xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 /*
2  * Copyright (c) 2016~2017 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/dma-mapping.h>
11 #include <linux/etherdevice.h>
12 #include <linux/interrupt.h>
13 #include <linux/if_vlan.h>
14 #include <linux/ip.h>
15 #include <linux/ipv6.h>
16 #include <linux/module.h>
17 #include <linux/pci.h>
18 #include <linux/skbuff.h>
19 #include <linux/sctp.h>
20 #include <linux/vermagic.h>
21 #include <net/gre.h>
22 #include <net/pkt_cls.h>
23 #include <net/vxlan.h>
24 
25 #include "hnae3.h"
26 #include "hns3_enet.h"
27 
28 static void hns3_clear_all_ring(struct hnae3_handle *h);
29 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
30 
31 static const char hns3_driver_name[] = "hns3";
32 const char hns3_driver_version[] = VERMAGIC_STRING;
33 static const char hns3_driver_string[] =
34 			"Hisilicon Ethernet Network Driver for Hip08 Family";
35 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
36 static struct hnae3_client client;
37 
38 /* hns3_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
43  *   Class, Class Mask, private data (not used) }
44  */
45 static const struct pci_device_id hns3_pci_tbl[] = {
46 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
47 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
48 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
49 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
50 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
51 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
52 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
53 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
54 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
55 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
56 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
57 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
58 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
59 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
60 	/* required last entry */
61 	{0, }
62 };
63 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
64 
65 static irqreturn_t hns3_irq_handle(int irq, void *dev)
66 {
67 	struct hns3_enet_tqp_vector *tqp_vector = dev;
68 
69 	napi_schedule(&tqp_vector->napi);
70 
71 	return IRQ_HANDLED;
72 }
73 
74 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
75 {
76 	struct hns3_enet_tqp_vector *tqp_vectors;
77 	unsigned int i;
78 
79 	for (i = 0; i < priv->vector_num; i++) {
80 		tqp_vectors = &priv->tqp_vector[i];
81 
82 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
83 			continue;
84 
85 		/* release the irq resource */
86 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
87 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
88 	}
89 }
90 
91 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
92 {
93 	struct hns3_enet_tqp_vector *tqp_vectors;
94 	int txrx_int_idx = 0;
95 	int rx_int_idx = 0;
96 	int tx_int_idx = 0;
97 	unsigned int i;
98 	int ret;
99 
100 	for (i = 0; i < priv->vector_num; i++) {
101 		tqp_vectors = &priv->tqp_vector[i];
102 
103 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
104 			continue;
105 
106 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
107 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
108 				 "%s-%s-%d", priv->netdev->name, "TxRx",
109 				 txrx_int_idx++);
110 			txrx_int_idx++;
111 		} else if (tqp_vectors->rx_group.ring) {
112 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
113 				 "%s-%s-%d", priv->netdev->name, "Rx",
114 				 rx_int_idx++);
115 		} else if (tqp_vectors->tx_group.ring) {
116 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
117 				 "%s-%s-%d", priv->netdev->name, "Tx",
118 				 tx_int_idx++);
119 		} else {
120 			/* Skip this unused q_vector */
121 			continue;
122 		}
123 
124 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
125 
126 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
127 				  tqp_vectors->name,
128 				       tqp_vectors);
129 		if (ret) {
130 			netdev_err(priv->netdev, "request irq(%d) fail\n",
131 				   tqp_vectors->vector_irq);
132 			return ret;
133 		}
134 
135 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
136 	}
137 
138 	return 0;
139 }
140 
141 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
142 				 u32 mask_en)
143 {
144 	writel(mask_en, tqp_vector->mask_addr);
145 }
146 
147 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
148 {
149 	napi_enable(&tqp_vector->napi);
150 
151 	/* enable vector */
152 	hns3_mask_vector_irq(tqp_vector, 1);
153 }
154 
155 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
156 {
157 	/* disable vector */
158 	hns3_mask_vector_irq(tqp_vector, 0);
159 
160 	disable_irq(tqp_vector->vector_irq);
161 	napi_disable(&tqp_vector->napi);
162 }
163 
164 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
165 				 u32 rl_value)
166 {
167 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
168 
169 	/* this defines the configuration for RL (Interrupt Rate Limiter).
170 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
171 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
172 	 */
173 
174 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
175 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
176 		/* According to the hardware, the range of rl_reg is
177 		 * 0-59 and the unit is 4.
178 		 */
179 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
180 
181 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
182 }
183 
184 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
185 				    u32 gl_value)
186 {
187 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
188 
189 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
190 }
191 
192 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
193 				    u32 gl_value)
194 {
195 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
196 
197 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
198 }
199 
200 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
201 				   struct hns3_nic_priv *priv)
202 {
203 	struct hnae3_handle *h = priv->ae_handle;
204 
205 	/* initialize the configuration for interrupt coalescing.
206 	 * 1. GL (Interrupt Gap Limiter)
207 	 * 2. RL (Interrupt Rate Limiter)
208 	 */
209 
210 	/* Default: enable interrupt coalescing self-adaptive and GL */
211 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
212 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
213 
214 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
215 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
216 
217 	/* Default: disable RL */
218 	h->kinfo.int_rl_setting = 0;
219 
220 	tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
221 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
222 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
223 }
224 
225 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
226 				      struct hns3_nic_priv *priv)
227 {
228 	struct hnae3_handle *h = priv->ae_handle;
229 
230 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
231 				       tqp_vector->tx_group.coal.int_gl);
232 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
233 				       tqp_vector->rx_group.coal.int_gl);
234 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
235 }
236 
237 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
238 {
239 	struct hnae3_handle *h = hns3_get_handle(netdev);
240 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
241 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
242 	int i, ret;
243 
244 	if (kinfo->num_tc <= 1) {
245 		netdev_reset_tc(netdev);
246 	} else {
247 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
248 		if (ret) {
249 			netdev_err(netdev,
250 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
251 			return ret;
252 		}
253 
254 		for (i = 0; i < HNAE3_MAX_TC; i++) {
255 			if (!kinfo->tc_info[i].enable)
256 				continue;
257 
258 			netdev_set_tc_queue(netdev,
259 					    kinfo->tc_info[i].tc,
260 					    kinfo->tc_info[i].tqp_count,
261 					    kinfo->tc_info[i].tqp_offset);
262 		}
263 	}
264 
265 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
266 	if (ret) {
267 		netdev_err(netdev,
268 			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
269 			   ret);
270 		return ret;
271 	}
272 
273 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
274 	if (ret) {
275 		netdev_err(netdev,
276 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
277 		return ret;
278 	}
279 
280 	return 0;
281 }
282 
283 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
284 {
285 	u16 free_tqps, max_rss_size, max_tqps;
286 
287 	h->ae_algo->ops->get_tqps_and_rss_info(h, &free_tqps, &max_rss_size);
288 	max_tqps = h->kinfo.num_tc * max_rss_size;
289 
290 	return min_t(u16, max_tqps, (free_tqps + h->kinfo.num_tqps));
291 }
292 
293 static int hns3_nic_net_up(struct net_device *netdev)
294 {
295 	struct hns3_nic_priv *priv = netdev_priv(netdev);
296 	struct hnae3_handle *h = priv->ae_handle;
297 	int i, j;
298 	int ret;
299 
300 	ret = hns3_nic_reset_all_ring(h);
301 	if (ret)
302 		return ret;
303 
304 	/* get irq resource for all vectors */
305 	ret = hns3_nic_init_irq(priv);
306 	if (ret) {
307 		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
308 		return ret;
309 	}
310 
311 	/* enable the vectors */
312 	for (i = 0; i < priv->vector_num; i++)
313 		hns3_vector_enable(&priv->tqp_vector[i]);
314 
315 	/* start the ae_dev */
316 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
317 	if (ret)
318 		goto out_start_err;
319 
320 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
321 
322 	return 0;
323 
324 out_start_err:
325 	for (j = i - 1; j >= 0; j--)
326 		hns3_vector_disable(&priv->tqp_vector[j]);
327 
328 	hns3_nic_uninit_irq(priv);
329 
330 	return ret;
331 }
332 
333 static int hns3_nic_net_open(struct net_device *netdev)
334 {
335 	struct hns3_nic_priv *priv = netdev_priv(netdev);
336 	struct hnae3_handle *h = hns3_get_handle(netdev);
337 	struct hnae3_knic_private_info *kinfo;
338 	int i, ret;
339 
340 	netif_carrier_off(netdev);
341 
342 	ret = hns3_nic_set_real_num_queue(netdev);
343 	if (ret)
344 		return ret;
345 
346 	ret = hns3_nic_net_up(netdev);
347 	if (ret) {
348 		netdev_err(netdev,
349 			   "hns net up fail, ret=%d!\n", ret);
350 		return ret;
351 	}
352 
353 	kinfo = &h->kinfo;
354 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
355 		netdev_set_prio_tc_map(netdev, i,
356 				       kinfo->prio_tc[i]);
357 	}
358 
359 	priv->ae_handle->last_reset_time = jiffies;
360 	return 0;
361 }
362 
363 static void hns3_nic_net_down(struct net_device *netdev)
364 {
365 	struct hns3_nic_priv *priv = netdev_priv(netdev);
366 	const struct hnae3_ae_ops *ops;
367 	int i;
368 
369 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
370 		return;
371 
372 	/* disable vectors */
373 	for (i = 0; i < priv->vector_num; i++)
374 		hns3_vector_disable(&priv->tqp_vector[i]);
375 
376 	/* stop ae_dev */
377 	ops = priv->ae_handle->ae_algo->ops;
378 	if (ops->stop)
379 		ops->stop(priv->ae_handle);
380 
381 	/* free irq resources */
382 	hns3_nic_uninit_irq(priv);
383 
384 	hns3_clear_all_ring(priv->ae_handle);
385 }
386 
387 static int hns3_nic_net_stop(struct net_device *netdev)
388 {
389 	netif_tx_stop_all_queues(netdev);
390 	netif_carrier_off(netdev);
391 
392 	hns3_nic_net_down(netdev);
393 
394 	return 0;
395 }
396 
397 static int hns3_nic_uc_sync(struct net_device *netdev,
398 			    const unsigned char *addr)
399 {
400 	struct hnae3_handle *h = hns3_get_handle(netdev);
401 
402 	if (h->ae_algo->ops->add_uc_addr)
403 		return h->ae_algo->ops->add_uc_addr(h, addr);
404 
405 	return 0;
406 }
407 
408 static int hns3_nic_uc_unsync(struct net_device *netdev,
409 			      const unsigned char *addr)
410 {
411 	struct hnae3_handle *h = hns3_get_handle(netdev);
412 
413 	if (h->ae_algo->ops->rm_uc_addr)
414 		return h->ae_algo->ops->rm_uc_addr(h, addr);
415 
416 	return 0;
417 }
418 
419 static int hns3_nic_mc_sync(struct net_device *netdev,
420 			    const unsigned char *addr)
421 {
422 	struct hnae3_handle *h = hns3_get_handle(netdev);
423 
424 	if (h->ae_algo->ops->add_mc_addr)
425 		return h->ae_algo->ops->add_mc_addr(h, addr);
426 
427 	return 0;
428 }
429 
430 static int hns3_nic_mc_unsync(struct net_device *netdev,
431 			      const unsigned char *addr)
432 {
433 	struct hnae3_handle *h = hns3_get_handle(netdev);
434 
435 	if (h->ae_algo->ops->rm_mc_addr)
436 		return h->ae_algo->ops->rm_mc_addr(h, addr);
437 
438 	return 0;
439 }
440 
441 static void hns3_nic_set_rx_mode(struct net_device *netdev)
442 {
443 	struct hnae3_handle *h = hns3_get_handle(netdev);
444 
445 	if (h->ae_algo->ops->set_promisc_mode) {
446 		if (netdev->flags & IFF_PROMISC)
447 			h->ae_algo->ops->set_promisc_mode(h, true, true);
448 		else if (netdev->flags & IFF_ALLMULTI)
449 			h->ae_algo->ops->set_promisc_mode(h, false, true);
450 		else
451 			h->ae_algo->ops->set_promisc_mode(h, false, false);
452 	}
453 	if (__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync))
454 		netdev_err(netdev, "sync uc address fail\n");
455 	if (netdev->flags & IFF_MULTICAST) {
456 		if (__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync))
457 			netdev_err(netdev, "sync mc address fail\n");
458 
459 		if (h->ae_algo->ops->update_mta_status)
460 			h->ae_algo->ops->update_mta_status(h);
461 	}
462 }
463 
464 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
465 			u16 *mss, u32 *type_cs_vlan_tso)
466 {
467 	u32 l4_offset, hdr_len;
468 	union l3_hdr_info l3;
469 	union l4_hdr_info l4;
470 	u32 l4_paylen;
471 	int ret;
472 
473 	if (!skb_is_gso(skb))
474 		return 0;
475 
476 	ret = skb_cow_head(skb, 0);
477 	if (ret)
478 		return ret;
479 
480 	l3.hdr = skb_network_header(skb);
481 	l4.hdr = skb_transport_header(skb);
482 
483 	/* Software should clear the IPv4's checksum field when tso is
484 	 * needed.
485 	 */
486 	if (l3.v4->version == 4)
487 		l3.v4->check = 0;
488 
489 	/* tunnel packet.*/
490 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
491 					 SKB_GSO_GRE_CSUM |
492 					 SKB_GSO_UDP_TUNNEL |
493 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
494 		if ((!(skb_shinfo(skb)->gso_type &
495 		    SKB_GSO_PARTIAL)) &&
496 		    (skb_shinfo(skb)->gso_type &
497 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
498 			/* Software should clear the udp's checksum
499 			 * field when tso is needed.
500 			 */
501 			l4.udp->check = 0;
502 		}
503 		/* reset l3&l4 pointers from outer to inner headers */
504 		l3.hdr = skb_inner_network_header(skb);
505 		l4.hdr = skb_inner_transport_header(skb);
506 
507 		/* Software should clear the IPv4's checksum field when
508 		 * tso is needed.
509 		 */
510 		if (l3.v4->version == 4)
511 			l3.v4->check = 0;
512 	}
513 
514 	/* normal or tunnel packet*/
515 	l4_offset = l4.hdr - skb->data;
516 	hdr_len = (l4.tcp->doff * 4) + l4_offset;
517 
518 	/* remove payload length from inner pseudo checksum when tso*/
519 	l4_paylen = skb->len - l4_offset;
520 	csum_replace_by_diff(&l4.tcp->check,
521 			     (__force __wsum)htonl(l4_paylen));
522 
523 	/* find the txbd field values */
524 	*paylen = skb->len - hdr_len;
525 	hnae3_set_bit(*type_cs_vlan_tso,
526 		      HNS3_TXD_TSO_B, 1);
527 
528 	/* get MSS for TSO */
529 	*mss = skb_shinfo(skb)->gso_size;
530 
531 	return 0;
532 }
533 
534 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
535 				u8 *il4_proto)
536 {
537 	union {
538 		struct iphdr *v4;
539 		struct ipv6hdr *v6;
540 		unsigned char *hdr;
541 	} l3;
542 	unsigned char *l4_hdr;
543 	unsigned char *exthdr;
544 	u8 l4_proto_tmp;
545 	__be16 frag_off;
546 
547 	/* find outer header point */
548 	l3.hdr = skb_network_header(skb);
549 	l4_hdr = skb_transport_header(skb);
550 
551 	if (skb->protocol == htons(ETH_P_IPV6)) {
552 		exthdr = l3.hdr + sizeof(*l3.v6);
553 		l4_proto_tmp = l3.v6->nexthdr;
554 		if (l4_hdr != exthdr)
555 			ipv6_skip_exthdr(skb, exthdr - skb->data,
556 					 &l4_proto_tmp, &frag_off);
557 	} else if (skb->protocol == htons(ETH_P_IP)) {
558 		l4_proto_tmp = l3.v4->protocol;
559 	} else {
560 		return -EINVAL;
561 	}
562 
563 	*ol4_proto = l4_proto_tmp;
564 
565 	/* tunnel packet */
566 	if (!skb->encapsulation) {
567 		*il4_proto = 0;
568 		return 0;
569 	}
570 
571 	/* find inner header point */
572 	l3.hdr = skb_inner_network_header(skb);
573 	l4_hdr = skb_inner_transport_header(skb);
574 
575 	if (l3.v6->version == 6) {
576 		exthdr = l3.hdr + sizeof(*l3.v6);
577 		l4_proto_tmp = l3.v6->nexthdr;
578 		if (l4_hdr != exthdr)
579 			ipv6_skip_exthdr(skb, exthdr - skb->data,
580 					 &l4_proto_tmp, &frag_off);
581 	} else if (l3.v4->version == 4) {
582 		l4_proto_tmp = l3.v4->protocol;
583 	}
584 
585 	*il4_proto = l4_proto_tmp;
586 
587 	return 0;
588 }
589 
590 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
591 				u8 il4_proto, u32 *type_cs_vlan_tso,
592 				u32 *ol_type_vlan_len_msec)
593 {
594 	union {
595 		struct iphdr *v4;
596 		struct ipv6hdr *v6;
597 		unsigned char *hdr;
598 	} l3;
599 	union {
600 		struct tcphdr *tcp;
601 		struct udphdr *udp;
602 		struct gre_base_hdr *gre;
603 		unsigned char *hdr;
604 	} l4;
605 	unsigned char *l2_hdr;
606 	u8 l4_proto = ol4_proto;
607 	u32 ol2_len;
608 	u32 ol3_len;
609 	u32 ol4_len;
610 	u32 l2_len;
611 	u32 l3_len;
612 
613 	l3.hdr = skb_network_header(skb);
614 	l4.hdr = skb_transport_header(skb);
615 
616 	/* compute L2 header size for normal packet, defined in 2 Bytes */
617 	l2_len = l3.hdr - skb->data;
618 	hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
619 			HNS3_TXD_L2LEN_S, l2_len >> 1);
620 
621 	/* tunnel packet*/
622 	if (skb->encapsulation) {
623 		/* compute OL2 header size, defined in 2 Bytes */
624 		ol2_len = l2_len;
625 		hnae3_set_field(*ol_type_vlan_len_msec,
626 				HNS3_TXD_L2LEN_M,
627 				HNS3_TXD_L2LEN_S, ol2_len >> 1);
628 
629 		/* compute OL3 header size, defined in 4 Bytes */
630 		ol3_len = l4.hdr - l3.hdr;
631 		hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_M,
632 				HNS3_TXD_L3LEN_S, ol3_len >> 2);
633 
634 		/* MAC in UDP, MAC in GRE (0x6558)*/
635 		if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
636 			/* switch MAC header ptr from outer to inner header.*/
637 			l2_hdr = skb_inner_mac_header(skb);
638 
639 			/* compute OL4 header size, defined in 4 Bytes. */
640 			ol4_len = l2_hdr - l4.hdr;
641 			hnae3_set_field(*ol_type_vlan_len_msec,
642 					HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
643 					ol4_len >> 2);
644 
645 			/* switch IP header ptr from outer to inner header */
646 			l3.hdr = skb_inner_network_header(skb);
647 
648 			/* compute inner l2 header size, defined in 2 Bytes. */
649 			l2_len = l3.hdr - l2_hdr;
650 			hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
651 					HNS3_TXD_L2LEN_S, l2_len >> 1);
652 		} else {
653 			/* skb packet types not supported by hardware,
654 			 * txbd len fild doesn't be filled.
655 			 */
656 			return;
657 		}
658 
659 		/* switch L4 header pointer from outer to inner */
660 		l4.hdr = skb_inner_transport_header(skb);
661 
662 		l4_proto = il4_proto;
663 	}
664 
665 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
666 	l3_len = l4.hdr - l3.hdr;
667 	hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_M,
668 			HNS3_TXD_L3LEN_S, l3_len >> 2);
669 
670 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
671 	switch (l4_proto) {
672 	case IPPROTO_TCP:
673 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
674 				HNS3_TXD_L4LEN_S, l4.tcp->doff);
675 		break;
676 	case IPPROTO_SCTP:
677 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
678 				HNS3_TXD_L4LEN_S,
679 				(sizeof(struct sctphdr) >> 2));
680 		break;
681 	case IPPROTO_UDP:
682 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
683 				HNS3_TXD_L4LEN_S,
684 				(sizeof(struct udphdr) >> 2));
685 		break;
686 	default:
687 		/* skb packet types not supported by hardware,
688 		 * txbd len fild doesn't be filled.
689 		 */
690 		return;
691 	}
692 }
693 
694 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
695  * and it is udp packet, which has a dest port as the IANA assigned.
696  * the hardware is expected to do the checksum offload, but the
697  * hardware will not do the checksum offload when udp dest port is
698  * 4789.
699  */
700 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
701 {
702 #define IANA_VXLAN_PORT	4789
703 	union {
704 		struct tcphdr *tcp;
705 		struct udphdr *udp;
706 		struct gre_base_hdr *gre;
707 		unsigned char *hdr;
708 	} l4;
709 
710 	l4.hdr = skb_transport_header(skb);
711 
712 	if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
713 		return false;
714 
715 	skb_checksum_help(skb);
716 
717 	return true;
718 }
719 
720 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
721 				   u8 il4_proto, u32 *type_cs_vlan_tso,
722 				   u32 *ol_type_vlan_len_msec)
723 {
724 	union {
725 		struct iphdr *v4;
726 		struct ipv6hdr *v6;
727 		unsigned char *hdr;
728 	} l3;
729 	u32 l4_proto = ol4_proto;
730 
731 	l3.hdr = skb_network_header(skb);
732 
733 	/* define OL3 type and tunnel type(OL4).*/
734 	if (skb->encapsulation) {
735 		/* define outer network header type.*/
736 		if (skb->protocol == htons(ETH_P_IP)) {
737 			if (skb_is_gso(skb))
738 				hnae3_set_field(*ol_type_vlan_len_msec,
739 						HNS3_TXD_OL3T_M,
740 						HNS3_TXD_OL3T_S,
741 						HNS3_OL3T_IPV4_CSUM);
742 			else
743 				hnae3_set_field(*ol_type_vlan_len_msec,
744 						HNS3_TXD_OL3T_M,
745 						HNS3_TXD_OL3T_S,
746 						HNS3_OL3T_IPV4_NO_CSUM);
747 
748 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
749 			hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_M,
750 					HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6);
751 		}
752 
753 		/* define tunnel type(OL4).*/
754 		switch (l4_proto) {
755 		case IPPROTO_UDP:
756 			hnae3_set_field(*ol_type_vlan_len_msec,
757 					HNS3_TXD_TUNTYPE_M,
758 					HNS3_TXD_TUNTYPE_S,
759 					HNS3_TUN_MAC_IN_UDP);
760 			break;
761 		case IPPROTO_GRE:
762 			hnae3_set_field(*ol_type_vlan_len_msec,
763 					HNS3_TXD_TUNTYPE_M,
764 					HNS3_TXD_TUNTYPE_S,
765 					HNS3_TUN_NVGRE);
766 			break;
767 		default:
768 			/* drop the skb tunnel packet if hardware don't support,
769 			 * because hardware can't calculate csum when TSO.
770 			 */
771 			if (skb_is_gso(skb))
772 				return -EDOM;
773 
774 			/* the stack computes the IP header already,
775 			 * driver calculate l4 checksum when not TSO.
776 			 */
777 			skb_checksum_help(skb);
778 			return 0;
779 		}
780 
781 		l3.hdr = skb_inner_network_header(skb);
782 		l4_proto = il4_proto;
783 	}
784 
785 	if (l3.v4->version == 4) {
786 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
787 				HNS3_TXD_L3T_S, HNS3_L3T_IPV4);
788 
789 		/* the stack computes the IP header already, the only time we
790 		 * need the hardware to recompute it is in the case of TSO.
791 		 */
792 		if (skb_is_gso(skb))
793 			hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
794 	} else if (l3.v6->version == 6) {
795 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
796 				HNS3_TXD_L3T_S, HNS3_L3T_IPV6);
797 	}
798 
799 	switch (l4_proto) {
800 	case IPPROTO_TCP:
801 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
802 		hnae3_set_field(*type_cs_vlan_tso,
803 				HNS3_TXD_L4T_M,
804 				HNS3_TXD_L4T_S,
805 				HNS3_L4T_TCP);
806 		break;
807 	case IPPROTO_UDP:
808 		if (hns3_tunnel_csum_bug(skb))
809 			break;
810 
811 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
812 		hnae3_set_field(*type_cs_vlan_tso,
813 				HNS3_TXD_L4T_M,
814 				HNS3_TXD_L4T_S,
815 				HNS3_L4T_UDP);
816 		break;
817 	case IPPROTO_SCTP:
818 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
819 		hnae3_set_field(*type_cs_vlan_tso,
820 				HNS3_TXD_L4T_M,
821 				HNS3_TXD_L4T_S,
822 				HNS3_L4T_SCTP);
823 		break;
824 	default:
825 		/* drop the skb tunnel packet if hardware don't support,
826 		 * because hardware can't calculate csum when TSO.
827 		 */
828 		if (skb_is_gso(skb))
829 			return -EDOM;
830 
831 		/* the stack computes the IP header already,
832 		 * driver calculate l4 checksum when not TSO.
833 		 */
834 		skb_checksum_help(skb);
835 		return 0;
836 	}
837 
838 	return 0;
839 }
840 
841 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
842 {
843 	/* Config bd buffer end */
844 	hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_BDTYPE_M,
845 			HNS3_TXD_BDTYPE_S, 0);
846 	hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
847 	hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
848 	hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_SC_M, HNS3_TXD_SC_S, 0);
849 }
850 
851 static int hns3_fill_desc_vtags(struct sk_buff *skb,
852 				struct hns3_enet_ring *tx_ring,
853 				u32 *inner_vlan_flag,
854 				u32 *out_vlan_flag,
855 				u16 *inner_vtag,
856 				u16 *out_vtag)
857 {
858 #define HNS3_TX_VLAN_PRIO_SHIFT 13
859 
860 	if (skb->protocol == htons(ETH_P_8021Q) &&
861 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
862 	    NETIF_F_HW_VLAN_CTAG_TX)) {
863 		/* When HW VLAN acceleration is turned off, and the stack
864 		 * sets the protocol to 802.1q, the driver just need to
865 		 * set the protocol to the encapsulated ethertype.
866 		 */
867 		skb->protocol = vlan_get_protocol(skb);
868 		return 0;
869 	}
870 
871 	if (skb_vlan_tag_present(skb)) {
872 		u16 vlan_tag;
873 
874 		vlan_tag = skb_vlan_tag_get(skb);
875 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
876 
877 		/* Based on hw strategy, use out_vtag in two layer tag case,
878 		 * and use inner_vtag in one tag case.
879 		 */
880 		if (skb->protocol == htons(ETH_P_8021Q)) {
881 			hnae3_set_bit(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
882 			*out_vtag = vlan_tag;
883 		} else {
884 			hnae3_set_bit(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
885 			*inner_vtag = vlan_tag;
886 		}
887 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
888 		struct vlan_ethhdr *vhdr;
889 		int rc;
890 
891 		rc = skb_cow_head(skb, 0);
892 		if (rc < 0)
893 			return rc;
894 		vhdr = (struct vlan_ethhdr *)skb->data;
895 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
896 					<< HNS3_TX_VLAN_PRIO_SHIFT);
897 	}
898 
899 	skb->protocol = vlan_get_protocol(skb);
900 	return 0;
901 }
902 
903 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
904 			  int size, dma_addr_t dma, int frag_end,
905 			  enum hns_desc_type type)
906 {
907 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
908 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
909 	u32 ol_type_vlan_len_msec = 0;
910 	u16 bdtp_fe_sc_vld_ra_ri = 0;
911 	u32 type_cs_vlan_tso = 0;
912 	struct sk_buff *skb;
913 	u16 inner_vtag = 0;
914 	u16 out_vtag = 0;
915 	u32 paylen = 0;
916 	u16 mss = 0;
917 	u8 ol4_proto;
918 	u8 il4_proto;
919 	int ret;
920 
921 	/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
922 	desc_cb->priv = priv;
923 	desc_cb->length = size;
924 	desc_cb->dma = dma;
925 	desc_cb->type = type;
926 
927 	/* now, fill the descriptor */
928 	desc->addr = cpu_to_le64(dma);
929 	desc->tx.send_size = cpu_to_le16((u16)size);
930 	hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
931 	desc->tx.bdtp_fe_sc_vld_ra_ri = cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
932 
933 	if (type == DESC_TYPE_SKB) {
934 		skb = (struct sk_buff *)priv;
935 		paylen = skb->len;
936 
937 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
938 					   &ol_type_vlan_len_msec,
939 					   &inner_vtag, &out_vtag);
940 		if (unlikely(ret))
941 			return ret;
942 
943 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
944 			skb_reset_mac_len(skb);
945 
946 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
947 			if (ret)
948 				return ret;
949 			hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
950 					    &type_cs_vlan_tso,
951 					    &ol_type_vlan_len_msec);
952 			ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
953 						      &type_cs_vlan_tso,
954 						      &ol_type_vlan_len_msec);
955 			if (ret)
956 				return ret;
957 
958 			ret = hns3_set_tso(skb, &paylen, &mss,
959 					   &type_cs_vlan_tso);
960 			if (ret)
961 				return ret;
962 		}
963 
964 		/* Set txbd */
965 		desc->tx.ol_type_vlan_len_msec =
966 			cpu_to_le32(ol_type_vlan_len_msec);
967 		desc->tx.type_cs_vlan_tso_len =
968 			cpu_to_le32(type_cs_vlan_tso);
969 		desc->tx.paylen = cpu_to_le32(paylen);
970 		desc->tx.mss = cpu_to_le16(mss);
971 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
972 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
973 	}
974 
975 	/* move ring pointer to next.*/
976 	ring_ptr_move_fw(ring, next_to_use);
977 
978 	return 0;
979 }
980 
981 static int hns3_fill_desc_tso(struct hns3_enet_ring *ring, void *priv,
982 			      int size, dma_addr_t dma, int frag_end,
983 			      enum hns_desc_type type)
984 {
985 	unsigned int frag_buf_num;
986 	unsigned int k;
987 	int sizeoflast;
988 	int ret;
989 
990 	frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
991 	sizeoflast = size % HNS3_MAX_BD_SIZE;
992 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
993 
994 	/* When the frag size is bigger than hardware, split this frag */
995 	for (k = 0; k < frag_buf_num; k++) {
996 		ret = hns3_fill_desc(ring, priv,
997 				     (k == frag_buf_num - 1) ?
998 				sizeoflast : HNS3_MAX_BD_SIZE,
999 				dma + HNS3_MAX_BD_SIZE * k,
1000 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
1001 				(type == DESC_TYPE_SKB && !k) ?
1002 					DESC_TYPE_SKB : DESC_TYPE_PAGE);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	return 0;
1008 }
1009 
1010 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1011 				   struct hns3_enet_ring *ring)
1012 {
1013 	struct sk_buff *skb = *out_skb;
1014 	struct skb_frag_struct *frag;
1015 	int bdnum_for_frag;
1016 	int frag_num;
1017 	int buf_num;
1018 	int size;
1019 	int i;
1020 
1021 	size = skb_headlen(skb);
1022 	buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1023 
1024 	frag_num = skb_shinfo(skb)->nr_frags;
1025 	for (i = 0; i < frag_num; i++) {
1026 		frag = &skb_shinfo(skb)->frags[i];
1027 		size = skb_frag_size(frag);
1028 		bdnum_for_frag =
1029 			(size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1030 		if (bdnum_for_frag > HNS3_MAX_BD_PER_FRAG)
1031 			return -ENOMEM;
1032 
1033 		buf_num += bdnum_for_frag;
1034 	}
1035 
1036 	if (buf_num > ring_space(ring))
1037 		return -EBUSY;
1038 
1039 	*bnum = buf_num;
1040 	return 0;
1041 }
1042 
1043 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1044 				  struct hns3_enet_ring *ring)
1045 {
1046 	struct sk_buff *skb = *out_skb;
1047 	int buf_num;
1048 
1049 	/* No. of segments (plus a header) */
1050 	buf_num = skb_shinfo(skb)->nr_frags + 1;
1051 
1052 	if (buf_num > ring_space(ring))
1053 		return -EBUSY;
1054 
1055 	*bnum = buf_num;
1056 
1057 	return 0;
1058 }
1059 
1060 static void hns_nic_dma_unmap(struct hns3_enet_ring *ring, int next_to_use_orig)
1061 {
1062 	struct device *dev = ring_to_dev(ring);
1063 	unsigned int i;
1064 
1065 	for (i = 0; i < ring->desc_num; i++) {
1066 		/* check if this is where we started */
1067 		if (ring->next_to_use == next_to_use_orig)
1068 			break;
1069 
1070 		/* unmap the descriptor dma address */
1071 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1072 			dma_unmap_single(dev,
1073 					 ring->desc_cb[ring->next_to_use].dma,
1074 					ring->desc_cb[ring->next_to_use].length,
1075 					DMA_TO_DEVICE);
1076 		else
1077 			dma_unmap_page(dev,
1078 				       ring->desc_cb[ring->next_to_use].dma,
1079 				       ring->desc_cb[ring->next_to_use].length,
1080 				       DMA_TO_DEVICE);
1081 
1082 		/* rollback one */
1083 		ring_ptr_move_bw(ring, next_to_use);
1084 	}
1085 }
1086 
1087 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1088 {
1089 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1090 	struct hns3_nic_ring_data *ring_data =
1091 		&tx_ring_data(priv, skb->queue_mapping);
1092 	struct hns3_enet_ring *ring = ring_data->ring;
1093 	struct device *dev = priv->dev;
1094 	struct netdev_queue *dev_queue;
1095 	struct skb_frag_struct *frag;
1096 	int next_to_use_head;
1097 	int next_to_use_frag;
1098 	dma_addr_t dma;
1099 	int buf_num;
1100 	int seg_num;
1101 	int size;
1102 	int ret;
1103 	int i;
1104 
1105 	/* Prefetch the data used later */
1106 	prefetch(skb->data);
1107 
1108 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1109 	case -EBUSY:
1110 		u64_stats_update_begin(&ring->syncp);
1111 		ring->stats.tx_busy++;
1112 		u64_stats_update_end(&ring->syncp);
1113 
1114 		goto out_net_tx_busy;
1115 	case -ENOMEM:
1116 		u64_stats_update_begin(&ring->syncp);
1117 		ring->stats.sw_err_cnt++;
1118 		u64_stats_update_end(&ring->syncp);
1119 		netdev_err(netdev, "no memory to xmit!\n");
1120 
1121 		goto out_err_tx_ok;
1122 	default:
1123 		break;
1124 	}
1125 
1126 	/* No. of segments (plus a header) */
1127 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1128 	/* Fill the first part */
1129 	size = skb_headlen(skb);
1130 
1131 	next_to_use_head = ring->next_to_use;
1132 
1133 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1134 	if (dma_mapping_error(dev, dma)) {
1135 		netdev_err(netdev, "TX head DMA map failed\n");
1136 		ring->stats.sw_err_cnt++;
1137 		goto out_err_tx_ok;
1138 	}
1139 
1140 	ret = priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
1141 			   DESC_TYPE_SKB);
1142 	if (ret)
1143 		goto head_dma_map_err;
1144 
1145 	next_to_use_frag = ring->next_to_use;
1146 	/* Fill the fragments */
1147 	for (i = 1; i < seg_num; i++) {
1148 		frag = &skb_shinfo(skb)->frags[i - 1];
1149 		size = skb_frag_size(frag);
1150 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1151 		if (dma_mapping_error(dev, dma)) {
1152 			netdev_err(netdev, "TX frag(%d) DMA map failed\n", i);
1153 			ring->stats.sw_err_cnt++;
1154 			goto frag_dma_map_err;
1155 		}
1156 		ret = priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
1157 				    seg_num - 1 == i ? 1 : 0,
1158 				    DESC_TYPE_PAGE);
1159 
1160 		if (ret)
1161 			goto frag_dma_map_err;
1162 	}
1163 
1164 	/* Complete translate all packets */
1165 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1166 	netdev_tx_sent_queue(dev_queue, skb->len);
1167 
1168 	wmb(); /* Commit all data before submit */
1169 
1170 	hnae3_queue_xmit(ring->tqp, buf_num);
1171 
1172 	return NETDEV_TX_OK;
1173 
1174 frag_dma_map_err:
1175 	hns_nic_dma_unmap(ring, next_to_use_frag);
1176 
1177 head_dma_map_err:
1178 	hns_nic_dma_unmap(ring, next_to_use_head);
1179 
1180 out_err_tx_ok:
1181 	dev_kfree_skb_any(skb);
1182 	return NETDEV_TX_OK;
1183 
1184 out_net_tx_busy:
1185 	netif_stop_subqueue(netdev, ring_data->queue_index);
1186 	smp_mb(); /* Commit all data before submit */
1187 
1188 	return NETDEV_TX_BUSY;
1189 }
1190 
1191 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1192 {
1193 	struct hnae3_handle *h = hns3_get_handle(netdev);
1194 	struct sockaddr *mac_addr = p;
1195 	int ret;
1196 
1197 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1198 		return -EADDRNOTAVAIL;
1199 
1200 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1201 		netdev_info(netdev, "already using mac address %pM\n",
1202 			    mac_addr->sa_data);
1203 		return 0;
1204 	}
1205 
1206 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1207 	if (ret) {
1208 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1209 		return ret;
1210 	}
1211 
1212 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1213 
1214 	return 0;
1215 }
1216 
1217 static int hns3_nic_set_features(struct net_device *netdev,
1218 				 netdev_features_t features)
1219 {
1220 	netdev_features_t changed = netdev->features ^ features;
1221 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1222 	struct hnae3_handle *h = priv->ae_handle;
1223 	int ret;
1224 
1225 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1226 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1227 			priv->ops.fill_desc = hns3_fill_desc_tso;
1228 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1229 		} else {
1230 			priv->ops.fill_desc = hns3_fill_desc;
1231 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1232 		}
1233 	}
1234 
1235 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1236 	    h->ae_algo->ops->enable_vlan_filter) {
1237 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
1238 			h->ae_algo->ops->enable_vlan_filter(h, true);
1239 		else
1240 			h->ae_algo->ops->enable_vlan_filter(h, false);
1241 	}
1242 
1243 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1244 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1245 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
1246 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, true);
1247 		else
1248 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, false);
1249 
1250 		if (ret)
1251 			return ret;
1252 	}
1253 
1254 	netdev->features = features;
1255 	return 0;
1256 }
1257 
1258 static void hns3_nic_get_stats64(struct net_device *netdev,
1259 				 struct rtnl_link_stats64 *stats)
1260 {
1261 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1262 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1263 	struct hnae3_handle *handle = priv->ae_handle;
1264 	struct hns3_enet_ring *ring;
1265 	unsigned int start;
1266 	unsigned int idx;
1267 	u64 tx_bytes = 0;
1268 	u64 rx_bytes = 0;
1269 	u64 tx_pkts = 0;
1270 	u64 rx_pkts = 0;
1271 	u64 tx_drop = 0;
1272 	u64 rx_drop = 0;
1273 
1274 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1275 		return;
1276 
1277 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1278 
1279 	for (idx = 0; idx < queue_num; idx++) {
1280 		/* fetch the tx stats */
1281 		ring = priv->ring_data[idx].ring;
1282 		do {
1283 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1284 			tx_bytes += ring->stats.tx_bytes;
1285 			tx_pkts += ring->stats.tx_pkts;
1286 			tx_drop += ring->stats.tx_busy;
1287 			tx_drop += ring->stats.sw_err_cnt;
1288 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1289 
1290 		/* fetch the rx stats */
1291 		ring = priv->ring_data[idx + queue_num].ring;
1292 		do {
1293 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1294 			rx_bytes += ring->stats.rx_bytes;
1295 			rx_pkts += ring->stats.rx_pkts;
1296 			rx_drop += ring->stats.non_vld_descs;
1297 			rx_drop += ring->stats.err_pkt_len;
1298 			rx_drop += ring->stats.l2_err;
1299 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1300 	}
1301 
1302 	stats->tx_bytes = tx_bytes;
1303 	stats->tx_packets = tx_pkts;
1304 	stats->rx_bytes = rx_bytes;
1305 	stats->rx_packets = rx_pkts;
1306 
1307 	stats->rx_errors = netdev->stats.rx_errors;
1308 	stats->multicast = netdev->stats.multicast;
1309 	stats->rx_length_errors = netdev->stats.rx_length_errors;
1310 	stats->rx_crc_errors = netdev->stats.rx_crc_errors;
1311 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1312 
1313 	stats->tx_errors = netdev->stats.tx_errors;
1314 	stats->rx_dropped = rx_drop + netdev->stats.rx_dropped;
1315 	stats->tx_dropped = tx_drop + netdev->stats.tx_dropped;
1316 	stats->collisions = netdev->stats.collisions;
1317 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1318 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1319 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1320 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1321 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1322 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1323 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1324 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1325 	stats->rx_compressed = netdev->stats.rx_compressed;
1326 	stats->tx_compressed = netdev->stats.tx_compressed;
1327 }
1328 
1329 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1330 {
1331 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1332 	struct hnae3_handle *h = hns3_get_handle(netdev);
1333 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1334 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1335 	u8 tc = mqprio_qopt->qopt.num_tc;
1336 	u16 mode = mqprio_qopt->mode;
1337 	u8 hw = mqprio_qopt->qopt.hw;
1338 	bool if_running;
1339 	int ret;
1340 
1341 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1342 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1343 		return -EOPNOTSUPP;
1344 
1345 	if (tc > HNAE3_MAX_TC)
1346 		return -EINVAL;
1347 
1348 	if (!netdev)
1349 		return -EINVAL;
1350 
1351 	if_running = netif_running(netdev);
1352 	if (if_running) {
1353 		hns3_nic_net_stop(netdev);
1354 		msleep(100);
1355 	}
1356 
1357 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1358 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1359 	if (ret)
1360 		goto out;
1361 
1362 	ret = hns3_nic_set_real_num_queue(netdev);
1363 
1364 out:
1365 	if (if_running)
1366 		hns3_nic_net_open(netdev);
1367 
1368 	return ret;
1369 }
1370 
1371 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1372 			     void *type_data)
1373 {
1374 	if (type != TC_SETUP_QDISC_MQPRIO)
1375 		return -EOPNOTSUPP;
1376 
1377 	return hns3_setup_tc(dev, type_data);
1378 }
1379 
1380 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1381 				__be16 proto, u16 vid)
1382 {
1383 	struct hnae3_handle *h = hns3_get_handle(netdev);
1384 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1385 	int ret = -EIO;
1386 
1387 	if (h->ae_algo->ops->set_vlan_filter)
1388 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1389 
1390 	if (!ret)
1391 		set_bit(vid, priv->active_vlans);
1392 
1393 	return ret;
1394 }
1395 
1396 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1397 				 __be16 proto, u16 vid)
1398 {
1399 	struct hnae3_handle *h = hns3_get_handle(netdev);
1400 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1401 	int ret = -EIO;
1402 
1403 	if (h->ae_algo->ops->set_vlan_filter)
1404 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1405 
1406 	if (!ret)
1407 		clear_bit(vid, priv->active_vlans);
1408 
1409 	return ret;
1410 }
1411 
1412 static void hns3_restore_vlan(struct net_device *netdev)
1413 {
1414 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1415 	u16 vid;
1416 	int ret;
1417 
1418 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1419 		ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1420 		if (ret)
1421 			netdev_warn(netdev, "Restore vlan: %d filter, ret:%d\n",
1422 				    vid, ret);
1423 	}
1424 }
1425 
1426 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1427 				u8 qos, __be16 vlan_proto)
1428 {
1429 	struct hnae3_handle *h = hns3_get_handle(netdev);
1430 	int ret = -EIO;
1431 
1432 	if (h->ae_algo->ops->set_vf_vlan_filter)
1433 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1434 						   qos, vlan_proto);
1435 
1436 	return ret;
1437 }
1438 
1439 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1440 {
1441 	struct hnae3_handle *h = hns3_get_handle(netdev);
1442 	bool if_running = netif_running(netdev);
1443 	int ret;
1444 
1445 	if (!h->ae_algo->ops->set_mtu)
1446 		return -EOPNOTSUPP;
1447 
1448 	/* if this was called with netdev up then bring netdevice down */
1449 	if (if_running) {
1450 		(void)hns3_nic_net_stop(netdev);
1451 		msleep(100);
1452 	}
1453 
1454 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1455 	if (ret) {
1456 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1457 			   ret);
1458 		return ret;
1459 	}
1460 
1461 	netdev->mtu = new_mtu;
1462 
1463 	/* if the netdev was running earlier, bring it up again */
1464 	if (if_running && hns3_nic_net_open(netdev))
1465 		ret = -EINVAL;
1466 
1467 	return ret;
1468 }
1469 
1470 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1471 {
1472 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1473 	struct hns3_enet_ring *tx_ring = NULL;
1474 	int timeout_queue = 0;
1475 	int hw_head, hw_tail;
1476 	int i;
1477 
1478 	/* Find the stopped queue the same way the stack does */
1479 	for (i = 0; i < ndev->real_num_tx_queues; i++) {
1480 		struct netdev_queue *q;
1481 		unsigned long trans_start;
1482 
1483 		q = netdev_get_tx_queue(ndev, i);
1484 		trans_start = q->trans_start;
1485 		if (netif_xmit_stopped(q) &&
1486 		    time_after(jiffies,
1487 			       (trans_start + ndev->watchdog_timeo))) {
1488 			timeout_queue = i;
1489 			break;
1490 		}
1491 	}
1492 
1493 	if (i == ndev->num_tx_queues) {
1494 		netdev_info(ndev,
1495 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1496 			    priv->tx_timeout_count);
1497 		return false;
1498 	}
1499 
1500 	tx_ring = priv->ring_data[timeout_queue].ring;
1501 
1502 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1503 				HNS3_RING_TX_RING_HEAD_REG);
1504 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1505 				HNS3_RING_TX_RING_TAIL_REG);
1506 	netdev_info(ndev,
1507 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1508 		    priv->tx_timeout_count,
1509 		    timeout_queue,
1510 		    tx_ring->next_to_use,
1511 		    tx_ring->next_to_clean,
1512 		    hw_head,
1513 		    hw_tail,
1514 		    readl(tx_ring->tqp_vector->mask_addr));
1515 
1516 	return true;
1517 }
1518 
1519 static void hns3_nic_net_timeout(struct net_device *ndev)
1520 {
1521 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1522 	struct hnae3_handle *h = priv->ae_handle;
1523 
1524 	if (!hns3_get_tx_timeo_queue_info(ndev))
1525 		return;
1526 
1527 	priv->tx_timeout_count++;
1528 
1529 	if (time_before(jiffies, (h->last_reset_time + ndev->watchdog_timeo)))
1530 		return;
1531 
1532 	/* request the reset */
1533 	if (h->ae_algo->ops->reset_event)
1534 		h->ae_algo->ops->reset_event(h);
1535 }
1536 
1537 static const struct net_device_ops hns3_nic_netdev_ops = {
1538 	.ndo_open		= hns3_nic_net_open,
1539 	.ndo_stop		= hns3_nic_net_stop,
1540 	.ndo_start_xmit		= hns3_nic_net_xmit,
1541 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1542 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1543 	.ndo_change_mtu		= hns3_nic_change_mtu,
1544 	.ndo_set_features	= hns3_nic_set_features,
1545 	.ndo_get_stats64	= hns3_nic_get_stats64,
1546 	.ndo_setup_tc		= hns3_nic_setup_tc,
1547 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1548 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1549 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1550 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1551 };
1552 
1553 static bool hns3_is_phys_func(struct pci_dev *pdev)
1554 {
1555 	u32 dev_id = pdev->device;
1556 
1557 	switch (dev_id) {
1558 	case HNAE3_DEV_ID_GE:
1559 	case HNAE3_DEV_ID_25GE:
1560 	case HNAE3_DEV_ID_25GE_RDMA:
1561 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1562 	case HNAE3_DEV_ID_50GE_RDMA:
1563 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1564 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1565 		return true;
1566 	case HNAE3_DEV_ID_100G_VF:
1567 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1568 		return false;
1569 	default:
1570 		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1571 			 dev_id);
1572 	}
1573 
1574 	return false;
1575 }
1576 
1577 static void hns3_disable_sriov(struct pci_dev *pdev)
1578 {
1579 	/* If our VFs are assigned we cannot shut down SR-IOV
1580 	 * without causing issues, so just leave the hardware
1581 	 * available but disabled
1582 	 */
1583 	if (pci_vfs_assigned(pdev)) {
1584 		dev_warn(&pdev->dev,
1585 			 "disabling driver while VFs are assigned\n");
1586 		return;
1587 	}
1588 
1589 	pci_disable_sriov(pdev);
1590 }
1591 
1592 /* hns3_probe - Device initialization routine
1593  * @pdev: PCI device information struct
1594  * @ent: entry in hns3_pci_tbl
1595  *
1596  * hns3_probe initializes a PF identified by a pci_dev structure.
1597  * The OS initialization, configuring of the PF private structure,
1598  * and a hardware reset occur.
1599  *
1600  * Returns 0 on success, negative on failure
1601  */
1602 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1603 {
1604 	struct hnae3_ae_dev *ae_dev;
1605 	int ret;
1606 
1607 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1608 			      GFP_KERNEL);
1609 	if (!ae_dev) {
1610 		ret = -ENOMEM;
1611 		return ret;
1612 	}
1613 
1614 	ae_dev->pdev = pdev;
1615 	ae_dev->flag = ent->driver_data;
1616 	ae_dev->dev_type = HNAE3_DEV_KNIC;
1617 	pci_set_drvdata(pdev, ae_dev);
1618 
1619 	hnae3_register_ae_dev(ae_dev);
1620 
1621 	return 0;
1622 }
1623 
1624 /* hns3_remove - Device removal routine
1625  * @pdev: PCI device information struct
1626  */
1627 static void hns3_remove(struct pci_dev *pdev)
1628 {
1629 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1630 
1631 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1632 		hns3_disable_sriov(pdev);
1633 
1634 	hnae3_unregister_ae_dev(ae_dev);
1635 }
1636 
1637 /**
1638  * hns3_pci_sriov_configure
1639  * @pdev: pointer to a pci_dev structure
1640  * @num_vfs: number of VFs to allocate
1641  *
1642  * Enable or change the number of VFs. Called when the user updates the number
1643  * of VFs in sysfs.
1644  **/
1645 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1646 {
1647 	int ret;
1648 
1649 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1650 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
1651 		return -EINVAL;
1652 	}
1653 
1654 	if (num_vfs) {
1655 		ret = pci_enable_sriov(pdev, num_vfs);
1656 		if (ret)
1657 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1658 		else
1659 			return num_vfs;
1660 	} else if (!pci_vfs_assigned(pdev)) {
1661 		pci_disable_sriov(pdev);
1662 	} else {
1663 		dev_warn(&pdev->dev,
1664 			 "Unable to free VFs because some are assigned to VMs.\n");
1665 	}
1666 
1667 	return 0;
1668 }
1669 
1670 static struct pci_driver hns3_driver = {
1671 	.name     = hns3_driver_name,
1672 	.id_table = hns3_pci_tbl,
1673 	.probe    = hns3_probe,
1674 	.remove   = hns3_remove,
1675 	.sriov_configure = hns3_pci_sriov_configure,
1676 };
1677 
1678 /* set default feature to hns3 */
1679 static void hns3_set_default_feature(struct net_device *netdev)
1680 {
1681 	netdev->priv_flags |= IFF_UNICAST_FLT;
1682 
1683 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1684 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1685 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1686 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1687 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1688 
1689 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1690 
1691 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1692 
1693 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1694 		NETIF_F_HW_VLAN_CTAG_FILTER |
1695 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1696 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1697 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1698 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1699 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1700 
1701 	netdev->vlan_features |=
1702 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1703 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1704 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1705 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1706 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1707 
1708 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1709 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1710 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1711 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1712 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1713 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1714 }
1715 
1716 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1717 			     struct hns3_desc_cb *cb)
1718 {
1719 	unsigned int order = hnae3_page_order(ring);
1720 	struct page *p;
1721 
1722 	p = dev_alloc_pages(order);
1723 	if (!p)
1724 		return -ENOMEM;
1725 
1726 	cb->priv = p;
1727 	cb->page_offset = 0;
1728 	cb->reuse_flag = 0;
1729 	cb->buf  = page_address(p);
1730 	cb->length = hnae3_page_size(ring);
1731 	cb->type = DESC_TYPE_PAGE;
1732 
1733 	return 0;
1734 }
1735 
1736 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1737 			     struct hns3_desc_cb *cb)
1738 {
1739 	if (cb->type == DESC_TYPE_SKB)
1740 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
1741 	else if (!HNAE3_IS_TX_RING(ring))
1742 		put_page((struct page *)cb->priv);
1743 	memset(cb, 0, sizeof(*cb));
1744 }
1745 
1746 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1747 {
1748 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1749 			       cb->length, ring_to_dma_dir(ring));
1750 
1751 	if (dma_mapping_error(ring_to_dev(ring), cb->dma))
1752 		return -EIO;
1753 
1754 	return 0;
1755 }
1756 
1757 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1758 			      struct hns3_desc_cb *cb)
1759 {
1760 	if (cb->type == DESC_TYPE_SKB)
1761 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1762 				 ring_to_dma_dir(ring));
1763 	else
1764 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1765 			       ring_to_dma_dir(ring));
1766 }
1767 
1768 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
1769 {
1770 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1771 	ring->desc[i].addr = 0;
1772 }
1773 
1774 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
1775 {
1776 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
1777 
1778 	if (!ring->desc_cb[i].dma)
1779 		return;
1780 
1781 	hns3_buffer_detach(ring, i);
1782 	hns3_free_buffer(ring, cb);
1783 }
1784 
1785 static void hns3_free_buffers(struct hns3_enet_ring *ring)
1786 {
1787 	int i;
1788 
1789 	for (i = 0; i < ring->desc_num; i++)
1790 		hns3_free_buffer_detach(ring, i);
1791 }
1792 
1793 /* free desc along with its attached buffer */
1794 static void hns3_free_desc(struct hns3_enet_ring *ring)
1795 {
1796 	int size = ring->desc_num * sizeof(ring->desc[0]);
1797 
1798 	hns3_free_buffers(ring);
1799 
1800 	if (ring->desc) {
1801 		dma_free_coherent(ring_to_dev(ring), size,
1802 				  ring->desc, ring->desc_dma_addr);
1803 		ring->desc = NULL;
1804 	}
1805 }
1806 
1807 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
1808 {
1809 	int size = ring->desc_num * sizeof(ring->desc[0]);
1810 
1811 	ring->desc = dma_zalloc_coherent(ring_to_dev(ring), size,
1812 					 &ring->desc_dma_addr,
1813 					 GFP_KERNEL);
1814 	if (!ring->desc)
1815 		return -ENOMEM;
1816 
1817 	return 0;
1818 }
1819 
1820 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
1821 				   struct hns3_desc_cb *cb)
1822 {
1823 	int ret;
1824 
1825 	ret = hns3_alloc_buffer(ring, cb);
1826 	if (ret)
1827 		goto out;
1828 
1829 	ret = hns3_map_buffer(ring, cb);
1830 	if (ret)
1831 		goto out_with_buf;
1832 
1833 	return 0;
1834 
1835 out_with_buf:
1836 	hns3_free_buffer(ring, cb);
1837 out:
1838 	return ret;
1839 }
1840 
1841 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
1842 {
1843 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
1844 
1845 	if (ret)
1846 		return ret;
1847 
1848 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1849 
1850 	return 0;
1851 }
1852 
1853 /* Allocate memory for raw pkg, and map with dma */
1854 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
1855 {
1856 	int i, j, ret;
1857 
1858 	for (i = 0; i < ring->desc_num; i++) {
1859 		ret = hns3_alloc_buffer_attach(ring, i);
1860 		if (ret)
1861 			goto out_buffer_fail;
1862 	}
1863 
1864 	return 0;
1865 
1866 out_buffer_fail:
1867 	for (j = i - 1; j >= 0; j--)
1868 		hns3_free_buffer_detach(ring, j);
1869 	return ret;
1870 }
1871 
1872 /* detach a in-used buffer and replace with a reserved one  */
1873 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
1874 				struct hns3_desc_cb *res_cb)
1875 {
1876 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1877 	ring->desc_cb[i] = *res_cb;
1878 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1879 	ring->desc[i].rx.bd_base_info = 0;
1880 }
1881 
1882 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
1883 {
1884 	ring->desc_cb[i].reuse_flag = 0;
1885 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
1886 		+ ring->desc_cb[i].page_offset);
1887 	ring->desc[i].rx.bd_base_info = 0;
1888 }
1889 
1890 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
1891 				      int *pkts)
1892 {
1893 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
1894 
1895 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
1896 	(*bytes) += desc_cb->length;
1897 	/* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
1898 	hns3_free_buffer_detach(ring, ring->next_to_clean);
1899 
1900 	ring_ptr_move_fw(ring, next_to_clean);
1901 }
1902 
1903 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
1904 {
1905 	int u = ring->next_to_use;
1906 	int c = ring->next_to_clean;
1907 
1908 	if (unlikely(h > ring->desc_num))
1909 		return 0;
1910 
1911 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
1912 }
1913 
1914 bool hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
1915 {
1916 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
1917 	struct netdev_queue *dev_queue;
1918 	int bytes, pkts;
1919 	int head;
1920 
1921 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
1922 	rmb(); /* Make sure head is ready before touch any data */
1923 
1924 	if (is_ring_empty(ring) || head == ring->next_to_clean)
1925 		return true; /* no data to poll */
1926 
1927 	if (unlikely(!is_valid_clean_head(ring, head))) {
1928 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
1929 			   ring->next_to_use, ring->next_to_clean);
1930 
1931 		u64_stats_update_begin(&ring->syncp);
1932 		ring->stats.io_err_cnt++;
1933 		u64_stats_update_end(&ring->syncp);
1934 		return true;
1935 	}
1936 
1937 	bytes = 0;
1938 	pkts = 0;
1939 	while (head != ring->next_to_clean && budget) {
1940 		hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
1941 		/* Issue prefetch for next Tx descriptor */
1942 		prefetch(&ring->desc_cb[ring->next_to_clean]);
1943 		budget--;
1944 	}
1945 
1946 	ring->tqp_vector->tx_group.total_bytes += bytes;
1947 	ring->tqp_vector->tx_group.total_packets += pkts;
1948 
1949 	u64_stats_update_begin(&ring->syncp);
1950 	ring->stats.tx_bytes += bytes;
1951 	ring->stats.tx_pkts += pkts;
1952 	u64_stats_update_end(&ring->syncp);
1953 
1954 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
1955 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
1956 
1957 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
1958 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
1959 		/* Make sure that anybody stopping the queue after this
1960 		 * sees the new next_to_clean.
1961 		 */
1962 		smp_mb();
1963 		if (netif_tx_queue_stopped(dev_queue)) {
1964 			netif_tx_wake_queue(dev_queue);
1965 			ring->stats.restart_queue++;
1966 		}
1967 	}
1968 
1969 	return !!budget;
1970 }
1971 
1972 static int hns3_desc_unused(struct hns3_enet_ring *ring)
1973 {
1974 	int ntc = ring->next_to_clean;
1975 	int ntu = ring->next_to_use;
1976 
1977 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
1978 }
1979 
1980 static void
1981 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
1982 {
1983 	struct hns3_desc_cb *desc_cb;
1984 	struct hns3_desc_cb res_cbs;
1985 	int i, ret;
1986 
1987 	for (i = 0; i < cleand_count; i++) {
1988 		desc_cb = &ring->desc_cb[ring->next_to_use];
1989 		if (desc_cb->reuse_flag) {
1990 			u64_stats_update_begin(&ring->syncp);
1991 			ring->stats.reuse_pg_cnt++;
1992 			u64_stats_update_end(&ring->syncp);
1993 
1994 			hns3_reuse_buffer(ring, ring->next_to_use);
1995 		} else {
1996 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
1997 			if (ret) {
1998 				u64_stats_update_begin(&ring->syncp);
1999 				ring->stats.sw_err_cnt++;
2000 				u64_stats_update_end(&ring->syncp);
2001 
2002 				netdev_err(ring->tqp->handle->kinfo.netdev,
2003 					   "hnae reserve buffer map failed.\n");
2004 				break;
2005 			}
2006 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2007 		}
2008 
2009 		ring_ptr_move_fw(ring, next_to_use);
2010 	}
2011 
2012 	wmb(); /* Make all data has been write before submit */
2013 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2014 }
2015 
2016 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2017 				struct hns3_enet_ring *ring, int pull_len,
2018 				struct hns3_desc_cb *desc_cb)
2019 {
2020 	struct hns3_desc *desc;
2021 	int truesize, size;
2022 	int last_offset;
2023 	bool twobufs;
2024 
2025 	twobufs = ((PAGE_SIZE < 8192) &&
2026 		hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2027 
2028 	desc = &ring->desc[ring->next_to_clean];
2029 	size = le16_to_cpu(desc->rx.size);
2030 
2031 	truesize = hnae3_buf_size(ring);
2032 
2033 	if (!twobufs)
2034 		last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2035 
2036 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2037 			size - pull_len, truesize);
2038 
2039 	 /* Avoid re-using remote pages,flag default unreuse */
2040 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2041 		return;
2042 
2043 	if (twobufs) {
2044 		/* If we are only owner of page we can reuse it */
2045 		if (likely(page_count(desc_cb->priv) == 1)) {
2046 			/* Flip page offset to other buffer */
2047 			desc_cb->page_offset ^= truesize;
2048 
2049 			desc_cb->reuse_flag = 1;
2050 			/* bump ref count on page before it is given*/
2051 			get_page(desc_cb->priv);
2052 		}
2053 		return;
2054 	}
2055 
2056 	/* Move offset up to the next cache line */
2057 	desc_cb->page_offset += truesize;
2058 
2059 	if (desc_cb->page_offset <= last_offset) {
2060 		desc_cb->reuse_flag = 1;
2061 		/* Bump ref count on page before it is given*/
2062 		get_page(desc_cb->priv);
2063 	}
2064 }
2065 
2066 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2067 			     struct hns3_desc *desc)
2068 {
2069 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2070 	int l3_type, l4_type;
2071 	u32 bd_base_info;
2072 	int ol4_type;
2073 	u32 l234info;
2074 
2075 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2076 	l234info = le32_to_cpu(desc->rx.l234_info);
2077 
2078 	skb->ip_summed = CHECKSUM_NONE;
2079 
2080 	skb_checksum_none_assert(skb);
2081 
2082 	if (!(netdev->features & NETIF_F_RXCSUM))
2083 		return;
2084 
2085 	/* check if hardware has done checksum */
2086 	if (!hnae3_get_bit(bd_base_info, HNS3_RXD_L3L4P_B))
2087 		return;
2088 
2089 	if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L3E_B) ||
2090 		     hnae3_get_bit(l234info, HNS3_RXD_L4E_B) ||
2091 		     hnae3_get_bit(l234info, HNS3_RXD_OL3E_B) ||
2092 		     hnae3_get_bit(l234info, HNS3_RXD_OL4E_B))) {
2093 		netdev_err(netdev, "L3/L4 error pkt\n");
2094 		u64_stats_update_begin(&ring->syncp);
2095 		ring->stats.l3l4_csum_err++;
2096 		u64_stats_update_end(&ring->syncp);
2097 
2098 		return;
2099 	}
2100 
2101 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2102 				  HNS3_RXD_L3ID_S);
2103 	l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2104 				  HNS3_RXD_L4ID_S);
2105 
2106 	ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2107 				   HNS3_RXD_OL4ID_S);
2108 	switch (ol4_type) {
2109 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2110 	case HNS3_OL4_TYPE_NVGRE:
2111 		skb->csum_level = 1;
2112 	case HNS3_OL4_TYPE_NO_TUN:
2113 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2114 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2115 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2116 		    (l4_type == HNS3_L4_TYPE_UDP ||
2117 		     l4_type == HNS3_L4_TYPE_TCP ||
2118 		     l4_type == HNS3_L4_TYPE_SCTP))
2119 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2120 		break;
2121 	}
2122 }
2123 
2124 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2125 {
2126 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2127 }
2128 
2129 static u16 hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2130 			       struct hns3_desc *desc, u32 l234info)
2131 {
2132 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2133 	u16 vlan_tag;
2134 
2135 	if (pdev->revision == 0x20) {
2136 		vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2137 		if (!(vlan_tag & VLAN_VID_MASK))
2138 			vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2139 
2140 		return vlan_tag;
2141 	}
2142 
2143 #define HNS3_STRP_OUTER_VLAN	0x1
2144 #define HNS3_STRP_INNER_VLAN	0x2
2145 
2146 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2147 				HNS3_RXD_STRP_TAGP_S)) {
2148 	case HNS3_STRP_OUTER_VLAN:
2149 		vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2150 		break;
2151 	case HNS3_STRP_INNER_VLAN:
2152 		vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2153 		break;
2154 	default:
2155 		vlan_tag = 0;
2156 		break;
2157 	}
2158 
2159 	return vlan_tag;
2160 }
2161 
2162 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2163 			     struct sk_buff **out_skb, int *out_bnum)
2164 {
2165 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2166 	struct hns3_desc_cb *desc_cb;
2167 	struct hns3_desc *desc;
2168 	struct sk_buff *skb;
2169 	unsigned char *va;
2170 	u32 bd_base_info;
2171 	int pull_len;
2172 	u32 l234info;
2173 	int length;
2174 	int bnum;
2175 
2176 	desc = &ring->desc[ring->next_to_clean];
2177 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2178 
2179 	prefetch(desc);
2180 
2181 	length = le16_to_cpu(desc->rx.size);
2182 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2183 
2184 	/* Check valid BD */
2185 	if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B)))
2186 		return -EFAULT;
2187 
2188 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2189 
2190 	/* Prefetch first cache line of first page
2191 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2192 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2193 	 * actual we can have greater size of caches with 128B Level 1 cache
2194 	 * lines. In such a case, single fetch would suffice to cache in the
2195 	 * relevant part of the header.
2196 	 */
2197 	prefetch(va);
2198 #if L1_CACHE_BYTES < 128
2199 	prefetch(va + L1_CACHE_BYTES);
2200 #endif
2201 
2202 	skb = *out_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2203 					HNS3_RX_HEAD_SIZE);
2204 	if (unlikely(!skb)) {
2205 		netdev_err(netdev, "alloc rx skb fail\n");
2206 
2207 		u64_stats_update_begin(&ring->syncp);
2208 		ring->stats.sw_err_cnt++;
2209 		u64_stats_update_end(&ring->syncp);
2210 
2211 		return -ENOMEM;
2212 	}
2213 
2214 	prefetchw(skb->data);
2215 
2216 	bnum = 1;
2217 	if (length <= HNS3_RX_HEAD_SIZE) {
2218 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2219 
2220 		/* We can reuse buffer as-is, just make sure it is local */
2221 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2222 			desc_cb->reuse_flag = 1;
2223 		else /* This page cannot be reused so discard it */
2224 			put_page(desc_cb->priv);
2225 
2226 		ring_ptr_move_fw(ring, next_to_clean);
2227 	} else {
2228 		u64_stats_update_begin(&ring->syncp);
2229 		ring->stats.seg_pkt_cnt++;
2230 		u64_stats_update_end(&ring->syncp);
2231 
2232 		pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2233 
2234 		memcpy(__skb_put(skb, pull_len), va,
2235 		       ALIGN(pull_len, sizeof(long)));
2236 
2237 		hns3_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
2238 		ring_ptr_move_fw(ring, next_to_clean);
2239 
2240 		while (!hnae3_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
2241 			desc = &ring->desc[ring->next_to_clean];
2242 			desc_cb = &ring->desc_cb[ring->next_to_clean];
2243 			bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2244 			hns3_nic_reuse_page(skb, bnum, ring, 0, desc_cb);
2245 			ring_ptr_move_fw(ring, next_to_clean);
2246 			bnum++;
2247 		}
2248 	}
2249 
2250 	*out_bnum = bnum;
2251 
2252 	l234info = le32_to_cpu(desc->rx.l234_info);
2253 
2254 	/* Based on hw strategy, the tag offloaded will be stored at
2255 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2256 	 * in one layer tag case.
2257 	 */
2258 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2259 		u16 vlan_tag;
2260 
2261 		vlan_tag = hns3_parse_vlan_tag(ring, desc, l234info);
2262 		if (vlan_tag & VLAN_VID_MASK)
2263 			__vlan_hwaccel_put_tag(skb,
2264 					       htons(ETH_P_8021Q),
2265 					       vlan_tag);
2266 	}
2267 
2268 	if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B))) {
2269 		netdev_err(netdev, "no valid bd,%016llx,%016llx\n",
2270 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
2271 		u64_stats_update_begin(&ring->syncp);
2272 		ring->stats.non_vld_descs++;
2273 		u64_stats_update_end(&ring->syncp);
2274 
2275 		dev_kfree_skb_any(skb);
2276 		return -EINVAL;
2277 	}
2278 
2279 	if (unlikely((!desc->rx.pkt_len) ||
2280 		     hnae3_get_bit(l234info, HNS3_RXD_TRUNCAT_B))) {
2281 		netdev_err(netdev, "truncated pkt\n");
2282 		u64_stats_update_begin(&ring->syncp);
2283 		ring->stats.err_pkt_len++;
2284 		u64_stats_update_end(&ring->syncp);
2285 
2286 		dev_kfree_skb_any(skb);
2287 		return -EFAULT;
2288 	}
2289 
2290 	if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L2E_B))) {
2291 		netdev_err(netdev, "L2 error pkt\n");
2292 		u64_stats_update_begin(&ring->syncp);
2293 		ring->stats.l2_err++;
2294 		u64_stats_update_end(&ring->syncp);
2295 
2296 		dev_kfree_skb_any(skb);
2297 		return -EFAULT;
2298 	}
2299 
2300 	u64_stats_update_begin(&ring->syncp);
2301 	ring->stats.rx_pkts++;
2302 	ring->stats.rx_bytes += skb->len;
2303 	u64_stats_update_end(&ring->syncp);
2304 
2305 	ring->tqp_vector->rx_group.total_bytes += skb->len;
2306 
2307 	hns3_rx_checksum(ring, skb, desc);
2308 	return 0;
2309 }
2310 
2311 int hns3_clean_rx_ring(
2312 		struct hns3_enet_ring *ring, int budget,
2313 		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2314 {
2315 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2316 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2317 	int recv_pkts, recv_bds, clean_count, err;
2318 	int unused_count = hns3_desc_unused(ring);
2319 	struct sk_buff *skb = NULL;
2320 	int num, bnum = 0;
2321 
2322 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2323 	rmb(); /* Make sure num taken effect before the other data is touched */
2324 
2325 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2326 	num -= unused_count;
2327 
2328 	while (recv_pkts < budget && recv_bds < num) {
2329 		/* Reuse or realloc buffers */
2330 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2331 			hns3_nic_alloc_rx_buffers(ring,
2332 						  clean_count + unused_count);
2333 			clean_count = 0;
2334 			unused_count = hns3_desc_unused(ring);
2335 		}
2336 
2337 		/* Poll one pkt */
2338 		err = hns3_handle_rx_bd(ring, &skb, &bnum);
2339 		if (unlikely(!skb)) /* This fault cannot be repaired */
2340 			goto out;
2341 
2342 		recv_bds += bnum;
2343 		clean_count += bnum;
2344 		if (unlikely(err)) {  /* Do jump the err */
2345 			recv_pkts++;
2346 			continue;
2347 		}
2348 
2349 		/* Do update ip stack process */
2350 		skb->protocol = eth_type_trans(skb, netdev);
2351 		rx_fn(ring, skb);
2352 
2353 		recv_pkts++;
2354 	}
2355 
2356 out:
2357 	/* Make all data has been write before submit */
2358 	if (clean_count + unused_count > 0)
2359 		hns3_nic_alloc_rx_buffers(ring,
2360 					  clean_count + unused_count);
2361 
2362 	return recv_pkts;
2363 }
2364 
2365 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2366 {
2367 	struct hns3_enet_tqp_vector *tqp_vector =
2368 					ring_group->ring->tqp_vector;
2369 	enum hns3_flow_level_range new_flow_level;
2370 	int packets_per_msecs;
2371 	int bytes_per_msecs;
2372 	u32 time_passed_ms;
2373 	u16 new_int_gl;
2374 
2375 	if (!ring_group->coal.int_gl || !tqp_vector->last_jiffies)
2376 		return false;
2377 
2378 	if (ring_group->total_packets == 0) {
2379 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
2380 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
2381 		return true;
2382 	}
2383 
2384 	/* Simple throttlerate management
2385 	 * 0-10MB/s   lower     (50000 ints/s)
2386 	 * 10-20MB/s   middle    (20000 ints/s)
2387 	 * 20-1249MB/s high      (18000 ints/s)
2388 	 * > 40000pps  ultra     (8000 ints/s)
2389 	 */
2390 	new_flow_level = ring_group->coal.flow_level;
2391 	new_int_gl = ring_group->coal.int_gl;
2392 	time_passed_ms =
2393 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2394 
2395 	if (!time_passed_ms)
2396 		return false;
2397 
2398 	do_div(ring_group->total_packets, time_passed_ms);
2399 	packets_per_msecs = ring_group->total_packets;
2400 
2401 	do_div(ring_group->total_bytes, time_passed_ms);
2402 	bytes_per_msecs = ring_group->total_bytes;
2403 
2404 #define HNS3_RX_LOW_BYTE_RATE 10000
2405 #define HNS3_RX_MID_BYTE_RATE 20000
2406 
2407 	switch (new_flow_level) {
2408 	case HNS3_FLOW_LOW:
2409 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2410 			new_flow_level = HNS3_FLOW_MID;
2411 		break;
2412 	case HNS3_FLOW_MID:
2413 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2414 			new_flow_level = HNS3_FLOW_HIGH;
2415 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2416 			new_flow_level = HNS3_FLOW_LOW;
2417 		break;
2418 	case HNS3_FLOW_HIGH:
2419 	case HNS3_FLOW_ULTRA:
2420 	default:
2421 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2422 			new_flow_level = HNS3_FLOW_MID;
2423 		break;
2424 	}
2425 
2426 #define HNS3_RX_ULTRA_PACKET_RATE 40
2427 
2428 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2429 	    &tqp_vector->rx_group == ring_group)
2430 		new_flow_level = HNS3_FLOW_ULTRA;
2431 
2432 	switch (new_flow_level) {
2433 	case HNS3_FLOW_LOW:
2434 		new_int_gl = HNS3_INT_GL_50K;
2435 		break;
2436 	case HNS3_FLOW_MID:
2437 		new_int_gl = HNS3_INT_GL_20K;
2438 		break;
2439 	case HNS3_FLOW_HIGH:
2440 		new_int_gl = HNS3_INT_GL_18K;
2441 		break;
2442 	case HNS3_FLOW_ULTRA:
2443 		new_int_gl = HNS3_INT_GL_8K;
2444 		break;
2445 	default:
2446 		break;
2447 	}
2448 
2449 	ring_group->total_bytes = 0;
2450 	ring_group->total_packets = 0;
2451 	ring_group->coal.flow_level = new_flow_level;
2452 	if (new_int_gl != ring_group->coal.int_gl) {
2453 		ring_group->coal.int_gl = new_int_gl;
2454 		return true;
2455 	}
2456 	return false;
2457 }
2458 
2459 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2460 {
2461 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2462 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2463 	bool rx_update, tx_update;
2464 
2465 	if (tqp_vector->int_adapt_down > 0) {
2466 		tqp_vector->int_adapt_down--;
2467 		return;
2468 	}
2469 
2470 	if (rx_group->coal.gl_adapt_enable) {
2471 		rx_update = hns3_get_new_int_gl(rx_group);
2472 		if (rx_update)
2473 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
2474 						       rx_group->coal.int_gl);
2475 	}
2476 
2477 	if (tx_group->coal.gl_adapt_enable) {
2478 		tx_update = hns3_get_new_int_gl(&tqp_vector->tx_group);
2479 		if (tx_update)
2480 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
2481 						       tx_group->coal.int_gl);
2482 	}
2483 
2484 	tqp_vector->last_jiffies = jiffies;
2485 	tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
2486 }
2487 
2488 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2489 {
2490 	struct hns3_enet_ring *ring;
2491 	int rx_pkt_total = 0;
2492 
2493 	struct hns3_enet_tqp_vector *tqp_vector =
2494 		container_of(napi, struct hns3_enet_tqp_vector, napi);
2495 	bool clean_complete = true;
2496 	int rx_budget;
2497 
2498 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2499 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2500 	 */
2501 	hns3_for_each_ring(ring, tqp_vector->tx_group) {
2502 		if (!hns3_clean_tx_ring(ring, budget))
2503 			clean_complete = false;
2504 	}
2505 
2506 	/* make sure rx ring budget not smaller than 1 */
2507 	rx_budget = max(budget / tqp_vector->num_tqps, 1);
2508 
2509 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
2510 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2511 						    hns3_rx_skb);
2512 
2513 		if (rx_cleaned >= rx_budget)
2514 			clean_complete = false;
2515 
2516 		rx_pkt_total += rx_cleaned;
2517 	}
2518 
2519 	tqp_vector->rx_group.total_packets += rx_pkt_total;
2520 
2521 	if (!clean_complete)
2522 		return budget;
2523 
2524 	napi_complete(napi);
2525 	hns3_update_new_int_gl(tqp_vector);
2526 	hns3_mask_vector_irq(tqp_vector, 1);
2527 
2528 	return rx_pkt_total;
2529 }
2530 
2531 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2532 				      struct hnae3_ring_chain_node *head)
2533 {
2534 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2535 	struct hnae3_ring_chain_node *cur_chain = head;
2536 	struct hnae3_ring_chain_node *chain;
2537 	struct hns3_enet_ring *tx_ring;
2538 	struct hns3_enet_ring *rx_ring;
2539 
2540 	tx_ring = tqp_vector->tx_group.ring;
2541 	if (tx_ring) {
2542 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2543 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2544 			      HNAE3_RING_TYPE_TX);
2545 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2546 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2547 
2548 		cur_chain->next = NULL;
2549 
2550 		while (tx_ring->next) {
2551 			tx_ring = tx_ring->next;
2552 
2553 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2554 					     GFP_KERNEL);
2555 			if (!chain)
2556 				return -ENOMEM;
2557 
2558 			cur_chain->next = chain;
2559 			chain->tqp_index = tx_ring->tqp->tqp_index;
2560 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2561 				      HNAE3_RING_TYPE_TX);
2562 			hnae3_set_field(chain->int_gl_idx,
2563 					HNAE3_RING_GL_IDX_M,
2564 					HNAE3_RING_GL_IDX_S,
2565 					HNAE3_RING_GL_TX);
2566 
2567 			cur_chain = chain;
2568 		}
2569 	}
2570 
2571 	rx_ring = tqp_vector->rx_group.ring;
2572 	if (!tx_ring && rx_ring) {
2573 		cur_chain->next = NULL;
2574 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2575 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2576 			      HNAE3_RING_TYPE_RX);
2577 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2578 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2579 
2580 		rx_ring = rx_ring->next;
2581 	}
2582 
2583 	while (rx_ring) {
2584 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2585 		if (!chain)
2586 			return -ENOMEM;
2587 
2588 		cur_chain->next = chain;
2589 		chain->tqp_index = rx_ring->tqp->tqp_index;
2590 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2591 			      HNAE3_RING_TYPE_RX);
2592 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2593 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2594 
2595 		cur_chain = chain;
2596 
2597 		rx_ring = rx_ring->next;
2598 	}
2599 
2600 	return 0;
2601 }
2602 
2603 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2604 					struct hnae3_ring_chain_node *head)
2605 {
2606 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2607 	struct hnae3_ring_chain_node *chain_tmp, *chain;
2608 
2609 	chain = head->next;
2610 
2611 	while (chain) {
2612 		chain_tmp = chain->next;
2613 		devm_kfree(&pdev->dev, chain);
2614 		chain = chain_tmp;
2615 	}
2616 }
2617 
2618 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
2619 				   struct hns3_enet_ring *ring)
2620 {
2621 	ring->next = group->ring;
2622 	group->ring = ring;
2623 
2624 	group->count++;
2625 }
2626 
2627 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
2628 {
2629 	struct hnae3_ring_chain_node vector_ring_chain;
2630 	struct hnae3_handle *h = priv->ae_handle;
2631 	struct hns3_enet_tqp_vector *tqp_vector;
2632 	int ret = 0;
2633 	u16 i;
2634 
2635 	for (i = 0; i < priv->vector_num; i++) {
2636 		tqp_vector = &priv->tqp_vector[i];
2637 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
2638 		tqp_vector->num_tqps = 0;
2639 	}
2640 
2641 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2642 		u16 vector_i = i % priv->vector_num;
2643 		u16 tqp_num = h->kinfo.num_tqps;
2644 
2645 		tqp_vector = &priv->tqp_vector[vector_i];
2646 
2647 		hns3_add_ring_to_group(&tqp_vector->tx_group,
2648 				       priv->ring_data[i].ring);
2649 
2650 		hns3_add_ring_to_group(&tqp_vector->rx_group,
2651 				       priv->ring_data[i + tqp_num].ring);
2652 
2653 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
2654 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
2655 		tqp_vector->num_tqps++;
2656 	}
2657 
2658 	for (i = 0; i < priv->vector_num; i++) {
2659 		tqp_vector = &priv->tqp_vector[i];
2660 
2661 		tqp_vector->rx_group.total_bytes = 0;
2662 		tqp_vector->rx_group.total_packets = 0;
2663 		tqp_vector->tx_group.total_bytes = 0;
2664 		tqp_vector->tx_group.total_packets = 0;
2665 		tqp_vector->handle = h;
2666 
2667 		ret = hns3_get_vector_ring_chain(tqp_vector,
2668 						 &vector_ring_chain);
2669 		if (ret)
2670 			return ret;
2671 
2672 		ret = h->ae_algo->ops->map_ring_to_vector(h,
2673 			tqp_vector->vector_irq, &vector_ring_chain);
2674 
2675 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2676 
2677 		if (ret)
2678 			return ret;
2679 
2680 		netif_napi_add(priv->netdev, &tqp_vector->napi,
2681 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
2682 	}
2683 
2684 	return 0;
2685 }
2686 
2687 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
2688 {
2689 	struct hnae3_handle *h = priv->ae_handle;
2690 	struct hns3_enet_tqp_vector *tqp_vector;
2691 	struct hnae3_vector_info *vector;
2692 	struct pci_dev *pdev = h->pdev;
2693 	u16 tqp_num = h->kinfo.num_tqps;
2694 	u16 vector_num;
2695 	int ret = 0;
2696 	u16 i;
2697 
2698 	/* RSS size, cpu online and vector_num should be the same */
2699 	/* Should consider 2p/4p later */
2700 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
2701 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
2702 			      GFP_KERNEL);
2703 	if (!vector)
2704 		return -ENOMEM;
2705 
2706 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
2707 
2708 	priv->vector_num = vector_num;
2709 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
2710 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
2711 			     GFP_KERNEL);
2712 	if (!priv->tqp_vector) {
2713 		ret = -ENOMEM;
2714 		goto out;
2715 	}
2716 
2717 	for (i = 0; i < priv->vector_num; i++) {
2718 		tqp_vector = &priv->tqp_vector[i];
2719 		tqp_vector->idx = i;
2720 		tqp_vector->mask_addr = vector[i].io_addr;
2721 		tqp_vector->vector_irq = vector[i].vector;
2722 		hns3_vector_gl_rl_init(tqp_vector, priv);
2723 	}
2724 
2725 out:
2726 	devm_kfree(&pdev->dev, vector);
2727 	return ret;
2728 }
2729 
2730 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
2731 {
2732 	group->ring = NULL;
2733 	group->count = 0;
2734 }
2735 
2736 static int hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
2737 {
2738 	struct hnae3_ring_chain_node vector_ring_chain;
2739 	struct hnae3_handle *h = priv->ae_handle;
2740 	struct hns3_enet_tqp_vector *tqp_vector;
2741 	int i, ret;
2742 
2743 	for (i = 0; i < priv->vector_num; i++) {
2744 		tqp_vector = &priv->tqp_vector[i];
2745 
2746 		ret = hns3_get_vector_ring_chain(tqp_vector,
2747 						 &vector_ring_chain);
2748 		if (ret)
2749 			return ret;
2750 
2751 		ret = h->ae_algo->ops->unmap_ring_from_vector(h,
2752 			tqp_vector->vector_irq, &vector_ring_chain);
2753 		if (ret)
2754 			return ret;
2755 
2756 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2757 
2758 		if (priv->tqp_vector[i].irq_init_flag == HNS3_VECTOR_INITED) {
2759 			(void)irq_set_affinity_hint(
2760 				priv->tqp_vector[i].vector_irq,
2761 						    NULL);
2762 			free_irq(priv->tqp_vector[i].vector_irq,
2763 				 &priv->tqp_vector[i]);
2764 		}
2765 
2766 		priv->ring_data[i].ring->irq_init_flag = HNS3_VECTOR_NOT_INITED;
2767 		hns3_clear_ring_group(&tqp_vector->rx_group);
2768 		hns3_clear_ring_group(&tqp_vector->tx_group);
2769 		netif_napi_del(&priv->tqp_vector[i].napi);
2770 	}
2771 
2772 	return 0;
2773 }
2774 
2775 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
2776 {
2777 	struct hnae3_handle *h = priv->ae_handle;
2778 	struct pci_dev *pdev = h->pdev;
2779 	int i, ret;
2780 
2781 	for (i = 0; i < priv->vector_num; i++) {
2782 		struct hns3_enet_tqp_vector *tqp_vector;
2783 
2784 		tqp_vector = &priv->tqp_vector[i];
2785 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
2786 		if (ret)
2787 			return ret;
2788 	}
2789 
2790 	devm_kfree(&pdev->dev, priv->tqp_vector);
2791 	return 0;
2792 }
2793 
2794 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
2795 			     int ring_type)
2796 {
2797 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
2798 	int queue_num = priv->ae_handle->kinfo.num_tqps;
2799 	struct pci_dev *pdev = priv->ae_handle->pdev;
2800 	struct hns3_enet_ring *ring;
2801 
2802 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
2803 	if (!ring)
2804 		return -ENOMEM;
2805 
2806 	if (ring_type == HNAE3_RING_TYPE_TX) {
2807 		ring_data[q->tqp_index].ring = ring;
2808 		ring_data[q->tqp_index].queue_index = q->tqp_index;
2809 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
2810 	} else {
2811 		ring_data[q->tqp_index + queue_num].ring = ring;
2812 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
2813 		ring->io_base = q->io_base;
2814 	}
2815 
2816 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
2817 
2818 	ring->tqp = q;
2819 	ring->desc = NULL;
2820 	ring->desc_cb = NULL;
2821 	ring->dev = priv->dev;
2822 	ring->desc_dma_addr = 0;
2823 	ring->buf_size = q->buf_size;
2824 	ring->desc_num = q->desc_num;
2825 	ring->next_to_use = 0;
2826 	ring->next_to_clean = 0;
2827 
2828 	return 0;
2829 }
2830 
2831 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
2832 			      struct hns3_nic_priv *priv)
2833 {
2834 	int ret;
2835 
2836 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
2837 	if (ret)
2838 		return ret;
2839 
2840 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
2841 	if (ret)
2842 		return ret;
2843 
2844 	return 0;
2845 }
2846 
2847 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
2848 {
2849 	struct hnae3_handle *h = priv->ae_handle;
2850 	struct pci_dev *pdev = h->pdev;
2851 	int i, ret;
2852 
2853 	priv->ring_data =  devm_kzalloc(&pdev->dev,
2854 					array3_size(h->kinfo.num_tqps,
2855 						    sizeof(*priv->ring_data),
2856 						    2),
2857 					GFP_KERNEL);
2858 	if (!priv->ring_data)
2859 		return -ENOMEM;
2860 
2861 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2862 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
2863 		if (ret)
2864 			goto err;
2865 	}
2866 
2867 	return 0;
2868 err:
2869 	devm_kfree(&pdev->dev, priv->ring_data);
2870 	return ret;
2871 }
2872 
2873 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
2874 {
2875 	struct hnae3_handle *h = priv->ae_handle;
2876 	int i;
2877 
2878 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2879 		devm_kfree(priv->dev, priv->ring_data[i].ring);
2880 		devm_kfree(priv->dev,
2881 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
2882 	}
2883 	devm_kfree(priv->dev, priv->ring_data);
2884 }
2885 
2886 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
2887 {
2888 	int ret;
2889 
2890 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
2891 		return -EINVAL;
2892 
2893 	ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
2894 				GFP_KERNEL);
2895 	if (!ring->desc_cb) {
2896 		ret = -ENOMEM;
2897 		goto out;
2898 	}
2899 
2900 	ret = hns3_alloc_desc(ring);
2901 	if (ret)
2902 		goto out_with_desc_cb;
2903 
2904 	if (!HNAE3_IS_TX_RING(ring)) {
2905 		ret = hns3_alloc_ring_buffers(ring);
2906 		if (ret)
2907 			goto out_with_desc;
2908 	}
2909 
2910 	return 0;
2911 
2912 out_with_desc:
2913 	hns3_free_desc(ring);
2914 out_with_desc_cb:
2915 	kfree(ring->desc_cb);
2916 	ring->desc_cb = NULL;
2917 out:
2918 	return ret;
2919 }
2920 
2921 static void hns3_fini_ring(struct hns3_enet_ring *ring)
2922 {
2923 	hns3_free_desc(ring);
2924 	kfree(ring->desc_cb);
2925 	ring->desc_cb = NULL;
2926 	ring->next_to_clean = 0;
2927 	ring->next_to_use = 0;
2928 }
2929 
2930 static int hns3_buf_size2type(u32 buf_size)
2931 {
2932 	int bd_size_type;
2933 
2934 	switch (buf_size) {
2935 	case 512:
2936 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
2937 		break;
2938 	case 1024:
2939 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
2940 		break;
2941 	case 2048:
2942 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2943 		break;
2944 	case 4096:
2945 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
2946 		break;
2947 	default:
2948 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2949 	}
2950 
2951 	return bd_size_type;
2952 }
2953 
2954 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
2955 {
2956 	dma_addr_t dma = ring->desc_dma_addr;
2957 	struct hnae3_queue *q = ring->tqp;
2958 
2959 	if (!HNAE3_IS_TX_RING(ring)) {
2960 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
2961 			       (u32)dma);
2962 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
2963 			       (u32)((dma >> 31) >> 1));
2964 
2965 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
2966 			       hns3_buf_size2type(ring->buf_size));
2967 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
2968 			       ring->desc_num / 8 - 1);
2969 
2970 	} else {
2971 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
2972 			       (u32)dma);
2973 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
2974 			       (u32)((dma >> 31) >> 1));
2975 
2976 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_LEN_REG,
2977 			       hns3_buf_size2type(ring->buf_size));
2978 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
2979 			       ring->desc_num / 8 - 1);
2980 	}
2981 }
2982 
2983 int hns3_init_all_ring(struct hns3_nic_priv *priv)
2984 {
2985 	struct hnae3_handle *h = priv->ae_handle;
2986 	int ring_num = h->kinfo.num_tqps * 2;
2987 	int i, j;
2988 	int ret;
2989 
2990 	for (i = 0; i < ring_num; i++) {
2991 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
2992 		if (ret) {
2993 			dev_err(priv->dev,
2994 				"Alloc ring memory fail! ret=%d\n", ret);
2995 			goto out_when_alloc_ring_memory;
2996 		}
2997 
2998 		u64_stats_init(&priv->ring_data[i].ring->syncp);
2999 	}
3000 
3001 	return 0;
3002 
3003 out_when_alloc_ring_memory:
3004 	for (j = i - 1; j >= 0; j--)
3005 		hns3_fini_ring(priv->ring_data[j].ring);
3006 
3007 	return -ENOMEM;
3008 }
3009 
3010 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3011 {
3012 	struct hnae3_handle *h = priv->ae_handle;
3013 	int i;
3014 
3015 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3016 		if (h->ae_algo->ops->reset_queue)
3017 			h->ae_algo->ops->reset_queue(h, i);
3018 
3019 		hns3_fini_ring(priv->ring_data[i].ring);
3020 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3021 	}
3022 	return 0;
3023 }
3024 
3025 /* Set mac addr if it is configured. or leave it to the AE driver */
3026 static void hns3_init_mac_addr(struct net_device *netdev, bool init)
3027 {
3028 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3029 	struct hnae3_handle *h = priv->ae_handle;
3030 	u8 mac_addr_temp[ETH_ALEN];
3031 
3032 	if (h->ae_algo->ops->get_mac_addr && init) {
3033 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3034 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3035 	}
3036 
3037 	/* Check if the MAC address is valid, if not get a random one */
3038 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3039 		eth_hw_addr_random(netdev);
3040 		dev_warn(priv->dev, "using random MAC address %pM\n",
3041 			 netdev->dev_addr);
3042 	}
3043 
3044 	if (h->ae_algo->ops->set_mac_addr)
3045 		h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3046 
3047 }
3048 
3049 static void hns3_uninit_mac_addr(struct net_device *netdev)
3050 {
3051 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3052 	struct hnae3_handle *h = priv->ae_handle;
3053 
3054 	if (h->ae_algo->ops->rm_uc_addr)
3055 		h->ae_algo->ops->rm_uc_addr(h, netdev->dev_addr);
3056 }
3057 
3058 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3059 {
3060 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3061 
3062 	if ((netdev->features & NETIF_F_TSO) ||
3063 	    (netdev->features & NETIF_F_TSO6)) {
3064 		priv->ops.fill_desc = hns3_fill_desc_tso;
3065 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3066 	} else {
3067 		priv->ops.fill_desc = hns3_fill_desc;
3068 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3069 	}
3070 }
3071 
3072 static int hns3_client_init(struct hnae3_handle *handle)
3073 {
3074 	struct pci_dev *pdev = handle->pdev;
3075 	struct hns3_nic_priv *priv;
3076 	struct net_device *netdev;
3077 	int ret;
3078 
3079 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv),
3080 				   hns3_get_max_available_channels(handle));
3081 	if (!netdev)
3082 		return -ENOMEM;
3083 
3084 	priv = netdev_priv(netdev);
3085 	priv->dev = &pdev->dev;
3086 	priv->netdev = netdev;
3087 	priv->ae_handle = handle;
3088 	priv->ae_handle->reset_level = HNAE3_NONE_RESET;
3089 	priv->ae_handle->last_reset_time = jiffies;
3090 	priv->tx_timeout_count = 0;
3091 
3092 	handle->kinfo.netdev = netdev;
3093 	handle->priv = (void *)priv;
3094 
3095 	hns3_init_mac_addr(netdev, true);
3096 
3097 	hns3_set_default_feature(netdev);
3098 
3099 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3100 	netdev->priv_flags |= IFF_UNICAST_FLT;
3101 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3102 	SET_NETDEV_DEV(netdev, &pdev->dev);
3103 	hns3_ethtool_set_ops(netdev);
3104 	hns3_nic_set_priv_ops(netdev);
3105 
3106 	/* Carrier off reporting is important to ethtool even BEFORE open */
3107 	netif_carrier_off(netdev);
3108 
3109 	ret = hns3_get_ring_config(priv);
3110 	if (ret) {
3111 		ret = -ENOMEM;
3112 		goto out_get_ring_cfg;
3113 	}
3114 
3115 	ret = hns3_nic_alloc_vector_data(priv);
3116 	if (ret) {
3117 		ret = -ENOMEM;
3118 		goto out_alloc_vector_data;
3119 	}
3120 
3121 	ret = hns3_nic_init_vector_data(priv);
3122 	if (ret) {
3123 		ret = -ENOMEM;
3124 		goto out_init_vector_data;
3125 	}
3126 
3127 	ret = hns3_init_all_ring(priv);
3128 	if (ret) {
3129 		ret = -ENOMEM;
3130 		goto out_init_ring_data;
3131 	}
3132 
3133 	ret = register_netdev(netdev);
3134 	if (ret) {
3135 		dev_err(priv->dev, "probe register netdev fail!\n");
3136 		goto out_reg_netdev_fail;
3137 	}
3138 
3139 	hns3_dcbnl_setup(handle);
3140 
3141 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9706) */
3142 	netdev->max_mtu = HNS3_MAX_MTU - (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3143 
3144 	return ret;
3145 
3146 out_reg_netdev_fail:
3147 out_init_ring_data:
3148 	(void)hns3_nic_uninit_vector_data(priv);
3149 out_init_vector_data:
3150 	hns3_nic_dealloc_vector_data(priv);
3151 out_alloc_vector_data:
3152 	priv->ring_data = NULL;
3153 out_get_ring_cfg:
3154 	priv->ae_handle = NULL;
3155 	free_netdev(netdev);
3156 	return ret;
3157 }
3158 
3159 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3160 {
3161 	struct net_device *netdev = handle->kinfo.netdev;
3162 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3163 	int ret;
3164 
3165 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3166 		unregister_netdev(netdev);
3167 
3168 	hns3_force_clear_all_rx_ring(handle);
3169 
3170 	ret = hns3_nic_uninit_vector_data(priv);
3171 	if (ret)
3172 		netdev_err(netdev, "uninit vector error\n");
3173 
3174 	ret = hns3_nic_dealloc_vector_data(priv);
3175 	if (ret)
3176 		netdev_err(netdev, "dealloc vector error\n");
3177 
3178 	ret = hns3_uninit_all_ring(priv);
3179 	if (ret)
3180 		netdev_err(netdev, "uninit ring error\n");
3181 
3182 	hns3_put_ring_config(priv);
3183 
3184 	priv->ring_data = NULL;
3185 
3186 	hns3_uninit_mac_addr(netdev);
3187 
3188 	free_netdev(netdev);
3189 }
3190 
3191 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3192 {
3193 	struct net_device *netdev = handle->kinfo.netdev;
3194 
3195 	if (!netdev)
3196 		return;
3197 
3198 	if (linkup) {
3199 		netif_carrier_on(netdev);
3200 		netif_tx_wake_all_queues(netdev);
3201 		netdev_info(netdev, "link up\n");
3202 	} else {
3203 		netif_carrier_off(netdev);
3204 		netif_tx_stop_all_queues(netdev);
3205 		netdev_info(netdev, "link down\n");
3206 	}
3207 }
3208 
3209 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3210 {
3211 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3212 	struct net_device *ndev = kinfo->netdev;
3213 	bool if_running;
3214 	int ret;
3215 
3216 	if (tc > HNAE3_MAX_TC)
3217 		return -EINVAL;
3218 
3219 	if (!ndev)
3220 		return -ENODEV;
3221 
3222 	if_running = netif_running(ndev);
3223 
3224 	if (if_running) {
3225 		(void)hns3_nic_net_stop(ndev);
3226 		msleep(100);
3227 	}
3228 
3229 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->map_update) ?
3230 		kinfo->dcb_ops->map_update(handle) : -EOPNOTSUPP;
3231 	if (ret)
3232 		goto err_out;
3233 
3234 	ret = hns3_nic_set_real_num_queue(ndev);
3235 
3236 err_out:
3237 	if (if_running)
3238 		(void)hns3_nic_net_open(ndev);
3239 
3240 	return ret;
3241 }
3242 
3243 static void hns3_recover_hw_addr(struct net_device *ndev)
3244 {
3245 	struct netdev_hw_addr_list *list;
3246 	struct netdev_hw_addr *ha, *tmp;
3247 
3248 	/* go through and sync uc_addr entries to the device */
3249 	list = &ndev->uc;
3250 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3251 		hns3_nic_uc_sync(ndev, ha->addr);
3252 
3253 	/* go through and sync mc_addr entries to the device */
3254 	list = &ndev->mc;
3255 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3256 		hns3_nic_mc_sync(ndev, ha->addr);
3257 }
3258 
3259 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3260 {
3261 	while (ring->next_to_clean != ring->next_to_use) {
3262 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3263 		hns3_free_buffer_detach(ring, ring->next_to_clean);
3264 		ring_ptr_move_fw(ring, next_to_clean);
3265 	}
3266 }
3267 
3268 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3269 {
3270 	struct hns3_desc_cb res_cbs;
3271 	int ret;
3272 
3273 	while (ring->next_to_use != ring->next_to_clean) {
3274 		/* When a buffer is not reused, it's memory has been
3275 		 * freed in hns3_handle_rx_bd or will be freed by
3276 		 * stack, so we need to replace the buffer here.
3277 		 */
3278 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3279 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
3280 			if (ret) {
3281 				u64_stats_update_begin(&ring->syncp);
3282 				ring->stats.sw_err_cnt++;
3283 				u64_stats_update_end(&ring->syncp);
3284 				/* if alloc new buffer fail, exit directly
3285 				 * and reclear in up flow.
3286 				 */
3287 				netdev_warn(ring->tqp->handle->kinfo.netdev,
3288 					    "reserve buffer map failed, ret = %d\n",
3289 					    ret);
3290 				return ret;
3291 			}
3292 			hns3_replace_buffer(ring, ring->next_to_use,
3293 					    &res_cbs);
3294 		}
3295 		ring_ptr_move_fw(ring, next_to_use);
3296 	}
3297 
3298 	return 0;
3299 }
3300 
3301 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3302 {
3303 	while (ring->next_to_use != ring->next_to_clean) {
3304 		/* When a buffer is not reused, it's memory has been
3305 		 * freed in hns3_handle_rx_bd or will be freed by
3306 		 * stack, so only need to unmap the buffer here.
3307 		 */
3308 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3309 			hns3_unmap_buffer(ring,
3310 					  &ring->desc_cb[ring->next_to_use]);
3311 			ring->desc_cb[ring->next_to_use].dma = 0;
3312 		}
3313 
3314 		ring_ptr_move_fw(ring, next_to_use);
3315 	}
3316 }
3317 
3318 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3319 {
3320 	struct net_device *ndev = h->kinfo.netdev;
3321 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3322 	struct hns3_enet_ring *ring;
3323 	u32 i;
3324 
3325 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3326 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3327 		hns3_force_clear_rx_ring(ring);
3328 	}
3329 }
3330 
3331 static void hns3_clear_all_ring(struct hnae3_handle *h)
3332 {
3333 	struct net_device *ndev = h->kinfo.netdev;
3334 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3335 	u32 i;
3336 
3337 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3338 		struct netdev_queue *dev_queue;
3339 		struct hns3_enet_ring *ring;
3340 
3341 		ring = priv->ring_data[i].ring;
3342 		hns3_clear_tx_ring(ring);
3343 		dev_queue = netdev_get_tx_queue(ndev,
3344 						priv->ring_data[i].queue_index);
3345 		netdev_tx_reset_queue(dev_queue);
3346 
3347 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3348 		/* Continue to clear other rings even if clearing some
3349 		 * rings failed.
3350 		 */
3351 		hns3_clear_rx_ring(ring);
3352 	}
3353 }
3354 
3355 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3356 {
3357 	struct net_device *ndev = h->kinfo.netdev;
3358 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3359 	struct hns3_enet_ring *rx_ring;
3360 	int i, j;
3361 	int ret;
3362 
3363 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3364 		h->ae_algo->ops->reset_queue(h, i);
3365 		hns3_init_ring_hw(priv->ring_data[i].ring);
3366 
3367 		/* We need to clear tx ring here because self test will
3368 		 * use the ring and will not run down before up
3369 		 */
3370 		hns3_clear_tx_ring(priv->ring_data[i].ring);
3371 		priv->ring_data[i].ring->next_to_clean = 0;
3372 		priv->ring_data[i].ring->next_to_use = 0;
3373 
3374 		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3375 		hns3_init_ring_hw(rx_ring);
3376 		ret = hns3_clear_rx_ring(rx_ring);
3377 		if (ret)
3378 			return ret;
3379 
3380 		/* We can not know the hardware head and tail when this
3381 		 * function is called in reset flow, so we reuse all desc.
3382 		 */
3383 		for (j = 0; j < rx_ring->desc_num; j++)
3384 			hns3_reuse_buffer(rx_ring, j);
3385 
3386 		rx_ring->next_to_clean = 0;
3387 		rx_ring->next_to_use = 0;
3388 	}
3389 
3390 	return 0;
3391 }
3392 
3393 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3394 {
3395 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3396 	struct net_device *ndev = kinfo->netdev;
3397 
3398 	if (!netif_running(ndev))
3399 		return -EIO;
3400 
3401 	return hns3_nic_net_stop(ndev);
3402 }
3403 
3404 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
3405 {
3406 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3407 	int ret = 0;
3408 
3409 	if (netif_running(kinfo->netdev)) {
3410 		ret = hns3_nic_net_up(kinfo->netdev);
3411 		if (ret) {
3412 			netdev_err(kinfo->netdev,
3413 				   "hns net up fail, ret=%d!\n", ret);
3414 			return ret;
3415 		}
3416 		handle->last_reset_time = jiffies;
3417 	}
3418 
3419 	return ret;
3420 }
3421 
3422 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
3423 {
3424 	struct net_device *netdev = handle->kinfo.netdev;
3425 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3426 	int ret;
3427 
3428 	hns3_init_mac_addr(netdev, false);
3429 	hns3_nic_set_rx_mode(netdev);
3430 	hns3_recover_hw_addr(netdev);
3431 
3432 	/* Hardware table is only clear when pf resets */
3433 	if (!(handle->flags & HNAE3_SUPPORT_VF))
3434 		hns3_restore_vlan(netdev);
3435 
3436 	/* Carrier off reporting is important to ethtool even BEFORE open */
3437 	netif_carrier_off(netdev);
3438 
3439 	ret = hns3_get_ring_config(priv);
3440 	if (ret)
3441 		return ret;
3442 
3443 	ret = hns3_nic_init_vector_data(priv);
3444 	if (ret)
3445 		return ret;
3446 
3447 	ret = hns3_init_all_ring(priv);
3448 	if (ret) {
3449 		hns3_nic_uninit_vector_data(priv);
3450 		priv->ring_data = NULL;
3451 	}
3452 
3453 	return ret;
3454 }
3455 
3456 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
3457 {
3458 	struct net_device *netdev = handle->kinfo.netdev;
3459 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3460 	int ret;
3461 
3462 	hns3_force_clear_all_rx_ring(handle);
3463 
3464 	ret = hns3_nic_uninit_vector_data(priv);
3465 	if (ret) {
3466 		netdev_err(netdev, "uninit vector error\n");
3467 		return ret;
3468 	}
3469 
3470 	ret = hns3_uninit_all_ring(priv);
3471 	if (ret)
3472 		netdev_err(netdev, "uninit ring error\n");
3473 
3474 	hns3_put_ring_config(priv);
3475 
3476 	priv->ring_data = NULL;
3477 
3478 	hns3_uninit_mac_addr(netdev);
3479 
3480 	return ret;
3481 }
3482 
3483 static int hns3_reset_notify(struct hnae3_handle *handle,
3484 			     enum hnae3_reset_notify_type type)
3485 {
3486 	int ret = 0;
3487 
3488 	switch (type) {
3489 	case HNAE3_UP_CLIENT:
3490 		ret = hns3_reset_notify_up_enet(handle);
3491 		break;
3492 	case HNAE3_DOWN_CLIENT:
3493 		ret = hns3_reset_notify_down_enet(handle);
3494 		break;
3495 	case HNAE3_INIT_CLIENT:
3496 		ret = hns3_reset_notify_init_enet(handle);
3497 		break;
3498 	case HNAE3_UNINIT_CLIENT:
3499 		ret = hns3_reset_notify_uninit_enet(handle);
3500 		break;
3501 	default:
3502 		break;
3503 	}
3504 
3505 	return ret;
3506 }
3507 
3508 static void hns3_restore_coal(struct hns3_nic_priv *priv,
3509 			      struct hns3_enet_coalesce *tx,
3510 			      struct hns3_enet_coalesce *rx)
3511 {
3512 	u16 vector_num = priv->vector_num;
3513 	int i;
3514 
3515 	for (i = 0; i < vector_num; i++) {
3516 		memcpy(&priv->tqp_vector[i].tx_group.coal, tx,
3517 		       sizeof(struct hns3_enet_coalesce));
3518 		memcpy(&priv->tqp_vector[i].rx_group.coal, rx,
3519 		       sizeof(struct hns3_enet_coalesce));
3520 	}
3521 }
3522 
3523 static int hns3_modify_tqp_num(struct net_device *netdev, u16 new_tqp_num,
3524 			       struct hns3_enet_coalesce *tx,
3525 			       struct hns3_enet_coalesce *rx)
3526 {
3527 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3528 	struct hnae3_handle *h = hns3_get_handle(netdev);
3529 	int ret;
3530 
3531 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num);
3532 	if (ret)
3533 		return ret;
3534 
3535 	ret = hns3_get_ring_config(priv);
3536 	if (ret)
3537 		return ret;
3538 
3539 	ret = hns3_nic_alloc_vector_data(priv);
3540 	if (ret)
3541 		goto err_alloc_vector;
3542 
3543 	hns3_restore_coal(priv, tx, rx);
3544 
3545 	ret = hns3_nic_init_vector_data(priv);
3546 	if (ret)
3547 		goto err_uninit_vector;
3548 
3549 	ret = hns3_init_all_ring(priv);
3550 	if (ret)
3551 		goto err_put_ring;
3552 
3553 	return 0;
3554 
3555 err_put_ring:
3556 	hns3_put_ring_config(priv);
3557 err_uninit_vector:
3558 	hns3_nic_uninit_vector_data(priv);
3559 err_alloc_vector:
3560 	hns3_nic_dealloc_vector_data(priv);
3561 	return ret;
3562 }
3563 
3564 static int hns3_adjust_tqps_num(u8 num_tc, u32 new_tqp_num)
3565 {
3566 	return (new_tqp_num / num_tc) * num_tc;
3567 }
3568 
3569 int hns3_set_channels(struct net_device *netdev,
3570 		      struct ethtool_channels *ch)
3571 {
3572 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3573 	struct hnae3_handle *h = hns3_get_handle(netdev);
3574 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
3575 	struct hns3_enet_coalesce tx_coal, rx_coal;
3576 	bool if_running = netif_running(netdev);
3577 	u32 new_tqp_num = ch->combined_count;
3578 	u16 org_tqp_num;
3579 	int ret;
3580 
3581 	if (ch->rx_count || ch->tx_count)
3582 		return -EINVAL;
3583 
3584 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
3585 	    new_tqp_num < kinfo->num_tc) {
3586 		dev_err(&netdev->dev,
3587 			"Change tqps fail, the tqp range is from %d to %d",
3588 			kinfo->num_tc,
3589 			hns3_get_max_available_channels(h));
3590 		return -EINVAL;
3591 	}
3592 
3593 	new_tqp_num = hns3_adjust_tqps_num(kinfo->num_tc, new_tqp_num);
3594 	if (kinfo->num_tqps == new_tqp_num)
3595 		return 0;
3596 
3597 	if (if_running)
3598 		hns3_nic_net_stop(netdev);
3599 
3600 	ret = hns3_nic_uninit_vector_data(priv);
3601 	if (ret) {
3602 		dev_err(&netdev->dev,
3603 			"Unbind vector with tqp fail, nothing is changed");
3604 		goto open_netdev;
3605 	}
3606 
3607 	/* Changing the tqp num may also change the vector num,
3608 	 * ethtool only support setting and querying one coal
3609 	 * configuation for now, so save the vector 0' coal
3610 	 * configuation here in order to restore it.
3611 	 */
3612 	memcpy(&tx_coal, &priv->tqp_vector[0].tx_group.coal,
3613 	       sizeof(struct hns3_enet_coalesce));
3614 	memcpy(&rx_coal, &priv->tqp_vector[0].rx_group.coal,
3615 	       sizeof(struct hns3_enet_coalesce));
3616 
3617 	hns3_nic_dealloc_vector_data(priv);
3618 
3619 	hns3_uninit_all_ring(priv);
3620 	hns3_put_ring_config(priv);
3621 
3622 	org_tqp_num = h->kinfo.num_tqps;
3623 	ret = hns3_modify_tqp_num(netdev, new_tqp_num, &tx_coal, &rx_coal);
3624 	if (ret) {
3625 		ret = hns3_modify_tqp_num(netdev, org_tqp_num,
3626 					  &tx_coal, &rx_coal);
3627 		if (ret) {
3628 			/* If revert to old tqp failed, fatal error occurred */
3629 			dev_err(&netdev->dev,
3630 				"Revert to old tqp num fail, ret=%d", ret);
3631 			return ret;
3632 		}
3633 		dev_info(&netdev->dev,
3634 			 "Change tqp num fail, Revert to old tqp num");
3635 	}
3636 
3637 open_netdev:
3638 	if (if_running)
3639 		hns3_nic_net_open(netdev);
3640 
3641 	return ret;
3642 }
3643 
3644 static const struct hnae3_client_ops client_ops = {
3645 	.init_instance = hns3_client_init,
3646 	.uninit_instance = hns3_client_uninit,
3647 	.link_status_change = hns3_link_status_change,
3648 	.setup_tc = hns3_client_setup_tc,
3649 	.reset_notify = hns3_reset_notify,
3650 };
3651 
3652 /* hns3_init_module - Driver registration routine
3653  * hns3_init_module is the first routine called when the driver is
3654  * loaded. All it does is register with the PCI subsystem.
3655  */
3656 static int __init hns3_init_module(void)
3657 {
3658 	int ret;
3659 
3660 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
3661 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
3662 
3663 	client.type = HNAE3_CLIENT_KNIC;
3664 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
3665 		 hns3_driver_name);
3666 
3667 	client.ops = &client_ops;
3668 
3669 	INIT_LIST_HEAD(&client.node);
3670 
3671 	ret = hnae3_register_client(&client);
3672 	if (ret)
3673 		return ret;
3674 
3675 	ret = pci_register_driver(&hns3_driver);
3676 	if (ret)
3677 		hnae3_unregister_client(&client);
3678 
3679 	return ret;
3680 }
3681 module_init(hns3_init_module);
3682 
3683 /* hns3_exit_module - Driver exit cleanup routine
3684  * hns3_exit_module is called just before the driver is removed
3685  * from memory.
3686  */
3687 static void __exit hns3_exit_module(void)
3688 {
3689 	pci_unregister_driver(&hns3_driver);
3690 	hnae3_unregister_client(&client);
3691 }
3692 module_exit(hns3_exit_module);
3693 
3694 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
3695 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3696 MODULE_LICENSE("GPL");
3697 MODULE_ALIAS("pci:hns-nic");
3698 MODULE_VERSION(HNS3_MOD_VERSION);
3699