1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 
25 #include "hnae3.h"
26 #include "hns3_enet.h"
27 /* All hns3 tracepoints are defined by the include below, which
28  * must be included exactly once across the whole kernel with
29  * CREATE_TRACE_POINTS defined
30  */
31 #define CREATE_TRACE_POINTS
32 #include "hns3_trace.h"
33 
34 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
35 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
36 
37 #define hns3_rl_err(fmt, ...)						\
38 	do {								\
39 		if (net_ratelimit())					\
40 			netdev_err(fmt, ##__VA_ARGS__);			\
41 	} while (0)
42 
43 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
44 
45 static const char hns3_driver_name[] = "hns3";
46 static const char hns3_driver_string[] =
47 			"Hisilicon Ethernet Network Driver for Hip08 Family";
48 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
49 static struct hnae3_client client;
50 
51 static int debug = -1;
52 module_param(debug, int, 0);
53 MODULE_PARM_DESC(debug, " Network interface message level setting");
54 
55 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
56 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
57 
58 #define HNS3_INNER_VLAN_TAG	1
59 #define HNS3_OUTER_VLAN_TAG	2
60 
61 #define HNS3_MIN_TX_LEN		33U
62 
63 /* hns3_pci_tbl - PCI Device ID Table
64  *
65  * Last entry must be all 0s
66  *
67  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
68  *   Class, Class Mask, private data (not used) }
69  */
70 static const struct pci_device_id hns3_pci_tbl[] = {
71 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
72 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
73 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
74 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
75 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
76 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
77 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
78 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
79 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
80 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
81 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
82 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
83 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
84 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
85 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
86 	/* required last entry */
87 	{0, }
88 };
89 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
90 
91 static irqreturn_t hns3_irq_handle(int irq, void *vector)
92 {
93 	struct hns3_enet_tqp_vector *tqp_vector = vector;
94 
95 	napi_schedule_irqoff(&tqp_vector->napi);
96 
97 	return IRQ_HANDLED;
98 }
99 
100 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
101 {
102 	struct hns3_enet_tqp_vector *tqp_vectors;
103 	unsigned int i;
104 
105 	for (i = 0; i < priv->vector_num; i++) {
106 		tqp_vectors = &priv->tqp_vector[i];
107 
108 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
109 			continue;
110 
111 		/* clear the affinity mask */
112 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
113 
114 		/* release the irq resource */
115 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
116 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
117 	}
118 }
119 
120 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
121 {
122 	struct hns3_enet_tqp_vector *tqp_vectors;
123 	int txrx_int_idx = 0;
124 	int rx_int_idx = 0;
125 	int tx_int_idx = 0;
126 	unsigned int i;
127 	int ret;
128 
129 	for (i = 0; i < priv->vector_num; i++) {
130 		tqp_vectors = &priv->tqp_vector[i];
131 
132 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
133 			continue;
134 
135 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
136 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
137 				 "%s-%s-%s-%d", hns3_driver_name,
138 				 pci_name(priv->ae_handle->pdev),
139 				 "TxRx", txrx_int_idx++);
140 			txrx_int_idx++;
141 		} else if (tqp_vectors->rx_group.ring) {
142 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
143 				 "%s-%s-%s-%d", hns3_driver_name,
144 				 pci_name(priv->ae_handle->pdev),
145 				 "Rx", rx_int_idx++);
146 		} else if (tqp_vectors->tx_group.ring) {
147 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
148 				 "%s-%s-%s-%d", hns3_driver_name,
149 				 pci_name(priv->ae_handle->pdev),
150 				 "Tx", tx_int_idx++);
151 		} else {
152 			/* Skip this unused q_vector */
153 			continue;
154 		}
155 
156 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
157 
158 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
159 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
160 				  tqp_vectors->name, tqp_vectors);
161 		if (ret) {
162 			netdev_err(priv->netdev, "request irq(%d) fail\n",
163 				   tqp_vectors->vector_irq);
164 			hns3_nic_uninit_irq(priv);
165 			return ret;
166 		}
167 
168 		irq_set_affinity_hint(tqp_vectors->vector_irq,
169 				      &tqp_vectors->affinity_mask);
170 
171 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
172 	}
173 
174 	return 0;
175 }
176 
177 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
178 				 u32 mask_en)
179 {
180 	writel(mask_en, tqp_vector->mask_addr);
181 }
182 
183 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
184 {
185 	napi_enable(&tqp_vector->napi);
186 	enable_irq(tqp_vector->vector_irq);
187 
188 	/* enable vector */
189 	hns3_mask_vector_irq(tqp_vector, 1);
190 }
191 
192 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
193 {
194 	/* disable vector */
195 	hns3_mask_vector_irq(tqp_vector, 0);
196 
197 	disable_irq(tqp_vector->vector_irq);
198 	napi_disable(&tqp_vector->napi);
199 }
200 
201 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
202 				 u32 rl_value)
203 {
204 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
205 
206 	/* this defines the configuration for RL (Interrupt Rate Limiter).
207 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
208 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
209 	 */
210 
211 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
212 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
213 		/* According to the hardware, the range of rl_reg is
214 		 * 0-59 and the unit is 4.
215 		 */
216 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
217 
218 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
219 }
220 
221 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
222 				    u32 gl_value)
223 {
224 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
225 
226 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
227 }
228 
229 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
230 				    u32 gl_value)
231 {
232 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
233 
234 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
235 }
236 
237 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
238 				   struct hns3_nic_priv *priv)
239 {
240 	/* initialize the configuration for interrupt coalescing.
241 	 * 1. GL (Interrupt Gap Limiter)
242 	 * 2. RL (Interrupt Rate Limiter)
243 	 *
244 	 * Default: enable interrupt coalescing self-adaptive and GL
245 	 */
246 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
247 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
248 
249 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
250 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
251 
252 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
253 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
254 }
255 
256 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
257 				      struct hns3_nic_priv *priv)
258 {
259 	struct hnae3_handle *h = priv->ae_handle;
260 
261 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
262 				       tqp_vector->tx_group.coal.int_gl);
263 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
264 				       tqp_vector->rx_group.coal.int_gl);
265 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
266 }
267 
268 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
269 {
270 	struct hnae3_handle *h = hns3_get_handle(netdev);
271 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
272 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
273 	int i, ret;
274 
275 	if (kinfo->num_tc <= 1) {
276 		netdev_reset_tc(netdev);
277 	} else {
278 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
279 		if (ret) {
280 			netdev_err(netdev,
281 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
282 			return ret;
283 		}
284 
285 		for (i = 0; i < HNAE3_MAX_TC; i++) {
286 			if (!kinfo->tc_info[i].enable)
287 				continue;
288 
289 			netdev_set_tc_queue(netdev,
290 					    kinfo->tc_info[i].tc,
291 					    kinfo->tc_info[i].tqp_count,
292 					    kinfo->tc_info[i].tqp_offset);
293 		}
294 	}
295 
296 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
297 	if (ret) {
298 		netdev_err(netdev,
299 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
300 		return ret;
301 	}
302 
303 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
304 	if (ret) {
305 		netdev_err(netdev,
306 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
307 		return ret;
308 	}
309 
310 	return 0;
311 }
312 
313 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
314 {
315 	u16 alloc_tqps, max_rss_size, rss_size;
316 
317 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
318 	rss_size = alloc_tqps / h->kinfo.num_tc;
319 
320 	return min_t(u16, rss_size, max_rss_size);
321 }
322 
323 static void hns3_tqp_enable(struct hnae3_queue *tqp)
324 {
325 	u32 rcb_reg;
326 
327 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
328 	rcb_reg |= BIT(HNS3_RING_EN_B);
329 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
330 }
331 
332 static void hns3_tqp_disable(struct hnae3_queue *tqp)
333 {
334 	u32 rcb_reg;
335 
336 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
337 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
338 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
339 }
340 
341 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
342 {
343 #ifdef CONFIG_RFS_ACCEL
344 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
345 	netdev->rx_cpu_rmap = NULL;
346 #endif
347 }
348 
349 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
350 {
351 #ifdef CONFIG_RFS_ACCEL
352 	struct hns3_nic_priv *priv = netdev_priv(netdev);
353 	struct hns3_enet_tqp_vector *tqp_vector;
354 	int i, ret;
355 
356 	if (!netdev->rx_cpu_rmap) {
357 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
358 		if (!netdev->rx_cpu_rmap)
359 			return -ENOMEM;
360 	}
361 
362 	for (i = 0; i < priv->vector_num; i++) {
363 		tqp_vector = &priv->tqp_vector[i];
364 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
365 				       tqp_vector->vector_irq);
366 		if (ret) {
367 			hns3_free_rx_cpu_rmap(netdev);
368 			return ret;
369 		}
370 	}
371 #endif
372 	return 0;
373 }
374 
375 static int hns3_nic_net_up(struct net_device *netdev)
376 {
377 	struct hns3_nic_priv *priv = netdev_priv(netdev);
378 	struct hnae3_handle *h = priv->ae_handle;
379 	int i, j;
380 	int ret;
381 
382 	ret = hns3_nic_reset_all_ring(h);
383 	if (ret)
384 		return ret;
385 
386 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
387 
388 	/* enable the vectors */
389 	for (i = 0; i < priv->vector_num; i++)
390 		hns3_vector_enable(&priv->tqp_vector[i]);
391 
392 	/* enable rcb */
393 	for (j = 0; j < h->kinfo.num_tqps; j++)
394 		hns3_tqp_enable(h->kinfo.tqp[j]);
395 
396 	/* start the ae_dev */
397 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
398 	if (ret) {
399 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
400 		while (j--)
401 			hns3_tqp_disable(h->kinfo.tqp[j]);
402 
403 		for (j = i - 1; j >= 0; j--)
404 			hns3_vector_disable(&priv->tqp_vector[j]);
405 	}
406 
407 	return ret;
408 }
409 
410 static void hns3_config_xps(struct hns3_nic_priv *priv)
411 {
412 	int i;
413 
414 	for (i = 0; i < priv->vector_num; i++) {
415 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
416 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
417 
418 		while (ring) {
419 			int ret;
420 
421 			ret = netif_set_xps_queue(priv->netdev,
422 						  &tqp_vector->affinity_mask,
423 						  ring->tqp->tqp_index);
424 			if (ret)
425 				netdev_warn(priv->netdev,
426 					    "set xps queue failed: %d", ret);
427 
428 			ring = ring->next;
429 		}
430 	}
431 }
432 
433 static int hns3_nic_net_open(struct net_device *netdev)
434 {
435 	struct hns3_nic_priv *priv = netdev_priv(netdev);
436 	struct hnae3_handle *h = hns3_get_handle(netdev);
437 	struct hnae3_knic_private_info *kinfo;
438 	int i, ret;
439 
440 	if (hns3_nic_resetting(netdev))
441 		return -EBUSY;
442 
443 	netif_carrier_off(netdev);
444 
445 	ret = hns3_nic_set_real_num_queue(netdev);
446 	if (ret)
447 		return ret;
448 
449 	ret = hns3_nic_net_up(netdev);
450 	if (ret) {
451 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
452 		return ret;
453 	}
454 
455 	kinfo = &h->kinfo;
456 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
457 		netdev_set_prio_tc_map(netdev, i, kinfo->prio_tc[i]);
458 
459 	if (h->ae_algo->ops->set_timer_task)
460 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
461 
462 	hns3_config_xps(priv);
463 
464 	netif_dbg(h, drv, netdev, "net open\n");
465 
466 	return 0;
467 }
468 
469 static void hns3_reset_tx_queue(struct hnae3_handle *h)
470 {
471 	struct net_device *ndev = h->kinfo.netdev;
472 	struct hns3_nic_priv *priv = netdev_priv(ndev);
473 	struct netdev_queue *dev_queue;
474 	u32 i;
475 
476 	for (i = 0; i < h->kinfo.num_tqps; i++) {
477 		dev_queue = netdev_get_tx_queue(ndev,
478 						priv->ring[i].queue_index);
479 		netdev_tx_reset_queue(dev_queue);
480 	}
481 }
482 
483 static void hns3_nic_net_down(struct net_device *netdev)
484 {
485 	struct hns3_nic_priv *priv = netdev_priv(netdev);
486 	struct hnae3_handle *h = hns3_get_handle(netdev);
487 	const struct hnae3_ae_ops *ops;
488 	int i;
489 
490 	/* disable vectors */
491 	for (i = 0; i < priv->vector_num; i++)
492 		hns3_vector_disable(&priv->tqp_vector[i]);
493 
494 	/* disable rcb */
495 	for (i = 0; i < h->kinfo.num_tqps; i++)
496 		hns3_tqp_disable(h->kinfo.tqp[i]);
497 
498 	/* stop ae_dev */
499 	ops = priv->ae_handle->ae_algo->ops;
500 	if (ops->stop)
501 		ops->stop(priv->ae_handle);
502 
503 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
504 	 * during reset process, because driver may not be able
505 	 * to disable the ring through firmware when downing the netdev.
506 	 */
507 	if (!hns3_nic_resetting(netdev))
508 		hns3_clear_all_ring(priv->ae_handle, false);
509 
510 	hns3_reset_tx_queue(priv->ae_handle);
511 }
512 
513 static int hns3_nic_net_stop(struct net_device *netdev)
514 {
515 	struct hns3_nic_priv *priv = netdev_priv(netdev);
516 	struct hnae3_handle *h = hns3_get_handle(netdev);
517 
518 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
519 		return 0;
520 
521 	netif_dbg(h, drv, netdev, "net stop\n");
522 
523 	if (h->ae_algo->ops->set_timer_task)
524 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
525 
526 	netif_tx_stop_all_queues(netdev);
527 	netif_carrier_off(netdev);
528 
529 	hns3_nic_net_down(netdev);
530 
531 	return 0;
532 }
533 
534 static int hns3_nic_uc_sync(struct net_device *netdev,
535 			    const unsigned char *addr)
536 {
537 	struct hnae3_handle *h = hns3_get_handle(netdev);
538 
539 	if (h->ae_algo->ops->add_uc_addr)
540 		return h->ae_algo->ops->add_uc_addr(h, addr);
541 
542 	return 0;
543 }
544 
545 static int hns3_nic_uc_unsync(struct net_device *netdev,
546 			      const unsigned char *addr)
547 {
548 	struct hnae3_handle *h = hns3_get_handle(netdev);
549 
550 	/* need ignore the request of removing device address, because
551 	 * we store the device address and other addresses of uc list
552 	 * in the function's mac filter list.
553 	 */
554 	if (ether_addr_equal(addr, netdev->dev_addr))
555 		return 0;
556 
557 	if (h->ae_algo->ops->rm_uc_addr)
558 		return h->ae_algo->ops->rm_uc_addr(h, addr);
559 
560 	return 0;
561 }
562 
563 static int hns3_nic_mc_sync(struct net_device *netdev,
564 			    const unsigned char *addr)
565 {
566 	struct hnae3_handle *h = hns3_get_handle(netdev);
567 
568 	if (h->ae_algo->ops->add_mc_addr)
569 		return h->ae_algo->ops->add_mc_addr(h, addr);
570 
571 	return 0;
572 }
573 
574 static int hns3_nic_mc_unsync(struct net_device *netdev,
575 			      const unsigned char *addr)
576 {
577 	struct hnae3_handle *h = hns3_get_handle(netdev);
578 
579 	if (h->ae_algo->ops->rm_mc_addr)
580 		return h->ae_algo->ops->rm_mc_addr(h, addr);
581 
582 	return 0;
583 }
584 
585 static u8 hns3_get_netdev_flags(struct net_device *netdev)
586 {
587 	u8 flags = 0;
588 
589 	if (netdev->flags & IFF_PROMISC) {
590 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
591 	} else {
592 		flags |= HNAE3_VLAN_FLTR;
593 		if (netdev->flags & IFF_ALLMULTI)
594 			flags |= HNAE3_USER_MPE;
595 	}
596 
597 	return flags;
598 }
599 
600 static void hns3_nic_set_rx_mode(struct net_device *netdev)
601 {
602 	struct hnae3_handle *h = hns3_get_handle(netdev);
603 	u8 new_flags;
604 
605 	new_flags = hns3_get_netdev_flags(netdev);
606 
607 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
608 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
609 
610 	/* User mode Promisc mode enable and vlan filtering is disabled to
611 	 * let all packets in.
612 	 */
613 	h->netdev_flags = new_flags;
614 	hns3_request_update_promisc_mode(h);
615 }
616 
617 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
618 {
619 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
620 
621 	if (ops->request_update_promisc_mode)
622 		ops->request_update_promisc_mode(handle);
623 }
624 
625 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
626 {
627 	struct hns3_nic_priv *priv = netdev_priv(netdev);
628 	struct hnae3_handle *h = priv->ae_handle;
629 
630 	if (h->ae_algo->ops->set_promisc_mode) {
631 		return h->ae_algo->ops->set_promisc_mode(h,
632 						promisc_flags & HNAE3_UPE,
633 						promisc_flags & HNAE3_MPE);
634 	}
635 
636 	return 0;
637 }
638 
639 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
640 {
641 	struct hns3_nic_priv *priv = netdev_priv(netdev);
642 	struct hnae3_handle *h = priv->ae_handle;
643 	bool last_state;
644 
645 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
646 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
647 		if (enable != last_state) {
648 			netdev_info(netdev,
649 				    "%s vlan filter\n",
650 				    enable ? "enable" : "disable");
651 			h->ae_algo->ops->enable_vlan_filter(h, enable);
652 		}
653 	}
654 }
655 
656 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
657 			u16 *mss, u32 *type_cs_vlan_tso)
658 {
659 	u32 l4_offset, hdr_len;
660 	union l3_hdr_info l3;
661 	union l4_hdr_info l4;
662 	u32 l4_paylen;
663 	int ret;
664 
665 	if (!skb_is_gso(skb))
666 		return 0;
667 
668 	ret = skb_cow_head(skb, 0);
669 	if (unlikely(ret < 0))
670 		return ret;
671 
672 	l3.hdr = skb_network_header(skb);
673 	l4.hdr = skb_transport_header(skb);
674 
675 	/* Software should clear the IPv4's checksum field when tso is
676 	 * needed.
677 	 */
678 	if (l3.v4->version == 4)
679 		l3.v4->check = 0;
680 
681 	/* tunnel packet */
682 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
683 					 SKB_GSO_GRE_CSUM |
684 					 SKB_GSO_UDP_TUNNEL |
685 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
686 		if ((!(skb_shinfo(skb)->gso_type &
687 		    SKB_GSO_PARTIAL)) &&
688 		    (skb_shinfo(skb)->gso_type &
689 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
690 			/* Software should clear the udp's checksum
691 			 * field when tso is needed.
692 			 */
693 			l4.udp->check = 0;
694 		}
695 		/* reset l3&l4 pointers from outer to inner headers */
696 		l3.hdr = skb_inner_network_header(skb);
697 		l4.hdr = skb_inner_transport_header(skb);
698 
699 		/* Software should clear the IPv4's checksum field when
700 		 * tso is needed.
701 		 */
702 		if (l3.v4->version == 4)
703 			l3.v4->check = 0;
704 	}
705 
706 	/* normal or tunnel packet */
707 	l4_offset = l4.hdr - skb->data;
708 	hdr_len = (l4.tcp->doff << 2) + l4_offset;
709 
710 	/* remove payload length from inner pseudo checksum when tso */
711 	l4_paylen = skb->len - l4_offset;
712 	csum_replace_by_diff(&l4.tcp->check,
713 			     (__force __wsum)htonl(l4_paylen));
714 
715 	/* find the txbd field values */
716 	*paylen = skb->len - hdr_len;
717 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
718 
719 	/* get MSS for TSO */
720 	*mss = skb_shinfo(skb)->gso_size;
721 
722 	trace_hns3_tso(skb);
723 
724 	return 0;
725 }
726 
727 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
728 				u8 *il4_proto)
729 {
730 	union l3_hdr_info l3;
731 	unsigned char *l4_hdr;
732 	unsigned char *exthdr;
733 	u8 l4_proto_tmp;
734 	__be16 frag_off;
735 
736 	/* find outer header point */
737 	l3.hdr = skb_network_header(skb);
738 	l4_hdr = skb_transport_header(skb);
739 
740 	if (skb->protocol == htons(ETH_P_IPV6)) {
741 		exthdr = l3.hdr + sizeof(*l3.v6);
742 		l4_proto_tmp = l3.v6->nexthdr;
743 		if (l4_hdr != exthdr)
744 			ipv6_skip_exthdr(skb, exthdr - skb->data,
745 					 &l4_proto_tmp, &frag_off);
746 	} else if (skb->protocol == htons(ETH_P_IP)) {
747 		l4_proto_tmp = l3.v4->protocol;
748 	} else {
749 		return -EINVAL;
750 	}
751 
752 	*ol4_proto = l4_proto_tmp;
753 
754 	/* tunnel packet */
755 	if (!skb->encapsulation) {
756 		*il4_proto = 0;
757 		return 0;
758 	}
759 
760 	/* find inner header point */
761 	l3.hdr = skb_inner_network_header(skb);
762 	l4_hdr = skb_inner_transport_header(skb);
763 
764 	if (l3.v6->version == 6) {
765 		exthdr = l3.hdr + sizeof(*l3.v6);
766 		l4_proto_tmp = l3.v6->nexthdr;
767 		if (l4_hdr != exthdr)
768 			ipv6_skip_exthdr(skb, exthdr - skb->data,
769 					 &l4_proto_tmp, &frag_off);
770 	} else if (l3.v4->version == 4) {
771 		l4_proto_tmp = l3.v4->protocol;
772 	}
773 
774 	*il4_proto = l4_proto_tmp;
775 
776 	return 0;
777 }
778 
779 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
780  * and it is udp packet, which has a dest port as the IANA assigned.
781  * the hardware is expected to do the checksum offload, but the
782  * hardware will not do the checksum offload when udp dest port is
783  * 4789.
784  */
785 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
786 {
787 	union l4_hdr_info l4;
788 
789 	l4.hdr = skb_transport_header(skb);
790 
791 	if (!(!skb->encapsulation &&
792 	      l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
793 		return false;
794 
795 	skb_checksum_help(skb);
796 
797 	return true;
798 }
799 
800 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
801 				  u32 *ol_type_vlan_len_msec)
802 {
803 	u32 l2_len, l3_len, l4_len;
804 	unsigned char *il2_hdr;
805 	union l3_hdr_info l3;
806 	union l4_hdr_info l4;
807 
808 	l3.hdr = skb_network_header(skb);
809 	l4.hdr = skb_transport_header(skb);
810 
811 	/* compute OL2 header size, defined in 2 Bytes */
812 	l2_len = l3.hdr - skb->data;
813 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
814 
815 	/* compute OL3 header size, defined in 4 Bytes */
816 	l3_len = l4.hdr - l3.hdr;
817 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
818 
819 	il2_hdr = skb_inner_mac_header(skb);
820 	/* compute OL4 header size, defined in 4 Bytes */
821 	l4_len = il2_hdr - l4.hdr;
822 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
823 
824 	/* define outer network header type */
825 	if (skb->protocol == htons(ETH_P_IP)) {
826 		if (skb_is_gso(skb))
827 			hns3_set_field(*ol_type_vlan_len_msec,
828 				       HNS3_TXD_OL3T_S,
829 				       HNS3_OL3T_IPV4_CSUM);
830 		else
831 			hns3_set_field(*ol_type_vlan_len_msec,
832 				       HNS3_TXD_OL3T_S,
833 				       HNS3_OL3T_IPV4_NO_CSUM);
834 
835 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
836 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
837 			       HNS3_OL3T_IPV6);
838 	}
839 
840 	if (ol4_proto == IPPROTO_UDP)
841 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
842 			       HNS3_TUN_MAC_IN_UDP);
843 	else if (ol4_proto == IPPROTO_GRE)
844 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
845 			       HNS3_TUN_NVGRE);
846 }
847 
848 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
849 			   u8 il4_proto, u32 *type_cs_vlan_tso,
850 			   u32 *ol_type_vlan_len_msec)
851 {
852 	unsigned char *l2_hdr = skb->data;
853 	u32 l4_proto = ol4_proto;
854 	union l4_hdr_info l4;
855 	union l3_hdr_info l3;
856 	u32 l2_len, l3_len;
857 
858 	l4.hdr = skb_transport_header(skb);
859 	l3.hdr = skb_network_header(skb);
860 
861 	/* handle encapsulation skb */
862 	if (skb->encapsulation) {
863 		/* If this is a not UDP/GRE encapsulation skb */
864 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
865 			/* drop the skb tunnel packet if hardware don't support,
866 			 * because hardware can't calculate csum when TSO.
867 			 */
868 			if (skb_is_gso(skb))
869 				return -EDOM;
870 
871 			/* the stack computes the IP header already,
872 			 * driver calculate l4 checksum when not TSO.
873 			 */
874 			skb_checksum_help(skb);
875 			return 0;
876 		}
877 
878 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
879 
880 		/* switch to inner header */
881 		l2_hdr = skb_inner_mac_header(skb);
882 		l3.hdr = skb_inner_network_header(skb);
883 		l4.hdr = skb_inner_transport_header(skb);
884 		l4_proto = il4_proto;
885 	}
886 
887 	if (l3.v4->version == 4) {
888 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
889 			       HNS3_L3T_IPV4);
890 
891 		/* the stack computes the IP header already, the only time we
892 		 * need the hardware to recompute it is in the case of TSO.
893 		 */
894 		if (skb_is_gso(skb))
895 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
896 	} else if (l3.v6->version == 6) {
897 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
898 			       HNS3_L3T_IPV6);
899 	}
900 
901 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
902 	l2_len = l3.hdr - l2_hdr;
903 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
904 
905 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
906 	l3_len = l4.hdr - l3.hdr;
907 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
908 
909 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
910 	switch (l4_proto) {
911 	case IPPROTO_TCP:
912 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
913 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
914 			       HNS3_L4T_TCP);
915 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
916 			       l4.tcp->doff);
917 		break;
918 	case IPPROTO_UDP:
919 		if (hns3_tunnel_csum_bug(skb))
920 			break;
921 
922 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
923 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
924 			       HNS3_L4T_UDP);
925 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
926 			       (sizeof(struct udphdr) >> 2));
927 		break;
928 	case IPPROTO_SCTP:
929 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
930 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
931 			       HNS3_L4T_SCTP);
932 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
933 			       (sizeof(struct sctphdr) >> 2));
934 		break;
935 	default:
936 		/* drop the skb tunnel packet if hardware don't support,
937 		 * because hardware can't calculate csum when TSO.
938 		 */
939 		if (skb_is_gso(skb))
940 			return -EDOM;
941 
942 		/* the stack computes the IP header already,
943 		 * driver calculate l4 checksum when not TSO.
944 		 */
945 		skb_checksum_help(skb);
946 		return 0;
947 	}
948 
949 	return 0;
950 }
951 
952 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
953 			     struct sk_buff *skb)
954 {
955 	struct hnae3_handle *handle = tx_ring->tqp->handle;
956 	struct vlan_ethhdr *vhdr;
957 	int rc;
958 
959 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
960 	      skb_vlan_tag_present(skb)))
961 		return 0;
962 
963 	/* Since HW limitation, if port based insert VLAN enabled, only one VLAN
964 	 * header is allowed in skb, otherwise it will cause RAS error.
965 	 */
966 	if (unlikely(skb_vlan_tagged_multi(skb) &&
967 		     handle->port_base_vlan_state ==
968 		     HNAE3_PORT_BASE_VLAN_ENABLE))
969 		return -EINVAL;
970 
971 	if (skb->protocol == htons(ETH_P_8021Q) &&
972 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
973 		/* When HW VLAN acceleration is turned off, and the stack
974 		 * sets the protocol to 802.1q, the driver just need to
975 		 * set the protocol to the encapsulated ethertype.
976 		 */
977 		skb->protocol = vlan_get_protocol(skb);
978 		return 0;
979 	}
980 
981 	if (skb_vlan_tag_present(skb)) {
982 		/* Based on hw strategy, use out_vtag in two layer tag case,
983 		 * and use inner_vtag in one tag case.
984 		 */
985 		if (skb->protocol == htons(ETH_P_8021Q) &&
986 		    handle->port_base_vlan_state ==
987 		    HNAE3_PORT_BASE_VLAN_DISABLE)
988 			rc = HNS3_OUTER_VLAN_TAG;
989 		else
990 			rc = HNS3_INNER_VLAN_TAG;
991 
992 		skb->protocol = vlan_get_protocol(skb);
993 		return rc;
994 	}
995 
996 	rc = skb_cow_head(skb, 0);
997 	if (unlikely(rc < 0))
998 		return rc;
999 
1000 	vhdr = (struct vlan_ethhdr *)skb->data;
1001 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1002 					 & VLAN_PRIO_MASK);
1003 
1004 	skb->protocol = vlan_get_protocol(skb);
1005 	return 0;
1006 }
1007 
1008 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1009 			      struct sk_buff *skb, struct hns3_desc *desc)
1010 {
1011 	u32 ol_type_vlan_len_msec = 0;
1012 	u32 type_cs_vlan_tso = 0;
1013 	u32 paylen = skb->len;
1014 	u16 inner_vtag = 0;
1015 	u16 out_vtag = 0;
1016 	u16 mss = 0;
1017 	int ret;
1018 
1019 	ret = hns3_handle_vtags(ring, skb);
1020 	if (unlikely(ret < 0)) {
1021 		u64_stats_update_begin(&ring->syncp);
1022 		ring->stats.tx_vlan_err++;
1023 		u64_stats_update_end(&ring->syncp);
1024 		return ret;
1025 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1026 		inner_vtag = skb_vlan_tag_get(skb);
1027 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1028 				VLAN_PRIO_MASK;
1029 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1030 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1031 		out_vtag = skb_vlan_tag_get(skb);
1032 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1033 				VLAN_PRIO_MASK;
1034 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1035 			       1);
1036 	}
1037 
1038 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1039 		u8 ol4_proto, il4_proto;
1040 
1041 		skb_reset_mac_len(skb);
1042 
1043 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1044 		if (unlikely(ret < 0)) {
1045 			u64_stats_update_begin(&ring->syncp);
1046 			ring->stats.tx_l4_proto_err++;
1047 			u64_stats_update_end(&ring->syncp);
1048 			return ret;
1049 		}
1050 
1051 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1052 				      &type_cs_vlan_tso,
1053 				      &ol_type_vlan_len_msec);
1054 		if (unlikely(ret < 0)) {
1055 			u64_stats_update_begin(&ring->syncp);
1056 			ring->stats.tx_l2l3l4_err++;
1057 			u64_stats_update_end(&ring->syncp);
1058 			return ret;
1059 		}
1060 
1061 		ret = hns3_set_tso(skb, &paylen, &mss,
1062 				   &type_cs_vlan_tso);
1063 		if (unlikely(ret < 0)) {
1064 			u64_stats_update_begin(&ring->syncp);
1065 			ring->stats.tx_tso_err++;
1066 			u64_stats_update_end(&ring->syncp);
1067 			return ret;
1068 		}
1069 	}
1070 
1071 	/* Set txbd */
1072 	desc->tx.ol_type_vlan_len_msec =
1073 		cpu_to_le32(ol_type_vlan_len_msec);
1074 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1075 	desc->tx.paylen = cpu_to_le32(paylen);
1076 	desc->tx.mss = cpu_to_le16(mss);
1077 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1078 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1079 
1080 	return 0;
1081 }
1082 
1083 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1084 			  unsigned int size, enum hns_desc_type type)
1085 {
1086 #define HNS3_LIKELY_BD_NUM	1
1087 
1088 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1089 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1090 	struct device *dev = ring_to_dev(ring);
1091 	skb_frag_t *frag;
1092 	unsigned int frag_buf_num;
1093 	int k, sizeoflast;
1094 	dma_addr_t dma;
1095 
1096 	if (type == DESC_TYPE_SKB) {
1097 		struct sk_buff *skb = (struct sk_buff *)priv;
1098 		int ret;
1099 
1100 		ret = hns3_fill_skb_desc(ring, skb, desc);
1101 		if (unlikely(ret < 0))
1102 			return ret;
1103 
1104 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1105 	} else if (type == DESC_TYPE_FRAGLIST_SKB) {
1106 		struct sk_buff *skb = (struct sk_buff *)priv;
1107 
1108 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1109 	} else {
1110 		frag = (skb_frag_t *)priv;
1111 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1112 	}
1113 
1114 	if (unlikely(dma_mapping_error(dev, dma))) {
1115 		u64_stats_update_begin(&ring->syncp);
1116 		ring->stats.sw_err_cnt++;
1117 		u64_stats_update_end(&ring->syncp);
1118 		return -ENOMEM;
1119 	}
1120 
1121 	desc_cb->priv = priv;
1122 	desc_cb->length = size;
1123 	desc_cb->dma = dma;
1124 	desc_cb->type = type;
1125 
1126 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1127 		desc->addr = cpu_to_le64(dma);
1128 		desc->tx.send_size = cpu_to_le16(size);
1129 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1130 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1131 
1132 		trace_hns3_tx_desc(ring, ring->next_to_use);
1133 		ring_ptr_move_fw(ring, next_to_use);
1134 		return HNS3_LIKELY_BD_NUM;
1135 	}
1136 
1137 	frag_buf_num = hns3_tx_bd_count(size);
1138 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1139 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1140 
1141 	/* When frag size is bigger than hardware limit, split this frag */
1142 	for (k = 0; k < frag_buf_num; k++) {
1143 		/* now, fill the descriptor */
1144 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1145 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1146 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1147 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1148 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1149 
1150 		trace_hns3_tx_desc(ring, ring->next_to_use);
1151 		/* move ring pointer to next */
1152 		ring_ptr_move_fw(ring, next_to_use);
1153 
1154 		desc = &ring->desc[ring->next_to_use];
1155 	}
1156 
1157 	return frag_buf_num;
1158 }
1159 
1160 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1161 				    unsigned int bd_num)
1162 {
1163 	unsigned int size;
1164 	int i;
1165 
1166 	size = skb_headlen(skb);
1167 	while (size > HNS3_MAX_BD_SIZE) {
1168 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1169 		size -= HNS3_MAX_BD_SIZE;
1170 
1171 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1172 			return bd_num;
1173 	}
1174 
1175 	if (size) {
1176 		bd_size[bd_num++] = size;
1177 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1178 			return bd_num;
1179 	}
1180 
1181 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1182 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1183 		size = skb_frag_size(frag);
1184 		if (!size)
1185 			continue;
1186 
1187 		while (size > HNS3_MAX_BD_SIZE) {
1188 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1189 			size -= HNS3_MAX_BD_SIZE;
1190 
1191 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1192 				return bd_num;
1193 		}
1194 
1195 		bd_size[bd_num++] = size;
1196 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1197 			return bd_num;
1198 	}
1199 
1200 	return bd_num;
1201 }
1202 
1203 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size)
1204 {
1205 	struct sk_buff *frag_skb;
1206 	unsigned int bd_num = 0;
1207 
1208 	/* If the total len is within the max bd limit */
1209 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
1210 		   skb_shinfo(skb)->nr_frags < HNS3_MAX_NON_TSO_BD_NUM))
1211 		return skb_shinfo(skb)->nr_frags + 1U;
1212 
1213 	/* The below case will always be linearized, return
1214 	 * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
1215 	 */
1216 	if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
1217 		     (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)))
1218 		return HNS3_MAX_TSO_BD_NUM + 1U;
1219 
1220 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1221 
1222 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1223 		return bd_num;
1224 
1225 	skb_walk_frags(skb, frag_skb) {
1226 		bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
1227 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1228 			return bd_num;
1229 	}
1230 
1231 	return bd_num;
1232 }
1233 
1234 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1235 {
1236 	if (!skb->encapsulation)
1237 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1238 
1239 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1240 }
1241 
1242 /* HW need every continuous 8 buffer data to be larger than MSS,
1243  * we simplify it by ensuring skb_headlen + the first continuous
1244  * 7 frags to to be larger than gso header len + mss, and the remaining
1245  * continuous 7 frags to be larger than MSS except the last 7 frags.
1246  */
1247 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1248 				     unsigned int bd_num)
1249 {
1250 	unsigned int tot_len = 0;
1251 	int i;
1252 
1253 	for (i = 0; i < HNS3_MAX_NON_TSO_BD_NUM - 1U; i++)
1254 		tot_len += bd_size[i];
1255 
1256 	/* ensure the first 8 frags is greater than mss + header */
1257 	if (tot_len + bd_size[HNS3_MAX_NON_TSO_BD_NUM - 1U] <
1258 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1259 		return true;
1260 
1261 	/* ensure every continuous 7 buffer is greater than mss
1262 	 * except the last one.
1263 	 */
1264 	for (i = 0; i < bd_num - HNS3_MAX_NON_TSO_BD_NUM; i++) {
1265 		tot_len -= bd_size[i];
1266 		tot_len += bd_size[i + HNS3_MAX_NON_TSO_BD_NUM - 1U];
1267 
1268 		if (tot_len < skb_shinfo(skb)->gso_size)
1269 			return true;
1270 	}
1271 
1272 	return false;
1273 }
1274 
1275 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1276 {
1277 	int i = 0;
1278 
1279 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1280 		size[i] = skb_frag_size(&shinfo->frags[i]);
1281 }
1282 
1283 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1284 				  struct net_device *netdev,
1285 				  struct sk_buff *skb)
1286 {
1287 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1288 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1289 	unsigned int bd_num;
1290 
1291 	bd_num = hns3_tx_bd_num(skb, bd_size);
1292 	if (unlikely(bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1293 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1294 		    !hns3_skb_need_linearized(skb, bd_size, bd_num)) {
1295 			trace_hns3_over_8bd(skb);
1296 			goto out;
1297 		}
1298 
1299 		if (__skb_linearize(skb))
1300 			return -ENOMEM;
1301 
1302 		bd_num = hns3_tx_bd_count(skb->len);
1303 		if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
1304 		    (!skb_is_gso(skb) &&
1305 		     bd_num > HNS3_MAX_NON_TSO_BD_NUM)) {
1306 			trace_hns3_over_8bd(skb);
1307 			return -ENOMEM;
1308 		}
1309 
1310 		u64_stats_update_begin(&ring->syncp);
1311 		ring->stats.tx_copy++;
1312 		u64_stats_update_end(&ring->syncp);
1313 	}
1314 
1315 out:
1316 	if (likely(ring_space(ring) >= bd_num))
1317 		return bd_num;
1318 
1319 	netif_stop_subqueue(netdev, ring->queue_index);
1320 	smp_mb(); /* Memory barrier before checking ring_space */
1321 
1322 	/* Start queue in case hns3_clean_tx_ring has just made room
1323 	 * available and has not seen the queue stopped state performed
1324 	 * by netif_stop_subqueue above.
1325 	 */
1326 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1327 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1328 		netif_start_subqueue(netdev, ring->queue_index);
1329 		return bd_num;
1330 	}
1331 
1332 	return -EBUSY;
1333 }
1334 
1335 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1336 {
1337 	struct device *dev = ring_to_dev(ring);
1338 	unsigned int i;
1339 
1340 	for (i = 0; i < ring->desc_num; i++) {
1341 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1342 
1343 		memset(desc, 0, sizeof(*desc));
1344 
1345 		/* check if this is where we started */
1346 		if (ring->next_to_use == next_to_use_orig)
1347 			break;
1348 
1349 		/* rollback one */
1350 		ring_ptr_move_bw(ring, next_to_use);
1351 
1352 		if (!ring->desc_cb[ring->next_to_use].dma)
1353 			continue;
1354 
1355 		/* unmap the descriptor dma address */
1356 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1357 		    ring->desc_cb[ring->next_to_use].type ==
1358 		    DESC_TYPE_FRAGLIST_SKB)
1359 			dma_unmap_single(dev,
1360 					 ring->desc_cb[ring->next_to_use].dma,
1361 					ring->desc_cb[ring->next_to_use].length,
1362 					DMA_TO_DEVICE);
1363 		else if (ring->desc_cb[ring->next_to_use].length)
1364 			dma_unmap_page(dev,
1365 				       ring->desc_cb[ring->next_to_use].dma,
1366 				       ring->desc_cb[ring->next_to_use].length,
1367 				       DMA_TO_DEVICE);
1368 
1369 		ring->desc_cb[ring->next_to_use].length = 0;
1370 		ring->desc_cb[ring->next_to_use].dma = 0;
1371 		ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1372 	}
1373 }
1374 
1375 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1376 				 struct sk_buff *skb, enum hns_desc_type type)
1377 {
1378 	unsigned int size = skb_headlen(skb);
1379 	int i, ret, bd_num = 0;
1380 
1381 	if (size) {
1382 		ret = hns3_fill_desc(ring, skb, size, type);
1383 		if (unlikely(ret < 0))
1384 			return ret;
1385 
1386 		bd_num += ret;
1387 	}
1388 
1389 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1390 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1391 
1392 		size = skb_frag_size(frag);
1393 		if (!size)
1394 			continue;
1395 
1396 		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1397 		if (unlikely(ret < 0))
1398 			return ret;
1399 
1400 		bd_num += ret;
1401 	}
1402 
1403 	return bd_num;
1404 }
1405 
1406 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1407 {
1408 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1409 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1410 	struct netdev_queue *dev_queue;
1411 	int pre_ntu, next_to_use_head;
1412 	struct sk_buff *frag_skb;
1413 	int bd_num = 0;
1414 	int ret;
1415 
1416 	/* Hardware can only handle short frames above 32 bytes */
1417 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN))
1418 		return NETDEV_TX_OK;
1419 
1420 	/* Prefetch the data used later */
1421 	prefetch(skb->data);
1422 
1423 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1424 	if (unlikely(ret <= 0)) {
1425 		if (ret == -EBUSY) {
1426 			u64_stats_update_begin(&ring->syncp);
1427 			ring->stats.tx_busy++;
1428 			u64_stats_update_end(&ring->syncp);
1429 			return NETDEV_TX_BUSY;
1430 		} else if (ret == -ENOMEM) {
1431 			u64_stats_update_begin(&ring->syncp);
1432 			ring->stats.sw_err_cnt++;
1433 			u64_stats_update_end(&ring->syncp);
1434 		}
1435 
1436 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1437 		goto out_err_tx_ok;
1438 	}
1439 
1440 	next_to_use_head = ring->next_to_use;
1441 
1442 	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1443 	if (unlikely(ret < 0))
1444 		goto fill_err;
1445 
1446 	bd_num += ret;
1447 
1448 	skb_walk_frags(skb, frag_skb) {
1449 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
1450 					    DESC_TYPE_FRAGLIST_SKB);
1451 		if (unlikely(ret < 0))
1452 			goto fill_err;
1453 
1454 		bd_num += ret;
1455 	}
1456 
1457 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1458 					(ring->desc_num - 1);
1459 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1460 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1461 	trace_hns3_tx_desc(ring, pre_ntu);
1462 
1463 	/* Complete translate all packets */
1464 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1465 	netdev_tx_sent_queue(dev_queue, skb->len);
1466 
1467 	wmb(); /* Commit all data before submit */
1468 
1469 	hnae3_queue_xmit(ring->tqp, bd_num);
1470 
1471 	return NETDEV_TX_OK;
1472 
1473 fill_err:
1474 	hns3_clear_desc(ring, next_to_use_head);
1475 
1476 out_err_tx_ok:
1477 	dev_kfree_skb_any(skb);
1478 	return NETDEV_TX_OK;
1479 }
1480 
1481 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1482 {
1483 	struct hnae3_handle *h = hns3_get_handle(netdev);
1484 	struct sockaddr *mac_addr = p;
1485 	int ret;
1486 
1487 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1488 		return -EADDRNOTAVAIL;
1489 
1490 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1491 		netdev_info(netdev, "already using mac address %pM\n",
1492 			    mac_addr->sa_data);
1493 		return 0;
1494 	}
1495 
1496 	/* For VF device, if there is a perm_addr, then the user will not
1497 	 * be allowed to change the address.
1498 	 */
1499 	if (!hns3_is_phys_func(h->pdev) &&
1500 	    !is_zero_ether_addr(netdev->perm_addr)) {
1501 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1502 			   netdev->perm_addr, mac_addr->sa_data);
1503 		return -EPERM;
1504 	}
1505 
1506 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1507 	if (ret) {
1508 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1509 		return ret;
1510 	}
1511 
1512 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1513 
1514 	return 0;
1515 }
1516 
1517 static int hns3_nic_do_ioctl(struct net_device *netdev,
1518 			     struct ifreq *ifr, int cmd)
1519 {
1520 	struct hnae3_handle *h = hns3_get_handle(netdev);
1521 
1522 	if (!netif_running(netdev))
1523 		return -EINVAL;
1524 
1525 	if (!h->ae_algo->ops->do_ioctl)
1526 		return -EOPNOTSUPP;
1527 
1528 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1529 }
1530 
1531 static int hns3_nic_set_features(struct net_device *netdev,
1532 				 netdev_features_t features)
1533 {
1534 	netdev_features_t changed = netdev->features ^ features;
1535 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1536 	struct hnae3_handle *h = priv->ae_handle;
1537 	bool enable;
1538 	int ret;
1539 
1540 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1541 		enable = !!(features & NETIF_F_GRO_HW);
1542 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1543 		if (ret)
1544 			return ret;
1545 	}
1546 
1547 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1548 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1549 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1550 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1551 		if (ret)
1552 			return ret;
1553 	}
1554 
1555 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1556 		enable = !!(features & NETIF_F_NTUPLE);
1557 		h->ae_algo->ops->enable_fd(h, enable);
1558 	}
1559 
1560 	netdev->features = features;
1561 	return 0;
1562 }
1563 
1564 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1565 					     struct net_device *dev,
1566 					     netdev_features_t features)
1567 {
1568 #define HNS3_MAX_HDR_LEN	480U
1569 #define HNS3_MAX_L4_HDR_LEN	60U
1570 
1571 	size_t len;
1572 
1573 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1574 		return features;
1575 
1576 	if (skb->encapsulation)
1577 		len = skb_inner_transport_header(skb) - skb->data;
1578 	else
1579 		len = skb_transport_header(skb) - skb->data;
1580 
1581 	/* Assume L4 is 60 byte as TCP is the only protocol with a
1582 	 * a flexible value, and it's max len is 60 bytes.
1583 	 */
1584 	len += HNS3_MAX_L4_HDR_LEN;
1585 
1586 	/* Hardware only supports checksum on the skb with a max header
1587 	 * len of 480 bytes.
1588 	 */
1589 	if (len > HNS3_MAX_HDR_LEN)
1590 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1591 
1592 	return features;
1593 }
1594 
1595 static void hns3_nic_get_stats64(struct net_device *netdev,
1596 				 struct rtnl_link_stats64 *stats)
1597 {
1598 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1599 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1600 	struct hnae3_handle *handle = priv->ae_handle;
1601 	struct hns3_enet_ring *ring;
1602 	u64 rx_length_errors = 0;
1603 	u64 rx_crc_errors = 0;
1604 	u64 rx_multicast = 0;
1605 	unsigned int start;
1606 	u64 tx_errors = 0;
1607 	u64 rx_errors = 0;
1608 	unsigned int idx;
1609 	u64 tx_bytes = 0;
1610 	u64 rx_bytes = 0;
1611 	u64 tx_pkts = 0;
1612 	u64 rx_pkts = 0;
1613 	u64 tx_drop = 0;
1614 	u64 rx_drop = 0;
1615 
1616 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1617 		return;
1618 
1619 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1620 
1621 	for (idx = 0; idx < queue_num; idx++) {
1622 		/* fetch the tx stats */
1623 		ring = &priv->ring[idx];
1624 		do {
1625 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1626 			tx_bytes += ring->stats.tx_bytes;
1627 			tx_pkts += ring->stats.tx_pkts;
1628 			tx_drop += ring->stats.sw_err_cnt;
1629 			tx_drop += ring->stats.tx_vlan_err;
1630 			tx_drop += ring->stats.tx_l4_proto_err;
1631 			tx_drop += ring->stats.tx_l2l3l4_err;
1632 			tx_drop += ring->stats.tx_tso_err;
1633 			tx_errors += ring->stats.sw_err_cnt;
1634 			tx_errors += ring->stats.tx_vlan_err;
1635 			tx_errors += ring->stats.tx_l4_proto_err;
1636 			tx_errors += ring->stats.tx_l2l3l4_err;
1637 			tx_errors += ring->stats.tx_tso_err;
1638 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1639 
1640 		/* fetch the rx stats */
1641 		ring = &priv->ring[idx + queue_num];
1642 		do {
1643 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1644 			rx_bytes += ring->stats.rx_bytes;
1645 			rx_pkts += ring->stats.rx_pkts;
1646 			rx_drop += ring->stats.l2_err;
1647 			rx_errors += ring->stats.l2_err;
1648 			rx_errors += ring->stats.l3l4_csum_err;
1649 			rx_crc_errors += ring->stats.l2_err;
1650 			rx_multicast += ring->stats.rx_multicast;
1651 			rx_length_errors += ring->stats.err_pkt_len;
1652 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1653 	}
1654 
1655 	stats->tx_bytes = tx_bytes;
1656 	stats->tx_packets = tx_pkts;
1657 	stats->rx_bytes = rx_bytes;
1658 	stats->rx_packets = rx_pkts;
1659 
1660 	stats->rx_errors = rx_errors;
1661 	stats->multicast = rx_multicast;
1662 	stats->rx_length_errors = rx_length_errors;
1663 	stats->rx_crc_errors = rx_crc_errors;
1664 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1665 
1666 	stats->tx_errors = tx_errors;
1667 	stats->rx_dropped = rx_drop;
1668 	stats->tx_dropped = tx_drop;
1669 	stats->collisions = netdev->stats.collisions;
1670 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1671 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1672 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1673 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1674 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1675 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1676 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1677 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1678 	stats->rx_compressed = netdev->stats.rx_compressed;
1679 	stats->tx_compressed = netdev->stats.tx_compressed;
1680 }
1681 
1682 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1683 {
1684 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1685 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1686 	struct hnae3_knic_private_info *kinfo;
1687 	u8 tc = mqprio_qopt->qopt.num_tc;
1688 	u16 mode = mqprio_qopt->mode;
1689 	u8 hw = mqprio_qopt->qopt.hw;
1690 	struct hnae3_handle *h;
1691 
1692 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1693 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1694 		return -EOPNOTSUPP;
1695 
1696 	if (tc > HNAE3_MAX_TC)
1697 		return -EINVAL;
1698 
1699 	if (!netdev)
1700 		return -EINVAL;
1701 
1702 	h = hns3_get_handle(netdev);
1703 	kinfo = &h->kinfo;
1704 
1705 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1706 
1707 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1708 		kinfo->dcb_ops->setup_tc(h, tc ? tc : 1, prio_tc) : -EOPNOTSUPP;
1709 }
1710 
1711 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1712 			     void *type_data)
1713 {
1714 	if (type != TC_SETUP_QDISC_MQPRIO)
1715 		return -EOPNOTSUPP;
1716 
1717 	return hns3_setup_tc(dev, type_data);
1718 }
1719 
1720 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1721 				__be16 proto, u16 vid)
1722 {
1723 	struct hnae3_handle *h = hns3_get_handle(netdev);
1724 	int ret = -EIO;
1725 
1726 	if (h->ae_algo->ops->set_vlan_filter)
1727 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1728 
1729 	return ret;
1730 }
1731 
1732 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1733 				 __be16 proto, u16 vid)
1734 {
1735 	struct hnae3_handle *h = hns3_get_handle(netdev);
1736 	int ret = -EIO;
1737 
1738 	if (h->ae_algo->ops->set_vlan_filter)
1739 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1740 
1741 	return ret;
1742 }
1743 
1744 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1745 				u8 qos, __be16 vlan_proto)
1746 {
1747 	struct hnae3_handle *h = hns3_get_handle(netdev);
1748 	int ret = -EIO;
1749 
1750 	netif_dbg(h, drv, netdev,
1751 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1752 		  vf, vlan, qos, ntohs(vlan_proto));
1753 
1754 	if (h->ae_algo->ops->set_vf_vlan_filter)
1755 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1756 							  qos, vlan_proto);
1757 
1758 	return ret;
1759 }
1760 
1761 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1762 {
1763 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1764 
1765 	if (hns3_nic_resetting(netdev))
1766 		return -EBUSY;
1767 
1768 	if (!handle->ae_algo->ops->set_vf_spoofchk)
1769 		return -EOPNOTSUPP;
1770 
1771 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1772 }
1773 
1774 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1775 {
1776 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1777 
1778 	if (!handle->ae_algo->ops->set_vf_trust)
1779 		return -EOPNOTSUPP;
1780 
1781 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1782 }
1783 
1784 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1785 {
1786 	struct hnae3_handle *h = hns3_get_handle(netdev);
1787 	int ret;
1788 
1789 	if (hns3_nic_resetting(netdev))
1790 		return -EBUSY;
1791 
1792 	if (!h->ae_algo->ops->set_mtu)
1793 		return -EOPNOTSUPP;
1794 
1795 	netif_dbg(h, drv, netdev,
1796 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1797 
1798 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1799 	if (ret)
1800 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1801 			   ret);
1802 	else
1803 		netdev->mtu = new_mtu;
1804 
1805 	return ret;
1806 }
1807 
1808 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1809 {
1810 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1811 	struct hnae3_handle *h = hns3_get_handle(ndev);
1812 	struct hns3_enet_ring *tx_ring;
1813 	struct napi_struct *napi;
1814 	int timeout_queue = 0;
1815 	int hw_head, hw_tail;
1816 	int fbd_num, fbd_oft;
1817 	int ebd_num, ebd_oft;
1818 	int bd_num, bd_err;
1819 	int ring_en, tc;
1820 	int i;
1821 
1822 	/* Find the stopped queue the same way the stack does */
1823 	for (i = 0; i < ndev->num_tx_queues; i++) {
1824 		struct netdev_queue *q;
1825 		unsigned long trans_start;
1826 
1827 		q = netdev_get_tx_queue(ndev, i);
1828 		trans_start = q->trans_start;
1829 		if (netif_xmit_stopped(q) &&
1830 		    time_after(jiffies,
1831 			       (trans_start + ndev->watchdog_timeo))) {
1832 			timeout_queue = i;
1833 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
1834 				    q->state,
1835 				    jiffies_to_msecs(jiffies - trans_start));
1836 			break;
1837 		}
1838 	}
1839 
1840 	if (i == ndev->num_tx_queues) {
1841 		netdev_info(ndev,
1842 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1843 			    priv->tx_timeout_count);
1844 		return false;
1845 	}
1846 
1847 	priv->tx_timeout_count++;
1848 
1849 	tx_ring = &priv->ring[timeout_queue];
1850 	napi = &tx_ring->tqp_vector->napi;
1851 
1852 	netdev_info(ndev,
1853 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1854 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1855 		    tx_ring->next_to_clean, napi->state);
1856 
1857 	netdev_info(ndev,
1858 		    "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
1859 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1860 		    tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);
1861 
1862 	netdev_info(ndev,
1863 		    "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
1864 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
1865 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1866 
1867 	/* When mac received many pause frames continuous, it's unable to send
1868 	 * packets, which may cause tx timeout
1869 	 */
1870 	if (h->ae_algo->ops->get_mac_stats) {
1871 		struct hns3_mac_stats mac_stats;
1872 
1873 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
1874 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1875 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
1876 	}
1877 
1878 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1879 				HNS3_RING_TX_RING_HEAD_REG);
1880 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1881 				HNS3_RING_TX_RING_TAIL_REG);
1882 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1883 				HNS3_RING_TX_RING_FBDNUM_REG);
1884 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1885 				HNS3_RING_TX_RING_OFFSET_REG);
1886 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1887 				HNS3_RING_TX_RING_EBDNUM_REG);
1888 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
1889 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
1890 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
1891 			       HNS3_RING_TX_RING_BD_NUM_REG);
1892 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
1893 			       HNS3_RING_TX_RING_BD_ERR_REG);
1894 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
1895 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
1896 
1897 	netdev_info(ndev,
1898 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
1899 		    bd_num, hw_head, hw_tail, bd_err,
1900 		    readl(tx_ring->tqp_vector->mask_addr));
1901 	netdev_info(ndev,
1902 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
1903 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1904 
1905 	return true;
1906 }
1907 
1908 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1909 {
1910 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1911 	struct hnae3_handle *h = priv->ae_handle;
1912 
1913 	if (!hns3_get_tx_timeo_queue_info(ndev))
1914 		return;
1915 
1916 	/* request the reset, and let the hclge to determine
1917 	 * which reset level should be done
1918 	 */
1919 	if (h->ae_algo->ops->reset_event)
1920 		h->ae_algo->ops->reset_event(h->pdev, h);
1921 }
1922 
1923 #ifdef CONFIG_RFS_ACCEL
1924 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
1925 			      u16 rxq_index, u32 flow_id)
1926 {
1927 	struct hnae3_handle *h = hns3_get_handle(dev);
1928 	struct flow_keys fkeys;
1929 
1930 	if (!h->ae_algo->ops->add_arfs_entry)
1931 		return -EOPNOTSUPP;
1932 
1933 	if (skb->encapsulation)
1934 		return -EPROTONOSUPPORT;
1935 
1936 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
1937 		return -EPROTONOSUPPORT;
1938 
1939 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
1940 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
1941 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
1942 	     fkeys.basic.ip_proto != IPPROTO_UDP))
1943 		return -EPROTONOSUPPORT;
1944 
1945 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
1946 }
1947 #endif
1948 
1949 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
1950 				  struct ifla_vf_info *ivf)
1951 {
1952 	struct hnae3_handle *h = hns3_get_handle(ndev);
1953 
1954 	if (!h->ae_algo->ops->get_vf_config)
1955 		return -EOPNOTSUPP;
1956 
1957 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
1958 }
1959 
1960 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
1961 				      int link_state)
1962 {
1963 	struct hnae3_handle *h = hns3_get_handle(ndev);
1964 
1965 	if (!h->ae_algo->ops->set_vf_link_state)
1966 		return -EOPNOTSUPP;
1967 
1968 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
1969 }
1970 
1971 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
1972 				int min_tx_rate, int max_tx_rate)
1973 {
1974 	struct hnae3_handle *h = hns3_get_handle(ndev);
1975 
1976 	if (!h->ae_algo->ops->set_vf_rate)
1977 		return -EOPNOTSUPP;
1978 
1979 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
1980 					    false);
1981 }
1982 
1983 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
1984 {
1985 	struct hnae3_handle *h = hns3_get_handle(netdev);
1986 
1987 	if (!h->ae_algo->ops->set_vf_mac)
1988 		return -EOPNOTSUPP;
1989 
1990 	if (is_multicast_ether_addr(mac)) {
1991 		netdev_err(netdev,
1992 			   "Invalid MAC:%pM specified. Could not set MAC\n",
1993 			   mac);
1994 		return -EINVAL;
1995 	}
1996 
1997 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
1998 }
1999 
2000 static const struct net_device_ops hns3_nic_netdev_ops = {
2001 	.ndo_open		= hns3_nic_net_open,
2002 	.ndo_stop		= hns3_nic_net_stop,
2003 	.ndo_start_xmit		= hns3_nic_net_xmit,
2004 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2005 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2006 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
2007 	.ndo_change_mtu		= hns3_nic_change_mtu,
2008 	.ndo_set_features	= hns3_nic_set_features,
2009 	.ndo_features_check	= hns3_features_check,
2010 	.ndo_get_stats64	= hns3_nic_get_stats64,
2011 	.ndo_setup_tc		= hns3_nic_setup_tc,
2012 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2013 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2014 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2015 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2016 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2017 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2018 #ifdef CONFIG_RFS_ACCEL
2019 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2020 #endif
2021 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2022 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2023 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2024 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2025 };
2026 
2027 bool hns3_is_phys_func(struct pci_dev *pdev)
2028 {
2029 	u32 dev_id = pdev->device;
2030 
2031 	switch (dev_id) {
2032 	case HNAE3_DEV_ID_GE:
2033 	case HNAE3_DEV_ID_25GE:
2034 	case HNAE3_DEV_ID_25GE_RDMA:
2035 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2036 	case HNAE3_DEV_ID_50GE_RDMA:
2037 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2038 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2039 		return true;
2040 	case HNAE3_DEV_ID_100G_VF:
2041 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
2042 		return false;
2043 	default:
2044 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2045 			 dev_id);
2046 	}
2047 
2048 	return false;
2049 }
2050 
2051 static void hns3_disable_sriov(struct pci_dev *pdev)
2052 {
2053 	/* If our VFs are assigned we cannot shut down SR-IOV
2054 	 * without causing issues, so just leave the hardware
2055 	 * available but disabled
2056 	 */
2057 	if (pci_vfs_assigned(pdev)) {
2058 		dev_warn(&pdev->dev,
2059 			 "disabling driver while VFs are assigned\n");
2060 		return;
2061 	}
2062 
2063 	pci_disable_sriov(pdev);
2064 }
2065 
2066 static void hns3_get_dev_capability(struct pci_dev *pdev,
2067 				    struct hnae3_ae_dev *ae_dev)
2068 {
2069 	if (pdev->revision >= 0x21) {
2070 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
2071 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
2072 	}
2073 }
2074 
2075 /* hns3_probe - Device initialization routine
2076  * @pdev: PCI device information struct
2077  * @ent: entry in hns3_pci_tbl
2078  *
2079  * hns3_probe initializes a PF identified by a pci_dev structure.
2080  * The OS initialization, configuring of the PF private structure,
2081  * and a hardware reset occur.
2082  *
2083  * Returns 0 on success, negative on failure
2084  */
2085 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2086 {
2087 	struct hnae3_ae_dev *ae_dev;
2088 	int ret;
2089 
2090 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2091 	if (!ae_dev)
2092 		return -ENOMEM;
2093 
2094 	ae_dev->pdev = pdev;
2095 	ae_dev->flag = ent->driver_data;
2096 	hns3_get_dev_capability(pdev, ae_dev);
2097 	pci_set_drvdata(pdev, ae_dev);
2098 
2099 	ret = hnae3_register_ae_dev(ae_dev);
2100 	if (ret)
2101 		pci_set_drvdata(pdev, NULL);
2102 
2103 	return ret;
2104 }
2105 
2106 /* hns3_remove - Device removal routine
2107  * @pdev: PCI device information struct
2108  */
2109 static void hns3_remove(struct pci_dev *pdev)
2110 {
2111 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2112 
2113 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2114 		hns3_disable_sriov(pdev);
2115 
2116 	hnae3_unregister_ae_dev(ae_dev);
2117 	pci_set_drvdata(pdev, NULL);
2118 }
2119 
2120 /**
2121  * hns3_pci_sriov_configure
2122  * @pdev: pointer to a pci_dev structure
2123  * @num_vfs: number of VFs to allocate
2124  *
2125  * Enable or change the number of VFs. Called when the user updates the number
2126  * of VFs in sysfs.
2127  **/
2128 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2129 {
2130 	int ret;
2131 
2132 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2133 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2134 		return -EINVAL;
2135 	}
2136 
2137 	if (num_vfs) {
2138 		ret = pci_enable_sriov(pdev, num_vfs);
2139 		if (ret)
2140 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2141 		else
2142 			return num_vfs;
2143 	} else if (!pci_vfs_assigned(pdev)) {
2144 		pci_disable_sriov(pdev);
2145 	} else {
2146 		dev_warn(&pdev->dev,
2147 			 "Unable to free VFs because some are assigned to VMs.\n");
2148 	}
2149 
2150 	return 0;
2151 }
2152 
2153 static void hns3_shutdown(struct pci_dev *pdev)
2154 {
2155 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2156 
2157 	hnae3_unregister_ae_dev(ae_dev);
2158 	pci_set_drvdata(pdev, NULL);
2159 
2160 	if (system_state == SYSTEM_POWER_OFF)
2161 		pci_set_power_state(pdev, PCI_D3hot);
2162 }
2163 
2164 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2165 					    pci_channel_state_t state)
2166 {
2167 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2168 	pci_ers_result_t ret;
2169 
2170 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
2171 
2172 	if (state == pci_channel_io_perm_failure)
2173 		return PCI_ERS_RESULT_DISCONNECT;
2174 
2175 	if (!ae_dev || !ae_dev->ops) {
2176 		dev_err(&pdev->dev,
2177 			"Can't recover - error happened before device initialized\n");
2178 		return PCI_ERS_RESULT_NONE;
2179 	}
2180 
2181 	if (ae_dev->ops->handle_hw_ras_error)
2182 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2183 	else
2184 		return PCI_ERS_RESULT_NONE;
2185 
2186 	return ret;
2187 }
2188 
2189 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2190 {
2191 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2192 	const struct hnae3_ae_ops *ops;
2193 	enum hnae3_reset_type reset_type;
2194 	struct device *dev = &pdev->dev;
2195 
2196 	if (!ae_dev || !ae_dev->ops)
2197 		return PCI_ERS_RESULT_NONE;
2198 
2199 	ops = ae_dev->ops;
2200 	/* request the reset */
2201 	if (ops->reset_event && ops->get_reset_level &&
2202 	    ops->set_default_reset_request) {
2203 		if (ae_dev->hw_err_reset_req) {
2204 			reset_type = ops->get_reset_level(ae_dev,
2205 						&ae_dev->hw_err_reset_req);
2206 			ops->set_default_reset_request(ae_dev, reset_type);
2207 			dev_info(dev, "requesting reset due to PCI error\n");
2208 			ops->reset_event(pdev, NULL);
2209 		}
2210 
2211 		return PCI_ERS_RESULT_RECOVERED;
2212 	}
2213 
2214 	return PCI_ERS_RESULT_DISCONNECT;
2215 }
2216 
2217 static void hns3_reset_prepare(struct pci_dev *pdev)
2218 {
2219 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2220 
2221 	dev_info(&pdev->dev, "FLR prepare\n");
2222 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2223 		ae_dev->ops->flr_prepare(ae_dev);
2224 }
2225 
2226 static void hns3_reset_done(struct pci_dev *pdev)
2227 {
2228 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2229 
2230 	dev_info(&pdev->dev, "FLR done\n");
2231 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2232 		ae_dev->ops->flr_done(ae_dev);
2233 }
2234 
2235 static const struct pci_error_handlers hns3_err_handler = {
2236 	.error_detected = hns3_error_detected,
2237 	.slot_reset     = hns3_slot_reset,
2238 	.reset_prepare	= hns3_reset_prepare,
2239 	.reset_done	= hns3_reset_done,
2240 };
2241 
2242 static struct pci_driver hns3_driver = {
2243 	.name     = hns3_driver_name,
2244 	.id_table = hns3_pci_tbl,
2245 	.probe    = hns3_probe,
2246 	.remove   = hns3_remove,
2247 	.shutdown = hns3_shutdown,
2248 	.sriov_configure = hns3_pci_sriov_configure,
2249 	.err_handler    = &hns3_err_handler,
2250 };
2251 
2252 /* set default feature to hns3 */
2253 static void hns3_set_default_feature(struct net_device *netdev)
2254 {
2255 	struct hnae3_handle *h = hns3_get_handle(netdev);
2256 	struct pci_dev *pdev = h->pdev;
2257 
2258 	netdev->priv_flags |= IFF_UNICAST_FLT;
2259 
2260 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2261 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2262 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2263 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2264 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2265 		NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2266 
2267 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2268 
2269 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2270 		NETIF_F_HW_VLAN_CTAG_FILTER |
2271 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2272 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2273 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2274 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2275 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2276 		NETIF_F_FRAGLIST;
2277 
2278 	netdev->vlan_features |=
2279 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
2280 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2281 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2282 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2283 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2284 		NETIF_F_FRAGLIST;
2285 
2286 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2287 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2288 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2289 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2290 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2291 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC |
2292 		NETIF_F_FRAGLIST;
2293 
2294 	if (pdev->revision >= 0x21) {
2295 		netdev->hw_features |= NETIF_F_GRO_HW;
2296 		netdev->features |= NETIF_F_GRO_HW;
2297 
2298 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2299 			netdev->hw_features |= NETIF_F_NTUPLE;
2300 			netdev->features |= NETIF_F_NTUPLE;
2301 		}
2302 	}
2303 }
2304 
2305 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2306 			     struct hns3_desc_cb *cb)
2307 {
2308 	unsigned int order = hns3_page_order(ring);
2309 	struct page *p;
2310 
2311 	p = dev_alloc_pages(order);
2312 	if (!p)
2313 		return -ENOMEM;
2314 
2315 	cb->priv = p;
2316 	cb->page_offset = 0;
2317 	cb->reuse_flag = 0;
2318 	cb->buf  = page_address(p);
2319 	cb->length = hns3_page_size(ring);
2320 	cb->type = DESC_TYPE_PAGE;
2321 
2322 	return 0;
2323 }
2324 
2325 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2326 			     struct hns3_desc_cb *cb)
2327 {
2328 	if (cb->type == DESC_TYPE_SKB)
2329 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
2330 	else if (!HNAE3_IS_TX_RING(ring))
2331 		put_page((struct page *)cb->priv);
2332 	memset(cb, 0, sizeof(*cb));
2333 }
2334 
2335 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2336 {
2337 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2338 			       cb->length, ring_to_dma_dir(ring));
2339 
2340 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2341 		return -EIO;
2342 
2343 	return 0;
2344 }
2345 
2346 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2347 			      struct hns3_desc_cb *cb)
2348 {
2349 	if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2350 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2351 				 ring_to_dma_dir(ring));
2352 	else if (cb->length)
2353 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2354 			       ring_to_dma_dir(ring));
2355 }
2356 
2357 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2358 {
2359 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2360 	ring->desc[i].addr = 0;
2361 }
2362 
2363 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2364 {
2365 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2366 
2367 	if (!ring->desc_cb[i].dma)
2368 		return;
2369 
2370 	hns3_buffer_detach(ring, i);
2371 	hns3_free_buffer(ring, cb);
2372 }
2373 
2374 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2375 {
2376 	int i;
2377 
2378 	for (i = 0; i < ring->desc_num; i++)
2379 		hns3_free_buffer_detach(ring, i);
2380 }
2381 
2382 /* free desc along with its attached buffer */
2383 static void hns3_free_desc(struct hns3_enet_ring *ring)
2384 {
2385 	int size = ring->desc_num * sizeof(ring->desc[0]);
2386 
2387 	hns3_free_buffers(ring);
2388 
2389 	if (ring->desc) {
2390 		dma_free_coherent(ring_to_dev(ring), size,
2391 				  ring->desc, ring->desc_dma_addr);
2392 		ring->desc = NULL;
2393 	}
2394 }
2395 
2396 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2397 {
2398 	int size = ring->desc_num * sizeof(ring->desc[0]);
2399 
2400 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2401 					&ring->desc_dma_addr, GFP_KERNEL);
2402 	if (!ring->desc)
2403 		return -ENOMEM;
2404 
2405 	return 0;
2406 }
2407 
2408 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2409 				   struct hns3_desc_cb *cb)
2410 {
2411 	int ret;
2412 
2413 	ret = hns3_alloc_buffer(ring, cb);
2414 	if (ret)
2415 		goto out;
2416 
2417 	ret = hns3_map_buffer(ring, cb);
2418 	if (ret)
2419 		goto out_with_buf;
2420 
2421 	return 0;
2422 
2423 out_with_buf:
2424 	hns3_free_buffer(ring, cb);
2425 out:
2426 	return ret;
2427 }
2428 
2429 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2430 {
2431 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2432 
2433 	if (ret)
2434 		return ret;
2435 
2436 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2437 
2438 	return 0;
2439 }
2440 
2441 /* Allocate memory for raw pkg, and map with dma */
2442 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2443 {
2444 	int i, j, ret;
2445 
2446 	for (i = 0; i < ring->desc_num; i++) {
2447 		ret = hns3_alloc_and_attach_buffer(ring, i);
2448 		if (ret)
2449 			goto out_buffer_fail;
2450 	}
2451 
2452 	return 0;
2453 
2454 out_buffer_fail:
2455 	for (j = i - 1; j >= 0; j--)
2456 		hns3_free_buffer_detach(ring, j);
2457 	return ret;
2458 }
2459 
2460 /* detach a in-used buffer and replace with a reserved one */
2461 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2462 				struct hns3_desc_cb *res_cb)
2463 {
2464 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2465 	ring->desc_cb[i] = *res_cb;
2466 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2467 	ring->desc[i].rx.bd_base_info = 0;
2468 }
2469 
2470 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2471 {
2472 	ring->desc_cb[i].reuse_flag = 0;
2473 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2474 					 ring->desc_cb[i].page_offset);
2475 	ring->desc[i].rx.bd_base_info = 0;
2476 
2477 	dma_sync_single_for_device(ring_to_dev(ring),
2478 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
2479 			hns3_buf_size(ring),
2480 			DMA_FROM_DEVICE);
2481 }
2482 
2483 static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
2484 				  int *bytes, int *pkts)
2485 {
2486 	int ntc = ring->next_to_clean;
2487 	struct hns3_desc_cb *desc_cb;
2488 
2489 	while (head != ntc) {
2490 		desc_cb = &ring->desc_cb[ntc];
2491 		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2492 		(*bytes) += desc_cb->length;
2493 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2494 		hns3_free_buffer_detach(ring, ntc);
2495 
2496 		if (++ntc == ring->desc_num)
2497 			ntc = 0;
2498 
2499 		/* Issue prefetch for next Tx descriptor */
2500 		prefetch(&ring->desc_cb[ntc]);
2501 	}
2502 
2503 	/* This smp_store_release() pairs with smp_load_acquire() in
2504 	 * ring_space called by hns3_nic_net_xmit.
2505 	 */
2506 	smp_store_release(&ring->next_to_clean, ntc);
2507 }
2508 
2509 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2510 {
2511 	int u = ring->next_to_use;
2512 	int c = ring->next_to_clean;
2513 
2514 	if (unlikely(h > ring->desc_num))
2515 		return 0;
2516 
2517 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2518 }
2519 
2520 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2521 {
2522 	struct net_device *netdev = ring_to_netdev(ring);
2523 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2524 	struct netdev_queue *dev_queue;
2525 	int bytes, pkts;
2526 	int head;
2527 
2528 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2529 
2530 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2531 		return; /* no data to poll */
2532 
2533 	rmb(); /* Make sure head is ready before touch any data */
2534 
2535 	if (unlikely(!is_valid_clean_head(ring, head))) {
2536 		hns3_rl_err(netdev, "wrong head (%d, %d-%d)\n", head,
2537 			    ring->next_to_use, ring->next_to_clean);
2538 
2539 		u64_stats_update_begin(&ring->syncp);
2540 		ring->stats.io_err_cnt++;
2541 		u64_stats_update_end(&ring->syncp);
2542 		return;
2543 	}
2544 
2545 	bytes = 0;
2546 	pkts = 0;
2547 	hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2548 
2549 	ring->tqp_vector->tx_group.total_bytes += bytes;
2550 	ring->tqp_vector->tx_group.total_packets += pkts;
2551 
2552 	u64_stats_update_begin(&ring->syncp);
2553 	ring->stats.tx_bytes += bytes;
2554 	ring->stats.tx_pkts += pkts;
2555 	u64_stats_update_end(&ring->syncp);
2556 
2557 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2558 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2559 
2560 	if (unlikely(netif_carrier_ok(netdev) &&
2561 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2562 		/* Make sure that anybody stopping the queue after this
2563 		 * sees the new next_to_clean.
2564 		 */
2565 		smp_mb();
2566 		if (netif_tx_queue_stopped(dev_queue) &&
2567 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2568 			netif_tx_wake_queue(dev_queue);
2569 			ring->stats.restart_queue++;
2570 		}
2571 	}
2572 }
2573 
2574 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2575 {
2576 	int ntc = ring->next_to_clean;
2577 	int ntu = ring->next_to_use;
2578 
2579 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2580 }
2581 
2582 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2583 				      int cleand_count)
2584 {
2585 	struct hns3_desc_cb *desc_cb;
2586 	struct hns3_desc_cb res_cbs;
2587 	int i, ret;
2588 
2589 	for (i = 0; i < cleand_count; i++) {
2590 		desc_cb = &ring->desc_cb[ring->next_to_use];
2591 		if (desc_cb->reuse_flag) {
2592 			u64_stats_update_begin(&ring->syncp);
2593 			ring->stats.reuse_pg_cnt++;
2594 			u64_stats_update_end(&ring->syncp);
2595 
2596 			hns3_reuse_buffer(ring, ring->next_to_use);
2597 		} else {
2598 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2599 			if (ret) {
2600 				u64_stats_update_begin(&ring->syncp);
2601 				ring->stats.sw_err_cnt++;
2602 				u64_stats_update_end(&ring->syncp);
2603 
2604 				hns3_rl_err(ring_to_netdev(ring),
2605 					    "alloc rx buffer failed: %d\n",
2606 					    ret);
2607 				break;
2608 			}
2609 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2610 
2611 			u64_stats_update_begin(&ring->syncp);
2612 			ring->stats.non_reuse_pg++;
2613 			u64_stats_update_end(&ring->syncp);
2614 		}
2615 
2616 		ring_ptr_move_fw(ring, next_to_use);
2617 	}
2618 
2619 	wmb(); /* Make all data has been write before submit */
2620 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2621 }
2622 
2623 static bool hns3_page_is_reusable(struct page *page)
2624 {
2625 	return page_to_nid(page) == numa_mem_id() &&
2626 		!page_is_pfmemalloc(page);
2627 }
2628 
2629 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2630 				struct hns3_enet_ring *ring, int pull_len,
2631 				struct hns3_desc_cb *desc_cb)
2632 {
2633 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2634 	int size = le16_to_cpu(desc->rx.size);
2635 	u32 truesize = hns3_buf_size(ring);
2636 
2637 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2638 			size - pull_len, truesize);
2639 
2640 	/* Avoid re-using remote pages, or the stack is still using the page
2641 	 * when page_offset rollback to zero, flag default unreuse
2642 	 */
2643 	if (unlikely(!hns3_page_is_reusable(desc_cb->priv)) ||
2644 	    (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2645 		return;
2646 
2647 	/* Move offset up to the next cache line */
2648 	desc_cb->page_offset += truesize;
2649 
2650 	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2651 		desc_cb->reuse_flag = 1;
2652 		/* Bump ref count on page before it is given */
2653 		get_page(desc_cb->priv);
2654 	} else if (page_count(desc_cb->priv) == 1) {
2655 		desc_cb->reuse_flag = 1;
2656 		desc_cb->page_offset = 0;
2657 		get_page(desc_cb->priv);
2658 	}
2659 }
2660 
2661 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2662 {
2663 	__be16 type = skb->protocol;
2664 	struct tcphdr *th;
2665 	int depth = 0;
2666 
2667 	while (eth_type_vlan(type)) {
2668 		struct vlan_hdr *vh;
2669 
2670 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2671 			return -EFAULT;
2672 
2673 		vh = (struct vlan_hdr *)(skb->data + depth);
2674 		type = vh->h_vlan_encapsulated_proto;
2675 		depth += VLAN_HLEN;
2676 	}
2677 
2678 	skb_set_network_header(skb, depth);
2679 
2680 	if (type == htons(ETH_P_IP)) {
2681 		const struct iphdr *iph = ip_hdr(skb);
2682 
2683 		depth += sizeof(struct iphdr);
2684 		skb_set_transport_header(skb, depth);
2685 		th = tcp_hdr(skb);
2686 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2687 					  iph->daddr, 0);
2688 	} else if (type == htons(ETH_P_IPV6)) {
2689 		const struct ipv6hdr *iph = ipv6_hdr(skb);
2690 
2691 		depth += sizeof(struct ipv6hdr);
2692 		skb_set_transport_header(skb, depth);
2693 		th = tcp_hdr(skb);
2694 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2695 					  &iph->daddr, 0);
2696 	} else {
2697 		hns3_rl_err(skb->dev,
2698 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2699 			    be16_to_cpu(type), depth);
2700 		return -EFAULT;
2701 	}
2702 
2703 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2704 	if (th->cwr)
2705 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2706 
2707 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2708 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2709 
2710 	skb->csum_start = (unsigned char *)th - skb->head;
2711 	skb->csum_offset = offsetof(struct tcphdr, check);
2712 	skb->ip_summed = CHECKSUM_PARTIAL;
2713 
2714 	trace_hns3_gro(skb);
2715 
2716 	return 0;
2717 }
2718 
2719 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2720 			     u32 l234info, u32 bd_base_info, u32 ol_info)
2721 {
2722 	struct net_device *netdev = ring_to_netdev(ring);
2723 	int l3_type, l4_type;
2724 	int ol4_type;
2725 
2726 	skb->ip_summed = CHECKSUM_NONE;
2727 
2728 	skb_checksum_none_assert(skb);
2729 
2730 	if (!(netdev->features & NETIF_F_RXCSUM))
2731 		return;
2732 
2733 	/* check if hardware has done checksum */
2734 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2735 		return;
2736 
2737 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2738 				 BIT(HNS3_RXD_OL3E_B) |
2739 				 BIT(HNS3_RXD_OL4E_B)))) {
2740 		u64_stats_update_begin(&ring->syncp);
2741 		ring->stats.l3l4_csum_err++;
2742 		u64_stats_update_end(&ring->syncp);
2743 
2744 		return;
2745 	}
2746 
2747 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2748 				   HNS3_RXD_OL4ID_S);
2749 	switch (ol4_type) {
2750 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2751 	case HNS3_OL4_TYPE_NVGRE:
2752 		skb->csum_level = 1;
2753 		/* fall through */
2754 	case HNS3_OL4_TYPE_NO_TUN:
2755 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2756 					  HNS3_RXD_L3ID_S);
2757 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2758 					  HNS3_RXD_L4ID_S);
2759 
2760 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2761 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2762 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2763 		    (l4_type == HNS3_L4_TYPE_UDP ||
2764 		     l4_type == HNS3_L4_TYPE_TCP ||
2765 		     l4_type == HNS3_L4_TYPE_SCTP))
2766 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2767 		break;
2768 	default:
2769 		break;
2770 	}
2771 }
2772 
2773 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2774 {
2775 	if (skb_has_frag_list(skb))
2776 		napi_gro_flush(&ring->tqp_vector->napi, false);
2777 
2778 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2779 }
2780 
2781 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2782 				struct hns3_desc *desc, u32 l234info,
2783 				u16 *vlan_tag)
2784 {
2785 	struct hnae3_handle *handle = ring->tqp->handle;
2786 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2787 
2788 	if (pdev->revision == 0x20) {
2789 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2790 		if (!(*vlan_tag & VLAN_VID_MASK))
2791 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2792 
2793 		return (*vlan_tag != 0);
2794 	}
2795 
2796 #define HNS3_STRP_OUTER_VLAN	0x1
2797 #define HNS3_STRP_INNER_VLAN	0x2
2798 #define HNS3_STRP_BOTH		0x3
2799 
2800 	/* Hardware always insert VLAN tag into RX descriptor when
2801 	 * remove the tag from packet, driver needs to determine
2802 	 * reporting which tag to stack.
2803 	 */
2804 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2805 				HNS3_RXD_STRP_TAGP_S)) {
2806 	case HNS3_STRP_OUTER_VLAN:
2807 		if (handle->port_base_vlan_state !=
2808 				HNAE3_PORT_BASE_VLAN_DISABLE)
2809 			return false;
2810 
2811 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2812 		return true;
2813 	case HNS3_STRP_INNER_VLAN:
2814 		if (handle->port_base_vlan_state !=
2815 				HNAE3_PORT_BASE_VLAN_DISABLE)
2816 			return false;
2817 
2818 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2819 		return true;
2820 	case HNS3_STRP_BOTH:
2821 		if (handle->port_base_vlan_state ==
2822 				HNAE3_PORT_BASE_VLAN_DISABLE)
2823 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2824 		else
2825 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2826 
2827 		return true;
2828 	default:
2829 		return false;
2830 	}
2831 }
2832 
2833 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
2834 			  unsigned char *va)
2835 {
2836 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2837 	struct net_device *netdev = ring_to_netdev(ring);
2838 	struct sk_buff *skb;
2839 
2840 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2841 	skb = ring->skb;
2842 	if (unlikely(!skb)) {
2843 		hns3_rl_err(netdev, "alloc rx skb fail\n");
2844 
2845 		u64_stats_update_begin(&ring->syncp);
2846 		ring->stats.sw_err_cnt++;
2847 		u64_stats_update_end(&ring->syncp);
2848 
2849 		return -ENOMEM;
2850 	}
2851 
2852 	trace_hns3_rx_desc(ring);
2853 	prefetchw(skb->data);
2854 
2855 	ring->pending_buf = 1;
2856 	ring->frag_num = 0;
2857 	ring->tail_skb = NULL;
2858 	if (length <= HNS3_RX_HEAD_SIZE) {
2859 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2860 
2861 		/* We can reuse buffer as-is, just make sure it is local */
2862 		if (likely(hns3_page_is_reusable(desc_cb->priv)))
2863 			desc_cb->reuse_flag = 1;
2864 		else /* This page cannot be reused so discard it */
2865 			put_page(desc_cb->priv);
2866 
2867 		ring_ptr_move_fw(ring, next_to_clean);
2868 		return 0;
2869 	}
2870 	u64_stats_update_begin(&ring->syncp);
2871 	ring->stats.seg_pkt_cnt++;
2872 	u64_stats_update_end(&ring->syncp);
2873 
2874 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2875 	__skb_put(skb, ring->pull_len);
2876 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2877 			    desc_cb);
2878 	ring_ptr_move_fw(ring, next_to_clean);
2879 
2880 	return 0;
2881 }
2882 
2883 static int hns3_add_frag(struct hns3_enet_ring *ring)
2884 {
2885 	struct sk_buff *skb = ring->skb;
2886 	struct sk_buff *head_skb = skb;
2887 	struct sk_buff *new_skb;
2888 	struct hns3_desc_cb *desc_cb;
2889 	struct hns3_desc *desc;
2890 	u32 bd_base_info;
2891 
2892 	do {
2893 		desc = &ring->desc[ring->next_to_clean];
2894 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2895 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2896 		/* make sure HW write desc complete */
2897 		dma_rmb();
2898 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2899 			return -ENXIO;
2900 
2901 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2902 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
2903 			if (unlikely(!new_skb)) {
2904 				hns3_rl_err(ring_to_netdev(ring),
2905 					    "alloc rx fraglist skb fail\n");
2906 				return -ENXIO;
2907 			}
2908 			ring->frag_num = 0;
2909 
2910 			if (ring->tail_skb) {
2911 				ring->tail_skb->next = new_skb;
2912 				ring->tail_skb = new_skb;
2913 			} else {
2914 				skb_shinfo(skb)->frag_list = new_skb;
2915 				ring->tail_skb = new_skb;
2916 			}
2917 		}
2918 
2919 		if (ring->tail_skb) {
2920 			head_skb->truesize += hns3_buf_size(ring);
2921 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2922 			head_skb->len += le16_to_cpu(desc->rx.size);
2923 			skb = ring->tail_skb;
2924 		}
2925 
2926 		dma_sync_single_for_cpu(ring_to_dev(ring),
2927 				desc_cb->dma + desc_cb->page_offset,
2928 				hns3_buf_size(ring),
2929 				DMA_FROM_DEVICE);
2930 
2931 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2932 		trace_hns3_rx_desc(ring);
2933 		ring_ptr_move_fw(ring, next_to_clean);
2934 		ring->pending_buf++;
2935 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
2936 
2937 	return 0;
2938 }
2939 
2940 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
2941 				     struct sk_buff *skb, u32 l234info,
2942 				     u32 bd_base_info, u32 ol_info)
2943 {
2944 	u32 l3_type;
2945 
2946 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2947 						    HNS3_RXD_GRO_SIZE_M,
2948 						    HNS3_RXD_GRO_SIZE_S);
2949 	/* if there is no HW GRO, do not set gro params */
2950 	if (!skb_shinfo(skb)->gso_size) {
2951 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2952 		return 0;
2953 	}
2954 
2955 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
2956 						  HNS3_RXD_GRO_COUNT_M,
2957 						  HNS3_RXD_GRO_COUNT_S);
2958 
2959 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
2960 	if (l3_type == HNS3_L3_TYPE_IPV4)
2961 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2962 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2963 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2964 	else
2965 		return -EFAULT;
2966 
2967 	return  hns3_gro_complete(skb, l234info);
2968 }
2969 
2970 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2971 				     struct sk_buff *skb, u32 rss_hash)
2972 {
2973 	struct hnae3_handle *handle = ring->tqp->handle;
2974 	enum pkt_hash_types rss_type;
2975 
2976 	if (rss_hash)
2977 		rss_type = handle->kinfo.rss_type;
2978 	else
2979 		rss_type = PKT_HASH_TYPE_NONE;
2980 
2981 	skb_set_hash(skb, rss_hash, rss_type);
2982 }
2983 
2984 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2985 {
2986 	struct net_device *netdev = ring_to_netdev(ring);
2987 	enum hns3_pkt_l2t_type l2_frame_type;
2988 	u32 bd_base_info, l234info, ol_info;
2989 	struct hns3_desc *desc;
2990 	unsigned int len;
2991 	int pre_ntc, ret;
2992 
2993 	/* bdinfo handled below is only valid on the last BD of the
2994 	 * current packet, and ring->next_to_clean indicates the first
2995 	 * descriptor of next packet, so need - 1 below.
2996 	 */
2997 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
2998 					(ring->desc_num - 1);
2999 	desc = &ring->desc[pre_ntc];
3000 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3001 	l234info = le32_to_cpu(desc->rx.l234_info);
3002 	ol_info = le32_to_cpu(desc->rx.ol_info);
3003 
3004 	/* Based on hw strategy, the tag offloaded will be stored at
3005 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3006 	 * in one layer tag case.
3007 	 */
3008 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3009 		u16 vlan_tag;
3010 
3011 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3012 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3013 					       vlan_tag);
3014 	}
3015 
3016 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3017 				  BIT(HNS3_RXD_L2E_B))))) {
3018 		u64_stats_update_begin(&ring->syncp);
3019 		if (l234info & BIT(HNS3_RXD_L2E_B))
3020 			ring->stats.l2_err++;
3021 		else
3022 			ring->stats.err_pkt_len++;
3023 		u64_stats_update_end(&ring->syncp);
3024 
3025 		return -EFAULT;
3026 	}
3027 
3028 	len = skb->len;
3029 
3030 	/* Do update ip stack process */
3031 	skb->protocol = eth_type_trans(skb, netdev);
3032 
3033 	/* This is needed in order to enable forwarding support */
3034 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3035 					bd_base_info, ol_info);
3036 	if (unlikely(ret)) {
3037 		u64_stats_update_begin(&ring->syncp);
3038 		ring->stats.rx_err_cnt++;
3039 		u64_stats_update_end(&ring->syncp);
3040 		return ret;
3041 	}
3042 
3043 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3044 					HNS3_RXD_DMAC_S);
3045 
3046 	u64_stats_update_begin(&ring->syncp);
3047 	ring->stats.rx_pkts++;
3048 	ring->stats.rx_bytes += len;
3049 
3050 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3051 		ring->stats.rx_multicast++;
3052 
3053 	u64_stats_update_end(&ring->syncp);
3054 
3055 	ring->tqp_vector->rx_group.total_bytes += len;
3056 
3057 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3058 	return 0;
3059 }
3060 
3061 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3062 {
3063 	struct sk_buff *skb = ring->skb;
3064 	struct hns3_desc_cb *desc_cb;
3065 	struct hns3_desc *desc;
3066 	unsigned int length;
3067 	u32 bd_base_info;
3068 	int ret;
3069 
3070 	desc = &ring->desc[ring->next_to_clean];
3071 	desc_cb = &ring->desc_cb[ring->next_to_clean];
3072 
3073 	prefetch(desc);
3074 
3075 	length = le16_to_cpu(desc->rx.size);
3076 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3077 
3078 	/* Check valid BD */
3079 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3080 		return -ENXIO;
3081 
3082 	if (!skb) {
3083 		ring->va = desc_cb->buf + desc_cb->page_offset;
3084 
3085 		dma_sync_single_for_cpu(ring_to_dev(ring),
3086 				desc_cb->dma + desc_cb->page_offset,
3087 				hns3_buf_size(ring),
3088 				DMA_FROM_DEVICE);
3089 	}
3090 
3091 	/* Prefetch first cache line of first page
3092 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
3093 	 * line size is 64B so need to prefetch twice to make it 128B. But in
3094 	 * actual we can have greater size of caches with 128B Level 1 cache
3095 	 * lines. In such a case, single fetch would suffice to cache in the
3096 	 * relevant part of the header.
3097 	 */
3098 	prefetch(ring->va);
3099 #if L1_CACHE_BYTES < 128
3100 	prefetch(ring->va + L1_CACHE_BYTES);
3101 #endif
3102 
3103 	if (!skb) {
3104 		ret = hns3_alloc_skb(ring, length, ring->va);
3105 		skb = ring->skb;
3106 
3107 		if (ret < 0) /* alloc buffer fail */
3108 			return ret;
3109 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3110 			ret = hns3_add_frag(ring);
3111 			if (ret)
3112 				return ret;
3113 		}
3114 	} else {
3115 		ret = hns3_add_frag(ring);
3116 		if (ret)
3117 			return ret;
3118 	}
3119 
3120 	/* As the head data may be changed when GRO enable, copy
3121 	 * the head data in after other data rx completed
3122 	 */
3123 	if (skb->len > HNS3_RX_HEAD_SIZE)
3124 		memcpy(skb->data, ring->va,
3125 		       ALIGN(ring->pull_len, sizeof(long)));
3126 
3127 	ret = hns3_handle_bdinfo(ring, skb);
3128 	if (unlikely(ret)) {
3129 		dev_kfree_skb_any(skb);
3130 		return ret;
3131 	}
3132 
3133 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3134 	return 0;
3135 }
3136 
3137 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3138 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3139 {
3140 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3141 	int unused_count = hns3_desc_unused(ring);
3142 	int recv_pkts = 0;
3143 	int recv_bds = 0;
3144 	int err, num;
3145 
3146 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
3147 	num -= unused_count;
3148 	unused_count -= ring->pending_buf;
3149 
3150 	if (num <= 0)
3151 		goto out;
3152 
3153 	rmb(); /* Make sure num taken effect before the other data is touched */
3154 
3155 	while (recv_pkts < budget && recv_bds < num) {
3156 		/* Reuse or realloc buffers */
3157 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3158 			hns3_nic_alloc_rx_buffers(ring, unused_count);
3159 			unused_count = hns3_desc_unused(ring) -
3160 					ring->pending_buf;
3161 		}
3162 
3163 		/* Poll one pkt */
3164 		err = hns3_handle_rx_bd(ring);
3165 		/* Do not get FE for the packet or failed to alloc skb */
3166 		if (unlikely(!ring->skb || err == -ENXIO)) {
3167 			goto out;
3168 		} else if (likely(!err)) {
3169 			rx_fn(ring, ring->skb);
3170 			recv_pkts++;
3171 		}
3172 
3173 		recv_bds += ring->pending_buf;
3174 		unused_count += ring->pending_buf;
3175 		ring->skb = NULL;
3176 		ring->pending_buf = 0;
3177 	}
3178 
3179 out:
3180 	/* Make all data has been write before submit */
3181 	if (unused_count > 0)
3182 		hns3_nic_alloc_rx_buffers(ring, unused_count);
3183 
3184 	return recv_pkts;
3185 }
3186 
3187 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3188 {
3189 #define HNS3_RX_LOW_BYTE_RATE 10000
3190 #define HNS3_RX_MID_BYTE_RATE 20000
3191 #define HNS3_RX_ULTRA_PACKET_RATE 40
3192 
3193 	enum hns3_flow_level_range new_flow_level;
3194 	struct hns3_enet_tqp_vector *tqp_vector;
3195 	int packets_per_msecs, bytes_per_msecs;
3196 	u32 time_passed_ms;
3197 
3198 	tqp_vector = ring_group->ring->tqp_vector;
3199 	time_passed_ms =
3200 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3201 	if (!time_passed_ms)
3202 		return false;
3203 
3204 	do_div(ring_group->total_packets, time_passed_ms);
3205 	packets_per_msecs = ring_group->total_packets;
3206 
3207 	do_div(ring_group->total_bytes, time_passed_ms);
3208 	bytes_per_msecs = ring_group->total_bytes;
3209 
3210 	new_flow_level = ring_group->coal.flow_level;
3211 
3212 	/* Simple throttlerate management
3213 	 * 0-10MB/s   lower     (50000 ints/s)
3214 	 * 10-20MB/s   middle    (20000 ints/s)
3215 	 * 20-1249MB/s high      (18000 ints/s)
3216 	 * > 40000pps  ultra     (8000 ints/s)
3217 	 */
3218 	switch (new_flow_level) {
3219 	case HNS3_FLOW_LOW:
3220 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3221 			new_flow_level = HNS3_FLOW_MID;
3222 		break;
3223 	case HNS3_FLOW_MID:
3224 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3225 			new_flow_level = HNS3_FLOW_HIGH;
3226 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3227 			new_flow_level = HNS3_FLOW_LOW;
3228 		break;
3229 	case HNS3_FLOW_HIGH:
3230 	case HNS3_FLOW_ULTRA:
3231 	default:
3232 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3233 			new_flow_level = HNS3_FLOW_MID;
3234 		break;
3235 	}
3236 
3237 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3238 	    &tqp_vector->rx_group == ring_group)
3239 		new_flow_level = HNS3_FLOW_ULTRA;
3240 
3241 	ring_group->total_bytes = 0;
3242 	ring_group->total_packets = 0;
3243 	ring_group->coal.flow_level = new_flow_level;
3244 
3245 	return true;
3246 }
3247 
3248 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3249 {
3250 	struct hns3_enet_tqp_vector *tqp_vector;
3251 	u16 new_int_gl;
3252 
3253 	if (!ring_group->ring)
3254 		return false;
3255 
3256 	tqp_vector = ring_group->ring->tqp_vector;
3257 	if (!tqp_vector->last_jiffies)
3258 		return false;
3259 
3260 	if (ring_group->total_packets == 0) {
3261 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
3262 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
3263 		return true;
3264 	}
3265 
3266 	if (!hns3_get_new_flow_lvl(ring_group))
3267 		return false;
3268 
3269 	new_int_gl = ring_group->coal.int_gl;
3270 	switch (ring_group->coal.flow_level) {
3271 	case HNS3_FLOW_LOW:
3272 		new_int_gl = HNS3_INT_GL_50K;
3273 		break;
3274 	case HNS3_FLOW_MID:
3275 		new_int_gl = HNS3_INT_GL_20K;
3276 		break;
3277 	case HNS3_FLOW_HIGH:
3278 		new_int_gl = HNS3_INT_GL_18K;
3279 		break;
3280 	case HNS3_FLOW_ULTRA:
3281 		new_int_gl = HNS3_INT_GL_8K;
3282 		break;
3283 	default:
3284 		break;
3285 	}
3286 
3287 	if (new_int_gl != ring_group->coal.int_gl) {
3288 		ring_group->coal.int_gl = new_int_gl;
3289 		return true;
3290 	}
3291 	return false;
3292 }
3293 
3294 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3295 {
3296 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3297 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3298 	bool rx_update, tx_update;
3299 
3300 	/* update param every 1000ms */
3301 	if (time_before(jiffies,
3302 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3303 		return;
3304 
3305 	if (rx_group->coal.gl_adapt_enable) {
3306 		rx_update = hns3_get_new_int_gl(rx_group);
3307 		if (rx_update)
3308 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3309 						       rx_group->coal.int_gl);
3310 	}
3311 
3312 	if (tx_group->coal.gl_adapt_enable) {
3313 		tx_update = hns3_get_new_int_gl(tx_group);
3314 		if (tx_update)
3315 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3316 						       tx_group->coal.int_gl);
3317 	}
3318 
3319 	tqp_vector->last_jiffies = jiffies;
3320 }
3321 
3322 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3323 {
3324 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3325 	struct hns3_enet_ring *ring;
3326 	int rx_pkt_total = 0;
3327 
3328 	struct hns3_enet_tqp_vector *tqp_vector =
3329 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3330 	bool clean_complete = true;
3331 	int rx_budget = budget;
3332 
3333 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3334 		napi_complete(napi);
3335 		return 0;
3336 	}
3337 
3338 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3339 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3340 	 */
3341 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3342 		hns3_clean_tx_ring(ring);
3343 
3344 	/* make sure rx ring budget not smaller than 1 */
3345 	if (tqp_vector->num_tqps > 1)
3346 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3347 
3348 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3349 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3350 						    hns3_rx_skb);
3351 
3352 		if (rx_cleaned >= rx_budget)
3353 			clean_complete = false;
3354 
3355 		rx_pkt_total += rx_cleaned;
3356 	}
3357 
3358 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3359 
3360 	if (!clean_complete)
3361 		return budget;
3362 
3363 	if (napi_complete(napi) &&
3364 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3365 		hns3_update_new_int_gl(tqp_vector);
3366 		hns3_mask_vector_irq(tqp_vector, 1);
3367 	}
3368 
3369 	return rx_pkt_total;
3370 }
3371 
3372 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3373 				      struct hnae3_ring_chain_node *head)
3374 {
3375 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3376 	struct hnae3_ring_chain_node *cur_chain = head;
3377 	struct hnae3_ring_chain_node *chain;
3378 	struct hns3_enet_ring *tx_ring;
3379 	struct hns3_enet_ring *rx_ring;
3380 
3381 	tx_ring = tqp_vector->tx_group.ring;
3382 	if (tx_ring) {
3383 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3384 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3385 			      HNAE3_RING_TYPE_TX);
3386 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3387 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3388 
3389 		cur_chain->next = NULL;
3390 
3391 		while (tx_ring->next) {
3392 			tx_ring = tx_ring->next;
3393 
3394 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3395 					     GFP_KERNEL);
3396 			if (!chain)
3397 				goto err_free_chain;
3398 
3399 			cur_chain->next = chain;
3400 			chain->tqp_index = tx_ring->tqp->tqp_index;
3401 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3402 				      HNAE3_RING_TYPE_TX);
3403 			hnae3_set_field(chain->int_gl_idx,
3404 					HNAE3_RING_GL_IDX_M,
3405 					HNAE3_RING_GL_IDX_S,
3406 					HNAE3_RING_GL_TX);
3407 
3408 			cur_chain = chain;
3409 		}
3410 	}
3411 
3412 	rx_ring = tqp_vector->rx_group.ring;
3413 	if (!tx_ring && rx_ring) {
3414 		cur_chain->next = NULL;
3415 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3416 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3417 			      HNAE3_RING_TYPE_RX);
3418 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3419 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3420 
3421 		rx_ring = rx_ring->next;
3422 	}
3423 
3424 	while (rx_ring) {
3425 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3426 		if (!chain)
3427 			goto err_free_chain;
3428 
3429 		cur_chain->next = chain;
3430 		chain->tqp_index = rx_ring->tqp->tqp_index;
3431 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3432 			      HNAE3_RING_TYPE_RX);
3433 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3434 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3435 
3436 		cur_chain = chain;
3437 
3438 		rx_ring = rx_ring->next;
3439 	}
3440 
3441 	return 0;
3442 
3443 err_free_chain:
3444 	cur_chain = head->next;
3445 	while (cur_chain) {
3446 		chain = cur_chain->next;
3447 		devm_kfree(&pdev->dev, cur_chain);
3448 		cur_chain = chain;
3449 	}
3450 	head->next = NULL;
3451 
3452 	return -ENOMEM;
3453 }
3454 
3455 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3456 					struct hnae3_ring_chain_node *head)
3457 {
3458 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3459 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3460 
3461 	chain = head->next;
3462 
3463 	while (chain) {
3464 		chain_tmp = chain->next;
3465 		devm_kfree(&pdev->dev, chain);
3466 		chain = chain_tmp;
3467 	}
3468 }
3469 
3470 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3471 				   struct hns3_enet_ring *ring)
3472 {
3473 	ring->next = group->ring;
3474 	group->ring = ring;
3475 
3476 	group->count++;
3477 }
3478 
3479 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3480 {
3481 	struct pci_dev *pdev = priv->ae_handle->pdev;
3482 	struct hns3_enet_tqp_vector *tqp_vector;
3483 	int num_vectors = priv->vector_num;
3484 	int numa_node;
3485 	int vector_i;
3486 
3487 	numa_node = dev_to_node(&pdev->dev);
3488 
3489 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3490 		tqp_vector = &priv->tqp_vector[vector_i];
3491 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3492 				&tqp_vector->affinity_mask);
3493 	}
3494 }
3495 
3496 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3497 {
3498 	struct hnae3_ring_chain_node vector_ring_chain;
3499 	struct hnae3_handle *h = priv->ae_handle;
3500 	struct hns3_enet_tqp_vector *tqp_vector;
3501 	int ret = 0;
3502 	int i;
3503 
3504 	hns3_nic_set_cpumask(priv);
3505 
3506 	for (i = 0; i < priv->vector_num; i++) {
3507 		tqp_vector = &priv->tqp_vector[i];
3508 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3509 		tqp_vector->num_tqps = 0;
3510 	}
3511 
3512 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3513 		u16 vector_i = i % priv->vector_num;
3514 		u16 tqp_num = h->kinfo.num_tqps;
3515 
3516 		tqp_vector = &priv->tqp_vector[vector_i];
3517 
3518 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3519 				       &priv->ring[i]);
3520 
3521 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3522 				       &priv->ring[i + tqp_num]);
3523 
3524 		priv->ring[i].tqp_vector = tqp_vector;
3525 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3526 		tqp_vector->num_tqps++;
3527 	}
3528 
3529 	for (i = 0; i < priv->vector_num; i++) {
3530 		tqp_vector = &priv->tqp_vector[i];
3531 
3532 		tqp_vector->rx_group.total_bytes = 0;
3533 		tqp_vector->rx_group.total_packets = 0;
3534 		tqp_vector->tx_group.total_bytes = 0;
3535 		tqp_vector->tx_group.total_packets = 0;
3536 		tqp_vector->handle = h;
3537 
3538 		ret = hns3_get_vector_ring_chain(tqp_vector,
3539 						 &vector_ring_chain);
3540 		if (ret)
3541 			goto map_ring_fail;
3542 
3543 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3544 			tqp_vector->vector_irq, &vector_ring_chain);
3545 
3546 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3547 
3548 		if (ret)
3549 			goto map_ring_fail;
3550 
3551 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3552 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3553 	}
3554 
3555 	return 0;
3556 
3557 map_ring_fail:
3558 	while (i--)
3559 		netif_napi_del(&priv->tqp_vector[i].napi);
3560 
3561 	return ret;
3562 }
3563 
3564 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3565 {
3566 #define HNS3_VECTOR_PF_MAX_NUM		64
3567 
3568 	struct hnae3_handle *h = priv->ae_handle;
3569 	struct hns3_enet_tqp_vector *tqp_vector;
3570 	struct hnae3_vector_info *vector;
3571 	struct pci_dev *pdev = h->pdev;
3572 	u16 tqp_num = h->kinfo.num_tqps;
3573 	u16 vector_num;
3574 	int ret = 0;
3575 	u16 i;
3576 
3577 	/* RSS size, cpu online and vector_num should be the same */
3578 	/* Should consider 2p/4p later */
3579 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3580 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3581 
3582 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3583 			      GFP_KERNEL);
3584 	if (!vector)
3585 		return -ENOMEM;
3586 
3587 	/* save the actual available vector number */
3588 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3589 
3590 	priv->vector_num = vector_num;
3591 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3592 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3593 			     GFP_KERNEL);
3594 	if (!priv->tqp_vector) {
3595 		ret = -ENOMEM;
3596 		goto out;
3597 	}
3598 
3599 	for (i = 0; i < priv->vector_num; i++) {
3600 		tqp_vector = &priv->tqp_vector[i];
3601 		tqp_vector->idx = i;
3602 		tqp_vector->mask_addr = vector[i].io_addr;
3603 		tqp_vector->vector_irq = vector[i].vector;
3604 		hns3_vector_gl_rl_init(tqp_vector, priv);
3605 	}
3606 
3607 out:
3608 	devm_kfree(&pdev->dev, vector);
3609 	return ret;
3610 }
3611 
3612 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3613 {
3614 	group->ring = NULL;
3615 	group->count = 0;
3616 }
3617 
3618 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3619 {
3620 	struct hnae3_ring_chain_node vector_ring_chain;
3621 	struct hnae3_handle *h = priv->ae_handle;
3622 	struct hns3_enet_tqp_vector *tqp_vector;
3623 	int i;
3624 
3625 	for (i = 0; i < priv->vector_num; i++) {
3626 		tqp_vector = &priv->tqp_vector[i];
3627 
3628 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3629 			continue;
3630 
3631 		/* Since the mapping can be overwritten, when fail to get the
3632 		 * chain between vector and ring, we should go on to deal with
3633 		 * the remaining options.
3634 		 */
3635 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3636 			dev_warn(priv->dev, "failed to get ring chain\n");
3637 
3638 		h->ae_algo->ops->unmap_ring_from_vector(h,
3639 			tqp_vector->vector_irq, &vector_ring_chain);
3640 
3641 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3642 
3643 		hns3_clear_ring_group(&tqp_vector->rx_group);
3644 		hns3_clear_ring_group(&tqp_vector->tx_group);
3645 		netif_napi_del(&priv->tqp_vector[i].napi);
3646 	}
3647 }
3648 
3649 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3650 {
3651 	struct hnae3_handle *h = priv->ae_handle;
3652 	struct pci_dev *pdev = h->pdev;
3653 	int i, ret;
3654 
3655 	for (i = 0; i < priv->vector_num; i++) {
3656 		struct hns3_enet_tqp_vector *tqp_vector;
3657 
3658 		tqp_vector = &priv->tqp_vector[i];
3659 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3660 		if (ret)
3661 			return;
3662 	}
3663 
3664 	devm_kfree(&pdev->dev, priv->tqp_vector);
3665 }
3666 
3667 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3668 			      unsigned int ring_type)
3669 {
3670 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3671 	struct hns3_enet_ring *ring;
3672 	int desc_num;
3673 
3674 	if (ring_type == HNAE3_RING_TYPE_TX) {
3675 		ring = &priv->ring[q->tqp_index];
3676 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3677 		ring->queue_index = q->tqp_index;
3678 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3679 	} else {
3680 		ring = &priv->ring[q->tqp_index + queue_num];
3681 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3682 		ring->queue_index = q->tqp_index;
3683 		ring->io_base = q->io_base;
3684 	}
3685 
3686 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3687 
3688 	ring->tqp = q;
3689 	ring->desc = NULL;
3690 	ring->desc_cb = NULL;
3691 	ring->dev = priv->dev;
3692 	ring->desc_dma_addr = 0;
3693 	ring->buf_size = q->buf_size;
3694 	ring->desc_num = desc_num;
3695 	ring->next_to_use = 0;
3696 	ring->next_to_clean = 0;
3697 }
3698 
3699 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3700 			       struct hns3_nic_priv *priv)
3701 {
3702 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3703 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3704 }
3705 
3706 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3707 {
3708 	struct hnae3_handle *h = priv->ae_handle;
3709 	struct pci_dev *pdev = h->pdev;
3710 	int i;
3711 
3712 	priv->ring = devm_kzalloc(&pdev->dev,
3713 				  array3_size(h->kinfo.num_tqps,
3714 					      sizeof(*priv->ring), 2),
3715 				  GFP_KERNEL);
3716 	if (!priv->ring)
3717 		return -ENOMEM;
3718 
3719 	for (i = 0; i < h->kinfo.num_tqps; i++)
3720 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3721 
3722 	return 0;
3723 }
3724 
3725 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3726 {
3727 	if (!priv->ring)
3728 		return;
3729 
3730 	devm_kfree(priv->dev, priv->ring);
3731 	priv->ring = NULL;
3732 }
3733 
3734 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3735 {
3736 	int ret;
3737 
3738 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3739 		return -EINVAL;
3740 
3741 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3742 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3743 	if (!ring->desc_cb) {
3744 		ret = -ENOMEM;
3745 		goto out;
3746 	}
3747 
3748 	ret = hns3_alloc_desc(ring);
3749 	if (ret)
3750 		goto out_with_desc_cb;
3751 
3752 	if (!HNAE3_IS_TX_RING(ring)) {
3753 		ret = hns3_alloc_ring_buffers(ring);
3754 		if (ret)
3755 			goto out_with_desc;
3756 	}
3757 
3758 	return 0;
3759 
3760 out_with_desc:
3761 	hns3_free_desc(ring);
3762 out_with_desc_cb:
3763 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3764 	ring->desc_cb = NULL;
3765 out:
3766 	return ret;
3767 }
3768 
3769 void hns3_fini_ring(struct hns3_enet_ring *ring)
3770 {
3771 	hns3_free_desc(ring);
3772 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3773 	ring->desc_cb = NULL;
3774 	ring->next_to_clean = 0;
3775 	ring->next_to_use = 0;
3776 	ring->pending_buf = 0;
3777 	if (ring->skb) {
3778 		dev_kfree_skb_any(ring->skb);
3779 		ring->skb = NULL;
3780 	}
3781 }
3782 
3783 static int hns3_buf_size2type(u32 buf_size)
3784 {
3785 	int bd_size_type;
3786 
3787 	switch (buf_size) {
3788 	case 512:
3789 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3790 		break;
3791 	case 1024:
3792 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3793 		break;
3794 	case 2048:
3795 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3796 		break;
3797 	case 4096:
3798 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3799 		break;
3800 	default:
3801 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3802 	}
3803 
3804 	return bd_size_type;
3805 }
3806 
3807 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3808 {
3809 	dma_addr_t dma = ring->desc_dma_addr;
3810 	struct hnae3_queue *q = ring->tqp;
3811 
3812 	if (!HNAE3_IS_TX_RING(ring)) {
3813 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
3814 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3815 			       (u32)((dma >> 31) >> 1));
3816 
3817 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3818 			       hns3_buf_size2type(ring->buf_size));
3819 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3820 			       ring->desc_num / 8 - 1);
3821 
3822 	} else {
3823 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3824 			       (u32)dma);
3825 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3826 			       (u32)((dma >> 31) >> 1));
3827 
3828 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3829 			       ring->desc_num / 8 - 1);
3830 	}
3831 }
3832 
3833 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3834 {
3835 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3836 	int i;
3837 
3838 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3839 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3840 		int j;
3841 
3842 		if (!tc_info->enable)
3843 			continue;
3844 
3845 		for (j = 0; j < tc_info->tqp_count; j++) {
3846 			struct hnae3_queue *q;
3847 
3848 			q = priv->ring[tc_info->tqp_offset + j].tqp;
3849 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3850 				       tc_info->tc);
3851 		}
3852 	}
3853 }
3854 
3855 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3856 {
3857 	struct hnae3_handle *h = priv->ae_handle;
3858 	int ring_num = h->kinfo.num_tqps * 2;
3859 	int i, j;
3860 	int ret;
3861 
3862 	for (i = 0; i < ring_num; i++) {
3863 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
3864 		if (ret) {
3865 			dev_err(priv->dev,
3866 				"Alloc ring memory fail! ret=%d\n", ret);
3867 			goto out_when_alloc_ring_memory;
3868 		}
3869 
3870 		u64_stats_init(&priv->ring[i].syncp);
3871 	}
3872 
3873 	return 0;
3874 
3875 out_when_alloc_ring_memory:
3876 	for (j = i - 1; j >= 0; j--)
3877 		hns3_fini_ring(&priv->ring[j]);
3878 
3879 	return -ENOMEM;
3880 }
3881 
3882 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3883 {
3884 	struct hnae3_handle *h = priv->ae_handle;
3885 	int i;
3886 
3887 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3888 		hns3_fini_ring(&priv->ring[i]);
3889 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
3890 	}
3891 	return 0;
3892 }
3893 
3894 /* Set mac addr if it is configured. or leave it to the AE driver */
3895 static int hns3_init_mac_addr(struct net_device *netdev)
3896 {
3897 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3898 	struct hnae3_handle *h = priv->ae_handle;
3899 	u8 mac_addr_temp[ETH_ALEN];
3900 	int ret = 0;
3901 
3902 	if (h->ae_algo->ops->get_mac_addr)
3903 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3904 
3905 	/* Check if the MAC address is valid, if not get a random one */
3906 	if (!is_valid_ether_addr(mac_addr_temp)) {
3907 		eth_hw_addr_random(netdev);
3908 		dev_warn(priv->dev, "using random MAC address %pM\n",
3909 			 netdev->dev_addr);
3910 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
3911 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3912 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
3913 	} else {
3914 		return 0;
3915 	}
3916 
3917 	if (h->ae_algo->ops->set_mac_addr)
3918 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3919 
3920 	return ret;
3921 }
3922 
3923 static int hns3_init_phy(struct net_device *netdev)
3924 {
3925 	struct hnae3_handle *h = hns3_get_handle(netdev);
3926 	int ret = 0;
3927 
3928 	if (h->ae_algo->ops->mac_connect_phy)
3929 		ret = h->ae_algo->ops->mac_connect_phy(h);
3930 
3931 	return ret;
3932 }
3933 
3934 static void hns3_uninit_phy(struct net_device *netdev)
3935 {
3936 	struct hnae3_handle *h = hns3_get_handle(netdev);
3937 
3938 	if (h->ae_algo->ops->mac_disconnect_phy)
3939 		h->ae_algo->ops->mac_disconnect_phy(h);
3940 }
3941 
3942 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3943 {
3944 	struct hnae3_handle *h = hns3_get_handle(netdev);
3945 
3946 	if (h->ae_algo->ops->del_all_fd_entries)
3947 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3948 }
3949 
3950 static int hns3_client_start(struct hnae3_handle *handle)
3951 {
3952 	if (!handle->ae_algo->ops->client_start)
3953 		return 0;
3954 
3955 	return handle->ae_algo->ops->client_start(handle);
3956 }
3957 
3958 static void hns3_client_stop(struct hnae3_handle *handle)
3959 {
3960 	if (!handle->ae_algo->ops->client_stop)
3961 		return;
3962 
3963 	handle->ae_algo->ops->client_stop(handle);
3964 }
3965 
3966 static void hns3_info_show(struct hns3_nic_priv *priv)
3967 {
3968 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3969 
3970 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
3971 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
3972 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
3973 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
3974 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
3975 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
3976 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
3977 	dev_info(priv->dev, "Total number of enabled TCs: %u\n", kinfo->num_tc);
3978 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
3979 }
3980 
3981 static int hns3_client_init(struct hnae3_handle *handle)
3982 {
3983 	struct pci_dev *pdev = handle->pdev;
3984 	u16 alloc_tqps, max_rss_size;
3985 	struct hns3_nic_priv *priv;
3986 	struct net_device *netdev;
3987 	int ret;
3988 
3989 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3990 						    &max_rss_size);
3991 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3992 	if (!netdev)
3993 		return -ENOMEM;
3994 
3995 	priv = netdev_priv(netdev);
3996 	priv->dev = &pdev->dev;
3997 	priv->netdev = netdev;
3998 	priv->ae_handle = handle;
3999 	priv->tx_timeout_count = 0;
4000 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4001 
4002 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4003 
4004 	handle->kinfo.netdev = netdev;
4005 	handle->priv = (void *)priv;
4006 
4007 	hns3_init_mac_addr(netdev);
4008 
4009 	hns3_set_default_feature(netdev);
4010 
4011 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4012 	netdev->priv_flags |= IFF_UNICAST_FLT;
4013 	netdev->netdev_ops = &hns3_nic_netdev_ops;
4014 	SET_NETDEV_DEV(netdev, &pdev->dev);
4015 	hns3_ethtool_set_ops(netdev);
4016 
4017 	/* Carrier off reporting is important to ethtool even BEFORE open */
4018 	netif_carrier_off(netdev);
4019 
4020 	ret = hns3_get_ring_config(priv);
4021 	if (ret) {
4022 		ret = -ENOMEM;
4023 		goto out_get_ring_cfg;
4024 	}
4025 
4026 	ret = hns3_nic_alloc_vector_data(priv);
4027 	if (ret) {
4028 		ret = -ENOMEM;
4029 		goto out_alloc_vector_data;
4030 	}
4031 
4032 	ret = hns3_nic_init_vector_data(priv);
4033 	if (ret) {
4034 		ret = -ENOMEM;
4035 		goto out_init_vector_data;
4036 	}
4037 
4038 	ret = hns3_init_all_ring(priv);
4039 	if (ret) {
4040 		ret = -ENOMEM;
4041 		goto out_init_ring;
4042 	}
4043 
4044 	ret = hns3_init_phy(netdev);
4045 	if (ret)
4046 		goto out_init_phy;
4047 
4048 	ret = register_netdev(netdev);
4049 	if (ret) {
4050 		dev_err(priv->dev, "probe register netdev fail!\n");
4051 		goto out_reg_netdev_fail;
4052 	}
4053 
4054 	/* the device can work without cpu rmap, only aRFS needs it */
4055 	ret = hns3_set_rx_cpu_rmap(netdev);
4056 	if (ret)
4057 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4058 
4059 	ret = hns3_nic_init_irq(priv);
4060 	if (ret) {
4061 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4062 		hns3_free_rx_cpu_rmap(netdev);
4063 		goto out_init_irq_fail;
4064 	}
4065 
4066 	ret = hns3_client_start(handle);
4067 	if (ret) {
4068 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4069 		goto out_client_start;
4070 	}
4071 
4072 	hns3_dcbnl_setup(handle);
4073 
4074 	hns3_dbg_init(handle);
4075 
4076 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4077 	netdev->max_mtu = HNS3_MAX_MTU;
4078 
4079 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4080 
4081 	if (netif_msg_drv(handle))
4082 		hns3_info_show(priv);
4083 
4084 	return ret;
4085 
4086 out_client_start:
4087 	hns3_free_rx_cpu_rmap(netdev);
4088 	hns3_nic_uninit_irq(priv);
4089 out_init_irq_fail:
4090 	unregister_netdev(netdev);
4091 out_reg_netdev_fail:
4092 	hns3_uninit_phy(netdev);
4093 out_init_phy:
4094 	hns3_uninit_all_ring(priv);
4095 out_init_ring:
4096 	hns3_nic_uninit_vector_data(priv);
4097 out_init_vector_data:
4098 	hns3_nic_dealloc_vector_data(priv);
4099 out_alloc_vector_data:
4100 	priv->ring = NULL;
4101 out_get_ring_cfg:
4102 	priv->ae_handle = NULL;
4103 	free_netdev(netdev);
4104 	return ret;
4105 }
4106 
4107 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4108 {
4109 	struct net_device *netdev = handle->kinfo.netdev;
4110 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4111 	int ret;
4112 
4113 	if (netdev->reg_state != NETREG_UNINITIALIZED)
4114 		unregister_netdev(netdev);
4115 
4116 	hns3_client_stop(handle);
4117 
4118 	hns3_uninit_phy(netdev);
4119 
4120 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4121 		netdev_warn(netdev, "already uninitialized\n");
4122 		goto out_netdev_free;
4123 	}
4124 
4125 	hns3_free_rx_cpu_rmap(netdev);
4126 
4127 	hns3_nic_uninit_irq(priv);
4128 
4129 	hns3_del_all_fd_rules(netdev, true);
4130 
4131 	hns3_clear_all_ring(handle, true);
4132 
4133 	hns3_nic_uninit_vector_data(priv);
4134 
4135 	hns3_nic_dealloc_vector_data(priv);
4136 
4137 	ret = hns3_uninit_all_ring(priv);
4138 	if (ret)
4139 		netdev_err(netdev, "uninit ring error\n");
4140 
4141 	hns3_put_ring_config(priv);
4142 
4143 out_netdev_free:
4144 	hns3_dbg_uninit(handle);
4145 	free_netdev(netdev);
4146 }
4147 
4148 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4149 {
4150 	struct net_device *netdev = handle->kinfo.netdev;
4151 
4152 	if (!netdev)
4153 		return;
4154 
4155 	if (linkup) {
4156 		netif_carrier_on(netdev);
4157 		netif_tx_wake_all_queues(netdev);
4158 		if (netif_msg_link(handle))
4159 			netdev_info(netdev, "link up\n");
4160 	} else {
4161 		netif_carrier_off(netdev);
4162 		netif_tx_stop_all_queues(netdev);
4163 		if (netif_msg_link(handle))
4164 			netdev_info(netdev, "link down\n");
4165 	}
4166 }
4167 
4168 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4169 {
4170 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4171 	struct net_device *ndev = kinfo->netdev;
4172 
4173 	if (tc > HNAE3_MAX_TC)
4174 		return -EINVAL;
4175 
4176 	if (!ndev)
4177 		return -ENODEV;
4178 
4179 	return hns3_nic_set_real_num_queue(ndev);
4180 }
4181 
4182 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4183 {
4184 	while (ring->next_to_clean != ring->next_to_use) {
4185 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4186 		hns3_free_buffer_detach(ring, ring->next_to_clean);
4187 		ring_ptr_move_fw(ring, next_to_clean);
4188 	}
4189 }
4190 
4191 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4192 {
4193 	struct hns3_desc_cb res_cbs;
4194 	int ret;
4195 
4196 	while (ring->next_to_use != ring->next_to_clean) {
4197 		/* When a buffer is not reused, it's memory has been
4198 		 * freed in hns3_handle_rx_bd or will be freed by
4199 		 * stack, so we need to replace the buffer here.
4200 		 */
4201 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4202 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4203 			if (ret) {
4204 				u64_stats_update_begin(&ring->syncp);
4205 				ring->stats.sw_err_cnt++;
4206 				u64_stats_update_end(&ring->syncp);
4207 				/* if alloc new buffer fail, exit directly
4208 				 * and reclear in up flow.
4209 				 */
4210 				netdev_warn(ring_to_netdev(ring),
4211 					    "reserve buffer map failed, ret = %d\n",
4212 					    ret);
4213 				return ret;
4214 			}
4215 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4216 		}
4217 		ring_ptr_move_fw(ring, next_to_use);
4218 	}
4219 
4220 	/* Free the pending skb in rx ring */
4221 	if (ring->skb) {
4222 		dev_kfree_skb_any(ring->skb);
4223 		ring->skb = NULL;
4224 		ring->pending_buf = 0;
4225 	}
4226 
4227 	return 0;
4228 }
4229 
4230 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4231 {
4232 	while (ring->next_to_use != ring->next_to_clean) {
4233 		/* When a buffer is not reused, it's memory has been
4234 		 * freed in hns3_handle_rx_bd or will be freed by
4235 		 * stack, so only need to unmap the buffer here.
4236 		 */
4237 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4238 			hns3_unmap_buffer(ring,
4239 					  &ring->desc_cb[ring->next_to_use]);
4240 			ring->desc_cb[ring->next_to_use].dma = 0;
4241 		}
4242 
4243 		ring_ptr_move_fw(ring, next_to_use);
4244 	}
4245 }
4246 
4247 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4248 {
4249 	struct net_device *ndev = h->kinfo.netdev;
4250 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4251 	u32 i;
4252 
4253 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4254 		struct hns3_enet_ring *ring;
4255 
4256 		ring = &priv->ring[i];
4257 		hns3_clear_tx_ring(ring);
4258 
4259 		ring = &priv->ring[i + h->kinfo.num_tqps];
4260 		/* Continue to clear other rings even if clearing some
4261 		 * rings failed.
4262 		 */
4263 		if (force)
4264 			hns3_force_clear_rx_ring(ring);
4265 		else
4266 			hns3_clear_rx_ring(ring);
4267 	}
4268 }
4269 
4270 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4271 {
4272 	struct net_device *ndev = h->kinfo.netdev;
4273 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4274 	struct hns3_enet_ring *rx_ring;
4275 	int i, j;
4276 	int ret;
4277 
4278 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4279 		ret = h->ae_algo->ops->reset_queue(h, i);
4280 		if (ret)
4281 			return ret;
4282 
4283 		hns3_init_ring_hw(&priv->ring[i]);
4284 
4285 		/* We need to clear tx ring here because self test will
4286 		 * use the ring and will not run down before up
4287 		 */
4288 		hns3_clear_tx_ring(&priv->ring[i]);
4289 		priv->ring[i].next_to_clean = 0;
4290 		priv->ring[i].next_to_use = 0;
4291 
4292 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4293 		hns3_init_ring_hw(rx_ring);
4294 		ret = hns3_clear_rx_ring(rx_ring);
4295 		if (ret)
4296 			return ret;
4297 
4298 		/* We can not know the hardware head and tail when this
4299 		 * function is called in reset flow, so we reuse all desc.
4300 		 */
4301 		for (j = 0; j < rx_ring->desc_num; j++)
4302 			hns3_reuse_buffer(rx_ring, j);
4303 
4304 		rx_ring->next_to_clean = 0;
4305 		rx_ring->next_to_use = 0;
4306 	}
4307 
4308 	hns3_init_tx_ring_tc(priv);
4309 
4310 	return 0;
4311 }
4312 
4313 static void hns3_store_coal(struct hns3_nic_priv *priv)
4314 {
4315 	/* ethtool only support setting and querying one coal
4316 	 * configuration for now, so save the vector 0' coal
4317 	 * configuration here in order to restore it.
4318 	 */
4319 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4320 	       sizeof(struct hns3_enet_coalesce));
4321 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4322 	       sizeof(struct hns3_enet_coalesce));
4323 }
4324 
4325 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4326 {
4327 	u16 vector_num = priv->vector_num;
4328 	int i;
4329 
4330 	for (i = 0; i < vector_num; i++) {
4331 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4332 		       sizeof(struct hns3_enet_coalesce));
4333 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4334 		       sizeof(struct hns3_enet_coalesce));
4335 	}
4336 }
4337 
4338 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4339 {
4340 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4341 	struct net_device *ndev = kinfo->netdev;
4342 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4343 
4344 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4345 		return 0;
4346 
4347 	if (!netif_running(ndev))
4348 		return 0;
4349 
4350 	return hns3_nic_net_stop(ndev);
4351 }
4352 
4353 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4354 {
4355 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4356 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4357 	int ret = 0;
4358 
4359 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4360 
4361 	if (netif_running(kinfo->netdev)) {
4362 		ret = hns3_nic_net_open(kinfo->netdev);
4363 		if (ret) {
4364 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4365 			netdev_err(kinfo->netdev,
4366 				   "net up fail, ret=%d!\n", ret);
4367 			return ret;
4368 		}
4369 	}
4370 
4371 	return ret;
4372 }
4373 
4374 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4375 {
4376 	struct net_device *netdev = handle->kinfo.netdev;
4377 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4378 	int ret;
4379 
4380 	/* Carrier off reporting is important to ethtool even BEFORE open */
4381 	netif_carrier_off(netdev);
4382 
4383 	ret = hns3_get_ring_config(priv);
4384 	if (ret)
4385 		return ret;
4386 
4387 	ret = hns3_nic_alloc_vector_data(priv);
4388 	if (ret)
4389 		goto err_put_ring;
4390 
4391 	hns3_restore_coal(priv);
4392 
4393 	ret = hns3_nic_init_vector_data(priv);
4394 	if (ret)
4395 		goto err_dealloc_vector;
4396 
4397 	ret = hns3_init_all_ring(priv);
4398 	if (ret)
4399 		goto err_uninit_vector;
4400 
4401 	/* the device can work without cpu rmap, only aRFS needs it */
4402 	ret = hns3_set_rx_cpu_rmap(netdev);
4403 	if (ret)
4404 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4405 
4406 	ret = hns3_nic_init_irq(priv);
4407 	if (ret) {
4408 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4409 		hns3_free_rx_cpu_rmap(netdev);
4410 		goto err_init_irq_fail;
4411 	}
4412 
4413 	if (!hns3_is_phys_func(handle->pdev))
4414 		hns3_init_mac_addr(netdev);
4415 
4416 	ret = hns3_client_start(handle);
4417 	if (ret) {
4418 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4419 		goto err_client_start_fail;
4420 	}
4421 
4422 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4423 
4424 	return ret;
4425 
4426 err_client_start_fail:
4427 	hns3_free_rx_cpu_rmap(netdev);
4428 	hns3_nic_uninit_irq(priv);
4429 err_init_irq_fail:
4430 	hns3_uninit_all_ring(priv);
4431 err_uninit_vector:
4432 	hns3_nic_uninit_vector_data(priv);
4433 err_dealloc_vector:
4434 	hns3_nic_dealloc_vector_data(priv);
4435 err_put_ring:
4436 	hns3_put_ring_config(priv);
4437 
4438 	return ret;
4439 }
4440 
4441 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4442 {
4443 	struct net_device *netdev = handle->kinfo.netdev;
4444 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4445 	int ret;
4446 
4447 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4448 		netdev_warn(netdev, "already uninitialized\n");
4449 		return 0;
4450 	}
4451 
4452 	hns3_free_rx_cpu_rmap(netdev);
4453 	hns3_nic_uninit_irq(priv);
4454 	hns3_clear_all_ring(handle, true);
4455 	hns3_reset_tx_queue(priv->ae_handle);
4456 
4457 	hns3_nic_uninit_vector_data(priv);
4458 
4459 	hns3_store_coal(priv);
4460 
4461 	hns3_nic_dealloc_vector_data(priv);
4462 
4463 	ret = hns3_uninit_all_ring(priv);
4464 	if (ret)
4465 		netdev_err(netdev, "uninit ring error\n");
4466 
4467 	hns3_put_ring_config(priv);
4468 
4469 	return ret;
4470 }
4471 
4472 static int hns3_reset_notify(struct hnae3_handle *handle,
4473 			     enum hnae3_reset_notify_type type)
4474 {
4475 	int ret = 0;
4476 
4477 	switch (type) {
4478 	case HNAE3_UP_CLIENT:
4479 		ret = hns3_reset_notify_up_enet(handle);
4480 		break;
4481 	case HNAE3_DOWN_CLIENT:
4482 		ret = hns3_reset_notify_down_enet(handle);
4483 		break;
4484 	case HNAE3_INIT_CLIENT:
4485 		ret = hns3_reset_notify_init_enet(handle);
4486 		break;
4487 	case HNAE3_UNINIT_CLIENT:
4488 		ret = hns3_reset_notify_uninit_enet(handle);
4489 		break;
4490 	default:
4491 		break;
4492 	}
4493 
4494 	return ret;
4495 }
4496 
4497 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4498 				bool rxfh_configured)
4499 {
4500 	int ret;
4501 
4502 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4503 						 rxfh_configured);
4504 	if (ret) {
4505 		dev_err(&handle->pdev->dev,
4506 			"Change tqp num(%u) fail.\n", new_tqp_num);
4507 		return ret;
4508 	}
4509 
4510 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4511 	if (ret)
4512 		return ret;
4513 
4514 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4515 	if (ret)
4516 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4517 
4518 	return ret;
4519 }
4520 
4521 int hns3_set_channels(struct net_device *netdev,
4522 		      struct ethtool_channels *ch)
4523 {
4524 	struct hnae3_handle *h = hns3_get_handle(netdev);
4525 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4526 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4527 	u32 new_tqp_num = ch->combined_count;
4528 	u16 org_tqp_num;
4529 	int ret;
4530 
4531 	if (hns3_nic_resetting(netdev))
4532 		return -EBUSY;
4533 
4534 	if (ch->rx_count || ch->tx_count)
4535 		return -EINVAL;
4536 
4537 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4538 	    new_tqp_num < 1) {
4539 		dev_err(&netdev->dev,
4540 			"Change tqps fail, the tqp range is from 1 to %u",
4541 			hns3_get_max_available_channels(h));
4542 		return -EINVAL;
4543 	}
4544 
4545 	if (kinfo->rss_size == new_tqp_num)
4546 		return 0;
4547 
4548 	netif_dbg(h, drv, netdev,
4549 		  "set channels: tqp_num=%u, rxfh=%d\n",
4550 		  new_tqp_num, rxfh_configured);
4551 
4552 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4553 	if (ret)
4554 		return ret;
4555 
4556 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4557 	if (ret)
4558 		return ret;
4559 
4560 	org_tqp_num = h->kinfo.num_tqps;
4561 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4562 	if (ret) {
4563 		int ret1;
4564 
4565 		netdev_warn(netdev,
4566 			    "Change channels fail, revert to old value\n");
4567 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4568 		if (ret1) {
4569 			netdev_err(netdev,
4570 				   "revert to old channel fail\n");
4571 			return ret1;
4572 		}
4573 
4574 		return ret;
4575 	}
4576 
4577 	return 0;
4578 }
4579 
4580 static const struct hns3_hw_error_info hns3_hw_err[] = {
4581 	{ .type = HNAE3_PPU_POISON_ERROR,
4582 	  .msg = "PPU poison" },
4583 	{ .type = HNAE3_CMDQ_ECC_ERROR,
4584 	  .msg = "IMP CMDQ error" },
4585 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
4586 	  .msg = "IMP RD poison" },
4587 };
4588 
4589 static void hns3_process_hw_error(struct hnae3_handle *handle,
4590 				  enum hnae3_hw_error_type type)
4591 {
4592 	int i;
4593 
4594 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4595 		if (hns3_hw_err[i].type == type) {
4596 			dev_err(&handle->pdev->dev, "Detected %s!\n",
4597 				hns3_hw_err[i].msg);
4598 			break;
4599 		}
4600 	}
4601 }
4602 
4603 static const struct hnae3_client_ops client_ops = {
4604 	.init_instance = hns3_client_init,
4605 	.uninit_instance = hns3_client_uninit,
4606 	.link_status_change = hns3_link_status_change,
4607 	.setup_tc = hns3_client_setup_tc,
4608 	.reset_notify = hns3_reset_notify,
4609 	.process_hw_error = hns3_process_hw_error,
4610 };
4611 
4612 /* hns3_init_module - Driver registration routine
4613  * hns3_init_module is the first routine called when the driver is
4614  * loaded. All it does is register with the PCI subsystem.
4615  */
4616 static int __init hns3_init_module(void)
4617 {
4618 	int ret;
4619 
4620 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4621 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4622 
4623 	client.type = HNAE3_CLIENT_KNIC;
4624 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4625 		 hns3_driver_name);
4626 
4627 	client.ops = &client_ops;
4628 
4629 	INIT_LIST_HEAD(&client.node);
4630 
4631 	hns3_dbg_register_debugfs(hns3_driver_name);
4632 
4633 	ret = hnae3_register_client(&client);
4634 	if (ret)
4635 		goto err_reg_client;
4636 
4637 	ret = pci_register_driver(&hns3_driver);
4638 	if (ret)
4639 		goto err_reg_driver;
4640 
4641 	return ret;
4642 
4643 err_reg_driver:
4644 	hnae3_unregister_client(&client);
4645 err_reg_client:
4646 	hns3_dbg_unregister_debugfs();
4647 	return ret;
4648 }
4649 module_init(hns3_init_module);
4650 
4651 /* hns3_exit_module - Driver exit cleanup routine
4652  * hns3_exit_module is called just before the driver is removed
4653  * from memory.
4654  */
4655 static void __exit hns3_exit_module(void)
4656 {
4657 	pci_unregister_driver(&hns3_driver);
4658 	hnae3_unregister_client(&client);
4659 	hns3_dbg_unregister_debugfs();
4660 }
4661 module_exit(hns3_exit_module);
4662 
4663 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4664 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4665 MODULE_LICENSE("GPL");
4666 MODULE_ALIAS("pci:hns-nic");
4667