1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25 
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29  * must be included exactly once across the whole kernel with
30  * CREATE_TRACE_POINTS defined
31  */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34 
35 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
36 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37 
38 #define hns3_rl_err(fmt, ...)						\
39 	do {								\
40 		if (net_ratelimit())					\
41 			netdev_err(fmt, ##__VA_ARGS__);			\
42 	} while (0)
43 
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45 
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48 			"Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51 
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55 
56 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
57 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
58 
59 #define HNS3_INNER_VLAN_TAG	1
60 #define HNS3_OUTER_VLAN_TAG	2
61 
62 #define HNS3_MIN_TX_LEN		33U
63 
64 /* hns3_pci_tbl - PCI Device ID Table
65  *
66  * Last entry must be all 0s
67  *
68  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
69  *   Class, Class Mask, private data (not used) }
70  */
71 static const struct pci_device_id hns3_pci_tbl[] = {
72 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
73 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
74 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
75 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
76 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
77 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
78 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
79 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
80 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
81 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
82 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
83 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
84 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
85 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
86 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
87 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
88 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
89 	/* required last entry */
90 	{0, }
91 };
92 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
93 
94 static irqreturn_t hns3_irq_handle(int irq, void *vector)
95 {
96 	struct hns3_enet_tqp_vector *tqp_vector = vector;
97 
98 	napi_schedule_irqoff(&tqp_vector->napi);
99 
100 	return IRQ_HANDLED;
101 }
102 
103 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
104 {
105 	struct hns3_enet_tqp_vector *tqp_vectors;
106 	unsigned int i;
107 
108 	for (i = 0; i < priv->vector_num; i++) {
109 		tqp_vectors = &priv->tqp_vector[i];
110 
111 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
112 			continue;
113 
114 		/* clear the affinity mask */
115 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
116 
117 		/* release the irq resource */
118 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
119 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
120 	}
121 }
122 
123 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
124 {
125 	struct hns3_enet_tqp_vector *tqp_vectors;
126 	int txrx_int_idx = 0;
127 	int rx_int_idx = 0;
128 	int tx_int_idx = 0;
129 	unsigned int i;
130 	int ret;
131 
132 	for (i = 0; i < priv->vector_num; i++) {
133 		tqp_vectors = &priv->tqp_vector[i];
134 
135 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
136 			continue;
137 
138 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
139 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
140 				 "%s-%s-%s-%d", hns3_driver_name,
141 				 pci_name(priv->ae_handle->pdev),
142 				 "TxRx", txrx_int_idx++);
143 			txrx_int_idx++;
144 		} else if (tqp_vectors->rx_group.ring) {
145 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
146 				 "%s-%s-%s-%d", hns3_driver_name,
147 				 pci_name(priv->ae_handle->pdev),
148 				 "Rx", rx_int_idx++);
149 		} else if (tqp_vectors->tx_group.ring) {
150 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
151 				 "%s-%s-%s-%d", hns3_driver_name,
152 				 pci_name(priv->ae_handle->pdev),
153 				 "Tx", tx_int_idx++);
154 		} else {
155 			/* Skip this unused q_vector */
156 			continue;
157 		}
158 
159 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
160 
161 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
162 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
163 				  tqp_vectors->name, tqp_vectors);
164 		if (ret) {
165 			netdev_err(priv->netdev, "request irq(%d) fail\n",
166 				   tqp_vectors->vector_irq);
167 			hns3_nic_uninit_irq(priv);
168 			return ret;
169 		}
170 
171 		irq_set_affinity_hint(tqp_vectors->vector_irq,
172 				      &tqp_vectors->affinity_mask);
173 
174 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
175 	}
176 
177 	return 0;
178 }
179 
180 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
181 				 u32 mask_en)
182 {
183 	writel(mask_en, tqp_vector->mask_addr);
184 }
185 
186 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
187 {
188 	napi_enable(&tqp_vector->napi);
189 	enable_irq(tqp_vector->vector_irq);
190 
191 	/* enable vector */
192 	hns3_mask_vector_irq(tqp_vector, 1);
193 }
194 
195 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
196 {
197 	/* disable vector */
198 	hns3_mask_vector_irq(tqp_vector, 0);
199 
200 	disable_irq(tqp_vector->vector_irq);
201 	napi_disable(&tqp_vector->napi);
202 }
203 
204 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
205 				 u32 rl_value)
206 {
207 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
208 
209 	/* this defines the configuration for RL (Interrupt Rate Limiter).
210 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
211 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
212 	 */
213 
214 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
215 	    !tqp_vector->rx_group.coal.adapt_enable)
216 		/* According to the hardware, the range of rl_reg is
217 		 * 0-59 and the unit is 4.
218 		 */
219 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
220 
221 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
222 }
223 
224 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
225 				    u32 gl_value)
226 {
227 	u32 new_val;
228 
229 	if (tqp_vector->rx_group.coal.unit_1us)
230 		new_val = gl_value | HNS3_INT_GL_1US;
231 	else
232 		new_val = hns3_gl_usec_to_reg(gl_value);
233 
234 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
235 }
236 
237 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
238 				    u32 gl_value)
239 {
240 	u32 new_val;
241 
242 	if (tqp_vector->tx_group.coal.unit_1us)
243 		new_val = gl_value | HNS3_INT_GL_1US;
244 	else
245 		new_val = hns3_gl_usec_to_reg(gl_value);
246 
247 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
248 }
249 
250 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
251 				    u32 ql_value)
252 {
253 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
254 }
255 
256 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
257 				    u32 ql_value)
258 {
259 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
260 }
261 
262 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
263 				      struct hns3_nic_priv *priv)
264 {
265 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
266 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
267 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
268 
269 	/* initialize the configuration for interrupt coalescing.
270 	 * 1. GL (Interrupt Gap Limiter)
271 	 * 2. RL (Interrupt Rate Limiter)
272 	 * 3. QL (Interrupt Quantity Limiter)
273 	 *
274 	 * Default: enable interrupt coalescing self-adaptive and GL
275 	 */
276 	tx_coal->adapt_enable = 1;
277 	rx_coal->adapt_enable = 1;
278 
279 	tx_coal->int_gl = HNS3_INT_GL_50K;
280 	rx_coal->int_gl = HNS3_INT_GL_50K;
281 
282 	rx_coal->flow_level = HNS3_FLOW_LOW;
283 	tx_coal->flow_level = HNS3_FLOW_LOW;
284 
285 	/* device version above V3(include V3), GL can configure 1us
286 	 * unit, so uses 1us unit.
287 	 */
288 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
289 		tx_coal->unit_1us = 1;
290 		rx_coal->unit_1us = 1;
291 	}
292 
293 	if (ae_dev->dev_specs.int_ql_max) {
294 		tx_coal->ql_enable = 1;
295 		rx_coal->ql_enable = 1;
296 		tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
297 		rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
298 		tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
299 		rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
300 	}
301 }
302 
303 static void
304 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
305 			     struct hns3_nic_priv *priv)
306 {
307 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
308 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
309 	struct hnae3_handle *h = priv->ae_handle;
310 
311 	hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
312 	hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
313 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
314 
315 	if (tx_coal->ql_enable)
316 		hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
317 
318 	if (rx_coal->ql_enable)
319 		hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
320 }
321 
322 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
323 {
324 	struct hnae3_handle *h = hns3_get_handle(netdev);
325 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
326 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
327 	unsigned int queue_size = kinfo->num_tqps;
328 	int i, ret;
329 
330 	if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
331 		netdev_reset_tc(netdev);
332 	} else {
333 		ret = netdev_set_num_tc(netdev, tc_info->num_tc);
334 		if (ret) {
335 			netdev_err(netdev,
336 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
337 			return ret;
338 		}
339 
340 		for (i = 0; i < HNAE3_MAX_TC; i++) {
341 			if (!test_bit(i, &tc_info->tc_en))
342 				continue;
343 
344 			netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
345 					    tc_info->tqp_offset[i]);
346 		}
347 	}
348 
349 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
350 	if (ret) {
351 		netdev_err(netdev,
352 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
353 		return ret;
354 	}
355 
356 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
357 	if (ret) {
358 		netdev_err(netdev,
359 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
360 		return ret;
361 	}
362 
363 	return 0;
364 }
365 
366 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
367 {
368 	u16 alloc_tqps, max_rss_size, rss_size;
369 
370 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
371 	rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
372 
373 	return min_t(u16, rss_size, max_rss_size);
374 }
375 
376 static void hns3_tqp_enable(struct hnae3_queue *tqp)
377 {
378 	u32 rcb_reg;
379 
380 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
381 	rcb_reg |= BIT(HNS3_RING_EN_B);
382 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
383 }
384 
385 static void hns3_tqp_disable(struct hnae3_queue *tqp)
386 {
387 	u32 rcb_reg;
388 
389 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
390 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
391 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
392 }
393 
394 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
395 {
396 #ifdef CONFIG_RFS_ACCEL
397 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
398 	netdev->rx_cpu_rmap = NULL;
399 #endif
400 }
401 
402 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
403 {
404 #ifdef CONFIG_RFS_ACCEL
405 	struct hns3_nic_priv *priv = netdev_priv(netdev);
406 	struct hns3_enet_tqp_vector *tqp_vector;
407 	int i, ret;
408 
409 	if (!netdev->rx_cpu_rmap) {
410 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
411 		if (!netdev->rx_cpu_rmap)
412 			return -ENOMEM;
413 	}
414 
415 	for (i = 0; i < priv->vector_num; i++) {
416 		tqp_vector = &priv->tqp_vector[i];
417 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
418 				       tqp_vector->vector_irq);
419 		if (ret) {
420 			hns3_free_rx_cpu_rmap(netdev);
421 			return ret;
422 		}
423 	}
424 #endif
425 	return 0;
426 }
427 
428 static int hns3_nic_net_up(struct net_device *netdev)
429 {
430 	struct hns3_nic_priv *priv = netdev_priv(netdev);
431 	struct hnae3_handle *h = priv->ae_handle;
432 	int i, j;
433 	int ret;
434 
435 	ret = hns3_nic_reset_all_ring(h);
436 	if (ret)
437 		return ret;
438 
439 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
440 
441 	/* enable the vectors */
442 	for (i = 0; i < priv->vector_num; i++)
443 		hns3_vector_enable(&priv->tqp_vector[i]);
444 
445 	/* enable rcb */
446 	for (j = 0; j < h->kinfo.num_tqps; j++)
447 		hns3_tqp_enable(h->kinfo.tqp[j]);
448 
449 	/* start the ae_dev */
450 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
451 	if (ret) {
452 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
453 		while (j--)
454 			hns3_tqp_disable(h->kinfo.tqp[j]);
455 
456 		for (j = i - 1; j >= 0; j--)
457 			hns3_vector_disable(&priv->tqp_vector[j]);
458 	}
459 
460 	return ret;
461 }
462 
463 static void hns3_config_xps(struct hns3_nic_priv *priv)
464 {
465 	int i;
466 
467 	for (i = 0; i < priv->vector_num; i++) {
468 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
469 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
470 
471 		while (ring) {
472 			int ret;
473 
474 			ret = netif_set_xps_queue(priv->netdev,
475 						  &tqp_vector->affinity_mask,
476 						  ring->tqp->tqp_index);
477 			if (ret)
478 				netdev_warn(priv->netdev,
479 					    "set xps queue failed: %d", ret);
480 
481 			ring = ring->next;
482 		}
483 	}
484 }
485 
486 static int hns3_nic_net_open(struct net_device *netdev)
487 {
488 	struct hns3_nic_priv *priv = netdev_priv(netdev);
489 	struct hnae3_handle *h = hns3_get_handle(netdev);
490 	struct hnae3_knic_private_info *kinfo;
491 	int i, ret;
492 
493 	if (hns3_nic_resetting(netdev))
494 		return -EBUSY;
495 
496 	netif_carrier_off(netdev);
497 
498 	ret = hns3_nic_set_real_num_queue(netdev);
499 	if (ret)
500 		return ret;
501 
502 	ret = hns3_nic_net_up(netdev);
503 	if (ret) {
504 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
505 		return ret;
506 	}
507 
508 	kinfo = &h->kinfo;
509 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
510 		netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
511 
512 	if (h->ae_algo->ops->set_timer_task)
513 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
514 
515 	hns3_config_xps(priv);
516 
517 	netif_dbg(h, drv, netdev, "net open\n");
518 
519 	return 0;
520 }
521 
522 static void hns3_reset_tx_queue(struct hnae3_handle *h)
523 {
524 	struct net_device *ndev = h->kinfo.netdev;
525 	struct hns3_nic_priv *priv = netdev_priv(ndev);
526 	struct netdev_queue *dev_queue;
527 	u32 i;
528 
529 	for (i = 0; i < h->kinfo.num_tqps; i++) {
530 		dev_queue = netdev_get_tx_queue(ndev,
531 						priv->ring[i].queue_index);
532 		netdev_tx_reset_queue(dev_queue);
533 	}
534 }
535 
536 static void hns3_nic_net_down(struct net_device *netdev)
537 {
538 	struct hns3_nic_priv *priv = netdev_priv(netdev);
539 	struct hnae3_handle *h = hns3_get_handle(netdev);
540 	const struct hnae3_ae_ops *ops;
541 	int i;
542 
543 	/* disable vectors */
544 	for (i = 0; i < priv->vector_num; i++)
545 		hns3_vector_disable(&priv->tqp_vector[i]);
546 
547 	/* disable rcb */
548 	for (i = 0; i < h->kinfo.num_tqps; i++)
549 		hns3_tqp_disable(h->kinfo.tqp[i]);
550 
551 	/* stop ae_dev */
552 	ops = priv->ae_handle->ae_algo->ops;
553 	if (ops->stop)
554 		ops->stop(priv->ae_handle);
555 
556 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
557 	 * during reset process, because driver may not be able
558 	 * to disable the ring through firmware when downing the netdev.
559 	 */
560 	if (!hns3_nic_resetting(netdev))
561 		hns3_clear_all_ring(priv->ae_handle, false);
562 
563 	hns3_reset_tx_queue(priv->ae_handle);
564 }
565 
566 static int hns3_nic_net_stop(struct net_device *netdev)
567 {
568 	struct hns3_nic_priv *priv = netdev_priv(netdev);
569 	struct hnae3_handle *h = hns3_get_handle(netdev);
570 
571 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
572 		return 0;
573 
574 	netif_dbg(h, drv, netdev, "net stop\n");
575 
576 	if (h->ae_algo->ops->set_timer_task)
577 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
578 
579 	netif_tx_stop_all_queues(netdev);
580 	netif_carrier_off(netdev);
581 
582 	hns3_nic_net_down(netdev);
583 
584 	return 0;
585 }
586 
587 static int hns3_nic_uc_sync(struct net_device *netdev,
588 			    const unsigned char *addr)
589 {
590 	struct hnae3_handle *h = hns3_get_handle(netdev);
591 
592 	if (h->ae_algo->ops->add_uc_addr)
593 		return h->ae_algo->ops->add_uc_addr(h, addr);
594 
595 	return 0;
596 }
597 
598 static int hns3_nic_uc_unsync(struct net_device *netdev,
599 			      const unsigned char *addr)
600 {
601 	struct hnae3_handle *h = hns3_get_handle(netdev);
602 
603 	/* need ignore the request of removing device address, because
604 	 * we store the device address and other addresses of uc list
605 	 * in the function's mac filter list.
606 	 */
607 	if (ether_addr_equal(addr, netdev->dev_addr))
608 		return 0;
609 
610 	if (h->ae_algo->ops->rm_uc_addr)
611 		return h->ae_algo->ops->rm_uc_addr(h, addr);
612 
613 	return 0;
614 }
615 
616 static int hns3_nic_mc_sync(struct net_device *netdev,
617 			    const unsigned char *addr)
618 {
619 	struct hnae3_handle *h = hns3_get_handle(netdev);
620 
621 	if (h->ae_algo->ops->add_mc_addr)
622 		return h->ae_algo->ops->add_mc_addr(h, addr);
623 
624 	return 0;
625 }
626 
627 static int hns3_nic_mc_unsync(struct net_device *netdev,
628 			      const unsigned char *addr)
629 {
630 	struct hnae3_handle *h = hns3_get_handle(netdev);
631 
632 	if (h->ae_algo->ops->rm_mc_addr)
633 		return h->ae_algo->ops->rm_mc_addr(h, addr);
634 
635 	return 0;
636 }
637 
638 static u8 hns3_get_netdev_flags(struct net_device *netdev)
639 {
640 	u8 flags = 0;
641 
642 	if (netdev->flags & IFF_PROMISC) {
643 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
644 	} else {
645 		flags |= HNAE3_VLAN_FLTR;
646 		if (netdev->flags & IFF_ALLMULTI)
647 			flags |= HNAE3_USER_MPE;
648 	}
649 
650 	return flags;
651 }
652 
653 static void hns3_nic_set_rx_mode(struct net_device *netdev)
654 {
655 	struct hnae3_handle *h = hns3_get_handle(netdev);
656 	u8 new_flags;
657 
658 	new_flags = hns3_get_netdev_flags(netdev);
659 
660 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
661 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
662 
663 	/* User mode Promisc mode enable and vlan filtering is disabled to
664 	 * let all packets in.
665 	 */
666 	h->netdev_flags = new_flags;
667 	hns3_request_update_promisc_mode(h);
668 }
669 
670 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
671 {
672 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
673 
674 	if (ops->request_update_promisc_mode)
675 		ops->request_update_promisc_mode(handle);
676 }
677 
678 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
679 {
680 	struct hns3_nic_priv *priv = netdev_priv(netdev);
681 	struct hnae3_handle *h = priv->ae_handle;
682 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(h->pdev);
683 	bool last_state;
684 
685 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2 &&
686 	    h->ae_algo->ops->enable_vlan_filter) {
687 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
688 		if (enable != last_state) {
689 			netdev_info(netdev,
690 				    "%s vlan filter\n",
691 				    enable ? "enable" : "disable");
692 			h->ae_algo->ops->enable_vlan_filter(h, enable);
693 		}
694 	}
695 }
696 
697 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
698 			u16 *mss, u32 *type_cs_vlan_tso)
699 {
700 	u32 l4_offset, hdr_len;
701 	union l3_hdr_info l3;
702 	union l4_hdr_info l4;
703 	u32 l4_paylen;
704 	int ret;
705 
706 	if (!skb_is_gso(skb))
707 		return 0;
708 
709 	ret = skb_cow_head(skb, 0);
710 	if (unlikely(ret < 0))
711 		return ret;
712 
713 	l3.hdr = skb_network_header(skb);
714 	l4.hdr = skb_transport_header(skb);
715 
716 	/* Software should clear the IPv4's checksum field when tso is
717 	 * needed.
718 	 */
719 	if (l3.v4->version == 4)
720 		l3.v4->check = 0;
721 
722 	/* tunnel packet */
723 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
724 					 SKB_GSO_GRE_CSUM |
725 					 SKB_GSO_UDP_TUNNEL |
726 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
727 		/* reset l3&l4 pointers from outer to inner headers */
728 		l3.hdr = skb_inner_network_header(skb);
729 		l4.hdr = skb_inner_transport_header(skb);
730 
731 		/* Software should clear the IPv4's checksum field when
732 		 * tso is needed.
733 		 */
734 		if (l3.v4->version == 4)
735 			l3.v4->check = 0;
736 	}
737 
738 	/* normal or tunnel packet */
739 	l4_offset = l4.hdr - skb->data;
740 
741 	/* remove payload length from inner pseudo checksum when tso */
742 	l4_paylen = skb->len - l4_offset;
743 
744 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
745 		hdr_len = sizeof(*l4.udp) + l4_offset;
746 		csum_replace_by_diff(&l4.udp->check,
747 				     (__force __wsum)htonl(l4_paylen));
748 	} else {
749 		hdr_len = (l4.tcp->doff << 2) + l4_offset;
750 		csum_replace_by_diff(&l4.tcp->check,
751 				     (__force __wsum)htonl(l4_paylen));
752 	}
753 
754 	/* find the txbd field values */
755 	*paylen_fdop_ol4cs = skb->len - hdr_len;
756 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
757 
758 	/* offload outer UDP header checksum */
759 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
760 		hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
761 
762 	/* get MSS for TSO */
763 	*mss = skb_shinfo(skb)->gso_size;
764 
765 	trace_hns3_tso(skb);
766 
767 	return 0;
768 }
769 
770 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
771 				u8 *il4_proto)
772 {
773 	union l3_hdr_info l3;
774 	unsigned char *l4_hdr;
775 	unsigned char *exthdr;
776 	u8 l4_proto_tmp;
777 	__be16 frag_off;
778 
779 	/* find outer header point */
780 	l3.hdr = skb_network_header(skb);
781 	l4_hdr = skb_transport_header(skb);
782 
783 	if (skb->protocol == htons(ETH_P_IPV6)) {
784 		exthdr = l3.hdr + sizeof(*l3.v6);
785 		l4_proto_tmp = l3.v6->nexthdr;
786 		if (l4_hdr != exthdr)
787 			ipv6_skip_exthdr(skb, exthdr - skb->data,
788 					 &l4_proto_tmp, &frag_off);
789 	} else if (skb->protocol == htons(ETH_P_IP)) {
790 		l4_proto_tmp = l3.v4->protocol;
791 	} else {
792 		return -EINVAL;
793 	}
794 
795 	*ol4_proto = l4_proto_tmp;
796 
797 	/* tunnel packet */
798 	if (!skb->encapsulation) {
799 		*il4_proto = 0;
800 		return 0;
801 	}
802 
803 	/* find inner header point */
804 	l3.hdr = skb_inner_network_header(skb);
805 	l4_hdr = skb_inner_transport_header(skb);
806 
807 	if (l3.v6->version == 6) {
808 		exthdr = l3.hdr + sizeof(*l3.v6);
809 		l4_proto_tmp = l3.v6->nexthdr;
810 		if (l4_hdr != exthdr)
811 			ipv6_skip_exthdr(skb, exthdr - skb->data,
812 					 &l4_proto_tmp, &frag_off);
813 	} else if (l3.v4->version == 4) {
814 		l4_proto_tmp = l3.v4->protocol;
815 	}
816 
817 	*il4_proto = l4_proto_tmp;
818 
819 	return 0;
820 }
821 
822 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
823  * and it is udp packet, which has a dest port as the IANA assigned.
824  * the hardware is expected to do the checksum offload, but the
825  * hardware will not do the checksum offload when udp dest port is
826  * 4789 or 6081.
827  */
828 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
829 {
830 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
831 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
832 	union l4_hdr_info l4;
833 
834 	/* device version above V3(include V3), the hardware can
835 	 * do this checksum offload.
836 	 */
837 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
838 		return false;
839 
840 	l4.hdr = skb_transport_header(skb);
841 
842 	if (!(!skb->encapsulation &&
843 	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
844 	      l4.udp->dest == htons(GENEVE_UDP_PORT))))
845 		return false;
846 
847 	skb_checksum_help(skb);
848 
849 	return true;
850 }
851 
852 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
853 				  u32 *ol_type_vlan_len_msec)
854 {
855 	u32 l2_len, l3_len, l4_len;
856 	unsigned char *il2_hdr;
857 	union l3_hdr_info l3;
858 	union l4_hdr_info l4;
859 
860 	l3.hdr = skb_network_header(skb);
861 	l4.hdr = skb_transport_header(skb);
862 
863 	/* compute OL2 header size, defined in 2 Bytes */
864 	l2_len = l3.hdr - skb->data;
865 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
866 
867 	/* compute OL3 header size, defined in 4 Bytes */
868 	l3_len = l4.hdr - l3.hdr;
869 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
870 
871 	il2_hdr = skb_inner_mac_header(skb);
872 	/* compute OL4 header size, defined in 4 Bytes */
873 	l4_len = il2_hdr - l4.hdr;
874 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
875 
876 	/* define outer network header type */
877 	if (skb->protocol == htons(ETH_P_IP)) {
878 		if (skb_is_gso(skb))
879 			hns3_set_field(*ol_type_vlan_len_msec,
880 				       HNS3_TXD_OL3T_S,
881 				       HNS3_OL3T_IPV4_CSUM);
882 		else
883 			hns3_set_field(*ol_type_vlan_len_msec,
884 				       HNS3_TXD_OL3T_S,
885 				       HNS3_OL3T_IPV4_NO_CSUM);
886 
887 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
888 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
889 			       HNS3_OL3T_IPV6);
890 	}
891 
892 	if (ol4_proto == IPPROTO_UDP)
893 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
894 			       HNS3_TUN_MAC_IN_UDP);
895 	else if (ol4_proto == IPPROTO_GRE)
896 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
897 			       HNS3_TUN_NVGRE);
898 }
899 
900 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
901 			   u8 il4_proto, u32 *type_cs_vlan_tso,
902 			   u32 *ol_type_vlan_len_msec)
903 {
904 	unsigned char *l2_hdr = skb->data;
905 	u32 l4_proto = ol4_proto;
906 	union l4_hdr_info l4;
907 	union l3_hdr_info l3;
908 	u32 l2_len, l3_len;
909 
910 	l4.hdr = skb_transport_header(skb);
911 	l3.hdr = skb_network_header(skb);
912 
913 	/* handle encapsulation skb */
914 	if (skb->encapsulation) {
915 		/* If this is a not UDP/GRE encapsulation skb */
916 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
917 			/* drop the skb tunnel packet if hardware don't support,
918 			 * because hardware can't calculate csum when TSO.
919 			 */
920 			if (skb_is_gso(skb))
921 				return -EDOM;
922 
923 			/* the stack computes the IP header already,
924 			 * driver calculate l4 checksum when not TSO.
925 			 */
926 			skb_checksum_help(skb);
927 			return 0;
928 		}
929 
930 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
931 
932 		/* switch to inner header */
933 		l2_hdr = skb_inner_mac_header(skb);
934 		l3.hdr = skb_inner_network_header(skb);
935 		l4.hdr = skb_inner_transport_header(skb);
936 		l4_proto = il4_proto;
937 	}
938 
939 	if (l3.v4->version == 4) {
940 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
941 			       HNS3_L3T_IPV4);
942 
943 		/* the stack computes the IP header already, the only time we
944 		 * need the hardware to recompute it is in the case of TSO.
945 		 */
946 		if (skb_is_gso(skb))
947 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
948 	} else if (l3.v6->version == 6) {
949 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
950 			       HNS3_L3T_IPV6);
951 	}
952 
953 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
954 	l2_len = l3.hdr - l2_hdr;
955 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
956 
957 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
958 	l3_len = l4.hdr - l3.hdr;
959 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
960 
961 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
962 	switch (l4_proto) {
963 	case IPPROTO_TCP:
964 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
965 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
966 			       HNS3_L4T_TCP);
967 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
968 			       l4.tcp->doff);
969 		break;
970 	case IPPROTO_UDP:
971 		if (hns3_tunnel_csum_bug(skb))
972 			break;
973 
974 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
975 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
976 			       HNS3_L4T_UDP);
977 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
978 			       (sizeof(struct udphdr) >> 2));
979 		break;
980 	case IPPROTO_SCTP:
981 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
982 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
983 			       HNS3_L4T_SCTP);
984 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
985 			       (sizeof(struct sctphdr) >> 2));
986 		break;
987 	default:
988 		/* drop the skb tunnel packet if hardware don't support,
989 		 * because hardware can't calculate csum when TSO.
990 		 */
991 		if (skb_is_gso(skb))
992 			return -EDOM;
993 
994 		/* the stack computes the IP header already,
995 		 * driver calculate l4 checksum when not TSO.
996 		 */
997 		skb_checksum_help(skb);
998 		return 0;
999 	}
1000 
1001 	return 0;
1002 }
1003 
1004 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1005 			     struct sk_buff *skb)
1006 {
1007 	struct hnae3_handle *handle = tx_ring->tqp->handle;
1008 	struct hnae3_ae_dev *ae_dev;
1009 	struct vlan_ethhdr *vhdr;
1010 	int rc;
1011 
1012 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
1013 	      skb_vlan_tag_present(skb)))
1014 		return 0;
1015 
1016 	/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1017 	 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1018 	 * will cause RAS error.
1019 	 */
1020 	ae_dev = pci_get_drvdata(handle->pdev);
1021 	if (unlikely(skb_vlan_tagged_multi(skb) &&
1022 		     ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1023 		     handle->port_base_vlan_state ==
1024 		     HNAE3_PORT_BASE_VLAN_ENABLE))
1025 		return -EINVAL;
1026 
1027 	if (skb->protocol == htons(ETH_P_8021Q) &&
1028 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1029 		/* When HW VLAN acceleration is turned off, and the stack
1030 		 * sets the protocol to 802.1q, the driver just need to
1031 		 * set the protocol to the encapsulated ethertype.
1032 		 */
1033 		skb->protocol = vlan_get_protocol(skb);
1034 		return 0;
1035 	}
1036 
1037 	if (skb_vlan_tag_present(skb)) {
1038 		/* Based on hw strategy, use out_vtag in two layer tag case,
1039 		 * and use inner_vtag in one tag case.
1040 		 */
1041 		if (skb->protocol == htons(ETH_P_8021Q) &&
1042 		    handle->port_base_vlan_state ==
1043 		    HNAE3_PORT_BASE_VLAN_DISABLE)
1044 			rc = HNS3_OUTER_VLAN_TAG;
1045 		else
1046 			rc = HNS3_INNER_VLAN_TAG;
1047 
1048 		skb->protocol = vlan_get_protocol(skb);
1049 		return rc;
1050 	}
1051 
1052 	rc = skb_cow_head(skb, 0);
1053 	if (unlikely(rc < 0))
1054 		return rc;
1055 
1056 	vhdr = (struct vlan_ethhdr *)skb->data;
1057 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1058 					 & VLAN_PRIO_MASK);
1059 
1060 	skb->protocol = vlan_get_protocol(skb);
1061 	return 0;
1062 }
1063 
1064 /* check if the hardware is capable of checksum offloading */
1065 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1066 {
1067 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1068 
1069 	/* Kindly note, due to backward compatibility of the TX descriptor,
1070 	 * HW checksum of the non-IP packets and GSO packets is handled at
1071 	 * different place in the following code
1072 	 */
1073 	if (skb->csum_not_inet || skb_is_gso(skb) ||
1074 	    !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1075 		return false;
1076 
1077 	return true;
1078 }
1079 
1080 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1081 			      struct sk_buff *skb, struct hns3_desc *desc)
1082 {
1083 	u32 ol_type_vlan_len_msec = 0;
1084 	u32 paylen_ol4cs = skb->len;
1085 	u32 type_cs_vlan_tso = 0;
1086 	u16 mss_hw_csum = 0;
1087 	u16 inner_vtag = 0;
1088 	u16 out_vtag = 0;
1089 	int ret;
1090 
1091 	ret = hns3_handle_vtags(ring, skb);
1092 	if (unlikely(ret < 0)) {
1093 		u64_stats_update_begin(&ring->syncp);
1094 		ring->stats.tx_vlan_err++;
1095 		u64_stats_update_end(&ring->syncp);
1096 		return ret;
1097 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1098 		inner_vtag = skb_vlan_tag_get(skb);
1099 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1100 				VLAN_PRIO_MASK;
1101 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1102 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1103 		out_vtag = skb_vlan_tag_get(skb);
1104 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1105 				VLAN_PRIO_MASK;
1106 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1107 			       1);
1108 	}
1109 
1110 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1111 		u8 ol4_proto, il4_proto;
1112 
1113 		if (hns3_check_hw_tx_csum(skb)) {
1114 			/* set checksum start and offset, defined in 2 Bytes */
1115 			hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1116 				       skb_checksum_start_offset(skb) >> 1);
1117 			hns3_set_field(ol_type_vlan_len_msec,
1118 				       HNS3_TXD_CSUM_OFFSET_S,
1119 				       skb->csum_offset >> 1);
1120 			mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1121 			goto out_hw_tx_csum;
1122 		}
1123 
1124 		skb_reset_mac_len(skb);
1125 
1126 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1127 		if (unlikely(ret < 0)) {
1128 			u64_stats_update_begin(&ring->syncp);
1129 			ring->stats.tx_l4_proto_err++;
1130 			u64_stats_update_end(&ring->syncp);
1131 			return ret;
1132 		}
1133 
1134 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1135 				      &type_cs_vlan_tso,
1136 				      &ol_type_vlan_len_msec);
1137 		if (unlikely(ret < 0)) {
1138 			u64_stats_update_begin(&ring->syncp);
1139 			ring->stats.tx_l2l3l4_err++;
1140 			u64_stats_update_end(&ring->syncp);
1141 			return ret;
1142 		}
1143 
1144 		ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum,
1145 				   &type_cs_vlan_tso);
1146 		if (unlikely(ret < 0)) {
1147 			u64_stats_update_begin(&ring->syncp);
1148 			ring->stats.tx_tso_err++;
1149 			u64_stats_update_end(&ring->syncp);
1150 			return ret;
1151 		}
1152 	}
1153 
1154 out_hw_tx_csum:
1155 	/* Set txbd */
1156 	desc->tx.ol_type_vlan_len_msec =
1157 		cpu_to_le32(ol_type_vlan_len_msec);
1158 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1159 	desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs);
1160 	desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum);
1161 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1162 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1163 
1164 	return 0;
1165 }
1166 
1167 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1168 			  unsigned int size, enum hns_desc_type type)
1169 {
1170 #define HNS3_LIKELY_BD_NUM	1
1171 
1172 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1173 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1174 	struct device *dev = ring_to_dev(ring);
1175 	skb_frag_t *frag;
1176 	unsigned int frag_buf_num;
1177 	int k, sizeoflast;
1178 	dma_addr_t dma;
1179 
1180 	if (type == DESC_TYPE_FRAGLIST_SKB ||
1181 	    type == DESC_TYPE_SKB) {
1182 		struct sk_buff *skb = (struct sk_buff *)priv;
1183 
1184 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1185 	} else {
1186 		frag = (skb_frag_t *)priv;
1187 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1188 	}
1189 
1190 	if (unlikely(dma_mapping_error(dev, dma))) {
1191 		u64_stats_update_begin(&ring->syncp);
1192 		ring->stats.sw_err_cnt++;
1193 		u64_stats_update_end(&ring->syncp);
1194 		return -ENOMEM;
1195 	}
1196 
1197 	desc_cb->priv = priv;
1198 	desc_cb->length = size;
1199 	desc_cb->dma = dma;
1200 	desc_cb->type = type;
1201 
1202 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1203 		desc->addr = cpu_to_le64(dma);
1204 		desc->tx.send_size = cpu_to_le16(size);
1205 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1206 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1207 
1208 		trace_hns3_tx_desc(ring, ring->next_to_use);
1209 		ring_ptr_move_fw(ring, next_to_use);
1210 		return HNS3_LIKELY_BD_NUM;
1211 	}
1212 
1213 	frag_buf_num = hns3_tx_bd_count(size);
1214 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1215 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1216 
1217 	/* When frag size is bigger than hardware limit, split this frag */
1218 	for (k = 0; k < frag_buf_num; k++) {
1219 		/* now, fill the descriptor */
1220 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1221 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1222 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1223 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1224 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1225 
1226 		trace_hns3_tx_desc(ring, ring->next_to_use);
1227 		/* move ring pointer to next */
1228 		ring_ptr_move_fw(ring, next_to_use);
1229 
1230 		desc = &ring->desc[ring->next_to_use];
1231 	}
1232 
1233 	return frag_buf_num;
1234 }
1235 
1236 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1237 				    unsigned int bd_num)
1238 {
1239 	unsigned int size;
1240 	int i;
1241 
1242 	size = skb_headlen(skb);
1243 	while (size > HNS3_MAX_BD_SIZE) {
1244 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1245 		size -= HNS3_MAX_BD_SIZE;
1246 
1247 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1248 			return bd_num;
1249 	}
1250 
1251 	if (size) {
1252 		bd_size[bd_num++] = size;
1253 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1254 			return bd_num;
1255 	}
1256 
1257 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1258 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1259 		size = skb_frag_size(frag);
1260 		if (!size)
1261 			continue;
1262 
1263 		while (size > HNS3_MAX_BD_SIZE) {
1264 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1265 			size -= HNS3_MAX_BD_SIZE;
1266 
1267 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1268 				return bd_num;
1269 		}
1270 
1271 		bd_size[bd_num++] = size;
1272 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1273 			return bd_num;
1274 	}
1275 
1276 	return bd_num;
1277 }
1278 
1279 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1280 				   u8 max_non_tso_bd_num)
1281 {
1282 	struct sk_buff *frag_skb;
1283 	unsigned int bd_num = 0;
1284 
1285 	/* If the total len is within the max bd limit */
1286 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !skb_has_frag_list(skb) &&
1287 		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1288 		return skb_shinfo(skb)->nr_frags + 1U;
1289 
1290 	/* The below case will always be linearized, return
1291 	 * HNS3_MAX_BD_NUM_TSO + 1U to make sure it is linearized.
1292 	 */
1293 	if (unlikely(skb->len > HNS3_MAX_TSO_SIZE ||
1294 		     (!skb_is_gso(skb) && skb->len >
1295 		      HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))))
1296 		return HNS3_MAX_TSO_BD_NUM + 1U;
1297 
1298 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1299 
1300 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1301 		return bd_num;
1302 
1303 	skb_walk_frags(skb, frag_skb) {
1304 		bd_num = hns3_skb_bd_num(frag_skb, bd_size, bd_num);
1305 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1306 			return bd_num;
1307 	}
1308 
1309 	return bd_num;
1310 }
1311 
1312 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1313 {
1314 	if (!skb->encapsulation)
1315 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1316 
1317 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1318 }
1319 
1320 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1321  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1322  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1323  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1324  * than MSS except the last max_non_tso_bd_num - 1 frags.
1325  */
1326 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1327 				     unsigned int bd_num, u8 max_non_tso_bd_num)
1328 {
1329 	unsigned int tot_len = 0;
1330 	int i;
1331 
1332 	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1333 		tot_len += bd_size[i];
1334 
1335 	/* ensure the first max_non_tso_bd_num frags is greater than
1336 	 * mss + header
1337 	 */
1338 	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1339 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1340 		return true;
1341 
1342 	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1343 	 * than mss except the last one.
1344 	 */
1345 	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1346 		tot_len -= bd_size[i];
1347 		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1348 
1349 		if (tot_len < skb_shinfo(skb)->gso_size)
1350 			return true;
1351 	}
1352 
1353 	return false;
1354 }
1355 
1356 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1357 {
1358 	int i;
1359 
1360 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1361 		size[i] = skb_frag_size(&shinfo->frags[i]);
1362 }
1363 
1364 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1365 				  struct net_device *netdev,
1366 				  struct sk_buff *skb)
1367 {
1368 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1369 	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1370 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1371 	unsigned int bd_num;
1372 
1373 	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num);
1374 	if (unlikely(bd_num > max_non_tso_bd_num)) {
1375 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1376 		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
1377 					      max_non_tso_bd_num)) {
1378 			trace_hns3_over_max_bd(skb);
1379 			goto out;
1380 		}
1381 
1382 		if (__skb_linearize(skb))
1383 			return -ENOMEM;
1384 
1385 		bd_num = hns3_tx_bd_count(skb->len);
1386 		if ((skb_is_gso(skb) && bd_num > HNS3_MAX_TSO_BD_NUM) ||
1387 		    (!skb_is_gso(skb) &&
1388 		     bd_num > max_non_tso_bd_num)) {
1389 			trace_hns3_over_max_bd(skb);
1390 			return -ENOMEM;
1391 		}
1392 
1393 		u64_stats_update_begin(&ring->syncp);
1394 		ring->stats.tx_copy++;
1395 		u64_stats_update_end(&ring->syncp);
1396 	}
1397 
1398 out:
1399 	if (likely(ring_space(ring) >= bd_num))
1400 		return bd_num;
1401 
1402 	netif_stop_subqueue(netdev, ring->queue_index);
1403 	smp_mb(); /* Memory barrier before checking ring_space */
1404 
1405 	/* Start queue in case hns3_clean_tx_ring has just made room
1406 	 * available and has not seen the queue stopped state performed
1407 	 * by netif_stop_subqueue above.
1408 	 */
1409 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1410 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1411 		netif_start_subqueue(netdev, ring->queue_index);
1412 		return bd_num;
1413 	}
1414 
1415 	return -EBUSY;
1416 }
1417 
1418 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1419 {
1420 	struct device *dev = ring_to_dev(ring);
1421 	unsigned int i;
1422 
1423 	for (i = 0; i < ring->desc_num; i++) {
1424 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1425 
1426 		memset(desc, 0, sizeof(*desc));
1427 
1428 		/* check if this is where we started */
1429 		if (ring->next_to_use == next_to_use_orig)
1430 			break;
1431 
1432 		/* rollback one */
1433 		ring_ptr_move_bw(ring, next_to_use);
1434 
1435 		if (!ring->desc_cb[ring->next_to_use].dma)
1436 			continue;
1437 
1438 		/* unmap the descriptor dma address */
1439 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB ||
1440 		    ring->desc_cb[ring->next_to_use].type ==
1441 		    DESC_TYPE_FRAGLIST_SKB)
1442 			dma_unmap_single(dev,
1443 					 ring->desc_cb[ring->next_to_use].dma,
1444 					ring->desc_cb[ring->next_to_use].length,
1445 					DMA_TO_DEVICE);
1446 		else if (ring->desc_cb[ring->next_to_use].length)
1447 			dma_unmap_page(dev,
1448 				       ring->desc_cb[ring->next_to_use].dma,
1449 				       ring->desc_cb[ring->next_to_use].length,
1450 				       DMA_TO_DEVICE);
1451 
1452 		ring->desc_cb[ring->next_to_use].length = 0;
1453 		ring->desc_cb[ring->next_to_use].dma = 0;
1454 		ring->desc_cb[ring->next_to_use].type = DESC_TYPE_UNKNOWN;
1455 	}
1456 }
1457 
1458 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1459 				 struct sk_buff *skb, enum hns_desc_type type)
1460 {
1461 	unsigned int size = skb_headlen(skb);
1462 	int i, ret, bd_num = 0;
1463 
1464 	if (size) {
1465 		ret = hns3_fill_desc(ring, skb, size, type);
1466 		if (unlikely(ret < 0))
1467 			return ret;
1468 
1469 		bd_num += ret;
1470 	}
1471 
1472 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1473 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1474 
1475 		size = skb_frag_size(frag);
1476 		if (!size)
1477 			continue;
1478 
1479 		ret = hns3_fill_desc(ring, frag, size, DESC_TYPE_PAGE);
1480 		if (unlikely(ret < 0))
1481 			return ret;
1482 
1483 		bd_num += ret;
1484 	}
1485 
1486 	return bd_num;
1487 }
1488 
1489 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
1490 			     bool doorbell)
1491 {
1492 	ring->pending_buf += num;
1493 
1494 	if (!doorbell) {
1495 		u64_stats_update_begin(&ring->syncp);
1496 		ring->stats.tx_more++;
1497 		u64_stats_update_end(&ring->syncp);
1498 		return;
1499 	}
1500 
1501 	if (!ring->pending_buf)
1502 		return;
1503 
1504 	writel(ring->pending_buf,
1505 	       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
1506 	ring->pending_buf = 0;
1507 	WRITE_ONCE(ring->last_to_use, ring->next_to_use);
1508 }
1509 
1510 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1511 {
1512 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1513 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
1514 	struct netdev_queue *dev_queue;
1515 	int pre_ntu, next_to_use_head;
1516 	struct sk_buff *frag_skb;
1517 	int bd_num = 0;
1518 	bool doorbell;
1519 	int ret;
1520 
1521 	/* Hardware can only handle short frames above 32 bytes */
1522 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
1523 		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1524 		return NETDEV_TX_OK;
1525 	}
1526 
1527 	/* Prefetch the data used later */
1528 	prefetch(skb->data);
1529 
1530 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
1531 	if (unlikely(ret <= 0)) {
1532 		if (ret == -EBUSY) {
1533 			u64_stats_update_begin(&ring->syncp);
1534 			ring->stats.tx_busy++;
1535 			u64_stats_update_end(&ring->syncp);
1536 			hns3_tx_doorbell(ring, 0, true);
1537 			return NETDEV_TX_BUSY;
1538 		} else if (ret == -ENOMEM) {
1539 			u64_stats_update_begin(&ring->syncp);
1540 			ring->stats.sw_err_cnt++;
1541 			u64_stats_update_end(&ring->syncp);
1542 		}
1543 
1544 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
1545 		goto out_err_tx_ok;
1546 	}
1547 
1548 	next_to_use_head = ring->next_to_use;
1549 
1550 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use]);
1551 	if (unlikely(ret < 0))
1552 		goto fill_err;
1553 
1554 	ret = hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
1555 	if (unlikely(ret < 0))
1556 		goto fill_err;
1557 
1558 	bd_num += ret;
1559 
1560 	skb_walk_frags(skb, frag_skb) {
1561 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
1562 					    DESC_TYPE_FRAGLIST_SKB);
1563 		if (unlikely(ret < 0))
1564 			goto fill_err;
1565 
1566 		bd_num += ret;
1567 	}
1568 
1569 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
1570 					(ring->desc_num - 1);
1571 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
1572 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
1573 	trace_hns3_tx_desc(ring, pre_ntu);
1574 
1575 	/* Complete translate all packets */
1576 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
1577 	doorbell = __netdev_tx_sent_queue(dev_queue, skb->len,
1578 					  netdev_xmit_more());
1579 	hns3_tx_doorbell(ring, bd_num, doorbell);
1580 
1581 	return NETDEV_TX_OK;
1582 
1583 fill_err:
1584 	hns3_clear_desc(ring, next_to_use_head);
1585 
1586 out_err_tx_ok:
1587 	dev_kfree_skb_any(skb);
1588 	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
1589 	return NETDEV_TX_OK;
1590 }
1591 
1592 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1593 {
1594 	struct hnae3_handle *h = hns3_get_handle(netdev);
1595 	struct sockaddr *mac_addr = p;
1596 	int ret;
1597 
1598 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1599 		return -EADDRNOTAVAIL;
1600 
1601 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1602 		netdev_info(netdev, "already using mac address %pM\n",
1603 			    mac_addr->sa_data);
1604 		return 0;
1605 	}
1606 
1607 	/* For VF device, if there is a perm_addr, then the user will not
1608 	 * be allowed to change the address.
1609 	 */
1610 	if (!hns3_is_phys_func(h->pdev) &&
1611 	    !is_zero_ether_addr(netdev->perm_addr)) {
1612 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
1613 			   netdev->perm_addr, mac_addr->sa_data);
1614 		return -EPERM;
1615 	}
1616 
1617 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1618 	if (ret) {
1619 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1620 		return ret;
1621 	}
1622 
1623 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1624 
1625 	return 0;
1626 }
1627 
1628 static int hns3_nic_do_ioctl(struct net_device *netdev,
1629 			     struct ifreq *ifr, int cmd)
1630 {
1631 	struct hnae3_handle *h = hns3_get_handle(netdev);
1632 
1633 	if (!netif_running(netdev))
1634 		return -EINVAL;
1635 
1636 	if (!h->ae_algo->ops->do_ioctl)
1637 		return -EOPNOTSUPP;
1638 
1639 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1640 }
1641 
1642 static int hns3_nic_set_features(struct net_device *netdev,
1643 				 netdev_features_t features)
1644 {
1645 	netdev_features_t changed = netdev->features ^ features;
1646 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1647 	struct hnae3_handle *h = priv->ae_handle;
1648 	bool enable;
1649 	int ret;
1650 
1651 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1652 		enable = !!(features & NETIF_F_GRO_HW);
1653 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1654 		if (ret)
1655 			return ret;
1656 	}
1657 
1658 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1659 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1660 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1661 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1662 		if (ret)
1663 			return ret;
1664 	}
1665 
1666 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1667 		enable = !!(features & NETIF_F_NTUPLE);
1668 		h->ae_algo->ops->enable_fd(h, enable);
1669 	}
1670 
1671 	if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
1672 	    h->ae_algo->ops->cls_flower_active(h)) {
1673 		netdev_err(netdev,
1674 			   "there are offloaded TC filters active, cannot disable HW TC offload");
1675 		return -EINVAL;
1676 	}
1677 
1678 	netdev->features = features;
1679 	return 0;
1680 }
1681 
1682 static netdev_features_t hns3_features_check(struct sk_buff *skb,
1683 					     struct net_device *dev,
1684 					     netdev_features_t features)
1685 {
1686 #define HNS3_MAX_HDR_LEN	480U
1687 #define HNS3_MAX_L4_HDR_LEN	60U
1688 
1689 	size_t len;
1690 
1691 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1692 		return features;
1693 
1694 	if (skb->encapsulation)
1695 		len = skb_inner_transport_header(skb) - skb->data;
1696 	else
1697 		len = skb_transport_header(skb) - skb->data;
1698 
1699 	/* Assume L4 is 60 byte as TCP is the only protocol with a
1700 	 * a flexible value, and it's max len is 60 bytes.
1701 	 */
1702 	len += HNS3_MAX_L4_HDR_LEN;
1703 
1704 	/* Hardware only supports checksum on the skb with a max header
1705 	 * len of 480 bytes.
1706 	 */
1707 	if (len > HNS3_MAX_HDR_LEN)
1708 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1709 
1710 	return features;
1711 }
1712 
1713 static void hns3_nic_get_stats64(struct net_device *netdev,
1714 				 struct rtnl_link_stats64 *stats)
1715 {
1716 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1717 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1718 	struct hnae3_handle *handle = priv->ae_handle;
1719 	struct hns3_enet_ring *ring;
1720 	u64 rx_length_errors = 0;
1721 	u64 rx_crc_errors = 0;
1722 	u64 rx_multicast = 0;
1723 	unsigned int start;
1724 	u64 tx_errors = 0;
1725 	u64 rx_errors = 0;
1726 	unsigned int idx;
1727 	u64 tx_bytes = 0;
1728 	u64 rx_bytes = 0;
1729 	u64 tx_pkts = 0;
1730 	u64 rx_pkts = 0;
1731 	u64 tx_drop = 0;
1732 	u64 rx_drop = 0;
1733 
1734 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1735 		return;
1736 
1737 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1738 
1739 	for (idx = 0; idx < queue_num; idx++) {
1740 		/* fetch the tx stats */
1741 		ring = &priv->ring[idx];
1742 		do {
1743 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1744 			tx_bytes += ring->stats.tx_bytes;
1745 			tx_pkts += ring->stats.tx_pkts;
1746 			tx_drop += ring->stats.sw_err_cnt;
1747 			tx_drop += ring->stats.tx_vlan_err;
1748 			tx_drop += ring->stats.tx_l4_proto_err;
1749 			tx_drop += ring->stats.tx_l2l3l4_err;
1750 			tx_drop += ring->stats.tx_tso_err;
1751 			tx_errors += ring->stats.sw_err_cnt;
1752 			tx_errors += ring->stats.tx_vlan_err;
1753 			tx_errors += ring->stats.tx_l4_proto_err;
1754 			tx_errors += ring->stats.tx_l2l3l4_err;
1755 			tx_errors += ring->stats.tx_tso_err;
1756 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1757 
1758 		/* fetch the rx stats */
1759 		ring = &priv->ring[idx + queue_num];
1760 		do {
1761 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1762 			rx_bytes += ring->stats.rx_bytes;
1763 			rx_pkts += ring->stats.rx_pkts;
1764 			rx_drop += ring->stats.l2_err;
1765 			rx_errors += ring->stats.l2_err;
1766 			rx_errors += ring->stats.l3l4_csum_err;
1767 			rx_crc_errors += ring->stats.l2_err;
1768 			rx_multicast += ring->stats.rx_multicast;
1769 			rx_length_errors += ring->stats.err_pkt_len;
1770 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1771 	}
1772 
1773 	stats->tx_bytes = tx_bytes;
1774 	stats->tx_packets = tx_pkts;
1775 	stats->rx_bytes = rx_bytes;
1776 	stats->rx_packets = rx_pkts;
1777 
1778 	stats->rx_errors = rx_errors;
1779 	stats->multicast = rx_multicast;
1780 	stats->rx_length_errors = rx_length_errors;
1781 	stats->rx_crc_errors = rx_crc_errors;
1782 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1783 
1784 	stats->tx_errors = tx_errors;
1785 	stats->rx_dropped = rx_drop;
1786 	stats->tx_dropped = tx_drop;
1787 	stats->collisions = netdev->stats.collisions;
1788 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1789 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1790 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1791 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1792 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1793 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1794 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1795 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1796 	stats->rx_compressed = netdev->stats.rx_compressed;
1797 	stats->tx_compressed = netdev->stats.tx_compressed;
1798 }
1799 
1800 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1801 {
1802 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1803 	struct hnae3_knic_private_info *kinfo;
1804 	u8 tc = mqprio_qopt->qopt.num_tc;
1805 	u16 mode = mqprio_qopt->mode;
1806 	u8 hw = mqprio_qopt->qopt.hw;
1807 	struct hnae3_handle *h;
1808 
1809 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1810 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1811 		return -EOPNOTSUPP;
1812 
1813 	if (tc > HNAE3_MAX_TC)
1814 		return -EINVAL;
1815 
1816 	if (!netdev)
1817 		return -EINVAL;
1818 
1819 	h = hns3_get_handle(netdev);
1820 	kinfo = &h->kinfo;
1821 
1822 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
1823 
1824 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1825 		kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
1826 }
1827 
1828 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
1829 				    struct flow_cls_offload *flow)
1830 {
1831 	int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
1832 	struct hnae3_handle *h = hns3_get_handle(priv->netdev);
1833 
1834 	switch (flow->command) {
1835 	case FLOW_CLS_REPLACE:
1836 		if (h->ae_algo->ops->add_cls_flower)
1837 			return h->ae_algo->ops->add_cls_flower(h, flow, tc);
1838 		break;
1839 	case FLOW_CLS_DESTROY:
1840 		if (h->ae_algo->ops->del_cls_flower)
1841 			return h->ae_algo->ops->del_cls_flower(h, flow);
1842 		break;
1843 	default:
1844 		break;
1845 	}
1846 
1847 	return -EOPNOTSUPP;
1848 }
1849 
1850 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
1851 				  void *cb_priv)
1852 {
1853 	struct hns3_nic_priv *priv = cb_priv;
1854 
1855 	if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
1856 		return -EOPNOTSUPP;
1857 
1858 	switch (type) {
1859 	case TC_SETUP_CLSFLOWER:
1860 		return hns3_setup_tc_cls_flower(priv, type_data);
1861 	default:
1862 		return -EOPNOTSUPP;
1863 	}
1864 }
1865 
1866 static LIST_HEAD(hns3_block_cb_list);
1867 
1868 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1869 			     void *type_data)
1870 {
1871 	struct hns3_nic_priv *priv = netdev_priv(dev);
1872 	int ret;
1873 
1874 	switch (type) {
1875 	case TC_SETUP_QDISC_MQPRIO:
1876 		ret = hns3_setup_tc(dev, type_data);
1877 		break;
1878 	case TC_SETUP_BLOCK:
1879 		ret = flow_block_cb_setup_simple(type_data,
1880 						 &hns3_block_cb_list,
1881 						 hns3_setup_tc_block_cb,
1882 						 priv, priv, true);
1883 		break;
1884 	default:
1885 		return -EOPNOTSUPP;
1886 	}
1887 
1888 	return ret;
1889 }
1890 
1891 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1892 				__be16 proto, u16 vid)
1893 {
1894 	struct hnae3_handle *h = hns3_get_handle(netdev);
1895 	int ret = -EIO;
1896 
1897 	if (h->ae_algo->ops->set_vlan_filter)
1898 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1899 
1900 	return ret;
1901 }
1902 
1903 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1904 				 __be16 proto, u16 vid)
1905 {
1906 	struct hnae3_handle *h = hns3_get_handle(netdev);
1907 	int ret = -EIO;
1908 
1909 	if (h->ae_algo->ops->set_vlan_filter)
1910 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1911 
1912 	return ret;
1913 }
1914 
1915 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1916 				u8 qos, __be16 vlan_proto)
1917 {
1918 	struct hnae3_handle *h = hns3_get_handle(netdev);
1919 	int ret = -EIO;
1920 
1921 	netif_dbg(h, drv, netdev,
1922 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
1923 		  vf, vlan, qos, ntohs(vlan_proto));
1924 
1925 	if (h->ae_algo->ops->set_vf_vlan_filter)
1926 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1927 							  qos, vlan_proto);
1928 
1929 	return ret;
1930 }
1931 
1932 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
1933 {
1934 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1935 
1936 	if (hns3_nic_resetting(netdev))
1937 		return -EBUSY;
1938 
1939 	if (!handle->ae_algo->ops->set_vf_spoofchk)
1940 		return -EOPNOTSUPP;
1941 
1942 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
1943 }
1944 
1945 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
1946 {
1947 	struct hnae3_handle *handle = hns3_get_handle(netdev);
1948 
1949 	if (!handle->ae_algo->ops->set_vf_trust)
1950 		return -EOPNOTSUPP;
1951 
1952 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
1953 }
1954 
1955 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1956 {
1957 	struct hnae3_handle *h = hns3_get_handle(netdev);
1958 	int ret;
1959 
1960 	if (hns3_nic_resetting(netdev))
1961 		return -EBUSY;
1962 
1963 	if (!h->ae_algo->ops->set_mtu)
1964 		return -EOPNOTSUPP;
1965 
1966 	netif_dbg(h, drv, netdev,
1967 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
1968 
1969 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1970 	if (ret)
1971 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1972 			   ret);
1973 	else
1974 		netdev->mtu = new_mtu;
1975 
1976 	return ret;
1977 }
1978 
1979 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1980 {
1981 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1982 	struct hnae3_handle *h = hns3_get_handle(ndev);
1983 	struct hns3_enet_ring *tx_ring;
1984 	struct napi_struct *napi;
1985 	int timeout_queue = 0;
1986 	int hw_head, hw_tail;
1987 	int fbd_num, fbd_oft;
1988 	int ebd_num, ebd_oft;
1989 	int bd_num, bd_err;
1990 	int ring_en, tc;
1991 	int i;
1992 
1993 	/* Find the stopped queue the same way the stack does */
1994 	for (i = 0; i < ndev->num_tx_queues; i++) {
1995 		struct netdev_queue *q;
1996 		unsigned long trans_start;
1997 
1998 		q = netdev_get_tx_queue(ndev, i);
1999 		trans_start = q->trans_start;
2000 		if (netif_xmit_stopped(q) &&
2001 		    time_after(jiffies,
2002 			       (trans_start + ndev->watchdog_timeo))) {
2003 			timeout_queue = i;
2004 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2005 				    q->state,
2006 				    jiffies_to_msecs(jiffies - trans_start));
2007 			break;
2008 		}
2009 	}
2010 
2011 	if (i == ndev->num_tx_queues) {
2012 		netdev_info(ndev,
2013 			    "no netdev TX timeout queue found, timeout count: %llu\n",
2014 			    priv->tx_timeout_count);
2015 		return false;
2016 	}
2017 
2018 	priv->tx_timeout_count++;
2019 
2020 	tx_ring = &priv->ring[timeout_queue];
2021 	napi = &tx_ring->tqp_vector->napi;
2022 
2023 	netdev_info(ndev,
2024 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2025 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2026 		    tx_ring->next_to_clean, napi->state);
2027 
2028 	netdev_info(ndev,
2029 		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2030 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2031 		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2032 
2033 	netdev_info(ndev,
2034 		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2035 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2036 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2037 
2038 	/* When mac received many pause frames continuous, it's unable to send
2039 	 * packets, which may cause tx timeout
2040 	 */
2041 	if (h->ae_algo->ops->get_mac_stats) {
2042 		struct hns3_mac_stats mac_stats;
2043 
2044 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2045 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2046 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2047 	}
2048 
2049 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
2050 				HNS3_RING_TX_RING_HEAD_REG);
2051 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
2052 				HNS3_RING_TX_RING_TAIL_REG);
2053 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
2054 				HNS3_RING_TX_RING_FBDNUM_REG);
2055 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
2056 				HNS3_RING_TX_RING_OFFSET_REG);
2057 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
2058 				HNS3_RING_TX_RING_EBDNUM_REG);
2059 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
2060 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
2061 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
2062 			       HNS3_RING_TX_RING_BD_NUM_REG);
2063 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
2064 			       HNS3_RING_TX_RING_BD_ERR_REG);
2065 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
2066 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
2067 
2068 	netdev_info(ndev,
2069 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2070 		    bd_num, hw_head, hw_tail, bd_err,
2071 		    readl(tx_ring->tqp_vector->mask_addr));
2072 	netdev_info(ndev,
2073 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2074 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
2075 
2076 	return true;
2077 }
2078 
2079 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2080 {
2081 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2082 	struct hnae3_handle *h = priv->ae_handle;
2083 
2084 	if (!hns3_get_tx_timeo_queue_info(ndev))
2085 		return;
2086 
2087 	/* request the reset, and let the hclge to determine
2088 	 * which reset level should be done
2089 	 */
2090 	if (h->ae_algo->ops->reset_event)
2091 		h->ae_algo->ops->reset_event(h->pdev, h);
2092 }
2093 
2094 #ifdef CONFIG_RFS_ACCEL
2095 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2096 			      u16 rxq_index, u32 flow_id)
2097 {
2098 	struct hnae3_handle *h = hns3_get_handle(dev);
2099 	struct flow_keys fkeys;
2100 
2101 	if (!h->ae_algo->ops->add_arfs_entry)
2102 		return -EOPNOTSUPP;
2103 
2104 	if (skb->encapsulation)
2105 		return -EPROTONOSUPPORT;
2106 
2107 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2108 		return -EPROTONOSUPPORT;
2109 
2110 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2111 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2112 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
2113 	     fkeys.basic.ip_proto != IPPROTO_UDP))
2114 		return -EPROTONOSUPPORT;
2115 
2116 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2117 }
2118 #endif
2119 
2120 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2121 				  struct ifla_vf_info *ivf)
2122 {
2123 	struct hnae3_handle *h = hns3_get_handle(ndev);
2124 
2125 	if (!h->ae_algo->ops->get_vf_config)
2126 		return -EOPNOTSUPP;
2127 
2128 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2129 }
2130 
2131 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2132 				      int link_state)
2133 {
2134 	struct hnae3_handle *h = hns3_get_handle(ndev);
2135 
2136 	if (!h->ae_algo->ops->set_vf_link_state)
2137 		return -EOPNOTSUPP;
2138 
2139 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2140 }
2141 
2142 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2143 				int min_tx_rate, int max_tx_rate)
2144 {
2145 	struct hnae3_handle *h = hns3_get_handle(ndev);
2146 
2147 	if (!h->ae_algo->ops->set_vf_rate)
2148 		return -EOPNOTSUPP;
2149 
2150 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2151 					    false);
2152 }
2153 
2154 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2155 {
2156 	struct hnae3_handle *h = hns3_get_handle(netdev);
2157 
2158 	if (!h->ae_algo->ops->set_vf_mac)
2159 		return -EOPNOTSUPP;
2160 
2161 	if (is_multicast_ether_addr(mac)) {
2162 		netdev_err(netdev,
2163 			   "Invalid MAC:%pM specified. Could not set MAC\n",
2164 			   mac);
2165 		return -EINVAL;
2166 	}
2167 
2168 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2169 }
2170 
2171 static const struct net_device_ops hns3_nic_netdev_ops = {
2172 	.ndo_open		= hns3_nic_net_open,
2173 	.ndo_stop		= hns3_nic_net_stop,
2174 	.ndo_start_xmit		= hns3_nic_net_xmit,
2175 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2176 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2177 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
2178 	.ndo_change_mtu		= hns3_nic_change_mtu,
2179 	.ndo_set_features	= hns3_nic_set_features,
2180 	.ndo_features_check	= hns3_features_check,
2181 	.ndo_get_stats64	= hns3_nic_get_stats64,
2182 	.ndo_setup_tc		= hns3_nic_setup_tc,
2183 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2184 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2185 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2186 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2187 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2188 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2189 #ifdef CONFIG_RFS_ACCEL
2190 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2191 #endif
2192 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2193 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2194 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2195 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2196 };
2197 
2198 bool hns3_is_phys_func(struct pci_dev *pdev)
2199 {
2200 	u32 dev_id = pdev->device;
2201 
2202 	switch (dev_id) {
2203 	case HNAE3_DEV_ID_GE:
2204 	case HNAE3_DEV_ID_25GE:
2205 	case HNAE3_DEV_ID_25GE_RDMA:
2206 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2207 	case HNAE3_DEV_ID_50GE_RDMA:
2208 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2209 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2210 	case HNAE3_DEV_ID_200G_RDMA:
2211 		return true;
2212 	case HNAE3_DEV_ID_VF:
2213 	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2214 		return false;
2215 	default:
2216 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2217 			 dev_id);
2218 	}
2219 
2220 	return false;
2221 }
2222 
2223 static void hns3_disable_sriov(struct pci_dev *pdev)
2224 {
2225 	/* If our VFs are assigned we cannot shut down SR-IOV
2226 	 * without causing issues, so just leave the hardware
2227 	 * available but disabled
2228 	 */
2229 	if (pci_vfs_assigned(pdev)) {
2230 		dev_warn(&pdev->dev,
2231 			 "disabling driver while VFs are assigned\n");
2232 		return;
2233 	}
2234 
2235 	pci_disable_sriov(pdev);
2236 }
2237 
2238 /* hns3_probe - Device initialization routine
2239  * @pdev: PCI device information struct
2240  * @ent: entry in hns3_pci_tbl
2241  *
2242  * hns3_probe initializes a PF identified by a pci_dev structure.
2243  * The OS initialization, configuring of the PF private structure,
2244  * and a hardware reset occur.
2245  *
2246  * Returns 0 on success, negative on failure
2247  */
2248 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2249 {
2250 	struct hnae3_ae_dev *ae_dev;
2251 	int ret;
2252 
2253 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2254 	if (!ae_dev)
2255 		return -ENOMEM;
2256 
2257 	ae_dev->pdev = pdev;
2258 	ae_dev->flag = ent->driver_data;
2259 	pci_set_drvdata(pdev, ae_dev);
2260 
2261 	ret = hnae3_register_ae_dev(ae_dev);
2262 	if (ret)
2263 		pci_set_drvdata(pdev, NULL);
2264 
2265 	return ret;
2266 }
2267 
2268 /* hns3_remove - Device removal routine
2269  * @pdev: PCI device information struct
2270  */
2271 static void hns3_remove(struct pci_dev *pdev)
2272 {
2273 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2274 
2275 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2276 		hns3_disable_sriov(pdev);
2277 
2278 	hnae3_unregister_ae_dev(ae_dev);
2279 	pci_set_drvdata(pdev, NULL);
2280 }
2281 
2282 /**
2283  * hns3_pci_sriov_configure
2284  * @pdev: pointer to a pci_dev structure
2285  * @num_vfs: number of VFs to allocate
2286  *
2287  * Enable or change the number of VFs. Called when the user updates the number
2288  * of VFs in sysfs.
2289  **/
2290 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2291 {
2292 	int ret;
2293 
2294 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2295 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2296 		return -EINVAL;
2297 	}
2298 
2299 	if (num_vfs) {
2300 		ret = pci_enable_sriov(pdev, num_vfs);
2301 		if (ret)
2302 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2303 		else
2304 			return num_vfs;
2305 	} else if (!pci_vfs_assigned(pdev)) {
2306 		pci_disable_sriov(pdev);
2307 	} else {
2308 		dev_warn(&pdev->dev,
2309 			 "Unable to free VFs because some are assigned to VMs.\n");
2310 	}
2311 
2312 	return 0;
2313 }
2314 
2315 static void hns3_shutdown(struct pci_dev *pdev)
2316 {
2317 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2318 
2319 	hnae3_unregister_ae_dev(ae_dev);
2320 	pci_set_drvdata(pdev, NULL);
2321 
2322 	if (system_state == SYSTEM_POWER_OFF)
2323 		pci_set_power_state(pdev, PCI_D3hot);
2324 }
2325 
2326 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
2327 					    pci_channel_state_t state)
2328 {
2329 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2330 	pci_ers_result_t ret;
2331 
2332 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
2333 
2334 	if (state == pci_channel_io_perm_failure)
2335 		return PCI_ERS_RESULT_DISCONNECT;
2336 
2337 	if (!ae_dev || !ae_dev->ops) {
2338 		dev_err(&pdev->dev,
2339 			"Can't recover - error happened before device initialized\n");
2340 		return PCI_ERS_RESULT_NONE;
2341 	}
2342 
2343 	if (ae_dev->ops->handle_hw_ras_error)
2344 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
2345 	else
2346 		return PCI_ERS_RESULT_NONE;
2347 
2348 	return ret;
2349 }
2350 
2351 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
2352 {
2353 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2354 	const struct hnae3_ae_ops *ops;
2355 	enum hnae3_reset_type reset_type;
2356 	struct device *dev = &pdev->dev;
2357 
2358 	if (!ae_dev || !ae_dev->ops)
2359 		return PCI_ERS_RESULT_NONE;
2360 
2361 	ops = ae_dev->ops;
2362 	/* request the reset */
2363 	if (ops->reset_event && ops->get_reset_level &&
2364 	    ops->set_default_reset_request) {
2365 		if (ae_dev->hw_err_reset_req) {
2366 			reset_type = ops->get_reset_level(ae_dev,
2367 						&ae_dev->hw_err_reset_req);
2368 			ops->set_default_reset_request(ae_dev, reset_type);
2369 			dev_info(dev, "requesting reset due to PCI error\n");
2370 			ops->reset_event(pdev, NULL);
2371 		}
2372 
2373 		return PCI_ERS_RESULT_RECOVERED;
2374 	}
2375 
2376 	return PCI_ERS_RESULT_DISCONNECT;
2377 }
2378 
2379 static void hns3_reset_prepare(struct pci_dev *pdev)
2380 {
2381 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2382 
2383 	dev_info(&pdev->dev, "FLR prepare\n");
2384 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
2385 		ae_dev->ops->flr_prepare(ae_dev);
2386 }
2387 
2388 static void hns3_reset_done(struct pci_dev *pdev)
2389 {
2390 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2391 
2392 	dev_info(&pdev->dev, "FLR done\n");
2393 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
2394 		ae_dev->ops->flr_done(ae_dev);
2395 }
2396 
2397 static const struct pci_error_handlers hns3_err_handler = {
2398 	.error_detected = hns3_error_detected,
2399 	.slot_reset     = hns3_slot_reset,
2400 	.reset_prepare	= hns3_reset_prepare,
2401 	.reset_done	= hns3_reset_done,
2402 };
2403 
2404 static struct pci_driver hns3_driver = {
2405 	.name     = hns3_driver_name,
2406 	.id_table = hns3_pci_tbl,
2407 	.probe    = hns3_probe,
2408 	.remove   = hns3_remove,
2409 	.shutdown = hns3_shutdown,
2410 	.sriov_configure = hns3_pci_sriov_configure,
2411 	.err_handler    = &hns3_err_handler,
2412 };
2413 
2414 /* set default feature to hns3 */
2415 static void hns3_set_default_feature(struct net_device *netdev)
2416 {
2417 	struct hnae3_handle *h = hns3_get_handle(netdev);
2418 	struct pci_dev *pdev = h->pdev;
2419 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2420 
2421 	netdev->priv_flags |= IFF_UNICAST_FLT;
2422 
2423 	netdev->hw_enc_features |= NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2424 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2425 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2426 		NETIF_F_SCTP_CRC | NETIF_F_TSO_MANGLEID | NETIF_F_FRAGLIST;
2427 
2428 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
2429 
2430 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2431 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2432 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2433 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2434 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2435 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2436 
2437 	netdev->vlan_features |= NETIF_F_RXCSUM |
2438 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
2439 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2440 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2441 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2442 
2443 	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
2444 		NETIF_F_HW_VLAN_CTAG_RX |
2445 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2446 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2447 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2448 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
2449 
2450 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2451 		netdev->hw_features |= NETIF_F_GRO_HW;
2452 		netdev->features |= NETIF_F_GRO_HW;
2453 
2454 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2455 			netdev->hw_features |= NETIF_F_NTUPLE;
2456 			netdev->features |= NETIF_F_NTUPLE;
2457 		}
2458 	}
2459 
2460 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) {
2461 		netdev->hw_features |= NETIF_F_GSO_UDP_L4;
2462 		netdev->features |= NETIF_F_GSO_UDP_L4;
2463 		netdev->vlan_features |= NETIF_F_GSO_UDP_L4;
2464 		netdev->hw_enc_features |= NETIF_F_GSO_UDP_L4;
2465 	}
2466 
2467 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) {
2468 		netdev->hw_features |= NETIF_F_HW_CSUM;
2469 		netdev->features |= NETIF_F_HW_CSUM;
2470 		netdev->vlan_features |= NETIF_F_HW_CSUM;
2471 		netdev->hw_enc_features |= NETIF_F_HW_CSUM;
2472 	} else {
2473 		netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2474 		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2475 		netdev->vlan_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2476 		netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
2477 	}
2478 
2479 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) {
2480 		netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2481 		netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2482 		netdev->vlan_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2483 		netdev->hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
2484 	}
2485 
2486 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) {
2487 		netdev->hw_features |= NETIF_F_HW_TC;
2488 		netdev->features |= NETIF_F_HW_TC;
2489 	}
2490 }
2491 
2492 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2493 			     struct hns3_desc_cb *cb)
2494 {
2495 	unsigned int order = hns3_page_order(ring);
2496 	struct page *p;
2497 
2498 	p = dev_alloc_pages(order);
2499 	if (!p)
2500 		return -ENOMEM;
2501 
2502 	cb->priv = p;
2503 	cb->page_offset = 0;
2504 	cb->reuse_flag = 0;
2505 	cb->buf  = page_address(p);
2506 	cb->length = hns3_page_size(ring);
2507 	cb->type = DESC_TYPE_PAGE;
2508 	page_ref_add(p, USHRT_MAX - 1);
2509 	cb->pagecnt_bias = USHRT_MAX;
2510 
2511 	return 0;
2512 }
2513 
2514 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2515 			     struct hns3_desc_cb *cb, int budget)
2516 {
2517 	if (cb->type == DESC_TYPE_SKB)
2518 		napi_consume_skb(cb->priv, budget);
2519 	else if (!HNAE3_IS_TX_RING(ring) && cb->pagecnt_bias)
2520 		__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
2521 	memset(cb, 0, sizeof(*cb));
2522 }
2523 
2524 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2525 {
2526 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2527 			       cb->length, ring_to_dma_dir(ring));
2528 
2529 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2530 		return -EIO;
2531 
2532 	return 0;
2533 }
2534 
2535 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2536 			      struct hns3_desc_cb *cb)
2537 {
2538 	if (cb->type == DESC_TYPE_SKB || cb->type == DESC_TYPE_FRAGLIST_SKB)
2539 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2540 				 ring_to_dma_dir(ring));
2541 	else if (cb->length)
2542 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2543 			       ring_to_dma_dir(ring));
2544 }
2545 
2546 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2547 {
2548 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2549 	ring->desc[i].addr = 0;
2550 }
2551 
2552 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
2553 				    int budget)
2554 {
2555 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2556 
2557 	if (!ring->desc_cb[i].dma)
2558 		return;
2559 
2560 	hns3_buffer_detach(ring, i);
2561 	hns3_free_buffer(ring, cb, budget);
2562 }
2563 
2564 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2565 {
2566 	int i;
2567 
2568 	for (i = 0; i < ring->desc_num; i++)
2569 		hns3_free_buffer_detach(ring, i, 0);
2570 }
2571 
2572 /* free desc along with its attached buffer */
2573 static void hns3_free_desc(struct hns3_enet_ring *ring)
2574 {
2575 	int size = ring->desc_num * sizeof(ring->desc[0]);
2576 
2577 	hns3_free_buffers(ring);
2578 
2579 	if (ring->desc) {
2580 		dma_free_coherent(ring_to_dev(ring), size,
2581 				  ring->desc, ring->desc_dma_addr);
2582 		ring->desc = NULL;
2583 	}
2584 }
2585 
2586 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2587 {
2588 	int size = ring->desc_num * sizeof(ring->desc[0]);
2589 
2590 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2591 					&ring->desc_dma_addr, GFP_KERNEL);
2592 	if (!ring->desc)
2593 		return -ENOMEM;
2594 
2595 	return 0;
2596 }
2597 
2598 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
2599 				   struct hns3_desc_cb *cb)
2600 {
2601 	int ret;
2602 
2603 	ret = hns3_alloc_buffer(ring, cb);
2604 	if (ret)
2605 		goto out;
2606 
2607 	ret = hns3_map_buffer(ring, cb);
2608 	if (ret)
2609 		goto out_with_buf;
2610 
2611 	return 0;
2612 
2613 out_with_buf:
2614 	hns3_free_buffer(ring, cb, 0);
2615 out:
2616 	return ret;
2617 }
2618 
2619 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
2620 {
2621 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
2622 
2623 	if (ret)
2624 		return ret;
2625 
2626 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2627 
2628 	return 0;
2629 }
2630 
2631 /* Allocate memory for raw pkg, and map with dma */
2632 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2633 {
2634 	int i, j, ret;
2635 
2636 	for (i = 0; i < ring->desc_num; i++) {
2637 		ret = hns3_alloc_and_attach_buffer(ring, i);
2638 		if (ret)
2639 			goto out_buffer_fail;
2640 	}
2641 
2642 	return 0;
2643 
2644 out_buffer_fail:
2645 	for (j = i - 1; j >= 0; j--)
2646 		hns3_free_buffer_detach(ring, j, 0);
2647 	return ret;
2648 }
2649 
2650 /* detach a in-used buffer and replace with a reserved one */
2651 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2652 				struct hns3_desc_cb *res_cb)
2653 {
2654 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2655 	ring->desc_cb[i] = *res_cb;
2656 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2657 	ring->desc[i].rx.bd_base_info = 0;
2658 }
2659 
2660 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2661 {
2662 	ring->desc_cb[i].reuse_flag = 0;
2663 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
2664 					 ring->desc_cb[i].page_offset);
2665 	ring->desc[i].rx.bd_base_info = 0;
2666 
2667 	dma_sync_single_for_device(ring_to_dev(ring),
2668 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
2669 			hns3_buf_size(ring),
2670 			DMA_FROM_DEVICE);
2671 }
2672 
2673 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
2674 				  int *bytes, int *pkts, int budget)
2675 {
2676 	/* pair with ring->last_to_use update in hns3_tx_doorbell(),
2677 	 * smp_store_release() is not used in hns3_tx_doorbell() because
2678 	 * the doorbell operation already have the needed barrier operation.
2679 	 */
2680 	int ltu = smp_load_acquire(&ring->last_to_use);
2681 	int ntc = ring->next_to_clean;
2682 	struct hns3_desc_cb *desc_cb;
2683 	bool reclaimed = false;
2684 	struct hns3_desc *desc;
2685 
2686 	while (ltu != ntc) {
2687 		desc = &ring->desc[ntc];
2688 
2689 		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
2690 				BIT(HNS3_TXD_VLD_B))
2691 			break;
2692 
2693 		desc_cb = &ring->desc_cb[ntc];
2694 		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2695 		(*bytes) += desc_cb->length;
2696 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2697 		hns3_free_buffer_detach(ring, ntc, budget);
2698 
2699 		if (++ntc == ring->desc_num)
2700 			ntc = 0;
2701 
2702 		/* Issue prefetch for next Tx descriptor */
2703 		prefetch(&ring->desc_cb[ntc]);
2704 		reclaimed = true;
2705 	}
2706 
2707 	if (unlikely(!reclaimed))
2708 		return false;
2709 
2710 	/* This smp_store_release() pairs with smp_load_acquire() in
2711 	 * ring_space called by hns3_nic_net_xmit.
2712 	 */
2713 	smp_store_release(&ring->next_to_clean, ntc);
2714 	return true;
2715 }
2716 
2717 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
2718 {
2719 	struct net_device *netdev = ring_to_netdev(ring);
2720 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2721 	struct netdev_queue *dev_queue;
2722 	int bytes, pkts;
2723 
2724 	bytes = 0;
2725 	pkts = 0;
2726 
2727 	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
2728 		return;
2729 
2730 	ring->tqp_vector->tx_group.total_bytes += bytes;
2731 	ring->tqp_vector->tx_group.total_packets += pkts;
2732 
2733 	u64_stats_update_begin(&ring->syncp);
2734 	ring->stats.tx_bytes += bytes;
2735 	ring->stats.tx_pkts += pkts;
2736 	u64_stats_update_end(&ring->syncp);
2737 
2738 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2739 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2740 
2741 	if (unlikely(netif_carrier_ok(netdev) &&
2742 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
2743 		/* Make sure that anybody stopping the queue after this
2744 		 * sees the new next_to_clean.
2745 		 */
2746 		smp_mb();
2747 		if (netif_tx_queue_stopped(dev_queue) &&
2748 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2749 			netif_tx_wake_queue(dev_queue);
2750 			ring->stats.restart_queue++;
2751 		}
2752 	}
2753 }
2754 
2755 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2756 {
2757 	int ntc = ring->next_to_clean;
2758 	int ntu = ring->next_to_use;
2759 
2760 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2761 }
2762 
2763 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
2764 				      int cleand_count)
2765 {
2766 	struct hns3_desc_cb *desc_cb;
2767 	struct hns3_desc_cb res_cbs;
2768 	int i, ret;
2769 
2770 	for (i = 0; i < cleand_count; i++) {
2771 		desc_cb = &ring->desc_cb[ring->next_to_use];
2772 		if (desc_cb->reuse_flag) {
2773 			u64_stats_update_begin(&ring->syncp);
2774 			ring->stats.reuse_pg_cnt++;
2775 			u64_stats_update_end(&ring->syncp);
2776 
2777 			hns3_reuse_buffer(ring, ring->next_to_use);
2778 		} else {
2779 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
2780 			if (ret) {
2781 				u64_stats_update_begin(&ring->syncp);
2782 				ring->stats.sw_err_cnt++;
2783 				u64_stats_update_end(&ring->syncp);
2784 
2785 				hns3_rl_err(ring_to_netdev(ring),
2786 					    "alloc rx buffer failed: %d\n",
2787 					    ret);
2788 				break;
2789 			}
2790 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2791 
2792 			u64_stats_update_begin(&ring->syncp);
2793 			ring->stats.non_reuse_pg++;
2794 			u64_stats_update_end(&ring->syncp);
2795 		}
2796 
2797 		ring_ptr_move_fw(ring, next_to_use);
2798 	}
2799 
2800 	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2801 }
2802 
2803 static bool hns3_page_is_reusable(struct page *page)
2804 {
2805 	return page_to_nid(page) == numa_mem_id() &&
2806 		!page_is_pfmemalloc(page);
2807 }
2808 
2809 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
2810 {
2811 	return (page_count(cb->priv) - cb->pagecnt_bias) == 1;
2812 }
2813 
2814 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2815 				struct hns3_enet_ring *ring, int pull_len,
2816 				struct hns3_desc_cb *desc_cb)
2817 {
2818 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2819 	int size = le16_to_cpu(desc->rx.size);
2820 	u32 truesize = hns3_buf_size(ring);
2821 
2822 	desc_cb->pagecnt_bias--;
2823 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2824 			size - pull_len, truesize);
2825 
2826 	/* Avoid re-using remote pages, or the stack is still using the page
2827 	 * when page_offset rollback to zero, flag default unreuse
2828 	 */
2829 	if (unlikely(!hns3_page_is_reusable(desc_cb->priv)) ||
2830 	    (!desc_cb->page_offset && !hns3_can_reuse_page(desc_cb))) {
2831 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2832 		return;
2833 	}
2834 
2835 	/* Move offset up to the next cache line */
2836 	desc_cb->page_offset += truesize;
2837 
2838 	if (desc_cb->page_offset + truesize <= hns3_page_size(ring)) {
2839 		desc_cb->reuse_flag = 1;
2840 	} else if (hns3_can_reuse_page(desc_cb)) {
2841 		desc_cb->reuse_flag = 1;
2842 		desc_cb->page_offset = 0;
2843 	} else if (desc_cb->pagecnt_bias) {
2844 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
2845 		return;
2846 	}
2847 
2848 	if (unlikely(!desc_cb->pagecnt_bias)) {
2849 		page_ref_add(desc_cb->priv, USHRT_MAX);
2850 		desc_cb->pagecnt_bias = USHRT_MAX;
2851 	}
2852 }
2853 
2854 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
2855 {
2856 	__be16 type = skb->protocol;
2857 	struct tcphdr *th;
2858 	int depth = 0;
2859 
2860 	while (eth_type_vlan(type)) {
2861 		struct vlan_hdr *vh;
2862 
2863 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2864 			return -EFAULT;
2865 
2866 		vh = (struct vlan_hdr *)(skb->data + depth);
2867 		type = vh->h_vlan_encapsulated_proto;
2868 		depth += VLAN_HLEN;
2869 	}
2870 
2871 	skb_set_network_header(skb, depth);
2872 
2873 	if (type == htons(ETH_P_IP)) {
2874 		const struct iphdr *iph = ip_hdr(skb);
2875 
2876 		depth += sizeof(struct iphdr);
2877 		skb_set_transport_header(skb, depth);
2878 		th = tcp_hdr(skb);
2879 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
2880 					  iph->daddr, 0);
2881 	} else if (type == htons(ETH_P_IPV6)) {
2882 		const struct ipv6hdr *iph = ipv6_hdr(skb);
2883 
2884 		depth += sizeof(struct ipv6hdr);
2885 		skb_set_transport_header(skb, depth);
2886 		th = tcp_hdr(skb);
2887 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
2888 					  &iph->daddr, 0);
2889 	} else {
2890 		hns3_rl_err(skb->dev,
2891 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2892 			    be16_to_cpu(type), depth);
2893 		return -EFAULT;
2894 	}
2895 
2896 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2897 	if (th->cwr)
2898 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2899 
2900 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
2901 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
2902 
2903 	skb->csum_start = (unsigned char *)th - skb->head;
2904 	skb->csum_offset = offsetof(struct tcphdr, check);
2905 	skb->ip_summed = CHECKSUM_PARTIAL;
2906 
2907 	trace_hns3_gro(skb);
2908 
2909 	return 0;
2910 }
2911 
2912 static void hns3_checksum_complete(struct hns3_enet_ring *ring,
2913 				   struct sk_buff *skb, u32 l234info)
2914 {
2915 	u32 lo, hi;
2916 
2917 	u64_stats_update_begin(&ring->syncp);
2918 	ring->stats.csum_complete++;
2919 	u64_stats_update_end(&ring->syncp);
2920 	skb->ip_summed = CHECKSUM_COMPLETE;
2921 	lo = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_L_M,
2922 			     HNS3_RXD_L2_CSUM_L_S);
2923 	hi = hnae3_get_field(l234info, HNS3_RXD_L2_CSUM_H_M,
2924 			     HNS3_RXD_L2_CSUM_H_S);
2925 	skb->csum = csum_unfold((__force __sum16)(lo | hi << 8));
2926 }
2927 
2928 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2929 			     u32 l234info, u32 bd_base_info, u32 ol_info)
2930 {
2931 	struct net_device *netdev = ring_to_netdev(ring);
2932 	int l3_type, l4_type;
2933 	int ol4_type;
2934 
2935 	skb->ip_summed = CHECKSUM_NONE;
2936 
2937 	skb_checksum_none_assert(skb);
2938 
2939 	if (!(netdev->features & NETIF_F_RXCSUM))
2940 		return;
2941 
2942 	if (l234info & BIT(HNS3_RXD_L2_CSUM_B)) {
2943 		hns3_checksum_complete(ring, skb, l234info);
2944 		return;
2945 	}
2946 
2947 	/* check if hardware has done checksum */
2948 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2949 		return;
2950 
2951 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2952 				 BIT(HNS3_RXD_OL3E_B) |
2953 				 BIT(HNS3_RXD_OL4E_B)))) {
2954 		u64_stats_update_begin(&ring->syncp);
2955 		ring->stats.l3l4_csum_err++;
2956 		u64_stats_update_end(&ring->syncp);
2957 
2958 		return;
2959 	}
2960 
2961 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2962 				   HNS3_RXD_OL4ID_S);
2963 	switch (ol4_type) {
2964 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2965 	case HNS3_OL4_TYPE_NVGRE:
2966 		skb->csum_level = 1;
2967 		fallthrough;
2968 	case HNS3_OL4_TYPE_NO_TUN:
2969 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2970 					  HNS3_RXD_L3ID_S);
2971 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2972 					  HNS3_RXD_L4ID_S);
2973 
2974 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2975 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2976 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2977 		    (l4_type == HNS3_L4_TYPE_UDP ||
2978 		     l4_type == HNS3_L4_TYPE_TCP ||
2979 		     l4_type == HNS3_L4_TYPE_SCTP))
2980 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2981 		break;
2982 	default:
2983 		break;
2984 	}
2985 }
2986 
2987 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2988 {
2989 	if (skb_has_frag_list(skb))
2990 		napi_gro_flush(&ring->tqp_vector->napi, false);
2991 
2992 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2993 }
2994 
2995 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2996 				struct hns3_desc *desc, u32 l234info,
2997 				u16 *vlan_tag)
2998 {
2999 	struct hnae3_handle *handle = ring->tqp->handle;
3000 	struct pci_dev *pdev = ring->tqp->handle->pdev;
3001 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3002 
3003 	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3004 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3005 		if (!(*vlan_tag & VLAN_VID_MASK))
3006 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3007 
3008 		return (*vlan_tag != 0);
3009 	}
3010 
3011 #define HNS3_STRP_OUTER_VLAN	0x1
3012 #define HNS3_STRP_INNER_VLAN	0x2
3013 #define HNS3_STRP_BOTH		0x3
3014 
3015 	/* Hardware always insert VLAN tag into RX descriptor when
3016 	 * remove the tag from packet, driver needs to determine
3017 	 * reporting which tag to stack.
3018 	 */
3019 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3020 				HNS3_RXD_STRP_TAGP_S)) {
3021 	case HNS3_STRP_OUTER_VLAN:
3022 		if (handle->port_base_vlan_state !=
3023 				HNAE3_PORT_BASE_VLAN_DISABLE)
3024 			return false;
3025 
3026 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3027 		return true;
3028 	case HNS3_STRP_INNER_VLAN:
3029 		if (handle->port_base_vlan_state !=
3030 				HNAE3_PORT_BASE_VLAN_DISABLE)
3031 			return false;
3032 
3033 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3034 		return true;
3035 	case HNS3_STRP_BOTH:
3036 		if (handle->port_base_vlan_state ==
3037 				HNAE3_PORT_BASE_VLAN_DISABLE)
3038 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3039 		else
3040 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3041 
3042 		return true;
3043 	default:
3044 		return false;
3045 	}
3046 }
3047 
3048 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
3049 {
3050 	ring->desc[ring->next_to_clean].rx.bd_base_info &=
3051 		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
3052 	ring->next_to_clean += 1;
3053 
3054 	if (unlikely(ring->next_to_clean == ring->desc_num))
3055 		ring->next_to_clean = 0;
3056 }
3057 
3058 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
3059 			  unsigned char *va)
3060 {
3061 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
3062 	struct net_device *netdev = ring_to_netdev(ring);
3063 	struct sk_buff *skb;
3064 
3065 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3066 	skb = ring->skb;
3067 	if (unlikely(!skb)) {
3068 		hns3_rl_err(netdev, "alloc rx skb fail\n");
3069 
3070 		u64_stats_update_begin(&ring->syncp);
3071 		ring->stats.sw_err_cnt++;
3072 		u64_stats_update_end(&ring->syncp);
3073 
3074 		return -ENOMEM;
3075 	}
3076 
3077 	trace_hns3_rx_desc(ring);
3078 	prefetchw(skb->data);
3079 
3080 	ring->pending_buf = 1;
3081 	ring->frag_num = 0;
3082 	ring->tail_skb = NULL;
3083 	if (length <= HNS3_RX_HEAD_SIZE) {
3084 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3085 
3086 		/* We can reuse buffer as-is, just make sure it is local */
3087 		if (likely(hns3_page_is_reusable(desc_cb->priv)))
3088 			desc_cb->reuse_flag = 1;
3089 		else /* This page cannot be reused so discard it */
3090 			__page_frag_cache_drain(desc_cb->priv,
3091 						desc_cb->pagecnt_bias);
3092 
3093 		hns3_rx_ring_move_fw(ring);
3094 		return 0;
3095 	}
3096 	u64_stats_update_begin(&ring->syncp);
3097 	ring->stats.seg_pkt_cnt++;
3098 	u64_stats_update_end(&ring->syncp);
3099 
3100 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3101 	__skb_put(skb, ring->pull_len);
3102 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3103 			    desc_cb);
3104 	hns3_rx_ring_move_fw(ring);
3105 
3106 	return 0;
3107 }
3108 
3109 static int hns3_add_frag(struct hns3_enet_ring *ring)
3110 {
3111 	struct sk_buff *skb = ring->skb;
3112 	struct sk_buff *head_skb = skb;
3113 	struct sk_buff *new_skb;
3114 	struct hns3_desc_cb *desc_cb;
3115 	struct hns3_desc *desc;
3116 	u32 bd_base_info;
3117 
3118 	do {
3119 		desc = &ring->desc[ring->next_to_clean];
3120 		desc_cb = &ring->desc_cb[ring->next_to_clean];
3121 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3122 		/* make sure HW write desc complete */
3123 		dma_rmb();
3124 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3125 			return -ENXIO;
3126 
3127 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3128 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3129 			if (unlikely(!new_skb)) {
3130 				hns3_rl_err(ring_to_netdev(ring),
3131 					    "alloc rx fraglist skb fail\n");
3132 				return -ENXIO;
3133 			}
3134 			ring->frag_num = 0;
3135 
3136 			if (ring->tail_skb) {
3137 				ring->tail_skb->next = new_skb;
3138 				ring->tail_skb = new_skb;
3139 			} else {
3140 				skb_shinfo(skb)->frag_list = new_skb;
3141 				ring->tail_skb = new_skb;
3142 			}
3143 		}
3144 
3145 		if (ring->tail_skb) {
3146 			head_skb->truesize += hns3_buf_size(ring);
3147 			head_skb->data_len += le16_to_cpu(desc->rx.size);
3148 			head_skb->len += le16_to_cpu(desc->rx.size);
3149 			skb = ring->tail_skb;
3150 		}
3151 
3152 		dma_sync_single_for_cpu(ring_to_dev(ring),
3153 				desc_cb->dma + desc_cb->page_offset,
3154 				hns3_buf_size(ring),
3155 				DMA_FROM_DEVICE);
3156 
3157 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3158 		trace_hns3_rx_desc(ring);
3159 		hns3_rx_ring_move_fw(ring);
3160 		ring->pending_buf++;
3161 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3162 
3163 	return 0;
3164 }
3165 
3166 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3167 				     struct sk_buff *skb, u32 l234info,
3168 				     u32 bd_base_info, u32 ol_info)
3169 {
3170 	u32 l3_type;
3171 
3172 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3173 						    HNS3_RXD_GRO_SIZE_M,
3174 						    HNS3_RXD_GRO_SIZE_S);
3175 	/* if there is no HW GRO, do not set gro params */
3176 	if (!skb_shinfo(skb)->gso_size) {
3177 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
3178 		return 0;
3179 	}
3180 
3181 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3182 						  HNS3_RXD_GRO_COUNT_M,
3183 						  HNS3_RXD_GRO_COUNT_S);
3184 
3185 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S);
3186 	if (l3_type == HNS3_L3_TYPE_IPV4)
3187 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3188 	else if (l3_type == HNS3_L3_TYPE_IPV6)
3189 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3190 	else
3191 		return -EFAULT;
3192 
3193 	return  hns3_gro_complete(skb, l234info);
3194 }
3195 
3196 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3197 				     struct sk_buff *skb, u32 rss_hash)
3198 {
3199 	struct hnae3_handle *handle = ring->tqp->handle;
3200 	enum pkt_hash_types rss_type;
3201 
3202 	if (rss_hash)
3203 		rss_type = handle->kinfo.rss_type;
3204 	else
3205 		rss_type = PKT_HASH_TYPE_NONE;
3206 
3207 	skb_set_hash(skb, rss_hash, rss_type);
3208 }
3209 
3210 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
3211 {
3212 	struct net_device *netdev = ring_to_netdev(ring);
3213 	enum hns3_pkt_l2t_type l2_frame_type;
3214 	u32 bd_base_info, l234info, ol_info;
3215 	struct hns3_desc *desc;
3216 	unsigned int len;
3217 	int pre_ntc, ret;
3218 
3219 	/* bdinfo handled below is only valid on the last BD of the
3220 	 * current packet, and ring->next_to_clean indicates the first
3221 	 * descriptor of next packet, so need - 1 below.
3222 	 */
3223 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
3224 					(ring->desc_num - 1);
3225 	desc = &ring->desc[pre_ntc];
3226 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3227 	l234info = le32_to_cpu(desc->rx.l234_info);
3228 	ol_info = le32_to_cpu(desc->rx.ol_info);
3229 
3230 	/* Based on hw strategy, the tag offloaded will be stored at
3231 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
3232 	 * in one layer tag case.
3233 	 */
3234 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
3235 		u16 vlan_tag;
3236 
3237 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
3238 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3239 					       vlan_tag);
3240 	}
3241 
3242 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
3243 				  BIT(HNS3_RXD_L2E_B))))) {
3244 		u64_stats_update_begin(&ring->syncp);
3245 		if (l234info & BIT(HNS3_RXD_L2E_B))
3246 			ring->stats.l2_err++;
3247 		else
3248 			ring->stats.err_pkt_len++;
3249 		u64_stats_update_end(&ring->syncp);
3250 
3251 		return -EFAULT;
3252 	}
3253 
3254 	len = skb->len;
3255 
3256 	/* Do update ip stack process */
3257 	skb->protocol = eth_type_trans(skb, netdev);
3258 
3259 	/* This is needed in order to enable forwarding support */
3260 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
3261 					bd_base_info, ol_info);
3262 	if (unlikely(ret)) {
3263 		u64_stats_update_begin(&ring->syncp);
3264 		ring->stats.rx_err_cnt++;
3265 		u64_stats_update_end(&ring->syncp);
3266 		return ret;
3267 	}
3268 
3269 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
3270 					HNS3_RXD_DMAC_S);
3271 
3272 	u64_stats_update_begin(&ring->syncp);
3273 	ring->stats.rx_pkts++;
3274 	ring->stats.rx_bytes += len;
3275 
3276 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
3277 		ring->stats.rx_multicast++;
3278 
3279 	u64_stats_update_end(&ring->syncp);
3280 
3281 	ring->tqp_vector->rx_group.total_bytes += len;
3282 
3283 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
3284 	return 0;
3285 }
3286 
3287 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
3288 {
3289 	struct sk_buff *skb = ring->skb;
3290 	struct hns3_desc_cb *desc_cb;
3291 	struct hns3_desc *desc;
3292 	unsigned int length;
3293 	u32 bd_base_info;
3294 	int ret;
3295 
3296 	desc = &ring->desc[ring->next_to_clean];
3297 	desc_cb = &ring->desc_cb[ring->next_to_clean];
3298 
3299 	prefetch(desc);
3300 
3301 	if (!skb) {
3302 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3303 
3304 		/* Check valid BD */
3305 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
3306 			return -ENXIO;
3307 
3308 		dma_rmb();
3309 		length = le16_to_cpu(desc->rx.size);
3310 
3311 		ring->va = desc_cb->buf + desc_cb->page_offset;
3312 
3313 		dma_sync_single_for_cpu(ring_to_dev(ring),
3314 				desc_cb->dma + desc_cb->page_offset,
3315 				hns3_buf_size(ring),
3316 				DMA_FROM_DEVICE);
3317 
3318 		/* Prefetch first cache line of first page.
3319 		 * Idea is to cache few bytes of the header of the packet.
3320 		 * Our L1 Cache line size is 64B so need to prefetch twice to make
3321 		 * it 128B. But in actual we can have greater size of caches with
3322 		 * 128B Level 1 cache lines. In such a case, single fetch would
3323 		 * suffice to cache in the relevant part of the header.
3324 		 */
3325 		net_prefetch(ring->va);
3326 
3327 		ret = hns3_alloc_skb(ring, length, ring->va);
3328 		skb = ring->skb;
3329 
3330 		if (ret < 0) /* alloc buffer fail */
3331 			return ret;
3332 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
3333 			ret = hns3_add_frag(ring);
3334 			if (ret)
3335 				return ret;
3336 		}
3337 	} else {
3338 		ret = hns3_add_frag(ring);
3339 		if (ret)
3340 			return ret;
3341 	}
3342 
3343 	/* As the head data may be changed when GRO enable, copy
3344 	 * the head data in after other data rx completed
3345 	 */
3346 	if (skb->len > HNS3_RX_HEAD_SIZE)
3347 		memcpy(skb->data, ring->va,
3348 		       ALIGN(ring->pull_len, sizeof(long)));
3349 
3350 	ret = hns3_handle_bdinfo(ring, skb);
3351 	if (unlikely(ret)) {
3352 		dev_kfree_skb_any(skb);
3353 		return ret;
3354 	}
3355 
3356 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
3357 	return 0;
3358 }
3359 
3360 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
3361 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
3362 {
3363 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
3364 	int unused_count = hns3_desc_unused(ring);
3365 	int recv_pkts = 0;
3366 	int err;
3367 
3368 	unused_count -= ring->pending_buf;
3369 
3370 	while (recv_pkts < budget) {
3371 		/* Reuse or realloc buffers */
3372 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
3373 			hns3_nic_alloc_rx_buffers(ring, unused_count);
3374 			unused_count = hns3_desc_unused(ring) -
3375 					ring->pending_buf;
3376 		}
3377 
3378 		/* Poll one pkt */
3379 		err = hns3_handle_rx_bd(ring);
3380 		/* Do not get FE for the packet or failed to alloc skb */
3381 		if (unlikely(!ring->skb || err == -ENXIO)) {
3382 			goto out;
3383 		} else if (likely(!err)) {
3384 			rx_fn(ring, ring->skb);
3385 			recv_pkts++;
3386 		}
3387 
3388 		unused_count += ring->pending_buf;
3389 		ring->skb = NULL;
3390 		ring->pending_buf = 0;
3391 	}
3392 
3393 out:
3394 	/* Make all data has been write before submit */
3395 	if (unused_count > 0)
3396 		hns3_nic_alloc_rx_buffers(ring, unused_count);
3397 
3398 	return recv_pkts;
3399 }
3400 
3401 static bool hns3_get_new_flow_lvl(struct hns3_enet_ring_group *ring_group)
3402 {
3403 #define HNS3_RX_LOW_BYTE_RATE 10000
3404 #define HNS3_RX_MID_BYTE_RATE 20000
3405 #define HNS3_RX_ULTRA_PACKET_RATE 40
3406 
3407 	enum hns3_flow_level_range new_flow_level;
3408 	struct hns3_enet_tqp_vector *tqp_vector;
3409 	int packets_per_msecs, bytes_per_msecs;
3410 	u32 time_passed_ms;
3411 
3412 	tqp_vector = ring_group->ring->tqp_vector;
3413 	time_passed_ms =
3414 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
3415 	if (!time_passed_ms)
3416 		return false;
3417 
3418 	do_div(ring_group->total_packets, time_passed_ms);
3419 	packets_per_msecs = ring_group->total_packets;
3420 
3421 	do_div(ring_group->total_bytes, time_passed_ms);
3422 	bytes_per_msecs = ring_group->total_bytes;
3423 
3424 	new_flow_level = ring_group->coal.flow_level;
3425 
3426 	/* Simple throttlerate management
3427 	 * 0-10MB/s   lower     (50000 ints/s)
3428 	 * 10-20MB/s   middle    (20000 ints/s)
3429 	 * 20-1249MB/s high      (18000 ints/s)
3430 	 * > 40000pps  ultra     (8000 ints/s)
3431 	 */
3432 	switch (new_flow_level) {
3433 	case HNS3_FLOW_LOW:
3434 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
3435 			new_flow_level = HNS3_FLOW_MID;
3436 		break;
3437 	case HNS3_FLOW_MID:
3438 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
3439 			new_flow_level = HNS3_FLOW_HIGH;
3440 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
3441 			new_flow_level = HNS3_FLOW_LOW;
3442 		break;
3443 	case HNS3_FLOW_HIGH:
3444 	case HNS3_FLOW_ULTRA:
3445 	default:
3446 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
3447 			new_flow_level = HNS3_FLOW_MID;
3448 		break;
3449 	}
3450 
3451 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
3452 	    &tqp_vector->rx_group == ring_group)
3453 		new_flow_level = HNS3_FLOW_ULTRA;
3454 
3455 	ring_group->total_bytes = 0;
3456 	ring_group->total_packets = 0;
3457 	ring_group->coal.flow_level = new_flow_level;
3458 
3459 	return true;
3460 }
3461 
3462 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
3463 {
3464 	struct hns3_enet_tqp_vector *tqp_vector;
3465 	u16 new_int_gl;
3466 
3467 	if (!ring_group->ring)
3468 		return false;
3469 
3470 	tqp_vector = ring_group->ring->tqp_vector;
3471 	if (!tqp_vector->last_jiffies)
3472 		return false;
3473 
3474 	if (ring_group->total_packets == 0) {
3475 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
3476 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
3477 		return true;
3478 	}
3479 
3480 	if (!hns3_get_new_flow_lvl(ring_group))
3481 		return false;
3482 
3483 	new_int_gl = ring_group->coal.int_gl;
3484 	switch (ring_group->coal.flow_level) {
3485 	case HNS3_FLOW_LOW:
3486 		new_int_gl = HNS3_INT_GL_50K;
3487 		break;
3488 	case HNS3_FLOW_MID:
3489 		new_int_gl = HNS3_INT_GL_20K;
3490 		break;
3491 	case HNS3_FLOW_HIGH:
3492 		new_int_gl = HNS3_INT_GL_18K;
3493 		break;
3494 	case HNS3_FLOW_ULTRA:
3495 		new_int_gl = HNS3_INT_GL_8K;
3496 		break;
3497 	default:
3498 		break;
3499 	}
3500 
3501 	if (new_int_gl != ring_group->coal.int_gl) {
3502 		ring_group->coal.int_gl = new_int_gl;
3503 		return true;
3504 	}
3505 	return false;
3506 }
3507 
3508 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
3509 {
3510 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
3511 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
3512 	bool rx_update, tx_update;
3513 
3514 	/* update param every 1000ms */
3515 	if (time_before(jiffies,
3516 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
3517 		return;
3518 
3519 	if (rx_group->coal.adapt_enable) {
3520 		rx_update = hns3_get_new_int_gl(rx_group);
3521 		if (rx_update)
3522 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3523 						       rx_group->coal.int_gl);
3524 	}
3525 
3526 	if (tx_group->coal.adapt_enable) {
3527 		tx_update = hns3_get_new_int_gl(tx_group);
3528 		if (tx_update)
3529 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3530 						       tx_group->coal.int_gl);
3531 	}
3532 
3533 	tqp_vector->last_jiffies = jiffies;
3534 }
3535 
3536 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3537 {
3538 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3539 	struct hns3_enet_ring *ring;
3540 	int rx_pkt_total = 0;
3541 
3542 	struct hns3_enet_tqp_vector *tqp_vector =
3543 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3544 	bool clean_complete = true;
3545 	int rx_budget = budget;
3546 
3547 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3548 		napi_complete(napi);
3549 		return 0;
3550 	}
3551 
3552 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3553 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3554 	 */
3555 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3556 		hns3_clean_tx_ring(ring, budget);
3557 
3558 	/* make sure rx ring budget not smaller than 1 */
3559 	if (tqp_vector->num_tqps > 1)
3560 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3561 
3562 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3563 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3564 						    hns3_rx_skb);
3565 
3566 		if (rx_cleaned >= rx_budget)
3567 			clean_complete = false;
3568 
3569 		rx_pkt_total += rx_cleaned;
3570 	}
3571 
3572 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3573 
3574 	if (!clean_complete)
3575 		return budget;
3576 
3577 	if (napi_complete(napi) &&
3578 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3579 		hns3_update_new_int_gl(tqp_vector);
3580 		hns3_mask_vector_irq(tqp_vector, 1);
3581 	}
3582 
3583 	return rx_pkt_total;
3584 }
3585 
3586 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3587 				      struct hnae3_ring_chain_node *head)
3588 {
3589 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3590 	struct hnae3_ring_chain_node *cur_chain = head;
3591 	struct hnae3_ring_chain_node *chain;
3592 	struct hns3_enet_ring *tx_ring;
3593 	struct hns3_enet_ring *rx_ring;
3594 
3595 	tx_ring = tqp_vector->tx_group.ring;
3596 	if (tx_ring) {
3597 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3598 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3599 			      HNAE3_RING_TYPE_TX);
3600 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3601 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3602 
3603 		cur_chain->next = NULL;
3604 
3605 		while (tx_ring->next) {
3606 			tx_ring = tx_ring->next;
3607 
3608 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3609 					     GFP_KERNEL);
3610 			if (!chain)
3611 				goto err_free_chain;
3612 
3613 			cur_chain->next = chain;
3614 			chain->tqp_index = tx_ring->tqp->tqp_index;
3615 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3616 				      HNAE3_RING_TYPE_TX);
3617 			hnae3_set_field(chain->int_gl_idx,
3618 					HNAE3_RING_GL_IDX_M,
3619 					HNAE3_RING_GL_IDX_S,
3620 					HNAE3_RING_GL_TX);
3621 
3622 			cur_chain = chain;
3623 		}
3624 	}
3625 
3626 	rx_ring = tqp_vector->rx_group.ring;
3627 	if (!tx_ring && rx_ring) {
3628 		cur_chain->next = NULL;
3629 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3630 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3631 			      HNAE3_RING_TYPE_RX);
3632 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3633 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3634 
3635 		rx_ring = rx_ring->next;
3636 	}
3637 
3638 	while (rx_ring) {
3639 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3640 		if (!chain)
3641 			goto err_free_chain;
3642 
3643 		cur_chain->next = chain;
3644 		chain->tqp_index = rx_ring->tqp->tqp_index;
3645 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3646 			      HNAE3_RING_TYPE_RX);
3647 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3648 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3649 
3650 		cur_chain = chain;
3651 
3652 		rx_ring = rx_ring->next;
3653 	}
3654 
3655 	return 0;
3656 
3657 err_free_chain:
3658 	cur_chain = head->next;
3659 	while (cur_chain) {
3660 		chain = cur_chain->next;
3661 		devm_kfree(&pdev->dev, cur_chain);
3662 		cur_chain = chain;
3663 	}
3664 	head->next = NULL;
3665 
3666 	return -ENOMEM;
3667 }
3668 
3669 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3670 					struct hnae3_ring_chain_node *head)
3671 {
3672 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3673 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3674 
3675 	chain = head->next;
3676 
3677 	while (chain) {
3678 		chain_tmp = chain->next;
3679 		devm_kfree(&pdev->dev, chain);
3680 		chain = chain_tmp;
3681 	}
3682 }
3683 
3684 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3685 				   struct hns3_enet_ring *ring)
3686 {
3687 	ring->next = group->ring;
3688 	group->ring = ring;
3689 
3690 	group->count++;
3691 }
3692 
3693 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3694 {
3695 	struct pci_dev *pdev = priv->ae_handle->pdev;
3696 	struct hns3_enet_tqp_vector *tqp_vector;
3697 	int num_vectors = priv->vector_num;
3698 	int numa_node;
3699 	int vector_i;
3700 
3701 	numa_node = dev_to_node(&pdev->dev);
3702 
3703 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3704 		tqp_vector = &priv->tqp_vector[vector_i];
3705 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3706 				&tqp_vector->affinity_mask);
3707 	}
3708 }
3709 
3710 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3711 {
3712 	struct hnae3_ring_chain_node vector_ring_chain;
3713 	struct hnae3_handle *h = priv->ae_handle;
3714 	struct hns3_enet_tqp_vector *tqp_vector;
3715 	int ret;
3716 	int i;
3717 
3718 	hns3_nic_set_cpumask(priv);
3719 
3720 	for (i = 0; i < priv->vector_num; i++) {
3721 		tqp_vector = &priv->tqp_vector[i];
3722 		hns3_vector_coalesce_init_hw(tqp_vector, priv);
3723 		tqp_vector->num_tqps = 0;
3724 	}
3725 
3726 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3727 		u16 vector_i = i % priv->vector_num;
3728 		u16 tqp_num = h->kinfo.num_tqps;
3729 
3730 		tqp_vector = &priv->tqp_vector[vector_i];
3731 
3732 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3733 				       &priv->ring[i]);
3734 
3735 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3736 				       &priv->ring[i + tqp_num]);
3737 
3738 		priv->ring[i].tqp_vector = tqp_vector;
3739 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
3740 		tqp_vector->num_tqps++;
3741 	}
3742 
3743 	for (i = 0; i < priv->vector_num; i++) {
3744 		tqp_vector = &priv->tqp_vector[i];
3745 
3746 		tqp_vector->rx_group.total_bytes = 0;
3747 		tqp_vector->rx_group.total_packets = 0;
3748 		tqp_vector->tx_group.total_bytes = 0;
3749 		tqp_vector->tx_group.total_packets = 0;
3750 		tqp_vector->handle = h;
3751 
3752 		ret = hns3_get_vector_ring_chain(tqp_vector,
3753 						 &vector_ring_chain);
3754 		if (ret)
3755 			goto map_ring_fail;
3756 
3757 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3758 			tqp_vector->vector_irq, &vector_ring_chain);
3759 
3760 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3761 
3762 		if (ret)
3763 			goto map_ring_fail;
3764 
3765 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3766 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3767 	}
3768 
3769 	return 0;
3770 
3771 map_ring_fail:
3772 	while (i--)
3773 		netif_napi_del(&priv->tqp_vector[i].napi);
3774 
3775 	return ret;
3776 }
3777 
3778 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3779 {
3780 	struct hnae3_handle *h = priv->ae_handle;
3781 	struct hns3_enet_tqp_vector *tqp_vector;
3782 	struct hnae3_vector_info *vector;
3783 	struct pci_dev *pdev = h->pdev;
3784 	u16 tqp_num = h->kinfo.num_tqps;
3785 	u16 vector_num;
3786 	int ret = 0;
3787 	u16 i;
3788 
3789 	/* RSS size, cpu online and vector_num should be the same */
3790 	/* Should consider 2p/4p later */
3791 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3792 
3793 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3794 			      GFP_KERNEL);
3795 	if (!vector)
3796 		return -ENOMEM;
3797 
3798 	/* save the actual available vector number */
3799 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3800 
3801 	priv->vector_num = vector_num;
3802 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3803 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3804 			     GFP_KERNEL);
3805 	if (!priv->tqp_vector) {
3806 		ret = -ENOMEM;
3807 		goto out;
3808 	}
3809 
3810 	for (i = 0; i < priv->vector_num; i++) {
3811 		tqp_vector = &priv->tqp_vector[i];
3812 		tqp_vector->idx = i;
3813 		tqp_vector->mask_addr = vector[i].io_addr;
3814 		tqp_vector->vector_irq = vector[i].vector;
3815 		hns3_vector_coalesce_init(tqp_vector, priv);
3816 	}
3817 
3818 out:
3819 	devm_kfree(&pdev->dev, vector);
3820 	return ret;
3821 }
3822 
3823 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3824 {
3825 	group->ring = NULL;
3826 	group->count = 0;
3827 }
3828 
3829 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3830 {
3831 	struct hnae3_ring_chain_node vector_ring_chain;
3832 	struct hnae3_handle *h = priv->ae_handle;
3833 	struct hns3_enet_tqp_vector *tqp_vector;
3834 	int i;
3835 
3836 	for (i = 0; i < priv->vector_num; i++) {
3837 		tqp_vector = &priv->tqp_vector[i];
3838 
3839 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3840 			continue;
3841 
3842 		/* Since the mapping can be overwritten, when fail to get the
3843 		 * chain between vector and ring, we should go on to deal with
3844 		 * the remaining options.
3845 		 */
3846 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
3847 			dev_warn(priv->dev, "failed to get ring chain\n");
3848 
3849 		h->ae_algo->ops->unmap_ring_from_vector(h,
3850 			tqp_vector->vector_irq, &vector_ring_chain);
3851 
3852 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3853 
3854 		hns3_clear_ring_group(&tqp_vector->rx_group);
3855 		hns3_clear_ring_group(&tqp_vector->tx_group);
3856 		netif_napi_del(&priv->tqp_vector[i].napi);
3857 	}
3858 }
3859 
3860 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3861 {
3862 	struct hnae3_handle *h = priv->ae_handle;
3863 	struct pci_dev *pdev = h->pdev;
3864 	int i, ret;
3865 
3866 	for (i = 0; i < priv->vector_num; i++) {
3867 		struct hns3_enet_tqp_vector *tqp_vector;
3868 
3869 		tqp_vector = &priv->tqp_vector[i];
3870 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3871 		if (ret)
3872 			return;
3873 	}
3874 
3875 	devm_kfree(&pdev->dev, priv->tqp_vector);
3876 }
3877 
3878 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3879 			      unsigned int ring_type)
3880 {
3881 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3882 	struct hns3_enet_ring *ring;
3883 	int desc_num;
3884 
3885 	if (ring_type == HNAE3_RING_TYPE_TX) {
3886 		ring = &priv->ring[q->tqp_index];
3887 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3888 		ring->queue_index = q->tqp_index;
3889 	} else {
3890 		ring = &priv->ring[q->tqp_index + queue_num];
3891 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3892 		ring->queue_index = q->tqp_index;
3893 	}
3894 
3895 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3896 
3897 	ring->tqp = q;
3898 	ring->desc = NULL;
3899 	ring->desc_cb = NULL;
3900 	ring->dev = priv->dev;
3901 	ring->desc_dma_addr = 0;
3902 	ring->buf_size = q->buf_size;
3903 	ring->desc_num = desc_num;
3904 	ring->next_to_use = 0;
3905 	ring->next_to_clean = 0;
3906 	ring->last_to_use = 0;
3907 }
3908 
3909 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
3910 			       struct hns3_nic_priv *priv)
3911 {
3912 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3913 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3914 }
3915 
3916 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3917 {
3918 	struct hnae3_handle *h = priv->ae_handle;
3919 	struct pci_dev *pdev = h->pdev;
3920 	int i;
3921 
3922 	priv->ring = devm_kzalloc(&pdev->dev,
3923 				  array3_size(h->kinfo.num_tqps,
3924 					      sizeof(*priv->ring), 2),
3925 				  GFP_KERNEL);
3926 	if (!priv->ring)
3927 		return -ENOMEM;
3928 
3929 	for (i = 0; i < h->kinfo.num_tqps; i++)
3930 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3931 
3932 	return 0;
3933 }
3934 
3935 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3936 {
3937 	if (!priv->ring)
3938 		return;
3939 
3940 	devm_kfree(priv->dev, priv->ring);
3941 	priv->ring = NULL;
3942 }
3943 
3944 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3945 {
3946 	int ret;
3947 
3948 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3949 		return -EINVAL;
3950 
3951 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3952 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3953 	if (!ring->desc_cb) {
3954 		ret = -ENOMEM;
3955 		goto out;
3956 	}
3957 
3958 	ret = hns3_alloc_desc(ring);
3959 	if (ret)
3960 		goto out_with_desc_cb;
3961 
3962 	if (!HNAE3_IS_TX_RING(ring)) {
3963 		ret = hns3_alloc_ring_buffers(ring);
3964 		if (ret)
3965 			goto out_with_desc;
3966 	}
3967 
3968 	return 0;
3969 
3970 out_with_desc:
3971 	hns3_free_desc(ring);
3972 out_with_desc_cb:
3973 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3974 	ring->desc_cb = NULL;
3975 out:
3976 	return ret;
3977 }
3978 
3979 void hns3_fini_ring(struct hns3_enet_ring *ring)
3980 {
3981 	hns3_free_desc(ring);
3982 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3983 	ring->desc_cb = NULL;
3984 	ring->next_to_clean = 0;
3985 	ring->next_to_use = 0;
3986 	ring->last_to_use = 0;
3987 	ring->pending_buf = 0;
3988 	if (ring->skb) {
3989 		dev_kfree_skb_any(ring->skb);
3990 		ring->skb = NULL;
3991 	}
3992 }
3993 
3994 static int hns3_buf_size2type(u32 buf_size)
3995 {
3996 	int bd_size_type;
3997 
3998 	switch (buf_size) {
3999 	case 512:
4000 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
4001 		break;
4002 	case 1024:
4003 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
4004 		break;
4005 	case 2048:
4006 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4007 		break;
4008 	case 4096:
4009 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
4010 		break;
4011 	default:
4012 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4013 	}
4014 
4015 	return bd_size_type;
4016 }
4017 
4018 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
4019 {
4020 	dma_addr_t dma = ring->desc_dma_addr;
4021 	struct hnae3_queue *q = ring->tqp;
4022 
4023 	if (!HNAE3_IS_TX_RING(ring)) {
4024 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
4025 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
4026 			       (u32)((dma >> 31) >> 1));
4027 
4028 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
4029 			       hns3_buf_size2type(ring->buf_size));
4030 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
4031 			       ring->desc_num / 8 - 1);
4032 
4033 	} else {
4034 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
4035 			       (u32)dma);
4036 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
4037 			       (u32)((dma >> 31) >> 1));
4038 
4039 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
4040 			       ring->desc_num / 8 - 1);
4041 	}
4042 }
4043 
4044 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
4045 {
4046 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4047 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
4048 	int i;
4049 
4050 	for (i = 0; i < HNAE3_MAX_TC; i++) {
4051 		int j;
4052 
4053 		if (!test_bit(i, &tc_info->tc_en))
4054 			continue;
4055 
4056 		for (j = 0; j < tc_info->tqp_count[i]; j++) {
4057 			struct hnae3_queue *q;
4058 
4059 			q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
4060 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
4061 		}
4062 	}
4063 }
4064 
4065 int hns3_init_all_ring(struct hns3_nic_priv *priv)
4066 {
4067 	struct hnae3_handle *h = priv->ae_handle;
4068 	int ring_num = h->kinfo.num_tqps * 2;
4069 	int i, j;
4070 	int ret;
4071 
4072 	for (i = 0; i < ring_num; i++) {
4073 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
4074 		if (ret) {
4075 			dev_err(priv->dev,
4076 				"Alloc ring memory fail! ret=%d\n", ret);
4077 			goto out_when_alloc_ring_memory;
4078 		}
4079 
4080 		u64_stats_init(&priv->ring[i].syncp);
4081 	}
4082 
4083 	return 0;
4084 
4085 out_when_alloc_ring_memory:
4086 	for (j = i - 1; j >= 0; j--)
4087 		hns3_fini_ring(&priv->ring[j]);
4088 
4089 	return -ENOMEM;
4090 }
4091 
4092 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4093 {
4094 	struct hnae3_handle *h = priv->ae_handle;
4095 	int i;
4096 
4097 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4098 		hns3_fini_ring(&priv->ring[i]);
4099 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4100 	}
4101 	return 0;
4102 }
4103 
4104 /* Set mac addr if it is configured. or leave it to the AE driver */
4105 static int hns3_init_mac_addr(struct net_device *netdev)
4106 {
4107 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4108 	struct hnae3_handle *h = priv->ae_handle;
4109 	u8 mac_addr_temp[ETH_ALEN];
4110 	int ret = 0;
4111 
4112 	if (h->ae_algo->ops->get_mac_addr)
4113 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
4114 
4115 	/* Check if the MAC address is valid, if not get a random one */
4116 	if (!is_valid_ether_addr(mac_addr_temp)) {
4117 		eth_hw_addr_random(netdev);
4118 		dev_warn(priv->dev, "using random MAC address %pM\n",
4119 			 netdev->dev_addr);
4120 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4121 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
4122 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4123 	} else {
4124 		return 0;
4125 	}
4126 
4127 	if (h->ae_algo->ops->set_mac_addr)
4128 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4129 
4130 	return ret;
4131 }
4132 
4133 static int hns3_init_phy(struct net_device *netdev)
4134 {
4135 	struct hnae3_handle *h = hns3_get_handle(netdev);
4136 	int ret = 0;
4137 
4138 	if (h->ae_algo->ops->mac_connect_phy)
4139 		ret = h->ae_algo->ops->mac_connect_phy(h);
4140 
4141 	return ret;
4142 }
4143 
4144 static void hns3_uninit_phy(struct net_device *netdev)
4145 {
4146 	struct hnae3_handle *h = hns3_get_handle(netdev);
4147 
4148 	if (h->ae_algo->ops->mac_disconnect_phy)
4149 		h->ae_algo->ops->mac_disconnect_phy(h);
4150 }
4151 
4152 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
4153 {
4154 	struct hnae3_handle *h = hns3_get_handle(netdev);
4155 
4156 	if (h->ae_algo->ops->del_all_fd_entries)
4157 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
4158 }
4159 
4160 static int hns3_client_start(struct hnae3_handle *handle)
4161 {
4162 	if (!handle->ae_algo->ops->client_start)
4163 		return 0;
4164 
4165 	return handle->ae_algo->ops->client_start(handle);
4166 }
4167 
4168 static void hns3_client_stop(struct hnae3_handle *handle)
4169 {
4170 	if (!handle->ae_algo->ops->client_stop)
4171 		return;
4172 
4173 	handle->ae_algo->ops->client_stop(handle);
4174 }
4175 
4176 static void hns3_info_show(struct hns3_nic_priv *priv)
4177 {
4178 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4179 
4180 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4181 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4182 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4183 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4184 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4185 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4186 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4187 	dev_info(priv->dev, "Total number of enabled TCs: %u\n",
4188 		 kinfo->tc_info.num_tc);
4189 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4190 }
4191 
4192 static int hns3_client_init(struct hnae3_handle *handle)
4193 {
4194 	struct pci_dev *pdev = handle->pdev;
4195 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
4196 	u16 alloc_tqps, max_rss_size;
4197 	struct hns3_nic_priv *priv;
4198 	struct net_device *netdev;
4199 	int ret;
4200 
4201 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
4202 						    &max_rss_size);
4203 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
4204 	if (!netdev)
4205 		return -ENOMEM;
4206 
4207 	priv = netdev_priv(netdev);
4208 	priv->dev = &pdev->dev;
4209 	priv->netdev = netdev;
4210 	priv->ae_handle = handle;
4211 	priv->tx_timeout_count = 0;
4212 	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
4213 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
4214 
4215 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
4216 
4217 	handle->kinfo.netdev = netdev;
4218 	handle->priv = (void *)priv;
4219 
4220 	hns3_init_mac_addr(netdev);
4221 
4222 	hns3_set_default_feature(netdev);
4223 
4224 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
4225 	netdev->priv_flags |= IFF_UNICAST_FLT;
4226 	netdev->netdev_ops = &hns3_nic_netdev_ops;
4227 	SET_NETDEV_DEV(netdev, &pdev->dev);
4228 	hns3_ethtool_set_ops(netdev);
4229 
4230 	/* Carrier off reporting is important to ethtool even BEFORE open */
4231 	netif_carrier_off(netdev);
4232 
4233 	ret = hns3_get_ring_config(priv);
4234 	if (ret) {
4235 		ret = -ENOMEM;
4236 		goto out_get_ring_cfg;
4237 	}
4238 
4239 	ret = hns3_nic_alloc_vector_data(priv);
4240 	if (ret) {
4241 		ret = -ENOMEM;
4242 		goto out_alloc_vector_data;
4243 	}
4244 
4245 	ret = hns3_nic_init_vector_data(priv);
4246 	if (ret) {
4247 		ret = -ENOMEM;
4248 		goto out_init_vector_data;
4249 	}
4250 
4251 	ret = hns3_init_all_ring(priv);
4252 	if (ret) {
4253 		ret = -ENOMEM;
4254 		goto out_init_ring;
4255 	}
4256 
4257 	ret = hns3_init_phy(netdev);
4258 	if (ret)
4259 		goto out_init_phy;
4260 
4261 	ret = register_netdev(netdev);
4262 	if (ret) {
4263 		dev_err(priv->dev, "probe register netdev fail!\n");
4264 		goto out_reg_netdev_fail;
4265 	}
4266 
4267 	/* the device can work without cpu rmap, only aRFS needs it */
4268 	ret = hns3_set_rx_cpu_rmap(netdev);
4269 	if (ret)
4270 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4271 
4272 	ret = hns3_nic_init_irq(priv);
4273 	if (ret) {
4274 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4275 		hns3_free_rx_cpu_rmap(netdev);
4276 		goto out_init_irq_fail;
4277 	}
4278 
4279 	ret = hns3_client_start(handle);
4280 	if (ret) {
4281 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4282 		goto out_client_start;
4283 	}
4284 
4285 	hns3_dcbnl_setup(handle);
4286 
4287 	hns3_dbg_init(handle);
4288 
4289 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
4290 	netdev->max_mtu = HNS3_MAX_MTU;
4291 
4292 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
4293 		set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
4294 
4295 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4296 
4297 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
4298 		set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
4299 
4300 	if (netif_msg_drv(handle))
4301 		hns3_info_show(priv);
4302 
4303 	return ret;
4304 
4305 out_client_start:
4306 	hns3_free_rx_cpu_rmap(netdev);
4307 	hns3_nic_uninit_irq(priv);
4308 out_init_irq_fail:
4309 	unregister_netdev(netdev);
4310 out_reg_netdev_fail:
4311 	hns3_uninit_phy(netdev);
4312 out_init_phy:
4313 	hns3_uninit_all_ring(priv);
4314 out_init_ring:
4315 	hns3_nic_uninit_vector_data(priv);
4316 out_init_vector_data:
4317 	hns3_nic_dealloc_vector_data(priv);
4318 out_alloc_vector_data:
4319 	priv->ring = NULL;
4320 out_get_ring_cfg:
4321 	priv->ae_handle = NULL;
4322 	free_netdev(netdev);
4323 	return ret;
4324 }
4325 
4326 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
4327 {
4328 	struct net_device *netdev = handle->kinfo.netdev;
4329 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4330 	int ret;
4331 
4332 	if (netdev->reg_state != NETREG_UNINITIALIZED)
4333 		unregister_netdev(netdev);
4334 
4335 	hns3_client_stop(handle);
4336 
4337 	hns3_uninit_phy(netdev);
4338 
4339 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4340 		netdev_warn(netdev, "already uninitialized\n");
4341 		goto out_netdev_free;
4342 	}
4343 
4344 	hns3_free_rx_cpu_rmap(netdev);
4345 
4346 	hns3_nic_uninit_irq(priv);
4347 
4348 	hns3_del_all_fd_rules(netdev, true);
4349 
4350 	hns3_clear_all_ring(handle, true);
4351 
4352 	hns3_nic_uninit_vector_data(priv);
4353 
4354 	hns3_nic_dealloc_vector_data(priv);
4355 
4356 	ret = hns3_uninit_all_ring(priv);
4357 	if (ret)
4358 		netdev_err(netdev, "uninit ring error\n");
4359 
4360 	hns3_put_ring_config(priv);
4361 
4362 out_netdev_free:
4363 	hns3_dbg_uninit(handle);
4364 	free_netdev(netdev);
4365 }
4366 
4367 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
4368 {
4369 	struct net_device *netdev = handle->kinfo.netdev;
4370 
4371 	if (!netdev)
4372 		return;
4373 
4374 	if (linkup) {
4375 		netif_tx_wake_all_queues(netdev);
4376 		netif_carrier_on(netdev);
4377 		if (netif_msg_link(handle))
4378 			netdev_info(netdev, "link up\n");
4379 	} else {
4380 		netif_carrier_off(netdev);
4381 		netif_tx_stop_all_queues(netdev);
4382 		if (netif_msg_link(handle))
4383 			netdev_info(netdev, "link down\n");
4384 	}
4385 }
4386 
4387 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
4388 {
4389 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4390 	struct net_device *ndev = kinfo->netdev;
4391 
4392 	if (tc > HNAE3_MAX_TC)
4393 		return -EINVAL;
4394 
4395 	if (!ndev)
4396 		return -ENODEV;
4397 
4398 	return hns3_nic_set_real_num_queue(ndev);
4399 }
4400 
4401 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
4402 {
4403 	while (ring->next_to_clean != ring->next_to_use) {
4404 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
4405 		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
4406 		ring_ptr_move_fw(ring, next_to_clean);
4407 	}
4408 
4409 	ring->pending_buf = 0;
4410 }
4411 
4412 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
4413 {
4414 	struct hns3_desc_cb res_cbs;
4415 	int ret;
4416 
4417 	while (ring->next_to_use != ring->next_to_clean) {
4418 		/* When a buffer is not reused, it's memory has been
4419 		 * freed in hns3_handle_rx_bd or will be freed by
4420 		 * stack, so we need to replace the buffer here.
4421 		 */
4422 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4423 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
4424 			if (ret) {
4425 				u64_stats_update_begin(&ring->syncp);
4426 				ring->stats.sw_err_cnt++;
4427 				u64_stats_update_end(&ring->syncp);
4428 				/* if alloc new buffer fail, exit directly
4429 				 * and reclear in up flow.
4430 				 */
4431 				netdev_warn(ring_to_netdev(ring),
4432 					    "reserve buffer map failed, ret = %d\n",
4433 					    ret);
4434 				return ret;
4435 			}
4436 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
4437 		}
4438 		ring_ptr_move_fw(ring, next_to_use);
4439 	}
4440 
4441 	/* Free the pending skb in rx ring */
4442 	if (ring->skb) {
4443 		dev_kfree_skb_any(ring->skb);
4444 		ring->skb = NULL;
4445 		ring->pending_buf = 0;
4446 	}
4447 
4448 	return 0;
4449 }
4450 
4451 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4452 {
4453 	while (ring->next_to_use != ring->next_to_clean) {
4454 		/* When a buffer is not reused, it's memory has been
4455 		 * freed in hns3_handle_rx_bd or will be freed by
4456 		 * stack, so only need to unmap the buffer here.
4457 		 */
4458 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4459 			hns3_unmap_buffer(ring,
4460 					  &ring->desc_cb[ring->next_to_use]);
4461 			ring->desc_cb[ring->next_to_use].dma = 0;
4462 		}
4463 
4464 		ring_ptr_move_fw(ring, next_to_use);
4465 	}
4466 }
4467 
4468 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
4469 {
4470 	struct net_device *ndev = h->kinfo.netdev;
4471 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4472 	u32 i;
4473 
4474 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4475 		struct hns3_enet_ring *ring;
4476 
4477 		ring = &priv->ring[i];
4478 		hns3_clear_tx_ring(ring);
4479 
4480 		ring = &priv->ring[i + h->kinfo.num_tqps];
4481 		/* Continue to clear other rings even if clearing some
4482 		 * rings failed.
4483 		 */
4484 		if (force)
4485 			hns3_force_clear_rx_ring(ring);
4486 		else
4487 			hns3_clear_rx_ring(ring);
4488 	}
4489 }
4490 
4491 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4492 {
4493 	struct net_device *ndev = h->kinfo.netdev;
4494 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4495 	struct hns3_enet_ring *rx_ring;
4496 	int i, j;
4497 	int ret;
4498 
4499 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4500 		ret = h->ae_algo->ops->reset_queue(h, i);
4501 		if (ret)
4502 			return ret;
4503 
4504 		hns3_init_ring_hw(&priv->ring[i]);
4505 
4506 		/* We need to clear tx ring here because self test will
4507 		 * use the ring and will not run down before up
4508 		 */
4509 		hns3_clear_tx_ring(&priv->ring[i]);
4510 		priv->ring[i].next_to_clean = 0;
4511 		priv->ring[i].next_to_use = 0;
4512 		priv->ring[i].last_to_use = 0;
4513 
4514 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
4515 		hns3_init_ring_hw(rx_ring);
4516 		ret = hns3_clear_rx_ring(rx_ring);
4517 		if (ret)
4518 			return ret;
4519 
4520 		/* We can not know the hardware head and tail when this
4521 		 * function is called in reset flow, so we reuse all desc.
4522 		 */
4523 		for (j = 0; j < rx_ring->desc_num; j++)
4524 			hns3_reuse_buffer(rx_ring, j);
4525 
4526 		rx_ring->next_to_clean = 0;
4527 		rx_ring->next_to_use = 0;
4528 	}
4529 
4530 	hns3_init_tx_ring_tc(priv);
4531 
4532 	return 0;
4533 }
4534 
4535 static void hns3_store_coal(struct hns3_nic_priv *priv)
4536 {
4537 	/* ethtool only support setting and querying one coal
4538 	 * configuration for now, so save the vector 0' coal
4539 	 * configuration here in order to restore it.
4540 	 */
4541 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4542 	       sizeof(struct hns3_enet_coalesce));
4543 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4544 	       sizeof(struct hns3_enet_coalesce));
4545 }
4546 
4547 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4548 {
4549 	u16 vector_num = priv->vector_num;
4550 	int i;
4551 
4552 	for (i = 0; i < vector_num; i++) {
4553 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4554 		       sizeof(struct hns3_enet_coalesce));
4555 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4556 		       sizeof(struct hns3_enet_coalesce));
4557 	}
4558 }
4559 
4560 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4561 {
4562 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4563 	struct net_device *ndev = kinfo->netdev;
4564 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4565 
4566 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4567 		return 0;
4568 
4569 	if (!netif_running(ndev))
4570 		return 0;
4571 
4572 	return hns3_nic_net_stop(ndev);
4573 }
4574 
4575 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4576 {
4577 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4578 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4579 	int ret = 0;
4580 
4581 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4582 
4583 	if (netif_running(kinfo->netdev)) {
4584 		ret = hns3_nic_net_open(kinfo->netdev);
4585 		if (ret) {
4586 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4587 			netdev_err(kinfo->netdev,
4588 				   "net up fail, ret=%d!\n", ret);
4589 			return ret;
4590 		}
4591 	}
4592 
4593 	return ret;
4594 }
4595 
4596 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4597 {
4598 	struct net_device *netdev = handle->kinfo.netdev;
4599 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4600 	int ret;
4601 
4602 	/* Carrier off reporting is important to ethtool even BEFORE open */
4603 	netif_carrier_off(netdev);
4604 
4605 	ret = hns3_get_ring_config(priv);
4606 	if (ret)
4607 		return ret;
4608 
4609 	ret = hns3_nic_alloc_vector_data(priv);
4610 	if (ret)
4611 		goto err_put_ring;
4612 
4613 	hns3_restore_coal(priv);
4614 
4615 	ret = hns3_nic_init_vector_data(priv);
4616 	if (ret)
4617 		goto err_dealloc_vector;
4618 
4619 	ret = hns3_init_all_ring(priv);
4620 	if (ret)
4621 		goto err_uninit_vector;
4622 
4623 	/* the device can work without cpu rmap, only aRFS needs it */
4624 	ret = hns3_set_rx_cpu_rmap(netdev);
4625 	if (ret)
4626 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
4627 
4628 	ret = hns3_nic_init_irq(priv);
4629 	if (ret) {
4630 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
4631 		hns3_free_rx_cpu_rmap(netdev);
4632 		goto err_init_irq_fail;
4633 	}
4634 
4635 	if (!hns3_is_phys_func(handle->pdev))
4636 		hns3_init_mac_addr(netdev);
4637 
4638 	ret = hns3_client_start(handle);
4639 	if (ret) {
4640 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4641 		goto err_client_start_fail;
4642 	}
4643 
4644 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4645 
4646 	return ret;
4647 
4648 err_client_start_fail:
4649 	hns3_free_rx_cpu_rmap(netdev);
4650 	hns3_nic_uninit_irq(priv);
4651 err_init_irq_fail:
4652 	hns3_uninit_all_ring(priv);
4653 err_uninit_vector:
4654 	hns3_nic_uninit_vector_data(priv);
4655 err_dealloc_vector:
4656 	hns3_nic_dealloc_vector_data(priv);
4657 err_put_ring:
4658 	hns3_put_ring_config(priv);
4659 
4660 	return ret;
4661 }
4662 
4663 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4664 {
4665 	struct net_device *netdev = handle->kinfo.netdev;
4666 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4667 	int ret;
4668 
4669 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4670 		netdev_warn(netdev, "already uninitialized\n");
4671 		return 0;
4672 	}
4673 
4674 	hns3_free_rx_cpu_rmap(netdev);
4675 	hns3_nic_uninit_irq(priv);
4676 	hns3_clear_all_ring(handle, true);
4677 	hns3_reset_tx_queue(priv->ae_handle);
4678 
4679 	hns3_nic_uninit_vector_data(priv);
4680 
4681 	hns3_store_coal(priv);
4682 
4683 	hns3_nic_dealloc_vector_data(priv);
4684 
4685 	ret = hns3_uninit_all_ring(priv);
4686 	if (ret)
4687 		netdev_err(netdev, "uninit ring error\n");
4688 
4689 	hns3_put_ring_config(priv);
4690 
4691 	return ret;
4692 }
4693 
4694 static int hns3_reset_notify(struct hnae3_handle *handle,
4695 			     enum hnae3_reset_notify_type type)
4696 {
4697 	int ret = 0;
4698 
4699 	switch (type) {
4700 	case HNAE3_UP_CLIENT:
4701 		ret = hns3_reset_notify_up_enet(handle);
4702 		break;
4703 	case HNAE3_DOWN_CLIENT:
4704 		ret = hns3_reset_notify_down_enet(handle);
4705 		break;
4706 	case HNAE3_INIT_CLIENT:
4707 		ret = hns3_reset_notify_init_enet(handle);
4708 		break;
4709 	case HNAE3_UNINIT_CLIENT:
4710 		ret = hns3_reset_notify_uninit_enet(handle);
4711 		break;
4712 	default:
4713 		break;
4714 	}
4715 
4716 	return ret;
4717 }
4718 
4719 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
4720 				bool rxfh_configured)
4721 {
4722 	int ret;
4723 
4724 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
4725 						 rxfh_configured);
4726 	if (ret) {
4727 		dev_err(&handle->pdev->dev,
4728 			"Change tqp num(%u) fail.\n", new_tqp_num);
4729 		return ret;
4730 	}
4731 
4732 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
4733 	if (ret)
4734 		return ret;
4735 
4736 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
4737 	if (ret)
4738 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
4739 
4740 	return ret;
4741 }
4742 
4743 int hns3_set_channels(struct net_device *netdev,
4744 		      struct ethtool_channels *ch)
4745 {
4746 	struct hnae3_handle *h = hns3_get_handle(netdev);
4747 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4748 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4749 	u32 new_tqp_num = ch->combined_count;
4750 	u16 org_tqp_num;
4751 	int ret;
4752 
4753 	if (hns3_nic_resetting(netdev))
4754 		return -EBUSY;
4755 
4756 	if (ch->rx_count || ch->tx_count)
4757 		return -EINVAL;
4758 
4759 	if (kinfo->tc_info.mqprio_active) {
4760 		dev_err(&netdev->dev,
4761 			"it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
4762 		return -EINVAL;
4763 	}
4764 
4765 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4766 	    new_tqp_num < 1) {
4767 		dev_err(&netdev->dev,
4768 			"Change tqps fail, the tqp range is from 1 to %u",
4769 			hns3_get_max_available_channels(h));
4770 		return -EINVAL;
4771 	}
4772 
4773 	if (kinfo->rss_size == new_tqp_num)
4774 		return 0;
4775 
4776 	netif_dbg(h, drv, netdev,
4777 		  "set channels: tqp_num=%u, rxfh=%d\n",
4778 		  new_tqp_num, rxfh_configured);
4779 
4780 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4781 	if (ret)
4782 		return ret;
4783 
4784 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4785 	if (ret)
4786 		return ret;
4787 
4788 	org_tqp_num = h->kinfo.num_tqps;
4789 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
4790 	if (ret) {
4791 		int ret1;
4792 
4793 		netdev_warn(netdev,
4794 			    "Change channels fail, revert to old value\n");
4795 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
4796 		if (ret1) {
4797 			netdev_err(netdev,
4798 				   "revert to old channel fail\n");
4799 			return ret1;
4800 		}
4801 
4802 		return ret;
4803 	}
4804 
4805 	return 0;
4806 }
4807 
4808 static const struct hns3_hw_error_info hns3_hw_err[] = {
4809 	{ .type = HNAE3_PPU_POISON_ERROR,
4810 	  .msg = "PPU poison" },
4811 	{ .type = HNAE3_CMDQ_ECC_ERROR,
4812 	  .msg = "IMP CMDQ error" },
4813 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
4814 	  .msg = "IMP RD poison" },
4815 	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
4816 	  .msg = "ROCEE AXI RESP error" },
4817 };
4818 
4819 static void hns3_process_hw_error(struct hnae3_handle *handle,
4820 				  enum hnae3_hw_error_type type)
4821 {
4822 	int i;
4823 
4824 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
4825 		if (hns3_hw_err[i].type == type) {
4826 			dev_err(&handle->pdev->dev, "Detected %s!\n",
4827 				hns3_hw_err[i].msg);
4828 			break;
4829 		}
4830 	}
4831 }
4832 
4833 static const struct hnae3_client_ops client_ops = {
4834 	.init_instance = hns3_client_init,
4835 	.uninit_instance = hns3_client_uninit,
4836 	.link_status_change = hns3_link_status_change,
4837 	.setup_tc = hns3_client_setup_tc,
4838 	.reset_notify = hns3_reset_notify,
4839 	.process_hw_error = hns3_process_hw_error,
4840 };
4841 
4842 /* hns3_init_module - Driver registration routine
4843  * hns3_init_module is the first routine called when the driver is
4844  * loaded. All it does is register with the PCI subsystem.
4845  */
4846 static int __init hns3_init_module(void)
4847 {
4848 	int ret;
4849 
4850 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4851 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4852 
4853 	client.type = HNAE3_CLIENT_KNIC;
4854 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
4855 		 hns3_driver_name);
4856 
4857 	client.ops = &client_ops;
4858 
4859 	INIT_LIST_HEAD(&client.node);
4860 
4861 	hns3_dbg_register_debugfs(hns3_driver_name);
4862 
4863 	ret = hnae3_register_client(&client);
4864 	if (ret)
4865 		goto err_reg_client;
4866 
4867 	ret = pci_register_driver(&hns3_driver);
4868 	if (ret)
4869 		goto err_reg_driver;
4870 
4871 	return ret;
4872 
4873 err_reg_driver:
4874 	hnae3_unregister_client(&client);
4875 err_reg_client:
4876 	hns3_dbg_unregister_debugfs();
4877 	return ret;
4878 }
4879 module_init(hns3_init_module);
4880 
4881 /* hns3_exit_module - Driver exit cleanup routine
4882  * hns3_exit_module is called just before the driver is removed
4883  * from memory.
4884  */
4885 static void __exit hns3_exit_module(void)
4886 {
4887 	pci_unregister_driver(&hns3_driver);
4888 	hnae3_unregister_client(&client);
4889 	hns3_dbg_unregister_debugfs();
4890 }
4891 module_exit(hns3_exit_module);
4892 
4893 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4894 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4895 MODULE_LICENSE("GPL");
4896 MODULE_ALIAS("pci:hns-nic");
4897