1 // SPDX-License-Identifier: GPL-2.0+ 2 // Copyright (c) 2016-2017 Hisilicon Limited. 3 4 #include <linux/dma-mapping.h> 5 #include <linux/etherdevice.h> 6 #include <linux/interrupt.h> 7 #ifdef CONFIG_RFS_ACCEL 8 #include <linux/cpu_rmap.h> 9 #endif 10 #include <linux/if_vlan.h> 11 #include <linux/irq.h> 12 #include <linux/ip.h> 13 #include <linux/ipv6.h> 14 #include <linux/module.h> 15 #include <linux/pci.h> 16 #include <linux/aer.h> 17 #include <linux/skbuff.h> 18 #include <linux/sctp.h> 19 #include <net/gre.h> 20 #include <net/gro.h> 21 #include <net/ip6_checksum.h> 22 #include <net/pkt_cls.h> 23 #include <net/tcp.h> 24 #include <net/vxlan.h> 25 #include <net/geneve.h> 26 27 #include "hnae3.h" 28 #include "hns3_enet.h" 29 /* All hns3 tracepoints are defined by the include below, which 30 * must be included exactly once across the whole kernel with 31 * CREATE_TRACE_POINTS defined 32 */ 33 #define CREATE_TRACE_POINTS 34 #include "hns3_trace.h" 35 36 #define hns3_set_field(origin, shift, val) ((origin) |= (val) << (shift)) 37 #define hns3_tx_bd_count(S) DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE) 38 39 #define hns3_rl_err(fmt, ...) \ 40 do { \ 41 if (net_ratelimit()) \ 42 netdev_err(fmt, ##__VA_ARGS__); \ 43 } while (0) 44 45 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force); 46 47 static const char hns3_driver_name[] = "hns3"; 48 static const char hns3_driver_string[] = 49 "Hisilicon Ethernet Network Driver for Hip08 Family"; 50 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation."; 51 static struct hnae3_client client; 52 53 static int debug = -1; 54 module_param(debug, int, 0); 55 MODULE_PARM_DESC(debug, " Network interface message level setting"); 56 57 static unsigned int tx_sgl = 1; 58 module_param(tx_sgl, uint, 0600); 59 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping"); 60 61 static bool page_pool_enabled = true; 62 module_param(page_pool_enabled, bool, 0400); 63 64 #define HNS3_SGL_SIZE(nfrag) (sizeof(struct scatterlist) * (nfrag) + \ 65 sizeof(struct sg_table)) 66 #define HNS3_MAX_SGL_SIZE ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \ 67 dma_get_cache_alignment()) 68 69 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \ 70 NETIF_MSG_IFDOWN | NETIF_MSG_IFUP) 71 72 #define HNS3_INNER_VLAN_TAG 1 73 #define HNS3_OUTER_VLAN_TAG 2 74 75 #define HNS3_MIN_TX_LEN 33U 76 #define HNS3_MIN_TUN_PKT_LEN 65U 77 78 /* hns3_pci_tbl - PCI Device ID Table 79 * 80 * Last entry must be all 0s 81 * 82 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, 83 * Class, Class Mask, private data (not used) } 84 */ 85 static const struct pci_device_id hns3_pci_tbl[] = { 86 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0}, 87 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0}, 88 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA), 89 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 90 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC), 91 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 92 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA), 93 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 94 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC), 95 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 96 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC), 97 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 98 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA), 99 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 100 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0}, 101 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF), 102 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS}, 103 /* required last entry */ 104 {0,} 105 }; 106 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl); 107 108 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t, h) \ 109 { ptype, \ 110 l, \ 111 CHECKSUM_##s, \ 112 HNS3_L3_TYPE_##t, \ 113 1, \ 114 h} 115 116 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \ 117 { ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0, \ 118 PKT_HASH_TYPE_NONE } 119 120 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = { 121 HNS3_RX_PTYPE_UNUSED_ENTRY(0), 122 HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP, PKT_HASH_TYPE_NONE), 123 HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP, PKT_HASH_TYPE_NONE), 124 HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP, PKT_HASH_TYPE_NONE), 125 HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 126 HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 127 HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 128 HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM, PKT_HASH_TYPE_NONE), 129 HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 130 HNS3_RX_PTYPE_UNUSED_ENTRY(9), 131 HNS3_RX_PTYPE_UNUSED_ENTRY(10), 132 HNS3_RX_PTYPE_UNUSED_ENTRY(11), 133 HNS3_RX_PTYPE_UNUSED_ENTRY(12), 134 HNS3_RX_PTYPE_UNUSED_ENTRY(13), 135 HNS3_RX_PTYPE_UNUSED_ENTRY(14), 136 HNS3_RX_PTYPE_UNUSED_ENTRY(15), 137 HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 138 HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE), 139 HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4, PKT_HASH_TYPE_NONE), 140 HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 141 HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 142 HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4, PKT_HASH_TYPE_NONE), 143 HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 144 HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4, PKT_HASH_TYPE_L3), 145 HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4, PKT_HASH_TYPE_L3), 146 HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 147 HNS3_RX_PTYPE_UNUSED_ENTRY(26), 148 HNS3_RX_PTYPE_UNUSED_ENTRY(27), 149 HNS3_RX_PTYPE_UNUSED_ENTRY(28), 150 HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 151 HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 152 HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 153 HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 154 HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 155 HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 156 HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 157 HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 158 HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 159 HNS3_RX_PTYPE_UNUSED_ENTRY(38), 160 HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 161 HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 162 HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 163 HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 164 HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 165 HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 166 HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 167 HNS3_RX_PTYPE_UNUSED_ENTRY(46), 168 HNS3_RX_PTYPE_UNUSED_ENTRY(47), 169 HNS3_RX_PTYPE_UNUSED_ENTRY(48), 170 HNS3_RX_PTYPE_UNUSED_ENTRY(49), 171 HNS3_RX_PTYPE_UNUSED_ENTRY(50), 172 HNS3_RX_PTYPE_UNUSED_ENTRY(51), 173 HNS3_RX_PTYPE_UNUSED_ENTRY(52), 174 HNS3_RX_PTYPE_UNUSED_ENTRY(53), 175 HNS3_RX_PTYPE_UNUSED_ENTRY(54), 176 HNS3_RX_PTYPE_UNUSED_ENTRY(55), 177 HNS3_RX_PTYPE_UNUSED_ENTRY(56), 178 HNS3_RX_PTYPE_UNUSED_ENTRY(57), 179 HNS3_RX_PTYPE_UNUSED_ENTRY(58), 180 HNS3_RX_PTYPE_UNUSED_ENTRY(59), 181 HNS3_RX_PTYPE_UNUSED_ENTRY(60), 182 HNS3_RX_PTYPE_UNUSED_ENTRY(61), 183 HNS3_RX_PTYPE_UNUSED_ENTRY(62), 184 HNS3_RX_PTYPE_UNUSED_ENTRY(63), 185 HNS3_RX_PTYPE_UNUSED_ENTRY(64), 186 HNS3_RX_PTYPE_UNUSED_ENTRY(65), 187 HNS3_RX_PTYPE_UNUSED_ENTRY(66), 188 HNS3_RX_PTYPE_UNUSED_ENTRY(67), 189 HNS3_RX_PTYPE_UNUSED_ENTRY(68), 190 HNS3_RX_PTYPE_UNUSED_ENTRY(69), 191 HNS3_RX_PTYPE_UNUSED_ENTRY(70), 192 HNS3_RX_PTYPE_UNUSED_ENTRY(71), 193 HNS3_RX_PTYPE_UNUSED_ENTRY(72), 194 HNS3_RX_PTYPE_UNUSED_ENTRY(73), 195 HNS3_RX_PTYPE_UNUSED_ENTRY(74), 196 HNS3_RX_PTYPE_UNUSED_ENTRY(75), 197 HNS3_RX_PTYPE_UNUSED_ENTRY(76), 198 HNS3_RX_PTYPE_UNUSED_ENTRY(77), 199 HNS3_RX_PTYPE_UNUSED_ENTRY(78), 200 HNS3_RX_PTYPE_UNUSED_ENTRY(79), 201 HNS3_RX_PTYPE_UNUSED_ENTRY(80), 202 HNS3_RX_PTYPE_UNUSED_ENTRY(81), 203 HNS3_RX_PTYPE_UNUSED_ENTRY(82), 204 HNS3_RX_PTYPE_UNUSED_ENTRY(83), 205 HNS3_RX_PTYPE_UNUSED_ENTRY(84), 206 HNS3_RX_PTYPE_UNUSED_ENTRY(85), 207 HNS3_RX_PTYPE_UNUSED_ENTRY(86), 208 HNS3_RX_PTYPE_UNUSED_ENTRY(87), 209 HNS3_RX_PTYPE_UNUSED_ENTRY(88), 210 HNS3_RX_PTYPE_UNUSED_ENTRY(89), 211 HNS3_RX_PTYPE_UNUSED_ENTRY(90), 212 HNS3_RX_PTYPE_UNUSED_ENTRY(91), 213 HNS3_RX_PTYPE_UNUSED_ENTRY(92), 214 HNS3_RX_PTYPE_UNUSED_ENTRY(93), 215 HNS3_RX_PTYPE_UNUSED_ENTRY(94), 216 HNS3_RX_PTYPE_UNUSED_ENTRY(95), 217 HNS3_RX_PTYPE_UNUSED_ENTRY(96), 218 HNS3_RX_PTYPE_UNUSED_ENTRY(97), 219 HNS3_RX_PTYPE_UNUSED_ENTRY(98), 220 HNS3_RX_PTYPE_UNUSED_ENTRY(99), 221 HNS3_RX_PTYPE_UNUSED_ENTRY(100), 222 HNS3_RX_PTYPE_UNUSED_ENTRY(101), 223 HNS3_RX_PTYPE_UNUSED_ENTRY(102), 224 HNS3_RX_PTYPE_UNUSED_ENTRY(103), 225 HNS3_RX_PTYPE_UNUSED_ENTRY(104), 226 HNS3_RX_PTYPE_UNUSED_ENTRY(105), 227 HNS3_RX_PTYPE_UNUSED_ENTRY(106), 228 HNS3_RX_PTYPE_UNUSED_ENTRY(107), 229 HNS3_RX_PTYPE_UNUSED_ENTRY(108), 230 HNS3_RX_PTYPE_UNUSED_ENTRY(109), 231 HNS3_RX_PTYPE_UNUSED_ENTRY(110), 232 HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 233 HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 234 HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 235 HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 236 HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6, PKT_HASH_TYPE_L3), 237 HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 238 HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6, PKT_HASH_TYPE_L3), 239 HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6, PKT_HASH_TYPE_L3), 240 HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 241 HNS3_RX_PTYPE_UNUSED_ENTRY(120), 242 HNS3_RX_PTYPE_UNUSED_ENTRY(121), 243 HNS3_RX_PTYPE_UNUSED_ENTRY(122), 244 HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 245 HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL, PKT_HASH_TYPE_NONE), 246 HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 247 HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 248 HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 249 HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 250 HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4, PKT_HASH_TYPE_L4), 251 HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 252 HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4, PKT_HASH_TYPE_L3), 253 HNS3_RX_PTYPE_UNUSED_ENTRY(132), 254 HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 255 HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 256 HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 257 HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 258 HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6, PKT_HASH_TYPE_L4), 259 HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 260 HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6, PKT_HASH_TYPE_L3), 261 HNS3_RX_PTYPE_UNUSED_ENTRY(140), 262 HNS3_RX_PTYPE_UNUSED_ENTRY(141), 263 HNS3_RX_PTYPE_UNUSED_ENTRY(142), 264 HNS3_RX_PTYPE_UNUSED_ENTRY(143), 265 HNS3_RX_PTYPE_UNUSED_ENTRY(144), 266 HNS3_RX_PTYPE_UNUSED_ENTRY(145), 267 HNS3_RX_PTYPE_UNUSED_ENTRY(146), 268 HNS3_RX_PTYPE_UNUSED_ENTRY(147), 269 HNS3_RX_PTYPE_UNUSED_ENTRY(148), 270 HNS3_RX_PTYPE_UNUSED_ENTRY(149), 271 HNS3_RX_PTYPE_UNUSED_ENTRY(150), 272 HNS3_RX_PTYPE_UNUSED_ENTRY(151), 273 HNS3_RX_PTYPE_UNUSED_ENTRY(152), 274 HNS3_RX_PTYPE_UNUSED_ENTRY(153), 275 HNS3_RX_PTYPE_UNUSED_ENTRY(154), 276 HNS3_RX_PTYPE_UNUSED_ENTRY(155), 277 HNS3_RX_PTYPE_UNUSED_ENTRY(156), 278 HNS3_RX_PTYPE_UNUSED_ENTRY(157), 279 HNS3_RX_PTYPE_UNUSED_ENTRY(158), 280 HNS3_RX_PTYPE_UNUSED_ENTRY(159), 281 HNS3_RX_PTYPE_UNUSED_ENTRY(160), 282 HNS3_RX_PTYPE_UNUSED_ENTRY(161), 283 HNS3_RX_PTYPE_UNUSED_ENTRY(162), 284 HNS3_RX_PTYPE_UNUSED_ENTRY(163), 285 HNS3_RX_PTYPE_UNUSED_ENTRY(164), 286 HNS3_RX_PTYPE_UNUSED_ENTRY(165), 287 HNS3_RX_PTYPE_UNUSED_ENTRY(166), 288 HNS3_RX_PTYPE_UNUSED_ENTRY(167), 289 HNS3_RX_PTYPE_UNUSED_ENTRY(168), 290 HNS3_RX_PTYPE_UNUSED_ENTRY(169), 291 HNS3_RX_PTYPE_UNUSED_ENTRY(170), 292 HNS3_RX_PTYPE_UNUSED_ENTRY(171), 293 HNS3_RX_PTYPE_UNUSED_ENTRY(172), 294 HNS3_RX_PTYPE_UNUSED_ENTRY(173), 295 HNS3_RX_PTYPE_UNUSED_ENTRY(174), 296 HNS3_RX_PTYPE_UNUSED_ENTRY(175), 297 HNS3_RX_PTYPE_UNUSED_ENTRY(176), 298 HNS3_RX_PTYPE_UNUSED_ENTRY(177), 299 HNS3_RX_PTYPE_UNUSED_ENTRY(178), 300 HNS3_RX_PTYPE_UNUSED_ENTRY(179), 301 HNS3_RX_PTYPE_UNUSED_ENTRY(180), 302 HNS3_RX_PTYPE_UNUSED_ENTRY(181), 303 HNS3_RX_PTYPE_UNUSED_ENTRY(182), 304 HNS3_RX_PTYPE_UNUSED_ENTRY(183), 305 HNS3_RX_PTYPE_UNUSED_ENTRY(184), 306 HNS3_RX_PTYPE_UNUSED_ENTRY(185), 307 HNS3_RX_PTYPE_UNUSED_ENTRY(186), 308 HNS3_RX_PTYPE_UNUSED_ENTRY(187), 309 HNS3_RX_PTYPE_UNUSED_ENTRY(188), 310 HNS3_RX_PTYPE_UNUSED_ENTRY(189), 311 HNS3_RX_PTYPE_UNUSED_ENTRY(190), 312 HNS3_RX_PTYPE_UNUSED_ENTRY(191), 313 HNS3_RX_PTYPE_UNUSED_ENTRY(192), 314 HNS3_RX_PTYPE_UNUSED_ENTRY(193), 315 HNS3_RX_PTYPE_UNUSED_ENTRY(194), 316 HNS3_RX_PTYPE_UNUSED_ENTRY(195), 317 HNS3_RX_PTYPE_UNUSED_ENTRY(196), 318 HNS3_RX_PTYPE_UNUSED_ENTRY(197), 319 HNS3_RX_PTYPE_UNUSED_ENTRY(198), 320 HNS3_RX_PTYPE_UNUSED_ENTRY(199), 321 HNS3_RX_PTYPE_UNUSED_ENTRY(200), 322 HNS3_RX_PTYPE_UNUSED_ENTRY(201), 323 HNS3_RX_PTYPE_UNUSED_ENTRY(202), 324 HNS3_RX_PTYPE_UNUSED_ENTRY(203), 325 HNS3_RX_PTYPE_UNUSED_ENTRY(204), 326 HNS3_RX_PTYPE_UNUSED_ENTRY(205), 327 HNS3_RX_PTYPE_UNUSED_ENTRY(206), 328 HNS3_RX_PTYPE_UNUSED_ENTRY(207), 329 HNS3_RX_PTYPE_UNUSED_ENTRY(208), 330 HNS3_RX_PTYPE_UNUSED_ENTRY(209), 331 HNS3_RX_PTYPE_UNUSED_ENTRY(210), 332 HNS3_RX_PTYPE_UNUSED_ENTRY(211), 333 HNS3_RX_PTYPE_UNUSED_ENTRY(212), 334 HNS3_RX_PTYPE_UNUSED_ENTRY(213), 335 HNS3_RX_PTYPE_UNUSED_ENTRY(214), 336 HNS3_RX_PTYPE_UNUSED_ENTRY(215), 337 HNS3_RX_PTYPE_UNUSED_ENTRY(216), 338 HNS3_RX_PTYPE_UNUSED_ENTRY(217), 339 HNS3_RX_PTYPE_UNUSED_ENTRY(218), 340 HNS3_RX_PTYPE_UNUSED_ENTRY(219), 341 HNS3_RX_PTYPE_UNUSED_ENTRY(220), 342 HNS3_RX_PTYPE_UNUSED_ENTRY(221), 343 HNS3_RX_PTYPE_UNUSED_ENTRY(222), 344 HNS3_RX_PTYPE_UNUSED_ENTRY(223), 345 HNS3_RX_PTYPE_UNUSED_ENTRY(224), 346 HNS3_RX_PTYPE_UNUSED_ENTRY(225), 347 HNS3_RX_PTYPE_UNUSED_ENTRY(226), 348 HNS3_RX_PTYPE_UNUSED_ENTRY(227), 349 HNS3_RX_PTYPE_UNUSED_ENTRY(228), 350 HNS3_RX_PTYPE_UNUSED_ENTRY(229), 351 HNS3_RX_PTYPE_UNUSED_ENTRY(230), 352 HNS3_RX_PTYPE_UNUSED_ENTRY(231), 353 HNS3_RX_PTYPE_UNUSED_ENTRY(232), 354 HNS3_RX_PTYPE_UNUSED_ENTRY(233), 355 HNS3_RX_PTYPE_UNUSED_ENTRY(234), 356 HNS3_RX_PTYPE_UNUSED_ENTRY(235), 357 HNS3_RX_PTYPE_UNUSED_ENTRY(236), 358 HNS3_RX_PTYPE_UNUSED_ENTRY(237), 359 HNS3_RX_PTYPE_UNUSED_ENTRY(238), 360 HNS3_RX_PTYPE_UNUSED_ENTRY(239), 361 HNS3_RX_PTYPE_UNUSED_ENTRY(240), 362 HNS3_RX_PTYPE_UNUSED_ENTRY(241), 363 HNS3_RX_PTYPE_UNUSED_ENTRY(242), 364 HNS3_RX_PTYPE_UNUSED_ENTRY(243), 365 HNS3_RX_PTYPE_UNUSED_ENTRY(244), 366 HNS3_RX_PTYPE_UNUSED_ENTRY(245), 367 HNS3_RX_PTYPE_UNUSED_ENTRY(246), 368 HNS3_RX_PTYPE_UNUSED_ENTRY(247), 369 HNS3_RX_PTYPE_UNUSED_ENTRY(248), 370 HNS3_RX_PTYPE_UNUSED_ENTRY(249), 371 HNS3_RX_PTYPE_UNUSED_ENTRY(250), 372 HNS3_RX_PTYPE_UNUSED_ENTRY(251), 373 HNS3_RX_PTYPE_UNUSED_ENTRY(252), 374 HNS3_RX_PTYPE_UNUSED_ENTRY(253), 375 HNS3_RX_PTYPE_UNUSED_ENTRY(254), 376 HNS3_RX_PTYPE_UNUSED_ENTRY(255), 377 }; 378 379 #define HNS3_INVALID_PTYPE \ 380 ARRAY_SIZE(hns3_rx_ptype_tbl) 381 382 static irqreturn_t hns3_irq_handle(int irq, void *vector) 383 { 384 struct hns3_enet_tqp_vector *tqp_vector = vector; 385 386 napi_schedule_irqoff(&tqp_vector->napi); 387 tqp_vector->event_cnt++; 388 389 return IRQ_HANDLED; 390 } 391 392 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv) 393 { 394 struct hns3_enet_tqp_vector *tqp_vectors; 395 unsigned int i; 396 397 for (i = 0; i < priv->vector_num; i++) { 398 tqp_vectors = &priv->tqp_vector[i]; 399 400 if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED) 401 continue; 402 403 /* clear the affinity mask */ 404 irq_set_affinity_hint(tqp_vectors->vector_irq, NULL); 405 406 /* release the irq resource */ 407 free_irq(tqp_vectors->vector_irq, tqp_vectors); 408 tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED; 409 } 410 } 411 412 static int hns3_nic_init_irq(struct hns3_nic_priv *priv) 413 { 414 struct hns3_enet_tqp_vector *tqp_vectors; 415 int txrx_int_idx = 0; 416 int rx_int_idx = 0; 417 int tx_int_idx = 0; 418 unsigned int i; 419 int ret; 420 421 for (i = 0; i < priv->vector_num; i++) { 422 tqp_vectors = &priv->tqp_vector[i]; 423 424 if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED) 425 continue; 426 427 if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) { 428 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, 429 "%s-%s-%s-%d", hns3_driver_name, 430 pci_name(priv->ae_handle->pdev), 431 "TxRx", txrx_int_idx++); 432 txrx_int_idx++; 433 } else if (tqp_vectors->rx_group.ring) { 434 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, 435 "%s-%s-%s-%d", hns3_driver_name, 436 pci_name(priv->ae_handle->pdev), 437 "Rx", rx_int_idx++); 438 } else if (tqp_vectors->tx_group.ring) { 439 snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN, 440 "%s-%s-%s-%d", hns3_driver_name, 441 pci_name(priv->ae_handle->pdev), 442 "Tx", tx_int_idx++); 443 } else { 444 /* Skip this unused q_vector */ 445 continue; 446 } 447 448 tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0'; 449 450 irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN); 451 ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0, 452 tqp_vectors->name, tqp_vectors); 453 if (ret) { 454 netdev_err(priv->netdev, "request irq(%d) fail\n", 455 tqp_vectors->vector_irq); 456 hns3_nic_uninit_irq(priv); 457 return ret; 458 } 459 460 irq_set_affinity_hint(tqp_vectors->vector_irq, 461 &tqp_vectors->affinity_mask); 462 463 tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED; 464 } 465 466 return 0; 467 } 468 469 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector, 470 u32 mask_en) 471 { 472 writel(mask_en, tqp_vector->mask_addr); 473 } 474 475 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector) 476 { 477 napi_enable(&tqp_vector->napi); 478 enable_irq(tqp_vector->vector_irq); 479 480 /* enable vector */ 481 hns3_mask_vector_irq(tqp_vector, 1); 482 } 483 484 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector) 485 { 486 /* disable vector */ 487 hns3_mask_vector_irq(tqp_vector, 0); 488 489 disable_irq(tqp_vector->vector_irq); 490 napi_disable(&tqp_vector->napi); 491 cancel_work_sync(&tqp_vector->rx_group.dim.work); 492 cancel_work_sync(&tqp_vector->tx_group.dim.work); 493 } 494 495 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector, 496 u32 rl_value) 497 { 498 u32 rl_reg = hns3_rl_usec_to_reg(rl_value); 499 500 /* this defines the configuration for RL (Interrupt Rate Limiter). 501 * Rl defines rate of interrupts i.e. number of interrupts-per-second 502 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing 503 */ 504 if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable && 505 !tqp_vector->rx_group.coal.adapt_enable) 506 /* According to the hardware, the range of rl_reg is 507 * 0-59 and the unit is 4. 508 */ 509 rl_reg |= HNS3_INT_RL_ENABLE_MASK; 510 511 writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET); 512 } 513 514 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector, 515 u32 gl_value) 516 { 517 u32 new_val; 518 519 if (tqp_vector->rx_group.coal.unit_1us) 520 new_val = gl_value | HNS3_INT_GL_1US; 521 else 522 new_val = hns3_gl_usec_to_reg(gl_value); 523 524 writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET); 525 } 526 527 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector, 528 u32 gl_value) 529 { 530 u32 new_val; 531 532 if (tqp_vector->tx_group.coal.unit_1us) 533 new_val = gl_value | HNS3_INT_GL_1US; 534 else 535 new_val = hns3_gl_usec_to_reg(gl_value); 536 537 writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET); 538 } 539 540 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector, 541 u32 ql_value) 542 { 543 writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET); 544 } 545 546 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector, 547 u32 ql_value) 548 { 549 writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET); 550 } 551 552 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector, 553 struct hns3_nic_priv *priv) 554 { 555 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); 556 struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal; 557 struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal; 558 struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal; 559 struct hns3_enet_coalesce *prx_coal = &priv->rx_coal; 560 561 tx_coal->adapt_enable = ptx_coal->adapt_enable; 562 rx_coal->adapt_enable = prx_coal->adapt_enable; 563 564 tx_coal->int_gl = ptx_coal->int_gl; 565 rx_coal->int_gl = prx_coal->int_gl; 566 567 rx_coal->flow_level = prx_coal->flow_level; 568 tx_coal->flow_level = ptx_coal->flow_level; 569 570 /* device version above V3(include V3), GL can configure 1us 571 * unit, so uses 1us unit. 572 */ 573 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) { 574 tx_coal->unit_1us = 1; 575 rx_coal->unit_1us = 1; 576 } 577 578 if (ae_dev->dev_specs.int_ql_max) { 579 tx_coal->ql_enable = 1; 580 rx_coal->ql_enable = 1; 581 tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max; 582 rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max; 583 tx_coal->int_ql = ptx_coal->int_ql; 584 rx_coal->int_ql = prx_coal->int_ql; 585 } 586 } 587 588 static void 589 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector, 590 struct hns3_nic_priv *priv) 591 { 592 struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal; 593 struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal; 594 struct hnae3_handle *h = priv->ae_handle; 595 596 hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl); 597 hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl); 598 hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting); 599 600 if (tx_coal->ql_enable) 601 hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql); 602 603 if (rx_coal->ql_enable) 604 hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql); 605 } 606 607 static int hns3_nic_set_real_num_queue(struct net_device *netdev) 608 { 609 struct hnae3_handle *h = hns3_get_handle(netdev); 610 struct hnae3_knic_private_info *kinfo = &h->kinfo; 611 struct hnae3_tc_info *tc_info = &kinfo->tc_info; 612 unsigned int queue_size = kinfo->num_tqps; 613 int i, ret; 614 615 if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) { 616 netdev_reset_tc(netdev); 617 } else { 618 ret = netdev_set_num_tc(netdev, tc_info->num_tc); 619 if (ret) { 620 netdev_err(netdev, 621 "netdev_set_num_tc fail, ret=%d!\n", ret); 622 return ret; 623 } 624 625 for (i = 0; i < tc_info->num_tc; i++) 626 netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i], 627 tc_info->tqp_offset[i]); 628 } 629 630 ret = netif_set_real_num_tx_queues(netdev, queue_size); 631 if (ret) { 632 netdev_err(netdev, 633 "netif_set_real_num_tx_queues fail, ret=%d!\n", ret); 634 return ret; 635 } 636 637 ret = netif_set_real_num_rx_queues(netdev, queue_size); 638 if (ret) { 639 netdev_err(netdev, 640 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 641 return ret; 642 } 643 644 return 0; 645 } 646 647 u16 hns3_get_max_available_channels(struct hnae3_handle *h) 648 { 649 u16 alloc_tqps, max_rss_size, rss_size; 650 651 h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size); 652 rss_size = alloc_tqps / h->kinfo.tc_info.num_tc; 653 654 return min_t(u16, rss_size, max_rss_size); 655 } 656 657 static void hns3_tqp_enable(struct hnae3_queue *tqp) 658 { 659 u32 rcb_reg; 660 661 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); 662 rcb_reg |= BIT(HNS3_RING_EN_B); 663 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); 664 } 665 666 static void hns3_tqp_disable(struct hnae3_queue *tqp) 667 { 668 u32 rcb_reg; 669 670 rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG); 671 rcb_reg &= ~BIT(HNS3_RING_EN_B); 672 hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg); 673 } 674 675 static void hns3_free_rx_cpu_rmap(struct net_device *netdev) 676 { 677 #ifdef CONFIG_RFS_ACCEL 678 free_irq_cpu_rmap(netdev->rx_cpu_rmap); 679 netdev->rx_cpu_rmap = NULL; 680 #endif 681 } 682 683 static int hns3_set_rx_cpu_rmap(struct net_device *netdev) 684 { 685 #ifdef CONFIG_RFS_ACCEL 686 struct hns3_nic_priv *priv = netdev_priv(netdev); 687 struct hns3_enet_tqp_vector *tqp_vector; 688 int i, ret; 689 690 if (!netdev->rx_cpu_rmap) { 691 netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num); 692 if (!netdev->rx_cpu_rmap) 693 return -ENOMEM; 694 } 695 696 for (i = 0; i < priv->vector_num; i++) { 697 tqp_vector = &priv->tqp_vector[i]; 698 ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap, 699 tqp_vector->vector_irq); 700 if (ret) { 701 hns3_free_rx_cpu_rmap(netdev); 702 return ret; 703 } 704 } 705 #endif 706 return 0; 707 } 708 709 static int hns3_nic_net_up(struct net_device *netdev) 710 { 711 struct hns3_nic_priv *priv = netdev_priv(netdev); 712 struct hnae3_handle *h = priv->ae_handle; 713 int i, j; 714 int ret; 715 716 ret = hns3_nic_reset_all_ring(h); 717 if (ret) 718 return ret; 719 720 clear_bit(HNS3_NIC_STATE_DOWN, &priv->state); 721 722 /* enable the vectors */ 723 for (i = 0; i < priv->vector_num; i++) 724 hns3_vector_enable(&priv->tqp_vector[i]); 725 726 /* enable rcb */ 727 for (j = 0; j < h->kinfo.num_tqps; j++) 728 hns3_tqp_enable(h->kinfo.tqp[j]); 729 730 /* start the ae_dev */ 731 ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0; 732 if (ret) { 733 set_bit(HNS3_NIC_STATE_DOWN, &priv->state); 734 while (j--) 735 hns3_tqp_disable(h->kinfo.tqp[j]); 736 737 for (j = i - 1; j >= 0; j--) 738 hns3_vector_disable(&priv->tqp_vector[j]); 739 } 740 741 return ret; 742 } 743 744 static void hns3_config_xps(struct hns3_nic_priv *priv) 745 { 746 int i; 747 748 for (i = 0; i < priv->vector_num; i++) { 749 struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i]; 750 struct hns3_enet_ring *ring = tqp_vector->tx_group.ring; 751 752 while (ring) { 753 int ret; 754 755 ret = netif_set_xps_queue(priv->netdev, 756 &tqp_vector->affinity_mask, 757 ring->tqp->tqp_index); 758 if (ret) 759 netdev_warn(priv->netdev, 760 "set xps queue failed: %d", ret); 761 762 ring = ring->next; 763 } 764 } 765 } 766 767 static int hns3_nic_net_open(struct net_device *netdev) 768 { 769 struct hns3_nic_priv *priv = netdev_priv(netdev); 770 struct hnae3_handle *h = hns3_get_handle(netdev); 771 struct hnae3_knic_private_info *kinfo; 772 int i, ret; 773 774 if (hns3_nic_resetting(netdev)) 775 return -EBUSY; 776 777 if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { 778 netdev_warn(netdev, "net open repeatedly!\n"); 779 return 0; 780 } 781 782 netif_carrier_off(netdev); 783 784 ret = hns3_nic_set_real_num_queue(netdev); 785 if (ret) 786 return ret; 787 788 ret = hns3_nic_net_up(netdev); 789 if (ret) { 790 netdev_err(netdev, "net up fail, ret=%d!\n", ret); 791 return ret; 792 } 793 794 kinfo = &h->kinfo; 795 for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) 796 netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]); 797 798 if (h->ae_algo->ops->set_timer_task) 799 h->ae_algo->ops->set_timer_task(priv->ae_handle, true); 800 801 hns3_config_xps(priv); 802 803 netif_dbg(h, drv, netdev, "net open\n"); 804 805 return 0; 806 } 807 808 static void hns3_reset_tx_queue(struct hnae3_handle *h) 809 { 810 struct net_device *ndev = h->kinfo.netdev; 811 struct hns3_nic_priv *priv = netdev_priv(ndev); 812 struct netdev_queue *dev_queue; 813 u32 i; 814 815 for (i = 0; i < h->kinfo.num_tqps; i++) { 816 dev_queue = netdev_get_tx_queue(ndev, 817 priv->ring[i].queue_index); 818 netdev_tx_reset_queue(dev_queue); 819 } 820 } 821 822 static void hns3_nic_net_down(struct net_device *netdev) 823 { 824 struct hns3_nic_priv *priv = netdev_priv(netdev); 825 struct hnae3_handle *h = hns3_get_handle(netdev); 826 const struct hnae3_ae_ops *ops; 827 int i; 828 829 /* disable vectors */ 830 for (i = 0; i < priv->vector_num; i++) 831 hns3_vector_disable(&priv->tqp_vector[i]); 832 833 /* disable rcb */ 834 for (i = 0; i < h->kinfo.num_tqps; i++) 835 hns3_tqp_disable(h->kinfo.tqp[i]); 836 837 /* stop ae_dev */ 838 ops = priv->ae_handle->ae_algo->ops; 839 if (ops->stop) 840 ops->stop(priv->ae_handle); 841 842 /* delay ring buffer clearing to hns3_reset_notify_uninit_enet 843 * during reset process, because driver may not be able 844 * to disable the ring through firmware when downing the netdev. 845 */ 846 if (!hns3_nic_resetting(netdev)) 847 hns3_clear_all_ring(priv->ae_handle, false); 848 849 hns3_reset_tx_queue(priv->ae_handle); 850 } 851 852 static int hns3_nic_net_stop(struct net_device *netdev) 853 { 854 struct hns3_nic_priv *priv = netdev_priv(netdev); 855 struct hnae3_handle *h = hns3_get_handle(netdev); 856 857 if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state)) 858 return 0; 859 860 netif_dbg(h, drv, netdev, "net stop\n"); 861 862 if (h->ae_algo->ops->set_timer_task) 863 h->ae_algo->ops->set_timer_task(priv->ae_handle, false); 864 865 netif_carrier_off(netdev); 866 netif_tx_disable(netdev); 867 868 hns3_nic_net_down(netdev); 869 870 return 0; 871 } 872 873 static int hns3_nic_uc_sync(struct net_device *netdev, 874 const unsigned char *addr) 875 { 876 struct hnae3_handle *h = hns3_get_handle(netdev); 877 878 if (h->ae_algo->ops->add_uc_addr) 879 return h->ae_algo->ops->add_uc_addr(h, addr); 880 881 return 0; 882 } 883 884 static int hns3_nic_uc_unsync(struct net_device *netdev, 885 const unsigned char *addr) 886 { 887 struct hnae3_handle *h = hns3_get_handle(netdev); 888 889 /* need ignore the request of removing device address, because 890 * we store the device address and other addresses of uc list 891 * in the function's mac filter list. 892 */ 893 if (ether_addr_equal(addr, netdev->dev_addr)) 894 return 0; 895 896 if (h->ae_algo->ops->rm_uc_addr) 897 return h->ae_algo->ops->rm_uc_addr(h, addr); 898 899 return 0; 900 } 901 902 static int hns3_nic_mc_sync(struct net_device *netdev, 903 const unsigned char *addr) 904 { 905 struct hnae3_handle *h = hns3_get_handle(netdev); 906 907 if (h->ae_algo->ops->add_mc_addr) 908 return h->ae_algo->ops->add_mc_addr(h, addr); 909 910 return 0; 911 } 912 913 static int hns3_nic_mc_unsync(struct net_device *netdev, 914 const unsigned char *addr) 915 { 916 struct hnae3_handle *h = hns3_get_handle(netdev); 917 918 if (h->ae_algo->ops->rm_mc_addr) 919 return h->ae_algo->ops->rm_mc_addr(h, addr); 920 921 return 0; 922 } 923 924 static u8 hns3_get_netdev_flags(struct net_device *netdev) 925 { 926 u8 flags = 0; 927 928 if (netdev->flags & IFF_PROMISC) 929 flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE; 930 else if (netdev->flags & IFF_ALLMULTI) 931 flags = HNAE3_USER_MPE; 932 933 return flags; 934 } 935 936 static void hns3_nic_set_rx_mode(struct net_device *netdev) 937 { 938 struct hnae3_handle *h = hns3_get_handle(netdev); 939 u8 new_flags; 940 941 new_flags = hns3_get_netdev_flags(netdev); 942 943 __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync); 944 __dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync); 945 946 /* User mode Promisc mode enable and vlan filtering is disabled to 947 * let all packets in. 948 */ 949 h->netdev_flags = new_flags; 950 hns3_request_update_promisc_mode(h); 951 } 952 953 void hns3_request_update_promisc_mode(struct hnae3_handle *handle) 954 { 955 const struct hnae3_ae_ops *ops = handle->ae_algo->ops; 956 957 if (ops->request_update_promisc_mode) 958 ops->request_update_promisc_mode(handle); 959 } 960 961 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring) 962 { 963 struct hns3_tx_spare *tx_spare = ring->tx_spare; 964 u32 ntc, ntu; 965 966 /* This smp_load_acquire() pairs with smp_store_release() in 967 * hns3_tx_spare_update() called in tx desc cleaning process. 968 */ 969 ntc = smp_load_acquire(&tx_spare->last_to_clean); 970 ntu = tx_spare->next_to_use; 971 972 if (ntc > ntu) 973 return ntc - ntu - 1; 974 975 /* The free tx buffer is divided into two part, so pick the 976 * larger one. 977 */ 978 return max(ntc, tx_spare->len - ntu) - 1; 979 } 980 981 static void hns3_tx_spare_update(struct hns3_enet_ring *ring) 982 { 983 struct hns3_tx_spare *tx_spare = ring->tx_spare; 984 985 if (!tx_spare || 986 tx_spare->last_to_clean == tx_spare->next_to_clean) 987 return; 988 989 /* This smp_store_release() pairs with smp_load_acquire() in 990 * hns3_tx_spare_space() called in xmit process. 991 */ 992 smp_store_release(&tx_spare->last_to_clean, 993 tx_spare->next_to_clean); 994 } 995 996 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring, 997 struct sk_buff *skb, 998 u32 space) 999 { 1000 u32 len = skb->len <= ring->tx_copybreak ? skb->len : 1001 skb_headlen(skb); 1002 1003 if (len > ring->tx_copybreak) 1004 return false; 1005 1006 if (ALIGN(len, dma_get_cache_alignment()) > space) { 1007 hns3_ring_stats_update(ring, tx_spare_full); 1008 return false; 1009 } 1010 1011 return true; 1012 } 1013 1014 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring, 1015 struct sk_buff *skb, 1016 u32 space) 1017 { 1018 if (skb->len <= ring->tx_copybreak || !tx_sgl || 1019 (!skb_has_frag_list(skb) && 1020 skb_shinfo(skb)->nr_frags < tx_sgl)) 1021 return false; 1022 1023 if (space < HNS3_MAX_SGL_SIZE) { 1024 hns3_ring_stats_update(ring, tx_spare_full); 1025 return false; 1026 } 1027 1028 return true; 1029 } 1030 1031 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring) 1032 { 1033 u32 alloc_size = ring->tqp->handle->kinfo.tx_spare_buf_size; 1034 struct hns3_tx_spare *tx_spare; 1035 struct page *page; 1036 dma_addr_t dma; 1037 int order; 1038 1039 if (!alloc_size) 1040 return; 1041 1042 order = get_order(alloc_size); 1043 if (order >= MAX_ORDER) { 1044 if (net_ratelimit()) 1045 dev_warn(ring_to_dev(ring), "failed to allocate tx spare buffer, exceed to max order\n"); 1046 return; 1047 } 1048 1049 tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare), 1050 GFP_KERNEL); 1051 if (!tx_spare) { 1052 /* The driver still work without the tx spare buffer */ 1053 dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n"); 1054 goto devm_kzalloc_error; 1055 } 1056 1057 page = alloc_pages_node(dev_to_node(ring_to_dev(ring)), 1058 GFP_KERNEL, order); 1059 if (!page) { 1060 dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n"); 1061 goto alloc_pages_error; 1062 } 1063 1064 dma = dma_map_page(ring_to_dev(ring), page, 0, 1065 PAGE_SIZE << order, DMA_TO_DEVICE); 1066 if (dma_mapping_error(ring_to_dev(ring), dma)) { 1067 dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n"); 1068 goto dma_mapping_error; 1069 } 1070 1071 tx_spare->dma = dma; 1072 tx_spare->buf = page_address(page); 1073 tx_spare->len = PAGE_SIZE << order; 1074 ring->tx_spare = tx_spare; 1075 return; 1076 1077 dma_mapping_error: 1078 put_page(page); 1079 alloc_pages_error: 1080 devm_kfree(ring_to_dev(ring), tx_spare); 1081 devm_kzalloc_error: 1082 ring->tqp->handle->kinfo.tx_spare_buf_size = 0; 1083 } 1084 1085 /* Use hns3_tx_spare_space() to make sure there is enough buffer 1086 * before calling below function to allocate tx buffer. 1087 */ 1088 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring, 1089 unsigned int size, dma_addr_t *dma, 1090 u32 *cb_len) 1091 { 1092 struct hns3_tx_spare *tx_spare = ring->tx_spare; 1093 u32 ntu = tx_spare->next_to_use; 1094 1095 size = ALIGN(size, dma_get_cache_alignment()); 1096 *cb_len = size; 1097 1098 /* Tx spare buffer wraps back here because the end of 1099 * freed tx buffer is not enough. 1100 */ 1101 if (ntu + size > tx_spare->len) { 1102 *cb_len += (tx_spare->len - ntu); 1103 ntu = 0; 1104 } 1105 1106 tx_spare->next_to_use = ntu + size; 1107 if (tx_spare->next_to_use == tx_spare->len) 1108 tx_spare->next_to_use = 0; 1109 1110 *dma = tx_spare->dma + ntu; 1111 1112 return tx_spare->buf + ntu; 1113 } 1114 1115 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len) 1116 { 1117 struct hns3_tx_spare *tx_spare = ring->tx_spare; 1118 1119 if (len > tx_spare->next_to_use) { 1120 len -= tx_spare->next_to_use; 1121 tx_spare->next_to_use = tx_spare->len - len; 1122 } else { 1123 tx_spare->next_to_use -= len; 1124 } 1125 } 1126 1127 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring, 1128 struct hns3_desc_cb *cb) 1129 { 1130 struct hns3_tx_spare *tx_spare = ring->tx_spare; 1131 u32 ntc = tx_spare->next_to_clean; 1132 u32 len = cb->length; 1133 1134 tx_spare->next_to_clean += len; 1135 1136 if (tx_spare->next_to_clean >= tx_spare->len) { 1137 tx_spare->next_to_clean -= tx_spare->len; 1138 1139 if (tx_spare->next_to_clean) { 1140 ntc = 0; 1141 len = tx_spare->next_to_clean; 1142 } 1143 } 1144 1145 /* This tx spare buffer is only really reclaimed after calling 1146 * hns3_tx_spare_update(), so it is still safe to use the info in 1147 * the tx buffer to do the dma sync or sg unmapping after 1148 * tx_spare->next_to_clean is moved forword. 1149 */ 1150 if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) { 1151 dma_addr_t dma = tx_spare->dma + ntc; 1152 1153 dma_sync_single_for_cpu(ring_to_dev(ring), dma, len, 1154 DMA_TO_DEVICE); 1155 } else { 1156 struct sg_table *sgt = tx_spare->buf + ntc; 1157 1158 dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents, 1159 DMA_TO_DEVICE); 1160 } 1161 } 1162 1163 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs, 1164 u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes) 1165 { 1166 u32 l4_offset, hdr_len; 1167 union l3_hdr_info l3; 1168 union l4_hdr_info l4; 1169 u32 l4_paylen; 1170 int ret; 1171 1172 if (!skb_is_gso(skb)) 1173 return 0; 1174 1175 ret = skb_cow_head(skb, 0); 1176 if (unlikely(ret < 0)) 1177 return ret; 1178 1179 l3.hdr = skb_network_header(skb); 1180 l4.hdr = skb_transport_header(skb); 1181 1182 /* Software should clear the IPv4's checksum field when tso is 1183 * needed. 1184 */ 1185 if (l3.v4->version == 4) 1186 l3.v4->check = 0; 1187 1188 /* tunnel packet */ 1189 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE | 1190 SKB_GSO_GRE_CSUM | 1191 SKB_GSO_UDP_TUNNEL | 1192 SKB_GSO_UDP_TUNNEL_CSUM)) { 1193 /* reset l3&l4 pointers from outer to inner headers */ 1194 l3.hdr = skb_inner_network_header(skb); 1195 l4.hdr = skb_inner_transport_header(skb); 1196 1197 /* Software should clear the IPv4's checksum field when 1198 * tso is needed. 1199 */ 1200 if (l3.v4->version == 4) 1201 l3.v4->check = 0; 1202 } 1203 1204 /* normal or tunnel packet */ 1205 l4_offset = l4.hdr - skb->data; 1206 1207 /* remove payload length from inner pseudo checksum when tso */ 1208 l4_paylen = skb->len - l4_offset; 1209 1210 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) { 1211 hdr_len = sizeof(*l4.udp) + l4_offset; 1212 csum_replace_by_diff(&l4.udp->check, 1213 (__force __wsum)htonl(l4_paylen)); 1214 } else { 1215 hdr_len = (l4.tcp->doff << 2) + l4_offset; 1216 csum_replace_by_diff(&l4.tcp->check, 1217 (__force __wsum)htonl(l4_paylen)); 1218 } 1219 1220 *send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len; 1221 1222 /* find the txbd field values */ 1223 *paylen_fdop_ol4cs = skb->len - hdr_len; 1224 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1); 1225 1226 /* offload outer UDP header checksum */ 1227 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM) 1228 hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1); 1229 1230 /* get MSS for TSO */ 1231 *mss = skb_shinfo(skb)->gso_size; 1232 1233 trace_hns3_tso(skb); 1234 1235 return 0; 1236 } 1237 1238 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto, 1239 u8 *il4_proto) 1240 { 1241 union l3_hdr_info l3; 1242 unsigned char *l4_hdr; 1243 unsigned char *exthdr; 1244 u8 l4_proto_tmp; 1245 __be16 frag_off; 1246 1247 /* find outer header point */ 1248 l3.hdr = skb_network_header(skb); 1249 l4_hdr = skb_transport_header(skb); 1250 1251 if (skb->protocol == htons(ETH_P_IPV6)) { 1252 exthdr = l3.hdr + sizeof(*l3.v6); 1253 l4_proto_tmp = l3.v6->nexthdr; 1254 if (l4_hdr != exthdr) 1255 ipv6_skip_exthdr(skb, exthdr - skb->data, 1256 &l4_proto_tmp, &frag_off); 1257 } else if (skb->protocol == htons(ETH_P_IP)) { 1258 l4_proto_tmp = l3.v4->protocol; 1259 } else { 1260 return -EINVAL; 1261 } 1262 1263 *ol4_proto = l4_proto_tmp; 1264 1265 /* tunnel packet */ 1266 if (!skb->encapsulation) { 1267 *il4_proto = 0; 1268 return 0; 1269 } 1270 1271 /* find inner header point */ 1272 l3.hdr = skb_inner_network_header(skb); 1273 l4_hdr = skb_inner_transport_header(skb); 1274 1275 if (l3.v6->version == 6) { 1276 exthdr = l3.hdr + sizeof(*l3.v6); 1277 l4_proto_tmp = l3.v6->nexthdr; 1278 if (l4_hdr != exthdr) 1279 ipv6_skip_exthdr(skb, exthdr - skb->data, 1280 &l4_proto_tmp, &frag_off); 1281 } else if (l3.v4->version == 4) { 1282 l4_proto_tmp = l3.v4->protocol; 1283 } 1284 1285 *il4_proto = l4_proto_tmp; 1286 1287 return 0; 1288 } 1289 1290 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL 1291 * and it is udp packet, which has a dest port as the IANA assigned. 1292 * the hardware is expected to do the checksum offload, but the 1293 * hardware will not do the checksum offload when udp dest port is 1294 * 4789, 4790 or 6081. 1295 */ 1296 static bool hns3_tunnel_csum_bug(struct sk_buff *skb) 1297 { 1298 struct hns3_nic_priv *priv = netdev_priv(skb->dev); 1299 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); 1300 union l4_hdr_info l4; 1301 1302 /* device version above V3(include V3), the hardware can 1303 * do this checksum offload. 1304 */ 1305 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) 1306 return false; 1307 1308 l4.hdr = skb_transport_header(skb); 1309 1310 if (!(!skb->encapsulation && 1311 (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) || 1312 l4.udp->dest == htons(GENEVE_UDP_PORT) || 1313 l4.udp->dest == htons(IANA_VXLAN_GPE_UDP_PORT)))) 1314 return false; 1315 1316 return true; 1317 } 1318 1319 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto, 1320 u32 *ol_type_vlan_len_msec) 1321 { 1322 u32 l2_len, l3_len, l4_len; 1323 unsigned char *il2_hdr; 1324 union l3_hdr_info l3; 1325 union l4_hdr_info l4; 1326 1327 l3.hdr = skb_network_header(skb); 1328 l4.hdr = skb_transport_header(skb); 1329 1330 /* compute OL2 header size, defined in 2 Bytes */ 1331 l2_len = l3.hdr - skb->data; 1332 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1); 1333 1334 /* compute OL3 header size, defined in 4 Bytes */ 1335 l3_len = l4.hdr - l3.hdr; 1336 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2); 1337 1338 il2_hdr = skb_inner_mac_header(skb); 1339 /* compute OL4 header size, defined in 4 Bytes */ 1340 l4_len = il2_hdr - l4.hdr; 1341 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2); 1342 1343 /* define outer network header type */ 1344 if (skb->protocol == htons(ETH_P_IP)) { 1345 if (skb_is_gso(skb)) 1346 hns3_set_field(*ol_type_vlan_len_msec, 1347 HNS3_TXD_OL3T_S, 1348 HNS3_OL3T_IPV4_CSUM); 1349 else 1350 hns3_set_field(*ol_type_vlan_len_msec, 1351 HNS3_TXD_OL3T_S, 1352 HNS3_OL3T_IPV4_NO_CSUM); 1353 } else if (skb->protocol == htons(ETH_P_IPV6)) { 1354 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S, 1355 HNS3_OL3T_IPV6); 1356 } 1357 1358 if (ol4_proto == IPPROTO_UDP) 1359 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, 1360 HNS3_TUN_MAC_IN_UDP); 1361 else if (ol4_proto == IPPROTO_GRE) 1362 hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S, 1363 HNS3_TUN_NVGRE); 1364 } 1365 1366 static void hns3_set_l3_type(struct sk_buff *skb, union l3_hdr_info l3, 1367 u32 *type_cs_vlan_tso) 1368 { 1369 if (l3.v4->version == 4) { 1370 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, 1371 HNS3_L3T_IPV4); 1372 1373 /* the stack computes the IP header already, the only time we 1374 * need the hardware to recompute it is in the case of TSO. 1375 */ 1376 if (skb_is_gso(skb)) 1377 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1); 1378 } else if (l3.v6->version == 6) { 1379 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S, 1380 HNS3_L3T_IPV6); 1381 } 1382 } 1383 1384 static int hns3_set_l4_csum_length(struct sk_buff *skb, union l4_hdr_info l4, 1385 u32 l4_proto, u32 *type_cs_vlan_tso) 1386 { 1387 /* compute inner(/normal) L4 header size, defined in 4 Bytes */ 1388 switch (l4_proto) { 1389 case IPPROTO_TCP: 1390 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); 1391 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, 1392 HNS3_L4T_TCP); 1393 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, 1394 l4.tcp->doff); 1395 break; 1396 case IPPROTO_UDP: 1397 if (hns3_tunnel_csum_bug(skb)) { 1398 int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN); 1399 1400 return ret ? ret : skb_checksum_help(skb); 1401 } 1402 1403 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); 1404 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, 1405 HNS3_L4T_UDP); 1406 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, 1407 (sizeof(struct udphdr) >> 2)); 1408 break; 1409 case IPPROTO_SCTP: 1410 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1); 1411 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S, 1412 HNS3_L4T_SCTP); 1413 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S, 1414 (sizeof(struct sctphdr) >> 2)); 1415 break; 1416 default: 1417 /* drop the skb tunnel packet if hardware don't support, 1418 * because hardware can't calculate csum when TSO. 1419 */ 1420 if (skb_is_gso(skb)) 1421 return -EDOM; 1422 1423 /* the stack computes the IP header already, 1424 * driver calculate l4 checksum when not TSO. 1425 */ 1426 return skb_checksum_help(skb); 1427 } 1428 1429 return 0; 1430 } 1431 1432 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto, 1433 u8 il4_proto, u32 *type_cs_vlan_tso, 1434 u32 *ol_type_vlan_len_msec) 1435 { 1436 unsigned char *l2_hdr = skb->data; 1437 u32 l4_proto = ol4_proto; 1438 union l4_hdr_info l4; 1439 union l3_hdr_info l3; 1440 u32 l2_len, l3_len; 1441 1442 l4.hdr = skb_transport_header(skb); 1443 l3.hdr = skb_network_header(skb); 1444 1445 /* handle encapsulation skb */ 1446 if (skb->encapsulation) { 1447 /* If this is a not UDP/GRE encapsulation skb */ 1448 if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) { 1449 /* drop the skb tunnel packet if hardware don't support, 1450 * because hardware can't calculate csum when TSO. 1451 */ 1452 if (skb_is_gso(skb)) 1453 return -EDOM; 1454 1455 /* the stack computes the IP header already, 1456 * driver calculate l4 checksum when not TSO. 1457 */ 1458 return skb_checksum_help(skb); 1459 } 1460 1461 hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec); 1462 1463 /* switch to inner header */ 1464 l2_hdr = skb_inner_mac_header(skb); 1465 l3.hdr = skb_inner_network_header(skb); 1466 l4.hdr = skb_inner_transport_header(skb); 1467 l4_proto = il4_proto; 1468 } 1469 1470 hns3_set_l3_type(skb, l3, type_cs_vlan_tso); 1471 1472 /* compute inner(/normal) L2 header size, defined in 2 Bytes */ 1473 l2_len = l3.hdr - l2_hdr; 1474 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1); 1475 1476 /* compute inner(/normal) L3 header size, defined in 4 Bytes */ 1477 l3_len = l4.hdr - l3.hdr; 1478 hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2); 1479 1480 return hns3_set_l4_csum_length(skb, l4, l4_proto, type_cs_vlan_tso); 1481 } 1482 1483 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring, 1484 struct sk_buff *skb) 1485 { 1486 struct hnae3_handle *handle = tx_ring->tqp->handle; 1487 struct hnae3_ae_dev *ae_dev; 1488 struct vlan_ethhdr *vhdr; 1489 int rc; 1490 1491 if (!(skb->protocol == htons(ETH_P_8021Q) || 1492 skb_vlan_tag_present(skb))) 1493 return 0; 1494 1495 /* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert 1496 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it 1497 * will cause RAS error. 1498 */ 1499 ae_dev = pci_get_drvdata(handle->pdev); 1500 if (unlikely(skb_vlan_tagged_multi(skb) && 1501 ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 && 1502 handle->port_base_vlan_state == 1503 HNAE3_PORT_BASE_VLAN_ENABLE)) 1504 return -EINVAL; 1505 1506 if (skb->protocol == htons(ETH_P_8021Q) && 1507 !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) { 1508 /* When HW VLAN acceleration is turned off, and the stack 1509 * sets the protocol to 802.1q, the driver just need to 1510 * set the protocol to the encapsulated ethertype. 1511 */ 1512 skb->protocol = vlan_get_protocol(skb); 1513 return 0; 1514 } 1515 1516 if (skb_vlan_tag_present(skb)) { 1517 /* Based on hw strategy, use out_vtag in two layer tag case, 1518 * and use inner_vtag in one tag case. 1519 */ 1520 if (skb->protocol == htons(ETH_P_8021Q) && 1521 handle->port_base_vlan_state == 1522 HNAE3_PORT_BASE_VLAN_DISABLE) 1523 rc = HNS3_OUTER_VLAN_TAG; 1524 else 1525 rc = HNS3_INNER_VLAN_TAG; 1526 1527 skb->protocol = vlan_get_protocol(skb); 1528 return rc; 1529 } 1530 1531 rc = skb_cow_head(skb, 0); 1532 if (unlikely(rc < 0)) 1533 return rc; 1534 1535 vhdr = (struct vlan_ethhdr *)skb->data; 1536 vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT) 1537 & VLAN_PRIO_MASK); 1538 1539 skb->protocol = vlan_get_protocol(skb); 1540 return 0; 1541 } 1542 1543 /* check if the hardware is capable of checksum offloading */ 1544 static bool hns3_check_hw_tx_csum(struct sk_buff *skb) 1545 { 1546 struct hns3_nic_priv *priv = netdev_priv(skb->dev); 1547 1548 /* Kindly note, due to backward compatibility of the TX descriptor, 1549 * HW checksum of the non-IP packets and GSO packets is handled at 1550 * different place in the following code 1551 */ 1552 if (skb_csum_is_sctp(skb) || skb_is_gso(skb) || 1553 !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state)) 1554 return false; 1555 1556 return true; 1557 } 1558 1559 struct hns3_desc_param { 1560 u32 paylen_ol4cs; 1561 u32 ol_type_vlan_len_msec; 1562 u32 type_cs_vlan_tso; 1563 u16 mss_hw_csum; 1564 u16 inner_vtag; 1565 u16 out_vtag; 1566 }; 1567 1568 static void hns3_init_desc_data(struct sk_buff *skb, struct hns3_desc_param *pa) 1569 { 1570 pa->paylen_ol4cs = skb->len; 1571 pa->ol_type_vlan_len_msec = 0; 1572 pa->type_cs_vlan_tso = 0; 1573 pa->mss_hw_csum = 0; 1574 pa->inner_vtag = 0; 1575 pa->out_vtag = 0; 1576 } 1577 1578 static int hns3_handle_vlan_info(struct hns3_enet_ring *ring, 1579 struct sk_buff *skb, 1580 struct hns3_desc_param *param) 1581 { 1582 int ret; 1583 1584 ret = hns3_handle_vtags(ring, skb); 1585 if (unlikely(ret < 0)) { 1586 hns3_ring_stats_update(ring, tx_vlan_err); 1587 return ret; 1588 } else if (ret == HNS3_INNER_VLAN_TAG) { 1589 param->inner_vtag = skb_vlan_tag_get(skb); 1590 param->inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & 1591 VLAN_PRIO_MASK; 1592 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1); 1593 } else if (ret == HNS3_OUTER_VLAN_TAG) { 1594 param->out_vtag = skb_vlan_tag_get(skb); 1595 param->out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) & 1596 VLAN_PRIO_MASK; 1597 hns3_set_field(param->ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B, 1598 1); 1599 } 1600 return 0; 1601 } 1602 1603 static int hns3_handle_csum_partial(struct hns3_enet_ring *ring, 1604 struct sk_buff *skb, 1605 struct hns3_desc_cb *desc_cb, 1606 struct hns3_desc_param *param) 1607 { 1608 u8 ol4_proto, il4_proto; 1609 int ret; 1610 1611 if (hns3_check_hw_tx_csum(skb)) { 1612 /* set checksum start and offset, defined in 2 Bytes */ 1613 hns3_set_field(param->type_cs_vlan_tso, HNS3_TXD_CSUM_START_S, 1614 skb_checksum_start_offset(skb) >> 1); 1615 hns3_set_field(param->ol_type_vlan_len_msec, 1616 HNS3_TXD_CSUM_OFFSET_S, 1617 skb->csum_offset >> 1); 1618 param->mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B); 1619 return 0; 1620 } 1621 1622 skb_reset_mac_len(skb); 1623 1624 ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto); 1625 if (unlikely(ret < 0)) { 1626 hns3_ring_stats_update(ring, tx_l4_proto_err); 1627 return ret; 1628 } 1629 1630 ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto, 1631 ¶m->type_cs_vlan_tso, 1632 ¶m->ol_type_vlan_len_msec); 1633 if (unlikely(ret < 0)) { 1634 hns3_ring_stats_update(ring, tx_l2l3l4_err); 1635 return ret; 1636 } 1637 1638 ret = hns3_set_tso(skb, ¶m->paylen_ol4cs, ¶m->mss_hw_csum, 1639 ¶m->type_cs_vlan_tso, &desc_cb->send_bytes); 1640 if (unlikely(ret < 0)) { 1641 hns3_ring_stats_update(ring, tx_tso_err); 1642 return ret; 1643 } 1644 return 0; 1645 } 1646 1647 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring, 1648 struct sk_buff *skb, struct hns3_desc *desc, 1649 struct hns3_desc_cb *desc_cb) 1650 { 1651 struct hns3_desc_param param; 1652 int ret; 1653 1654 hns3_init_desc_data(skb, ¶m); 1655 ret = hns3_handle_vlan_info(ring, skb, ¶m); 1656 if (unlikely(ret < 0)) 1657 return ret; 1658 1659 desc_cb->send_bytes = skb->len; 1660 1661 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1662 ret = hns3_handle_csum_partial(ring, skb, desc_cb, ¶m); 1663 if (ret) 1664 return ret; 1665 } 1666 1667 /* Set txbd */ 1668 desc->tx.ol_type_vlan_len_msec = 1669 cpu_to_le32(param.ol_type_vlan_len_msec); 1670 desc->tx.type_cs_vlan_tso_len = cpu_to_le32(param.type_cs_vlan_tso); 1671 desc->tx.paylen_ol4cs = cpu_to_le32(param.paylen_ol4cs); 1672 desc->tx.mss_hw_csum = cpu_to_le16(param.mss_hw_csum); 1673 desc->tx.vlan_tag = cpu_to_le16(param.inner_vtag); 1674 desc->tx.outer_vlan_tag = cpu_to_le16(param.out_vtag); 1675 1676 return 0; 1677 } 1678 1679 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma, 1680 unsigned int size) 1681 { 1682 #define HNS3_LIKELY_BD_NUM 1 1683 1684 struct hns3_desc *desc = &ring->desc[ring->next_to_use]; 1685 unsigned int frag_buf_num; 1686 int k, sizeoflast; 1687 1688 if (likely(size <= HNS3_MAX_BD_SIZE)) { 1689 desc->addr = cpu_to_le64(dma); 1690 desc->tx.send_size = cpu_to_le16(size); 1691 desc->tx.bdtp_fe_sc_vld_ra_ri = 1692 cpu_to_le16(BIT(HNS3_TXD_VLD_B)); 1693 1694 trace_hns3_tx_desc(ring, ring->next_to_use); 1695 ring_ptr_move_fw(ring, next_to_use); 1696 return HNS3_LIKELY_BD_NUM; 1697 } 1698 1699 frag_buf_num = hns3_tx_bd_count(size); 1700 sizeoflast = size % HNS3_MAX_BD_SIZE; 1701 sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE; 1702 1703 /* When frag size is bigger than hardware limit, split this frag */ 1704 for (k = 0; k < frag_buf_num; k++) { 1705 /* now, fill the descriptor */ 1706 desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k); 1707 desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ? 1708 (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE); 1709 desc->tx.bdtp_fe_sc_vld_ra_ri = 1710 cpu_to_le16(BIT(HNS3_TXD_VLD_B)); 1711 1712 trace_hns3_tx_desc(ring, ring->next_to_use); 1713 /* move ring pointer to next */ 1714 ring_ptr_move_fw(ring, next_to_use); 1715 1716 desc = &ring->desc[ring->next_to_use]; 1717 } 1718 1719 return frag_buf_num; 1720 } 1721 1722 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv, 1723 unsigned int type) 1724 { 1725 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 1726 struct device *dev = ring_to_dev(ring); 1727 unsigned int size; 1728 dma_addr_t dma; 1729 1730 if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) { 1731 struct sk_buff *skb = (struct sk_buff *)priv; 1732 1733 size = skb_headlen(skb); 1734 if (!size) 1735 return 0; 1736 1737 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 1738 } else if (type & DESC_TYPE_BOUNCE_HEAD) { 1739 /* Head data has been filled in hns3_handle_tx_bounce(), 1740 * just return 0 here. 1741 */ 1742 return 0; 1743 } else { 1744 skb_frag_t *frag = (skb_frag_t *)priv; 1745 1746 size = skb_frag_size(frag); 1747 if (!size) 1748 return 0; 1749 1750 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 1751 } 1752 1753 if (unlikely(dma_mapping_error(dev, dma))) { 1754 hns3_ring_stats_update(ring, sw_err_cnt); 1755 return -ENOMEM; 1756 } 1757 1758 desc_cb->priv = priv; 1759 desc_cb->length = size; 1760 desc_cb->dma = dma; 1761 desc_cb->type = type; 1762 1763 return hns3_fill_desc(ring, dma, size); 1764 } 1765 1766 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size, 1767 unsigned int bd_num) 1768 { 1769 unsigned int size; 1770 int i; 1771 1772 size = skb_headlen(skb); 1773 while (size > HNS3_MAX_BD_SIZE) { 1774 bd_size[bd_num++] = HNS3_MAX_BD_SIZE; 1775 size -= HNS3_MAX_BD_SIZE; 1776 1777 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1778 return bd_num; 1779 } 1780 1781 if (size) { 1782 bd_size[bd_num++] = size; 1783 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1784 return bd_num; 1785 } 1786 1787 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1788 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 1789 size = skb_frag_size(frag); 1790 if (!size) 1791 continue; 1792 1793 while (size > HNS3_MAX_BD_SIZE) { 1794 bd_size[bd_num++] = HNS3_MAX_BD_SIZE; 1795 size -= HNS3_MAX_BD_SIZE; 1796 1797 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1798 return bd_num; 1799 } 1800 1801 bd_size[bd_num++] = size; 1802 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1803 return bd_num; 1804 } 1805 1806 return bd_num; 1807 } 1808 1809 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size, 1810 u8 max_non_tso_bd_num, unsigned int bd_num, 1811 unsigned int recursion_level) 1812 { 1813 #define HNS3_MAX_RECURSION_LEVEL 24 1814 1815 struct sk_buff *frag_skb; 1816 1817 /* If the total len is within the max bd limit */ 1818 if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level && 1819 !skb_has_frag_list(skb) && 1820 skb_shinfo(skb)->nr_frags < max_non_tso_bd_num)) 1821 return skb_shinfo(skb)->nr_frags + 1U; 1822 1823 if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL)) 1824 return UINT_MAX; 1825 1826 bd_num = hns3_skb_bd_num(skb, bd_size, bd_num); 1827 if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM) 1828 return bd_num; 1829 1830 skb_walk_frags(skb, frag_skb) { 1831 bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num, 1832 bd_num, recursion_level + 1); 1833 if (bd_num > HNS3_MAX_TSO_BD_NUM) 1834 return bd_num; 1835 } 1836 1837 return bd_num; 1838 } 1839 1840 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb) 1841 { 1842 if (!skb->encapsulation) 1843 return skb_tcp_all_headers(skb); 1844 1845 return skb_inner_tcp_all_headers(skb); 1846 } 1847 1848 /* HW need every continuous max_non_tso_bd_num buffer data to be larger 1849 * than MSS, we simplify it by ensuring skb_headlen + the first continuous 1850 * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss, 1851 * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger 1852 * than MSS except the last max_non_tso_bd_num - 1 frags. 1853 */ 1854 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size, 1855 unsigned int bd_num, u8 max_non_tso_bd_num) 1856 { 1857 unsigned int tot_len = 0; 1858 int i; 1859 1860 for (i = 0; i < max_non_tso_bd_num - 1U; i++) 1861 tot_len += bd_size[i]; 1862 1863 /* ensure the first max_non_tso_bd_num frags is greater than 1864 * mss + header 1865 */ 1866 if (tot_len + bd_size[max_non_tso_bd_num - 1U] < 1867 skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb)) 1868 return true; 1869 1870 /* ensure every continuous max_non_tso_bd_num - 1 buffer is greater 1871 * than mss except the last one. 1872 */ 1873 for (i = 0; i < bd_num - max_non_tso_bd_num; i++) { 1874 tot_len -= bd_size[i]; 1875 tot_len += bd_size[i + max_non_tso_bd_num - 1U]; 1876 1877 if (tot_len < skb_shinfo(skb)->gso_size) 1878 return true; 1879 } 1880 1881 return false; 1882 } 1883 1884 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size) 1885 { 1886 int i; 1887 1888 for (i = 0; i < MAX_SKB_FRAGS; i++) 1889 size[i] = skb_frag_size(&shinfo->frags[i]); 1890 } 1891 1892 static int hns3_skb_linearize(struct hns3_enet_ring *ring, 1893 struct sk_buff *skb, 1894 unsigned int bd_num) 1895 { 1896 /* 'bd_num == UINT_MAX' means the skb' fraglist has a 1897 * recursion level of over HNS3_MAX_RECURSION_LEVEL. 1898 */ 1899 if (bd_num == UINT_MAX) { 1900 hns3_ring_stats_update(ring, over_max_recursion); 1901 return -ENOMEM; 1902 } 1903 1904 /* The skb->len has exceeded the hw limitation, linearization 1905 * will not help. 1906 */ 1907 if (skb->len > HNS3_MAX_TSO_SIZE || 1908 (!skb_is_gso(skb) && skb->len > HNS3_MAX_NON_TSO_SIZE)) { 1909 hns3_ring_stats_update(ring, hw_limitation); 1910 return -ENOMEM; 1911 } 1912 1913 if (__skb_linearize(skb)) { 1914 hns3_ring_stats_update(ring, sw_err_cnt); 1915 return -ENOMEM; 1916 } 1917 1918 return 0; 1919 } 1920 1921 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring, 1922 struct net_device *netdev, 1923 struct sk_buff *skb) 1924 { 1925 struct hns3_nic_priv *priv = netdev_priv(netdev); 1926 u8 max_non_tso_bd_num = priv->max_non_tso_bd_num; 1927 unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U]; 1928 unsigned int bd_num; 1929 1930 bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0); 1931 if (unlikely(bd_num > max_non_tso_bd_num)) { 1932 if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) && 1933 !hns3_skb_need_linearized(skb, bd_size, bd_num, 1934 max_non_tso_bd_num)) { 1935 trace_hns3_over_max_bd(skb); 1936 goto out; 1937 } 1938 1939 if (hns3_skb_linearize(ring, skb, bd_num)) 1940 return -ENOMEM; 1941 1942 bd_num = hns3_tx_bd_count(skb->len); 1943 1944 hns3_ring_stats_update(ring, tx_copy); 1945 } 1946 1947 out: 1948 if (likely(ring_space(ring) >= bd_num)) 1949 return bd_num; 1950 1951 netif_stop_subqueue(netdev, ring->queue_index); 1952 smp_mb(); /* Memory barrier before checking ring_space */ 1953 1954 /* Start queue in case hns3_clean_tx_ring has just made room 1955 * available and has not seen the queue stopped state performed 1956 * by netif_stop_subqueue above. 1957 */ 1958 if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) && 1959 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { 1960 netif_start_subqueue(netdev, ring->queue_index); 1961 return bd_num; 1962 } 1963 1964 hns3_ring_stats_update(ring, tx_busy); 1965 1966 return -EBUSY; 1967 } 1968 1969 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig) 1970 { 1971 struct device *dev = ring_to_dev(ring); 1972 unsigned int i; 1973 1974 for (i = 0; i < ring->desc_num; i++) { 1975 struct hns3_desc *desc = &ring->desc[ring->next_to_use]; 1976 struct hns3_desc_cb *desc_cb; 1977 1978 memset(desc, 0, sizeof(*desc)); 1979 1980 /* check if this is where we started */ 1981 if (ring->next_to_use == next_to_use_orig) 1982 break; 1983 1984 /* rollback one */ 1985 ring_ptr_move_bw(ring, next_to_use); 1986 1987 desc_cb = &ring->desc_cb[ring->next_to_use]; 1988 1989 if (!desc_cb->dma) 1990 continue; 1991 1992 /* unmap the descriptor dma address */ 1993 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB)) 1994 dma_unmap_single(dev, desc_cb->dma, desc_cb->length, 1995 DMA_TO_DEVICE); 1996 else if (desc_cb->type & 1997 (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) 1998 hns3_tx_spare_rollback(ring, desc_cb->length); 1999 else if (desc_cb->length) 2000 dma_unmap_page(dev, desc_cb->dma, desc_cb->length, 2001 DMA_TO_DEVICE); 2002 2003 desc_cb->length = 0; 2004 desc_cb->dma = 0; 2005 desc_cb->type = DESC_TYPE_UNKNOWN; 2006 } 2007 } 2008 2009 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring, 2010 struct sk_buff *skb, unsigned int type) 2011 { 2012 struct sk_buff *frag_skb; 2013 int i, ret, bd_num = 0; 2014 2015 ret = hns3_map_and_fill_desc(ring, skb, type); 2016 if (unlikely(ret < 0)) 2017 return ret; 2018 2019 bd_num += ret; 2020 2021 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2022 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2023 2024 ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE); 2025 if (unlikely(ret < 0)) 2026 return ret; 2027 2028 bd_num += ret; 2029 } 2030 2031 skb_walk_frags(skb, frag_skb) { 2032 ret = hns3_fill_skb_to_desc(ring, frag_skb, 2033 DESC_TYPE_FRAGLIST_SKB); 2034 if (unlikely(ret < 0)) 2035 return ret; 2036 2037 bd_num += ret; 2038 } 2039 2040 return bd_num; 2041 } 2042 2043 static void hns3_tx_push_bd(struct hns3_enet_ring *ring, int num) 2044 { 2045 #define HNS3_BYTES_PER_64BIT 8 2046 2047 struct hns3_desc desc[HNS3_MAX_PUSH_BD_NUM] = {}; 2048 int offset = 0; 2049 2050 /* make sure everything is visible to device before 2051 * excuting tx push or updating doorbell 2052 */ 2053 dma_wmb(); 2054 2055 do { 2056 int idx = (ring->next_to_use - num + ring->desc_num) % 2057 ring->desc_num; 2058 2059 u64_stats_update_begin(&ring->syncp); 2060 ring->stats.tx_push++; 2061 u64_stats_update_end(&ring->syncp); 2062 memcpy(&desc[offset], &ring->desc[idx], 2063 sizeof(struct hns3_desc)); 2064 offset++; 2065 } while (--num); 2066 2067 __iowrite64_copy(ring->tqp->mem_base, desc, 2068 (sizeof(struct hns3_desc) * HNS3_MAX_PUSH_BD_NUM) / 2069 HNS3_BYTES_PER_64BIT); 2070 2071 io_stop_wc(); 2072 } 2073 2074 static void hns3_tx_mem_doorbell(struct hns3_enet_ring *ring) 2075 { 2076 #define HNS3_MEM_DOORBELL_OFFSET 64 2077 2078 __le64 bd_num = cpu_to_le64((u64)ring->pending_buf); 2079 2080 /* make sure everything is visible to device before 2081 * excuting tx push or updating doorbell 2082 */ 2083 dma_wmb(); 2084 2085 __iowrite64_copy(ring->tqp->mem_base + HNS3_MEM_DOORBELL_OFFSET, 2086 &bd_num, 1); 2087 u64_stats_update_begin(&ring->syncp); 2088 ring->stats.tx_mem_doorbell += ring->pending_buf; 2089 u64_stats_update_end(&ring->syncp); 2090 2091 io_stop_wc(); 2092 } 2093 2094 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num, 2095 bool doorbell) 2096 { 2097 struct net_device *netdev = ring_to_netdev(ring); 2098 struct hns3_nic_priv *priv = netdev_priv(netdev); 2099 2100 /* when tx push is enabled, the packet whose number of BD below 2101 * HNS3_MAX_PUSH_BD_NUM can be pushed directly. 2102 */ 2103 if (test_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state) && num && 2104 !ring->pending_buf && num <= HNS3_MAX_PUSH_BD_NUM && doorbell) { 2105 hns3_tx_push_bd(ring, num); 2106 WRITE_ONCE(ring->last_to_use, ring->next_to_use); 2107 return; 2108 } 2109 2110 ring->pending_buf += num; 2111 2112 if (!doorbell) { 2113 hns3_ring_stats_update(ring, tx_more); 2114 return; 2115 } 2116 2117 if (ring->tqp->mem_base) 2118 hns3_tx_mem_doorbell(ring); 2119 else 2120 writel(ring->pending_buf, 2121 ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG); 2122 2123 ring->pending_buf = 0; 2124 WRITE_ONCE(ring->last_to_use, ring->next_to_use); 2125 } 2126 2127 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb, 2128 struct hns3_desc *desc) 2129 { 2130 struct hnae3_handle *h = hns3_get_handle(netdev); 2131 2132 if (!(h->ae_algo->ops->set_tx_hwts_info && 2133 h->ae_algo->ops->set_tx_hwts_info(h, skb))) 2134 return; 2135 2136 desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B)); 2137 } 2138 2139 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring, 2140 struct sk_buff *skb) 2141 { 2142 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 2143 unsigned int type = DESC_TYPE_BOUNCE_HEAD; 2144 unsigned int size = skb_headlen(skb); 2145 dma_addr_t dma; 2146 int bd_num = 0; 2147 u32 cb_len; 2148 void *buf; 2149 int ret; 2150 2151 if (skb->len <= ring->tx_copybreak) { 2152 size = skb->len; 2153 type = DESC_TYPE_BOUNCE_ALL; 2154 } 2155 2156 /* hns3_can_use_tx_bounce() is called to ensure the below 2157 * function can always return the tx buffer. 2158 */ 2159 buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len); 2160 2161 ret = skb_copy_bits(skb, 0, buf, size); 2162 if (unlikely(ret < 0)) { 2163 hns3_tx_spare_rollback(ring, cb_len); 2164 hns3_ring_stats_update(ring, copy_bits_err); 2165 return ret; 2166 } 2167 2168 desc_cb->priv = skb; 2169 desc_cb->length = cb_len; 2170 desc_cb->dma = dma; 2171 desc_cb->type = type; 2172 2173 bd_num += hns3_fill_desc(ring, dma, size); 2174 2175 if (type == DESC_TYPE_BOUNCE_HEAD) { 2176 ret = hns3_fill_skb_to_desc(ring, skb, 2177 DESC_TYPE_BOUNCE_HEAD); 2178 if (unlikely(ret < 0)) 2179 return ret; 2180 2181 bd_num += ret; 2182 } 2183 2184 dma_sync_single_for_device(ring_to_dev(ring), dma, size, 2185 DMA_TO_DEVICE); 2186 2187 hns3_ring_stats_update(ring, tx_bounce); 2188 2189 return bd_num; 2190 } 2191 2192 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring, 2193 struct sk_buff *skb) 2194 { 2195 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 2196 u32 nfrag = skb_shinfo(skb)->nr_frags + 1; 2197 struct sg_table *sgt; 2198 int i, bd_num = 0; 2199 dma_addr_t dma; 2200 u32 cb_len; 2201 int nents; 2202 2203 if (skb_has_frag_list(skb)) 2204 nfrag = HNS3_MAX_TSO_BD_NUM; 2205 2206 /* hns3_can_use_tx_sgl() is called to ensure the below 2207 * function can always return the tx buffer. 2208 */ 2209 sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag), 2210 &dma, &cb_len); 2211 2212 /* scatterlist follows by the sg table */ 2213 sgt->sgl = (struct scatterlist *)(sgt + 1); 2214 sg_init_table(sgt->sgl, nfrag); 2215 nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len); 2216 if (unlikely(nents < 0)) { 2217 hns3_tx_spare_rollback(ring, cb_len); 2218 hns3_ring_stats_update(ring, skb2sgl_err); 2219 return -ENOMEM; 2220 } 2221 2222 sgt->orig_nents = nents; 2223 sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents, 2224 DMA_TO_DEVICE); 2225 if (unlikely(!sgt->nents)) { 2226 hns3_tx_spare_rollback(ring, cb_len); 2227 hns3_ring_stats_update(ring, map_sg_err); 2228 return -ENOMEM; 2229 } 2230 2231 desc_cb->priv = skb; 2232 desc_cb->length = cb_len; 2233 desc_cb->dma = dma; 2234 desc_cb->type = DESC_TYPE_SGL_SKB; 2235 2236 for (i = 0; i < sgt->nents; i++) 2237 bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i), 2238 sg_dma_len(sgt->sgl + i)); 2239 hns3_ring_stats_update(ring, tx_sgl); 2240 2241 return bd_num; 2242 } 2243 2244 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring, 2245 struct sk_buff *skb) 2246 { 2247 u32 space; 2248 2249 if (!ring->tx_spare) 2250 goto out; 2251 2252 space = hns3_tx_spare_space(ring); 2253 2254 if (hns3_can_use_tx_sgl(ring, skb, space)) 2255 return hns3_handle_tx_sgl(ring, skb); 2256 2257 if (hns3_can_use_tx_bounce(ring, skb, space)) 2258 return hns3_handle_tx_bounce(ring, skb); 2259 2260 out: 2261 return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB); 2262 } 2263 2264 static int hns3_handle_skb_desc(struct hns3_enet_ring *ring, 2265 struct sk_buff *skb, 2266 struct hns3_desc_cb *desc_cb, 2267 int next_to_use_head) 2268 { 2269 int ret; 2270 2271 ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use], 2272 desc_cb); 2273 if (unlikely(ret < 0)) 2274 goto fill_err; 2275 2276 /* 'ret < 0' means filling error, 'ret == 0' means skb->len is 2277 * zero, which is unlikely, and 'ret > 0' means how many tx desc 2278 * need to be notified to the hw. 2279 */ 2280 ret = hns3_handle_desc_filling(ring, skb); 2281 if (likely(ret > 0)) 2282 return ret; 2283 2284 fill_err: 2285 hns3_clear_desc(ring, next_to_use_head); 2286 return ret; 2287 } 2288 2289 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev) 2290 { 2291 struct hns3_nic_priv *priv = netdev_priv(netdev); 2292 struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping]; 2293 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 2294 struct netdev_queue *dev_queue; 2295 int pre_ntu, ret; 2296 bool doorbell; 2297 2298 /* Hardware can only handle short frames above 32 bytes */ 2299 if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) { 2300 hns3_tx_doorbell(ring, 0, !netdev_xmit_more()); 2301 2302 hns3_ring_stats_update(ring, sw_err_cnt); 2303 2304 return NETDEV_TX_OK; 2305 } 2306 2307 /* Prefetch the data used later */ 2308 prefetch(skb->data); 2309 2310 ret = hns3_nic_maybe_stop_tx(ring, netdev, skb); 2311 if (unlikely(ret <= 0)) { 2312 if (ret == -EBUSY) { 2313 hns3_tx_doorbell(ring, 0, true); 2314 return NETDEV_TX_BUSY; 2315 } 2316 2317 hns3_rl_err(netdev, "xmit error: %d!\n", ret); 2318 goto out_err_tx_ok; 2319 } 2320 2321 ret = hns3_handle_skb_desc(ring, skb, desc_cb, ring->next_to_use); 2322 if (unlikely(ret <= 0)) 2323 goto out_err_tx_ok; 2324 2325 pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) : 2326 (ring->desc_num - 1); 2327 2328 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) 2329 hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]); 2330 2331 ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |= 2332 cpu_to_le16(BIT(HNS3_TXD_FE_B)); 2333 trace_hns3_tx_desc(ring, pre_ntu); 2334 2335 skb_tx_timestamp(skb); 2336 2337 /* Complete translate all packets */ 2338 dev_queue = netdev_get_tx_queue(netdev, ring->queue_index); 2339 doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes, 2340 netdev_xmit_more()); 2341 hns3_tx_doorbell(ring, ret, doorbell); 2342 2343 return NETDEV_TX_OK; 2344 2345 out_err_tx_ok: 2346 dev_kfree_skb_any(skb); 2347 hns3_tx_doorbell(ring, 0, !netdev_xmit_more()); 2348 return NETDEV_TX_OK; 2349 } 2350 2351 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p) 2352 { 2353 char format_mac_addr_perm[HNAE3_FORMAT_MAC_ADDR_LEN]; 2354 char format_mac_addr_sa[HNAE3_FORMAT_MAC_ADDR_LEN]; 2355 struct hnae3_handle *h = hns3_get_handle(netdev); 2356 struct sockaddr *mac_addr = p; 2357 int ret; 2358 2359 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 2360 return -EADDRNOTAVAIL; 2361 2362 if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) { 2363 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data); 2364 netdev_info(netdev, "already using mac address %s\n", 2365 format_mac_addr_sa); 2366 return 0; 2367 } 2368 2369 /* For VF device, if there is a perm_addr, then the user will not 2370 * be allowed to change the address. 2371 */ 2372 if (!hns3_is_phys_func(h->pdev) && 2373 !is_zero_ether_addr(netdev->perm_addr)) { 2374 hnae3_format_mac_addr(format_mac_addr_perm, netdev->perm_addr); 2375 hnae3_format_mac_addr(format_mac_addr_sa, mac_addr->sa_data); 2376 netdev_err(netdev, "has permanent MAC %s, user MAC %s not allow\n", 2377 format_mac_addr_perm, format_mac_addr_sa); 2378 return -EPERM; 2379 } 2380 2381 ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false); 2382 if (ret) { 2383 netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret); 2384 return ret; 2385 } 2386 2387 eth_hw_addr_set(netdev, mac_addr->sa_data); 2388 2389 return 0; 2390 } 2391 2392 static int hns3_nic_do_ioctl(struct net_device *netdev, 2393 struct ifreq *ifr, int cmd) 2394 { 2395 struct hnae3_handle *h = hns3_get_handle(netdev); 2396 2397 if (!netif_running(netdev)) 2398 return -EINVAL; 2399 2400 if (!h->ae_algo->ops->do_ioctl) 2401 return -EOPNOTSUPP; 2402 2403 return h->ae_algo->ops->do_ioctl(h, ifr, cmd); 2404 } 2405 2406 static int hns3_nic_set_features(struct net_device *netdev, 2407 netdev_features_t features) 2408 { 2409 netdev_features_t changed = netdev->features ^ features; 2410 struct hns3_nic_priv *priv = netdev_priv(netdev); 2411 struct hnae3_handle *h = priv->ae_handle; 2412 bool enable; 2413 int ret; 2414 2415 if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) { 2416 enable = !!(features & NETIF_F_GRO_HW); 2417 ret = h->ae_algo->ops->set_gro_en(h, enable); 2418 if (ret) 2419 return ret; 2420 } 2421 2422 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && 2423 h->ae_algo->ops->enable_hw_strip_rxvtag) { 2424 enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX); 2425 ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable); 2426 if (ret) 2427 return ret; 2428 } 2429 2430 if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) { 2431 enable = !!(features & NETIF_F_NTUPLE); 2432 h->ae_algo->ops->enable_fd(h, enable); 2433 } 2434 2435 if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) && 2436 h->ae_algo->ops->cls_flower_active(h)) { 2437 netdev_err(netdev, 2438 "there are offloaded TC filters active, cannot disable HW TC offload"); 2439 return -EINVAL; 2440 } 2441 2442 if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) && 2443 h->ae_algo->ops->enable_vlan_filter) { 2444 enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER); 2445 ret = h->ae_algo->ops->enable_vlan_filter(h, enable); 2446 if (ret) 2447 return ret; 2448 } 2449 2450 netdev->features = features; 2451 return 0; 2452 } 2453 2454 static netdev_features_t hns3_features_check(struct sk_buff *skb, 2455 struct net_device *dev, 2456 netdev_features_t features) 2457 { 2458 #define HNS3_MAX_HDR_LEN 480U 2459 #define HNS3_MAX_L4_HDR_LEN 60U 2460 2461 size_t len; 2462 2463 if (skb->ip_summed != CHECKSUM_PARTIAL) 2464 return features; 2465 2466 if (skb->encapsulation) 2467 len = skb_inner_transport_header(skb) - skb->data; 2468 else 2469 len = skb_transport_header(skb) - skb->data; 2470 2471 /* Assume L4 is 60 byte as TCP is the only protocol with a 2472 * a flexible value, and it's max len is 60 bytes. 2473 */ 2474 len += HNS3_MAX_L4_HDR_LEN; 2475 2476 /* Hardware only supports checksum on the skb with a max header 2477 * len of 480 bytes. 2478 */ 2479 if (len > HNS3_MAX_HDR_LEN) 2480 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2481 2482 return features; 2483 } 2484 2485 static void hns3_fetch_stats(struct rtnl_link_stats64 *stats, 2486 struct hns3_enet_ring *ring, bool is_tx) 2487 { 2488 unsigned int start; 2489 2490 do { 2491 start = u64_stats_fetch_begin_irq(&ring->syncp); 2492 if (is_tx) { 2493 stats->tx_bytes += ring->stats.tx_bytes; 2494 stats->tx_packets += ring->stats.tx_pkts; 2495 stats->tx_dropped += ring->stats.sw_err_cnt; 2496 stats->tx_dropped += ring->stats.tx_vlan_err; 2497 stats->tx_dropped += ring->stats.tx_l4_proto_err; 2498 stats->tx_dropped += ring->stats.tx_l2l3l4_err; 2499 stats->tx_dropped += ring->stats.tx_tso_err; 2500 stats->tx_dropped += ring->stats.over_max_recursion; 2501 stats->tx_dropped += ring->stats.hw_limitation; 2502 stats->tx_dropped += ring->stats.copy_bits_err; 2503 stats->tx_dropped += ring->stats.skb2sgl_err; 2504 stats->tx_dropped += ring->stats.map_sg_err; 2505 stats->tx_errors += ring->stats.sw_err_cnt; 2506 stats->tx_errors += ring->stats.tx_vlan_err; 2507 stats->tx_errors += ring->stats.tx_l4_proto_err; 2508 stats->tx_errors += ring->stats.tx_l2l3l4_err; 2509 stats->tx_errors += ring->stats.tx_tso_err; 2510 stats->tx_errors += ring->stats.over_max_recursion; 2511 stats->tx_errors += ring->stats.hw_limitation; 2512 stats->tx_errors += ring->stats.copy_bits_err; 2513 stats->tx_errors += ring->stats.skb2sgl_err; 2514 stats->tx_errors += ring->stats.map_sg_err; 2515 } else { 2516 stats->rx_bytes += ring->stats.rx_bytes; 2517 stats->rx_packets += ring->stats.rx_pkts; 2518 stats->rx_dropped += ring->stats.l2_err; 2519 stats->rx_errors += ring->stats.l2_err; 2520 stats->rx_errors += ring->stats.l3l4_csum_err; 2521 stats->rx_crc_errors += ring->stats.l2_err; 2522 stats->multicast += ring->stats.rx_multicast; 2523 stats->rx_length_errors += ring->stats.err_pkt_len; 2524 } 2525 } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); 2526 } 2527 2528 static void hns3_nic_get_stats64(struct net_device *netdev, 2529 struct rtnl_link_stats64 *stats) 2530 { 2531 struct hns3_nic_priv *priv = netdev_priv(netdev); 2532 int queue_num = priv->ae_handle->kinfo.num_tqps; 2533 struct hnae3_handle *handle = priv->ae_handle; 2534 struct rtnl_link_stats64 ring_total_stats; 2535 struct hns3_enet_ring *ring; 2536 unsigned int idx; 2537 2538 if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) 2539 return; 2540 2541 handle->ae_algo->ops->update_stats(handle, &netdev->stats); 2542 2543 memset(&ring_total_stats, 0, sizeof(ring_total_stats)); 2544 for (idx = 0; idx < queue_num; idx++) { 2545 /* fetch the tx stats */ 2546 ring = &priv->ring[idx]; 2547 hns3_fetch_stats(&ring_total_stats, ring, true); 2548 2549 /* fetch the rx stats */ 2550 ring = &priv->ring[idx + queue_num]; 2551 hns3_fetch_stats(&ring_total_stats, ring, false); 2552 } 2553 2554 stats->tx_bytes = ring_total_stats.tx_bytes; 2555 stats->tx_packets = ring_total_stats.tx_packets; 2556 stats->rx_bytes = ring_total_stats.rx_bytes; 2557 stats->rx_packets = ring_total_stats.rx_packets; 2558 2559 stats->rx_errors = ring_total_stats.rx_errors; 2560 stats->multicast = ring_total_stats.multicast; 2561 stats->rx_length_errors = ring_total_stats.rx_length_errors; 2562 stats->rx_crc_errors = ring_total_stats.rx_crc_errors; 2563 stats->rx_missed_errors = netdev->stats.rx_missed_errors; 2564 2565 stats->tx_errors = ring_total_stats.tx_errors; 2566 stats->rx_dropped = ring_total_stats.rx_dropped; 2567 stats->tx_dropped = ring_total_stats.tx_dropped; 2568 stats->collisions = netdev->stats.collisions; 2569 stats->rx_over_errors = netdev->stats.rx_over_errors; 2570 stats->rx_frame_errors = netdev->stats.rx_frame_errors; 2571 stats->rx_fifo_errors = netdev->stats.rx_fifo_errors; 2572 stats->tx_aborted_errors = netdev->stats.tx_aborted_errors; 2573 stats->tx_carrier_errors = netdev->stats.tx_carrier_errors; 2574 stats->tx_fifo_errors = netdev->stats.tx_fifo_errors; 2575 stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors; 2576 stats->tx_window_errors = netdev->stats.tx_window_errors; 2577 stats->rx_compressed = netdev->stats.rx_compressed; 2578 stats->tx_compressed = netdev->stats.tx_compressed; 2579 } 2580 2581 static int hns3_setup_tc(struct net_device *netdev, void *type_data) 2582 { 2583 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data; 2584 struct hnae3_knic_private_info *kinfo; 2585 u8 tc = mqprio_qopt->qopt.num_tc; 2586 u16 mode = mqprio_qopt->mode; 2587 u8 hw = mqprio_qopt->qopt.hw; 2588 struct hnae3_handle *h; 2589 2590 if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS && 2591 mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0))) 2592 return -EOPNOTSUPP; 2593 2594 if (tc > HNAE3_MAX_TC) 2595 return -EINVAL; 2596 2597 if (!netdev) 2598 return -EINVAL; 2599 2600 h = hns3_get_handle(netdev); 2601 kinfo = &h->kinfo; 2602 2603 netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc); 2604 2605 return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ? 2606 kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP; 2607 } 2608 2609 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv, 2610 struct flow_cls_offload *flow) 2611 { 2612 int tc = tc_classid_to_hwtc(priv->netdev, flow->classid); 2613 struct hnae3_handle *h = hns3_get_handle(priv->netdev); 2614 2615 switch (flow->command) { 2616 case FLOW_CLS_REPLACE: 2617 if (h->ae_algo->ops->add_cls_flower) 2618 return h->ae_algo->ops->add_cls_flower(h, flow, tc); 2619 break; 2620 case FLOW_CLS_DESTROY: 2621 if (h->ae_algo->ops->del_cls_flower) 2622 return h->ae_algo->ops->del_cls_flower(h, flow); 2623 break; 2624 default: 2625 break; 2626 } 2627 2628 return -EOPNOTSUPP; 2629 } 2630 2631 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data, 2632 void *cb_priv) 2633 { 2634 struct hns3_nic_priv *priv = cb_priv; 2635 2636 if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data)) 2637 return -EOPNOTSUPP; 2638 2639 switch (type) { 2640 case TC_SETUP_CLSFLOWER: 2641 return hns3_setup_tc_cls_flower(priv, type_data); 2642 default: 2643 return -EOPNOTSUPP; 2644 } 2645 } 2646 2647 static LIST_HEAD(hns3_block_cb_list); 2648 2649 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type, 2650 void *type_data) 2651 { 2652 struct hns3_nic_priv *priv = netdev_priv(dev); 2653 int ret; 2654 2655 switch (type) { 2656 case TC_SETUP_QDISC_MQPRIO: 2657 ret = hns3_setup_tc(dev, type_data); 2658 break; 2659 case TC_SETUP_BLOCK: 2660 ret = flow_block_cb_setup_simple(type_data, 2661 &hns3_block_cb_list, 2662 hns3_setup_tc_block_cb, 2663 priv, priv, true); 2664 break; 2665 default: 2666 return -EOPNOTSUPP; 2667 } 2668 2669 return ret; 2670 } 2671 2672 static int hns3_vlan_rx_add_vid(struct net_device *netdev, 2673 __be16 proto, u16 vid) 2674 { 2675 struct hnae3_handle *h = hns3_get_handle(netdev); 2676 int ret = -EIO; 2677 2678 if (h->ae_algo->ops->set_vlan_filter) 2679 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false); 2680 2681 return ret; 2682 } 2683 2684 static int hns3_vlan_rx_kill_vid(struct net_device *netdev, 2685 __be16 proto, u16 vid) 2686 { 2687 struct hnae3_handle *h = hns3_get_handle(netdev); 2688 int ret = -EIO; 2689 2690 if (h->ae_algo->ops->set_vlan_filter) 2691 ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true); 2692 2693 return ret; 2694 } 2695 2696 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan, 2697 u8 qos, __be16 vlan_proto) 2698 { 2699 struct hnae3_handle *h = hns3_get_handle(netdev); 2700 int ret = -EIO; 2701 2702 netif_dbg(h, drv, netdev, 2703 "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n", 2704 vf, vlan, qos, ntohs(vlan_proto)); 2705 2706 if (h->ae_algo->ops->set_vf_vlan_filter) 2707 ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan, 2708 qos, vlan_proto); 2709 2710 return ret; 2711 } 2712 2713 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable) 2714 { 2715 struct hnae3_handle *handle = hns3_get_handle(netdev); 2716 2717 if (hns3_nic_resetting(netdev)) 2718 return -EBUSY; 2719 2720 if (!handle->ae_algo->ops->set_vf_spoofchk) 2721 return -EOPNOTSUPP; 2722 2723 return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable); 2724 } 2725 2726 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable) 2727 { 2728 struct hnae3_handle *handle = hns3_get_handle(netdev); 2729 2730 if (!handle->ae_algo->ops->set_vf_trust) 2731 return -EOPNOTSUPP; 2732 2733 return handle->ae_algo->ops->set_vf_trust(handle, vf, enable); 2734 } 2735 2736 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu) 2737 { 2738 struct hnae3_handle *h = hns3_get_handle(netdev); 2739 int ret; 2740 2741 if (hns3_nic_resetting(netdev)) 2742 return -EBUSY; 2743 2744 if (!h->ae_algo->ops->set_mtu) 2745 return -EOPNOTSUPP; 2746 2747 netif_dbg(h, drv, netdev, 2748 "change mtu from %u to %d\n", netdev->mtu, new_mtu); 2749 2750 ret = h->ae_algo->ops->set_mtu(h, new_mtu); 2751 if (ret) 2752 netdev_err(netdev, "failed to change MTU in hardware %d\n", 2753 ret); 2754 else 2755 netdev->mtu = new_mtu; 2756 2757 return ret; 2758 } 2759 2760 static int hns3_get_timeout_queue(struct net_device *ndev) 2761 { 2762 int i; 2763 2764 /* Find the stopped queue the same way the stack does */ 2765 for (i = 0; i < ndev->num_tx_queues; i++) { 2766 struct netdev_queue *q; 2767 unsigned long trans_start; 2768 2769 q = netdev_get_tx_queue(ndev, i); 2770 trans_start = READ_ONCE(q->trans_start); 2771 if (netif_xmit_stopped(q) && 2772 time_after(jiffies, 2773 (trans_start + ndev->watchdog_timeo))) { 2774 #ifdef CONFIG_BQL 2775 struct dql *dql = &q->dql; 2776 2777 netdev_info(ndev, "DQL info last_cnt: %u, queued: %u, adj_limit: %u, completed: %u\n", 2778 dql->last_obj_cnt, dql->num_queued, 2779 dql->adj_limit, dql->num_completed); 2780 #endif 2781 netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n", 2782 q->state, 2783 jiffies_to_msecs(jiffies - trans_start)); 2784 break; 2785 } 2786 } 2787 2788 return i; 2789 } 2790 2791 static void hns3_dump_queue_stats(struct net_device *ndev, 2792 struct hns3_enet_ring *tx_ring, 2793 int timeout_queue) 2794 { 2795 struct napi_struct *napi = &tx_ring->tqp_vector->napi; 2796 struct hns3_nic_priv *priv = netdev_priv(ndev); 2797 2798 netdev_info(ndev, 2799 "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n", 2800 priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use, 2801 tx_ring->next_to_clean, napi->state); 2802 2803 netdev_info(ndev, 2804 "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n", 2805 tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes, 2806 tx_ring->stats.sw_err_cnt, tx_ring->pending_buf); 2807 2808 netdev_info(ndev, 2809 "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n", 2810 tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more, 2811 tx_ring->stats.restart_queue, tx_ring->stats.tx_busy); 2812 2813 netdev_info(ndev, "tx_push: %llu, tx_mem_doorbell: %llu\n", 2814 tx_ring->stats.tx_push, tx_ring->stats.tx_mem_doorbell); 2815 } 2816 2817 static void hns3_dump_queue_reg(struct net_device *ndev, 2818 struct hns3_enet_ring *tx_ring) 2819 { 2820 netdev_info(ndev, 2821 "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n", 2822 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_NUM_REG), 2823 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_HEAD_REG), 2824 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TAIL_REG), 2825 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_BD_ERR_REG), 2826 readl(tx_ring->tqp_vector->mask_addr)); 2827 netdev_info(ndev, 2828 "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n", 2829 hns3_tqp_read_reg(tx_ring, HNS3_RING_EN_REG), 2830 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_TC_REG), 2831 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_FBDNUM_REG), 2832 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_OFFSET_REG), 2833 hns3_tqp_read_reg(tx_ring, HNS3_RING_TX_RING_EBDNUM_REG), 2834 hns3_tqp_read_reg(tx_ring, 2835 HNS3_RING_TX_RING_EBD_OFFSET_REG)); 2836 } 2837 2838 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev) 2839 { 2840 struct hns3_nic_priv *priv = netdev_priv(ndev); 2841 struct hnae3_handle *h = hns3_get_handle(ndev); 2842 struct hns3_enet_ring *tx_ring; 2843 int timeout_queue; 2844 2845 timeout_queue = hns3_get_timeout_queue(ndev); 2846 if (timeout_queue >= ndev->num_tx_queues) { 2847 netdev_info(ndev, 2848 "no netdev TX timeout queue found, timeout count: %llu\n", 2849 priv->tx_timeout_count); 2850 return false; 2851 } 2852 2853 priv->tx_timeout_count++; 2854 2855 tx_ring = &priv->ring[timeout_queue]; 2856 hns3_dump_queue_stats(ndev, tx_ring, timeout_queue); 2857 2858 /* When mac received many pause frames continuous, it's unable to send 2859 * packets, which may cause tx timeout 2860 */ 2861 if (h->ae_algo->ops->get_mac_stats) { 2862 struct hns3_mac_stats mac_stats; 2863 2864 h->ae_algo->ops->get_mac_stats(h, &mac_stats); 2865 netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n", 2866 mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt); 2867 } 2868 2869 hns3_dump_queue_reg(ndev, tx_ring); 2870 2871 return true; 2872 } 2873 2874 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue) 2875 { 2876 struct hns3_nic_priv *priv = netdev_priv(ndev); 2877 struct hnae3_handle *h = priv->ae_handle; 2878 2879 if (!hns3_get_tx_timeo_queue_info(ndev)) 2880 return; 2881 2882 /* request the reset, and let the hclge to determine 2883 * which reset level should be done 2884 */ 2885 if (h->ae_algo->ops->reset_event) 2886 h->ae_algo->ops->reset_event(h->pdev, h); 2887 } 2888 2889 #ifdef CONFIG_RFS_ACCEL 2890 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, 2891 u16 rxq_index, u32 flow_id) 2892 { 2893 struct hnae3_handle *h = hns3_get_handle(dev); 2894 struct flow_keys fkeys; 2895 2896 if (!h->ae_algo->ops->add_arfs_entry) 2897 return -EOPNOTSUPP; 2898 2899 if (skb->encapsulation) 2900 return -EPROTONOSUPPORT; 2901 2902 if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0)) 2903 return -EPROTONOSUPPORT; 2904 2905 if ((fkeys.basic.n_proto != htons(ETH_P_IP) && 2906 fkeys.basic.n_proto != htons(ETH_P_IPV6)) || 2907 (fkeys.basic.ip_proto != IPPROTO_TCP && 2908 fkeys.basic.ip_proto != IPPROTO_UDP)) 2909 return -EPROTONOSUPPORT; 2910 2911 return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys); 2912 } 2913 #endif 2914 2915 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf, 2916 struct ifla_vf_info *ivf) 2917 { 2918 struct hnae3_handle *h = hns3_get_handle(ndev); 2919 2920 if (!h->ae_algo->ops->get_vf_config) 2921 return -EOPNOTSUPP; 2922 2923 return h->ae_algo->ops->get_vf_config(h, vf, ivf); 2924 } 2925 2926 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf, 2927 int link_state) 2928 { 2929 struct hnae3_handle *h = hns3_get_handle(ndev); 2930 2931 if (!h->ae_algo->ops->set_vf_link_state) 2932 return -EOPNOTSUPP; 2933 2934 return h->ae_algo->ops->set_vf_link_state(h, vf, link_state); 2935 } 2936 2937 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf, 2938 int min_tx_rate, int max_tx_rate) 2939 { 2940 struct hnae3_handle *h = hns3_get_handle(ndev); 2941 2942 if (!h->ae_algo->ops->set_vf_rate) 2943 return -EOPNOTSUPP; 2944 2945 return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate, 2946 false); 2947 } 2948 2949 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) 2950 { 2951 struct hnae3_handle *h = hns3_get_handle(netdev); 2952 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 2953 2954 if (!h->ae_algo->ops->set_vf_mac) 2955 return -EOPNOTSUPP; 2956 2957 if (is_multicast_ether_addr(mac)) { 2958 hnae3_format_mac_addr(format_mac_addr, mac); 2959 netdev_err(netdev, 2960 "Invalid MAC:%s specified. Could not set MAC\n", 2961 format_mac_addr); 2962 return -EINVAL; 2963 } 2964 2965 return h->ae_algo->ops->set_vf_mac(h, vf_id, mac); 2966 } 2967 2968 #define HNS3_INVALID_DSCP 0xff 2969 #define HNS3_DSCP_SHIFT 2 2970 2971 static u8 hns3_get_skb_dscp(struct sk_buff *skb) 2972 { 2973 __be16 protocol = skb->protocol; 2974 u8 dscp = HNS3_INVALID_DSCP; 2975 2976 if (protocol == htons(ETH_P_8021Q)) 2977 protocol = vlan_get_protocol(skb); 2978 2979 if (protocol == htons(ETH_P_IP)) 2980 dscp = ipv4_get_dsfield(ip_hdr(skb)) >> HNS3_DSCP_SHIFT; 2981 else if (protocol == htons(ETH_P_IPV6)) 2982 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> HNS3_DSCP_SHIFT; 2983 2984 return dscp; 2985 } 2986 2987 static u16 hns3_nic_select_queue(struct net_device *netdev, 2988 struct sk_buff *skb, 2989 struct net_device *sb_dev) 2990 { 2991 struct hnae3_handle *h = hns3_get_handle(netdev); 2992 u8 dscp; 2993 2994 if (h->kinfo.tc_map_mode != HNAE3_TC_MAP_MODE_DSCP || 2995 !h->ae_algo->ops->get_dscp_prio) 2996 goto out; 2997 2998 dscp = hns3_get_skb_dscp(skb); 2999 if (unlikely(dscp >= HNAE3_MAX_DSCP)) 3000 goto out; 3001 3002 skb->priority = h->kinfo.dscp_prio[dscp]; 3003 if (skb->priority == HNAE3_PRIO_ID_INVALID) 3004 skb->priority = 0; 3005 3006 out: 3007 return netdev_pick_tx(netdev, skb, sb_dev); 3008 } 3009 3010 static const struct net_device_ops hns3_nic_netdev_ops = { 3011 .ndo_open = hns3_nic_net_open, 3012 .ndo_stop = hns3_nic_net_stop, 3013 .ndo_start_xmit = hns3_nic_net_xmit, 3014 .ndo_tx_timeout = hns3_nic_net_timeout, 3015 .ndo_set_mac_address = hns3_nic_net_set_mac_address, 3016 .ndo_eth_ioctl = hns3_nic_do_ioctl, 3017 .ndo_change_mtu = hns3_nic_change_mtu, 3018 .ndo_set_features = hns3_nic_set_features, 3019 .ndo_features_check = hns3_features_check, 3020 .ndo_get_stats64 = hns3_nic_get_stats64, 3021 .ndo_setup_tc = hns3_nic_setup_tc, 3022 .ndo_set_rx_mode = hns3_nic_set_rx_mode, 3023 .ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid, 3024 .ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid, 3025 .ndo_set_vf_vlan = hns3_ndo_set_vf_vlan, 3026 .ndo_set_vf_spoofchk = hns3_set_vf_spoofchk, 3027 .ndo_set_vf_trust = hns3_set_vf_trust, 3028 #ifdef CONFIG_RFS_ACCEL 3029 .ndo_rx_flow_steer = hns3_rx_flow_steer, 3030 #endif 3031 .ndo_get_vf_config = hns3_nic_get_vf_config, 3032 .ndo_set_vf_link_state = hns3_nic_set_vf_link_state, 3033 .ndo_set_vf_rate = hns3_nic_set_vf_rate, 3034 .ndo_set_vf_mac = hns3_nic_set_vf_mac, 3035 .ndo_select_queue = hns3_nic_select_queue, 3036 }; 3037 3038 bool hns3_is_phys_func(struct pci_dev *pdev) 3039 { 3040 u32 dev_id = pdev->device; 3041 3042 switch (dev_id) { 3043 case HNAE3_DEV_ID_GE: 3044 case HNAE3_DEV_ID_25GE: 3045 case HNAE3_DEV_ID_25GE_RDMA: 3046 case HNAE3_DEV_ID_25GE_RDMA_MACSEC: 3047 case HNAE3_DEV_ID_50GE_RDMA: 3048 case HNAE3_DEV_ID_50GE_RDMA_MACSEC: 3049 case HNAE3_DEV_ID_100G_RDMA_MACSEC: 3050 case HNAE3_DEV_ID_200G_RDMA: 3051 return true; 3052 case HNAE3_DEV_ID_VF: 3053 case HNAE3_DEV_ID_RDMA_DCB_PFC_VF: 3054 return false; 3055 default: 3056 dev_warn(&pdev->dev, "un-recognized pci device-id %u", 3057 dev_id); 3058 } 3059 3060 return false; 3061 } 3062 3063 static void hns3_disable_sriov(struct pci_dev *pdev) 3064 { 3065 /* If our VFs are assigned we cannot shut down SR-IOV 3066 * without causing issues, so just leave the hardware 3067 * available but disabled 3068 */ 3069 if (pci_vfs_assigned(pdev)) { 3070 dev_warn(&pdev->dev, 3071 "disabling driver while VFs are assigned\n"); 3072 return; 3073 } 3074 3075 pci_disable_sriov(pdev); 3076 } 3077 3078 /* hns3_probe - Device initialization routine 3079 * @pdev: PCI device information struct 3080 * @ent: entry in hns3_pci_tbl 3081 * 3082 * hns3_probe initializes a PF identified by a pci_dev structure. 3083 * The OS initialization, configuring of the PF private structure, 3084 * and a hardware reset occur. 3085 * 3086 * Returns 0 on success, negative on failure 3087 */ 3088 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 3089 { 3090 struct hnae3_ae_dev *ae_dev; 3091 int ret; 3092 3093 ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL); 3094 if (!ae_dev) 3095 return -ENOMEM; 3096 3097 ae_dev->pdev = pdev; 3098 ae_dev->flag = ent->driver_data; 3099 pci_set_drvdata(pdev, ae_dev); 3100 3101 ret = hnae3_register_ae_dev(ae_dev); 3102 if (ret) 3103 pci_set_drvdata(pdev, NULL); 3104 3105 return ret; 3106 } 3107 3108 /** 3109 * hns3_clean_vf_config 3110 * @pdev: pointer to a pci_dev structure 3111 * @num_vfs: number of VFs allocated 3112 * 3113 * Clean residual vf config after disable sriov 3114 **/ 3115 static void hns3_clean_vf_config(struct pci_dev *pdev, int num_vfs) 3116 { 3117 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3118 3119 if (ae_dev->ops->clean_vf_config) 3120 ae_dev->ops->clean_vf_config(ae_dev, num_vfs); 3121 } 3122 3123 /* hns3_remove - Device removal routine 3124 * @pdev: PCI device information struct 3125 */ 3126 static void hns3_remove(struct pci_dev *pdev) 3127 { 3128 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3129 3130 if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV)) 3131 hns3_disable_sriov(pdev); 3132 3133 hnae3_unregister_ae_dev(ae_dev); 3134 pci_set_drvdata(pdev, NULL); 3135 } 3136 3137 /** 3138 * hns3_pci_sriov_configure 3139 * @pdev: pointer to a pci_dev structure 3140 * @num_vfs: number of VFs to allocate 3141 * 3142 * Enable or change the number of VFs. Called when the user updates the number 3143 * of VFs in sysfs. 3144 **/ 3145 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs) 3146 { 3147 int ret; 3148 3149 if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) { 3150 dev_warn(&pdev->dev, "Can not config SRIOV\n"); 3151 return -EINVAL; 3152 } 3153 3154 if (num_vfs) { 3155 ret = pci_enable_sriov(pdev, num_vfs); 3156 if (ret) 3157 dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret); 3158 else 3159 return num_vfs; 3160 } else if (!pci_vfs_assigned(pdev)) { 3161 int num_vfs_pre = pci_num_vf(pdev); 3162 3163 pci_disable_sriov(pdev); 3164 hns3_clean_vf_config(pdev, num_vfs_pre); 3165 } else { 3166 dev_warn(&pdev->dev, 3167 "Unable to free VFs because some are assigned to VMs.\n"); 3168 } 3169 3170 return 0; 3171 } 3172 3173 static void hns3_shutdown(struct pci_dev *pdev) 3174 { 3175 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3176 3177 hnae3_unregister_ae_dev(ae_dev); 3178 pci_set_drvdata(pdev, NULL); 3179 3180 if (system_state == SYSTEM_POWER_OFF) 3181 pci_set_power_state(pdev, PCI_D3hot); 3182 } 3183 3184 static int __maybe_unused hns3_suspend(struct device *dev) 3185 { 3186 struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev); 3187 3188 if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) { 3189 dev_info(dev, "Begin to suspend.\n"); 3190 if (ae_dev->ops && ae_dev->ops->reset_prepare) 3191 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET); 3192 } 3193 3194 return 0; 3195 } 3196 3197 static int __maybe_unused hns3_resume(struct device *dev) 3198 { 3199 struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev); 3200 3201 if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) { 3202 dev_info(dev, "Begin to resume.\n"); 3203 if (ae_dev->ops && ae_dev->ops->reset_done) 3204 ae_dev->ops->reset_done(ae_dev); 3205 } 3206 3207 return 0; 3208 } 3209 3210 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev, 3211 pci_channel_state_t state) 3212 { 3213 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3214 pci_ers_result_t ret; 3215 3216 dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state); 3217 3218 if (state == pci_channel_io_perm_failure) 3219 return PCI_ERS_RESULT_DISCONNECT; 3220 3221 if (!ae_dev || !ae_dev->ops) { 3222 dev_err(&pdev->dev, 3223 "Can't recover - error happened before device initialized\n"); 3224 return PCI_ERS_RESULT_NONE; 3225 } 3226 3227 if (ae_dev->ops->handle_hw_ras_error) 3228 ret = ae_dev->ops->handle_hw_ras_error(ae_dev); 3229 else 3230 return PCI_ERS_RESULT_NONE; 3231 3232 return ret; 3233 } 3234 3235 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev) 3236 { 3237 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3238 const struct hnae3_ae_ops *ops; 3239 enum hnae3_reset_type reset_type; 3240 struct device *dev = &pdev->dev; 3241 3242 if (!ae_dev || !ae_dev->ops) 3243 return PCI_ERS_RESULT_NONE; 3244 3245 ops = ae_dev->ops; 3246 /* request the reset */ 3247 if (ops->reset_event && ops->get_reset_level && 3248 ops->set_default_reset_request) { 3249 if (ae_dev->hw_err_reset_req) { 3250 reset_type = ops->get_reset_level(ae_dev, 3251 &ae_dev->hw_err_reset_req); 3252 ops->set_default_reset_request(ae_dev, reset_type); 3253 dev_info(dev, "requesting reset due to PCI error\n"); 3254 ops->reset_event(pdev, NULL); 3255 } 3256 3257 return PCI_ERS_RESULT_RECOVERED; 3258 } 3259 3260 return PCI_ERS_RESULT_DISCONNECT; 3261 } 3262 3263 static void hns3_reset_prepare(struct pci_dev *pdev) 3264 { 3265 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3266 3267 dev_info(&pdev->dev, "FLR prepare\n"); 3268 if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare) 3269 ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET); 3270 } 3271 3272 static void hns3_reset_done(struct pci_dev *pdev) 3273 { 3274 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3275 3276 dev_info(&pdev->dev, "FLR done\n"); 3277 if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done) 3278 ae_dev->ops->reset_done(ae_dev); 3279 } 3280 3281 static const struct pci_error_handlers hns3_err_handler = { 3282 .error_detected = hns3_error_detected, 3283 .slot_reset = hns3_slot_reset, 3284 .reset_prepare = hns3_reset_prepare, 3285 .reset_done = hns3_reset_done, 3286 }; 3287 3288 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume); 3289 3290 static struct pci_driver hns3_driver = { 3291 .name = hns3_driver_name, 3292 .id_table = hns3_pci_tbl, 3293 .probe = hns3_probe, 3294 .remove = hns3_remove, 3295 .shutdown = hns3_shutdown, 3296 .driver.pm = &hns3_pm_ops, 3297 .sriov_configure = hns3_pci_sriov_configure, 3298 .err_handler = &hns3_err_handler, 3299 }; 3300 3301 /* set default feature to hns3 */ 3302 static void hns3_set_default_feature(struct net_device *netdev) 3303 { 3304 struct hnae3_handle *h = hns3_get_handle(netdev); 3305 struct pci_dev *pdev = h->pdev; 3306 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3307 3308 netdev->priv_flags |= IFF_UNICAST_FLT; 3309 3310 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM; 3311 3312 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER | 3313 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | 3314 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 3315 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE | 3316 NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL | 3317 NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST; 3318 3319 if (hnae3_ae_dev_gro_supported(ae_dev)) 3320 netdev->features |= NETIF_F_GRO_HW; 3321 3322 if (hnae3_ae_dev_fd_supported(ae_dev)) 3323 netdev->features |= NETIF_F_NTUPLE; 3324 3325 if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps)) 3326 netdev->features |= NETIF_F_GSO_UDP_L4; 3327 3328 if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) 3329 netdev->features |= NETIF_F_HW_CSUM; 3330 else 3331 netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; 3332 3333 if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps)) 3334 netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM; 3335 3336 if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps)) 3337 netdev->features |= NETIF_F_HW_TC; 3338 3339 netdev->hw_features |= netdev->features; 3340 if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps)) 3341 netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 3342 3343 netdev->vlan_features |= netdev->features & 3344 ~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX | 3345 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE | 3346 NETIF_F_HW_TC); 3347 3348 netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID; 3349 } 3350 3351 static int hns3_alloc_buffer(struct hns3_enet_ring *ring, 3352 struct hns3_desc_cb *cb) 3353 { 3354 unsigned int order = hns3_page_order(ring); 3355 struct page *p; 3356 3357 if (ring->page_pool) { 3358 p = page_pool_dev_alloc_frag(ring->page_pool, 3359 &cb->page_offset, 3360 hns3_buf_size(ring)); 3361 if (unlikely(!p)) 3362 return -ENOMEM; 3363 3364 cb->priv = p; 3365 cb->buf = page_address(p); 3366 cb->dma = page_pool_get_dma_addr(p); 3367 cb->type = DESC_TYPE_PP_FRAG; 3368 cb->reuse_flag = 0; 3369 return 0; 3370 } 3371 3372 p = dev_alloc_pages(order); 3373 if (!p) 3374 return -ENOMEM; 3375 3376 cb->priv = p; 3377 cb->page_offset = 0; 3378 cb->reuse_flag = 0; 3379 cb->buf = page_address(p); 3380 cb->length = hns3_page_size(ring); 3381 cb->type = DESC_TYPE_PAGE; 3382 page_ref_add(p, USHRT_MAX - 1); 3383 cb->pagecnt_bias = USHRT_MAX; 3384 3385 return 0; 3386 } 3387 3388 static void hns3_free_buffer(struct hns3_enet_ring *ring, 3389 struct hns3_desc_cb *cb, int budget) 3390 { 3391 if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD | 3392 DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB)) 3393 napi_consume_skb(cb->priv, budget); 3394 else if (!HNAE3_IS_TX_RING(ring)) { 3395 if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias) 3396 __page_frag_cache_drain(cb->priv, cb->pagecnt_bias); 3397 else if (cb->type & DESC_TYPE_PP_FRAG) 3398 page_pool_put_full_page(ring->page_pool, cb->priv, 3399 false); 3400 } 3401 memset(cb, 0, sizeof(*cb)); 3402 } 3403 3404 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb) 3405 { 3406 cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0, 3407 cb->length, ring_to_dma_dir(ring)); 3408 3409 if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma))) 3410 return -EIO; 3411 3412 return 0; 3413 } 3414 3415 static void hns3_unmap_buffer(struct hns3_enet_ring *ring, 3416 struct hns3_desc_cb *cb) 3417 { 3418 if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB)) 3419 dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length, 3420 ring_to_dma_dir(ring)); 3421 else if ((cb->type & DESC_TYPE_PAGE) && cb->length) 3422 dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length, 3423 ring_to_dma_dir(ring)); 3424 else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD | 3425 DESC_TYPE_SGL_SKB)) 3426 hns3_tx_spare_reclaim_cb(ring, cb); 3427 } 3428 3429 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i) 3430 { 3431 hns3_unmap_buffer(ring, &ring->desc_cb[i]); 3432 ring->desc[i].addr = 0; 3433 ring->desc_cb[i].refill = 0; 3434 } 3435 3436 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i, 3437 int budget) 3438 { 3439 struct hns3_desc_cb *cb = &ring->desc_cb[i]; 3440 3441 if (!ring->desc_cb[i].dma) 3442 return; 3443 3444 hns3_buffer_detach(ring, i); 3445 hns3_free_buffer(ring, cb, budget); 3446 } 3447 3448 static void hns3_free_buffers(struct hns3_enet_ring *ring) 3449 { 3450 int i; 3451 3452 for (i = 0; i < ring->desc_num; i++) 3453 hns3_free_buffer_detach(ring, i, 0); 3454 } 3455 3456 /* free desc along with its attached buffer */ 3457 static void hns3_free_desc(struct hns3_enet_ring *ring) 3458 { 3459 int size = ring->desc_num * sizeof(ring->desc[0]); 3460 3461 hns3_free_buffers(ring); 3462 3463 if (ring->desc) { 3464 dma_free_coherent(ring_to_dev(ring), size, 3465 ring->desc, ring->desc_dma_addr); 3466 ring->desc = NULL; 3467 } 3468 } 3469 3470 static int hns3_alloc_desc(struct hns3_enet_ring *ring) 3471 { 3472 int size = ring->desc_num * sizeof(ring->desc[0]); 3473 3474 ring->desc = dma_alloc_coherent(ring_to_dev(ring), size, 3475 &ring->desc_dma_addr, GFP_KERNEL); 3476 if (!ring->desc) 3477 return -ENOMEM; 3478 3479 return 0; 3480 } 3481 3482 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring, 3483 struct hns3_desc_cb *cb) 3484 { 3485 int ret; 3486 3487 ret = hns3_alloc_buffer(ring, cb); 3488 if (ret || ring->page_pool) 3489 goto out; 3490 3491 ret = hns3_map_buffer(ring, cb); 3492 if (ret) 3493 goto out_with_buf; 3494 3495 return 0; 3496 3497 out_with_buf: 3498 hns3_free_buffer(ring, cb, 0); 3499 out: 3500 return ret; 3501 } 3502 3503 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i) 3504 { 3505 int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]); 3506 3507 if (ret) 3508 return ret; 3509 3510 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + 3511 ring->desc_cb[i].page_offset); 3512 ring->desc_cb[i].refill = 1; 3513 3514 return 0; 3515 } 3516 3517 /* Allocate memory for raw pkg, and map with dma */ 3518 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring) 3519 { 3520 int i, j, ret; 3521 3522 for (i = 0; i < ring->desc_num; i++) { 3523 ret = hns3_alloc_and_attach_buffer(ring, i); 3524 if (ret) 3525 goto out_buffer_fail; 3526 } 3527 3528 return 0; 3529 3530 out_buffer_fail: 3531 for (j = i - 1; j >= 0; j--) 3532 hns3_free_buffer_detach(ring, j, 0); 3533 return ret; 3534 } 3535 3536 /* detach a in-used buffer and replace with a reserved one */ 3537 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i, 3538 struct hns3_desc_cb *res_cb) 3539 { 3540 hns3_unmap_buffer(ring, &ring->desc_cb[i]); 3541 ring->desc_cb[i] = *res_cb; 3542 ring->desc_cb[i].refill = 1; 3543 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + 3544 ring->desc_cb[i].page_offset); 3545 ring->desc[i].rx.bd_base_info = 0; 3546 } 3547 3548 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i) 3549 { 3550 ring->desc_cb[i].reuse_flag = 0; 3551 ring->desc_cb[i].refill = 1; 3552 ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma + 3553 ring->desc_cb[i].page_offset); 3554 ring->desc[i].rx.bd_base_info = 0; 3555 3556 dma_sync_single_for_device(ring_to_dev(ring), 3557 ring->desc_cb[i].dma + ring->desc_cb[i].page_offset, 3558 hns3_buf_size(ring), 3559 DMA_FROM_DEVICE); 3560 } 3561 3562 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, 3563 int *bytes, int *pkts, int budget) 3564 { 3565 /* pair with ring->last_to_use update in hns3_tx_doorbell(), 3566 * smp_store_release() is not used in hns3_tx_doorbell() because 3567 * the doorbell operation already have the needed barrier operation. 3568 */ 3569 int ltu = smp_load_acquire(&ring->last_to_use); 3570 int ntc = ring->next_to_clean; 3571 struct hns3_desc_cb *desc_cb; 3572 bool reclaimed = false; 3573 struct hns3_desc *desc; 3574 3575 while (ltu != ntc) { 3576 desc = &ring->desc[ntc]; 3577 3578 if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) & 3579 BIT(HNS3_TXD_VLD_B)) 3580 break; 3581 3582 desc_cb = &ring->desc_cb[ntc]; 3583 3584 if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL | 3585 DESC_TYPE_BOUNCE_HEAD | 3586 DESC_TYPE_SGL_SKB)) { 3587 (*pkts)++; 3588 (*bytes) += desc_cb->send_bytes; 3589 } 3590 3591 /* desc_cb will be cleaned, after hnae3_free_buffer_detach */ 3592 hns3_free_buffer_detach(ring, ntc, budget); 3593 3594 if (++ntc == ring->desc_num) 3595 ntc = 0; 3596 3597 /* Issue prefetch for next Tx descriptor */ 3598 prefetch(&ring->desc_cb[ntc]); 3599 reclaimed = true; 3600 } 3601 3602 if (unlikely(!reclaimed)) 3603 return false; 3604 3605 /* This smp_store_release() pairs with smp_load_acquire() in 3606 * ring_space called by hns3_nic_net_xmit. 3607 */ 3608 smp_store_release(&ring->next_to_clean, ntc); 3609 3610 hns3_tx_spare_update(ring); 3611 3612 return true; 3613 } 3614 3615 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget) 3616 { 3617 struct net_device *netdev = ring_to_netdev(ring); 3618 struct hns3_nic_priv *priv = netdev_priv(netdev); 3619 struct netdev_queue *dev_queue; 3620 int bytes, pkts; 3621 3622 bytes = 0; 3623 pkts = 0; 3624 3625 if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget))) 3626 return; 3627 3628 ring->tqp_vector->tx_group.total_bytes += bytes; 3629 ring->tqp_vector->tx_group.total_packets += pkts; 3630 3631 u64_stats_update_begin(&ring->syncp); 3632 ring->stats.tx_bytes += bytes; 3633 ring->stats.tx_pkts += pkts; 3634 u64_stats_update_end(&ring->syncp); 3635 3636 dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index); 3637 netdev_tx_completed_queue(dev_queue, pkts, bytes); 3638 3639 if (unlikely(netif_carrier_ok(netdev) && 3640 ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) { 3641 /* Make sure that anybody stopping the queue after this 3642 * sees the new next_to_clean. 3643 */ 3644 smp_mb(); 3645 if (netif_tx_queue_stopped(dev_queue) && 3646 !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) { 3647 netif_tx_wake_queue(dev_queue); 3648 ring->stats.restart_queue++; 3649 } 3650 } 3651 } 3652 3653 static int hns3_desc_unused(struct hns3_enet_ring *ring) 3654 { 3655 int ntc = ring->next_to_clean; 3656 int ntu = ring->next_to_use; 3657 3658 if (unlikely(ntc == ntu && !ring->desc_cb[ntc].refill)) 3659 return ring->desc_num; 3660 3661 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 3662 } 3663 3664 /* Return true if there is any allocation failure */ 3665 static bool hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, 3666 int cleand_count) 3667 { 3668 struct hns3_desc_cb *desc_cb; 3669 struct hns3_desc_cb res_cbs; 3670 int i, ret; 3671 3672 for (i = 0; i < cleand_count; i++) { 3673 desc_cb = &ring->desc_cb[ring->next_to_use]; 3674 if (desc_cb->reuse_flag) { 3675 hns3_ring_stats_update(ring, reuse_pg_cnt); 3676 3677 hns3_reuse_buffer(ring, ring->next_to_use); 3678 } else { 3679 ret = hns3_alloc_and_map_buffer(ring, &res_cbs); 3680 if (ret) { 3681 hns3_ring_stats_update(ring, sw_err_cnt); 3682 3683 hns3_rl_err(ring_to_netdev(ring), 3684 "alloc rx buffer failed: %d\n", 3685 ret); 3686 3687 writel(i, ring->tqp->io_base + 3688 HNS3_RING_RX_RING_HEAD_REG); 3689 return true; 3690 } 3691 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs); 3692 3693 hns3_ring_stats_update(ring, non_reuse_pg); 3694 } 3695 3696 ring_ptr_move_fw(ring, next_to_use); 3697 } 3698 3699 writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG); 3700 return false; 3701 } 3702 3703 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb) 3704 { 3705 return page_count(cb->priv) == cb->pagecnt_bias; 3706 } 3707 3708 static int hns3_handle_rx_copybreak(struct sk_buff *skb, int i, 3709 struct hns3_enet_ring *ring, 3710 int pull_len, 3711 struct hns3_desc_cb *desc_cb) 3712 { 3713 struct hns3_desc *desc = &ring->desc[ring->next_to_clean]; 3714 u32 frag_offset = desc_cb->page_offset + pull_len; 3715 int size = le16_to_cpu(desc->rx.size); 3716 u32 frag_size = size - pull_len; 3717 void *frag = napi_alloc_frag(frag_size); 3718 3719 if (unlikely(!frag)) { 3720 hns3_ring_stats_update(ring, frag_alloc_err); 3721 3722 hns3_rl_err(ring_to_netdev(ring), 3723 "failed to allocate rx frag\n"); 3724 return -ENOMEM; 3725 } 3726 3727 desc_cb->reuse_flag = 1; 3728 memcpy(frag, desc_cb->buf + frag_offset, frag_size); 3729 skb_add_rx_frag(skb, i, virt_to_page(frag), 3730 offset_in_page(frag), frag_size, frag_size); 3731 3732 hns3_ring_stats_update(ring, frag_alloc); 3733 return 0; 3734 } 3735 3736 static void hns3_nic_reuse_page(struct sk_buff *skb, int i, 3737 struct hns3_enet_ring *ring, int pull_len, 3738 struct hns3_desc_cb *desc_cb) 3739 { 3740 struct hns3_desc *desc = &ring->desc[ring->next_to_clean]; 3741 u32 frag_offset = desc_cb->page_offset + pull_len; 3742 int size = le16_to_cpu(desc->rx.size); 3743 u32 truesize = hns3_buf_size(ring); 3744 u32 frag_size = size - pull_len; 3745 int ret = 0; 3746 bool reused; 3747 3748 if (ring->page_pool) { 3749 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset, 3750 frag_size, truesize); 3751 return; 3752 } 3753 3754 /* Avoid re-using remote or pfmem page */ 3755 if (unlikely(!dev_page_is_reusable(desc_cb->priv))) 3756 goto out; 3757 3758 reused = hns3_can_reuse_page(desc_cb); 3759 3760 /* Rx page can be reused when: 3761 * 1. Rx page is only owned by the driver when page_offset 3762 * is zero, which means 0 @ truesize will be used by 3763 * stack after skb_add_rx_frag() is called, and the rest 3764 * of rx page can be reused by driver. 3765 * Or 3766 * 2. Rx page is only owned by the driver when page_offset 3767 * is non-zero, which means page_offset @ truesize will 3768 * be used by stack after skb_add_rx_frag() is called, 3769 * and 0 @ truesize can be reused by driver. 3770 */ 3771 if ((!desc_cb->page_offset && reused) || 3772 ((desc_cb->page_offset + truesize + truesize) <= 3773 hns3_page_size(ring) && desc_cb->page_offset)) { 3774 desc_cb->page_offset += truesize; 3775 desc_cb->reuse_flag = 1; 3776 } else if (desc_cb->page_offset && reused) { 3777 desc_cb->page_offset = 0; 3778 desc_cb->reuse_flag = 1; 3779 } else if (frag_size <= ring->rx_copybreak) { 3780 ret = hns3_handle_rx_copybreak(skb, i, ring, pull_len, desc_cb); 3781 if (!ret) 3782 return; 3783 } 3784 3785 out: 3786 desc_cb->pagecnt_bias--; 3787 3788 if (unlikely(!desc_cb->pagecnt_bias)) { 3789 page_ref_add(desc_cb->priv, USHRT_MAX); 3790 desc_cb->pagecnt_bias = USHRT_MAX; 3791 } 3792 3793 skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset, 3794 frag_size, truesize); 3795 3796 if (unlikely(!desc_cb->reuse_flag)) 3797 __page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias); 3798 } 3799 3800 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info) 3801 { 3802 __be16 type = skb->protocol; 3803 struct tcphdr *th; 3804 int depth = 0; 3805 3806 while (eth_type_vlan(type)) { 3807 struct vlan_hdr *vh; 3808 3809 if ((depth + VLAN_HLEN) > skb_headlen(skb)) 3810 return -EFAULT; 3811 3812 vh = (struct vlan_hdr *)(skb->data + depth); 3813 type = vh->h_vlan_encapsulated_proto; 3814 depth += VLAN_HLEN; 3815 } 3816 3817 skb_set_network_header(skb, depth); 3818 3819 if (type == htons(ETH_P_IP)) { 3820 const struct iphdr *iph = ip_hdr(skb); 3821 3822 depth += sizeof(struct iphdr); 3823 skb_set_transport_header(skb, depth); 3824 th = tcp_hdr(skb); 3825 th->check = ~tcp_v4_check(skb->len - depth, iph->saddr, 3826 iph->daddr, 0); 3827 } else if (type == htons(ETH_P_IPV6)) { 3828 const struct ipv6hdr *iph = ipv6_hdr(skb); 3829 3830 depth += sizeof(struct ipv6hdr); 3831 skb_set_transport_header(skb, depth); 3832 th = tcp_hdr(skb); 3833 th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr, 3834 &iph->daddr, 0); 3835 } else { 3836 hns3_rl_err(skb->dev, 3837 "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n", 3838 be16_to_cpu(type), depth); 3839 return -EFAULT; 3840 } 3841 3842 skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count; 3843 if (th->cwr) 3844 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN; 3845 3846 if (l234info & BIT(HNS3_RXD_GRO_FIXID_B)) 3847 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID; 3848 3849 skb->csum_start = (unsigned char *)th - skb->head; 3850 skb->csum_offset = offsetof(struct tcphdr, check); 3851 skb->ip_summed = CHECKSUM_PARTIAL; 3852 3853 trace_hns3_gro(skb); 3854 3855 return 0; 3856 } 3857 3858 static bool hns3_checksum_complete(struct hns3_enet_ring *ring, 3859 struct sk_buff *skb, u32 ptype, u16 csum) 3860 { 3861 if (ptype == HNS3_INVALID_PTYPE || 3862 hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE) 3863 return false; 3864 3865 hns3_ring_stats_update(ring, csum_complete); 3866 skb->ip_summed = CHECKSUM_COMPLETE; 3867 skb->csum = csum_unfold((__force __sum16)csum); 3868 3869 return true; 3870 } 3871 3872 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info, 3873 u32 ol_info, u32 ptype) 3874 { 3875 int l3_type, l4_type; 3876 int ol4_type; 3877 3878 if (ptype != HNS3_INVALID_PTYPE) { 3879 skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level; 3880 skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed; 3881 3882 return; 3883 } 3884 3885 ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M, 3886 HNS3_RXD_OL4ID_S); 3887 switch (ol4_type) { 3888 case HNS3_OL4_TYPE_MAC_IN_UDP: 3889 case HNS3_OL4_TYPE_NVGRE: 3890 skb->csum_level = 1; 3891 fallthrough; 3892 case HNS3_OL4_TYPE_NO_TUN: 3893 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, 3894 HNS3_RXD_L3ID_S); 3895 l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M, 3896 HNS3_RXD_L4ID_S); 3897 /* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */ 3898 if ((l3_type == HNS3_L3_TYPE_IPV4 || 3899 l3_type == HNS3_L3_TYPE_IPV6) && 3900 (l4_type == HNS3_L4_TYPE_UDP || 3901 l4_type == HNS3_L4_TYPE_TCP || 3902 l4_type == HNS3_L4_TYPE_SCTP)) 3903 skb->ip_summed = CHECKSUM_UNNECESSARY; 3904 break; 3905 default: 3906 break; 3907 } 3908 } 3909 3910 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb, 3911 u32 l234info, u32 bd_base_info, u32 ol_info, 3912 u16 csum) 3913 { 3914 struct net_device *netdev = ring_to_netdev(ring); 3915 struct hns3_nic_priv *priv = netdev_priv(netdev); 3916 u32 ptype = HNS3_INVALID_PTYPE; 3917 3918 skb->ip_summed = CHECKSUM_NONE; 3919 3920 skb_checksum_none_assert(skb); 3921 3922 if (!(netdev->features & NETIF_F_RXCSUM)) 3923 return; 3924 3925 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) 3926 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M, 3927 HNS3_RXD_PTYPE_S); 3928 3929 if (hns3_checksum_complete(ring, skb, ptype, csum)) 3930 return; 3931 3932 /* check if hardware has done checksum */ 3933 if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B))) 3934 return; 3935 3936 if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) | 3937 BIT(HNS3_RXD_OL3E_B) | 3938 BIT(HNS3_RXD_OL4E_B)))) { 3939 hns3_ring_stats_update(ring, l3l4_csum_err); 3940 3941 return; 3942 } 3943 3944 hns3_rx_handle_csum(skb, l234info, ol_info, ptype); 3945 } 3946 3947 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb) 3948 { 3949 if (skb_has_frag_list(skb)) 3950 napi_gro_flush(&ring->tqp_vector->napi, false); 3951 3952 napi_gro_receive(&ring->tqp_vector->napi, skb); 3953 } 3954 3955 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring, 3956 struct hns3_desc *desc, u32 l234info, 3957 u16 *vlan_tag) 3958 { 3959 struct hnae3_handle *handle = ring->tqp->handle; 3960 struct pci_dev *pdev = ring->tqp->handle->pdev; 3961 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 3962 3963 if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) { 3964 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); 3965 if (!(*vlan_tag & VLAN_VID_MASK)) 3966 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); 3967 3968 return (*vlan_tag != 0); 3969 } 3970 3971 #define HNS3_STRP_OUTER_VLAN 0x1 3972 #define HNS3_STRP_INNER_VLAN 0x2 3973 #define HNS3_STRP_BOTH 0x3 3974 3975 /* Hardware always insert VLAN tag into RX descriptor when 3976 * remove the tag from packet, driver needs to determine 3977 * reporting which tag to stack. 3978 */ 3979 switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M, 3980 HNS3_RXD_STRP_TAGP_S)) { 3981 case HNS3_STRP_OUTER_VLAN: 3982 if (handle->port_base_vlan_state != 3983 HNAE3_PORT_BASE_VLAN_DISABLE) 3984 return false; 3985 3986 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); 3987 return true; 3988 case HNS3_STRP_INNER_VLAN: 3989 if (handle->port_base_vlan_state != 3990 HNAE3_PORT_BASE_VLAN_DISABLE) 3991 return false; 3992 3993 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); 3994 return true; 3995 case HNS3_STRP_BOTH: 3996 if (handle->port_base_vlan_state == 3997 HNAE3_PORT_BASE_VLAN_DISABLE) 3998 *vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag); 3999 else 4000 *vlan_tag = le16_to_cpu(desc->rx.vlan_tag); 4001 4002 return true; 4003 default: 4004 return false; 4005 } 4006 } 4007 4008 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring) 4009 { 4010 ring->desc[ring->next_to_clean].rx.bd_base_info &= 4011 cpu_to_le32(~BIT(HNS3_RXD_VLD_B)); 4012 ring->desc_cb[ring->next_to_clean].refill = 0; 4013 ring->next_to_clean += 1; 4014 4015 if (unlikely(ring->next_to_clean == ring->desc_num)) 4016 ring->next_to_clean = 0; 4017 } 4018 4019 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length, 4020 unsigned char *va) 4021 { 4022 struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 4023 struct net_device *netdev = ring_to_netdev(ring); 4024 struct sk_buff *skb; 4025 4026 ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE); 4027 skb = ring->skb; 4028 if (unlikely(!skb)) { 4029 hns3_rl_err(netdev, "alloc rx skb fail\n"); 4030 hns3_ring_stats_update(ring, sw_err_cnt); 4031 4032 return -ENOMEM; 4033 } 4034 4035 trace_hns3_rx_desc(ring); 4036 prefetchw(skb->data); 4037 4038 ring->pending_buf = 1; 4039 ring->frag_num = 0; 4040 ring->tail_skb = NULL; 4041 if (length <= HNS3_RX_HEAD_SIZE) { 4042 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 4043 4044 /* We can reuse buffer as-is, just make sure it is reusable */ 4045 if (dev_page_is_reusable(desc_cb->priv)) 4046 desc_cb->reuse_flag = 1; 4047 else if (desc_cb->type & DESC_TYPE_PP_FRAG) 4048 page_pool_put_full_page(ring->page_pool, desc_cb->priv, 4049 false); 4050 else /* This page cannot be reused so discard it */ 4051 __page_frag_cache_drain(desc_cb->priv, 4052 desc_cb->pagecnt_bias); 4053 4054 hns3_rx_ring_move_fw(ring); 4055 return 0; 4056 } 4057 4058 if (ring->page_pool) 4059 skb_mark_for_recycle(skb); 4060 4061 hns3_ring_stats_update(ring, seg_pkt_cnt); 4062 4063 ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE); 4064 __skb_put(skb, ring->pull_len); 4065 hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len, 4066 desc_cb); 4067 hns3_rx_ring_move_fw(ring); 4068 4069 return 0; 4070 } 4071 4072 static int hns3_add_frag(struct hns3_enet_ring *ring) 4073 { 4074 struct sk_buff *skb = ring->skb; 4075 struct sk_buff *head_skb = skb; 4076 struct sk_buff *new_skb; 4077 struct hns3_desc_cb *desc_cb; 4078 struct hns3_desc *desc; 4079 u32 bd_base_info; 4080 4081 do { 4082 desc = &ring->desc[ring->next_to_clean]; 4083 desc_cb = &ring->desc_cb[ring->next_to_clean]; 4084 bd_base_info = le32_to_cpu(desc->rx.bd_base_info); 4085 /* make sure HW write desc complete */ 4086 dma_rmb(); 4087 if (!(bd_base_info & BIT(HNS3_RXD_VLD_B))) 4088 return -ENXIO; 4089 4090 if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) { 4091 new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0); 4092 if (unlikely(!new_skb)) { 4093 hns3_rl_err(ring_to_netdev(ring), 4094 "alloc rx fraglist skb fail\n"); 4095 return -ENXIO; 4096 } 4097 4098 if (ring->page_pool) 4099 skb_mark_for_recycle(new_skb); 4100 4101 ring->frag_num = 0; 4102 4103 if (ring->tail_skb) { 4104 ring->tail_skb->next = new_skb; 4105 ring->tail_skb = new_skb; 4106 } else { 4107 skb_shinfo(skb)->frag_list = new_skb; 4108 ring->tail_skb = new_skb; 4109 } 4110 } 4111 4112 if (ring->tail_skb) { 4113 head_skb->truesize += hns3_buf_size(ring); 4114 head_skb->data_len += le16_to_cpu(desc->rx.size); 4115 head_skb->len += le16_to_cpu(desc->rx.size); 4116 skb = ring->tail_skb; 4117 } 4118 4119 dma_sync_single_for_cpu(ring_to_dev(ring), 4120 desc_cb->dma + desc_cb->page_offset, 4121 hns3_buf_size(ring), 4122 DMA_FROM_DEVICE); 4123 4124 hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb); 4125 trace_hns3_rx_desc(ring); 4126 hns3_rx_ring_move_fw(ring); 4127 ring->pending_buf++; 4128 } while (!(bd_base_info & BIT(HNS3_RXD_FE_B))); 4129 4130 return 0; 4131 } 4132 4133 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring, 4134 struct sk_buff *skb, u32 l234info, 4135 u32 bd_base_info, u32 ol_info, u16 csum) 4136 { 4137 struct net_device *netdev = ring_to_netdev(ring); 4138 struct hns3_nic_priv *priv = netdev_priv(netdev); 4139 u32 l3_type; 4140 4141 skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info, 4142 HNS3_RXD_GRO_SIZE_M, 4143 HNS3_RXD_GRO_SIZE_S); 4144 /* if there is no HW GRO, do not set gro params */ 4145 if (!skb_shinfo(skb)->gso_size) { 4146 hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info, 4147 csum); 4148 return 0; 4149 } 4150 4151 NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info, 4152 HNS3_RXD_GRO_COUNT_M, 4153 HNS3_RXD_GRO_COUNT_S); 4154 4155 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) { 4156 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M, 4157 HNS3_RXD_PTYPE_S); 4158 4159 l3_type = hns3_rx_ptype_tbl[ptype].l3_type; 4160 } else { 4161 l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, 4162 HNS3_RXD_L3ID_S); 4163 } 4164 4165 if (l3_type == HNS3_L3_TYPE_IPV4) 4166 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4; 4167 else if (l3_type == HNS3_L3_TYPE_IPV6) 4168 skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6; 4169 else 4170 return -EFAULT; 4171 4172 return hns3_gro_complete(skb, l234info); 4173 } 4174 4175 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring, 4176 struct sk_buff *skb, u32 rss_hash, 4177 u32 l234info, u32 ol_info) 4178 { 4179 enum pkt_hash_types rss_type = PKT_HASH_TYPE_NONE; 4180 struct net_device *netdev = ring_to_netdev(ring); 4181 struct hns3_nic_priv *priv = netdev_priv(netdev); 4182 4183 if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) { 4184 u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M, 4185 HNS3_RXD_PTYPE_S); 4186 4187 rss_type = hns3_rx_ptype_tbl[ptype].hash_type; 4188 } else { 4189 int l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M, 4190 HNS3_RXD_L3ID_S); 4191 int l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M, 4192 HNS3_RXD_L4ID_S); 4193 4194 if (l3_type == HNS3_L3_TYPE_IPV4 || 4195 l3_type == HNS3_L3_TYPE_IPV6) { 4196 if (l4_type == HNS3_L4_TYPE_UDP || 4197 l4_type == HNS3_L4_TYPE_TCP || 4198 l4_type == HNS3_L4_TYPE_SCTP) 4199 rss_type = PKT_HASH_TYPE_L4; 4200 else if (l4_type == HNS3_L4_TYPE_IGMP || 4201 l4_type == HNS3_L4_TYPE_ICMP) 4202 rss_type = PKT_HASH_TYPE_L3; 4203 } 4204 } 4205 4206 skb_set_hash(skb, rss_hash, rss_type); 4207 } 4208 4209 static void hns3_handle_rx_ts_info(struct net_device *netdev, 4210 struct hns3_desc *desc, struct sk_buff *skb, 4211 u32 bd_base_info) 4212 { 4213 if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) { 4214 struct hnae3_handle *h = hns3_get_handle(netdev); 4215 u32 nsec = le32_to_cpu(desc->ts_nsec); 4216 u32 sec = le32_to_cpu(desc->ts_sec); 4217 4218 if (h->ae_algo->ops->get_rx_hwts) 4219 h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec); 4220 } 4221 } 4222 4223 static void hns3_handle_rx_vlan_tag(struct hns3_enet_ring *ring, 4224 struct hns3_desc *desc, struct sk_buff *skb, 4225 u32 l234info) 4226 { 4227 struct net_device *netdev = ring_to_netdev(ring); 4228 4229 /* Based on hw strategy, the tag offloaded will be stored at 4230 * ot_vlan_tag in two layer tag case, and stored at vlan_tag 4231 * in one layer tag case. 4232 */ 4233 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) { 4234 u16 vlan_tag; 4235 4236 if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag)) 4237 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 4238 vlan_tag); 4239 } 4240 } 4241 4242 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb) 4243 { 4244 struct net_device *netdev = ring_to_netdev(ring); 4245 enum hns3_pkt_l2t_type l2_frame_type; 4246 u32 bd_base_info, l234info, ol_info; 4247 struct hns3_desc *desc; 4248 unsigned int len; 4249 int pre_ntc, ret; 4250 u16 csum; 4251 4252 /* bdinfo handled below is only valid on the last BD of the 4253 * current packet, and ring->next_to_clean indicates the first 4254 * descriptor of next packet, so need - 1 below. 4255 */ 4256 pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) : 4257 (ring->desc_num - 1); 4258 desc = &ring->desc[pre_ntc]; 4259 bd_base_info = le32_to_cpu(desc->rx.bd_base_info); 4260 l234info = le32_to_cpu(desc->rx.l234_info); 4261 ol_info = le32_to_cpu(desc->rx.ol_info); 4262 csum = le16_to_cpu(desc->csum); 4263 4264 hns3_handle_rx_ts_info(netdev, desc, skb, bd_base_info); 4265 4266 hns3_handle_rx_vlan_tag(ring, desc, skb, l234info); 4267 4268 if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) | 4269 BIT(HNS3_RXD_L2E_B))))) { 4270 u64_stats_update_begin(&ring->syncp); 4271 if (l234info & BIT(HNS3_RXD_L2E_B)) 4272 ring->stats.l2_err++; 4273 else 4274 ring->stats.err_pkt_len++; 4275 u64_stats_update_end(&ring->syncp); 4276 4277 return -EFAULT; 4278 } 4279 4280 len = skb->len; 4281 4282 /* Do update ip stack process */ 4283 skb->protocol = eth_type_trans(skb, netdev); 4284 4285 /* This is needed in order to enable forwarding support */ 4286 ret = hns3_set_gro_and_checksum(ring, skb, l234info, 4287 bd_base_info, ol_info, csum); 4288 if (unlikely(ret)) { 4289 hns3_ring_stats_update(ring, rx_err_cnt); 4290 return ret; 4291 } 4292 4293 l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M, 4294 HNS3_RXD_DMAC_S); 4295 4296 u64_stats_update_begin(&ring->syncp); 4297 ring->stats.rx_pkts++; 4298 ring->stats.rx_bytes += len; 4299 4300 if (l2_frame_type == HNS3_L2_TYPE_MULTICAST) 4301 ring->stats.rx_multicast++; 4302 4303 u64_stats_update_end(&ring->syncp); 4304 4305 ring->tqp_vector->rx_group.total_bytes += len; 4306 4307 hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash), 4308 l234info, ol_info); 4309 return 0; 4310 } 4311 4312 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring) 4313 { 4314 struct sk_buff *skb = ring->skb; 4315 struct hns3_desc_cb *desc_cb; 4316 struct hns3_desc *desc; 4317 unsigned int length; 4318 u32 bd_base_info; 4319 int ret; 4320 4321 desc = &ring->desc[ring->next_to_clean]; 4322 desc_cb = &ring->desc_cb[ring->next_to_clean]; 4323 4324 prefetch(desc); 4325 4326 if (!skb) { 4327 bd_base_info = le32_to_cpu(desc->rx.bd_base_info); 4328 /* Check valid BD */ 4329 if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) 4330 return -ENXIO; 4331 4332 dma_rmb(); 4333 length = le16_to_cpu(desc->rx.size); 4334 4335 ring->va = desc_cb->buf + desc_cb->page_offset; 4336 4337 dma_sync_single_for_cpu(ring_to_dev(ring), 4338 desc_cb->dma + desc_cb->page_offset, 4339 hns3_buf_size(ring), 4340 DMA_FROM_DEVICE); 4341 4342 /* Prefetch first cache line of first page. 4343 * Idea is to cache few bytes of the header of the packet. 4344 * Our L1 Cache line size is 64B so need to prefetch twice to make 4345 * it 128B. But in actual we can have greater size of caches with 4346 * 128B Level 1 cache lines. In such a case, single fetch would 4347 * suffice to cache in the relevant part of the header. 4348 */ 4349 net_prefetch(ring->va); 4350 4351 ret = hns3_alloc_skb(ring, length, ring->va); 4352 skb = ring->skb; 4353 4354 if (ret < 0) /* alloc buffer fail */ 4355 return ret; 4356 if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */ 4357 ret = hns3_add_frag(ring); 4358 if (ret) 4359 return ret; 4360 } 4361 } else { 4362 ret = hns3_add_frag(ring); 4363 if (ret) 4364 return ret; 4365 } 4366 4367 /* As the head data may be changed when GRO enable, copy 4368 * the head data in after other data rx completed 4369 */ 4370 if (skb->len > HNS3_RX_HEAD_SIZE) 4371 memcpy(skb->data, ring->va, 4372 ALIGN(ring->pull_len, sizeof(long))); 4373 4374 ret = hns3_handle_bdinfo(ring, skb); 4375 if (unlikely(ret)) { 4376 dev_kfree_skb_any(skb); 4377 return ret; 4378 } 4379 4380 skb_record_rx_queue(skb, ring->tqp->tqp_index); 4381 return 0; 4382 } 4383 4384 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget, 4385 void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *)) 4386 { 4387 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 4388 int unused_count = hns3_desc_unused(ring); 4389 bool failure = false; 4390 int recv_pkts = 0; 4391 int err; 4392 4393 unused_count -= ring->pending_buf; 4394 4395 while (recv_pkts < budget) { 4396 /* Reuse or realloc buffers */ 4397 if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 4398 failure = failure || 4399 hns3_nic_alloc_rx_buffers(ring, unused_count); 4400 unused_count = 0; 4401 } 4402 4403 /* Poll one pkt */ 4404 err = hns3_handle_rx_bd(ring); 4405 /* Do not get FE for the packet or failed to alloc skb */ 4406 if (unlikely(!ring->skb || err == -ENXIO)) { 4407 goto out; 4408 } else if (likely(!err)) { 4409 rx_fn(ring, ring->skb); 4410 recv_pkts++; 4411 } 4412 4413 unused_count += ring->pending_buf; 4414 ring->skb = NULL; 4415 ring->pending_buf = 0; 4416 } 4417 4418 out: 4419 /* sync head pointer before exiting, since hardware will calculate 4420 * FBD number with head pointer 4421 */ 4422 if (unused_count > 0) 4423 failure = failure || 4424 hns3_nic_alloc_rx_buffers(ring, unused_count); 4425 4426 return failure ? budget : recv_pkts; 4427 } 4428 4429 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector) 4430 { 4431 struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group; 4432 struct dim_sample sample = {}; 4433 4434 if (!rx_group->coal.adapt_enable) 4435 return; 4436 4437 dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets, 4438 rx_group->total_bytes, &sample); 4439 net_dim(&rx_group->dim, sample); 4440 } 4441 4442 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector) 4443 { 4444 struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group; 4445 struct dim_sample sample = {}; 4446 4447 if (!tx_group->coal.adapt_enable) 4448 return; 4449 4450 dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets, 4451 tx_group->total_bytes, &sample); 4452 net_dim(&tx_group->dim, sample); 4453 } 4454 4455 static int hns3_nic_common_poll(struct napi_struct *napi, int budget) 4456 { 4457 struct hns3_nic_priv *priv = netdev_priv(napi->dev); 4458 struct hns3_enet_ring *ring; 4459 int rx_pkt_total = 0; 4460 4461 struct hns3_enet_tqp_vector *tqp_vector = 4462 container_of(napi, struct hns3_enet_tqp_vector, napi); 4463 bool clean_complete = true; 4464 int rx_budget = budget; 4465 4466 if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) { 4467 napi_complete(napi); 4468 return 0; 4469 } 4470 4471 /* Since the actual Tx work is minimal, we can give the Tx a larger 4472 * budget and be more aggressive about cleaning up the Tx descriptors. 4473 */ 4474 hns3_for_each_ring(ring, tqp_vector->tx_group) 4475 hns3_clean_tx_ring(ring, budget); 4476 4477 /* make sure rx ring budget not smaller than 1 */ 4478 if (tqp_vector->num_tqps > 1) 4479 rx_budget = max(budget / tqp_vector->num_tqps, 1); 4480 4481 hns3_for_each_ring(ring, tqp_vector->rx_group) { 4482 int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget, 4483 hns3_rx_skb); 4484 if (rx_cleaned >= rx_budget) 4485 clean_complete = false; 4486 4487 rx_pkt_total += rx_cleaned; 4488 } 4489 4490 tqp_vector->rx_group.total_packets += rx_pkt_total; 4491 4492 if (!clean_complete) 4493 return budget; 4494 4495 if (napi_complete(napi) && 4496 likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) { 4497 hns3_update_rx_int_coalesce(tqp_vector); 4498 hns3_update_tx_int_coalesce(tqp_vector); 4499 4500 hns3_mask_vector_irq(tqp_vector, 1); 4501 } 4502 4503 return rx_pkt_total; 4504 } 4505 4506 static int hns3_create_ring_chain(struct hns3_enet_tqp_vector *tqp_vector, 4507 struct hnae3_ring_chain_node **head, 4508 bool is_tx) 4509 { 4510 u32 bit_value = is_tx ? HNAE3_RING_TYPE_TX : HNAE3_RING_TYPE_RX; 4511 u32 field_value = is_tx ? HNAE3_RING_GL_TX : HNAE3_RING_GL_RX; 4512 struct hnae3_ring_chain_node *cur_chain = *head; 4513 struct pci_dev *pdev = tqp_vector->handle->pdev; 4514 struct hnae3_ring_chain_node *chain; 4515 struct hns3_enet_ring *ring; 4516 4517 ring = is_tx ? tqp_vector->tx_group.ring : tqp_vector->rx_group.ring; 4518 4519 if (cur_chain) { 4520 while (cur_chain->next) 4521 cur_chain = cur_chain->next; 4522 } 4523 4524 while (ring) { 4525 chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL); 4526 if (!chain) 4527 return -ENOMEM; 4528 if (cur_chain) 4529 cur_chain->next = chain; 4530 else 4531 *head = chain; 4532 chain->tqp_index = ring->tqp->tqp_index; 4533 hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B, 4534 bit_value); 4535 hnae3_set_field(chain->int_gl_idx, 4536 HNAE3_RING_GL_IDX_M, 4537 HNAE3_RING_GL_IDX_S, field_value); 4538 4539 cur_chain = chain; 4540 4541 ring = ring->next; 4542 } 4543 4544 return 0; 4545 } 4546 4547 static struct hnae3_ring_chain_node * 4548 hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector) 4549 { 4550 struct pci_dev *pdev = tqp_vector->handle->pdev; 4551 struct hnae3_ring_chain_node *cur_chain = NULL; 4552 struct hnae3_ring_chain_node *chain; 4553 4554 if (hns3_create_ring_chain(tqp_vector, &cur_chain, true)) 4555 goto err_free_chain; 4556 4557 if (hns3_create_ring_chain(tqp_vector, &cur_chain, false)) 4558 goto err_free_chain; 4559 4560 return cur_chain; 4561 4562 err_free_chain: 4563 while (cur_chain) { 4564 chain = cur_chain->next; 4565 devm_kfree(&pdev->dev, cur_chain); 4566 cur_chain = chain; 4567 } 4568 4569 return NULL; 4570 } 4571 4572 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector, 4573 struct hnae3_ring_chain_node *head) 4574 { 4575 struct pci_dev *pdev = tqp_vector->handle->pdev; 4576 struct hnae3_ring_chain_node *chain_tmp, *chain; 4577 4578 chain = head; 4579 4580 while (chain) { 4581 chain_tmp = chain->next; 4582 devm_kfree(&pdev->dev, chain); 4583 chain = chain_tmp; 4584 } 4585 } 4586 4587 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group, 4588 struct hns3_enet_ring *ring) 4589 { 4590 ring->next = group->ring; 4591 group->ring = ring; 4592 4593 group->count++; 4594 } 4595 4596 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv) 4597 { 4598 struct pci_dev *pdev = priv->ae_handle->pdev; 4599 struct hns3_enet_tqp_vector *tqp_vector; 4600 int num_vectors = priv->vector_num; 4601 int numa_node; 4602 int vector_i; 4603 4604 numa_node = dev_to_node(&pdev->dev); 4605 4606 for (vector_i = 0; vector_i < num_vectors; vector_i++) { 4607 tqp_vector = &priv->tqp_vector[vector_i]; 4608 cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node), 4609 &tqp_vector->affinity_mask); 4610 } 4611 } 4612 4613 static void hns3_rx_dim_work(struct work_struct *work) 4614 { 4615 struct dim *dim = container_of(work, struct dim, work); 4616 struct hns3_enet_ring_group *group = container_of(dim, 4617 struct hns3_enet_ring_group, dim); 4618 struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector; 4619 struct dim_cq_moder cur_moder = 4620 net_dim_get_rx_moderation(dim->mode, dim->profile_ix); 4621 4622 hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec); 4623 tqp_vector->rx_group.coal.int_gl = cur_moder.usec; 4624 4625 if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) { 4626 hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts); 4627 tqp_vector->rx_group.coal.int_ql = cur_moder.pkts; 4628 } 4629 4630 dim->state = DIM_START_MEASURE; 4631 } 4632 4633 static void hns3_tx_dim_work(struct work_struct *work) 4634 { 4635 struct dim *dim = container_of(work, struct dim, work); 4636 struct hns3_enet_ring_group *group = container_of(dim, 4637 struct hns3_enet_ring_group, dim); 4638 struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector; 4639 struct dim_cq_moder cur_moder = 4640 net_dim_get_tx_moderation(dim->mode, dim->profile_ix); 4641 4642 hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec); 4643 tqp_vector->tx_group.coal.int_gl = cur_moder.usec; 4644 4645 if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) { 4646 hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts); 4647 tqp_vector->tx_group.coal.int_ql = cur_moder.pkts; 4648 } 4649 4650 dim->state = DIM_START_MEASURE; 4651 } 4652 4653 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector) 4654 { 4655 INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work); 4656 INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work); 4657 } 4658 4659 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv) 4660 { 4661 struct hnae3_handle *h = priv->ae_handle; 4662 struct hns3_enet_tqp_vector *tqp_vector; 4663 int ret; 4664 int i; 4665 4666 hns3_nic_set_cpumask(priv); 4667 4668 for (i = 0; i < priv->vector_num; i++) { 4669 tqp_vector = &priv->tqp_vector[i]; 4670 hns3_vector_coalesce_init_hw(tqp_vector, priv); 4671 tqp_vector->num_tqps = 0; 4672 hns3_nic_init_dim(tqp_vector); 4673 } 4674 4675 for (i = 0; i < h->kinfo.num_tqps; i++) { 4676 u16 vector_i = i % priv->vector_num; 4677 u16 tqp_num = h->kinfo.num_tqps; 4678 4679 tqp_vector = &priv->tqp_vector[vector_i]; 4680 4681 hns3_add_ring_to_group(&tqp_vector->tx_group, 4682 &priv->ring[i]); 4683 4684 hns3_add_ring_to_group(&tqp_vector->rx_group, 4685 &priv->ring[i + tqp_num]); 4686 4687 priv->ring[i].tqp_vector = tqp_vector; 4688 priv->ring[i + tqp_num].tqp_vector = tqp_vector; 4689 tqp_vector->num_tqps++; 4690 } 4691 4692 for (i = 0; i < priv->vector_num; i++) { 4693 struct hnae3_ring_chain_node *vector_ring_chain; 4694 4695 tqp_vector = &priv->tqp_vector[i]; 4696 4697 tqp_vector->rx_group.total_bytes = 0; 4698 tqp_vector->rx_group.total_packets = 0; 4699 tqp_vector->tx_group.total_bytes = 0; 4700 tqp_vector->tx_group.total_packets = 0; 4701 tqp_vector->handle = h; 4702 4703 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector); 4704 if (!vector_ring_chain) { 4705 ret = -ENOMEM; 4706 goto map_ring_fail; 4707 } 4708 4709 ret = h->ae_algo->ops->map_ring_to_vector(h, 4710 tqp_vector->vector_irq, vector_ring_chain); 4711 4712 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain); 4713 4714 if (ret) 4715 goto map_ring_fail; 4716 4717 netif_napi_add(priv->netdev, &tqp_vector->napi, 4718 hns3_nic_common_poll); 4719 } 4720 4721 return 0; 4722 4723 map_ring_fail: 4724 while (i--) 4725 netif_napi_del(&priv->tqp_vector[i].napi); 4726 4727 return ret; 4728 } 4729 4730 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv) 4731 { 4732 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); 4733 struct hns3_enet_coalesce *tx_coal = &priv->tx_coal; 4734 struct hns3_enet_coalesce *rx_coal = &priv->rx_coal; 4735 4736 /* initialize the configuration for interrupt coalescing. 4737 * 1. GL (Interrupt Gap Limiter) 4738 * 2. RL (Interrupt Rate Limiter) 4739 * 3. QL (Interrupt Quantity Limiter) 4740 * 4741 * Default: enable interrupt coalescing self-adaptive and GL 4742 */ 4743 tx_coal->adapt_enable = 1; 4744 rx_coal->adapt_enable = 1; 4745 4746 tx_coal->int_gl = HNS3_INT_GL_50K; 4747 rx_coal->int_gl = HNS3_INT_GL_50K; 4748 4749 rx_coal->flow_level = HNS3_FLOW_LOW; 4750 tx_coal->flow_level = HNS3_FLOW_LOW; 4751 4752 if (ae_dev->dev_specs.int_ql_max) { 4753 tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG; 4754 rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG; 4755 } 4756 } 4757 4758 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv) 4759 { 4760 struct hnae3_handle *h = priv->ae_handle; 4761 struct hns3_enet_tqp_vector *tqp_vector; 4762 struct hnae3_vector_info *vector; 4763 struct pci_dev *pdev = h->pdev; 4764 u16 tqp_num = h->kinfo.num_tqps; 4765 u16 vector_num; 4766 int ret = 0; 4767 u16 i; 4768 4769 /* RSS size, cpu online and vector_num should be the same */ 4770 /* Should consider 2p/4p later */ 4771 vector_num = min_t(u16, num_online_cpus(), tqp_num); 4772 4773 vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector), 4774 GFP_KERNEL); 4775 if (!vector) 4776 return -ENOMEM; 4777 4778 /* save the actual available vector number */ 4779 vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector); 4780 4781 priv->vector_num = vector_num; 4782 priv->tqp_vector = (struct hns3_enet_tqp_vector *) 4783 devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector), 4784 GFP_KERNEL); 4785 if (!priv->tqp_vector) { 4786 ret = -ENOMEM; 4787 goto out; 4788 } 4789 4790 for (i = 0; i < priv->vector_num; i++) { 4791 tqp_vector = &priv->tqp_vector[i]; 4792 tqp_vector->idx = i; 4793 tqp_vector->mask_addr = vector[i].io_addr; 4794 tqp_vector->vector_irq = vector[i].vector; 4795 hns3_vector_coalesce_init(tqp_vector, priv); 4796 } 4797 4798 out: 4799 devm_kfree(&pdev->dev, vector); 4800 return ret; 4801 } 4802 4803 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group) 4804 { 4805 group->ring = NULL; 4806 group->count = 0; 4807 } 4808 4809 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv) 4810 { 4811 struct hnae3_ring_chain_node *vector_ring_chain; 4812 struct hnae3_handle *h = priv->ae_handle; 4813 struct hns3_enet_tqp_vector *tqp_vector; 4814 int i; 4815 4816 for (i = 0; i < priv->vector_num; i++) { 4817 tqp_vector = &priv->tqp_vector[i]; 4818 4819 if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring) 4820 continue; 4821 4822 /* Since the mapping can be overwritten, when fail to get the 4823 * chain between vector and ring, we should go on to deal with 4824 * the remaining options. 4825 */ 4826 vector_ring_chain = hns3_get_vector_ring_chain(tqp_vector); 4827 if (!vector_ring_chain) 4828 dev_warn(priv->dev, "failed to get ring chain\n"); 4829 4830 h->ae_algo->ops->unmap_ring_from_vector(h, 4831 tqp_vector->vector_irq, vector_ring_chain); 4832 4833 hns3_free_vector_ring_chain(tqp_vector, vector_ring_chain); 4834 4835 hns3_clear_ring_group(&tqp_vector->rx_group); 4836 hns3_clear_ring_group(&tqp_vector->tx_group); 4837 netif_napi_del(&priv->tqp_vector[i].napi); 4838 } 4839 } 4840 4841 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv) 4842 { 4843 struct hnae3_handle *h = priv->ae_handle; 4844 struct pci_dev *pdev = h->pdev; 4845 int i, ret; 4846 4847 for (i = 0; i < priv->vector_num; i++) { 4848 struct hns3_enet_tqp_vector *tqp_vector; 4849 4850 tqp_vector = &priv->tqp_vector[i]; 4851 ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq); 4852 if (ret) 4853 return; 4854 } 4855 4856 devm_kfree(&pdev->dev, priv->tqp_vector); 4857 } 4858 4859 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv, 4860 unsigned int ring_type) 4861 { 4862 int queue_num = priv->ae_handle->kinfo.num_tqps; 4863 struct hns3_enet_ring *ring; 4864 int desc_num; 4865 4866 if (ring_type == HNAE3_RING_TYPE_TX) { 4867 ring = &priv->ring[q->tqp_index]; 4868 desc_num = priv->ae_handle->kinfo.num_tx_desc; 4869 ring->queue_index = q->tqp_index; 4870 ring->tx_copybreak = priv->tx_copybreak; 4871 ring->last_to_use = 0; 4872 } else { 4873 ring = &priv->ring[q->tqp_index + queue_num]; 4874 desc_num = priv->ae_handle->kinfo.num_rx_desc; 4875 ring->queue_index = q->tqp_index; 4876 ring->rx_copybreak = priv->rx_copybreak; 4877 } 4878 4879 hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type); 4880 4881 ring->tqp = q; 4882 ring->desc = NULL; 4883 ring->desc_cb = NULL; 4884 ring->dev = priv->dev; 4885 ring->desc_dma_addr = 0; 4886 ring->buf_size = q->buf_size; 4887 ring->desc_num = desc_num; 4888 ring->next_to_use = 0; 4889 ring->next_to_clean = 0; 4890 } 4891 4892 static void hns3_queue_to_ring(struct hnae3_queue *tqp, 4893 struct hns3_nic_priv *priv) 4894 { 4895 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX); 4896 hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX); 4897 } 4898 4899 static int hns3_get_ring_config(struct hns3_nic_priv *priv) 4900 { 4901 struct hnae3_handle *h = priv->ae_handle; 4902 struct pci_dev *pdev = h->pdev; 4903 int i; 4904 4905 priv->ring = devm_kzalloc(&pdev->dev, 4906 array3_size(h->kinfo.num_tqps, 4907 sizeof(*priv->ring), 2), 4908 GFP_KERNEL); 4909 if (!priv->ring) 4910 return -ENOMEM; 4911 4912 for (i = 0; i < h->kinfo.num_tqps; i++) 4913 hns3_queue_to_ring(h->kinfo.tqp[i], priv); 4914 4915 return 0; 4916 } 4917 4918 static void hns3_put_ring_config(struct hns3_nic_priv *priv) 4919 { 4920 if (!priv->ring) 4921 return; 4922 4923 devm_kfree(priv->dev, priv->ring); 4924 priv->ring = NULL; 4925 } 4926 4927 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring) 4928 { 4929 struct page_pool_params pp_params = { 4930 .flags = PP_FLAG_DMA_MAP | PP_FLAG_PAGE_FRAG | 4931 PP_FLAG_DMA_SYNC_DEV, 4932 .order = hns3_page_order(ring), 4933 .pool_size = ring->desc_num * hns3_buf_size(ring) / 4934 (PAGE_SIZE << hns3_page_order(ring)), 4935 .nid = dev_to_node(ring_to_dev(ring)), 4936 .dev = ring_to_dev(ring), 4937 .dma_dir = DMA_FROM_DEVICE, 4938 .offset = 0, 4939 .max_len = PAGE_SIZE << hns3_page_order(ring), 4940 }; 4941 4942 ring->page_pool = page_pool_create(&pp_params); 4943 if (IS_ERR(ring->page_pool)) { 4944 dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n", 4945 PTR_ERR(ring->page_pool)); 4946 ring->page_pool = NULL; 4947 } 4948 } 4949 4950 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring) 4951 { 4952 int ret; 4953 4954 if (ring->desc_num <= 0 || ring->buf_size <= 0) 4955 return -EINVAL; 4956 4957 ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num, 4958 sizeof(ring->desc_cb[0]), GFP_KERNEL); 4959 if (!ring->desc_cb) { 4960 ret = -ENOMEM; 4961 goto out; 4962 } 4963 4964 ret = hns3_alloc_desc(ring); 4965 if (ret) 4966 goto out_with_desc_cb; 4967 4968 if (!HNAE3_IS_TX_RING(ring)) { 4969 if (page_pool_enabled) 4970 hns3_alloc_page_pool(ring); 4971 4972 ret = hns3_alloc_ring_buffers(ring); 4973 if (ret) 4974 goto out_with_desc; 4975 } else { 4976 hns3_init_tx_spare_buffer(ring); 4977 } 4978 4979 return 0; 4980 4981 out_with_desc: 4982 hns3_free_desc(ring); 4983 out_with_desc_cb: 4984 devm_kfree(ring_to_dev(ring), ring->desc_cb); 4985 ring->desc_cb = NULL; 4986 out: 4987 return ret; 4988 } 4989 4990 void hns3_fini_ring(struct hns3_enet_ring *ring) 4991 { 4992 hns3_free_desc(ring); 4993 devm_kfree(ring_to_dev(ring), ring->desc_cb); 4994 ring->desc_cb = NULL; 4995 ring->next_to_clean = 0; 4996 ring->next_to_use = 0; 4997 ring->last_to_use = 0; 4998 ring->pending_buf = 0; 4999 if (!HNAE3_IS_TX_RING(ring) && ring->skb) { 5000 dev_kfree_skb_any(ring->skb); 5001 ring->skb = NULL; 5002 } else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) { 5003 struct hns3_tx_spare *tx_spare = ring->tx_spare; 5004 5005 dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len, 5006 DMA_TO_DEVICE); 5007 free_pages((unsigned long)tx_spare->buf, 5008 get_order(tx_spare->len)); 5009 devm_kfree(ring_to_dev(ring), tx_spare); 5010 ring->tx_spare = NULL; 5011 } 5012 5013 if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) { 5014 page_pool_destroy(ring->page_pool); 5015 ring->page_pool = NULL; 5016 } 5017 } 5018 5019 static int hns3_buf_size2type(u32 buf_size) 5020 { 5021 int bd_size_type; 5022 5023 switch (buf_size) { 5024 case 512: 5025 bd_size_type = HNS3_BD_SIZE_512_TYPE; 5026 break; 5027 case 1024: 5028 bd_size_type = HNS3_BD_SIZE_1024_TYPE; 5029 break; 5030 case 2048: 5031 bd_size_type = HNS3_BD_SIZE_2048_TYPE; 5032 break; 5033 case 4096: 5034 bd_size_type = HNS3_BD_SIZE_4096_TYPE; 5035 break; 5036 default: 5037 bd_size_type = HNS3_BD_SIZE_2048_TYPE; 5038 } 5039 5040 return bd_size_type; 5041 } 5042 5043 static void hns3_init_ring_hw(struct hns3_enet_ring *ring) 5044 { 5045 dma_addr_t dma = ring->desc_dma_addr; 5046 struct hnae3_queue *q = ring->tqp; 5047 5048 if (!HNAE3_IS_TX_RING(ring)) { 5049 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma); 5050 hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG, 5051 (u32)((dma >> 31) >> 1)); 5052 5053 hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG, 5054 hns3_buf_size2type(ring->buf_size)); 5055 hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG, 5056 ring->desc_num / 8 - 1); 5057 } else { 5058 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG, 5059 (u32)dma); 5060 hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG, 5061 (u32)((dma >> 31) >> 1)); 5062 5063 hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG, 5064 ring->desc_num / 8 - 1); 5065 } 5066 } 5067 5068 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv) 5069 { 5070 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo; 5071 struct hnae3_tc_info *tc_info = &kinfo->tc_info; 5072 int i; 5073 5074 for (i = 0; i < tc_info->num_tc; i++) { 5075 int j; 5076 5077 for (j = 0; j < tc_info->tqp_count[i]; j++) { 5078 struct hnae3_queue *q; 5079 5080 q = priv->ring[tc_info->tqp_offset[i] + j].tqp; 5081 hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i); 5082 } 5083 } 5084 } 5085 5086 int hns3_init_all_ring(struct hns3_nic_priv *priv) 5087 { 5088 struct hnae3_handle *h = priv->ae_handle; 5089 int ring_num = h->kinfo.num_tqps * 2; 5090 int i, j; 5091 int ret; 5092 5093 for (i = 0; i < ring_num; i++) { 5094 ret = hns3_alloc_ring_memory(&priv->ring[i]); 5095 if (ret) { 5096 dev_err(priv->dev, 5097 "Alloc ring memory fail! ret=%d\n", ret); 5098 goto out_when_alloc_ring_memory; 5099 } 5100 5101 u64_stats_init(&priv->ring[i].syncp); 5102 } 5103 5104 return 0; 5105 5106 out_when_alloc_ring_memory: 5107 for (j = i - 1; j >= 0; j--) 5108 hns3_fini_ring(&priv->ring[j]); 5109 5110 return -ENOMEM; 5111 } 5112 5113 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv) 5114 { 5115 struct hnae3_handle *h = priv->ae_handle; 5116 int i; 5117 5118 for (i = 0; i < h->kinfo.num_tqps; i++) { 5119 hns3_fini_ring(&priv->ring[i]); 5120 hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]); 5121 } 5122 } 5123 5124 /* Set mac addr if it is configured. or leave it to the AE driver */ 5125 static int hns3_init_mac_addr(struct net_device *netdev) 5126 { 5127 struct hns3_nic_priv *priv = netdev_priv(netdev); 5128 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 5129 struct hnae3_handle *h = priv->ae_handle; 5130 u8 mac_addr_temp[ETH_ALEN]; 5131 int ret = 0; 5132 5133 if (h->ae_algo->ops->get_mac_addr) 5134 h->ae_algo->ops->get_mac_addr(h, mac_addr_temp); 5135 5136 /* Check if the MAC address is valid, if not get a random one */ 5137 if (!is_valid_ether_addr(mac_addr_temp)) { 5138 eth_hw_addr_random(netdev); 5139 hnae3_format_mac_addr(format_mac_addr, netdev->dev_addr); 5140 dev_warn(priv->dev, "using random MAC address %s\n", 5141 format_mac_addr); 5142 } else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) { 5143 eth_hw_addr_set(netdev, mac_addr_temp); 5144 ether_addr_copy(netdev->perm_addr, mac_addr_temp); 5145 } else { 5146 return 0; 5147 } 5148 5149 if (h->ae_algo->ops->set_mac_addr) 5150 ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true); 5151 5152 return ret; 5153 } 5154 5155 static int hns3_init_phy(struct net_device *netdev) 5156 { 5157 struct hnae3_handle *h = hns3_get_handle(netdev); 5158 int ret = 0; 5159 5160 if (h->ae_algo->ops->mac_connect_phy) 5161 ret = h->ae_algo->ops->mac_connect_phy(h); 5162 5163 return ret; 5164 } 5165 5166 static void hns3_uninit_phy(struct net_device *netdev) 5167 { 5168 struct hnae3_handle *h = hns3_get_handle(netdev); 5169 5170 if (h->ae_algo->ops->mac_disconnect_phy) 5171 h->ae_algo->ops->mac_disconnect_phy(h); 5172 } 5173 5174 static int hns3_client_start(struct hnae3_handle *handle) 5175 { 5176 if (!handle->ae_algo->ops->client_start) 5177 return 0; 5178 5179 return handle->ae_algo->ops->client_start(handle); 5180 } 5181 5182 static void hns3_client_stop(struct hnae3_handle *handle) 5183 { 5184 if (!handle->ae_algo->ops->client_stop) 5185 return; 5186 5187 handle->ae_algo->ops->client_stop(handle); 5188 } 5189 5190 static void hns3_info_show(struct hns3_nic_priv *priv) 5191 { 5192 struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo; 5193 char format_mac_addr[HNAE3_FORMAT_MAC_ADDR_LEN]; 5194 5195 hnae3_format_mac_addr(format_mac_addr, priv->netdev->dev_addr); 5196 dev_info(priv->dev, "MAC address: %s\n", format_mac_addr); 5197 dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps); 5198 dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size); 5199 dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size); 5200 dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len); 5201 dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc); 5202 dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc); 5203 dev_info(priv->dev, "Total number of enabled TCs: %u\n", 5204 kinfo->tc_info.num_tc); 5205 dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu); 5206 } 5207 5208 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv, 5209 enum dim_cq_period_mode mode, bool is_tx) 5210 { 5211 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev); 5212 struct hnae3_handle *handle = priv->ae_handle; 5213 int i; 5214 5215 if (is_tx) { 5216 priv->tx_cqe_mode = mode; 5217 5218 for (i = 0; i < priv->vector_num; i++) 5219 priv->tqp_vector[i].tx_group.dim.mode = mode; 5220 } else { 5221 priv->rx_cqe_mode = mode; 5222 5223 for (i = 0; i < priv->vector_num; i++) 5224 priv->tqp_vector[i].rx_group.dim.mode = mode; 5225 } 5226 5227 if (hnae3_ae_dev_cq_supported(ae_dev)) { 5228 u32 new_mode; 5229 u64 reg; 5230 5231 new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ? 5232 HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE; 5233 reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG; 5234 5235 writel(new_mode, handle->kinfo.io_base + reg); 5236 } 5237 } 5238 5239 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv, 5240 enum dim_cq_period_mode tx_mode, 5241 enum dim_cq_period_mode rx_mode) 5242 { 5243 hns3_set_cq_period_mode(priv, tx_mode, true); 5244 hns3_set_cq_period_mode(priv, rx_mode, false); 5245 } 5246 5247 static void hns3_state_init(struct hnae3_handle *handle) 5248 { 5249 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev); 5250 struct net_device *netdev = handle->kinfo.netdev; 5251 struct hns3_nic_priv *priv = netdev_priv(netdev); 5252 5253 set_bit(HNS3_NIC_STATE_INITED, &priv->state); 5254 5255 if (test_bit(HNAE3_DEV_SUPPORT_TX_PUSH_B, ae_dev->caps)) 5256 set_bit(HNS3_NIC_STATE_TX_PUSH_ENABLE, &priv->state); 5257 5258 if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) 5259 set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags); 5260 5261 if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps)) 5262 set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state); 5263 5264 if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev)) 5265 set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state); 5266 } 5267 5268 static void hns3_state_uninit(struct hnae3_handle *handle) 5269 { 5270 struct hns3_nic_priv *priv = handle->priv; 5271 5272 clear_bit(HNS3_NIC_STATE_INITED, &priv->state); 5273 } 5274 5275 static int hns3_client_init(struct hnae3_handle *handle) 5276 { 5277 struct pci_dev *pdev = handle->pdev; 5278 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev); 5279 u16 alloc_tqps, max_rss_size; 5280 struct hns3_nic_priv *priv; 5281 struct net_device *netdev; 5282 int ret; 5283 5284 handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps, 5285 &max_rss_size); 5286 netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps); 5287 if (!netdev) 5288 return -ENOMEM; 5289 5290 priv = netdev_priv(netdev); 5291 priv->dev = &pdev->dev; 5292 priv->netdev = netdev; 5293 priv->ae_handle = handle; 5294 priv->tx_timeout_count = 0; 5295 priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num; 5296 set_bit(HNS3_NIC_STATE_DOWN, &priv->state); 5297 5298 handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL); 5299 5300 handle->kinfo.netdev = netdev; 5301 handle->priv = (void *)priv; 5302 5303 hns3_init_mac_addr(netdev); 5304 5305 hns3_set_default_feature(netdev); 5306 5307 netdev->watchdog_timeo = HNS3_TX_TIMEOUT; 5308 netdev->priv_flags |= IFF_UNICAST_FLT; 5309 netdev->netdev_ops = &hns3_nic_netdev_ops; 5310 SET_NETDEV_DEV(netdev, &pdev->dev); 5311 hns3_ethtool_set_ops(netdev); 5312 5313 /* Carrier off reporting is important to ethtool even BEFORE open */ 5314 netif_carrier_off(netdev); 5315 5316 ret = hns3_get_ring_config(priv); 5317 if (ret) { 5318 ret = -ENOMEM; 5319 goto out_get_ring_cfg; 5320 } 5321 5322 hns3_nic_init_coal_cfg(priv); 5323 5324 ret = hns3_nic_alloc_vector_data(priv); 5325 if (ret) { 5326 ret = -ENOMEM; 5327 goto out_alloc_vector_data; 5328 } 5329 5330 ret = hns3_nic_init_vector_data(priv); 5331 if (ret) { 5332 ret = -ENOMEM; 5333 goto out_init_vector_data; 5334 } 5335 5336 ret = hns3_init_all_ring(priv); 5337 if (ret) { 5338 ret = -ENOMEM; 5339 goto out_init_ring; 5340 } 5341 5342 hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE, 5343 DIM_CQ_PERIOD_MODE_START_FROM_EQE); 5344 5345 ret = hns3_init_phy(netdev); 5346 if (ret) 5347 goto out_init_phy; 5348 5349 /* the device can work without cpu rmap, only aRFS needs it */ 5350 ret = hns3_set_rx_cpu_rmap(netdev); 5351 if (ret) 5352 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret); 5353 5354 ret = hns3_nic_init_irq(priv); 5355 if (ret) { 5356 dev_err(priv->dev, "init irq failed! ret=%d\n", ret); 5357 hns3_free_rx_cpu_rmap(netdev); 5358 goto out_init_irq_fail; 5359 } 5360 5361 ret = hns3_client_start(handle); 5362 if (ret) { 5363 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret); 5364 goto out_client_start; 5365 } 5366 5367 hns3_dcbnl_setup(handle); 5368 5369 ret = hns3_dbg_init(handle); 5370 if (ret) { 5371 dev_err(priv->dev, "failed to init debugfs, ret = %d\n", 5372 ret); 5373 goto out_client_start; 5374 } 5375 5376 netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size); 5377 5378 hns3_state_init(handle); 5379 5380 ret = register_netdev(netdev); 5381 if (ret) { 5382 dev_err(priv->dev, "probe register netdev fail!\n"); 5383 goto out_reg_netdev_fail; 5384 } 5385 5386 if (netif_msg_drv(handle)) 5387 hns3_info_show(priv); 5388 5389 return ret; 5390 5391 out_reg_netdev_fail: 5392 hns3_state_uninit(handle); 5393 hns3_dbg_uninit(handle); 5394 hns3_client_stop(handle); 5395 out_client_start: 5396 hns3_free_rx_cpu_rmap(netdev); 5397 hns3_nic_uninit_irq(priv); 5398 out_init_irq_fail: 5399 hns3_uninit_phy(netdev); 5400 out_init_phy: 5401 hns3_uninit_all_ring(priv); 5402 out_init_ring: 5403 hns3_nic_uninit_vector_data(priv); 5404 out_init_vector_data: 5405 hns3_nic_dealloc_vector_data(priv); 5406 out_alloc_vector_data: 5407 priv->ring = NULL; 5408 out_get_ring_cfg: 5409 priv->ae_handle = NULL; 5410 free_netdev(netdev); 5411 return ret; 5412 } 5413 5414 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset) 5415 { 5416 struct net_device *netdev = handle->kinfo.netdev; 5417 struct hns3_nic_priv *priv = netdev_priv(netdev); 5418 5419 if (netdev->reg_state != NETREG_UNINITIALIZED) 5420 unregister_netdev(netdev); 5421 5422 hns3_client_stop(handle); 5423 5424 hns3_uninit_phy(netdev); 5425 5426 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) { 5427 netdev_warn(netdev, "already uninitialized\n"); 5428 goto out_netdev_free; 5429 } 5430 5431 hns3_free_rx_cpu_rmap(netdev); 5432 5433 hns3_nic_uninit_irq(priv); 5434 5435 hns3_clear_all_ring(handle, true); 5436 5437 hns3_nic_uninit_vector_data(priv); 5438 5439 hns3_nic_dealloc_vector_data(priv); 5440 5441 hns3_uninit_all_ring(priv); 5442 5443 hns3_put_ring_config(priv); 5444 5445 out_netdev_free: 5446 hns3_dbg_uninit(handle); 5447 free_netdev(netdev); 5448 } 5449 5450 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup) 5451 { 5452 struct net_device *netdev = handle->kinfo.netdev; 5453 5454 if (!netdev) 5455 return; 5456 5457 if (linkup) { 5458 netif_tx_wake_all_queues(netdev); 5459 netif_carrier_on(netdev); 5460 if (netif_msg_link(handle)) 5461 netdev_info(netdev, "link up\n"); 5462 } else { 5463 netif_carrier_off(netdev); 5464 netif_tx_stop_all_queues(netdev); 5465 if (netif_msg_link(handle)) 5466 netdev_info(netdev, "link down\n"); 5467 } 5468 } 5469 5470 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring) 5471 { 5472 while (ring->next_to_clean != ring->next_to_use) { 5473 ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0; 5474 hns3_free_buffer_detach(ring, ring->next_to_clean, 0); 5475 ring_ptr_move_fw(ring, next_to_clean); 5476 } 5477 5478 ring->pending_buf = 0; 5479 } 5480 5481 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring) 5482 { 5483 struct hns3_desc_cb res_cbs; 5484 int ret; 5485 5486 while (ring->next_to_use != ring->next_to_clean) { 5487 /* When a buffer is not reused, it's memory has been 5488 * freed in hns3_handle_rx_bd or will be freed by 5489 * stack, so we need to replace the buffer here. 5490 */ 5491 if (!ring->desc_cb[ring->next_to_use].reuse_flag) { 5492 ret = hns3_alloc_and_map_buffer(ring, &res_cbs); 5493 if (ret) { 5494 hns3_ring_stats_update(ring, sw_err_cnt); 5495 /* if alloc new buffer fail, exit directly 5496 * and reclear in up flow. 5497 */ 5498 netdev_warn(ring_to_netdev(ring), 5499 "reserve buffer map failed, ret = %d\n", 5500 ret); 5501 return ret; 5502 } 5503 hns3_replace_buffer(ring, ring->next_to_use, &res_cbs); 5504 } 5505 ring_ptr_move_fw(ring, next_to_use); 5506 } 5507 5508 /* Free the pending skb in rx ring */ 5509 if (ring->skb) { 5510 dev_kfree_skb_any(ring->skb); 5511 ring->skb = NULL; 5512 ring->pending_buf = 0; 5513 } 5514 5515 return 0; 5516 } 5517 5518 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring) 5519 { 5520 while (ring->next_to_use != ring->next_to_clean) { 5521 /* When a buffer is not reused, it's memory has been 5522 * freed in hns3_handle_rx_bd or will be freed by 5523 * stack, so only need to unmap the buffer here. 5524 */ 5525 if (!ring->desc_cb[ring->next_to_use].reuse_flag) { 5526 hns3_unmap_buffer(ring, 5527 &ring->desc_cb[ring->next_to_use]); 5528 ring->desc_cb[ring->next_to_use].dma = 0; 5529 } 5530 5531 ring_ptr_move_fw(ring, next_to_use); 5532 } 5533 } 5534 5535 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force) 5536 { 5537 struct net_device *ndev = h->kinfo.netdev; 5538 struct hns3_nic_priv *priv = netdev_priv(ndev); 5539 u32 i; 5540 5541 for (i = 0; i < h->kinfo.num_tqps; i++) { 5542 struct hns3_enet_ring *ring; 5543 5544 ring = &priv->ring[i]; 5545 hns3_clear_tx_ring(ring); 5546 5547 ring = &priv->ring[i + h->kinfo.num_tqps]; 5548 /* Continue to clear other rings even if clearing some 5549 * rings failed. 5550 */ 5551 if (force) 5552 hns3_force_clear_rx_ring(ring); 5553 else 5554 hns3_clear_rx_ring(ring); 5555 } 5556 } 5557 5558 int hns3_nic_reset_all_ring(struct hnae3_handle *h) 5559 { 5560 struct net_device *ndev = h->kinfo.netdev; 5561 struct hns3_nic_priv *priv = netdev_priv(ndev); 5562 struct hns3_enet_ring *rx_ring; 5563 int i, j; 5564 int ret; 5565 5566 ret = h->ae_algo->ops->reset_queue(h); 5567 if (ret) 5568 return ret; 5569 5570 for (i = 0; i < h->kinfo.num_tqps; i++) { 5571 hns3_init_ring_hw(&priv->ring[i]); 5572 5573 /* We need to clear tx ring here because self test will 5574 * use the ring and will not run down before up 5575 */ 5576 hns3_clear_tx_ring(&priv->ring[i]); 5577 priv->ring[i].next_to_clean = 0; 5578 priv->ring[i].next_to_use = 0; 5579 priv->ring[i].last_to_use = 0; 5580 5581 rx_ring = &priv->ring[i + h->kinfo.num_tqps]; 5582 hns3_init_ring_hw(rx_ring); 5583 ret = hns3_clear_rx_ring(rx_ring); 5584 if (ret) 5585 return ret; 5586 5587 /* We can not know the hardware head and tail when this 5588 * function is called in reset flow, so we reuse all desc. 5589 */ 5590 for (j = 0; j < rx_ring->desc_num; j++) 5591 hns3_reuse_buffer(rx_ring, j); 5592 5593 rx_ring->next_to_clean = 0; 5594 rx_ring->next_to_use = 0; 5595 } 5596 5597 hns3_init_tx_ring_tc(priv); 5598 5599 return 0; 5600 } 5601 5602 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle) 5603 { 5604 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 5605 struct net_device *ndev = kinfo->netdev; 5606 struct hns3_nic_priv *priv = netdev_priv(ndev); 5607 5608 if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state)) 5609 return 0; 5610 5611 if (!netif_running(ndev)) 5612 return 0; 5613 5614 return hns3_nic_net_stop(ndev); 5615 } 5616 5617 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle) 5618 { 5619 struct hnae3_knic_private_info *kinfo = &handle->kinfo; 5620 struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev); 5621 int ret = 0; 5622 5623 if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) { 5624 netdev_err(kinfo->netdev, "device is not initialized yet\n"); 5625 return -EFAULT; 5626 } 5627 5628 clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state); 5629 5630 if (netif_running(kinfo->netdev)) { 5631 ret = hns3_nic_net_open(kinfo->netdev); 5632 if (ret) { 5633 set_bit(HNS3_NIC_STATE_RESETTING, &priv->state); 5634 netdev_err(kinfo->netdev, 5635 "net up fail, ret=%d!\n", ret); 5636 return ret; 5637 } 5638 } 5639 5640 return ret; 5641 } 5642 5643 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle) 5644 { 5645 struct net_device *netdev = handle->kinfo.netdev; 5646 struct hns3_nic_priv *priv = netdev_priv(netdev); 5647 int ret; 5648 5649 /* Carrier off reporting is important to ethtool even BEFORE open */ 5650 netif_carrier_off(netdev); 5651 5652 ret = hns3_get_ring_config(priv); 5653 if (ret) 5654 return ret; 5655 5656 ret = hns3_nic_alloc_vector_data(priv); 5657 if (ret) 5658 goto err_put_ring; 5659 5660 ret = hns3_nic_init_vector_data(priv); 5661 if (ret) 5662 goto err_dealloc_vector; 5663 5664 ret = hns3_init_all_ring(priv); 5665 if (ret) 5666 goto err_uninit_vector; 5667 5668 hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode); 5669 5670 /* the device can work without cpu rmap, only aRFS needs it */ 5671 ret = hns3_set_rx_cpu_rmap(netdev); 5672 if (ret) 5673 dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret); 5674 5675 ret = hns3_nic_init_irq(priv); 5676 if (ret) { 5677 dev_err(priv->dev, "init irq failed! ret=%d\n", ret); 5678 hns3_free_rx_cpu_rmap(netdev); 5679 goto err_init_irq_fail; 5680 } 5681 5682 if (!hns3_is_phys_func(handle->pdev)) 5683 hns3_init_mac_addr(netdev); 5684 5685 ret = hns3_client_start(handle); 5686 if (ret) { 5687 dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret); 5688 goto err_client_start_fail; 5689 } 5690 5691 set_bit(HNS3_NIC_STATE_INITED, &priv->state); 5692 5693 return ret; 5694 5695 err_client_start_fail: 5696 hns3_free_rx_cpu_rmap(netdev); 5697 hns3_nic_uninit_irq(priv); 5698 err_init_irq_fail: 5699 hns3_uninit_all_ring(priv); 5700 err_uninit_vector: 5701 hns3_nic_uninit_vector_data(priv); 5702 err_dealloc_vector: 5703 hns3_nic_dealloc_vector_data(priv); 5704 err_put_ring: 5705 hns3_put_ring_config(priv); 5706 5707 return ret; 5708 } 5709 5710 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle) 5711 { 5712 struct net_device *netdev = handle->kinfo.netdev; 5713 struct hns3_nic_priv *priv = netdev_priv(netdev); 5714 5715 if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) { 5716 netdev_warn(netdev, "already uninitialized\n"); 5717 return 0; 5718 } 5719 5720 hns3_free_rx_cpu_rmap(netdev); 5721 hns3_nic_uninit_irq(priv); 5722 hns3_clear_all_ring(handle, true); 5723 hns3_reset_tx_queue(priv->ae_handle); 5724 5725 hns3_nic_uninit_vector_data(priv); 5726 5727 hns3_nic_dealloc_vector_data(priv); 5728 5729 hns3_uninit_all_ring(priv); 5730 5731 hns3_put_ring_config(priv); 5732 5733 return 0; 5734 } 5735 5736 int hns3_reset_notify(struct hnae3_handle *handle, 5737 enum hnae3_reset_notify_type type) 5738 { 5739 int ret = 0; 5740 5741 switch (type) { 5742 case HNAE3_UP_CLIENT: 5743 ret = hns3_reset_notify_up_enet(handle); 5744 break; 5745 case HNAE3_DOWN_CLIENT: 5746 ret = hns3_reset_notify_down_enet(handle); 5747 break; 5748 case HNAE3_INIT_CLIENT: 5749 ret = hns3_reset_notify_init_enet(handle); 5750 break; 5751 case HNAE3_UNINIT_CLIENT: 5752 ret = hns3_reset_notify_uninit_enet(handle); 5753 break; 5754 default: 5755 break; 5756 } 5757 5758 return ret; 5759 } 5760 5761 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num, 5762 bool rxfh_configured) 5763 { 5764 int ret; 5765 5766 ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num, 5767 rxfh_configured); 5768 if (ret) { 5769 dev_err(&handle->pdev->dev, 5770 "Change tqp num(%u) fail.\n", new_tqp_num); 5771 return ret; 5772 } 5773 5774 ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT); 5775 if (ret) 5776 return ret; 5777 5778 ret = hns3_reset_notify(handle, HNAE3_UP_CLIENT); 5779 if (ret) 5780 hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT); 5781 5782 return ret; 5783 } 5784 5785 int hns3_set_channels(struct net_device *netdev, 5786 struct ethtool_channels *ch) 5787 { 5788 struct hnae3_handle *h = hns3_get_handle(netdev); 5789 struct hnae3_knic_private_info *kinfo = &h->kinfo; 5790 bool rxfh_configured = netif_is_rxfh_configured(netdev); 5791 u32 new_tqp_num = ch->combined_count; 5792 u16 org_tqp_num; 5793 int ret; 5794 5795 if (hns3_nic_resetting(netdev)) 5796 return -EBUSY; 5797 5798 if (ch->rx_count || ch->tx_count) 5799 return -EINVAL; 5800 5801 if (kinfo->tc_info.mqprio_active) { 5802 dev_err(&netdev->dev, 5803 "it's not allowed to set channels via ethtool when MQPRIO mode is on\n"); 5804 return -EINVAL; 5805 } 5806 5807 if (new_tqp_num > hns3_get_max_available_channels(h) || 5808 new_tqp_num < 1) { 5809 dev_err(&netdev->dev, 5810 "Change tqps fail, the tqp range is from 1 to %u", 5811 hns3_get_max_available_channels(h)); 5812 return -EINVAL; 5813 } 5814 5815 if (kinfo->rss_size == new_tqp_num) 5816 return 0; 5817 5818 netif_dbg(h, drv, netdev, 5819 "set channels: tqp_num=%u, rxfh=%d\n", 5820 new_tqp_num, rxfh_configured); 5821 5822 ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT); 5823 if (ret) 5824 return ret; 5825 5826 ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT); 5827 if (ret) 5828 return ret; 5829 5830 org_tqp_num = h->kinfo.num_tqps; 5831 ret = hns3_change_channels(h, new_tqp_num, rxfh_configured); 5832 if (ret) { 5833 int ret1; 5834 5835 netdev_warn(netdev, 5836 "Change channels fail, revert to old value\n"); 5837 ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured); 5838 if (ret1) { 5839 netdev_err(netdev, 5840 "revert to old channel fail\n"); 5841 return ret1; 5842 } 5843 5844 return ret; 5845 } 5846 5847 return 0; 5848 } 5849 5850 void hns3_external_lb_prepare(struct net_device *ndev, bool if_running) 5851 { 5852 struct hns3_nic_priv *priv = netdev_priv(ndev); 5853 struct hnae3_handle *h = priv->ae_handle; 5854 int i; 5855 5856 if (!if_running) 5857 return; 5858 5859 netif_carrier_off(ndev); 5860 netif_tx_disable(ndev); 5861 5862 for (i = 0; i < priv->vector_num; i++) 5863 hns3_vector_disable(&priv->tqp_vector[i]); 5864 5865 for (i = 0; i < h->kinfo.num_tqps; i++) 5866 hns3_tqp_disable(h->kinfo.tqp[i]); 5867 5868 /* delay ring buffer clearing to hns3_reset_notify_uninit_enet 5869 * during reset process, because driver may not be able 5870 * to disable the ring through firmware when downing the netdev. 5871 */ 5872 if (!hns3_nic_resetting(ndev)) 5873 hns3_nic_reset_all_ring(priv->ae_handle); 5874 5875 hns3_reset_tx_queue(priv->ae_handle); 5876 } 5877 5878 void hns3_external_lb_restore(struct net_device *ndev, bool if_running) 5879 { 5880 struct hns3_nic_priv *priv = netdev_priv(ndev); 5881 struct hnae3_handle *h = priv->ae_handle; 5882 int i; 5883 5884 if (!if_running) 5885 return; 5886 5887 hns3_nic_reset_all_ring(priv->ae_handle); 5888 5889 for (i = 0; i < priv->vector_num; i++) 5890 hns3_vector_enable(&priv->tqp_vector[i]); 5891 5892 for (i = 0; i < h->kinfo.num_tqps; i++) 5893 hns3_tqp_enable(h->kinfo.tqp[i]); 5894 5895 netif_tx_wake_all_queues(ndev); 5896 5897 if (h->ae_algo->ops->get_status(h)) 5898 netif_carrier_on(ndev); 5899 } 5900 5901 static const struct hns3_hw_error_info hns3_hw_err[] = { 5902 { .type = HNAE3_PPU_POISON_ERROR, 5903 .msg = "PPU poison" }, 5904 { .type = HNAE3_CMDQ_ECC_ERROR, 5905 .msg = "IMP CMDQ error" }, 5906 { .type = HNAE3_IMP_RD_POISON_ERROR, 5907 .msg = "IMP RD poison" }, 5908 { .type = HNAE3_ROCEE_AXI_RESP_ERROR, 5909 .msg = "ROCEE AXI RESP error" }, 5910 }; 5911 5912 static void hns3_process_hw_error(struct hnae3_handle *handle, 5913 enum hnae3_hw_error_type type) 5914 { 5915 int i; 5916 5917 for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) { 5918 if (hns3_hw_err[i].type == type) { 5919 dev_err(&handle->pdev->dev, "Detected %s!\n", 5920 hns3_hw_err[i].msg); 5921 break; 5922 } 5923 } 5924 } 5925 5926 static const struct hnae3_client_ops client_ops = { 5927 .init_instance = hns3_client_init, 5928 .uninit_instance = hns3_client_uninit, 5929 .link_status_change = hns3_link_status_change, 5930 .reset_notify = hns3_reset_notify, 5931 .process_hw_error = hns3_process_hw_error, 5932 }; 5933 5934 /* hns3_init_module - Driver registration routine 5935 * hns3_init_module is the first routine called when the driver is 5936 * loaded. All it does is register with the PCI subsystem. 5937 */ 5938 static int __init hns3_init_module(void) 5939 { 5940 int ret; 5941 5942 pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string); 5943 pr_info("%s: %s\n", hns3_driver_name, hns3_copyright); 5944 5945 client.type = HNAE3_CLIENT_KNIC; 5946 snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s", 5947 hns3_driver_name); 5948 5949 client.ops = &client_ops; 5950 5951 INIT_LIST_HEAD(&client.node); 5952 5953 hns3_dbg_register_debugfs(hns3_driver_name); 5954 5955 ret = hnae3_register_client(&client); 5956 if (ret) 5957 goto err_reg_client; 5958 5959 ret = pci_register_driver(&hns3_driver); 5960 if (ret) 5961 goto err_reg_driver; 5962 5963 return ret; 5964 5965 err_reg_driver: 5966 hnae3_unregister_client(&client); 5967 err_reg_client: 5968 hns3_dbg_unregister_debugfs(); 5969 return ret; 5970 } 5971 module_init(hns3_init_module); 5972 5973 /* hns3_exit_module - Driver exit cleanup routine 5974 * hns3_exit_module is called just before the driver is removed 5975 * from memory. 5976 */ 5977 static void __exit hns3_exit_module(void) 5978 { 5979 pci_unregister_driver(&hns3_driver); 5980 hnae3_unregister_client(&client); 5981 hns3_dbg_unregister_debugfs(); 5982 } 5983 module_exit(hns3_exit_module); 5984 5985 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver"); 5986 MODULE_AUTHOR("Huawei Tech. Co., Ltd."); 5987 MODULE_LICENSE("GPL"); 5988 MODULE_ALIAS("pci:hns-nic"); 5989