1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/ip.h>
12 #include <linux/ipv6.h>
13 #include <linux/module.h>
14 #include <linux/pci.h>
15 #include <linux/aer.h>
16 #include <linux/skbuff.h>
17 #include <linux/sctp.h>
18 #include <linux/vermagic.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 
25 #include "hnae3.h"
26 #include "hns3_enet.h"
27 
28 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
29 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
30 
31 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
32 static void hns3_remove_hw_addr(struct net_device *netdev);
33 
34 static const char hns3_driver_name[] = "hns3";
35 const char hns3_driver_version[] = VERMAGIC_STRING;
36 static const char hns3_driver_string[] =
37 			"Hisilicon Ethernet Network Driver for Hip08 Family";
38 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
39 static struct hnae3_client client;
40 
41 static int debug = -1;
42 module_param(debug, int, 0);
43 MODULE_PARM_DESC(debug, " Network interface message level setting");
44 
45 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
46 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
47 
48 /* hns3_pci_tbl - PCI Device ID Table
49  *
50  * Last entry must be all 0s
51  *
52  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
53  *   Class, Class Mask, private data (not used) }
54  */
55 static const struct pci_device_id hns3_pci_tbl[] = {
56 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
57 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
58 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
59 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
60 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
61 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
62 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
63 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
64 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
65 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
66 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
67 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
68 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
69 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
70 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
71 	/* required last entry */
72 	{0, }
73 };
74 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
75 
76 static irqreturn_t hns3_irq_handle(int irq, void *vector)
77 {
78 	struct hns3_enet_tqp_vector *tqp_vector = vector;
79 
80 	napi_schedule_irqoff(&tqp_vector->napi);
81 
82 	return IRQ_HANDLED;
83 }
84 
85 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
86 {
87 	struct hns3_enet_tqp_vector *tqp_vectors;
88 	unsigned int i;
89 
90 	for (i = 0; i < priv->vector_num; i++) {
91 		tqp_vectors = &priv->tqp_vector[i];
92 
93 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
94 			continue;
95 
96 		/* clear the affinity mask */
97 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
98 
99 		/* release the irq resource */
100 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
101 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
102 	}
103 }
104 
105 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
106 {
107 	struct hns3_enet_tqp_vector *tqp_vectors;
108 	int txrx_int_idx = 0;
109 	int rx_int_idx = 0;
110 	int tx_int_idx = 0;
111 	unsigned int i;
112 	int ret;
113 
114 	for (i = 0; i < priv->vector_num; i++) {
115 		tqp_vectors = &priv->tqp_vector[i];
116 
117 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
118 			continue;
119 
120 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
121 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
122 				 "%s-%s-%d", priv->netdev->name, "TxRx",
123 				 txrx_int_idx++);
124 			txrx_int_idx++;
125 		} else if (tqp_vectors->rx_group.ring) {
126 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
127 				 "%s-%s-%d", priv->netdev->name, "Rx",
128 				 rx_int_idx++);
129 		} else if (tqp_vectors->tx_group.ring) {
130 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
131 				 "%s-%s-%d", priv->netdev->name, "Tx",
132 				 tx_int_idx++);
133 		} else {
134 			/* Skip this unused q_vector */
135 			continue;
136 		}
137 
138 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
139 
140 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
141 				  tqp_vectors->name, tqp_vectors);
142 		if (ret) {
143 			netdev_err(priv->netdev, "request irq(%d) fail\n",
144 				   tqp_vectors->vector_irq);
145 			hns3_nic_uninit_irq(priv);
146 			return ret;
147 		}
148 
149 		irq_set_affinity_hint(tqp_vectors->vector_irq,
150 				      &tqp_vectors->affinity_mask);
151 
152 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
153 	}
154 
155 	return 0;
156 }
157 
158 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
159 				 u32 mask_en)
160 {
161 	writel(mask_en, tqp_vector->mask_addr);
162 }
163 
164 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
165 {
166 	napi_enable(&tqp_vector->napi);
167 
168 	/* enable vector */
169 	hns3_mask_vector_irq(tqp_vector, 1);
170 }
171 
172 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
173 {
174 	/* disable vector */
175 	hns3_mask_vector_irq(tqp_vector, 0);
176 
177 	disable_irq(tqp_vector->vector_irq);
178 	napi_disable(&tqp_vector->napi);
179 }
180 
181 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
182 				 u32 rl_value)
183 {
184 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
185 
186 	/* this defines the configuration for RL (Interrupt Rate Limiter).
187 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
188 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
189 	 */
190 
191 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
192 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
193 		/* According to the hardware, the range of rl_reg is
194 		 * 0-59 and the unit is 4.
195 		 */
196 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
197 
198 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
199 }
200 
201 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
202 				    u32 gl_value)
203 {
204 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
205 
206 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
207 }
208 
209 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
210 				    u32 gl_value)
211 {
212 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
213 
214 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
215 }
216 
217 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
218 				   struct hns3_nic_priv *priv)
219 {
220 	/* initialize the configuration for interrupt coalescing.
221 	 * 1. GL (Interrupt Gap Limiter)
222 	 * 2. RL (Interrupt Rate Limiter)
223 	 */
224 
225 	/* Default: enable interrupt coalescing self-adaptive and GL */
226 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
227 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
228 
229 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
230 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
231 
232 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
233 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
234 }
235 
236 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
237 				      struct hns3_nic_priv *priv)
238 {
239 	struct hnae3_handle *h = priv->ae_handle;
240 
241 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
242 				       tqp_vector->tx_group.coal.int_gl);
243 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
244 				       tqp_vector->rx_group.coal.int_gl);
245 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
246 }
247 
248 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
249 {
250 	struct hnae3_handle *h = hns3_get_handle(netdev);
251 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
252 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
253 	int i, ret;
254 
255 	if (kinfo->num_tc <= 1) {
256 		netdev_reset_tc(netdev);
257 	} else {
258 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
259 		if (ret) {
260 			netdev_err(netdev,
261 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
262 			return ret;
263 		}
264 
265 		for (i = 0; i < HNAE3_MAX_TC; i++) {
266 			if (!kinfo->tc_info[i].enable)
267 				continue;
268 
269 			netdev_set_tc_queue(netdev,
270 					    kinfo->tc_info[i].tc,
271 					    kinfo->tc_info[i].tqp_count,
272 					    kinfo->tc_info[i].tqp_offset);
273 		}
274 	}
275 
276 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
277 	if (ret) {
278 		netdev_err(netdev,
279 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
280 		return ret;
281 	}
282 
283 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
284 	if (ret) {
285 		netdev_err(netdev,
286 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
287 		return ret;
288 	}
289 
290 	return 0;
291 }
292 
293 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
294 {
295 	u16 alloc_tqps, max_rss_size, rss_size;
296 
297 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
298 	rss_size = alloc_tqps / h->kinfo.num_tc;
299 
300 	return min_t(u16, rss_size, max_rss_size);
301 }
302 
303 static void hns3_tqp_enable(struct hnae3_queue *tqp)
304 {
305 	u32 rcb_reg;
306 
307 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
308 	rcb_reg |= BIT(HNS3_RING_EN_B);
309 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
310 }
311 
312 static void hns3_tqp_disable(struct hnae3_queue *tqp)
313 {
314 	u32 rcb_reg;
315 
316 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
317 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
318 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
319 }
320 
321 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
322 {
323 #ifdef CONFIG_RFS_ACCEL
324 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
325 	netdev->rx_cpu_rmap = NULL;
326 #endif
327 }
328 
329 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
330 {
331 #ifdef CONFIG_RFS_ACCEL
332 	struct hns3_nic_priv *priv = netdev_priv(netdev);
333 	struct hns3_enet_tqp_vector *tqp_vector;
334 	int i, ret;
335 
336 	if (!netdev->rx_cpu_rmap) {
337 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
338 		if (!netdev->rx_cpu_rmap)
339 			return -ENOMEM;
340 	}
341 
342 	for (i = 0; i < priv->vector_num; i++) {
343 		tqp_vector = &priv->tqp_vector[i];
344 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
345 				       tqp_vector->vector_irq);
346 		if (ret) {
347 			hns3_free_rx_cpu_rmap(netdev);
348 			return ret;
349 		}
350 	}
351 #endif
352 	return 0;
353 }
354 
355 static int hns3_nic_net_up(struct net_device *netdev)
356 {
357 	struct hns3_nic_priv *priv = netdev_priv(netdev);
358 	struct hnae3_handle *h = priv->ae_handle;
359 	int i, j;
360 	int ret;
361 
362 	ret = hns3_nic_reset_all_ring(h);
363 	if (ret)
364 		return ret;
365 
366 	/* the device can work without cpu rmap, only aRFS needs it */
367 	ret = hns3_set_rx_cpu_rmap(netdev);
368 	if (ret)
369 		netdev_warn(netdev, "set rx cpu rmap fail, ret=%d!\n", ret);
370 
371 	/* get irq resource for all vectors */
372 	ret = hns3_nic_init_irq(priv);
373 	if (ret) {
374 		netdev_err(netdev, "init irq failed! ret=%d\n", ret);
375 		goto free_rmap;
376 	}
377 
378 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
379 
380 	/* enable the vectors */
381 	for (i = 0; i < priv->vector_num; i++)
382 		hns3_vector_enable(&priv->tqp_vector[i]);
383 
384 	/* enable rcb */
385 	for (j = 0; j < h->kinfo.num_tqps; j++)
386 		hns3_tqp_enable(h->kinfo.tqp[j]);
387 
388 	/* start the ae_dev */
389 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
390 	if (ret)
391 		goto out_start_err;
392 
393 	return 0;
394 
395 out_start_err:
396 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
397 	while (j--)
398 		hns3_tqp_disable(h->kinfo.tqp[j]);
399 
400 	for (j = i - 1; j >= 0; j--)
401 		hns3_vector_disable(&priv->tqp_vector[j]);
402 
403 	hns3_nic_uninit_irq(priv);
404 free_rmap:
405 	hns3_free_rx_cpu_rmap(netdev);
406 	return ret;
407 }
408 
409 static void hns3_config_xps(struct hns3_nic_priv *priv)
410 {
411 	int i;
412 
413 	for (i = 0; i < priv->vector_num; i++) {
414 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
415 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
416 
417 		while (ring) {
418 			int ret;
419 
420 			ret = netif_set_xps_queue(priv->netdev,
421 						  &tqp_vector->affinity_mask,
422 						  ring->tqp->tqp_index);
423 			if (ret)
424 				netdev_warn(priv->netdev,
425 					    "set xps queue failed: %d", ret);
426 
427 			ring = ring->next;
428 		}
429 	}
430 }
431 
432 static int hns3_nic_net_open(struct net_device *netdev)
433 {
434 	struct hns3_nic_priv *priv = netdev_priv(netdev);
435 	struct hnae3_handle *h = hns3_get_handle(netdev);
436 	struct hnae3_knic_private_info *kinfo;
437 	int i, ret;
438 
439 	if (hns3_nic_resetting(netdev))
440 		return -EBUSY;
441 
442 	netif_carrier_off(netdev);
443 
444 	ret = hns3_nic_set_real_num_queue(netdev);
445 	if (ret)
446 		return ret;
447 
448 	ret = hns3_nic_net_up(netdev);
449 	if (ret) {
450 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
451 		return ret;
452 	}
453 
454 	kinfo = &h->kinfo;
455 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
456 		netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
457 
458 	if (h->ae_algo->ops->set_timer_task)
459 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
460 
461 	hns3_config_xps(priv);
462 	return 0;
463 }
464 
465 static void hns3_reset_tx_queue(struct hnae3_handle *h)
466 {
467 	struct net_device *ndev = h->kinfo.netdev;
468 	struct hns3_nic_priv *priv = netdev_priv(ndev);
469 	struct netdev_queue *dev_queue;
470 	u32 i;
471 
472 	for (i = 0; i < h->kinfo.num_tqps; i++) {
473 		dev_queue = netdev_get_tx_queue(ndev,
474 						priv->ring_data[i].queue_index);
475 		netdev_tx_reset_queue(dev_queue);
476 	}
477 }
478 
479 static void hns3_nic_net_down(struct net_device *netdev)
480 {
481 	struct hns3_nic_priv *priv = netdev_priv(netdev);
482 	struct hnae3_handle *h = hns3_get_handle(netdev);
483 	const struct hnae3_ae_ops *ops;
484 	int i;
485 
486 	/* disable vectors */
487 	for (i = 0; i < priv->vector_num; i++)
488 		hns3_vector_disable(&priv->tqp_vector[i]);
489 
490 	/* disable rcb */
491 	for (i = 0; i < h->kinfo.num_tqps; i++)
492 		hns3_tqp_disable(h->kinfo.tqp[i]);
493 
494 	/* stop ae_dev */
495 	ops = priv->ae_handle->ae_algo->ops;
496 	if (ops->stop)
497 		ops->stop(priv->ae_handle);
498 
499 	hns3_free_rx_cpu_rmap(netdev);
500 
501 	/* free irq resources */
502 	hns3_nic_uninit_irq(priv);
503 
504 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
505 	 * during reset process, because driver may not be able
506 	 * to disable the ring through firmware when downing the netdev.
507 	 */
508 	if (!hns3_nic_resetting(netdev))
509 		hns3_clear_all_ring(priv->ae_handle, false);
510 
511 	hns3_reset_tx_queue(priv->ae_handle);
512 }
513 
514 static int hns3_nic_net_stop(struct net_device *netdev)
515 {
516 	struct hns3_nic_priv *priv = netdev_priv(netdev);
517 	struct hnae3_handle *h = hns3_get_handle(netdev);
518 
519 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
520 		return 0;
521 
522 	if (h->ae_algo->ops->set_timer_task)
523 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
524 
525 	netif_tx_stop_all_queues(netdev);
526 	netif_carrier_off(netdev);
527 
528 	hns3_nic_net_down(netdev);
529 
530 	return 0;
531 }
532 
533 static int hns3_nic_uc_sync(struct net_device *netdev,
534 			    const unsigned char *addr)
535 {
536 	struct hnae3_handle *h = hns3_get_handle(netdev);
537 
538 	if (h->ae_algo->ops->add_uc_addr)
539 		return h->ae_algo->ops->add_uc_addr(h, addr);
540 
541 	return 0;
542 }
543 
544 static int hns3_nic_uc_unsync(struct net_device *netdev,
545 			      const unsigned char *addr)
546 {
547 	struct hnae3_handle *h = hns3_get_handle(netdev);
548 
549 	if (h->ae_algo->ops->rm_uc_addr)
550 		return h->ae_algo->ops->rm_uc_addr(h, addr);
551 
552 	return 0;
553 }
554 
555 static int hns3_nic_mc_sync(struct net_device *netdev,
556 			    const unsigned char *addr)
557 {
558 	struct hnae3_handle *h = hns3_get_handle(netdev);
559 
560 	if (h->ae_algo->ops->add_mc_addr)
561 		return h->ae_algo->ops->add_mc_addr(h, addr);
562 
563 	return 0;
564 }
565 
566 static int hns3_nic_mc_unsync(struct net_device *netdev,
567 			      const unsigned char *addr)
568 {
569 	struct hnae3_handle *h = hns3_get_handle(netdev);
570 
571 	if (h->ae_algo->ops->rm_mc_addr)
572 		return h->ae_algo->ops->rm_mc_addr(h, addr);
573 
574 	return 0;
575 }
576 
577 static u8 hns3_get_netdev_flags(struct net_device *netdev)
578 {
579 	u8 flags = 0;
580 
581 	if (netdev->flags & IFF_PROMISC) {
582 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
583 	} else {
584 		flags |= HNAE3_VLAN_FLTR;
585 		if (netdev->flags & IFF_ALLMULTI)
586 			flags |= HNAE3_USER_MPE;
587 	}
588 
589 	return flags;
590 }
591 
592 static void hns3_nic_set_rx_mode(struct net_device *netdev)
593 {
594 	struct hnae3_handle *h = hns3_get_handle(netdev);
595 	u8 new_flags;
596 	int ret;
597 
598 	new_flags = hns3_get_netdev_flags(netdev);
599 
600 	ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
601 	if (ret) {
602 		netdev_err(netdev, "sync uc address fail\n");
603 		if (ret == -ENOSPC)
604 			new_flags |= HNAE3_OVERFLOW_UPE;
605 	}
606 
607 	if (netdev->flags & IFF_MULTICAST) {
608 		ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
609 				    hns3_nic_mc_unsync);
610 		if (ret) {
611 			netdev_err(netdev, "sync mc address fail\n");
612 			if (ret == -ENOSPC)
613 				new_flags |= HNAE3_OVERFLOW_MPE;
614 		}
615 	}
616 
617 	/* User mode Promisc mode enable and vlan filtering is disabled to
618 	 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
619 	 * vlan fitering is enabled
620 	 */
621 	hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
622 	h->netdev_flags = new_flags;
623 	hns3_update_promisc_mode(netdev, new_flags);
624 }
625 
626 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
627 {
628 	struct hns3_nic_priv *priv = netdev_priv(netdev);
629 	struct hnae3_handle *h = priv->ae_handle;
630 
631 	if (h->ae_algo->ops->set_promisc_mode) {
632 		return h->ae_algo->ops->set_promisc_mode(h,
633 						promisc_flags & HNAE3_UPE,
634 						promisc_flags & HNAE3_MPE);
635 	}
636 
637 	return 0;
638 }
639 
640 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
641 {
642 	struct hns3_nic_priv *priv = netdev_priv(netdev);
643 	struct hnae3_handle *h = priv->ae_handle;
644 	bool last_state;
645 
646 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
647 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
648 		if (enable != last_state) {
649 			netdev_info(netdev,
650 				    "%s vlan filter\n",
651 				    enable ? "enable" : "disable");
652 			h->ae_algo->ops->enable_vlan_filter(h, enable);
653 		}
654 	}
655 }
656 
657 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
658 			u16 *mss, u32 *type_cs_vlan_tso)
659 {
660 	u32 l4_offset, hdr_len;
661 	union l3_hdr_info l3;
662 	union l4_hdr_info l4;
663 	u32 l4_paylen;
664 	int ret;
665 
666 	if (!skb_is_gso(skb))
667 		return 0;
668 
669 	ret = skb_cow_head(skb, 0);
670 	if (unlikely(ret))
671 		return ret;
672 
673 	l3.hdr = skb_network_header(skb);
674 	l4.hdr = skb_transport_header(skb);
675 
676 	/* Software should clear the IPv4's checksum field when tso is
677 	 * needed.
678 	 */
679 	if (l3.v4->version == 4)
680 		l3.v4->check = 0;
681 
682 	/* tunnel packet */
683 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
684 					 SKB_GSO_GRE_CSUM |
685 					 SKB_GSO_UDP_TUNNEL |
686 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
687 		if ((!(skb_shinfo(skb)->gso_type &
688 		    SKB_GSO_PARTIAL)) &&
689 		    (skb_shinfo(skb)->gso_type &
690 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
691 			/* Software should clear the udp's checksum
692 			 * field when tso is needed.
693 			 */
694 			l4.udp->check = 0;
695 		}
696 		/* reset l3&l4 pointers from outer to inner headers */
697 		l3.hdr = skb_inner_network_header(skb);
698 		l4.hdr = skb_inner_transport_header(skb);
699 
700 		/* Software should clear the IPv4's checksum field when
701 		 * tso is needed.
702 		 */
703 		if (l3.v4->version == 4)
704 			l3.v4->check = 0;
705 	}
706 
707 	/* normal or tunnel packet */
708 	l4_offset = l4.hdr - skb->data;
709 	hdr_len = (l4.tcp->doff << 2) + l4_offset;
710 
711 	/* remove payload length from inner pseudo checksum when tso */
712 	l4_paylen = skb->len - l4_offset;
713 	csum_replace_by_diff(&l4.tcp->check,
714 			     (__force __wsum)htonl(l4_paylen));
715 
716 	/* find the txbd field values */
717 	*paylen = skb->len - hdr_len;
718 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
719 
720 	/* get MSS for TSO */
721 	*mss = skb_shinfo(skb)->gso_size;
722 
723 	return 0;
724 }
725 
726 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
727 				u8 *il4_proto)
728 {
729 	union l3_hdr_info l3;
730 	unsigned char *l4_hdr;
731 	unsigned char *exthdr;
732 	u8 l4_proto_tmp;
733 	__be16 frag_off;
734 
735 	/* find outer header point */
736 	l3.hdr = skb_network_header(skb);
737 	l4_hdr = skb_transport_header(skb);
738 
739 	if (skb->protocol == htons(ETH_P_IPV6)) {
740 		exthdr = l3.hdr + sizeof(*l3.v6);
741 		l4_proto_tmp = l3.v6->nexthdr;
742 		if (l4_hdr != exthdr)
743 			ipv6_skip_exthdr(skb, exthdr - skb->data,
744 					 &l4_proto_tmp, &frag_off);
745 	} else if (skb->protocol == htons(ETH_P_IP)) {
746 		l4_proto_tmp = l3.v4->protocol;
747 	} else {
748 		return -EINVAL;
749 	}
750 
751 	*ol4_proto = l4_proto_tmp;
752 
753 	/* tunnel packet */
754 	if (!skb->encapsulation) {
755 		*il4_proto = 0;
756 		return 0;
757 	}
758 
759 	/* find inner header point */
760 	l3.hdr = skb_inner_network_header(skb);
761 	l4_hdr = skb_inner_transport_header(skb);
762 
763 	if (l3.v6->version == 6) {
764 		exthdr = l3.hdr + sizeof(*l3.v6);
765 		l4_proto_tmp = l3.v6->nexthdr;
766 		if (l4_hdr != exthdr)
767 			ipv6_skip_exthdr(skb, exthdr - skb->data,
768 					 &l4_proto_tmp, &frag_off);
769 	} else if (l3.v4->version == 4) {
770 		l4_proto_tmp = l3.v4->protocol;
771 	}
772 
773 	*il4_proto = l4_proto_tmp;
774 
775 	return 0;
776 }
777 
778 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
779  * and it is udp packet, which has a dest port as the IANA assigned.
780  * the hardware is expected to do the checksum offload, but the
781  * hardware will not do the checksum offload when udp dest port is
782  * 4789.
783  */
784 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
785 {
786 	union l4_hdr_info l4;
787 
788 	l4.hdr = skb_transport_header(skb);
789 
790 	if (!(!skb->encapsulation &&
791 	      l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
792 		return false;
793 
794 	skb_checksum_help(skb);
795 
796 	return true;
797 }
798 
799 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
800 				  u32 *ol_type_vlan_len_msec)
801 {
802 	u32 l2_len, l3_len, l4_len;
803 	unsigned char *il2_hdr;
804 	union l3_hdr_info l3;
805 	union l4_hdr_info l4;
806 
807 	l3.hdr = skb_network_header(skb);
808 	l4.hdr = skb_transport_header(skb);
809 
810 	/* compute OL2 header size, defined in 2 Bytes */
811 	l2_len = l3.hdr - skb->data;
812 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
813 
814 	/* compute OL3 header size, defined in 4 Bytes */
815 	l3_len = l4.hdr - l3.hdr;
816 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
817 
818 	il2_hdr = skb_inner_mac_header(skb);
819 	/* compute OL4 header size, defined in 4 Bytes */
820 	l4_len = il2_hdr - l4.hdr;
821 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
822 
823 	/* define outer network header type */
824 	if (skb->protocol == htons(ETH_P_IP)) {
825 		if (skb_is_gso(skb))
826 			hns3_set_field(*ol_type_vlan_len_msec,
827 				       HNS3_TXD_OL3T_S,
828 				       HNS3_OL3T_IPV4_CSUM);
829 		else
830 			hns3_set_field(*ol_type_vlan_len_msec,
831 				       HNS3_TXD_OL3T_S,
832 				       HNS3_OL3T_IPV4_NO_CSUM);
833 
834 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
835 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
836 			       HNS3_OL3T_IPV6);
837 	}
838 
839 	if (ol4_proto == IPPROTO_UDP)
840 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
841 			       HNS3_TUN_MAC_IN_UDP);
842 	else if (ol4_proto == IPPROTO_GRE)
843 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
844 			       HNS3_TUN_NVGRE);
845 }
846 
847 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
848 			   u8 il4_proto, u32 *type_cs_vlan_tso,
849 			   u32 *ol_type_vlan_len_msec)
850 {
851 	unsigned char *l2_hdr = skb->data;
852 	u32 l4_proto = ol4_proto;
853 	union l4_hdr_info l4;
854 	union l3_hdr_info l3;
855 	u32 l2_len, l3_len;
856 
857 	l4.hdr = skb_transport_header(skb);
858 	l3.hdr = skb_network_header(skb);
859 
860 	/* handle encapsulation skb */
861 	if (skb->encapsulation) {
862 		/* If this is a not UDP/GRE encapsulation skb */
863 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
864 			/* drop the skb tunnel packet if hardware don't support,
865 			 * because hardware can't calculate csum when TSO.
866 			 */
867 			if (skb_is_gso(skb))
868 				return -EDOM;
869 
870 			/* the stack computes the IP header already,
871 			 * driver calculate l4 checksum when not TSO.
872 			 */
873 			skb_checksum_help(skb);
874 			return 0;
875 		}
876 
877 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
878 
879 		/* switch to inner header */
880 		l2_hdr = skb_inner_mac_header(skb);
881 		l3.hdr = skb_inner_network_header(skb);
882 		l4.hdr = skb_inner_transport_header(skb);
883 		l4_proto = il4_proto;
884 	}
885 
886 	if (l3.v4->version == 4) {
887 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
888 			       HNS3_L3T_IPV4);
889 
890 		/* the stack computes the IP header already, the only time we
891 		 * need the hardware to recompute it is in the case of TSO.
892 		 */
893 		if (skb_is_gso(skb))
894 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
895 	} else if (l3.v6->version == 6) {
896 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
897 			       HNS3_L3T_IPV6);
898 	}
899 
900 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
901 	l2_len = l3.hdr - l2_hdr;
902 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
903 
904 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
905 	l3_len = l4.hdr - l3.hdr;
906 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
907 
908 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
909 	switch (l4_proto) {
910 	case IPPROTO_TCP:
911 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
912 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
913 			       HNS3_L4T_TCP);
914 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
915 			       l4.tcp->doff);
916 		break;
917 	case IPPROTO_UDP:
918 		if (hns3_tunnel_csum_bug(skb))
919 			break;
920 
921 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
922 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
923 			       HNS3_L4T_UDP);
924 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
925 			       (sizeof(struct udphdr) >> 2));
926 		break;
927 	case IPPROTO_SCTP:
928 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
929 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
930 			       HNS3_L4T_SCTP);
931 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
932 			       (sizeof(struct sctphdr) >> 2));
933 		break;
934 	default:
935 		/* drop the skb tunnel packet if hardware don't support,
936 		 * because hardware can't calculate csum when TSO.
937 		 */
938 		if (skb_is_gso(skb))
939 			return -EDOM;
940 
941 		/* the stack computes the IP header already,
942 		 * driver calculate l4 checksum when not TSO.
943 		 */
944 		skb_checksum_help(skb);
945 		return 0;
946 	}
947 
948 	return 0;
949 }
950 
951 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
952 {
953 	/* Config bd buffer end */
954 	if (!!frag_end)
955 		hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, 1U);
956 	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1U);
957 }
958 
959 static int hns3_fill_desc_vtags(struct sk_buff *skb,
960 				struct hns3_enet_ring *tx_ring,
961 				u32 *inner_vlan_flag,
962 				u32 *out_vlan_flag,
963 				u16 *inner_vtag,
964 				u16 *out_vtag)
965 {
966 #define HNS3_TX_VLAN_PRIO_SHIFT 13
967 
968 	struct hnae3_handle *handle = tx_ring->tqp->handle;
969 
970 	/* Since HW limitation, if port based insert VLAN enabled, only one VLAN
971 	 * header is allowed in skb, otherwise it will cause RAS error.
972 	 */
973 	if (unlikely(skb_vlan_tagged_multi(skb) &&
974 		     handle->port_base_vlan_state ==
975 		     HNAE3_PORT_BASE_VLAN_ENABLE))
976 		return -EINVAL;
977 
978 	if (skb->protocol == htons(ETH_P_8021Q) &&
979 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
980 	    NETIF_F_HW_VLAN_CTAG_TX)) {
981 		/* When HW VLAN acceleration is turned off, and the stack
982 		 * sets the protocol to 802.1q, the driver just need to
983 		 * set the protocol to the encapsulated ethertype.
984 		 */
985 		skb->protocol = vlan_get_protocol(skb);
986 		return 0;
987 	}
988 
989 	if (skb_vlan_tag_present(skb)) {
990 		u16 vlan_tag;
991 
992 		vlan_tag = skb_vlan_tag_get(skb);
993 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
994 
995 		/* Based on hw strategy, use out_vtag in two layer tag case,
996 		 * and use inner_vtag in one tag case.
997 		 */
998 		if (skb->protocol == htons(ETH_P_8021Q)) {
999 			if (handle->port_base_vlan_state ==
1000 			    HNAE3_PORT_BASE_VLAN_DISABLE){
1001 				hns3_set_field(*out_vlan_flag,
1002 					       HNS3_TXD_OVLAN_B, 1);
1003 				*out_vtag = vlan_tag;
1004 			} else {
1005 				hns3_set_field(*inner_vlan_flag,
1006 					       HNS3_TXD_VLAN_B, 1);
1007 				*inner_vtag = vlan_tag;
1008 			}
1009 		} else {
1010 			hns3_set_field(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
1011 			*inner_vtag = vlan_tag;
1012 		}
1013 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
1014 		struct vlan_ethhdr *vhdr;
1015 		int rc;
1016 
1017 		rc = skb_cow_head(skb, 0);
1018 		if (unlikely(rc < 0))
1019 			return rc;
1020 		vhdr = (struct vlan_ethhdr *)skb->data;
1021 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
1022 					<< HNS3_TX_VLAN_PRIO_SHIFT);
1023 	}
1024 
1025 	skb->protocol = vlan_get_protocol(skb);
1026 	return 0;
1027 }
1028 
1029 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1030 			  unsigned int size, int frag_end,
1031 			  enum hns_desc_type type)
1032 {
1033 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1034 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1035 	struct device *dev = ring_to_dev(ring);
1036 	struct skb_frag_struct *frag;
1037 	unsigned int frag_buf_num;
1038 	int k, sizeoflast;
1039 	dma_addr_t dma;
1040 
1041 	if (type == DESC_TYPE_SKB) {
1042 		struct sk_buff *skb = (struct sk_buff *)priv;
1043 		u32 ol_type_vlan_len_msec = 0;
1044 		u32 type_cs_vlan_tso = 0;
1045 		u32 paylen = skb->len;
1046 		u16 inner_vtag = 0;
1047 		u16 out_vtag = 0;
1048 		u16 mss = 0;
1049 		int ret;
1050 
1051 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
1052 					   &ol_type_vlan_len_msec,
1053 					   &inner_vtag, &out_vtag);
1054 		if (unlikely(ret))
1055 			return ret;
1056 
1057 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1058 			u8 ol4_proto, il4_proto;
1059 
1060 			skb_reset_mac_len(skb);
1061 
1062 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1063 			if (unlikely(ret))
1064 				return ret;
1065 
1066 			ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1067 					      &type_cs_vlan_tso,
1068 					      &ol_type_vlan_len_msec);
1069 			if (unlikely(ret))
1070 				return ret;
1071 
1072 			ret = hns3_set_tso(skb, &paylen, &mss,
1073 					   &type_cs_vlan_tso);
1074 			if (unlikely(ret))
1075 				return ret;
1076 		}
1077 
1078 		/* Set txbd */
1079 		desc->tx.ol_type_vlan_len_msec =
1080 			cpu_to_le32(ol_type_vlan_len_msec);
1081 		desc->tx.type_cs_vlan_tso_len =	cpu_to_le32(type_cs_vlan_tso);
1082 		desc->tx.paylen = cpu_to_le32(paylen);
1083 		desc->tx.mss = cpu_to_le16(mss);
1084 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1085 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1086 
1087 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1088 	} else {
1089 		frag = (struct skb_frag_struct *)priv;
1090 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1091 	}
1092 
1093 	if (unlikely(dma_mapping_error(dev, dma))) {
1094 		ring->stats.sw_err_cnt++;
1095 		return -ENOMEM;
1096 	}
1097 
1098 	desc_cb->length = size;
1099 
1100 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1101 		u16 bdtp_fe_sc_vld_ra_ri = 0;
1102 
1103 		desc_cb->priv = priv;
1104 		desc_cb->dma = dma;
1105 		desc_cb->type = type;
1106 		desc->addr = cpu_to_le64(dma);
1107 		desc->tx.send_size = cpu_to_le16(size);
1108 		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
1109 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1110 			cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1111 
1112 		ring_ptr_move_fw(ring, next_to_use);
1113 		return 0;
1114 	}
1115 
1116 	frag_buf_num = hns3_tx_bd_count(size);
1117 	sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1118 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1119 
1120 	/* When frag size is bigger than hardware limit, split this frag */
1121 	for (k = 0; k < frag_buf_num; k++) {
1122 		u16 bdtp_fe_sc_vld_ra_ri = 0;
1123 
1124 		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1125 		desc_cb->priv = priv;
1126 		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1127 		desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1128 				DESC_TYPE_SKB : DESC_TYPE_PAGE;
1129 
1130 		/* now, fill the descriptor */
1131 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1132 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1133 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1134 		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1135 				       frag_end && (k == frag_buf_num - 1) ?
1136 						1 : 0);
1137 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1138 				cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1139 
1140 		/* move ring pointer to next */
1141 		ring_ptr_move_fw(ring, next_to_use);
1142 
1143 		desc_cb = &ring->desc_cb[ring->next_to_use];
1144 		desc = &ring->desc[ring->next_to_use];
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 static int hns3_nic_bd_num(struct sk_buff *skb)
1151 {
1152 	int size = skb_headlen(skb);
1153 	int i, bd_num;
1154 
1155 	/* if the total len is within the max bd limit */
1156 	if (likely(skb->len <= HNS3_MAX_BD_SIZE))
1157 		return skb_shinfo(skb)->nr_frags + 1;
1158 
1159 	bd_num = hns3_tx_bd_count(size);
1160 
1161 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1162 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
1163 		int frag_bd_num;
1164 
1165 		size = skb_frag_size(frag);
1166 		frag_bd_num = hns3_tx_bd_count(size);
1167 
1168 		if (unlikely(frag_bd_num > HNS3_MAX_BD_PER_FRAG))
1169 			return -ENOMEM;
1170 
1171 		bd_num += frag_bd_num;
1172 	}
1173 
1174 	return bd_num;
1175 }
1176 
1177 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1178 {
1179 	if (!skb->encapsulation)
1180 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1181 
1182 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1183 }
1184 
1185 /* HW need every continuous 8 buffer data to be larger than MSS,
1186  * we simplify it by ensuring skb_headlen + the first continuous
1187  * 7 frags to to be larger than gso header len + mss, and the remaining
1188  * continuous 7 frags to be larger than MSS except the last 7 frags.
1189  */
1190 static bool hns3_skb_need_linearized(struct sk_buff *skb)
1191 {
1192 	int bd_limit = HNS3_MAX_BD_PER_FRAG - 1;
1193 	unsigned int tot_len = 0;
1194 	int i;
1195 
1196 	for (i = 0; i < bd_limit; i++)
1197 		tot_len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1198 
1199 	/* ensure headlen + the first 7 frags is greater than mss + header
1200 	 * and the first 7 frags is greater than mss.
1201 	 */
1202 	if (((tot_len + skb_headlen(skb)) < (skb_shinfo(skb)->gso_size +
1203 	    hns3_gso_hdr_len(skb))) || (tot_len < skb_shinfo(skb)->gso_size))
1204 		return true;
1205 
1206 	/* ensure the remaining continuous 7 buffer is greater than mss */
1207 	for (i = 0; i < (skb_shinfo(skb)->nr_frags - bd_limit - 1); i++) {
1208 		tot_len -= skb_frag_size(&skb_shinfo(skb)->frags[i]);
1209 		tot_len += skb_frag_size(&skb_shinfo(skb)->frags[i + bd_limit]);
1210 
1211 		if (tot_len < skb_shinfo(skb)->gso_size)
1212 			return true;
1213 	}
1214 
1215 	return false;
1216 }
1217 
1218 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1219 				  struct sk_buff **out_skb)
1220 {
1221 	struct sk_buff *skb = *out_skb;
1222 	int bd_num;
1223 
1224 	bd_num = hns3_nic_bd_num(skb);
1225 	if (bd_num < 0)
1226 		return bd_num;
1227 
1228 	if (unlikely(bd_num > HNS3_MAX_BD_PER_FRAG)) {
1229 		struct sk_buff *new_skb;
1230 
1231 		if (skb_is_gso(skb) && !hns3_skb_need_linearized(skb))
1232 			goto out;
1233 
1234 		bd_num = hns3_tx_bd_count(skb->len);
1235 		if (unlikely(ring_space(ring) < bd_num))
1236 			return -EBUSY;
1237 		/* manual split the send packet */
1238 		new_skb = skb_copy(skb, GFP_ATOMIC);
1239 		if (!new_skb)
1240 			return -ENOMEM;
1241 		dev_kfree_skb_any(skb);
1242 		*out_skb = new_skb;
1243 
1244 		u64_stats_update_begin(&ring->syncp);
1245 		ring->stats.tx_copy++;
1246 		u64_stats_update_end(&ring->syncp);
1247 	}
1248 
1249 out:
1250 	if (unlikely(ring_space(ring) < bd_num))
1251 		return -EBUSY;
1252 
1253 	return bd_num;
1254 }
1255 
1256 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1257 {
1258 	struct device *dev = ring_to_dev(ring);
1259 	unsigned int i;
1260 
1261 	for (i = 0; i < ring->desc_num; i++) {
1262 		/* check if this is where we started */
1263 		if (ring->next_to_use == next_to_use_orig)
1264 			break;
1265 
1266 		/* rollback one */
1267 		ring_ptr_move_bw(ring, next_to_use);
1268 
1269 		/* unmap the descriptor dma address */
1270 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1271 			dma_unmap_single(dev,
1272 					 ring->desc_cb[ring->next_to_use].dma,
1273 					ring->desc_cb[ring->next_to_use].length,
1274 					DMA_TO_DEVICE);
1275 		else if (ring->desc_cb[ring->next_to_use].length)
1276 			dma_unmap_page(dev,
1277 				       ring->desc_cb[ring->next_to_use].dma,
1278 				       ring->desc_cb[ring->next_to_use].length,
1279 				       DMA_TO_DEVICE);
1280 
1281 		ring->desc_cb[ring->next_to_use].length = 0;
1282 		ring->desc_cb[ring->next_to_use].dma = 0;
1283 	}
1284 }
1285 
1286 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1287 {
1288 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1289 	struct hns3_nic_ring_data *ring_data =
1290 		&tx_ring_data(priv, skb->queue_mapping);
1291 	struct hns3_enet_ring *ring = ring_data->ring;
1292 	struct netdev_queue *dev_queue;
1293 	struct skb_frag_struct *frag;
1294 	int next_to_use_head;
1295 	int buf_num;
1296 	int seg_num;
1297 	int size;
1298 	int ret;
1299 	int i;
1300 
1301 	/* Prefetch the data used later */
1302 	prefetch(skb->data);
1303 
1304 	buf_num = hns3_nic_maybe_stop_tx(ring, &skb);
1305 	if (unlikely(buf_num <= 0)) {
1306 		if (buf_num == -EBUSY) {
1307 			u64_stats_update_begin(&ring->syncp);
1308 			ring->stats.tx_busy++;
1309 			u64_stats_update_end(&ring->syncp);
1310 			goto out_net_tx_busy;
1311 		} else if (buf_num == -ENOMEM) {
1312 			u64_stats_update_begin(&ring->syncp);
1313 			ring->stats.sw_err_cnt++;
1314 			u64_stats_update_end(&ring->syncp);
1315 		}
1316 
1317 		if (net_ratelimit())
1318 			netdev_err(netdev, "xmit error: %d!\n", buf_num);
1319 
1320 		goto out_err_tx_ok;
1321 	}
1322 
1323 	/* No. of segments (plus a header) */
1324 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1325 	/* Fill the first part */
1326 	size = skb_headlen(skb);
1327 
1328 	next_to_use_head = ring->next_to_use;
1329 
1330 	ret = hns3_fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1331 			     DESC_TYPE_SKB);
1332 	if (unlikely(ret))
1333 		goto fill_err;
1334 
1335 	/* Fill the fragments */
1336 	for (i = 1; i < seg_num; i++) {
1337 		frag = &skb_shinfo(skb)->frags[i - 1];
1338 		size = skb_frag_size(frag);
1339 
1340 		ret = hns3_fill_desc(ring, frag, size,
1341 				     seg_num - 1 == i ? 1 : 0,
1342 				     DESC_TYPE_PAGE);
1343 
1344 		if (unlikely(ret))
1345 			goto fill_err;
1346 	}
1347 
1348 	/* Complete translate all packets */
1349 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1350 	netdev_tx_sent_queue(dev_queue, skb->len);
1351 
1352 	wmb(); /* Commit all data before submit */
1353 
1354 	hnae3_queue_xmit(ring->tqp, buf_num);
1355 
1356 	return NETDEV_TX_OK;
1357 
1358 fill_err:
1359 	hns3_clear_desc(ring, next_to_use_head);
1360 
1361 out_err_tx_ok:
1362 	dev_kfree_skb_any(skb);
1363 	return NETDEV_TX_OK;
1364 
1365 out_net_tx_busy:
1366 	netif_stop_subqueue(netdev, ring_data->queue_index);
1367 	smp_mb(); /* Commit all data before submit */
1368 
1369 	return NETDEV_TX_BUSY;
1370 }
1371 
1372 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1373 {
1374 	struct hnae3_handle *h = hns3_get_handle(netdev);
1375 	struct sockaddr *mac_addr = p;
1376 	int ret;
1377 
1378 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1379 		return -EADDRNOTAVAIL;
1380 
1381 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1382 		netdev_info(netdev, "already using mac address %pM\n",
1383 			    mac_addr->sa_data);
1384 		return 0;
1385 	}
1386 
1387 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1388 	if (ret) {
1389 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1390 		return ret;
1391 	}
1392 
1393 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1394 
1395 	return 0;
1396 }
1397 
1398 static int hns3_nic_do_ioctl(struct net_device *netdev,
1399 			     struct ifreq *ifr, int cmd)
1400 {
1401 	struct hnae3_handle *h = hns3_get_handle(netdev);
1402 
1403 	if (!netif_running(netdev))
1404 		return -EINVAL;
1405 
1406 	if (!h->ae_algo->ops->do_ioctl)
1407 		return -EOPNOTSUPP;
1408 
1409 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1410 }
1411 
1412 static int hns3_nic_set_features(struct net_device *netdev,
1413 				 netdev_features_t features)
1414 {
1415 	netdev_features_t changed = netdev->features ^ features;
1416 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1417 	struct hnae3_handle *h = priv->ae_handle;
1418 	bool enable;
1419 	int ret;
1420 
1421 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1422 		enable = !!(features & NETIF_F_GRO_HW);
1423 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1424 		if (ret)
1425 			return ret;
1426 	}
1427 
1428 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1429 	    h->ae_algo->ops->enable_vlan_filter) {
1430 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1431 		h->ae_algo->ops->enable_vlan_filter(h, enable);
1432 	}
1433 
1434 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1435 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1436 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1437 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1438 		if (ret)
1439 			return ret;
1440 	}
1441 
1442 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1443 		enable = !!(features & NETIF_F_NTUPLE);
1444 		h->ae_algo->ops->enable_fd(h, enable);
1445 	}
1446 
1447 	netdev->features = features;
1448 	return 0;
1449 }
1450 
1451 static void hns3_nic_get_stats64(struct net_device *netdev,
1452 				 struct rtnl_link_stats64 *stats)
1453 {
1454 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1455 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1456 	struct hnae3_handle *handle = priv->ae_handle;
1457 	struct hns3_enet_ring *ring;
1458 	u64 rx_length_errors = 0;
1459 	u64 rx_crc_errors = 0;
1460 	u64 rx_multicast = 0;
1461 	unsigned int start;
1462 	u64 tx_errors = 0;
1463 	u64 rx_errors = 0;
1464 	unsigned int idx;
1465 	u64 tx_bytes = 0;
1466 	u64 rx_bytes = 0;
1467 	u64 tx_pkts = 0;
1468 	u64 rx_pkts = 0;
1469 	u64 tx_drop = 0;
1470 	u64 rx_drop = 0;
1471 
1472 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1473 		return;
1474 
1475 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1476 
1477 	for (idx = 0; idx < queue_num; idx++) {
1478 		/* fetch the tx stats */
1479 		ring = priv->ring_data[idx].ring;
1480 		do {
1481 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1482 			tx_bytes += ring->stats.tx_bytes;
1483 			tx_pkts += ring->stats.tx_pkts;
1484 			tx_drop += ring->stats.sw_err_cnt;
1485 			tx_errors += ring->stats.sw_err_cnt;
1486 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1487 
1488 		/* fetch the rx stats */
1489 		ring = priv->ring_data[idx + queue_num].ring;
1490 		do {
1491 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1492 			rx_bytes += ring->stats.rx_bytes;
1493 			rx_pkts += ring->stats.rx_pkts;
1494 			rx_drop += ring->stats.l2_err;
1495 			rx_errors += ring->stats.l2_err;
1496 			rx_errors += ring->stats.l3l4_csum_err;
1497 			rx_crc_errors += ring->stats.l2_err;
1498 			rx_multicast += ring->stats.rx_multicast;
1499 			rx_length_errors += ring->stats.err_pkt_len;
1500 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1501 	}
1502 
1503 	stats->tx_bytes = tx_bytes;
1504 	stats->tx_packets = tx_pkts;
1505 	stats->rx_bytes = rx_bytes;
1506 	stats->rx_packets = rx_pkts;
1507 
1508 	stats->rx_errors = rx_errors;
1509 	stats->multicast = rx_multicast;
1510 	stats->rx_length_errors = rx_length_errors;
1511 	stats->rx_crc_errors = rx_crc_errors;
1512 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1513 
1514 	stats->tx_errors = tx_errors;
1515 	stats->rx_dropped = rx_drop;
1516 	stats->tx_dropped = tx_drop;
1517 	stats->collisions = netdev->stats.collisions;
1518 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1519 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1520 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1521 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1522 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1523 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1524 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1525 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1526 	stats->rx_compressed = netdev->stats.rx_compressed;
1527 	stats->tx_compressed = netdev->stats.tx_compressed;
1528 }
1529 
1530 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1531 {
1532 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1533 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1534 	struct hnae3_knic_private_info *kinfo;
1535 	u8 tc = mqprio_qopt->qopt.num_tc;
1536 	u16 mode = mqprio_qopt->mode;
1537 	u8 hw = mqprio_qopt->qopt.hw;
1538 	struct hnae3_handle *h;
1539 
1540 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1541 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1542 		return -EOPNOTSUPP;
1543 
1544 	if (tc > HNAE3_MAX_TC)
1545 		return -EINVAL;
1546 
1547 	if (!netdev)
1548 		return -EINVAL;
1549 
1550 	h = hns3_get_handle(netdev);
1551 	kinfo = &h->kinfo;
1552 
1553 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1554 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1555 }
1556 
1557 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1558 			     void *type_data)
1559 {
1560 	if (type != TC_SETUP_QDISC_MQPRIO)
1561 		return -EOPNOTSUPP;
1562 
1563 	return hns3_setup_tc(dev, type_data);
1564 }
1565 
1566 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1567 				__be16 proto, u16 vid)
1568 {
1569 	struct hnae3_handle *h = hns3_get_handle(netdev);
1570 	int ret = -EIO;
1571 
1572 	if (h->ae_algo->ops->set_vlan_filter)
1573 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1574 
1575 	return ret;
1576 }
1577 
1578 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1579 				 __be16 proto, u16 vid)
1580 {
1581 	struct hnae3_handle *h = hns3_get_handle(netdev);
1582 	int ret = -EIO;
1583 
1584 	if (h->ae_algo->ops->set_vlan_filter)
1585 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1586 
1587 	return ret;
1588 }
1589 
1590 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1591 				u8 qos, __be16 vlan_proto)
1592 {
1593 	struct hnae3_handle *h = hns3_get_handle(netdev);
1594 	int ret = -EIO;
1595 
1596 	if (h->ae_algo->ops->set_vf_vlan_filter)
1597 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1598 							  qos, vlan_proto);
1599 
1600 	return ret;
1601 }
1602 
1603 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1604 {
1605 	struct hnae3_handle *h = hns3_get_handle(netdev);
1606 	int ret;
1607 
1608 	if (hns3_nic_resetting(netdev))
1609 		return -EBUSY;
1610 
1611 	if (!h->ae_algo->ops->set_mtu)
1612 		return -EOPNOTSUPP;
1613 
1614 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1615 	if (ret)
1616 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1617 			   ret);
1618 	else
1619 		netdev->mtu = new_mtu;
1620 
1621 	return ret;
1622 }
1623 
1624 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1625 {
1626 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1627 	struct hnae3_handle *h = hns3_get_handle(ndev);
1628 	struct hns3_enet_ring *tx_ring = NULL;
1629 	struct napi_struct *napi;
1630 	int timeout_queue = 0;
1631 	int hw_head, hw_tail;
1632 	int fbd_num, fbd_oft;
1633 	int ebd_num, ebd_oft;
1634 	int bd_num, bd_err;
1635 	int ring_en, tc;
1636 	int i;
1637 
1638 	/* Find the stopped queue the same way the stack does */
1639 	for (i = 0; i < ndev->num_tx_queues; i++) {
1640 		struct netdev_queue *q;
1641 		unsigned long trans_start;
1642 
1643 		q = netdev_get_tx_queue(ndev, i);
1644 		trans_start = q->trans_start;
1645 		if (netif_xmit_stopped(q) &&
1646 		    time_after(jiffies,
1647 			       (trans_start + ndev->watchdog_timeo))) {
1648 			timeout_queue = i;
1649 			break;
1650 		}
1651 	}
1652 
1653 	if (i == ndev->num_tx_queues) {
1654 		netdev_info(ndev,
1655 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1656 			    priv->tx_timeout_count);
1657 		return false;
1658 	}
1659 
1660 	priv->tx_timeout_count++;
1661 
1662 	tx_ring = priv->ring_data[timeout_queue].ring;
1663 	napi = &tx_ring->tqp_vector->napi;
1664 
1665 	netdev_info(ndev,
1666 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1667 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1668 		    tx_ring->next_to_clean, napi->state);
1669 
1670 	netdev_info(ndev,
1671 		    "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
1672 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1673 		    tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);
1674 
1675 	netdev_info(ndev,
1676 		    "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
1677 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
1678 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1679 
1680 	/* When mac received many pause frames continuous, it's unable to send
1681 	 * packets, which may cause tx timeout
1682 	 */
1683 	if (h->ae_algo->ops->update_stats &&
1684 	    h->ae_algo->ops->get_mac_pause_stats) {
1685 		u64 tx_pause_cnt, rx_pause_cnt;
1686 
1687 		h->ae_algo->ops->update_stats(h, &ndev->stats);
1688 		h->ae_algo->ops->get_mac_pause_stats(h, &tx_pause_cnt,
1689 						     &rx_pause_cnt);
1690 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1691 			    tx_pause_cnt, rx_pause_cnt);
1692 	}
1693 
1694 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1695 				HNS3_RING_TX_RING_HEAD_REG);
1696 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1697 				HNS3_RING_TX_RING_TAIL_REG);
1698 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1699 				HNS3_RING_TX_RING_FBDNUM_REG);
1700 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1701 				HNS3_RING_TX_RING_OFFSET_REG);
1702 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1703 				HNS3_RING_TX_RING_EBDNUM_REG);
1704 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
1705 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
1706 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
1707 			       HNS3_RING_TX_RING_BD_NUM_REG);
1708 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
1709 			       HNS3_RING_TX_RING_BD_ERR_REG);
1710 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
1711 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
1712 
1713 	netdev_info(ndev,
1714 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
1715 		    bd_num, hw_head, hw_tail, bd_err,
1716 		    readl(tx_ring->tqp_vector->mask_addr));
1717 	netdev_info(ndev,
1718 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
1719 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1720 
1721 	return true;
1722 }
1723 
1724 static void hns3_nic_net_timeout(struct net_device *ndev)
1725 {
1726 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1727 	struct hnae3_handle *h = priv->ae_handle;
1728 
1729 	if (!hns3_get_tx_timeo_queue_info(ndev))
1730 		return;
1731 
1732 	/* request the reset, and let the hclge to determine
1733 	 * which reset level should be done
1734 	 */
1735 	if (h->ae_algo->ops->reset_event)
1736 		h->ae_algo->ops->reset_event(h->pdev, h);
1737 }
1738 
1739 #ifdef CONFIG_RFS_ACCEL
1740 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
1741 			      u16 rxq_index, u32 flow_id)
1742 {
1743 	struct hnae3_handle *h = hns3_get_handle(dev);
1744 	struct flow_keys fkeys;
1745 
1746 	if (!h->ae_algo->ops->add_arfs_entry)
1747 		return -EOPNOTSUPP;
1748 
1749 	if (skb->encapsulation)
1750 		return -EPROTONOSUPPORT;
1751 
1752 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
1753 		return -EPROTONOSUPPORT;
1754 
1755 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
1756 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
1757 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
1758 	     fkeys.basic.ip_proto != IPPROTO_UDP))
1759 		return -EPROTONOSUPPORT;
1760 
1761 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
1762 }
1763 #endif
1764 
1765 static const struct net_device_ops hns3_nic_netdev_ops = {
1766 	.ndo_open		= hns3_nic_net_open,
1767 	.ndo_stop		= hns3_nic_net_stop,
1768 	.ndo_start_xmit		= hns3_nic_net_xmit,
1769 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1770 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1771 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
1772 	.ndo_change_mtu		= hns3_nic_change_mtu,
1773 	.ndo_set_features	= hns3_nic_set_features,
1774 	.ndo_get_stats64	= hns3_nic_get_stats64,
1775 	.ndo_setup_tc		= hns3_nic_setup_tc,
1776 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1777 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1778 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1779 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1780 #ifdef CONFIG_RFS_ACCEL
1781 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
1782 #endif
1783 
1784 };
1785 
1786 bool hns3_is_phys_func(struct pci_dev *pdev)
1787 {
1788 	u32 dev_id = pdev->device;
1789 
1790 	switch (dev_id) {
1791 	case HNAE3_DEV_ID_GE:
1792 	case HNAE3_DEV_ID_25GE:
1793 	case HNAE3_DEV_ID_25GE_RDMA:
1794 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1795 	case HNAE3_DEV_ID_50GE_RDMA:
1796 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1797 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1798 		return true;
1799 	case HNAE3_DEV_ID_100G_VF:
1800 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1801 		return false;
1802 	default:
1803 		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1804 			 dev_id);
1805 	}
1806 
1807 	return false;
1808 }
1809 
1810 static void hns3_disable_sriov(struct pci_dev *pdev)
1811 {
1812 	/* If our VFs are assigned we cannot shut down SR-IOV
1813 	 * without causing issues, so just leave the hardware
1814 	 * available but disabled
1815 	 */
1816 	if (pci_vfs_assigned(pdev)) {
1817 		dev_warn(&pdev->dev,
1818 			 "disabling driver while VFs are assigned\n");
1819 		return;
1820 	}
1821 
1822 	pci_disable_sriov(pdev);
1823 }
1824 
1825 static void hns3_get_dev_capability(struct pci_dev *pdev,
1826 				    struct hnae3_ae_dev *ae_dev)
1827 {
1828 	if (pdev->revision >= 0x21) {
1829 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1830 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1831 	}
1832 }
1833 
1834 /* hns3_probe - Device initialization routine
1835  * @pdev: PCI device information struct
1836  * @ent: entry in hns3_pci_tbl
1837  *
1838  * hns3_probe initializes a PF identified by a pci_dev structure.
1839  * The OS initialization, configuring of the PF private structure,
1840  * and a hardware reset occur.
1841  *
1842  * Returns 0 on success, negative on failure
1843  */
1844 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1845 {
1846 	struct hnae3_ae_dev *ae_dev;
1847 	int ret;
1848 
1849 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
1850 	if (!ae_dev) {
1851 		ret = -ENOMEM;
1852 		return ret;
1853 	}
1854 
1855 	ae_dev->pdev = pdev;
1856 	ae_dev->flag = ent->driver_data;
1857 	ae_dev->reset_type = HNAE3_NONE_RESET;
1858 	hns3_get_dev_capability(pdev, ae_dev);
1859 	pci_set_drvdata(pdev, ae_dev);
1860 
1861 	ret = hnae3_register_ae_dev(ae_dev);
1862 	if (ret) {
1863 		devm_kfree(&pdev->dev, ae_dev);
1864 		pci_set_drvdata(pdev, NULL);
1865 	}
1866 
1867 	return ret;
1868 }
1869 
1870 /* hns3_remove - Device removal routine
1871  * @pdev: PCI device information struct
1872  */
1873 static void hns3_remove(struct pci_dev *pdev)
1874 {
1875 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1876 
1877 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1878 		hns3_disable_sriov(pdev);
1879 
1880 	hnae3_unregister_ae_dev(ae_dev);
1881 	pci_set_drvdata(pdev, NULL);
1882 }
1883 
1884 /**
1885  * hns3_pci_sriov_configure
1886  * @pdev: pointer to a pci_dev structure
1887  * @num_vfs: number of VFs to allocate
1888  *
1889  * Enable or change the number of VFs. Called when the user updates the number
1890  * of VFs in sysfs.
1891  **/
1892 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1893 {
1894 	int ret;
1895 
1896 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1897 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
1898 		return -EINVAL;
1899 	}
1900 
1901 	if (num_vfs) {
1902 		ret = pci_enable_sriov(pdev, num_vfs);
1903 		if (ret)
1904 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1905 		else
1906 			return num_vfs;
1907 	} else if (!pci_vfs_assigned(pdev)) {
1908 		pci_disable_sriov(pdev);
1909 	} else {
1910 		dev_warn(&pdev->dev,
1911 			 "Unable to free VFs because some are assigned to VMs.\n");
1912 	}
1913 
1914 	return 0;
1915 }
1916 
1917 static void hns3_shutdown(struct pci_dev *pdev)
1918 {
1919 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1920 
1921 	hnae3_unregister_ae_dev(ae_dev);
1922 	devm_kfree(&pdev->dev, ae_dev);
1923 	pci_set_drvdata(pdev, NULL);
1924 
1925 	if (system_state == SYSTEM_POWER_OFF)
1926 		pci_set_power_state(pdev, PCI_D3hot);
1927 }
1928 
1929 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1930 					    pci_channel_state_t state)
1931 {
1932 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1933 	pci_ers_result_t ret;
1934 
1935 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1936 
1937 	if (state == pci_channel_io_perm_failure)
1938 		return PCI_ERS_RESULT_DISCONNECT;
1939 
1940 	if (!ae_dev || !ae_dev->ops) {
1941 		dev_err(&pdev->dev,
1942 			"Can't recover - error happened before device initialized\n");
1943 		return PCI_ERS_RESULT_NONE;
1944 	}
1945 
1946 	if (ae_dev->ops->handle_hw_ras_error)
1947 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
1948 	else
1949 		return PCI_ERS_RESULT_NONE;
1950 
1951 	return ret;
1952 }
1953 
1954 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
1955 {
1956 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1957 	const struct hnae3_ae_ops *ops;
1958 	enum hnae3_reset_type reset_type;
1959 	struct device *dev = &pdev->dev;
1960 
1961 	if (!ae_dev || !ae_dev->ops)
1962 		return PCI_ERS_RESULT_NONE;
1963 
1964 	ops = ae_dev->ops;
1965 	/* request the reset */
1966 	if (ops->reset_event) {
1967 		if (ae_dev->hw_err_reset_req) {
1968 			reset_type = ops->get_reset_level(ae_dev,
1969 						&ae_dev->hw_err_reset_req);
1970 			ops->set_default_reset_request(ae_dev, reset_type);
1971 			dev_info(dev, "requesting reset due to PCI error\n");
1972 			ops->reset_event(pdev, NULL);
1973 		}
1974 
1975 		return PCI_ERS_RESULT_RECOVERED;
1976 	}
1977 
1978 	return PCI_ERS_RESULT_DISCONNECT;
1979 }
1980 
1981 static void hns3_reset_prepare(struct pci_dev *pdev)
1982 {
1983 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1984 
1985 	dev_info(&pdev->dev, "hns3 flr prepare\n");
1986 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
1987 		ae_dev->ops->flr_prepare(ae_dev);
1988 }
1989 
1990 static void hns3_reset_done(struct pci_dev *pdev)
1991 {
1992 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1993 
1994 	dev_info(&pdev->dev, "hns3 flr done\n");
1995 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
1996 		ae_dev->ops->flr_done(ae_dev);
1997 }
1998 
1999 static const struct pci_error_handlers hns3_err_handler = {
2000 	.error_detected = hns3_error_detected,
2001 	.slot_reset     = hns3_slot_reset,
2002 	.reset_prepare	= hns3_reset_prepare,
2003 	.reset_done	= hns3_reset_done,
2004 };
2005 
2006 static struct pci_driver hns3_driver = {
2007 	.name     = hns3_driver_name,
2008 	.id_table = hns3_pci_tbl,
2009 	.probe    = hns3_probe,
2010 	.remove   = hns3_remove,
2011 	.shutdown = hns3_shutdown,
2012 	.sriov_configure = hns3_pci_sriov_configure,
2013 	.err_handler    = &hns3_err_handler,
2014 };
2015 
2016 /* set default feature to hns3 */
2017 static void hns3_set_default_feature(struct net_device *netdev)
2018 {
2019 	struct hnae3_handle *h = hns3_get_handle(netdev);
2020 	struct pci_dev *pdev = h->pdev;
2021 
2022 	netdev->priv_flags |= IFF_UNICAST_FLT;
2023 
2024 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2025 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2026 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2027 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2028 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2029 
2030 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
2031 
2032 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2033 
2034 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2035 		NETIF_F_HW_VLAN_CTAG_FILTER |
2036 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2037 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2038 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2039 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2040 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2041 
2042 	netdev->vlan_features |=
2043 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
2044 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2045 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2046 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2047 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2048 
2049 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2050 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2051 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2052 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2053 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2054 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2055 
2056 	if (pdev->revision >= 0x21) {
2057 		netdev->hw_features |= NETIF_F_GRO_HW;
2058 		netdev->features |= NETIF_F_GRO_HW;
2059 
2060 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2061 			netdev->hw_features |= NETIF_F_NTUPLE;
2062 			netdev->features |= NETIF_F_NTUPLE;
2063 		}
2064 	}
2065 }
2066 
2067 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2068 			     struct hns3_desc_cb *cb)
2069 {
2070 	unsigned int order = hnae3_page_order(ring);
2071 	struct page *p;
2072 
2073 	p = dev_alloc_pages(order);
2074 	if (!p)
2075 		return -ENOMEM;
2076 
2077 	cb->priv = p;
2078 	cb->page_offset = 0;
2079 	cb->reuse_flag = 0;
2080 	cb->buf  = page_address(p);
2081 	cb->length = hnae3_page_size(ring);
2082 	cb->type = DESC_TYPE_PAGE;
2083 
2084 	return 0;
2085 }
2086 
2087 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2088 			     struct hns3_desc_cb *cb)
2089 {
2090 	if (cb->type == DESC_TYPE_SKB)
2091 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
2092 	else if (!HNAE3_IS_TX_RING(ring))
2093 		put_page((struct page *)cb->priv);
2094 	memset(cb, 0, sizeof(*cb));
2095 }
2096 
2097 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2098 {
2099 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2100 			       cb->length, ring_to_dma_dir(ring));
2101 
2102 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2103 		return -EIO;
2104 
2105 	return 0;
2106 }
2107 
2108 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2109 			      struct hns3_desc_cb *cb)
2110 {
2111 	if (cb->type == DESC_TYPE_SKB)
2112 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2113 				 ring_to_dma_dir(ring));
2114 	else if (cb->length)
2115 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2116 			       ring_to_dma_dir(ring));
2117 }
2118 
2119 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2120 {
2121 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2122 	ring->desc[i].addr = 0;
2123 }
2124 
2125 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2126 {
2127 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2128 
2129 	if (!ring->desc_cb[i].dma)
2130 		return;
2131 
2132 	hns3_buffer_detach(ring, i);
2133 	hns3_free_buffer(ring, cb);
2134 }
2135 
2136 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2137 {
2138 	int i;
2139 
2140 	for (i = 0; i < ring->desc_num; i++)
2141 		hns3_free_buffer_detach(ring, i);
2142 }
2143 
2144 /* free desc along with its attached buffer */
2145 static void hns3_free_desc(struct hns3_enet_ring *ring)
2146 {
2147 	int size = ring->desc_num * sizeof(ring->desc[0]);
2148 
2149 	hns3_free_buffers(ring);
2150 
2151 	if (ring->desc) {
2152 		dma_free_coherent(ring_to_dev(ring), size,
2153 				  ring->desc, ring->desc_dma_addr);
2154 		ring->desc = NULL;
2155 	}
2156 }
2157 
2158 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2159 {
2160 	int size = ring->desc_num * sizeof(ring->desc[0]);
2161 
2162 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2163 					&ring->desc_dma_addr, GFP_KERNEL);
2164 	if (!ring->desc)
2165 		return -ENOMEM;
2166 
2167 	return 0;
2168 }
2169 
2170 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2171 				   struct hns3_desc_cb *cb)
2172 {
2173 	int ret;
2174 
2175 	ret = hns3_alloc_buffer(ring, cb);
2176 	if (ret)
2177 		goto out;
2178 
2179 	ret = hns3_map_buffer(ring, cb);
2180 	if (ret)
2181 		goto out_with_buf;
2182 
2183 	return 0;
2184 
2185 out_with_buf:
2186 	hns3_free_buffer(ring, cb);
2187 out:
2188 	return ret;
2189 }
2190 
2191 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2192 {
2193 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2194 
2195 	if (ret)
2196 		return ret;
2197 
2198 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2199 
2200 	return 0;
2201 }
2202 
2203 /* Allocate memory for raw pkg, and map with dma */
2204 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2205 {
2206 	int i, j, ret;
2207 
2208 	for (i = 0; i < ring->desc_num; i++) {
2209 		ret = hns3_alloc_buffer_attach(ring, i);
2210 		if (ret)
2211 			goto out_buffer_fail;
2212 	}
2213 
2214 	return 0;
2215 
2216 out_buffer_fail:
2217 	for (j = i - 1; j >= 0; j--)
2218 		hns3_free_buffer_detach(ring, j);
2219 	return ret;
2220 }
2221 
2222 /* detach a in-used buffer and replace with a reserved one */
2223 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2224 				struct hns3_desc_cb *res_cb)
2225 {
2226 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2227 	ring->desc_cb[i] = *res_cb;
2228 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2229 	ring->desc[i].rx.bd_base_info = 0;
2230 }
2231 
2232 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2233 {
2234 	ring->desc_cb[i].reuse_flag = 0;
2235 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2236 					 ring->desc_cb[i].page_offset);
2237 	ring->desc[i].rx.bd_base_info = 0;
2238 }
2239 
2240 static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
2241 				  int *bytes, int *pkts)
2242 {
2243 	int ntc = ring->next_to_clean;
2244 	struct hns3_desc_cb *desc_cb;
2245 
2246 	while (head != ntc) {
2247 		desc_cb = &ring->desc_cb[ntc];
2248 		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2249 		(*bytes) += desc_cb->length;
2250 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2251 		hns3_free_buffer_detach(ring, ntc);
2252 
2253 		if (++ntc == ring->desc_num)
2254 			ntc = 0;
2255 
2256 		/* Issue prefetch for next Tx descriptor */
2257 		prefetch(&ring->desc_cb[ntc]);
2258 	}
2259 
2260 	/* This smp_store_release() pairs with smp_load_acquire() in
2261 	 * ring_space called by hns3_nic_net_xmit.
2262 	 */
2263 	smp_store_release(&ring->next_to_clean, ntc);
2264 }
2265 
2266 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2267 {
2268 	int u = ring->next_to_use;
2269 	int c = ring->next_to_clean;
2270 
2271 	if (unlikely(h > ring->desc_num))
2272 		return 0;
2273 
2274 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2275 }
2276 
2277 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2278 {
2279 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2280 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2281 	struct netdev_queue *dev_queue;
2282 	int bytes, pkts;
2283 	int head;
2284 
2285 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2286 	rmb(); /* Make sure head is ready before touch any data */
2287 
2288 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2289 		return; /* no data to poll */
2290 
2291 	if (unlikely(!is_valid_clean_head(ring, head))) {
2292 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2293 			   ring->next_to_use, ring->next_to_clean);
2294 
2295 		u64_stats_update_begin(&ring->syncp);
2296 		ring->stats.io_err_cnt++;
2297 		u64_stats_update_end(&ring->syncp);
2298 		return;
2299 	}
2300 
2301 	bytes = 0;
2302 	pkts = 0;
2303 	hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2304 
2305 	ring->tqp_vector->tx_group.total_bytes += bytes;
2306 	ring->tqp_vector->tx_group.total_packets += pkts;
2307 
2308 	u64_stats_update_begin(&ring->syncp);
2309 	ring->stats.tx_bytes += bytes;
2310 	ring->stats.tx_pkts += pkts;
2311 	u64_stats_update_end(&ring->syncp);
2312 
2313 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2314 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2315 
2316 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
2317 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2318 		/* Make sure that anybody stopping the queue after this
2319 		 * sees the new next_to_clean.
2320 		 */
2321 		smp_mb();
2322 		if (netif_tx_queue_stopped(dev_queue) &&
2323 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2324 			netif_tx_wake_queue(dev_queue);
2325 			ring->stats.restart_queue++;
2326 		}
2327 	}
2328 }
2329 
2330 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2331 {
2332 	int ntc = ring->next_to_clean;
2333 	int ntu = ring->next_to_use;
2334 
2335 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2336 }
2337 
2338 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2339 				      int cleand_count)
2340 {
2341 	struct hns3_desc_cb *desc_cb;
2342 	struct hns3_desc_cb res_cbs;
2343 	int i, ret;
2344 
2345 	for (i = 0; i < cleand_count; i++) {
2346 		desc_cb = &ring->desc_cb[ring->next_to_use];
2347 		if (desc_cb->reuse_flag) {
2348 			u64_stats_update_begin(&ring->syncp);
2349 			ring->stats.reuse_pg_cnt++;
2350 			u64_stats_update_end(&ring->syncp);
2351 
2352 			hns3_reuse_buffer(ring, ring->next_to_use);
2353 		} else {
2354 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
2355 			if (ret) {
2356 				u64_stats_update_begin(&ring->syncp);
2357 				ring->stats.sw_err_cnt++;
2358 				u64_stats_update_end(&ring->syncp);
2359 
2360 				netdev_err(ring->tqp->handle->kinfo.netdev,
2361 					   "hnae reserve buffer map failed.\n");
2362 				break;
2363 			}
2364 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2365 
2366 			u64_stats_update_begin(&ring->syncp);
2367 			ring->stats.non_reuse_pg++;
2368 			u64_stats_update_end(&ring->syncp);
2369 		}
2370 
2371 		ring_ptr_move_fw(ring, next_to_use);
2372 	}
2373 
2374 	wmb(); /* Make all data has been write before submit */
2375 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2376 }
2377 
2378 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2379 				struct hns3_enet_ring *ring, int pull_len,
2380 				struct hns3_desc_cb *desc_cb)
2381 {
2382 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2383 	int size = le16_to_cpu(desc->rx.size);
2384 	u32 truesize = hnae3_buf_size(ring);
2385 
2386 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2387 			size - pull_len, truesize);
2388 
2389 	/* Avoid re-using remote pages, or the stack is still using the page
2390 	 * when page_offset rollback to zero, flag default unreuse
2391 	 */
2392 	if (unlikely(page_to_nid(desc_cb->priv) != numa_mem_id()) ||
2393 	    (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2394 		return;
2395 
2396 	/* Move offset up to the next cache line */
2397 	desc_cb->page_offset += truesize;
2398 
2399 	if (desc_cb->page_offset + truesize <= hnae3_page_size(ring)) {
2400 		desc_cb->reuse_flag = 1;
2401 		/* Bump ref count on page before it is given */
2402 		get_page(desc_cb->priv);
2403 	} else if (page_count(desc_cb->priv) == 1) {
2404 		desc_cb->reuse_flag = 1;
2405 		desc_cb->page_offset = 0;
2406 		get_page(desc_cb->priv);
2407 	}
2408 }
2409 
2410 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2411 {
2412 	__be16 type = skb->protocol;
2413 	struct tcphdr *th;
2414 	int depth = 0;
2415 
2416 	while (eth_type_vlan(type)) {
2417 		struct vlan_hdr *vh;
2418 
2419 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2420 			return -EFAULT;
2421 
2422 		vh = (struct vlan_hdr *)(skb->data + depth);
2423 		type = vh->h_vlan_encapsulated_proto;
2424 		depth += VLAN_HLEN;
2425 	}
2426 
2427 	skb_set_network_header(skb, depth);
2428 
2429 	if (type == htons(ETH_P_IP)) {
2430 		const struct iphdr *iph = ip_hdr(skb);
2431 
2432 		depth += sizeof(struct iphdr);
2433 		skb_set_transport_header(skb, depth);
2434 		th = tcp_hdr(skb);
2435 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2436 					  iph->daddr, 0);
2437 	} else if (type == htons(ETH_P_IPV6)) {
2438 		const struct ipv6hdr *iph = ipv6_hdr(skb);
2439 
2440 		depth += sizeof(struct ipv6hdr);
2441 		skb_set_transport_header(skb, depth);
2442 		th = tcp_hdr(skb);
2443 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2444 					  &iph->daddr, 0);
2445 	} else {
2446 		netdev_err(skb->dev,
2447 			   "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2448 			   be16_to_cpu(type), depth);
2449 		return -EFAULT;
2450 	}
2451 
2452 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2453 	if (th->cwr)
2454 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2455 
2456 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2457 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2458 
2459 	skb->csum_start = (unsigned char *)th - skb->head;
2460 	skb->csum_offset = offsetof(struct tcphdr, check);
2461 	skb->ip_summed = CHECKSUM_PARTIAL;
2462 	return 0;
2463 }
2464 
2465 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2466 			     u32 l234info, u32 bd_base_info, u32 ol_info)
2467 {
2468 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2469 	int l3_type, l4_type;
2470 	int ol4_type;
2471 
2472 	skb->ip_summed = CHECKSUM_NONE;
2473 
2474 	skb_checksum_none_assert(skb);
2475 
2476 	if (!(netdev->features & NETIF_F_RXCSUM))
2477 		return;
2478 
2479 	/* check if hardware has done checksum */
2480 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2481 		return;
2482 
2483 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2484 				 BIT(HNS3_RXD_OL3E_B) |
2485 				 BIT(HNS3_RXD_OL4E_B)))) {
2486 		u64_stats_update_begin(&ring->syncp);
2487 		ring->stats.l3l4_csum_err++;
2488 		u64_stats_update_end(&ring->syncp);
2489 
2490 		return;
2491 	}
2492 
2493 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2494 				   HNS3_RXD_OL4ID_S);
2495 	switch (ol4_type) {
2496 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2497 	case HNS3_OL4_TYPE_NVGRE:
2498 		skb->csum_level = 1;
2499 		/* fall through */
2500 	case HNS3_OL4_TYPE_NO_TUN:
2501 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2502 					  HNS3_RXD_L3ID_S);
2503 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2504 					  HNS3_RXD_L4ID_S);
2505 
2506 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2507 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2508 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2509 		    (l4_type == HNS3_L4_TYPE_UDP ||
2510 		     l4_type == HNS3_L4_TYPE_TCP ||
2511 		     l4_type == HNS3_L4_TYPE_SCTP))
2512 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2513 		break;
2514 	default:
2515 		break;
2516 	}
2517 }
2518 
2519 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2520 {
2521 	if (skb_has_frag_list(skb))
2522 		napi_gro_flush(&ring->tqp_vector->napi, false);
2523 
2524 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2525 }
2526 
2527 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2528 				struct hns3_desc *desc, u32 l234info,
2529 				u16 *vlan_tag)
2530 {
2531 	struct hnae3_handle *handle = ring->tqp->handle;
2532 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2533 
2534 	if (pdev->revision == 0x20) {
2535 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2536 		if (!(*vlan_tag & VLAN_VID_MASK))
2537 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2538 
2539 		return (*vlan_tag != 0);
2540 	}
2541 
2542 #define HNS3_STRP_OUTER_VLAN	0x1
2543 #define HNS3_STRP_INNER_VLAN	0x2
2544 #define HNS3_STRP_BOTH		0x3
2545 
2546 	/* Hardware always insert VLAN tag into RX descriptor when
2547 	 * remove the tag from packet, driver needs to determine
2548 	 * reporting which tag to stack.
2549 	 */
2550 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2551 				HNS3_RXD_STRP_TAGP_S)) {
2552 	case HNS3_STRP_OUTER_VLAN:
2553 		if (handle->port_base_vlan_state !=
2554 				HNAE3_PORT_BASE_VLAN_DISABLE)
2555 			return false;
2556 
2557 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2558 		return true;
2559 	case HNS3_STRP_INNER_VLAN:
2560 		if (handle->port_base_vlan_state !=
2561 				HNAE3_PORT_BASE_VLAN_DISABLE)
2562 			return false;
2563 
2564 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2565 		return true;
2566 	case HNS3_STRP_BOTH:
2567 		if (handle->port_base_vlan_state ==
2568 				HNAE3_PORT_BASE_VLAN_DISABLE)
2569 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2570 		else
2571 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2572 
2573 		return true;
2574 	default:
2575 		return false;
2576 	}
2577 }
2578 
2579 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2580 			  unsigned char *va)
2581 {
2582 #define HNS3_NEED_ADD_FRAG	1
2583 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2584 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2585 	struct sk_buff *skb;
2586 
2587 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2588 	skb = ring->skb;
2589 	if (unlikely(!skb)) {
2590 		netdev_err(netdev, "alloc rx skb fail\n");
2591 
2592 		u64_stats_update_begin(&ring->syncp);
2593 		ring->stats.sw_err_cnt++;
2594 		u64_stats_update_end(&ring->syncp);
2595 
2596 		return -ENOMEM;
2597 	}
2598 
2599 	prefetchw(skb->data);
2600 
2601 	ring->pending_buf = 1;
2602 	ring->frag_num = 0;
2603 	ring->tail_skb = NULL;
2604 	if (length <= HNS3_RX_HEAD_SIZE) {
2605 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2606 
2607 		/* We can reuse buffer as-is, just make sure it is local */
2608 		if (likely(page_to_nid(desc_cb->priv) == numa_mem_id()))
2609 			desc_cb->reuse_flag = 1;
2610 		else /* This page cannot be reused so discard it */
2611 			put_page(desc_cb->priv);
2612 
2613 		ring_ptr_move_fw(ring, next_to_clean);
2614 		return 0;
2615 	}
2616 	u64_stats_update_begin(&ring->syncp);
2617 	ring->stats.seg_pkt_cnt++;
2618 	u64_stats_update_end(&ring->syncp);
2619 
2620 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2621 	__skb_put(skb, ring->pull_len);
2622 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2623 			    desc_cb);
2624 	ring_ptr_move_fw(ring, next_to_clean);
2625 
2626 	return HNS3_NEED_ADD_FRAG;
2627 }
2628 
2629 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2630 			 struct sk_buff **out_skb, bool pending)
2631 {
2632 	struct sk_buff *skb = *out_skb;
2633 	struct sk_buff *head_skb = *out_skb;
2634 	struct sk_buff *new_skb;
2635 	struct hns3_desc_cb *desc_cb;
2636 	struct hns3_desc *pre_desc;
2637 	u32 bd_base_info;
2638 	int pre_bd;
2639 
2640 	/* if there is pending bd, the SW param next_to_clean has moved
2641 	 * to next and the next is NULL
2642 	 */
2643 	if (pending) {
2644 		pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2645 			 ring->desc_num;
2646 		pre_desc = &ring->desc[pre_bd];
2647 		bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2648 	} else {
2649 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2650 	}
2651 
2652 	while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2653 		desc = &ring->desc[ring->next_to_clean];
2654 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2655 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2656 		/* make sure HW write desc complete */
2657 		dma_rmb();
2658 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2659 			return -ENXIO;
2660 
2661 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2662 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2663 						 HNS3_RX_HEAD_SIZE);
2664 			if (unlikely(!new_skb)) {
2665 				netdev_err(ring->tqp->handle->kinfo.netdev,
2666 					   "alloc rx skb frag fail\n");
2667 				return -ENXIO;
2668 			}
2669 			ring->frag_num = 0;
2670 
2671 			if (ring->tail_skb) {
2672 				ring->tail_skb->next = new_skb;
2673 				ring->tail_skb = new_skb;
2674 			} else {
2675 				skb_shinfo(skb)->frag_list = new_skb;
2676 				ring->tail_skb = new_skb;
2677 			}
2678 		}
2679 
2680 		if (ring->tail_skb) {
2681 			head_skb->truesize += hnae3_buf_size(ring);
2682 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2683 			head_skb->len += le16_to_cpu(desc->rx.size);
2684 			skb = ring->tail_skb;
2685 		}
2686 
2687 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2688 		ring_ptr_move_fw(ring, next_to_clean);
2689 		ring->pending_buf++;
2690 	}
2691 
2692 	return 0;
2693 }
2694 
2695 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
2696 				     struct sk_buff *skb, u32 l234info,
2697 				     u32 bd_base_info, u32 ol_info)
2698 {
2699 	u32 l3_type;
2700 
2701 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2702 						    HNS3_RXD_GRO_SIZE_M,
2703 						    HNS3_RXD_GRO_SIZE_S);
2704 	/* if there is no HW GRO, do not set gro params */
2705 	if (!skb_shinfo(skb)->gso_size) {
2706 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2707 		return 0;
2708 	}
2709 
2710 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
2711 						  HNS3_RXD_GRO_COUNT_M,
2712 						  HNS3_RXD_GRO_COUNT_S);
2713 
2714 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
2715 	if (l3_type == HNS3_L3_TYPE_IPV4)
2716 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2717 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2718 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2719 	else
2720 		return -EFAULT;
2721 
2722 	return  hns3_gro_complete(skb, l234info);
2723 }
2724 
2725 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2726 				     struct sk_buff *skb, u32 rss_hash)
2727 {
2728 	struct hnae3_handle *handle = ring->tqp->handle;
2729 	enum pkt_hash_types rss_type;
2730 
2731 	if (rss_hash)
2732 		rss_type = handle->kinfo.rss_type;
2733 	else
2734 		rss_type = PKT_HASH_TYPE_NONE;
2735 
2736 	skb_set_hash(skb, rss_hash, rss_type);
2737 }
2738 
2739 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2740 {
2741 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2742 	enum hns3_pkt_l2t_type l2_frame_type;
2743 	u32 bd_base_info, l234info, ol_info;
2744 	struct hns3_desc *desc;
2745 	unsigned int len;
2746 	int pre_ntc, ret;
2747 
2748 	/* bdinfo handled below is only valid on the last BD of the
2749 	 * current packet, and ring->next_to_clean indicates the first
2750 	 * descriptor of next packet, so need - 1 below.
2751 	 */
2752 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
2753 					(ring->desc_num - 1);
2754 	desc = &ring->desc[pre_ntc];
2755 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2756 	l234info = le32_to_cpu(desc->rx.l234_info);
2757 	ol_info = le32_to_cpu(desc->rx.ol_info);
2758 
2759 	/* Based on hw strategy, the tag offloaded will be stored at
2760 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2761 	 * in one layer tag case.
2762 	 */
2763 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2764 		u16 vlan_tag;
2765 
2766 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2767 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2768 					       vlan_tag);
2769 	}
2770 
2771 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
2772 				  BIT(HNS3_RXD_L2E_B))))) {
2773 		u64_stats_update_begin(&ring->syncp);
2774 		if (l234info & BIT(HNS3_RXD_L2E_B))
2775 			ring->stats.l2_err++;
2776 		else
2777 			ring->stats.err_pkt_len++;
2778 		u64_stats_update_end(&ring->syncp);
2779 
2780 		return -EFAULT;
2781 	}
2782 
2783 	len = skb->len;
2784 
2785 	/* Do update ip stack process */
2786 	skb->protocol = eth_type_trans(skb, netdev);
2787 
2788 	/* This is needed in order to enable forwarding support */
2789 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
2790 					bd_base_info, ol_info);
2791 	if (unlikely(ret)) {
2792 		u64_stats_update_begin(&ring->syncp);
2793 		ring->stats.rx_err_cnt++;
2794 		u64_stats_update_end(&ring->syncp);
2795 		return ret;
2796 	}
2797 
2798 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
2799 					HNS3_RXD_DMAC_S);
2800 
2801 	u64_stats_update_begin(&ring->syncp);
2802 	ring->stats.rx_pkts++;
2803 	ring->stats.rx_bytes += len;
2804 
2805 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
2806 		ring->stats.rx_multicast++;
2807 
2808 	u64_stats_update_end(&ring->syncp);
2809 
2810 	ring->tqp_vector->rx_group.total_bytes += len;
2811 
2812 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
2813 	return 0;
2814 }
2815 
2816 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2817 			     struct sk_buff **out_skb)
2818 {
2819 	struct sk_buff *skb = ring->skb;
2820 	struct hns3_desc_cb *desc_cb;
2821 	struct hns3_desc *desc;
2822 	unsigned int length;
2823 	u32 bd_base_info;
2824 	int ret;
2825 
2826 	desc = &ring->desc[ring->next_to_clean];
2827 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2828 
2829 	prefetch(desc);
2830 
2831 	length = le16_to_cpu(desc->rx.size);
2832 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2833 
2834 	/* Check valid BD */
2835 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2836 		return -ENXIO;
2837 
2838 	if (!skb)
2839 		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2840 
2841 	/* Prefetch first cache line of first page
2842 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2843 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2844 	 * actual we can have greater size of caches with 128B Level 1 cache
2845 	 * lines. In such a case, single fetch would suffice to cache in the
2846 	 * relevant part of the header.
2847 	 */
2848 	prefetch(ring->va);
2849 #if L1_CACHE_BYTES < 128
2850 	prefetch(ring->va + L1_CACHE_BYTES);
2851 #endif
2852 
2853 	if (!skb) {
2854 		ret = hns3_alloc_skb(ring, length, ring->va);
2855 		*out_skb = skb = ring->skb;
2856 
2857 		if (ret < 0) /* alloc buffer fail */
2858 			return ret;
2859 		if (ret > 0) { /* need add frag */
2860 			ret = hns3_add_frag(ring, desc, &skb, false);
2861 			if (ret)
2862 				return ret;
2863 
2864 			/* As the head data may be changed when GRO enable, copy
2865 			 * the head data in after other data rx completed
2866 			 */
2867 			memcpy(skb->data, ring->va,
2868 			       ALIGN(ring->pull_len, sizeof(long)));
2869 		}
2870 	} else {
2871 		ret = hns3_add_frag(ring, desc, &skb, true);
2872 		if (ret)
2873 			return ret;
2874 
2875 		/* As the head data may be changed when GRO enable, copy
2876 		 * the head data in after other data rx completed
2877 		 */
2878 		memcpy(skb->data, ring->va,
2879 		       ALIGN(ring->pull_len, sizeof(long)));
2880 	}
2881 
2882 	ret = hns3_handle_bdinfo(ring, skb);
2883 	if (unlikely(ret)) {
2884 		dev_kfree_skb_any(skb);
2885 		return ret;
2886 	}
2887 
2888 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
2889 	*out_skb = skb;
2890 
2891 	return 0;
2892 }
2893 
2894 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
2895 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2896 {
2897 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2898 	int recv_pkts, recv_bds, clean_count, err;
2899 	int unused_count = hns3_desc_unused(ring);
2900 	struct sk_buff *skb = ring->skb;
2901 	int num;
2902 
2903 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2904 	rmb(); /* Make sure num taken effect before the other data is touched */
2905 
2906 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2907 	num -= unused_count;
2908 	unused_count -= ring->pending_buf;
2909 
2910 	while (recv_pkts < budget && recv_bds < num) {
2911 		/* Reuse or realloc buffers */
2912 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2913 			hns3_nic_alloc_rx_buffers(ring,
2914 						  clean_count + unused_count);
2915 			clean_count = 0;
2916 			unused_count = hns3_desc_unused(ring) -
2917 					ring->pending_buf;
2918 		}
2919 
2920 		/* Poll one pkt */
2921 		err = hns3_handle_rx_bd(ring, &skb);
2922 		if (unlikely(!skb)) /* This fault cannot be repaired */
2923 			goto out;
2924 
2925 		if (err == -ENXIO) { /* Do not get FE for the packet */
2926 			goto out;
2927 		} else if (unlikely(err)) {  /* Do jump the err */
2928 			recv_bds += ring->pending_buf;
2929 			clean_count += ring->pending_buf;
2930 			ring->skb = NULL;
2931 			ring->pending_buf = 0;
2932 			continue;
2933 		}
2934 
2935 		rx_fn(ring, skb);
2936 		recv_bds += ring->pending_buf;
2937 		clean_count += ring->pending_buf;
2938 		ring->skb = NULL;
2939 		ring->pending_buf = 0;
2940 
2941 		recv_pkts++;
2942 	}
2943 
2944 out:
2945 	/* Make all data has been write before submit */
2946 	if (clean_count + unused_count > 0)
2947 		hns3_nic_alloc_rx_buffers(ring, clean_count + unused_count);
2948 
2949 	return recv_pkts;
2950 }
2951 
2952 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
2953 {
2954 #define HNS3_RX_LOW_BYTE_RATE 10000
2955 #define HNS3_RX_MID_BYTE_RATE 20000
2956 #define HNS3_RX_ULTRA_PACKET_RATE 40
2957 
2958 	enum hns3_flow_level_range new_flow_level;
2959 	struct hns3_enet_tqp_vector *tqp_vector;
2960 	int packets_per_msecs, bytes_per_msecs;
2961 	u32 time_passed_ms;
2962 
2963 	tqp_vector = ring_group->ring->tqp_vector;
2964 	time_passed_ms =
2965 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2966 	if (!time_passed_ms)
2967 		return false;
2968 
2969 	do_div(ring_group->total_packets, time_passed_ms);
2970 	packets_per_msecs = ring_group->total_packets;
2971 
2972 	do_div(ring_group->total_bytes, time_passed_ms);
2973 	bytes_per_msecs = ring_group->total_bytes;
2974 
2975 	new_flow_level = ring_group->coal.flow_level;
2976 
2977 	/* Simple throttlerate management
2978 	 * 0-10MB/s   lower     (50000 ints/s)
2979 	 * 10-20MB/s   middle    (20000 ints/s)
2980 	 * 20-1249MB/s high      (18000 ints/s)
2981 	 * > 40000pps  ultra     (8000 ints/s)
2982 	 */
2983 	switch (new_flow_level) {
2984 	case HNS3_FLOW_LOW:
2985 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2986 			new_flow_level = HNS3_FLOW_MID;
2987 		break;
2988 	case HNS3_FLOW_MID:
2989 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2990 			new_flow_level = HNS3_FLOW_HIGH;
2991 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2992 			new_flow_level = HNS3_FLOW_LOW;
2993 		break;
2994 	case HNS3_FLOW_HIGH:
2995 	case HNS3_FLOW_ULTRA:
2996 	default:
2997 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2998 			new_flow_level = HNS3_FLOW_MID;
2999 		break;
3000 	}
3001 
3002 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3003 	    &tqp_vector->rx_group == ring_group)
3004 		new_flow_level = HNS3_FLOW_ULTRA;
3005 
3006 	ring_group->total_bytes = 0;
3007 	ring_group->total_packets = 0;
3008 	ring_group->coal.flow_level = new_flow_level;
3009 
3010 	return true;
3011 }
3012 
3013 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3014 {
3015 	struct hns3_enet_tqp_vector *tqp_vector;
3016 	u16 new_int_gl;
3017 
3018 	if (!ring_group->ring)
3019 		return false;
3020 
3021 	tqp_vector = ring_group->ring->tqp_vector;
3022 	if (!tqp_vector->last_jiffies)
3023 		return false;
3024 
3025 	if (ring_group->total_packets == 0) {
3026 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
3027 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
3028 		return true;
3029 	}
3030 
3031 	if (!hns3_get_new_flow_lvl(ring_group))
3032 		return false;
3033 
3034 	new_int_gl = ring_group->coal.int_gl;
3035 	switch (ring_group->coal.flow_level) {
3036 	case HNS3_FLOW_LOW:
3037 		new_int_gl = HNS3_INT_GL_50K;
3038 		break;
3039 	case HNS3_FLOW_MID:
3040 		new_int_gl = HNS3_INT_GL_20K;
3041 		break;
3042 	case HNS3_FLOW_HIGH:
3043 		new_int_gl = HNS3_INT_GL_18K;
3044 		break;
3045 	case HNS3_FLOW_ULTRA:
3046 		new_int_gl = HNS3_INT_GL_8K;
3047 		break;
3048 	default:
3049 		break;
3050 	}
3051 
3052 	if (new_int_gl != ring_group->coal.int_gl) {
3053 		ring_group->coal.int_gl = new_int_gl;
3054 		return true;
3055 	}
3056 	return false;
3057 }
3058 
3059 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3060 {
3061 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3062 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3063 	bool rx_update, tx_update;
3064 
3065 	/* update param every 1000ms */
3066 	if (time_before(jiffies,
3067 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3068 		return;
3069 
3070 	if (rx_group->coal.gl_adapt_enable) {
3071 		rx_update = hns3_get_new_int_gl(rx_group);
3072 		if (rx_update)
3073 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3074 						       rx_group->coal.int_gl);
3075 	}
3076 
3077 	if (tx_group->coal.gl_adapt_enable) {
3078 		tx_update = hns3_get_new_int_gl(tx_group);
3079 		if (tx_update)
3080 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3081 						       tx_group->coal.int_gl);
3082 	}
3083 
3084 	tqp_vector->last_jiffies = jiffies;
3085 }
3086 
3087 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3088 {
3089 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3090 	struct hns3_enet_ring *ring;
3091 	int rx_pkt_total = 0;
3092 
3093 	struct hns3_enet_tqp_vector *tqp_vector =
3094 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3095 	bool clean_complete = true;
3096 	int rx_budget = budget;
3097 
3098 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3099 		napi_complete(napi);
3100 		return 0;
3101 	}
3102 
3103 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3104 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3105 	 */
3106 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3107 		hns3_clean_tx_ring(ring);
3108 
3109 	/* make sure rx ring budget not smaller than 1 */
3110 	if (tqp_vector->num_tqps > 1)
3111 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3112 
3113 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3114 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3115 						    hns3_rx_skb);
3116 
3117 		if (rx_cleaned >= rx_budget)
3118 			clean_complete = false;
3119 
3120 		rx_pkt_total += rx_cleaned;
3121 	}
3122 
3123 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3124 
3125 	if (!clean_complete)
3126 		return budget;
3127 
3128 	if (napi_complete(napi) &&
3129 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3130 		hns3_update_new_int_gl(tqp_vector);
3131 		hns3_mask_vector_irq(tqp_vector, 1);
3132 	}
3133 
3134 	return rx_pkt_total;
3135 }
3136 
3137 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3138 				      struct hnae3_ring_chain_node *head)
3139 {
3140 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3141 	struct hnae3_ring_chain_node *cur_chain = head;
3142 	struct hnae3_ring_chain_node *chain;
3143 	struct hns3_enet_ring *tx_ring;
3144 	struct hns3_enet_ring *rx_ring;
3145 
3146 	tx_ring = tqp_vector->tx_group.ring;
3147 	if (tx_ring) {
3148 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3149 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3150 			      HNAE3_RING_TYPE_TX);
3151 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3152 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3153 
3154 		cur_chain->next = NULL;
3155 
3156 		while (tx_ring->next) {
3157 			tx_ring = tx_ring->next;
3158 
3159 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3160 					     GFP_KERNEL);
3161 			if (!chain)
3162 				goto err_free_chain;
3163 
3164 			cur_chain->next = chain;
3165 			chain->tqp_index = tx_ring->tqp->tqp_index;
3166 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3167 				      HNAE3_RING_TYPE_TX);
3168 			hnae3_set_field(chain->int_gl_idx,
3169 					HNAE3_RING_GL_IDX_M,
3170 					HNAE3_RING_GL_IDX_S,
3171 					HNAE3_RING_GL_TX);
3172 
3173 			cur_chain = chain;
3174 		}
3175 	}
3176 
3177 	rx_ring = tqp_vector->rx_group.ring;
3178 	if (!tx_ring && rx_ring) {
3179 		cur_chain->next = NULL;
3180 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3181 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3182 			      HNAE3_RING_TYPE_RX);
3183 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3184 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3185 
3186 		rx_ring = rx_ring->next;
3187 	}
3188 
3189 	while (rx_ring) {
3190 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3191 		if (!chain)
3192 			goto err_free_chain;
3193 
3194 		cur_chain->next = chain;
3195 		chain->tqp_index = rx_ring->tqp->tqp_index;
3196 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3197 			      HNAE3_RING_TYPE_RX);
3198 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3199 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3200 
3201 		cur_chain = chain;
3202 
3203 		rx_ring = rx_ring->next;
3204 	}
3205 
3206 	return 0;
3207 
3208 err_free_chain:
3209 	cur_chain = head->next;
3210 	while (cur_chain) {
3211 		chain = cur_chain->next;
3212 		devm_kfree(&pdev->dev, cur_chain);
3213 		cur_chain = chain;
3214 	}
3215 	head->next = NULL;
3216 
3217 	return -ENOMEM;
3218 }
3219 
3220 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3221 					struct hnae3_ring_chain_node *head)
3222 {
3223 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3224 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3225 
3226 	chain = head->next;
3227 
3228 	while (chain) {
3229 		chain_tmp = chain->next;
3230 		devm_kfree(&pdev->dev, chain);
3231 		chain = chain_tmp;
3232 	}
3233 }
3234 
3235 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3236 				   struct hns3_enet_ring *ring)
3237 {
3238 	ring->next = group->ring;
3239 	group->ring = ring;
3240 
3241 	group->count++;
3242 }
3243 
3244 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3245 {
3246 	struct pci_dev *pdev = priv->ae_handle->pdev;
3247 	struct hns3_enet_tqp_vector *tqp_vector;
3248 	int num_vectors = priv->vector_num;
3249 	int numa_node;
3250 	int vector_i;
3251 
3252 	numa_node = dev_to_node(&pdev->dev);
3253 
3254 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3255 		tqp_vector = &priv->tqp_vector[vector_i];
3256 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3257 				&tqp_vector->affinity_mask);
3258 	}
3259 }
3260 
3261 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3262 {
3263 	struct hnae3_ring_chain_node vector_ring_chain;
3264 	struct hnae3_handle *h = priv->ae_handle;
3265 	struct hns3_enet_tqp_vector *tqp_vector;
3266 	int ret = 0;
3267 	int i;
3268 
3269 	hns3_nic_set_cpumask(priv);
3270 
3271 	for (i = 0; i < priv->vector_num; i++) {
3272 		tqp_vector = &priv->tqp_vector[i];
3273 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3274 		tqp_vector->num_tqps = 0;
3275 	}
3276 
3277 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3278 		u16 vector_i = i % priv->vector_num;
3279 		u16 tqp_num = h->kinfo.num_tqps;
3280 
3281 		tqp_vector = &priv->tqp_vector[vector_i];
3282 
3283 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3284 				       priv->ring_data[i].ring);
3285 
3286 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3287 				       priv->ring_data[i + tqp_num].ring);
3288 
3289 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
3290 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3291 		tqp_vector->num_tqps++;
3292 	}
3293 
3294 	for (i = 0; i < priv->vector_num; i++) {
3295 		tqp_vector = &priv->tqp_vector[i];
3296 
3297 		tqp_vector->rx_group.total_bytes = 0;
3298 		tqp_vector->rx_group.total_packets = 0;
3299 		tqp_vector->tx_group.total_bytes = 0;
3300 		tqp_vector->tx_group.total_packets = 0;
3301 		tqp_vector->handle = h;
3302 
3303 		ret = hns3_get_vector_ring_chain(tqp_vector,
3304 						 &vector_ring_chain);
3305 		if (ret)
3306 			goto map_ring_fail;
3307 
3308 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3309 			tqp_vector->vector_irq, &vector_ring_chain);
3310 
3311 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3312 
3313 		if (ret)
3314 			goto map_ring_fail;
3315 
3316 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3317 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3318 	}
3319 
3320 	return 0;
3321 
3322 map_ring_fail:
3323 	while (i--)
3324 		netif_napi_del(&priv->tqp_vector[i].napi);
3325 
3326 	return ret;
3327 }
3328 
3329 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3330 {
3331 #define HNS3_VECTOR_PF_MAX_NUM		64
3332 
3333 	struct hnae3_handle *h = priv->ae_handle;
3334 	struct hns3_enet_tqp_vector *tqp_vector;
3335 	struct hnae3_vector_info *vector;
3336 	struct pci_dev *pdev = h->pdev;
3337 	u16 tqp_num = h->kinfo.num_tqps;
3338 	u16 vector_num;
3339 	int ret = 0;
3340 	u16 i;
3341 
3342 	/* RSS size, cpu online and vector_num should be the same */
3343 	/* Should consider 2p/4p later */
3344 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3345 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3346 
3347 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3348 			      GFP_KERNEL);
3349 	if (!vector)
3350 		return -ENOMEM;
3351 
3352 	/* save the actual available vector number */
3353 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3354 
3355 	priv->vector_num = vector_num;
3356 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3357 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3358 			     GFP_KERNEL);
3359 	if (!priv->tqp_vector) {
3360 		ret = -ENOMEM;
3361 		goto out;
3362 	}
3363 
3364 	for (i = 0; i < priv->vector_num; i++) {
3365 		tqp_vector = &priv->tqp_vector[i];
3366 		tqp_vector->idx = i;
3367 		tqp_vector->mask_addr = vector[i].io_addr;
3368 		tqp_vector->vector_irq = vector[i].vector;
3369 		hns3_vector_gl_rl_init(tqp_vector, priv);
3370 	}
3371 
3372 out:
3373 	devm_kfree(&pdev->dev, vector);
3374 	return ret;
3375 }
3376 
3377 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3378 {
3379 	group->ring = NULL;
3380 	group->count = 0;
3381 }
3382 
3383 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3384 {
3385 	struct hnae3_ring_chain_node vector_ring_chain;
3386 	struct hnae3_handle *h = priv->ae_handle;
3387 	struct hns3_enet_tqp_vector *tqp_vector;
3388 	int i;
3389 
3390 	for (i = 0; i < priv->vector_num; i++) {
3391 		tqp_vector = &priv->tqp_vector[i];
3392 
3393 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3394 			continue;
3395 
3396 		hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3397 
3398 		h->ae_algo->ops->unmap_ring_from_vector(h,
3399 			tqp_vector->vector_irq, &vector_ring_chain);
3400 
3401 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3402 
3403 		if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
3404 			irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
3405 			free_irq(tqp_vector->vector_irq, tqp_vector);
3406 			tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3407 		}
3408 
3409 		hns3_clear_ring_group(&tqp_vector->rx_group);
3410 		hns3_clear_ring_group(&tqp_vector->tx_group);
3411 		netif_napi_del(&priv->tqp_vector[i].napi);
3412 	}
3413 }
3414 
3415 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3416 {
3417 	struct hnae3_handle *h = priv->ae_handle;
3418 	struct pci_dev *pdev = h->pdev;
3419 	int i, ret;
3420 
3421 	for (i = 0; i < priv->vector_num; i++) {
3422 		struct hns3_enet_tqp_vector *tqp_vector;
3423 
3424 		tqp_vector = &priv->tqp_vector[i];
3425 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3426 		if (ret)
3427 			return ret;
3428 	}
3429 
3430 	devm_kfree(&pdev->dev, priv->tqp_vector);
3431 	return 0;
3432 }
3433 
3434 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3435 			     unsigned int ring_type)
3436 {
3437 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
3438 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3439 	struct pci_dev *pdev = priv->ae_handle->pdev;
3440 	struct hns3_enet_ring *ring;
3441 	int desc_num;
3442 
3443 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3444 	if (!ring)
3445 		return -ENOMEM;
3446 
3447 	if (ring_type == HNAE3_RING_TYPE_TX) {
3448 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3449 		ring_data[q->tqp_index].ring = ring;
3450 		ring_data[q->tqp_index].queue_index = q->tqp_index;
3451 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3452 	} else {
3453 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3454 		ring_data[q->tqp_index + queue_num].ring = ring;
3455 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3456 		ring->io_base = q->io_base;
3457 	}
3458 
3459 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3460 
3461 	ring->tqp = q;
3462 	ring->desc = NULL;
3463 	ring->desc_cb = NULL;
3464 	ring->dev = priv->dev;
3465 	ring->desc_dma_addr = 0;
3466 	ring->buf_size = q->buf_size;
3467 	ring->desc_num = desc_num;
3468 	ring->next_to_use = 0;
3469 	ring->next_to_clean = 0;
3470 
3471 	return 0;
3472 }
3473 
3474 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3475 			      struct hns3_nic_priv *priv)
3476 {
3477 	int ret;
3478 
3479 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3480 	if (ret)
3481 		return ret;
3482 
3483 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3484 	if (ret) {
3485 		devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3486 		return ret;
3487 	}
3488 
3489 	return 0;
3490 }
3491 
3492 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3493 {
3494 	struct hnae3_handle *h = priv->ae_handle;
3495 	struct pci_dev *pdev = h->pdev;
3496 	int i, ret;
3497 
3498 	priv->ring_data =  devm_kzalloc(&pdev->dev,
3499 					array3_size(h->kinfo.num_tqps,
3500 						    sizeof(*priv->ring_data),
3501 						    2),
3502 					GFP_KERNEL);
3503 	if (!priv->ring_data)
3504 		return -ENOMEM;
3505 
3506 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3507 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3508 		if (ret)
3509 			goto err;
3510 	}
3511 
3512 	return 0;
3513 err:
3514 	while (i--) {
3515 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3516 		devm_kfree(priv->dev,
3517 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3518 	}
3519 
3520 	devm_kfree(&pdev->dev, priv->ring_data);
3521 	priv->ring_data = NULL;
3522 	return ret;
3523 }
3524 
3525 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3526 {
3527 	struct hnae3_handle *h = priv->ae_handle;
3528 	int i;
3529 
3530 	if (!priv->ring_data)
3531 		return;
3532 
3533 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3534 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3535 		devm_kfree(priv->dev,
3536 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3537 	}
3538 	devm_kfree(priv->dev, priv->ring_data);
3539 	priv->ring_data = NULL;
3540 }
3541 
3542 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3543 {
3544 	int ret;
3545 
3546 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3547 		return -EINVAL;
3548 
3549 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3550 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3551 	if (!ring->desc_cb) {
3552 		ret = -ENOMEM;
3553 		goto out;
3554 	}
3555 
3556 	ret = hns3_alloc_desc(ring);
3557 	if (ret)
3558 		goto out_with_desc_cb;
3559 
3560 	if (!HNAE3_IS_TX_RING(ring)) {
3561 		ret = hns3_alloc_ring_buffers(ring);
3562 		if (ret)
3563 			goto out_with_desc;
3564 	}
3565 
3566 	return 0;
3567 
3568 out_with_desc:
3569 	hns3_free_desc(ring);
3570 out_with_desc_cb:
3571 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3572 	ring->desc_cb = NULL;
3573 out:
3574 	return ret;
3575 }
3576 
3577 static void hns3_fini_ring(struct hns3_enet_ring *ring)
3578 {
3579 	hns3_free_desc(ring);
3580 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3581 	ring->desc_cb = NULL;
3582 	ring->next_to_clean = 0;
3583 	ring->next_to_use = 0;
3584 	ring->pending_buf = 0;
3585 	if (ring->skb) {
3586 		dev_kfree_skb_any(ring->skb);
3587 		ring->skb = NULL;
3588 	}
3589 }
3590 
3591 static int hns3_buf_size2type(u32 buf_size)
3592 {
3593 	int bd_size_type;
3594 
3595 	switch (buf_size) {
3596 	case 512:
3597 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3598 		break;
3599 	case 1024:
3600 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3601 		break;
3602 	case 2048:
3603 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3604 		break;
3605 	case 4096:
3606 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3607 		break;
3608 	default:
3609 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3610 	}
3611 
3612 	return bd_size_type;
3613 }
3614 
3615 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3616 {
3617 	dma_addr_t dma = ring->desc_dma_addr;
3618 	struct hnae3_queue *q = ring->tqp;
3619 
3620 	if (!HNAE3_IS_TX_RING(ring)) {
3621 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3622 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3623 			       (u32)((dma >> 31) >> 1));
3624 
3625 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3626 			       hns3_buf_size2type(ring->buf_size));
3627 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3628 			       ring->desc_num / 8 - 1);
3629 
3630 	} else {
3631 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3632 			       (u32)dma);
3633 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3634 			       (u32)((dma >> 31) >> 1));
3635 
3636 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3637 			       ring->desc_num / 8 - 1);
3638 	}
3639 }
3640 
3641 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3642 {
3643 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3644 	int i;
3645 
3646 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3647 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3648 		int j;
3649 
3650 		if (!tc_info->enable)
3651 			continue;
3652 
3653 		for (j = 0; j < tc_info->tqp_count; j++) {
3654 			struct hnae3_queue *q;
3655 
3656 			q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3657 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3658 				       tc_info->tc);
3659 		}
3660 	}
3661 }
3662 
3663 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3664 {
3665 	struct hnae3_handle *h = priv->ae_handle;
3666 	int ring_num = h->kinfo.num_tqps * 2;
3667 	int i, j;
3668 	int ret;
3669 
3670 	for (i = 0; i < ring_num; i++) {
3671 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3672 		if (ret) {
3673 			dev_err(priv->dev,
3674 				"Alloc ring memory fail! ret=%d\n", ret);
3675 			goto out_when_alloc_ring_memory;
3676 		}
3677 
3678 		u64_stats_init(&priv->ring_data[i].ring->syncp);
3679 	}
3680 
3681 	return 0;
3682 
3683 out_when_alloc_ring_memory:
3684 	for (j = i - 1; j >= 0; j--)
3685 		hns3_fini_ring(priv->ring_data[j].ring);
3686 
3687 	return -ENOMEM;
3688 }
3689 
3690 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3691 {
3692 	struct hnae3_handle *h = priv->ae_handle;
3693 	int i;
3694 
3695 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3696 		hns3_fini_ring(priv->ring_data[i].ring);
3697 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3698 	}
3699 	return 0;
3700 }
3701 
3702 /* Set mac addr if it is configured. or leave it to the AE driver */
3703 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3704 {
3705 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3706 	struct hnae3_handle *h = priv->ae_handle;
3707 	u8 mac_addr_temp[ETH_ALEN];
3708 	int ret = 0;
3709 
3710 	if (h->ae_algo->ops->get_mac_addr && init) {
3711 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3712 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3713 	}
3714 
3715 	/* Check if the MAC address is valid, if not get a random one */
3716 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3717 		eth_hw_addr_random(netdev);
3718 		dev_warn(priv->dev, "using random MAC address %pM\n",
3719 			 netdev->dev_addr);
3720 	}
3721 
3722 	if (h->ae_algo->ops->set_mac_addr)
3723 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3724 
3725 	return ret;
3726 }
3727 
3728 static int hns3_init_phy(struct net_device *netdev)
3729 {
3730 	struct hnae3_handle *h = hns3_get_handle(netdev);
3731 	int ret = 0;
3732 
3733 	if (h->ae_algo->ops->mac_connect_phy)
3734 		ret = h->ae_algo->ops->mac_connect_phy(h);
3735 
3736 	return ret;
3737 }
3738 
3739 static void hns3_uninit_phy(struct net_device *netdev)
3740 {
3741 	struct hnae3_handle *h = hns3_get_handle(netdev);
3742 
3743 	if (h->ae_algo->ops->mac_disconnect_phy)
3744 		h->ae_algo->ops->mac_disconnect_phy(h);
3745 }
3746 
3747 static int hns3_restore_fd_rules(struct net_device *netdev)
3748 {
3749 	struct hnae3_handle *h = hns3_get_handle(netdev);
3750 	int ret = 0;
3751 
3752 	if (h->ae_algo->ops->restore_fd_rules)
3753 		ret = h->ae_algo->ops->restore_fd_rules(h);
3754 
3755 	return ret;
3756 }
3757 
3758 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3759 {
3760 	struct hnae3_handle *h = hns3_get_handle(netdev);
3761 
3762 	if (h->ae_algo->ops->del_all_fd_entries)
3763 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3764 }
3765 
3766 static int hns3_client_start(struct hnae3_handle *handle)
3767 {
3768 	if (!handle->ae_algo->ops->client_start)
3769 		return 0;
3770 
3771 	return handle->ae_algo->ops->client_start(handle);
3772 }
3773 
3774 static void hns3_client_stop(struct hnae3_handle *handle)
3775 {
3776 	if (!handle->ae_algo->ops->client_stop)
3777 		return;
3778 
3779 	handle->ae_algo->ops->client_stop(handle);
3780 }
3781 
3782 static void hns3_info_show(struct hns3_nic_priv *priv)
3783 {
3784 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3785 
3786 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
3787 	dev_info(priv->dev, "Task queue pairs numbers: %d\n", kinfo->num_tqps);
3788 	dev_info(priv->dev, "RSS size: %d\n", kinfo->rss_size);
3789 	dev_info(priv->dev, "Allocated RSS size: %d\n", kinfo->req_rss_size);
3790 	dev_info(priv->dev, "RX buffer length: %d\n", kinfo->rx_buf_len);
3791 	dev_info(priv->dev, "Desc num per TX queue: %d\n", kinfo->num_tx_desc);
3792 	dev_info(priv->dev, "Desc num per RX queue: %d\n", kinfo->num_rx_desc);
3793 	dev_info(priv->dev, "Total number of enabled TCs: %d\n", kinfo->num_tc);
3794 	dev_info(priv->dev, "Max mtu size: %d\n", priv->netdev->max_mtu);
3795 }
3796 
3797 static int hns3_client_init(struct hnae3_handle *handle)
3798 {
3799 	struct pci_dev *pdev = handle->pdev;
3800 	u16 alloc_tqps, max_rss_size;
3801 	struct hns3_nic_priv *priv;
3802 	struct net_device *netdev;
3803 	int ret;
3804 
3805 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3806 						    &max_rss_size);
3807 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3808 	if (!netdev)
3809 		return -ENOMEM;
3810 
3811 	priv = netdev_priv(netdev);
3812 	priv->dev = &pdev->dev;
3813 	priv->netdev = netdev;
3814 	priv->ae_handle = handle;
3815 	priv->tx_timeout_count = 0;
3816 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3817 
3818 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
3819 
3820 	handle->kinfo.netdev = netdev;
3821 	handle->priv = (void *)priv;
3822 
3823 	hns3_init_mac_addr(netdev, true);
3824 
3825 	hns3_set_default_feature(netdev);
3826 
3827 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3828 	netdev->priv_flags |= IFF_UNICAST_FLT;
3829 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3830 	SET_NETDEV_DEV(netdev, &pdev->dev);
3831 	hns3_ethtool_set_ops(netdev);
3832 
3833 	/* Carrier off reporting is important to ethtool even BEFORE open */
3834 	netif_carrier_off(netdev);
3835 
3836 	ret = hns3_get_ring_config(priv);
3837 	if (ret) {
3838 		ret = -ENOMEM;
3839 		goto out_get_ring_cfg;
3840 	}
3841 
3842 	ret = hns3_nic_alloc_vector_data(priv);
3843 	if (ret) {
3844 		ret = -ENOMEM;
3845 		goto out_alloc_vector_data;
3846 	}
3847 
3848 	ret = hns3_nic_init_vector_data(priv);
3849 	if (ret) {
3850 		ret = -ENOMEM;
3851 		goto out_init_vector_data;
3852 	}
3853 
3854 	ret = hns3_init_all_ring(priv);
3855 	if (ret) {
3856 		ret = -ENOMEM;
3857 		goto out_init_ring_data;
3858 	}
3859 
3860 	ret = hns3_init_phy(netdev);
3861 	if (ret)
3862 		goto out_init_phy;
3863 
3864 	ret = register_netdev(netdev);
3865 	if (ret) {
3866 		dev_err(priv->dev, "probe register netdev fail!\n");
3867 		goto out_reg_netdev_fail;
3868 	}
3869 
3870 	ret = hns3_client_start(handle);
3871 	if (ret) {
3872 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3873 		goto out_client_start;
3874 	}
3875 
3876 	hns3_dcbnl_setup(handle);
3877 
3878 	hns3_dbg_init(handle);
3879 
3880 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3881 	netdev->max_mtu = HNS3_MAX_MTU;
3882 
3883 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3884 
3885 	if (netif_msg_drv(handle))
3886 		hns3_info_show(priv);
3887 
3888 	return ret;
3889 
3890 out_client_start:
3891 	unregister_netdev(netdev);
3892 out_reg_netdev_fail:
3893 	hns3_uninit_phy(netdev);
3894 out_init_phy:
3895 	hns3_uninit_all_ring(priv);
3896 out_init_ring_data:
3897 	hns3_nic_uninit_vector_data(priv);
3898 out_init_vector_data:
3899 	hns3_nic_dealloc_vector_data(priv);
3900 out_alloc_vector_data:
3901 	priv->ring_data = NULL;
3902 out_get_ring_cfg:
3903 	priv->ae_handle = NULL;
3904 	free_netdev(netdev);
3905 	return ret;
3906 }
3907 
3908 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3909 {
3910 	struct net_device *netdev = handle->kinfo.netdev;
3911 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3912 	int ret;
3913 
3914 	hns3_remove_hw_addr(netdev);
3915 
3916 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3917 		unregister_netdev(netdev);
3918 
3919 	hns3_client_stop(handle);
3920 
3921 	hns3_uninit_phy(netdev);
3922 
3923 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3924 		netdev_warn(netdev, "already uninitialized\n");
3925 		goto out_netdev_free;
3926 	}
3927 
3928 	hns3_del_all_fd_rules(netdev, true);
3929 
3930 	hns3_clear_all_ring(handle, true);
3931 
3932 	hns3_nic_uninit_vector_data(priv);
3933 
3934 	ret = hns3_nic_dealloc_vector_data(priv);
3935 	if (ret)
3936 		netdev_err(netdev, "dealloc vector error\n");
3937 
3938 	ret = hns3_uninit_all_ring(priv);
3939 	if (ret)
3940 		netdev_err(netdev, "uninit ring error\n");
3941 
3942 	hns3_put_ring_config(priv);
3943 
3944 	hns3_dbg_uninit(handle);
3945 
3946 out_netdev_free:
3947 	free_netdev(netdev);
3948 }
3949 
3950 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3951 {
3952 	struct net_device *netdev = handle->kinfo.netdev;
3953 
3954 	if (!netdev)
3955 		return;
3956 
3957 	if (linkup) {
3958 		netif_carrier_on(netdev);
3959 		netif_tx_wake_all_queues(netdev);
3960 		if (netif_msg_link(handle))
3961 			netdev_info(netdev, "link up\n");
3962 	} else {
3963 		netif_carrier_off(netdev);
3964 		netif_tx_stop_all_queues(netdev);
3965 		if (netif_msg_link(handle))
3966 			netdev_info(netdev, "link down\n");
3967 	}
3968 }
3969 
3970 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3971 {
3972 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3973 	struct net_device *ndev = kinfo->netdev;
3974 
3975 	if (tc > HNAE3_MAX_TC)
3976 		return -EINVAL;
3977 
3978 	if (!ndev)
3979 		return -ENODEV;
3980 
3981 	return hns3_nic_set_real_num_queue(ndev);
3982 }
3983 
3984 static int hns3_recover_hw_addr(struct net_device *ndev)
3985 {
3986 	struct netdev_hw_addr_list *list;
3987 	struct netdev_hw_addr *ha, *tmp;
3988 	int ret = 0;
3989 
3990 	netif_addr_lock_bh(ndev);
3991 	/* go through and sync uc_addr entries to the device */
3992 	list = &ndev->uc;
3993 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3994 		ret = hns3_nic_uc_sync(ndev, ha->addr);
3995 		if (ret)
3996 			goto out;
3997 	}
3998 
3999 	/* go through and sync mc_addr entries to the device */
4000 	list = &ndev->mc;
4001 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
4002 		ret = hns3_nic_mc_sync(ndev, ha->addr);
4003 		if (ret)
4004 			goto out;
4005 	}
4006 
4007 out:
4008 	netif_addr_unlock_bh(ndev);
4009 	return ret;
4010 }
4011 
4012 static void hns3_remove_hw_addr(struct net_device *netdev)
4013 {
4014 	struct netdev_hw_addr_list *list;
4015 	struct netdev_hw_addr *ha, *tmp;
4016 
4017 	hns3_nic_uc_unsync(netdev, netdev->dev_addr);
4018 
4019 	netif_addr_lock_bh(netdev);
4020 	/* go through and unsync uc_addr entries to the device */
4021 	list = &netdev->uc;
4022 	list_for_each_entry_safe(ha, tmp, &list->list, list)
4023 		hns3_nic_uc_unsync(netdev, ha->addr);
4024 
4025 	/* go through and unsync mc_addr entries to the device */
4026 	list = &netdev->mc;
4027 	list_for_each_entry_safe(ha, tmp, &list->list, list)
4028 		if (ha->refcount > 1)
4029 			hns3_nic_mc_unsync(netdev, ha->addr);
4030 
4031 	netif_addr_unlock_bh(netdev);
4032 }
4033 
4034 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4035 {
4036 	while (ring->next_to_clean != ring->next_to_use) {
4037 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4038 		hns3_free_buffer_detach(ring, ring->next_to_clean);
4039 		ring_ptr_move_fw(ring, next_to_clean);
4040 	}
4041 }
4042 
4043 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4044 {
4045 	struct hns3_desc_cb res_cbs;
4046 	int ret;
4047 
4048 	while (ring->next_to_use != ring->next_to_clean) {
4049 		/* When a buffer is not reused, it's memory has been
4050 		 * freed in hns3_handle_rx_bd or will be freed by
4051 		 * stack, so we need to replace the buffer here.
4052 		 */
4053 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4054 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
4055 			if (ret) {
4056 				u64_stats_update_begin(&ring->syncp);
4057 				ring->stats.sw_err_cnt++;
4058 				u64_stats_update_end(&ring->syncp);
4059 				/* if alloc new buffer fail, exit directly
4060 				 * and reclear in up flow.
4061 				 */
4062 				netdev_warn(ring->tqp->handle->kinfo.netdev,
4063 					    "reserve buffer map failed, ret = %d\n",
4064 					    ret);
4065 				return ret;
4066 			}
4067 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4068 		}
4069 		ring_ptr_move_fw(ring, next_to_use);
4070 	}
4071 
4072 	/* Free the pending skb in rx ring */
4073 	if (ring->skb) {
4074 		dev_kfree_skb_any(ring->skb);
4075 		ring->skb = NULL;
4076 		ring->pending_buf = 0;
4077 	}
4078 
4079 	return 0;
4080 }
4081 
4082 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4083 {
4084 	while (ring->next_to_use != ring->next_to_clean) {
4085 		/* When a buffer is not reused, it's memory has been
4086 		 * freed in hns3_handle_rx_bd or will be freed by
4087 		 * stack, so only need to unmap the buffer here.
4088 		 */
4089 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4090 			hns3_unmap_buffer(ring,
4091 					  &ring->desc_cb[ring->next_to_use]);
4092 			ring->desc_cb[ring->next_to_use].dma = 0;
4093 		}
4094 
4095 		ring_ptr_move_fw(ring, next_to_use);
4096 	}
4097 }
4098 
4099 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4100 {
4101 	struct net_device *ndev = h->kinfo.netdev;
4102 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4103 	u32 i;
4104 
4105 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4106 		struct hns3_enet_ring *ring;
4107 
4108 		ring = priv->ring_data[i].ring;
4109 		hns3_clear_tx_ring(ring);
4110 
4111 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
4112 		/* Continue to clear other rings even if clearing some
4113 		 * rings failed.
4114 		 */
4115 		if (force)
4116 			hns3_force_clear_rx_ring(ring);
4117 		else
4118 			hns3_clear_rx_ring(ring);
4119 	}
4120 }
4121 
4122 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4123 {
4124 	struct net_device *ndev = h->kinfo.netdev;
4125 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4126 	struct hns3_enet_ring *rx_ring;
4127 	int i, j;
4128 	int ret;
4129 
4130 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4131 		ret = h->ae_algo->ops->reset_queue(h, i);
4132 		if (ret)
4133 			return ret;
4134 
4135 		hns3_init_ring_hw(priv->ring_data[i].ring);
4136 
4137 		/* We need to clear tx ring here because self test will
4138 		 * use the ring and will not run down before up
4139 		 */
4140 		hns3_clear_tx_ring(priv->ring_data[i].ring);
4141 		priv->ring_data[i].ring->next_to_clean = 0;
4142 		priv->ring_data[i].ring->next_to_use = 0;
4143 
4144 		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
4145 		hns3_init_ring_hw(rx_ring);
4146 		ret = hns3_clear_rx_ring(rx_ring);
4147 		if (ret)
4148 			return ret;
4149 
4150 		/* We can not know the hardware head and tail when this
4151 		 * function is called in reset flow, so we reuse all desc.
4152 		 */
4153 		for (j = 0; j < rx_ring->desc_num; j++)
4154 			hns3_reuse_buffer(rx_ring, j);
4155 
4156 		rx_ring->next_to_clean = 0;
4157 		rx_ring->next_to_use = 0;
4158 	}
4159 
4160 	hns3_init_tx_ring_tc(priv);
4161 
4162 	return 0;
4163 }
4164 
4165 static void hns3_store_coal(struct hns3_nic_priv *priv)
4166 {
4167 	/* ethtool only support setting and querying one coal
4168 	 * configuation for now, so save the vector 0' coal
4169 	 * configuation here in order to restore it.
4170 	 */
4171 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4172 	       sizeof(struct hns3_enet_coalesce));
4173 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4174 	       sizeof(struct hns3_enet_coalesce));
4175 }
4176 
4177 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4178 {
4179 	u16 vector_num = priv->vector_num;
4180 	int i;
4181 
4182 	for (i = 0; i < vector_num; i++) {
4183 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4184 		       sizeof(struct hns3_enet_coalesce));
4185 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4186 		       sizeof(struct hns3_enet_coalesce));
4187 	}
4188 }
4189 
4190 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4191 {
4192 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4193 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4194 	struct net_device *ndev = kinfo->netdev;
4195 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4196 
4197 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4198 		return 0;
4199 
4200 	/* it is cumbersome for hardware to pick-and-choose entries for deletion
4201 	 * from table space. Hence, for function reset software intervention is
4202 	 * required to delete the entries
4203 	 */
4204 	if (hns3_dev_ongoing_func_reset(ae_dev)) {
4205 		hns3_remove_hw_addr(ndev);
4206 		hns3_del_all_fd_rules(ndev, false);
4207 	}
4208 
4209 	if (!netif_running(ndev))
4210 		return 0;
4211 
4212 	return hns3_nic_net_stop(ndev);
4213 }
4214 
4215 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4216 {
4217 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4218 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4219 	int ret = 0;
4220 
4221 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4222 
4223 	if (netif_running(kinfo->netdev)) {
4224 		ret = hns3_nic_net_open(kinfo->netdev);
4225 		if (ret) {
4226 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4227 			netdev_err(kinfo->netdev,
4228 				   "net up fail, ret=%d!\n", ret);
4229 			return ret;
4230 		}
4231 	}
4232 
4233 	return ret;
4234 }
4235 
4236 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4237 {
4238 	struct net_device *netdev = handle->kinfo.netdev;
4239 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4240 	int ret;
4241 
4242 	/* Carrier off reporting is important to ethtool even BEFORE open */
4243 	netif_carrier_off(netdev);
4244 
4245 	ret = hns3_get_ring_config(priv);
4246 	if (ret)
4247 		return ret;
4248 
4249 	ret = hns3_nic_alloc_vector_data(priv);
4250 	if (ret)
4251 		goto err_put_ring;
4252 
4253 	hns3_restore_coal(priv);
4254 
4255 	ret = hns3_nic_init_vector_data(priv);
4256 	if (ret)
4257 		goto err_dealloc_vector;
4258 
4259 	ret = hns3_init_all_ring(priv);
4260 	if (ret)
4261 		goto err_uninit_vector;
4262 
4263 	ret = hns3_client_start(handle);
4264 	if (ret) {
4265 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4266 		goto err_uninit_ring;
4267 	}
4268 
4269 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4270 
4271 	return ret;
4272 
4273 err_uninit_ring:
4274 	hns3_uninit_all_ring(priv);
4275 err_uninit_vector:
4276 	hns3_nic_uninit_vector_data(priv);
4277 err_dealloc_vector:
4278 	hns3_nic_dealloc_vector_data(priv);
4279 err_put_ring:
4280 	hns3_put_ring_config(priv);
4281 
4282 	return ret;
4283 }
4284 
4285 static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
4286 {
4287 	struct net_device *netdev = handle->kinfo.netdev;
4288 	bool vlan_filter_enable;
4289 	int ret;
4290 
4291 	ret = hns3_init_mac_addr(netdev, false);
4292 	if (ret)
4293 		return ret;
4294 
4295 	ret = hns3_recover_hw_addr(netdev);
4296 	if (ret)
4297 		return ret;
4298 
4299 	ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4300 	if (ret)
4301 		return ret;
4302 
4303 	vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4304 	hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4305 
4306 	if (handle->ae_algo->ops->restore_vlan_table)
4307 		handle->ae_algo->ops->restore_vlan_table(handle);
4308 
4309 	return hns3_restore_fd_rules(netdev);
4310 }
4311 
4312 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4313 {
4314 	struct net_device *netdev = handle->kinfo.netdev;
4315 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4316 	int ret;
4317 
4318 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4319 		netdev_warn(netdev, "already uninitialized\n");
4320 		return 0;
4321 	}
4322 
4323 	hns3_clear_all_ring(handle, true);
4324 	hns3_reset_tx_queue(priv->ae_handle);
4325 
4326 	hns3_nic_uninit_vector_data(priv);
4327 
4328 	hns3_store_coal(priv);
4329 
4330 	ret = hns3_nic_dealloc_vector_data(priv);
4331 	if (ret)
4332 		netdev_err(netdev, "dealloc vector error\n");
4333 
4334 	ret = hns3_uninit_all_ring(priv);
4335 	if (ret)
4336 		netdev_err(netdev, "uninit ring error\n");
4337 
4338 	hns3_put_ring_config(priv);
4339 
4340 	return ret;
4341 }
4342 
4343 static int hns3_reset_notify(struct hnae3_handle *handle,
4344 			     enum hnae3_reset_notify_type type)
4345 {
4346 	int ret = 0;
4347 
4348 	switch (type) {
4349 	case HNAE3_UP_CLIENT:
4350 		ret = hns3_reset_notify_up_enet(handle);
4351 		break;
4352 	case HNAE3_DOWN_CLIENT:
4353 		ret = hns3_reset_notify_down_enet(handle);
4354 		break;
4355 	case HNAE3_INIT_CLIENT:
4356 		ret = hns3_reset_notify_init_enet(handle);
4357 		break;
4358 	case HNAE3_UNINIT_CLIENT:
4359 		ret = hns3_reset_notify_uninit_enet(handle);
4360 		break;
4361 	case HNAE3_RESTORE_CLIENT:
4362 		ret = hns3_reset_notify_restore_enet(handle);
4363 		break;
4364 	default:
4365 		break;
4366 	}
4367 
4368 	return ret;
4369 }
4370 
4371 int hns3_set_channels(struct net_device *netdev,
4372 		      struct ethtool_channels *ch)
4373 {
4374 	struct hnae3_handle *h = hns3_get_handle(netdev);
4375 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4376 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4377 	u32 new_tqp_num = ch->combined_count;
4378 	u16 org_tqp_num;
4379 	int ret;
4380 
4381 	if (ch->rx_count || ch->tx_count)
4382 		return -EINVAL;
4383 
4384 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4385 	    new_tqp_num < 1) {
4386 		dev_err(&netdev->dev,
4387 			"Change tqps fail, the tqp range is from 1 to %d",
4388 			hns3_get_max_available_channels(h));
4389 		return -EINVAL;
4390 	}
4391 
4392 	if (kinfo->rss_size == new_tqp_num)
4393 		return 0;
4394 
4395 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4396 	if (ret)
4397 		return ret;
4398 
4399 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4400 	if (ret)
4401 		return ret;
4402 
4403 	org_tqp_num = h->kinfo.num_tqps;
4404 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num, rxfh_configured);
4405 	if (ret) {
4406 		ret = h->ae_algo->ops->set_channels(h, org_tqp_num,
4407 						    rxfh_configured);
4408 		if (ret) {
4409 			/* If revert to old tqp failed, fatal error occurred */
4410 			dev_err(&netdev->dev,
4411 				"Revert to old tqp num fail, ret=%d", ret);
4412 			return ret;
4413 		}
4414 		dev_info(&netdev->dev,
4415 			 "Change tqp num fail, Revert to old tqp num");
4416 	}
4417 	ret = hns3_reset_notify(h, HNAE3_INIT_CLIENT);
4418 	if (ret)
4419 		return ret;
4420 
4421 	return hns3_reset_notify(h, HNAE3_UP_CLIENT);
4422 }
4423 
4424 static const struct hnae3_client_ops client_ops = {
4425 	.init_instance = hns3_client_init,
4426 	.uninit_instance = hns3_client_uninit,
4427 	.link_status_change = hns3_link_status_change,
4428 	.setup_tc = hns3_client_setup_tc,
4429 	.reset_notify = hns3_reset_notify,
4430 };
4431 
4432 /* hns3_init_module - Driver registration routine
4433  * hns3_init_module is the first routine called when the driver is
4434  * loaded. All it does is register with the PCI subsystem.
4435  */
4436 static int __init hns3_init_module(void)
4437 {
4438 	int ret;
4439 
4440 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4441 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4442 
4443 	client.type = HNAE3_CLIENT_KNIC;
4444 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4445 		 hns3_driver_name);
4446 
4447 	client.ops = &client_ops;
4448 
4449 	INIT_LIST_HEAD(&client.node);
4450 
4451 	hns3_dbg_register_debugfs(hns3_driver_name);
4452 
4453 	ret = hnae3_register_client(&client);
4454 	if (ret)
4455 		goto err_reg_client;
4456 
4457 	ret = pci_register_driver(&hns3_driver);
4458 	if (ret)
4459 		goto err_reg_driver;
4460 
4461 	return ret;
4462 
4463 err_reg_driver:
4464 	hnae3_unregister_client(&client);
4465 err_reg_client:
4466 	hns3_dbg_unregister_debugfs();
4467 	return ret;
4468 }
4469 module_init(hns3_init_module);
4470 
4471 /* hns3_exit_module - Driver exit cleanup routine
4472  * hns3_exit_module is called just before the driver is removed
4473  * from memory.
4474  */
4475 static void __exit hns3_exit_module(void)
4476 {
4477 	pci_unregister_driver(&hns3_driver);
4478 	hnae3_unregister_client(&client);
4479 	hns3_dbg_unregister_debugfs();
4480 }
4481 module_exit(hns3_exit_module);
4482 
4483 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4484 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4485 MODULE_LICENSE("GPL");
4486 MODULE_ALIAS("pci:hns-nic");
4487 MODULE_VERSION(HNS3_MOD_VERSION);
4488