5392 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5393 
5394 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
5395 		return 0;
5396 
5397 	if (!netif_running(ndev))
5398 		return 0;
5399 
5400 	return hns3_nic_net_stop(ndev);
5401 }
5402 
5403 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
5404 {
5405 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5406 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
5407 	int ret = 0;
5408 
5409 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5410 		netdev_err(kinfo->netdev, "device is not initialized yet\n");
5411 		return -EFAULT;
5412 	}
5413 
5414 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5415 
5416 	if (netif_running(kinfo->netdev)) {
5417 		ret = hns3_nic_net_open(kinfo->netdev);
5418 		if (ret) {
5419 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5420 			netdev_err(kinfo->netdev,
5421 				   "net up fail, ret=%d!\n", ret);
5422 			return ret;
5423 		}
5424 	}
5425 
5426 	return ret;
5427 }
5428 
5429 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
5430 {
5431 	struct net_device *netdev = handle->kinfo.netdev;
5432 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5433 	int ret;
5434 
5435 	/* Carrier off reporting is important to ethtool even BEFORE open */
5436 	netif_carrier_off(netdev);
5437 
5438 	ret = hns3_get_ring_config(priv);
5439 	if (ret)
5440 		return ret;
5441 
5442 	ret = hns3_nic_alloc_vector_data(priv);
5443 	if (ret)
5444 		goto err_put_ring;
5445 
5446 	ret = hns3_nic_init_vector_data(priv);
5447 	if (ret)
5448 		goto err_dealloc_vector;
5449 
5450 	ret = hns3_init_all_ring(priv);
5451 	if (ret)
5452 		goto err_uninit_vector;
5453 
5454 	hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode);
5455 
5456 	/* the device can work without cpu rmap, only aRFS needs it */
5457 	ret = hns3_set_rx_cpu_rmap(netdev);
5458 	if (ret)
5459 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5460 
5461 	ret = hns3_nic_init_irq(priv);
5462 	if (ret) {
5463 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5464 		hns3_free_rx_cpu_rmap(netdev);
5465 		goto err_init_irq_fail;
5466 	}
5467 
5468 	if (!hns3_is_phys_func(handle->pdev))
5469 		hns3_init_mac_addr(netdev);
5470 
5471 	ret = hns3_client_start(handle);
5472 	if (ret) {
5473 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5474 		goto err_client_start_fail;
5475 	}
5476 
5477 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5478 
5479 	return ret;
5480 
5481 err_client_start_fail:
5482 	hns3_free_rx_cpu_rmap(netdev);
5483 	hns3_nic_uninit_irq(priv);
5484 err_init_irq_fail:
5485 	hns3_uninit_all_ring(priv);
5486 err_uninit_vector:
5487 	hns3_nic_uninit_vector_data(priv);
5488 err_dealloc_vector:
5489 	hns3_nic_dealloc_vector_data(priv);
5490 err_put_ring:
5491 	hns3_put_ring_config(priv);
5492 
5493 	return ret;
5494 }
5495 
5496 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
5497 {
5498 	struct net_device *netdev = handle->kinfo.netdev;
5499 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5500 
5501 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5502 		netdev_warn(netdev, "already uninitialized\n");
5503 		return 0;
5504 	}
5505 
5506 	hns3_free_rx_cpu_rmap(netdev);
5507 	hns3_nic_uninit_irq(priv);
5508 	hns3_clear_all_ring(handle, true);
5509 	hns3_reset_tx_queue(priv->ae_handle);
5510 
5511 	hns3_nic_uninit_vector_data(priv);
5512 
5513 	hns3_nic_dealloc_vector_data(priv);
5514 
5515 	hns3_uninit_all_ring(priv);
5516 
5517 	hns3_put_ring_config(priv);
5518 
5519 	return 0;
5520 }
5521 
5522 static int hns3_reset_notify(struct hnae3_handle *handle,
5523 			     enum hnae3_reset_notify_type type)
5524 {
5525 	int ret = 0;
5526 
5527 	switch (type) {
5528 	case HNAE3_UP_CLIENT:
5529 		ret = hns3_reset_notify_up_enet(handle);
5530 		break;
5531 	case HNAE3_DOWN_CLIENT:
5532 		ret = hns3_reset_notify_down_enet(handle);
5533 		break;
5534 	case HNAE3_INIT_CLIENT:
5535 		ret = hns3_reset_notify_init_enet(handle);
5536 		break;
5537 	case HNAE3_UNINIT_CLIENT:
5538 		ret = hns3_reset_notify_uninit_enet(handle);
5539 		break;
5540 	default:
5541 		break;
5542 	}
5543 
5544 	return ret;
5545 }
5546 
5547 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
5548 				bool rxfh_configured)
5549 {
5550 	int ret;
5551 
5552 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
5553 						 rxfh_configured);
5554 	if (ret) {
5555 		dev_err(&handle->pdev->dev,
5556 			"Change tqp num(%u) fail.\n", new_tqp_num);
5557 		return ret;
5558 	}
5559 
5560 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
5561 	if (ret)
5562 		return ret;
5563 
5564 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
5565 	if (ret)
5566 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
5567 
5568 	return ret;
5569 }
5570 
5571 int hns3_set_channels(struct net_device *netdev,
5572 		      struct ethtool_channels *ch)
5573 {
5574 	struct hnae3_handle *h = hns3_get_handle(netdev);
5575 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
5576 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
5577 	u32 new_tqp_num = ch->combined_count;
5578 	u16 org_tqp_num;
5579 	int ret;
5580 
5581 	if (hns3_nic_resetting(netdev))
5582 		return -EBUSY;
5583 
5584 	if (ch->rx_count || ch->tx_count)
5585 		return -EINVAL;
5586 
5587 	if (kinfo->tc_info.mqprio_active) {
5588 		dev_err(&netdev->dev,
5589 			"it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
5590 		return -EINVAL;
5591 	}
5592 
5593 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
5594 	    new_tqp_num < 1) {
5595 		dev_err(&netdev->dev,
5596 			"Change tqps fail, the tqp range is from 1 to %u",
5597 			hns3_get_max_available_channels(h));
5598 		return -EINVAL;
5599 	}
5600 
5601 	if (kinfo->rss_size == new_tqp_num)
5602 		return 0;
5603 
5604 	netif_dbg(h, drv, netdev,
5605 		  "set channels: tqp_num=%u, rxfh=%d\n",
5606 		  new_tqp_num, rxfh_configured);
5607 
5608 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
5609 	if (ret)
5610 		return ret;
5611 
5612 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
5613 	if (ret)
5614 		return ret;
5615 
5616 	org_tqp_num = h->kinfo.num_tqps;
5617 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
5618 	if (ret) {
5619 		int ret1;
5620 
5621 		netdev_warn(netdev,
5622 			    "Change channels fail, revert to old value\n");
5623 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
5624 		if (ret1) {
5625 			netdev_err(netdev,
5626 				   "revert to old channel fail\n");
5627 			return ret1;
5628 		}
5629 
5630 		return ret;
5631 	}
5632 
5633 	return 0;
5634 }
5635 
5636 static const struct hns3_hw_error_info hns3_hw_err[] = {
5637 	{ .type = HNAE3_PPU_POISON_ERROR,
5638 	  .msg = "PPU poison" },
5639 	{ .type = HNAE3_CMDQ_ECC_ERROR,
5640 	  .msg = "IMP CMDQ error" },
5641 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
5642 	  .msg = "IMP RD poison" },
5643 	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
5644 	  .msg = "ROCEE AXI RESP error" },
5645 };
5646 
5647 static void hns3_process_hw_error(struct hnae3_handle *handle,
5648 				  enum hnae3_hw_error_type type)
5649 {
5650 	int i;
5651 
5652 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
5653 		if (hns3_hw_err[i].type == type) {
5654 			dev_err(&handle->pdev->dev, "Detected %s!\n",
5655 				hns3_hw_err[i].msg);
5656 			break;
5657 		}
5658 	}
5659 }
5660 
5661 static const struct hnae3_client_ops client_ops = {
5662 	.init_instance = hns3_client_init,
5663 	.uninit_instance = hns3_client_uninit,
5664 	.link_status_change = hns3_link_status_change,
5665 	.reset_notify = hns3_reset_notify,
5666 	.process_hw_error = hns3_process_hw_error,
5667 };
5668 
5669 /* hns3_init_module - Driver registration routine
5670  * hns3_init_module is the first routine called when the driver is
5671  * loaded. All it does is register with the PCI subsystem.
5672  */
5673 static int __init hns3_init_module(void)
5674 {
5675 	int ret;
5676 
5677 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
5678 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
5679 
5680 	client.type = HNAE3_CLIENT_KNIC;
5681 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
5682 		 hns3_driver_name);
5683 
5684 	client.ops = &client_ops;
5685 
5686 	INIT_LIST_HEAD(&client.node);
5687 
5688 	hns3_dbg_register_debugfs(hns3_driver_name);
5689 
5690 	ret = hnae3_register_client(&client);
5691 	if (ret)
5692 		goto err_reg_client;
5693 
5694 	ret = pci_register_driver(&hns3_driver);
5695 	if (ret)
5696 		goto err_reg_driver;
5697 
5698 	return ret;
5699 
5700 err_reg_driver:
5701 	hnae3_unregister_client(&client);
5702 err_reg_client:
5703 	hns3_dbg_unregister_debugfs();
5704 	return ret;
5705 }
5706 module_init(hns3_init_module);
5707 
5708 /* hns3_exit_module - Driver exit cleanup routine
5709  * hns3_exit_module is called just before the driver is removed
5710  * from memory.
5711  */
5712 static void __exit hns3_exit_module(void)
5713 {
5714 	pci_unregister_driver(&hns3_driver);
5715 	hnae3_unregister_client(&client);
5716 	hns3_dbg_unregister_debugfs();
5717 }
5718 module_exit(hns3_exit_module);
5719 
5720 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
5721 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
5722 MODULE_LICENSE("GPL");
5723 MODULE_ALIAS("pci:hns-nic");
5724