1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/aer.h>
13 #include <linux/skbuff.h>
14 #include <linux/sctp.h>
15 #include <linux/vermagic.h>
16 #include <net/gre.h>
17 #include <net/pkt_cls.h>
18 #include <net/tcp.h>
19 #include <net/vxlan.h>
20 
21 #include "hnae3.h"
22 #include "hns3_enet.h"
23 
24 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
25 
26 static void hns3_clear_all_ring(struct hnae3_handle *h);
27 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
28 static void hns3_remove_hw_addr(struct net_device *netdev);
29 
30 static const char hns3_driver_name[] = "hns3";
31 const char hns3_driver_version[] = VERMAGIC_STRING;
32 static const char hns3_driver_string[] =
33 			"Hisilicon Ethernet Network Driver for Hip08 Family";
34 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
35 static struct hnae3_client client;
36 
37 /* hns3_pci_tbl - PCI Device ID Table
38  *
39  * Last entry must be all 0s
40  *
41  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
42  *   Class, Class Mask, private data (not used) }
43  */
44 static const struct pci_device_id hns3_pci_tbl[] = {
45 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
46 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
47 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
48 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
49 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
50 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
51 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
52 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
53 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
54 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
55 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
56 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
57 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
58 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
59 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
60 	/* required last entry */
61 	{0, }
62 };
63 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
64 
65 static irqreturn_t hns3_irq_handle(int irq, void *vector)
66 {
67 	struct hns3_enet_tqp_vector *tqp_vector = vector;
68 
69 	napi_schedule(&tqp_vector->napi);
70 
71 	return IRQ_HANDLED;
72 }
73 
74 /* This callback function is used to set affinity changes to the irq affinity
75  * masks when the irq_set_affinity_notifier function is used.
76  */
77 static void hns3_nic_irq_affinity_notify(struct irq_affinity_notify *notify,
78 					 const cpumask_t *mask)
79 {
80 	struct hns3_enet_tqp_vector *tqp_vectors =
81 		container_of(notify, struct hns3_enet_tqp_vector,
82 			     affinity_notify);
83 
84 	tqp_vectors->affinity_mask = *mask;
85 }
86 
87 static void hns3_nic_irq_affinity_release(struct kref *ref)
88 {
89 }
90 
91 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
92 {
93 	struct hns3_enet_tqp_vector *tqp_vectors;
94 	unsigned int i;
95 
96 	for (i = 0; i < priv->vector_num; i++) {
97 		tqp_vectors = &priv->tqp_vector[i];
98 
99 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
100 			continue;
101 
102 		/* clear the affinity notifier and affinity mask */
103 		irq_set_affinity_notifier(tqp_vectors->vector_irq, NULL);
104 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
105 
106 		/* release the irq resource */
107 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
108 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
109 	}
110 }
111 
112 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
113 {
114 	struct hns3_enet_tqp_vector *tqp_vectors;
115 	int txrx_int_idx = 0;
116 	int rx_int_idx = 0;
117 	int tx_int_idx = 0;
118 	unsigned int i;
119 	int ret;
120 
121 	for (i = 0; i < priv->vector_num; i++) {
122 		tqp_vectors = &priv->tqp_vector[i];
123 
124 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
125 			continue;
126 
127 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
128 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
129 				 "%s-%s-%d", priv->netdev->name, "TxRx",
130 				 txrx_int_idx++);
131 			txrx_int_idx++;
132 		} else if (tqp_vectors->rx_group.ring) {
133 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
134 				 "%s-%s-%d", priv->netdev->name, "Rx",
135 				 rx_int_idx++);
136 		} else if (tqp_vectors->tx_group.ring) {
137 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
138 				 "%s-%s-%d", priv->netdev->name, "Tx",
139 				 tx_int_idx++);
140 		} else {
141 			/* Skip this unused q_vector */
142 			continue;
143 		}
144 
145 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
146 
147 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
148 				  tqp_vectors->name,
149 				       tqp_vectors);
150 		if (ret) {
151 			netdev_err(priv->netdev, "request irq(%d) fail\n",
152 				   tqp_vectors->vector_irq);
153 			return ret;
154 		}
155 
156 		tqp_vectors->affinity_notify.notify =
157 					hns3_nic_irq_affinity_notify;
158 		tqp_vectors->affinity_notify.release =
159 					hns3_nic_irq_affinity_release;
160 		irq_set_affinity_notifier(tqp_vectors->vector_irq,
161 					  &tqp_vectors->affinity_notify);
162 		irq_set_affinity_hint(tqp_vectors->vector_irq,
163 				      &tqp_vectors->affinity_mask);
164 
165 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
166 	}
167 
168 	return 0;
169 }
170 
171 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
172 				 u32 mask_en)
173 {
174 	writel(mask_en, tqp_vector->mask_addr);
175 }
176 
177 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
178 {
179 	napi_enable(&tqp_vector->napi);
180 
181 	/* enable vector */
182 	hns3_mask_vector_irq(tqp_vector, 1);
183 }
184 
185 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
186 {
187 	/* disable vector */
188 	hns3_mask_vector_irq(tqp_vector, 0);
189 
190 	disable_irq(tqp_vector->vector_irq);
191 	napi_disable(&tqp_vector->napi);
192 }
193 
194 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
195 				 u32 rl_value)
196 {
197 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
198 
199 	/* this defines the configuration for RL (Interrupt Rate Limiter).
200 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
201 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
202 	 */
203 
204 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
205 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
206 		/* According to the hardware, the range of rl_reg is
207 		 * 0-59 and the unit is 4.
208 		 */
209 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
210 
211 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
212 }
213 
214 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
215 				    u32 gl_value)
216 {
217 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
218 
219 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
220 }
221 
222 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
223 				    u32 gl_value)
224 {
225 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
226 
227 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
228 }
229 
230 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
231 				   struct hns3_nic_priv *priv)
232 {
233 	/* initialize the configuration for interrupt coalescing.
234 	 * 1. GL (Interrupt Gap Limiter)
235 	 * 2. RL (Interrupt Rate Limiter)
236 	 */
237 
238 	/* Default: enable interrupt coalescing self-adaptive and GL */
239 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
240 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
241 
242 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
243 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
244 
245 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
246 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
247 }
248 
249 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
250 				      struct hns3_nic_priv *priv)
251 {
252 	struct hnae3_handle *h = priv->ae_handle;
253 
254 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
255 				       tqp_vector->tx_group.coal.int_gl);
256 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
257 				       tqp_vector->rx_group.coal.int_gl);
258 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
259 }
260 
261 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
262 {
263 	struct hnae3_handle *h = hns3_get_handle(netdev);
264 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
265 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
266 	int i, ret;
267 
268 	if (kinfo->num_tc <= 1) {
269 		netdev_reset_tc(netdev);
270 	} else {
271 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
272 		if (ret) {
273 			netdev_err(netdev,
274 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
275 			return ret;
276 		}
277 
278 		for (i = 0; i < HNAE3_MAX_TC; i++) {
279 			if (!kinfo->tc_info[i].enable)
280 				continue;
281 
282 			netdev_set_tc_queue(netdev,
283 					    kinfo->tc_info[i].tc,
284 					    kinfo->tc_info[i].tqp_count,
285 					    kinfo->tc_info[i].tqp_offset);
286 		}
287 	}
288 
289 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
290 	if (ret) {
291 		netdev_err(netdev,
292 			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
293 			   ret);
294 		return ret;
295 	}
296 
297 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
298 	if (ret) {
299 		netdev_err(netdev,
300 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
301 		return ret;
302 	}
303 
304 	return 0;
305 }
306 
307 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
308 {
309 	u16 alloc_tqps, max_rss_size, rss_size;
310 
311 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
312 	rss_size = alloc_tqps / h->kinfo.num_tc;
313 
314 	return min_t(u16, rss_size, max_rss_size);
315 }
316 
317 static void hns3_tqp_enable(struct hnae3_queue *tqp)
318 {
319 	u32 rcb_reg;
320 
321 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
322 	rcb_reg |= BIT(HNS3_RING_EN_B);
323 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
324 }
325 
326 static void hns3_tqp_disable(struct hnae3_queue *tqp)
327 {
328 	u32 rcb_reg;
329 
330 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
331 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
332 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
333 }
334 
335 static int hns3_nic_net_up(struct net_device *netdev)
336 {
337 	struct hns3_nic_priv *priv = netdev_priv(netdev);
338 	struct hnae3_handle *h = priv->ae_handle;
339 	int i, j;
340 	int ret;
341 
342 	ret = hns3_nic_reset_all_ring(h);
343 	if (ret)
344 		return ret;
345 
346 	/* get irq resource for all vectors */
347 	ret = hns3_nic_init_irq(priv);
348 	if (ret) {
349 		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
350 		return ret;
351 	}
352 
353 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
354 
355 	/* enable the vectors */
356 	for (i = 0; i < priv->vector_num; i++)
357 		hns3_vector_enable(&priv->tqp_vector[i]);
358 
359 	/* enable rcb */
360 	for (j = 0; j < h->kinfo.num_tqps; j++)
361 		hns3_tqp_enable(h->kinfo.tqp[j]);
362 
363 	/* start the ae_dev */
364 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
365 	if (ret)
366 		goto out_start_err;
367 
368 	return 0;
369 
370 out_start_err:
371 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
372 	while (j--)
373 		hns3_tqp_disable(h->kinfo.tqp[j]);
374 
375 	for (j = i - 1; j >= 0; j--)
376 		hns3_vector_disable(&priv->tqp_vector[j]);
377 
378 	hns3_nic_uninit_irq(priv);
379 
380 	return ret;
381 }
382 
383 static void hns3_config_xps(struct hns3_nic_priv *priv)
384 {
385 	int i;
386 
387 	for (i = 0; i < priv->vector_num; i++) {
388 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
389 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
390 
391 		while (ring) {
392 			int ret;
393 
394 			ret = netif_set_xps_queue(priv->netdev,
395 						  &tqp_vector->affinity_mask,
396 						  ring->tqp->tqp_index);
397 			if (ret)
398 				netdev_warn(priv->netdev,
399 					    "set xps queue failed: %d", ret);
400 
401 			ring = ring->next;
402 		}
403 	}
404 }
405 
406 static int hns3_nic_net_open(struct net_device *netdev)
407 {
408 	struct hns3_nic_priv *priv = netdev_priv(netdev);
409 	struct hnae3_handle *h = hns3_get_handle(netdev);
410 	struct hnae3_knic_private_info *kinfo;
411 	int i, ret;
412 
413 	if (hns3_nic_resetting(netdev))
414 		return -EBUSY;
415 
416 	netif_carrier_off(netdev);
417 
418 	ret = hns3_nic_set_real_num_queue(netdev);
419 	if (ret)
420 		return ret;
421 
422 	ret = hns3_nic_net_up(netdev);
423 	if (ret) {
424 		netdev_err(netdev,
425 			   "hns net up fail, ret=%d!\n", ret);
426 		return ret;
427 	}
428 
429 	kinfo = &h->kinfo;
430 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
431 		netdev_set_prio_tc_map(netdev, i,
432 				       kinfo->prio_tc[i]);
433 	}
434 
435 	if (h->ae_algo->ops->set_timer_task)
436 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
437 
438 	hns3_config_xps(priv);
439 	return 0;
440 }
441 
442 static void hns3_nic_net_down(struct net_device *netdev)
443 {
444 	struct hns3_nic_priv *priv = netdev_priv(netdev);
445 	struct hnae3_handle *h = hns3_get_handle(netdev);
446 	const struct hnae3_ae_ops *ops;
447 	int i;
448 
449 	/* disable vectors */
450 	for (i = 0; i < priv->vector_num; i++)
451 		hns3_vector_disable(&priv->tqp_vector[i]);
452 
453 	/* disable rcb */
454 	for (i = 0; i < h->kinfo.num_tqps; i++)
455 		hns3_tqp_disable(h->kinfo.tqp[i]);
456 
457 	/* stop ae_dev */
458 	ops = priv->ae_handle->ae_algo->ops;
459 	if (ops->stop)
460 		ops->stop(priv->ae_handle);
461 
462 	/* free irq resources */
463 	hns3_nic_uninit_irq(priv);
464 
465 	hns3_clear_all_ring(priv->ae_handle);
466 }
467 
468 static int hns3_nic_net_stop(struct net_device *netdev)
469 {
470 	struct hns3_nic_priv *priv = netdev_priv(netdev);
471 	struct hnae3_handle *h = hns3_get_handle(netdev);
472 
473 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
474 		return 0;
475 
476 	if (h->ae_algo->ops->set_timer_task)
477 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
478 
479 	netif_tx_stop_all_queues(netdev);
480 	netif_carrier_off(netdev);
481 
482 	hns3_nic_net_down(netdev);
483 
484 	return 0;
485 }
486 
487 static int hns3_nic_uc_sync(struct net_device *netdev,
488 			    const unsigned char *addr)
489 {
490 	struct hnae3_handle *h = hns3_get_handle(netdev);
491 
492 	if (h->ae_algo->ops->add_uc_addr)
493 		return h->ae_algo->ops->add_uc_addr(h, addr);
494 
495 	return 0;
496 }
497 
498 static int hns3_nic_uc_unsync(struct net_device *netdev,
499 			      const unsigned char *addr)
500 {
501 	struct hnae3_handle *h = hns3_get_handle(netdev);
502 
503 	if (h->ae_algo->ops->rm_uc_addr)
504 		return h->ae_algo->ops->rm_uc_addr(h, addr);
505 
506 	return 0;
507 }
508 
509 static int hns3_nic_mc_sync(struct net_device *netdev,
510 			    const unsigned char *addr)
511 {
512 	struct hnae3_handle *h = hns3_get_handle(netdev);
513 
514 	if (h->ae_algo->ops->add_mc_addr)
515 		return h->ae_algo->ops->add_mc_addr(h, addr);
516 
517 	return 0;
518 }
519 
520 static int hns3_nic_mc_unsync(struct net_device *netdev,
521 			      const unsigned char *addr)
522 {
523 	struct hnae3_handle *h = hns3_get_handle(netdev);
524 
525 	if (h->ae_algo->ops->rm_mc_addr)
526 		return h->ae_algo->ops->rm_mc_addr(h, addr);
527 
528 	return 0;
529 }
530 
531 static u8 hns3_get_netdev_flags(struct net_device *netdev)
532 {
533 	u8 flags = 0;
534 
535 	if (netdev->flags & IFF_PROMISC) {
536 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
537 	} else {
538 		flags |= HNAE3_VLAN_FLTR;
539 		if (netdev->flags & IFF_ALLMULTI)
540 			flags |= HNAE3_USER_MPE;
541 	}
542 
543 	return flags;
544 }
545 
546 static void hns3_nic_set_rx_mode(struct net_device *netdev)
547 {
548 	struct hnae3_handle *h = hns3_get_handle(netdev);
549 	u8 new_flags;
550 	int ret;
551 
552 	new_flags = hns3_get_netdev_flags(netdev);
553 
554 	ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
555 	if (ret) {
556 		netdev_err(netdev, "sync uc address fail\n");
557 		if (ret == -ENOSPC)
558 			new_flags |= HNAE3_OVERFLOW_UPE;
559 	}
560 
561 	if (netdev->flags & IFF_MULTICAST) {
562 		ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
563 				    hns3_nic_mc_unsync);
564 		if (ret) {
565 			netdev_err(netdev, "sync mc address fail\n");
566 			if (ret == -ENOSPC)
567 				new_flags |= HNAE3_OVERFLOW_MPE;
568 		}
569 	}
570 
571 	/* User mode Promisc mode enable and vlan filtering is disabled to
572 	 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
573 	 * vlan fitering is enabled
574 	 */
575 	hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
576 	h->netdev_flags = new_flags;
577 	hns3_update_promisc_mode(netdev, new_flags);
578 }
579 
580 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
581 {
582 	struct hns3_nic_priv *priv = netdev_priv(netdev);
583 	struct hnae3_handle *h = priv->ae_handle;
584 
585 	if (h->ae_algo->ops->set_promisc_mode) {
586 		return h->ae_algo->ops->set_promisc_mode(h,
587 						promisc_flags & HNAE3_UPE,
588 						promisc_flags & HNAE3_MPE);
589 	}
590 
591 	return 0;
592 }
593 
594 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
595 {
596 	struct hns3_nic_priv *priv = netdev_priv(netdev);
597 	struct hnae3_handle *h = priv->ae_handle;
598 	bool last_state;
599 
600 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
601 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
602 		if (enable != last_state) {
603 			netdev_info(netdev,
604 				    "%s vlan filter\n",
605 				    enable ? "enable" : "disable");
606 			h->ae_algo->ops->enable_vlan_filter(h, enable);
607 		}
608 	}
609 }
610 
611 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
612 			u16 *mss, u32 *type_cs_vlan_tso)
613 {
614 	u32 l4_offset, hdr_len;
615 	union l3_hdr_info l3;
616 	union l4_hdr_info l4;
617 	u32 l4_paylen;
618 	int ret;
619 
620 	if (!skb_is_gso(skb))
621 		return 0;
622 
623 	ret = skb_cow_head(skb, 0);
624 	if (unlikely(ret))
625 		return ret;
626 
627 	l3.hdr = skb_network_header(skb);
628 	l4.hdr = skb_transport_header(skb);
629 
630 	/* Software should clear the IPv4's checksum field when tso is
631 	 * needed.
632 	 */
633 	if (l3.v4->version == 4)
634 		l3.v4->check = 0;
635 
636 	/* tunnel packet.*/
637 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
638 					 SKB_GSO_GRE_CSUM |
639 					 SKB_GSO_UDP_TUNNEL |
640 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
641 		if ((!(skb_shinfo(skb)->gso_type &
642 		    SKB_GSO_PARTIAL)) &&
643 		    (skb_shinfo(skb)->gso_type &
644 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
645 			/* Software should clear the udp's checksum
646 			 * field when tso is needed.
647 			 */
648 			l4.udp->check = 0;
649 		}
650 		/* reset l3&l4 pointers from outer to inner headers */
651 		l3.hdr = skb_inner_network_header(skb);
652 		l4.hdr = skb_inner_transport_header(skb);
653 
654 		/* Software should clear the IPv4's checksum field when
655 		 * tso is needed.
656 		 */
657 		if (l3.v4->version == 4)
658 			l3.v4->check = 0;
659 	}
660 
661 	/* normal or tunnel packet*/
662 	l4_offset = l4.hdr - skb->data;
663 	hdr_len = (l4.tcp->doff << 2) + l4_offset;
664 
665 	/* remove payload length from inner pseudo checksum when tso*/
666 	l4_paylen = skb->len - l4_offset;
667 	csum_replace_by_diff(&l4.tcp->check,
668 			     (__force __wsum)htonl(l4_paylen));
669 
670 	/* find the txbd field values */
671 	*paylen = skb->len - hdr_len;
672 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
673 
674 	/* get MSS for TSO */
675 	*mss = skb_shinfo(skb)->gso_size;
676 
677 	return 0;
678 }
679 
680 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
681 				u8 *il4_proto)
682 {
683 	union l3_hdr_info l3;
684 	unsigned char *l4_hdr;
685 	unsigned char *exthdr;
686 	u8 l4_proto_tmp;
687 	__be16 frag_off;
688 
689 	/* find outer header point */
690 	l3.hdr = skb_network_header(skb);
691 	l4_hdr = skb_transport_header(skb);
692 
693 	if (skb->protocol == htons(ETH_P_IPV6)) {
694 		exthdr = l3.hdr + sizeof(*l3.v6);
695 		l4_proto_tmp = l3.v6->nexthdr;
696 		if (l4_hdr != exthdr)
697 			ipv6_skip_exthdr(skb, exthdr - skb->data,
698 					 &l4_proto_tmp, &frag_off);
699 	} else if (skb->protocol == htons(ETH_P_IP)) {
700 		l4_proto_tmp = l3.v4->protocol;
701 	} else {
702 		return -EINVAL;
703 	}
704 
705 	*ol4_proto = l4_proto_tmp;
706 
707 	/* tunnel packet */
708 	if (!skb->encapsulation) {
709 		*il4_proto = 0;
710 		return 0;
711 	}
712 
713 	/* find inner header point */
714 	l3.hdr = skb_inner_network_header(skb);
715 	l4_hdr = skb_inner_transport_header(skb);
716 
717 	if (l3.v6->version == 6) {
718 		exthdr = l3.hdr + sizeof(*l3.v6);
719 		l4_proto_tmp = l3.v6->nexthdr;
720 		if (l4_hdr != exthdr)
721 			ipv6_skip_exthdr(skb, exthdr - skb->data,
722 					 &l4_proto_tmp, &frag_off);
723 	} else if (l3.v4->version == 4) {
724 		l4_proto_tmp = l3.v4->protocol;
725 	}
726 
727 	*il4_proto = l4_proto_tmp;
728 
729 	return 0;
730 }
731 
732 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
733 				u8 il4_proto, u32 *type_cs_vlan_tso,
734 				u32 *ol_type_vlan_len_msec)
735 {
736 	union l3_hdr_info l3;
737 	union l4_hdr_info l4;
738 	unsigned char *l2_hdr;
739 	u8 l4_proto = ol4_proto;
740 	u32 ol2_len;
741 	u32 ol3_len;
742 	u32 ol4_len;
743 	u32 l2_len;
744 	u32 l3_len;
745 
746 	l3.hdr = skb_network_header(skb);
747 	l4.hdr = skb_transport_header(skb);
748 
749 	/* compute L2 header size for normal packet, defined in 2 Bytes */
750 	l2_len = l3.hdr - skb->data;
751 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
752 
753 	/* tunnel packet*/
754 	if (skb->encapsulation) {
755 		/* compute OL2 header size, defined in 2 Bytes */
756 		ol2_len = l2_len;
757 		hns3_set_field(*ol_type_vlan_len_msec,
758 			       HNS3_TXD_L2LEN_S, ol2_len >> 1);
759 
760 		/* compute OL3 header size, defined in 4 Bytes */
761 		ol3_len = l4.hdr - l3.hdr;
762 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S,
763 			       ol3_len >> 2);
764 
765 		/* MAC in UDP, MAC in GRE (0x6558)*/
766 		if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
767 			/* switch MAC header ptr from outer to inner header.*/
768 			l2_hdr = skb_inner_mac_header(skb);
769 
770 			/* compute OL4 header size, defined in 4 Bytes. */
771 			ol4_len = l2_hdr - l4.hdr;
772 			hns3_set_field(*ol_type_vlan_len_msec,
773 				       HNS3_TXD_L4LEN_S, ol4_len >> 2);
774 
775 			/* switch IP header ptr from outer to inner header */
776 			l3.hdr = skb_inner_network_header(skb);
777 
778 			/* compute inner l2 header size, defined in 2 Bytes. */
779 			l2_len = l3.hdr - l2_hdr;
780 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S,
781 				       l2_len >> 1);
782 		} else {
783 			/* skb packet types not supported by hardware,
784 			 * txbd len fild doesn't be filled.
785 			 */
786 			return;
787 		}
788 
789 		/* switch L4 header pointer from outer to inner */
790 		l4.hdr = skb_inner_transport_header(skb);
791 
792 		l4_proto = il4_proto;
793 	}
794 
795 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
796 	l3_len = l4.hdr - l3.hdr;
797 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
798 
799 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
800 	switch (l4_proto) {
801 	case IPPROTO_TCP:
802 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
803 			       l4.tcp->doff);
804 		break;
805 	case IPPROTO_SCTP:
806 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
807 			       (sizeof(struct sctphdr) >> 2));
808 		break;
809 	case IPPROTO_UDP:
810 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
811 			       (sizeof(struct udphdr) >> 2));
812 		break;
813 	default:
814 		/* skb packet types not supported by hardware,
815 		 * txbd len fild doesn't be filled.
816 		 */
817 		return;
818 	}
819 }
820 
821 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
822  * and it is udp packet, which has a dest port as the IANA assigned.
823  * the hardware is expected to do the checksum offload, but the
824  * hardware will not do the checksum offload when udp dest port is
825  * 4789.
826  */
827 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
828 {
829 #define IANA_VXLAN_PORT	4789
830 	union l4_hdr_info l4;
831 
832 	l4.hdr = skb_transport_header(skb);
833 
834 	if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
835 		return false;
836 
837 	skb_checksum_help(skb);
838 
839 	return true;
840 }
841 
842 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
843 				   u8 il4_proto, u32 *type_cs_vlan_tso,
844 				   u32 *ol_type_vlan_len_msec)
845 {
846 	union l3_hdr_info l3;
847 	u32 l4_proto = ol4_proto;
848 
849 	l3.hdr = skb_network_header(skb);
850 
851 	/* define OL3 type and tunnel type(OL4).*/
852 	if (skb->encapsulation) {
853 		/* define outer network header type.*/
854 		if (skb->protocol == htons(ETH_P_IP)) {
855 			if (skb_is_gso(skb))
856 				hns3_set_field(*ol_type_vlan_len_msec,
857 					       HNS3_TXD_OL3T_S,
858 					       HNS3_OL3T_IPV4_CSUM);
859 			else
860 				hns3_set_field(*ol_type_vlan_len_msec,
861 					       HNS3_TXD_OL3T_S,
862 					       HNS3_OL3T_IPV4_NO_CSUM);
863 
864 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
865 			hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
866 				       HNS3_OL3T_IPV6);
867 		}
868 
869 		/* define tunnel type(OL4).*/
870 		switch (l4_proto) {
871 		case IPPROTO_UDP:
872 			hns3_set_field(*ol_type_vlan_len_msec,
873 				       HNS3_TXD_TUNTYPE_S,
874 				       HNS3_TUN_MAC_IN_UDP);
875 			break;
876 		case IPPROTO_GRE:
877 			hns3_set_field(*ol_type_vlan_len_msec,
878 				       HNS3_TXD_TUNTYPE_S,
879 				       HNS3_TUN_NVGRE);
880 			break;
881 		default:
882 			/* drop the skb tunnel packet if hardware don't support,
883 			 * because hardware can't calculate csum when TSO.
884 			 */
885 			if (skb_is_gso(skb))
886 				return -EDOM;
887 
888 			/* the stack computes the IP header already,
889 			 * driver calculate l4 checksum when not TSO.
890 			 */
891 			skb_checksum_help(skb);
892 			return 0;
893 		}
894 
895 		l3.hdr = skb_inner_network_header(skb);
896 		l4_proto = il4_proto;
897 	}
898 
899 	if (l3.v4->version == 4) {
900 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
901 			       HNS3_L3T_IPV4);
902 
903 		/* the stack computes the IP header already, the only time we
904 		 * need the hardware to recompute it is in the case of TSO.
905 		 */
906 		if (skb_is_gso(skb))
907 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
908 	} else if (l3.v6->version == 6) {
909 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
910 			       HNS3_L3T_IPV6);
911 	}
912 
913 	switch (l4_proto) {
914 	case IPPROTO_TCP:
915 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
916 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
917 			       HNS3_L4T_TCP);
918 		break;
919 	case IPPROTO_UDP:
920 		if (hns3_tunnel_csum_bug(skb))
921 			break;
922 
923 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
924 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
925 			       HNS3_L4T_UDP);
926 		break;
927 	case IPPROTO_SCTP:
928 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
929 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
930 			       HNS3_L4T_SCTP);
931 		break;
932 	default:
933 		/* drop the skb tunnel packet if hardware don't support,
934 		 * because hardware can't calculate csum when TSO.
935 		 */
936 		if (skb_is_gso(skb))
937 			return -EDOM;
938 
939 		/* the stack computes the IP header already,
940 		 * driver calculate l4 checksum when not TSO.
941 		 */
942 		skb_checksum_help(skb);
943 		return 0;
944 	}
945 
946 	return 0;
947 }
948 
949 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
950 {
951 	/* Config bd buffer end */
952 	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
953 	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
954 }
955 
956 static int hns3_fill_desc_vtags(struct sk_buff *skb,
957 				struct hns3_enet_ring *tx_ring,
958 				u32 *inner_vlan_flag,
959 				u32 *out_vlan_flag,
960 				u16 *inner_vtag,
961 				u16 *out_vtag)
962 {
963 #define HNS3_TX_VLAN_PRIO_SHIFT 13
964 
965 	if (skb->protocol == htons(ETH_P_8021Q) &&
966 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
967 	    NETIF_F_HW_VLAN_CTAG_TX)) {
968 		/* When HW VLAN acceleration is turned off, and the stack
969 		 * sets the protocol to 802.1q, the driver just need to
970 		 * set the protocol to the encapsulated ethertype.
971 		 */
972 		skb->protocol = vlan_get_protocol(skb);
973 		return 0;
974 	}
975 
976 	if (skb_vlan_tag_present(skb)) {
977 		u16 vlan_tag;
978 
979 		vlan_tag = skb_vlan_tag_get(skb);
980 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
981 
982 		/* Based on hw strategy, use out_vtag in two layer tag case,
983 		 * and use inner_vtag in one tag case.
984 		 */
985 		if (skb->protocol == htons(ETH_P_8021Q)) {
986 			hns3_set_field(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
987 			*out_vtag = vlan_tag;
988 		} else {
989 			hns3_set_field(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
990 			*inner_vtag = vlan_tag;
991 		}
992 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
993 		struct vlan_ethhdr *vhdr;
994 		int rc;
995 
996 		rc = skb_cow_head(skb, 0);
997 		if (unlikely(rc < 0))
998 			return rc;
999 		vhdr = (struct vlan_ethhdr *)skb->data;
1000 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
1001 					<< HNS3_TX_VLAN_PRIO_SHIFT);
1002 	}
1003 
1004 	skb->protocol = vlan_get_protocol(skb);
1005 	return 0;
1006 }
1007 
1008 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1009 			  int size, int frag_end, enum hns_desc_type type)
1010 {
1011 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1012 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1013 	struct device *dev = ring_to_dev(ring);
1014 	u16 bdtp_fe_sc_vld_ra_ri = 0;
1015 	struct skb_frag_struct *frag;
1016 	unsigned int frag_buf_num;
1017 	int k, sizeoflast;
1018 	dma_addr_t dma;
1019 
1020 	if (type == DESC_TYPE_SKB) {
1021 		struct sk_buff *skb = (struct sk_buff *)priv;
1022 		u32 ol_type_vlan_len_msec = 0;
1023 		u32 type_cs_vlan_tso = 0;
1024 		u32 paylen = skb->len;
1025 		u16 inner_vtag = 0;
1026 		u16 out_vtag = 0;
1027 		u16 mss = 0;
1028 		int ret;
1029 
1030 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
1031 					   &ol_type_vlan_len_msec,
1032 					   &inner_vtag, &out_vtag);
1033 		if (unlikely(ret))
1034 			return ret;
1035 
1036 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1037 			u8 ol4_proto, il4_proto;
1038 
1039 			skb_reset_mac_len(skb);
1040 
1041 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1042 			if (unlikely(ret))
1043 				return ret;
1044 			hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
1045 					    &type_cs_vlan_tso,
1046 					    &ol_type_vlan_len_msec);
1047 			ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
1048 						      &type_cs_vlan_tso,
1049 						      &ol_type_vlan_len_msec);
1050 			if (unlikely(ret))
1051 				return ret;
1052 
1053 			ret = hns3_set_tso(skb, &paylen, &mss,
1054 					   &type_cs_vlan_tso);
1055 			if (unlikely(ret))
1056 				return ret;
1057 		}
1058 
1059 		/* Set txbd */
1060 		desc->tx.ol_type_vlan_len_msec =
1061 			cpu_to_le32(ol_type_vlan_len_msec);
1062 		desc->tx.type_cs_vlan_tso_len =
1063 			cpu_to_le32(type_cs_vlan_tso);
1064 		desc->tx.paylen = cpu_to_le32(paylen);
1065 		desc->tx.mss = cpu_to_le16(mss);
1066 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1067 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1068 
1069 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1070 	} else {
1071 		frag = (struct skb_frag_struct *)priv;
1072 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1073 	}
1074 
1075 	if (unlikely(dma_mapping_error(ring->dev, dma))) {
1076 		ring->stats.sw_err_cnt++;
1077 		return -ENOMEM;
1078 	}
1079 
1080 	desc_cb->length = size;
1081 
1082 	frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) >> HNS3_MAX_BD_SIZE_OFFSET;
1083 	sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1084 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1085 
1086 	/* When frag size is bigger than hardware limit, split this frag */
1087 	for (k = 0; k < frag_buf_num; k++) {
1088 		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1089 		desc_cb->priv = priv;
1090 		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1091 		desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1092 					DESC_TYPE_SKB : DESC_TYPE_PAGE;
1093 
1094 		/* now, fill the descriptor */
1095 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1096 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1097 				(u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1098 		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1099 				       frag_end && (k == frag_buf_num - 1) ?
1100 						1 : 0);
1101 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1102 				cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1103 
1104 		/* move ring pointer to next.*/
1105 		ring_ptr_move_fw(ring, next_to_use);
1106 
1107 		desc_cb = &ring->desc_cb[ring->next_to_use];
1108 		desc = &ring->desc[ring->next_to_use];
1109 	}
1110 
1111 	return 0;
1112 }
1113 
1114 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1115 				   struct hns3_enet_ring *ring)
1116 {
1117 	struct sk_buff *skb = *out_skb;
1118 	struct sk_buff *new_skb = NULL;
1119 	struct skb_frag_struct *frag;
1120 	int bdnum_for_frag;
1121 	int frag_num;
1122 	int buf_num;
1123 	int size;
1124 	int i;
1125 
1126 	size = skb_headlen(skb);
1127 	buf_num = (size + HNS3_MAX_BD_SIZE - 1) >> HNS3_MAX_BD_SIZE_OFFSET;
1128 
1129 	frag_num = skb_shinfo(skb)->nr_frags;
1130 	for (i = 0; i < frag_num; i++) {
1131 		frag = &skb_shinfo(skb)->frags[i];
1132 		size = skb_frag_size(frag);
1133 		bdnum_for_frag = (size + HNS3_MAX_BD_SIZE - 1) >>
1134 				 HNS3_MAX_BD_SIZE_OFFSET;
1135 		if (unlikely(bdnum_for_frag > HNS3_MAX_BD_PER_FRAG))
1136 			return -ENOMEM;
1137 
1138 		buf_num += bdnum_for_frag;
1139 	}
1140 
1141 	if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1142 		buf_num = (skb->len + HNS3_MAX_BD_SIZE - 1) >>
1143 			  HNS3_MAX_BD_SIZE_OFFSET;
1144 		if (ring_space(ring) < buf_num)
1145 			return -EBUSY;
1146 		/* manual split the send packet */
1147 		new_skb = skb_copy(skb, GFP_ATOMIC);
1148 		if (!new_skb)
1149 			return -ENOMEM;
1150 		dev_kfree_skb_any(skb);
1151 		*out_skb = new_skb;
1152 	}
1153 
1154 	if (unlikely(ring_space(ring) < buf_num))
1155 		return -EBUSY;
1156 
1157 	*bnum = buf_num;
1158 	return 0;
1159 }
1160 
1161 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1162 				  struct hns3_enet_ring *ring)
1163 {
1164 	struct sk_buff *skb = *out_skb;
1165 	struct sk_buff *new_skb = NULL;
1166 	int buf_num;
1167 
1168 	/* No. of segments (plus a header) */
1169 	buf_num = skb_shinfo(skb)->nr_frags + 1;
1170 
1171 	if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1172 		buf_num = (skb->len + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1173 		if (ring_space(ring) < buf_num)
1174 			return -EBUSY;
1175 		/* manual split the send packet */
1176 		new_skb = skb_copy(skb, GFP_ATOMIC);
1177 		if (!new_skb)
1178 			return -ENOMEM;
1179 		dev_kfree_skb_any(skb);
1180 		*out_skb = new_skb;
1181 	}
1182 
1183 	if (unlikely(ring_space(ring) < buf_num))
1184 		return -EBUSY;
1185 
1186 	*bnum = buf_num;
1187 
1188 	return 0;
1189 }
1190 
1191 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1192 {
1193 	struct device *dev = ring_to_dev(ring);
1194 	unsigned int i;
1195 
1196 	for (i = 0; i < ring->desc_num; i++) {
1197 		/* check if this is where we started */
1198 		if (ring->next_to_use == next_to_use_orig)
1199 			break;
1200 
1201 		/* unmap the descriptor dma address */
1202 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1203 			dma_unmap_single(dev,
1204 					 ring->desc_cb[ring->next_to_use].dma,
1205 					ring->desc_cb[ring->next_to_use].length,
1206 					DMA_TO_DEVICE);
1207 		else if (ring->desc_cb[ring->next_to_use].length)
1208 			dma_unmap_page(dev,
1209 				       ring->desc_cb[ring->next_to_use].dma,
1210 				       ring->desc_cb[ring->next_to_use].length,
1211 				       DMA_TO_DEVICE);
1212 
1213 		ring->desc_cb[ring->next_to_use].length = 0;
1214 
1215 		/* rollback one */
1216 		ring_ptr_move_bw(ring, next_to_use);
1217 	}
1218 }
1219 
1220 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1221 {
1222 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1223 	struct hns3_nic_ring_data *ring_data =
1224 		&tx_ring_data(priv, skb->queue_mapping);
1225 	struct hns3_enet_ring *ring = ring_data->ring;
1226 	struct netdev_queue *dev_queue;
1227 	struct skb_frag_struct *frag;
1228 	int next_to_use_head;
1229 	int next_to_use_frag;
1230 	int buf_num;
1231 	int seg_num;
1232 	int size;
1233 	int ret;
1234 	int i;
1235 
1236 	/* Prefetch the data used later */
1237 	prefetch(skb->data);
1238 
1239 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1240 	case -EBUSY:
1241 		u64_stats_update_begin(&ring->syncp);
1242 		ring->stats.tx_busy++;
1243 		u64_stats_update_end(&ring->syncp);
1244 
1245 		goto out_net_tx_busy;
1246 	case -ENOMEM:
1247 		u64_stats_update_begin(&ring->syncp);
1248 		ring->stats.sw_err_cnt++;
1249 		u64_stats_update_end(&ring->syncp);
1250 		netdev_err(netdev, "no memory to xmit!\n");
1251 
1252 		goto out_err_tx_ok;
1253 	default:
1254 		break;
1255 	}
1256 
1257 	/* No. of segments (plus a header) */
1258 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1259 	/* Fill the first part */
1260 	size = skb_headlen(skb);
1261 
1262 	next_to_use_head = ring->next_to_use;
1263 
1264 	ret = hns3_fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1265 			     DESC_TYPE_SKB);
1266 	if (unlikely(ret))
1267 		goto head_fill_err;
1268 
1269 	next_to_use_frag = ring->next_to_use;
1270 	/* Fill the fragments */
1271 	for (i = 1; i < seg_num; i++) {
1272 		frag = &skb_shinfo(skb)->frags[i - 1];
1273 		size = skb_frag_size(frag);
1274 
1275 		ret = hns3_fill_desc(ring, frag, size,
1276 				     seg_num - 1 == i ? 1 : 0,
1277 				     DESC_TYPE_PAGE);
1278 
1279 		if (unlikely(ret))
1280 			goto frag_fill_err;
1281 	}
1282 
1283 	/* Complete translate all packets */
1284 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1285 	netdev_tx_sent_queue(dev_queue, skb->len);
1286 
1287 	wmb(); /* Commit all data before submit */
1288 
1289 	hnae3_queue_xmit(ring->tqp, buf_num);
1290 
1291 	return NETDEV_TX_OK;
1292 
1293 frag_fill_err:
1294 	hns3_clear_desc(ring, next_to_use_frag);
1295 
1296 head_fill_err:
1297 	hns3_clear_desc(ring, next_to_use_head);
1298 
1299 out_err_tx_ok:
1300 	dev_kfree_skb_any(skb);
1301 	return NETDEV_TX_OK;
1302 
1303 out_net_tx_busy:
1304 	netif_stop_subqueue(netdev, ring_data->queue_index);
1305 	smp_mb(); /* Commit all data before submit */
1306 
1307 	return NETDEV_TX_BUSY;
1308 }
1309 
1310 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1311 {
1312 	struct hnae3_handle *h = hns3_get_handle(netdev);
1313 	struct sockaddr *mac_addr = p;
1314 	int ret;
1315 
1316 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1317 		return -EADDRNOTAVAIL;
1318 
1319 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1320 		netdev_info(netdev, "already using mac address %pM\n",
1321 			    mac_addr->sa_data);
1322 		return 0;
1323 	}
1324 
1325 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1326 	if (ret) {
1327 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1328 		return ret;
1329 	}
1330 
1331 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1332 
1333 	return 0;
1334 }
1335 
1336 static int hns3_nic_do_ioctl(struct net_device *netdev,
1337 			     struct ifreq *ifr, int cmd)
1338 {
1339 	struct hnae3_handle *h = hns3_get_handle(netdev);
1340 
1341 	if (!netif_running(netdev))
1342 		return -EINVAL;
1343 
1344 	if (!h->ae_algo->ops->do_ioctl)
1345 		return -EOPNOTSUPP;
1346 
1347 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1348 }
1349 
1350 static int hns3_nic_set_features(struct net_device *netdev,
1351 				 netdev_features_t features)
1352 {
1353 	netdev_features_t changed = netdev->features ^ features;
1354 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1355 	struct hnae3_handle *h = priv->ae_handle;
1356 	bool enable;
1357 	int ret;
1358 
1359 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1360 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1361 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1362 		else
1363 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1364 	}
1365 
1366 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1367 		enable = !!(features & NETIF_F_GRO_HW);
1368 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1369 		if (ret)
1370 			return ret;
1371 	}
1372 
1373 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1374 	    h->ae_algo->ops->enable_vlan_filter) {
1375 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1376 		h->ae_algo->ops->enable_vlan_filter(h, enable);
1377 	}
1378 
1379 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1380 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1381 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1382 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1383 		if (ret)
1384 			return ret;
1385 	}
1386 
1387 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1388 		enable = !!(features & NETIF_F_NTUPLE);
1389 		h->ae_algo->ops->enable_fd(h, enable);
1390 	}
1391 
1392 	netdev->features = features;
1393 	return 0;
1394 }
1395 
1396 static void hns3_nic_get_stats64(struct net_device *netdev,
1397 				 struct rtnl_link_stats64 *stats)
1398 {
1399 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1400 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1401 	struct hnae3_handle *handle = priv->ae_handle;
1402 	struct hns3_enet_ring *ring;
1403 	u64 rx_length_errors = 0;
1404 	u64 rx_crc_errors = 0;
1405 	u64 rx_multicast = 0;
1406 	unsigned int start;
1407 	u64 tx_errors = 0;
1408 	u64 rx_errors = 0;
1409 	unsigned int idx;
1410 	u64 tx_bytes = 0;
1411 	u64 rx_bytes = 0;
1412 	u64 tx_pkts = 0;
1413 	u64 rx_pkts = 0;
1414 	u64 tx_drop = 0;
1415 	u64 rx_drop = 0;
1416 
1417 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1418 		return;
1419 
1420 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1421 
1422 	for (idx = 0; idx < queue_num; idx++) {
1423 		/* fetch the tx stats */
1424 		ring = priv->ring_data[idx].ring;
1425 		do {
1426 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1427 			tx_bytes += ring->stats.tx_bytes;
1428 			tx_pkts += ring->stats.tx_pkts;
1429 			tx_drop += ring->stats.sw_err_cnt;
1430 			tx_errors += ring->stats.sw_err_cnt;
1431 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1432 
1433 		/* fetch the rx stats */
1434 		ring = priv->ring_data[idx + queue_num].ring;
1435 		do {
1436 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1437 			rx_bytes += ring->stats.rx_bytes;
1438 			rx_pkts += ring->stats.rx_pkts;
1439 			rx_drop += ring->stats.non_vld_descs;
1440 			rx_drop += ring->stats.l2_err;
1441 			rx_errors += ring->stats.non_vld_descs;
1442 			rx_errors += ring->stats.l2_err;
1443 			rx_crc_errors += ring->stats.l2_err;
1444 			rx_crc_errors += ring->stats.l3l4_csum_err;
1445 			rx_multicast += ring->stats.rx_multicast;
1446 			rx_length_errors += ring->stats.err_pkt_len;
1447 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1448 	}
1449 
1450 	stats->tx_bytes = tx_bytes;
1451 	stats->tx_packets = tx_pkts;
1452 	stats->rx_bytes = rx_bytes;
1453 	stats->rx_packets = rx_pkts;
1454 
1455 	stats->rx_errors = rx_errors;
1456 	stats->multicast = rx_multicast;
1457 	stats->rx_length_errors = rx_length_errors;
1458 	stats->rx_crc_errors = rx_crc_errors;
1459 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1460 
1461 	stats->tx_errors = tx_errors;
1462 	stats->rx_dropped = rx_drop;
1463 	stats->tx_dropped = tx_drop;
1464 	stats->collisions = netdev->stats.collisions;
1465 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1466 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1467 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1468 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1469 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1470 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1471 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1472 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1473 	stats->rx_compressed = netdev->stats.rx_compressed;
1474 	stats->tx_compressed = netdev->stats.tx_compressed;
1475 }
1476 
1477 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1478 {
1479 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1480 	struct hnae3_handle *h = hns3_get_handle(netdev);
1481 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1482 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1483 	u8 tc = mqprio_qopt->qopt.num_tc;
1484 	u16 mode = mqprio_qopt->mode;
1485 	u8 hw = mqprio_qopt->qopt.hw;
1486 
1487 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1488 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1489 		return -EOPNOTSUPP;
1490 
1491 	if (tc > HNAE3_MAX_TC)
1492 		return -EINVAL;
1493 
1494 	if (!netdev)
1495 		return -EINVAL;
1496 
1497 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1498 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1499 }
1500 
1501 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1502 			     void *type_data)
1503 {
1504 	if (type != TC_SETUP_QDISC_MQPRIO)
1505 		return -EOPNOTSUPP;
1506 
1507 	return hns3_setup_tc(dev, type_data);
1508 }
1509 
1510 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1511 				__be16 proto, u16 vid)
1512 {
1513 	struct hnae3_handle *h = hns3_get_handle(netdev);
1514 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1515 	int ret = -EIO;
1516 
1517 	if (h->ae_algo->ops->set_vlan_filter)
1518 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1519 
1520 	if (!ret)
1521 		set_bit(vid, priv->active_vlans);
1522 
1523 	return ret;
1524 }
1525 
1526 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1527 				 __be16 proto, u16 vid)
1528 {
1529 	struct hnae3_handle *h = hns3_get_handle(netdev);
1530 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1531 	int ret = -EIO;
1532 
1533 	if (h->ae_algo->ops->set_vlan_filter)
1534 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1535 
1536 	if (!ret)
1537 		clear_bit(vid, priv->active_vlans);
1538 
1539 	return ret;
1540 }
1541 
1542 static int hns3_restore_vlan(struct net_device *netdev)
1543 {
1544 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1545 	int ret = 0;
1546 	u16 vid;
1547 
1548 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1549 		ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1550 		if (ret) {
1551 			netdev_err(netdev, "Restore vlan: %d filter, ret:%d\n",
1552 				   vid, ret);
1553 			return ret;
1554 		}
1555 	}
1556 
1557 	return ret;
1558 }
1559 
1560 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1561 				u8 qos, __be16 vlan_proto)
1562 {
1563 	struct hnae3_handle *h = hns3_get_handle(netdev);
1564 	int ret = -EIO;
1565 
1566 	if (h->ae_algo->ops->set_vf_vlan_filter)
1567 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1568 						   qos, vlan_proto);
1569 
1570 	return ret;
1571 }
1572 
1573 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1574 {
1575 	struct hnae3_handle *h = hns3_get_handle(netdev);
1576 	int ret;
1577 
1578 	if (!h->ae_algo->ops->set_mtu)
1579 		return -EOPNOTSUPP;
1580 
1581 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1582 	if (ret)
1583 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1584 			   ret);
1585 	else
1586 		netdev->mtu = new_mtu;
1587 
1588 	return ret;
1589 }
1590 
1591 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1592 {
1593 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1594 	struct hns3_enet_ring *tx_ring = NULL;
1595 	int timeout_queue = 0;
1596 	int hw_head, hw_tail;
1597 	int i;
1598 
1599 	/* Find the stopped queue the same way the stack does */
1600 	for (i = 0; i < ndev->real_num_tx_queues; i++) {
1601 		struct netdev_queue *q;
1602 		unsigned long trans_start;
1603 
1604 		q = netdev_get_tx_queue(ndev, i);
1605 		trans_start = q->trans_start;
1606 		if (netif_xmit_stopped(q) &&
1607 		    time_after(jiffies,
1608 			       (trans_start + ndev->watchdog_timeo))) {
1609 			timeout_queue = i;
1610 			break;
1611 		}
1612 	}
1613 
1614 	if (i == ndev->num_tx_queues) {
1615 		netdev_info(ndev,
1616 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1617 			    priv->tx_timeout_count);
1618 		return false;
1619 	}
1620 
1621 	tx_ring = priv->ring_data[timeout_queue].ring;
1622 
1623 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1624 				HNS3_RING_TX_RING_HEAD_REG);
1625 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1626 				HNS3_RING_TX_RING_TAIL_REG);
1627 	netdev_info(ndev,
1628 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1629 		    priv->tx_timeout_count,
1630 		    timeout_queue,
1631 		    tx_ring->next_to_use,
1632 		    tx_ring->next_to_clean,
1633 		    hw_head,
1634 		    hw_tail,
1635 		    readl(tx_ring->tqp_vector->mask_addr));
1636 
1637 	return true;
1638 }
1639 
1640 static void hns3_nic_net_timeout(struct net_device *ndev)
1641 {
1642 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1643 	struct hnae3_handle *h = priv->ae_handle;
1644 
1645 	if (!hns3_get_tx_timeo_queue_info(ndev))
1646 		return;
1647 
1648 	priv->tx_timeout_count++;
1649 
1650 	/* request the reset, and let the hclge to determine
1651 	 * which reset level should be done
1652 	 */
1653 	if (h->ae_algo->ops->reset_event)
1654 		h->ae_algo->ops->reset_event(h->pdev, h);
1655 }
1656 
1657 static const struct net_device_ops hns3_nic_netdev_ops = {
1658 	.ndo_open		= hns3_nic_net_open,
1659 	.ndo_stop		= hns3_nic_net_stop,
1660 	.ndo_start_xmit		= hns3_nic_net_xmit,
1661 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1662 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1663 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
1664 	.ndo_change_mtu		= hns3_nic_change_mtu,
1665 	.ndo_set_features	= hns3_nic_set_features,
1666 	.ndo_get_stats64	= hns3_nic_get_stats64,
1667 	.ndo_setup_tc		= hns3_nic_setup_tc,
1668 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1669 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1670 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1671 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1672 };
1673 
1674 static bool hns3_is_phys_func(struct pci_dev *pdev)
1675 {
1676 	u32 dev_id = pdev->device;
1677 
1678 	switch (dev_id) {
1679 	case HNAE3_DEV_ID_GE:
1680 	case HNAE3_DEV_ID_25GE:
1681 	case HNAE3_DEV_ID_25GE_RDMA:
1682 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1683 	case HNAE3_DEV_ID_50GE_RDMA:
1684 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1685 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1686 		return true;
1687 	case HNAE3_DEV_ID_100G_VF:
1688 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1689 		return false;
1690 	default:
1691 		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1692 			 dev_id);
1693 	}
1694 
1695 	return false;
1696 }
1697 
1698 static void hns3_disable_sriov(struct pci_dev *pdev)
1699 {
1700 	/* If our VFs are assigned we cannot shut down SR-IOV
1701 	 * without causing issues, so just leave the hardware
1702 	 * available but disabled
1703 	 */
1704 	if (pci_vfs_assigned(pdev)) {
1705 		dev_warn(&pdev->dev,
1706 			 "disabling driver while VFs are assigned\n");
1707 		return;
1708 	}
1709 
1710 	pci_disable_sriov(pdev);
1711 }
1712 
1713 static void hns3_get_dev_capability(struct pci_dev *pdev,
1714 				    struct hnae3_ae_dev *ae_dev)
1715 {
1716 	if (pdev->revision >= 0x21) {
1717 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1718 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1719 	}
1720 }
1721 
1722 /* hns3_probe - Device initialization routine
1723  * @pdev: PCI device information struct
1724  * @ent: entry in hns3_pci_tbl
1725  *
1726  * hns3_probe initializes a PF identified by a pci_dev structure.
1727  * The OS initialization, configuring of the PF private structure,
1728  * and a hardware reset occur.
1729  *
1730  * Returns 0 on success, negative on failure
1731  */
1732 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1733 {
1734 	struct hnae3_ae_dev *ae_dev;
1735 	int ret;
1736 
1737 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1738 			      GFP_KERNEL);
1739 	if (!ae_dev) {
1740 		ret = -ENOMEM;
1741 		return ret;
1742 	}
1743 
1744 	ae_dev->pdev = pdev;
1745 	ae_dev->flag = ent->driver_data;
1746 	ae_dev->dev_type = HNAE3_DEV_KNIC;
1747 	ae_dev->reset_type = HNAE3_NONE_RESET;
1748 	hns3_get_dev_capability(pdev, ae_dev);
1749 	pci_set_drvdata(pdev, ae_dev);
1750 
1751 	ret = hnae3_register_ae_dev(ae_dev);
1752 	if (ret) {
1753 		devm_kfree(&pdev->dev, ae_dev);
1754 		pci_set_drvdata(pdev, NULL);
1755 	}
1756 
1757 	return ret;
1758 }
1759 
1760 /* hns3_remove - Device removal routine
1761  * @pdev: PCI device information struct
1762  */
1763 static void hns3_remove(struct pci_dev *pdev)
1764 {
1765 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1766 
1767 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1768 		hns3_disable_sriov(pdev);
1769 
1770 	hnae3_unregister_ae_dev(ae_dev);
1771 	pci_set_drvdata(pdev, NULL);
1772 }
1773 
1774 /**
1775  * hns3_pci_sriov_configure
1776  * @pdev: pointer to a pci_dev structure
1777  * @num_vfs: number of VFs to allocate
1778  *
1779  * Enable or change the number of VFs. Called when the user updates the number
1780  * of VFs in sysfs.
1781  **/
1782 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1783 {
1784 	int ret;
1785 
1786 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1787 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
1788 		return -EINVAL;
1789 	}
1790 
1791 	if (num_vfs) {
1792 		ret = pci_enable_sriov(pdev, num_vfs);
1793 		if (ret)
1794 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1795 		else
1796 			return num_vfs;
1797 	} else if (!pci_vfs_assigned(pdev)) {
1798 		pci_disable_sriov(pdev);
1799 	} else {
1800 		dev_warn(&pdev->dev,
1801 			 "Unable to free VFs because some are assigned to VMs.\n");
1802 	}
1803 
1804 	return 0;
1805 }
1806 
1807 static void hns3_shutdown(struct pci_dev *pdev)
1808 {
1809 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1810 
1811 	hnae3_unregister_ae_dev(ae_dev);
1812 	devm_kfree(&pdev->dev, ae_dev);
1813 	pci_set_drvdata(pdev, NULL);
1814 
1815 	if (system_state == SYSTEM_POWER_OFF)
1816 		pci_set_power_state(pdev, PCI_D3hot);
1817 }
1818 
1819 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1820 					    pci_channel_state_t state)
1821 {
1822 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1823 	pci_ers_result_t ret;
1824 
1825 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1826 
1827 	if (state == pci_channel_io_perm_failure)
1828 		return PCI_ERS_RESULT_DISCONNECT;
1829 
1830 	if (!ae_dev) {
1831 		dev_err(&pdev->dev,
1832 			"Can't recover - error happened during device init\n");
1833 		return PCI_ERS_RESULT_NONE;
1834 	}
1835 
1836 	if (ae_dev->ops->handle_hw_ras_error)
1837 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
1838 	else
1839 		return PCI_ERS_RESULT_NONE;
1840 
1841 	return ret;
1842 }
1843 
1844 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
1845 {
1846 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1847 	struct device *dev = &pdev->dev;
1848 
1849 	dev_info(dev, "requesting reset due to PCI error\n");
1850 
1851 	/* request the reset */
1852 	if (ae_dev->ops->reset_event) {
1853 		ae_dev->ops->reset_event(pdev, NULL);
1854 		return PCI_ERS_RESULT_RECOVERED;
1855 	}
1856 
1857 	return PCI_ERS_RESULT_DISCONNECT;
1858 }
1859 
1860 static void hns3_reset_prepare(struct pci_dev *pdev)
1861 {
1862 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1863 
1864 	dev_info(&pdev->dev, "hns3 flr prepare\n");
1865 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
1866 		ae_dev->ops->flr_prepare(ae_dev);
1867 }
1868 
1869 static void hns3_reset_done(struct pci_dev *pdev)
1870 {
1871 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1872 
1873 	dev_info(&pdev->dev, "hns3 flr done\n");
1874 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
1875 		ae_dev->ops->flr_done(ae_dev);
1876 }
1877 
1878 static const struct pci_error_handlers hns3_err_handler = {
1879 	.error_detected = hns3_error_detected,
1880 	.slot_reset     = hns3_slot_reset,
1881 	.reset_prepare	= hns3_reset_prepare,
1882 	.reset_done	= hns3_reset_done,
1883 };
1884 
1885 static struct pci_driver hns3_driver = {
1886 	.name     = hns3_driver_name,
1887 	.id_table = hns3_pci_tbl,
1888 	.probe    = hns3_probe,
1889 	.remove   = hns3_remove,
1890 	.shutdown = hns3_shutdown,
1891 	.sriov_configure = hns3_pci_sriov_configure,
1892 	.err_handler    = &hns3_err_handler,
1893 };
1894 
1895 /* set default feature to hns3 */
1896 static void hns3_set_default_feature(struct net_device *netdev)
1897 {
1898 	struct hnae3_handle *h = hns3_get_handle(netdev);
1899 	struct pci_dev *pdev = h->pdev;
1900 
1901 	netdev->priv_flags |= IFF_UNICAST_FLT;
1902 
1903 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1904 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1905 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1906 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1907 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1908 
1909 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1910 
1911 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1912 
1913 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1914 		NETIF_F_HW_VLAN_CTAG_FILTER |
1915 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1916 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1917 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1918 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1919 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1920 
1921 	netdev->vlan_features |=
1922 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1923 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1924 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1925 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1926 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1927 
1928 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1929 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1930 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1931 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1932 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1933 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1934 
1935 	if (pdev->revision >= 0x21) {
1936 		netdev->hw_features |= NETIF_F_GRO_HW;
1937 		netdev->features |= NETIF_F_GRO_HW;
1938 
1939 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
1940 			netdev->hw_features |= NETIF_F_NTUPLE;
1941 			netdev->features |= NETIF_F_NTUPLE;
1942 		}
1943 	}
1944 }
1945 
1946 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1947 			     struct hns3_desc_cb *cb)
1948 {
1949 	unsigned int order = hnae3_page_order(ring);
1950 	struct page *p;
1951 
1952 	p = dev_alloc_pages(order);
1953 	if (!p)
1954 		return -ENOMEM;
1955 
1956 	cb->priv = p;
1957 	cb->page_offset = 0;
1958 	cb->reuse_flag = 0;
1959 	cb->buf  = page_address(p);
1960 	cb->length = hnae3_page_size(ring);
1961 	cb->type = DESC_TYPE_PAGE;
1962 
1963 	return 0;
1964 }
1965 
1966 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1967 			     struct hns3_desc_cb *cb)
1968 {
1969 	if (cb->type == DESC_TYPE_SKB)
1970 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
1971 	else if (!HNAE3_IS_TX_RING(ring))
1972 		put_page((struct page *)cb->priv);
1973 	memset(cb, 0, sizeof(*cb));
1974 }
1975 
1976 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1977 {
1978 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1979 			       cb->length, ring_to_dma_dir(ring));
1980 
1981 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
1982 		return -EIO;
1983 
1984 	return 0;
1985 }
1986 
1987 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1988 			      struct hns3_desc_cb *cb)
1989 {
1990 	if (cb->type == DESC_TYPE_SKB)
1991 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1992 				 ring_to_dma_dir(ring));
1993 	else if (cb->length)
1994 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1995 			       ring_to_dma_dir(ring));
1996 }
1997 
1998 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
1999 {
2000 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2001 	ring->desc[i].addr = 0;
2002 }
2003 
2004 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2005 {
2006 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2007 
2008 	if (!ring->desc_cb[i].dma)
2009 		return;
2010 
2011 	hns3_buffer_detach(ring, i);
2012 	hns3_free_buffer(ring, cb);
2013 }
2014 
2015 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2016 {
2017 	int i;
2018 
2019 	for (i = 0; i < ring->desc_num; i++)
2020 		hns3_free_buffer_detach(ring, i);
2021 }
2022 
2023 /* free desc along with its attached buffer */
2024 static void hns3_free_desc(struct hns3_enet_ring *ring)
2025 {
2026 	int size = ring->desc_num * sizeof(ring->desc[0]);
2027 
2028 	hns3_free_buffers(ring);
2029 
2030 	if (ring->desc) {
2031 		dma_free_coherent(ring_to_dev(ring), size,
2032 				  ring->desc, ring->desc_dma_addr);
2033 		ring->desc = NULL;
2034 	}
2035 }
2036 
2037 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2038 {
2039 	int size = ring->desc_num * sizeof(ring->desc[0]);
2040 
2041 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2042 					&ring->desc_dma_addr, GFP_KERNEL);
2043 	if (!ring->desc)
2044 		return -ENOMEM;
2045 
2046 	return 0;
2047 }
2048 
2049 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2050 				   struct hns3_desc_cb *cb)
2051 {
2052 	int ret;
2053 
2054 	ret = hns3_alloc_buffer(ring, cb);
2055 	if (ret)
2056 		goto out;
2057 
2058 	ret = hns3_map_buffer(ring, cb);
2059 	if (ret)
2060 		goto out_with_buf;
2061 
2062 	return 0;
2063 
2064 out_with_buf:
2065 	hns3_free_buffer(ring, cb);
2066 out:
2067 	return ret;
2068 }
2069 
2070 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2071 {
2072 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2073 
2074 	if (ret)
2075 		return ret;
2076 
2077 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2078 
2079 	return 0;
2080 }
2081 
2082 /* Allocate memory for raw pkg, and map with dma */
2083 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2084 {
2085 	int i, j, ret;
2086 
2087 	for (i = 0; i < ring->desc_num; i++) {
2088 		ret = hns3_alloc_buffer_attach(ring, i);
2089 		if (ret)
2090 			goto out_buffer_fail;
2091 	}
2092 
2093 	return 0;
2094 
2095 out_buffer_fail:
2096 	for (j = i - 1; j >= 0; j--)
2097 		hns3_free_buffer_detach(ring, j);
2098 	return ret;
2099 }
2100 
2101 /* detach a in-used buffer and replace with a reserved one  */
2102 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2103 				struct hns3_desc_cb *res_cb)
2104 {
2105 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2106 	ring->desc_cb[i] = *res_cb;
2107 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2108 	ring->desc[i].rx.bd_base_info = 0;
2109 }
2110 
2111 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2112 {
2113 	ring->desc_cb[i].reuse_flag = 0;
2114 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
2115 		+ ring->desc_cb[i].page_offset);
2116 	ring->desc[i].rx.bd_base_info = 0;
2117 }
2118 
2119 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
2120 				      int *pkts)
2121 {
2122 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2123 
2124 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2125 	(*bytes) += desc_cb->length;
2126 	/* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
2127 	hns3_free_buffer_detach(ring, ring->next_to_clean);
2128 
2129 	ring_ptr_move_fw(ring, next_to_clean);
2130 }
2131 
2132 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2133 {
2134 	int u = ring->next_to_use;
2135 	int c = ring->next_to_clean;
2136 
2137 	if (unlikely(h > ring->desc_num))
2138 		return 0;
2139 
2140 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2141 }
2142 
2143 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2144 {
2145 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2146 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2147 	struct netdev_queue *dev_queue;
2148 	int bytes, pkts;
2149 	int head;
2150 
2151 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2152 	rmb(); /* Make sure head is ready before touch any data */
2153 
2154 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2155 		return; /* no data to poll */
2156 
2157 	if (unlikely(!is_valid_clean_head(ring, head))) {
2158 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2159 			   ring->next_to_use, ring->next_to_clean);
2160 
2161 		u64_stats_update_begin(&ring->syncp);
2162 		ring->stats.io_err_cnt++;
2163 		u64_stats_update_end(&ring->syncp);
2164 		return;
2165 	}
2166 
2167 	bytes = 0;
2168 	pkts = 0;
2169 	while (head != ring->next_to_clean) {
2170 		hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
2171 		/* Issue prefetch for next Tx descriptor */
2172 		prefetch(&ring->desc_cb[ring->next_to_clean]);
2173 	}
2174 
2175 	ring->tqp_vector->tx_group.total_bytes += bytes;
2176 	ring->tqp_vector->tx_group.total_packets += pkts;
2177 
2178 	u64_stats_update_begin(&ring->syncp);
2179 	ring->stats.tx_bytes += bytes;
2180 	ring->stats.tx_pkts += pkts;
2181 	u64_stats_update_end(&ring->syncp);
2182 
2183 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2184 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2185 
2186 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
2187 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2188 		/* Make sure that anybody stopping the queue after this
2189 		 * sees the new next_to_clean.
2190 		 */
2191 		smp_mb();
2192 		if (netif_tx_queue_stopped(dev_queue) &&
2193 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2194 			netif_tx_wake_queue(dev_queue);
2195 			ring->stats.restart_queue++;
2196 		}
2197 	}
2198 }
2199 
2200 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2201 {
2202 	int ntc = ring->next_to_clean;
2203 	int ntu = ring->next_to_use;
2204 
2205 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2206 }
2207 
2208 static void
2209 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
2210 {
2211 	struct hns3_desc_cb *desc_cb;
2212 	struct hns3_desc_cb res_cbs;
2213 	int i, ret;
2214 
2215 	for (i = 0; i < cleand_count; i++) {
2216 		desc_cb = &ring->desc_cb[ring->next_to_use];
2217 		if (desc_cb->reuse_flag) {
2218 			u64_stats_update_begin(&ring->syncp);
2219 			ring->stats.reuse_pg_cnt++;
2220 			u64_stats_update_end(&ring->syncp);
2221 
2222 			hns3_reuse_buffer(ring, ring->next_to_use);
2223 		} else {
2224 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
2225 			if (ret) {
2226 				u64_stats_update_begin(&ring->syncp);
2227 				ring->stats.sw_err_cnt++;
2228 				u64_stats_update_end(&ring->syncp);
2229 
2230 				netdev_err(ring->tqp->handle->kinfo.netdev,
2231 					   "hnae reserve buffer map failed.\n");
2232 				break;
2233 			}
2234 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2235 		}
2236 
2237 		ring_ptr_move_fw(ring, next_to_use);
2238 	}
2239 
2240 	wmb(); /* Make all data has been write before submit */
2241 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2242 }
2243 
2244 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2245 				struct hns3_enet_ring *ring, int pull_len,
2246 				struct hns3_desc_cb *desc_cb)
2247 {
2248 	struct hns3_desc *desc;
2249 	u32 truesize;
2250 	int size;
2251 	int last_offset;
2252 	bool twobufs;
2253 
2254 	twobufs = ((PAGE_SIZE < 8192) &&
2255 		hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2256 
2257 	desc = &ring->desc[ring->next_to_clean];
2258 	size = le16_to_cpu(desc->rx.size);
2259 
2260 	truesize = hnae3_buf_size(ring);
2261 
2262 	if (!twobufs)
2263 		last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2264 
2265 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2266 			size - pull_len, truesize);
2267 
2268 	 /* Avoid re-using remote pages,flag default unreuse */
2269 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2270 		return;
2271 
2272 	if (twobufs) {
2273 		/* If we are only owner of page we can reuse it */
2274 		if (likely(page_count(desc_cb->priv) == 1)) {
2275 			/* Flip page offset to other buffer */
2276 			desc_cb->page_offset ^= truesize;
2277 
2278 			desc_cb->reuse_flag = 1;
2279 			/* bump ref count on page before it is given*/
2280 			get_page(desc_cb->priv);
2281 		}
2282 		return;
2283 	}
2284 
2285 	/* Move offset up to the next cache line */
2286 	desc_cb->page_offset += truesize;
2287 
2288 	if (desc_cb->page_offset <= last_offset) {
2289 		desc_cb->reuse_flag = 1;
2290 		/* Bump ref count on page before it is given*/
2291 		get_page(desc_cb->priv);
2292 	}
2293 }
2294 
2295 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2296 			     struct hns3_desc *desc)
2297 {
2298 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2299 	int l3_type, l4_type;
2300 	u32 bd_base_info;
2301 	int ol4_type;
2302 	u32 l234info;
2303 
2304 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2305 	l234info = le32_to_cpu(desc->rx.l234_info);
2306 
2307 	skb->ip_summed = CHECKSUM_NONE;
2308 
2309 	skb_checksum_none_assert(skb);
2310 
2311 	if (!(netdev->features & NETIF_F_RXCSUM))
2312 		return;
2313 
2314 	/* We MUST enable hardware checksum before enabling hardware GRO */
2315 	if (skb_shinfo(skb)->gso_size) {
2316 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2317 		return;
2318 	}
2319 
2320 	/* check if hardware has done checksum */
2321 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2322 		return;
2323 
2324 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) ||
2325 				 BIT(HNS3_RXD_OL3E_B) ||
2326 				 BIT(HNS3_RXD_OL4E_B)))) {
2327 		u64_stats_update_begin(&ring->syncp);
2328 		ring->stats.l3l4_csum_err++;
2329 		u64_stats_update_end(&ring->syncp);
2330 
2331 		return;
2332 	}
2333 
2334 	ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2335 				   HNS3_RXD_OL4ID_S);
2336 	switch (ol4_type) {
2337 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2338 	case HNS3_OL4_TYPE_NVGRE:
2339 		skb->csum_level = 1;
2340 		/* fall through */
2341 	case HNS3_OL4_TYPE_NO_TUN:
2342 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2343 					  HNS3_RXD_L3ID_S);
2344 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2345 					  HNS3_RXD_L4ID_S);
2346 
2347 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2348 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2349 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2350 		    (l4_type == HNS3_L4_TYPE_UDP ||
2351 		     l4_type == HNS3_L4_TYPE_TCP ||
2352 		     l4_type == HNS3_L4_TYPE_SCTP))
2353 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2354 		break;
2355 	default:
2356 		break;
2357 	}
2358 }
2359 
2360 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2361 {
2362 	if (skb_has_frag_list(skb))
2363 		napi_gro_flush(&ring->tqp_vector->napi, false);
2364 
2365 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2366 }
2367 
2368 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2369 				struct hns3_desc *desc, u32 l234info,
2370 				u16 *vlan_tag)
2371 {
2372 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2373 
2374 	if (pdev->revision == 0x20) {
2375 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2376 		if (!(*vlan_tag & VLAN_VID_MASK))
2377 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2378 
2379 		return (*vlan_tag != 0);
2380 	}
2381 
2382 #define HNS3_STRP_OUTER_VLAN	0x1
2383 #define HNS3_STRP_INNER_VLAN	0x2
2384 
2385 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2386 				HNS3_RXD_STRP_TAGP_S)) {
2387 	case HNS3_STRP_OUTER_VLAN:
2388 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2389 		return true;
2390 	case HNS3_STRP_INNER_VLAN:
2391 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2392 		return true;
2393 	default:
2394 		return false;
2395 	}
2396 }
2397 
2398 static int hns3_alloc_skb(struct hns3_enet_ring *ring, int length,
2399 			  unsigned char *va)
2400 {
2401 #define HNS3_NEED_ADD_FRAG	1
2402 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2403 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2404 	struct sk_buff *skb;
2405 
2406 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2407 	skb = ring->skb;
2408 	if (unlikely(!skb)) {
2409 		netdev_err(netdev, "alloc rx skb fail\n");
2410 
2411 		u64_stats_update_begin(&ring->syncp);
2412 		ring->stats.sw_err_cnt++;
2413 		u64_stats_update_end(&ring->syncp);
2414 
2415 		return -ENOMEM;
2416 	}
2417 
2418 	prefetchw(skb->data);
2419 
2420 	ring->pending_buf = 1;
2421 	ring->frag_num = 0;
2422 	ring->tail_skb = NULL;
2423 	if (length <= HNS3_RX_HEAD_SIZE) {
2424 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2425 
2426 		/* We can reuse buffer as-is, just make sure it is local */
2427 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2428 			desc_cb->reuse_flag = 1;
2429 		else /* This page cannot be reused so discard it */
2430 			put_page(desc_cb->priv);
2431 
2432 		ring_ptr_move_fw(ring, next_to_clean);
2433 		return 0;
2434 	}
2435 	u64_stats_update_begin(&ring->syncp);
2436 	ring->stats.seg_pkt_cnt++;
2437 	u64_stats_update_end(&ring->syncp);
2438 
2439 	ring->pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2440 	__skb_put(skb, ring->pull_len);
2441 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2442 			    desc_cb);
2443 	ring_ptr_move_fw(ring, next_to_clean);
2444 
2445 	return HNS3_NEED_ADD_FRAG;
2446 }
2447 
2448 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2449 			 struct sk_buff **out_skb, bool pending)
2450 {
2451 	struct sk_buff *skb = *out_skb;
2452 	struct sk_buff *head_skb = *out_skb;
2453 	struct sk_buff *new_skb;
2454 	struct hns3_desc_cb *desc_cb;
2455 	struct hns3_desc *pre_desc;
2456 	u32 bd_base_info;
2457 	int pre_bd;
2458 
2459 	/* if there is pending bd, the SW param next_to_clean has moved
2460 	 * to next and the next is NULL
2461 	 */
2462 	if (pending) {
2463 		pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2464 			ring->desc_num;
2465 		pre_desc = &ring->desc[pre_bd];
2466 		bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2467 	} else {
2468 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2469 	}
2470 
2471 	while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2472 		desc = &ring->desc[ring->next_to_clean];
2473 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2474 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2475 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2476 			return -ENXIO;
2477 
2478 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2479 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2480 						 HNS3_RX_HEAD_SIZE);
2481 			if (unlikely(!new_skb)) {
2482 				netdev_err(ring->tqp->handle->kinfo.netdev,
2483 					   "alloc rx skb frag fail\n");
2484 				return -ENXIO;
2485 			}
2486 			ring->frag_num = 0;
2487 
2488 			if (ring->tail_skb) {
2489 				ring->tail_skb->next = new_skb;
2490 				ring->tail_skb = new_skb;
2491 			} else {
2492 				skb_shinfo(skb)->frag_list = new_skb;
2493 				ring->tail_skb = new_skb;
2494 			}
2495 		}
2496 
2497 		if (ring->tail_skb) {
2498 			head_skb->truesize += hnae3_buf_size(ring);
2499 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2500 			head_skb->len += le16_to_cpu(desc->rx.size);
2501 			skb = ring->tail_skb;
2502 		}
2503 
2504 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2505 		ring_ptr_move_fw(ring, next_to_clean);
2506 		ring->pending_buf++;
2507 	}
2508 
2509 	return 0;
2510 }
2511 
2512 static void hns3_set_gro_param(struct sk_buff *skb, u32 l234info,
2513 			       u32 bd_base_info)
2514 {
2515 	u16 gro_count;
2516 	u32 l3_type;
2517 
2518 	gro_count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M,
2519 				    HNS3_RXD_GRO_COUNT_S);
2520 	/* if there is no HW GRO, do not set gro params */
2521 	if (!gro_count)
2522 		return;
2523 
2524 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
2525 	 * to skb_shinfo(skb)->gso_segs
2526 	 */
2527 	NAPI_GRO_CB(skb)->count = gro_count;
2528 
2529 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2530 				  HNS3_RXD_L3ID_S);
2531 	if (l3_type == HNS3_L3_TYPE_IPV4)
2532 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2533 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2534 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2535 	else
2536 		return;
2537 
2538 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2539 						    HNS3_RXD_GRO_SIZE_M,
2540 						    HNS3_RXD_GRO_SIZE_S);
2541 	if (skb_shinfo(skb)->gso_size)
2542 		tcp_gro_complete(skb);
2543 }
2544 
2545 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2546 				     struct sk_buff *skb)
2547 {
2548 	struct hnae3_handle *handle = ring->tqp->handle;
2549 	enum pkt_hash_types rss_type;
2550 	struct hns3_desc *desc;
2551 	int last_bd;
2552 
2553 	/* When driver handle the rss type, ring->next_to_clean indicates the
2554 	 * first descriptor of next packet, need -1 here.
2555 	 */
2556 	last_bd = (ring->next_to_clean - 1 + ring->desc_num) % ring->desc_num;
2557 	desc = &ring->desc[last_bd];
2558 
2559 	if (le32_to_cpu(desc->rx.rss_hash))
2560 		rss_type = handle->kinfo.rss_type;
2561 	else
2562 		rss_type = PKT_HASH_TYPE_NONE;
2563 
2564 	skb_set_hash(skb, le32_to_cpu(desc->rx.rss_hash), rss_type);
2565 }
2566 
2567 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2568 			     struct sk_buff **out_skb)
2569 {
2570 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2571 	enum hns3_pkt_l2t_type l2_frame_type;
2572 	struct sk_buff *skb = ring->skb;
2573 	struct hns3_desc_cb *desc_cb;
2574 	struct hns3_desc *desc;
2575 	u32 bd_base_info;
2576 	u32 l234info;
2577 	int length;
2578 	int ret;
2579 
2580 	desc = &ring->desc[ring->next_to_clean];
2581 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2582 
2583 	prefetch(desc);
2584 
2585 	length = le16_to_cpu(desc->rx.size);
2586 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2587 
2588 	/* Check valid BD */
2589 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2590 		return -ENXIO;
2591 
2592 	if (!skb)
2593 		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2594 
2595 	/* Prefetch first cache line of first page
2596 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2597 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2598 	 * actual we can have greater size of caches with 128B Level 1 cache
2599 	 * lines. In such a case, single fetch would suffice to cache in the
2600 	 * relevant part of the header.
2601 	 */
2602 	prefetch(ring->va);
2603 #if L1_CACHE_BYTES < 128
2604 	prefetch(ring->va + L1_CACHE_BYTES);
2605 #endif
2606 
2607 	if (!skb) {
2608 		ret = hns3_alloc_skb(ring, length, ring->va);
2609 		*out_skb = skb = ring->skb;
2610 
2611 		if (ret < 0) /* alloc buffer fail */
2612 			return ret;
2613 		if (ret > 0) { /* need add frag */
2614 			ret = hns3_add_frag(ring, desc, &skb, false);
2615 			if (ret)
2616 				return ret;
2617 
2618 			/* As the head data may be changed when GRO enable, copy
2619 			 * the head data in after other data rx completed
2620 			 */
2621 			memcpy(skb->data, ring->va,
2622 			       ALIGN(ring->pull_len, sizeof(long)));
2623 		}
2624 	} else {
2625 		ret = hns3_add_frag(ring, desc, &skb, true);
2626 		if (ret)
2627 			return ret;
2628 
2629 		/* As the head data may be changed when GRO enable, copy
2630 		 * the head data in after other data rx completed
2631 		 */
2632 		memcpy(skb->data, ring->va,
2633 		       ALIGN(ring->pull_len, sizeof(long)));
2634 	}
2635 
2636 	l234info = le32_to_cpu(desc->rx.l234_info);
2637 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2638 
2639 	/* Based on hw strategy, the tag offloaded will be stored at
2640 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2641 	 * in one layer tag case.
2642 	 */
2643 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2644 		u16 vlan_tag;
2645 
2646 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2647 			__vlan_hwaccel_put_tag(skb,
2648 					       htons(ETH_P_8021Q),
2649 					       vlan_tag);
2650 	}
2651 
2652 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) {
2653 		u64_stats_update_begin(&ring->syncp);
2654 		ring->stats.non_vld_descs++;
2655 		u64_stats_update_end(&ring->syncp);
2656 
2657 		dev_kfree_skb_any(skb);
2658 		return -EINVAL;
2659 	}
2660 
2661 	if (unlikely((!desc->rx.pkt_len) ||
2662 		     (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
2663 				  BIT(HNS3_RXD_L2E_B))))) {
2664 		u64_stats_update_begin(&ring->syncp);
2665 		if (l234info & BIT(HNS3_RXD_L2E_B))
2666 			ring->stats.l2_err++;
2667 		else
2668 			ring->stats.err_pkt_len++;
2669 		u64_stats_update_end(&ring->syncp);
2670 
2671 		dev_kfree_skb_any(skb);
2672 		return -EFAULT;
2673 	}
2674 
2675 
2676 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
2677 					HNS3_RXD_DMAC_S);
2678 	u64_stats_update_begin(&ring->syncp);
2679 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
2680 		ring->stats.rx_multicast++;
2681 
2682 	ring->stats.rx_pkts++;
2683 	ring->stats.rx_bytes += skb->len;
2684 	u64_stats_update_end(&ring->syncp);
2685 
2686 	ring->tqp_vector->rx_group.total_bytes += skb->len;
2687 
2688 	/* This is needed in order to enable forwarding support */
2689 	hns3_set_gro_param(skb, l234info, bd_base_info);
2690 
2691 	hns3_rx_checksum(ring, skb, desc);
2692 	*out_skb = skb;
2693 	hns3_set_rx_skb_rss_type(ring, skb);
2694 
2695 	return 0;
2696 }
2697 
2698 int hns3_clean_rx_ring(
2699 		struct hns3_enet_ring *ring, int budget,
2700 		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2701 {
2702 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2703 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2704 	int recv_pkts, recv_bds, clean_count, err;
2705 	int unused_count = hns3_desc_unused(ring) - ring->pending_buf;
2706 	struct sk_buff *skb = ring->skb;
2707 	int num;
2708 
2709 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2710 	rmb(); /* Make sure num taken effect before the other data is touched */
2711 
2712 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2713 	num -= unused_count;
2714 
2715 	while (recv_pkts < budget && recv_bds < num) {
2716 		/* Reuse or realloc buffers */
2717 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2718 			hns3_nic_alloc_rx_buffers(ring,
2719 						  clean_count + unused_count);
2720 			clean_count = 0;
2721 			unused_count = hns3_desc_unused(ring) -
2722 					ring->pending_buf;
2723 		}
2724 
2725 		/* Poll one pkt */
2726 		err = hns3_handle_rx_bd(ring, &skb);
2727 		if (unlikely(!skb)) /* This fault cannot be repaired */
2728 			goto out;
2729 
2730 		if (err == -ENXIO) { /* Do not get FE for the packet */
2731 			goto out;
2732 		} else if (unlikely(err)) {  /* Do jump the err */
2733 			recv_bds += ring->pending_buf;
2734 			clean_count += ring->pending_buf;
2735 			ring->skb = NULL;
2736 			ring->pending_buf = 0;
2737 			continue;
2738 		}
2739 
2740 		/* Do update ip stack process */
2741 		skb->protocol = eth_type_trans(skb, netdev);
2742 		rx_fn(ring, skb);
2743 		recv_bds += ring->pending_buf;
2744 		clean_count += ring->pending_buf;
2745 		ring->skb = NULL;
2746 		ring->pending_buf = 0;
2747 
2748 		recv_pkts++;
2749 	}
2750 
2751 out:
2752 	/* Make all data has been write before submit */
2753 	if (clean_count + unused_count > 0)
2754 		hns3_nic_alloc_rx_buffers(ring,
2755 					  clean_count + unused_count);
2756 
2757 	return recv_pkts;
2758 }
2759 
2760 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2761 {
2762 	struct hns3_enet_tqp_vector *tqp_vector =
2763 					ring_group->ring->tqp_vector;
2764 	enum hns3_flow_level_range new_flow_level;
2765 	int packets_per_msecs;
2766 	int bytes_per_msecs;
2767 	u32 time_passed_ms;
2768 	u16 new_int_gl;
2769 
2770 	if (!tqp_vector->last_jiffies)
2771 		return false;
2772 
2773 	if (ring_group->total_packets == 0) {
2774 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
2775 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
2776 		return true;
2777 	}
2778 
2779 	/* Simple throttlerate management
2780 	 * 0-10MB/s   lower     (50000 ints/s)
2781 	 * 10-20MB/s   middle    (20000 ints/s)
2782 	 * 20-1249MB/s high      (18000 ints/s)
2783 	 * > 40000pps  ultra     (8000 ints/s)
2784 	 */
2785 	new_flow_level = ring_group->coal.flow_level;
2786 	new_int_gl = ring_group->coal.int_gl;
2787 	time_passed_ms =
2788 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2789 
2790 	if (!time_passed_ms)
2791 		return false;
2792 
2793 	do_div(ring_group->total_packets, time_passed_ms);
2794 	packets_per_msecs = ring_group->total_packets;
2795 
2796 	do_div(ring_group->total_bytes, time_passed_ms);
2797 	bytes_per_msecs = ring_group->total_bytes;
2798 
2799 #define HNS3_RX_LOW_BYTE_RATE 10000
2800 #define HNS3_RX_MID_BYTE_RATE 20000
2801 
2802 	switch (new_flow_level) {
2803 	case HNS3_FLOW_LOW:
2804 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2805 			new_flow_level = HNS3_FLOW_MID;
2806 		break;
2807 	case HNS3_FLOW_MID:
2808 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2809 			new_flow_level = HNS3_FLOW_HIGH;
2810 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2811 			new_flow_level = HNS3_FLOW_LOW;
2812 		break;
2813 	case HNS3_FLOW_HIGH:
2814 	case HNS3_FLOW_ULTRA:
2815 	default:
2816 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2817 			new_flow_level = HNS3_FLOW_MID;
2818 		break;
2819 	}
2820 
2821 #define HNS3_RX_ULTRA_PACKET_RATE 40
2822 
2823 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2824 	    &tqp_vector->rx_group == ring_group)
2825 		new_flow_level = HNS3_FLOW_ULTRA;
2826 
2827 	switch (new_flow_level) {
2828 	case HNS3_FLOW_LOW:
2829 		new_int_gl = HNS3_INT_GL_50K;
2830 		break;
2831 	case HNS3_FLOW_MID:
2832 		new_int_gl = HNS3_INT_GL_20K;
2833 		break;
2834 	case HNS3_FLOW_HIGH:
2835 		new_int_gl = HNS3_INT_GL_18K;
2836 		break;
2837 	case HNS3_FLOW_ULTRA:
2838 		new_int_gl = HNS3_INT_GL_8K;
2839 		break;
2840 	default:
2841 		break;
2842 	}
2843 
2844 	ring_group->total_bytes = 0;
2845 	ring_group->total_packets = 0;
2846 	ring_group->coal.flow_level = new_flow_level;
2847 	if (new_int_gl != ring_group->coal.int_gl) {
2848 		ring_group->coal.int_gl = new_int_gl;
2849 		return true;
2850 	}
2851 	return false;
2852 }
2853 
2854 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2855 {
2856 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2857 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2858 	bool rx_update, tx_update;
2859 
2860 	/* update param every 1000ms */
2861 	if (time_before(jiffies,
2862 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
2863 		return;
2864 
2865 	if (rx_group->coal.gl_adapt_enable) {
2866 		rx_update = hns3_get_new_int_gl(rx_group);
2867 		if (rx_update)
2868 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
2869 						       rx_group->coal.int_gl);
2870 	}
2871 
2872 	if (tx_group->coal.gl_adapt_enable) {
2873 		tx_update = hns3_get_new_int_gl(tx_group);
2874 		if (tx_update)
2875 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
2876 						       tx_group->coal.int_gl);
2877 	}
2878 
2879 	tqp_vector->last_jiffies = jiffies;
2880 }
2881 
2882 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2883 {
2884 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
2885 	struct hns3_enet_ring *ring;
2886 	int rx_pkt_total = 0;
2887 
2888 	struct hns3_enet_tqp_vector *tqp_vector =
2889 		container_of(napi, struct hns3_enet_tqp_vector, napi);
2890 	bool clean_complete = true;
2891 	int rx_budget;
2892 
2893 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2894 		napi_complete(napi);
2895 		return 0;
2896 	}
2897 
2898 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2899 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2900 	 */
2901 	hns3_for_each_ring(ring, tqp_vector->tx_group)
2902 		hns3_clean_tx_ring(ring);
2903 
2904 	/* make sure rx ring budget not smaller than 1 */
2905 	rx_budget = max(budget / tqp_vector->num_tqps, 1);
2906 
2907 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
2908 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2909 						    hns3_rx_skb);
2910 
2911 		if (rx_cleaned >= rx_budget)
2912 			clean_complete = false;
2913 
2914 		rx_pkt_total += rx_cleaned;
2915 	}
2916 
2917 	tqp_vector->rx_group.total_packets += rx_pkt_total;
2918 
2919 	if (!clean_complete)
2920 		return budget;
2921 
2922 	if (napi_complete(napi) &&
2923 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2924 		hns3_update_new_int_gl(tqp_vector);
2925 		hns3_mask_vector_irq(tqp_vector, 1);
2926 	}
2927 
2928 	return rx_pkt_total;
2929 }
2930 
2931 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2932 				      struct hnae3_ring_chain_node *head)
2933 {
2934 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2935 	struct hnae3_ring_chain_node *cur_chain = head;
2936 	struct hnae3_ring_chain_node *chain;
2937 	struct hns3_enet_ring *tx_ring;
2938 	struct hns3_enet_ring *rx_ring;
2939 
2940 	tx_ring = tqp_vector->tx_group.ring;
2941 	if (tx_ring) {
2942 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2943 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2944 			      HNAE3_RING_TYPE_TX);
2945 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2946 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2947 
2948 		cur_chain->next = NULL;
2949 
2950 		while (tx_ring->next) {
2951 			tx_ring = tx_ring->next;
2952 
2953 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2954 					     GFP_KERNEL);
2955 			if (!chain)
2956 				goto err_free_chain;
2957 
2958 			cur_chain->next = chain;
2959 			chain->tqp_index = tx_ring->tqp->tqp_index;
2960 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2961 				      HNAE3_RING_TYPE_TX);
2962 			hnae3_set_field(chain->int_gl_idx,
2963 					HNAE3_RING_GL_IDX_M,
2964 					HNAE3_RING_GL_IDX_S,
2965 					HNAE3_RING_GL_TX);
2966 
2967 			cur_chain = chain;
2968 		}
2969 	}
2970 
2971 	rx_ring = tqp_vector->rx_group.ring;
2972 	if (!tx_ring && rx_ring) {
2973 		cur_chain->next = NULL;
2974 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2975 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2976 			      HNAE3_RING_TYPE_RX);
2977 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2978 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2979 
2980 		rx_ring = rx_ring->next;
2981 	}
2982 
2983 	while (rx_ring) {
2984 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2985 		if (!chain)
2986 			goto err_free_chain;
2987 
2988 		cur_chain->next = chain;
2989 		chain->tqp_index = rx_ring->tqp->tqp_index;
2990 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2991 			      HNAE3_RING_TYPE_RX);
2992 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2993 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2994 
2995 		cur_chain = chain;
2996 
2997 		rx_ring = rx_ring->next;
2998 	}
2999 
3000 	return 0;
3001 
3002 err_free_chain:
3003 	cur_chain = head->next;
3004 	while (cur_chain) {
3005 		chain = cur_chain->next;
3006 		devm_kfree(&pdev->dev, cur_chain);
3007 		cur_chain = chain;
3008 	}
3009 	head->next = NULL;
3010 
3011 	return -ENOMEM;
3012 }
3013 
3014 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3015 					struct hnae3_ring_chain_node *head)
3016 {
3017 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3018 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3019 
3020 	chain = head->next;
3021 
3022 	while (chain) {
3023 		chain_tmp = chain->next;
3024 		devm_kfree(&pdev->dev, chain);
3025 		chain = chain_tmp;
3026 	}
3027 }
3028 
3029 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3030 				   struct hns3_enet_ring *ring)
3031 {
3032 	ring->next = group->ring;
3033 	group->ring = ring;
3034 
3035 	group->count++;
3036 }
3037 
3038 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3039 {
3040 	struct pci_dev *pdev = priv->ae_handle->pdev;
3041 	struct hns3_enet_tqp_vector *tqp_vector;
3042 	int num_vectors = priv->vector_num;
3043 	int numa_node;
3044 	int vector_i;
3045 
3046 	numa_node = dev_to_node(&pdev->dev);
3047 
3048 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3049 		tqp_vector = &priv->tqp_vector[vector_i];
3050 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3051 				&tqp_vector->affinity_mask);
3052 	}
3053 }
3054 
3055 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3056 {
3057 	struct hnae3_ring_chain_node vector_ring_chain;
3058 	struct hnae3_handle *h = priv->ae_handle;
3059 	struct hns3_enet_tqp_vector *tqp_vector;
3060 	int ret = 0;
3061 	int i;
3062 
3063 	hns3_nic_set_cpumask(priv);
3064 
3065 	for (i = 0; i < priv->vector_num; i++) {
3066 		tqp_vector = &priv->tqp_vector[i];
3067 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3068 		tqp_vector->num_tqps = 0;
3069 	}
3070 
3071 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3072 		u16 vector_i = i % priv->vector_num;
3073 		u16 tqp_num = h->kinfo.num_tqps;
3074 
3075 		tqp_vector = &priv->tqp_vector[vector_i];
3076 
3077 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3078 				       priv->ring_data[i].ring);
3079 
3080 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3081 				       priv->ring_data[i + tqp_num].ring);
3082 
3083 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
3084 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3085 		tqp_vector->num_tqps++;
3086 	}
3087 
3088 	for (i = 0; i < priv->vector_num; i++) {
3089 		tqp_vector = &priv->tqp_vector[i];
3090 
3091 		tqp_vector->rx_group.total_bytes = 0;
3092 		tqp_vector->rx_group.total_packets = 0;
3093 		tqp_vector->tx_group.total_bytes = 0;
3094 		tqp_vector->tx_group.total_packets = 0;
3095 		tqp_vector->handle = h;
3096 
3097 		ret = hns3_get_vector_ring_chain(tqp_vector,
3098 						 &vector_ring_chain);
3099 		if (ret)
3100 			goto map_ring_fail;
3101 
3102 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3103 			tqp_vector->vector_irq, &vector_ring_chain);
3104 
3105 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3106 
3107 		if (ret)
3108 			goto map_ring_fail;
3109 
3110 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3111 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3112 	}
3113 
3114 	return 0;
3115 
3116 map_ring_fail:
3117 	while (i--)
3118 		netif_napi_del(&priv->tqp_vector[i].napi);
3119 
3120 	return ret;
3121 }
3122 
3123 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3124 {
3125 #define HNS3_VECTOR_PF_MAX_NUM		64
3126 
3127 	struct hnae3_handle *h = priv->ae_handle;
3128 	struct hns3_enet_tqp_vector *tqp_vector;
3129 	struct hnae3_vector_info *vector;
3130 	struct pci_dev *pdev = h->pdev;
3131 	u16 tqp_num = h->kinfo.num_tqps;
3132 	u16 vector_num;
3133 	int ret = 0;
3134 	u16 i;
3135 
3136 	/* RSS size, cpu online and vector_num should be the same */
3137 	/* Should consider 2p/4p later */
3138 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3139 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3140 
3141 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3142 			      GFP_KERNEL);
3143 	if (!vector)
3144 		return -ENOMEM;
3145 
3146 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3147 
3148 	priv->vector_num = vector_num;
3149 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3150 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3151 			     GFP_KERNEL);
3152 	if (!priv->tqp_vector) {
3153 		ret = -ENOMEM;
3154 		goto out;
3155 	}
3156 
3157 	for (i = 0; i < priv->vector_num; i++) {
3158 		tqp_vector = &priv->tqp_vector[i];
3159 		tqp_vector->idx = i;
3160 		tqp_vector->mask_addr = vector[i].io_addr;
3161 		tqp_vector->vector_irq = vector[i].vector;
3162 		hns3_vector_gl_rl_init(tqp_vector, priv);
3163 	}
3164 
3165 out:
3166 	devm_kfree(&pdev->dev, vector);
3167 	return ret;
3168 }
3169 
3170 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3171 {
3172 	group->ring = NULL;
3173 	group->count = 0;
3174 }
3175 
3176 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3177 {
3178 	struct hnae3_ring_chain_node vector_ring_chain;
3179 	struct hnae3_handle *h = priv->ae_handle;
3180 	struct hns3_enet_tqp_vector *tqp_vector;
3181 	int i;
3182 
3183 	for (i = 0; i < priv->vector_num; i++) {
3184 		tqp_vector = &priv->tqp_vector[i];
3185 
3186 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3187 			continue;
3188 
3189 		hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3190 
3191 		h->ae_algo->ops->unmap_ring_from_vector(h,
3192 			tqp_vector->vector_irq, &vector_ring_chain);
3193 
3194 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3195 
3196 		if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
3197 			irq_set_affinity_notifier(tqp_vector->vector_irq,
3198 						  NULL);
3199 			irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
3200 			free_irq(tqp_vector->vector_irq, tqp_vector);
3201 			tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3202 		}
3203 
3204 		hns3_clear_ring_group(&tqp_vector->rx_group);
3205 		hns3_clear_ring_group(&tqp_vector->tx_group);
3206 		netif_napi_del(&priv->tqp_vector[i].napi);
3207 	}
3208 }
3209 
3210 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3211 {
3212 	struct hnae3_handle *h = priv->ae_handle;
3213 	struct pci_dev *pdev = h->pdev;
3214 	int i, ret;
3215 
3216 	for (i = 0; i < priv->vector_num; i++) {
3217 		struct hns3_enet_tqp_vector *tqp_vector;
3218 
3219 		tqp_vector = &priv->tqp_vector[i];
3220 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3221 		if (ret)
3222 			return ret;
3223 	}
3224 
3225 	devm_kfree(&pdev->dev, priv->tqp_vector);
3226 	return 0;
3227 }
3228 
3229 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3230 			     int ring_type)
3231 {
3232 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
3233 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3234 	struct pci_dev *pdev = priv->ae_handle->pdev;
3235 	struct hns3_enet_ring *ring;
3236 	int desc_num;
3237 
3238 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3239 	if (!ring)
3240 		return -ENOMEM;
3241 
3242 	if (ring_type == HNAE3_RING_TYPE_TX) {
3243 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3244 		ring_data[q->tqp_index].ring = ring;
3245 		ring_data[q->tqp_index].queue_index = q->tqp_index;
3246 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3247 	} else {
3248 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3249 		ring_data[q->tqp_index + queue_num].ring = ring;
3250 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3251 		ring->io_base = q->io_base;
3252 	}
3253 
3254 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3255 
3256 	ring->tqp = q;
3257 	ring->desc = NULL;
3258 	ring->desc_cb = NULL;
3259 	ring->dev = priv->dev;
3260 	ring->desc_dma_addr = 0;
3261 	ring->buf_size = q->buf_size;
3262 	ring->desc_num = desc_num;
3263 	ring->next_to_use = 0;
3264 	ring->next_to_clean = 0;
3265 
3266 	return 0;
3267 }
3268 
3269 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3270 			      struct hns3_nic_priv *priv)
3271 {
3272 	int ret;
3273 
3274 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3275 	if (ret)
3276 		return ret;
3277 
3278 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3279 	if (ret) {
3280 		devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3281 		return ret;
3282 	}
3283 
3284 	return 0;
3285 }
3286 
3287 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3288 {
3289 	struct hnae3_handle *h = priv->ae_handle;
3290 	struct pci_dev *pdev = h->pdev;
3291 	int i, ret;
3292 
3293 	priv->ring_data =  devm_kzalloc(&pdev->dev,
3294 					array3_size(h->kinfo.num_tqps,
3295 						    sizeof(*priv->ring_data),
3296 						    2),
3297 					GFP_KERNEL);
3298 	if (!priv->ring_data)
3299 		return -ENOMEM;
3300 
3301 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3302 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3303 		if (ret)
3304 			goto err;
3305 	}
3306 
3307 	return 0;
3308 err:
3309 	while (i--) {
3310 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3311 		devm_kfree(priv->dev,
3312 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3313 	}
3314 
3315 	devm_kfree(&pdev->dev, priv->ring_data);
3316 	return ret;
3317 }
3318 
3319 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3320 {
3321 	struct hnae3_handle *h = priv->ae_handle;
3322 	int i;
3323 
3324 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3325 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3326 		devm_kfree(priv->dev,
3327 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3328 	}
3329 	devm_kfree(priv->dev, priv->ring_data);
3330 }
3331 
3332 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3333 {
3334 	int ret;
3335 
3336 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3337 		return -EINVAL;
3338 
3339 	ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
3340 				GFP_KERNEL);
3341 	if (!ring->desc_cb) {
3342 		ret = -ENOMEM;
3343 		goto out;
3344 	}
3345 
3346 	ret = hns3_alloc_desc(ring);
3347 	if (ret)
3348 		goto out_with_desc_cb;
3349 
3350 	if (!HNAE3_IS_TX_RING(ring)) {
3351 		ret = hns3_alloc_ring_buffers(ring);
3352 		if (ret)
3353 			goto out_with_desc;
3354 	}
3355 
3356 	return 0;
3357 
3358 out_with_desc:
3359 	hns3_free_desc(ring);
3360 out_with_desc_cb:
3361 	kfree(ring->desc_cb);
3362 	ring->desc_cb = NULL;
3363 out:
3364 	return ret;
3365 }
3366 
3367 static void hns3_fini_ring(struct hns3_enet_ring *ring)
3368 {
3369 	hns3_free_desc(ring);
3370 	kfree(ring->desc_cb);
3371 	ring->desc_cb = NULL;
3372 	ring->next_to_clean = 0;
3373 	ring->next_to_use = 0;
3374 	ring->pending_buf = 0;
3375 	if (ring->skb) {
3376 		dev_kfree_skb_any(ring->skb);
3377 		ring->skb = NULL;
3378 	}
3379 }
3380 
3381 static int hns3_buf_size2type(u32 buf_size)
3382 {
3383 	int bd_size_type;
3384 
3385 	switch (buf_size) {
3386 	case 512:
3387 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3388 		break;
3389 	case 1024:
3390 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3391 		break;
3392 	case 2048:
3393 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3394 		break;
3395 	case 4096:
3396 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3397 		break;
3398 	default:
3399 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3400 	}
3401 
3402 	return bd_size_type;
3403 }
3404 
3405 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3406 {
3407 	dma_addr_t dma = ring->desc_dma_addr;
3408 	struct hnae3_queue *q = ring->tqp;
3409 
3410 	if (!HNAE3_IS_TX_RING(ring)) {
3411 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
3412 			       (u32)dma);
3413 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3414 			       (u32)((dma >> 31) >> 1));
3415 
3416 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3417 			       hns3_buf_size2type(ring->buf_size));
3418 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3419 			       ring->desc_num / 8 - 1);
3420 
3421 	} else {
3422 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3423 			       (u32)dma);
3424 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3425 			       (u32)((dma >> 31) >> 1));
3426 
3427 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3428 			       ring->desc_num / 8 - 1);
3429 	}
3430 }
3431 
3432 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3433 {
3434 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3435 	int i;
3436 
3437 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3438 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3439 		int j;
3440 
3441 		if (!tc_info->enable)
3442 			continue;
3443 
3444 		for (j = 0; j < tc_info->tqp_count; j++) {
3445 			struct hnae3_queue *q;
3446 
3447 			q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3448 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3449 				       tc_info->tc);
3450 		}
3451 	}
3452 }
3453 
3454 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3455 {
3456 	struct hnae3_handle *h = priv->ae_handle;
3457 	int ring_num = h->kinfo.num_tqps * 2;
3458 	int i, j;
3459 	int ret;
3460 
3461 	for (i = 0; i < ring_num; i++) {
3462 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3463 		if (ret) {
3464 			dev_err(priv->dev,
3465 				"Alloc ring memory fail! ret=%d\n", ret);
3466 			goto out_when_alloc_ring_memory;
3467 		}
3468 
3469 		u64_stats_init(&priv->ring_data[i].ring->syncp);
3470 	}
3471 
3472 	return 0;
3473 
3474 out_when_alloc_ring_memory:
3475 	for (j = i - 1; j >= 0; j--)
3476 		hns3_fini_ring(priv->ring_data[j].ring);
3477 
3478 	return -ENOMEM;
3479 }
3480 
3481 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3482 {
3483 	struct hnae3_handle *h = priv->ae_handle;
3484 	int i;
3485 
3486 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3487 		hns3_fini_ring(priv->ring_data[i].ring);
3488 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3489 	}
3490 	return 0;
3491 }
3492 
3493 /* Set mac addr if it is configured. or leave it to the AE driver */
3494 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3495 {
3496 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3497 	struct hnae3_handle *h = priv->ae_handle;
3498 	u8 mac_addr_temp[ETH_ALEN];
3499 	int ret = 0;
3500 
3501 	if (h->ae_algo->ops->get_mac_addr && init) {
3502 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3503 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3504 	}
3505 
3506 	/* Check if the MAC address is valid, if not get a random one */
3507 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3508 		eth_hw_addr_random(netdev);
3509 		dev_warn(priv->dev, "using random MAC address %pM\n",
3510 			 netdev->dev_addr);
3511 	}
3512 
3513 	if (h->ae_algo->ops->set_mac_addr)
3514 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3515 
3516 	return ret;
3517 }
3518 
3519 static int hns3_init_phy(struct net_device *netdev)
3520 {
3521 	struct hnae3_handle *h = hns3_get_handle(netdev);
3522 	int ret = 0;
3523 
3524 	if (h->ae_algo->ops->mac_connect_phy)
3525 		ret = h->ae_algo->ops->mac_connect_phy(h);
3526 
3527 	return ret;
3528 }
3529 
3530 static void hns3_uninit_phy(struct net_device *netdev)
3531 {
3532 	struct hnae3_handle *h = hns3_get_handle(netdev);
3533 
3534 	if (h->ae_algo->ops->mac_disconnect_phy)
3535 		h->ae_algo->ops->mac_disconnect_phy(h);
3536 }
3537 
3538 static int hns3_restore_fd_rules(struct net_device *netdev)
3539 {
3540 	struct hnae3_handle *h = hns3_get_handle(netdev);
3541 	int ret = 0;
3542 
3543 	if (h->ae_algo->ops->restore_fd_rules)
3544 		ret = h->ae_algo->ops->restore_fd_rules(h);
3545 
3546 	return ret;
3547 }
3548 
3549 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3550 {
3551 	struct hnae3_handle *h = hns3_get_handle(netdev);
3552 
3553 	if (h->ae_algo->ops->del_all_fd_entries)
3554 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3555 }
3556 
3557 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3558 {
3559 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3560 
3561 	if ((netdev->features & NETIF_F_TSO) ||
3562 	    (netdev->features & NETIF_F_TSO6))
3563 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3564 	else
3565 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3566 }
3567 
3568 static int hns3_client_start(struct hnae3_handle *handle)
3569 {
3570 	if (!handle->ae_algo->ops->client_start)
3571 		return 0;
3572 
3573 	return handle->ae_algo->ops->client_start(handle);
3574 }
3575 
3576 static void hns3_client_stop(struct hnae3_handle *handle)
3577 {
3578 	if (!handle->ae_algo->ops->client_stop)
3579 		return;
3580 
3581 	handle->ae_algo->ops->client_stop(handle);
3582 }
3583 
3584 static int hns3_client_init(struct hnae3_handle *handle)
3585 {
3586 	struct pci_dev *pdev = handle->pdev;
3587 	u16 alloc_tqps, max_rss_size;
3588 	struct hns3_nic_priv *priv;
3589 	struct net_device *netdev;
3590 	int ret;
3591 
3592 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3593 						    &max_rss_size);
3594 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3595 	if (!netdev)
3596 		return -ENOMEM;
3597 
3598 	priv = netdev_priv(netdev);
3599 	priv->dev = &pdev->dev;
3600 	priv->netdev = netdev;
3601 	priv->ae_handle = handle;
3602 	priv->tx_timeout_count = 0;
3603 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3604 
3605 	handle->kinfo.netdev = netdev;
3606 	handle->priv = (void *)priv;
3607 
3608 	hns3_init_mac_addr(netdev, true);
3609 
3610 	hns3_set_default_feature(netdev);
3611 
3612 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3613 	netdev->priv_flags |= IFF_UNICAST_FLT;
3614 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3615 	SET_NETDEV_DEV(netdev, &pdev->dev);
3616 	hns3_ethtool_set_ops(netdev);
3617 	hns3_nic_set_priv_ops(netdev);
3618 
3619 	/* Carrier off reporting is important to ethtool even BEFORE open */
3620 	netif_carrier_off(netdev);
3621 
3622 	ret = hns3_get_ring_config(priv);
3623 	if (ret) {
3624 		ret = -ENOMEM;
3625 		goto out_get_ring_cfg;
3626 	}
3627 
3628 	ret = hns3_nic_alloc_vector_data(priv);
3629 	if (ret) {
3630 		ret = -ENOMEM;
3631 		goto out_alloc_vector_data;
3632 	}
3633 
3634 	ret = hns3_nic_init_vector_data(priv);
3635 	if (ret) {
3636 		ret = -ENOMEM;
3637 		goto out_init_vector_data;
3638 	}
3639 
3640 	ret = hns3_init_all_ring(priv);
3641 	if (ret) {
3642 		ret = -ENOMEM;
3643 		goto out_init_ring_data;
3644 	}
3645 
3646 	ret = hns3_init_phy(netdev);
3647 	if (ret)
3648 		goto out_init_phy;
3649 
3650 	ret = register_netdev(netdev);
3651 	if (ret) {
3652 		dev_err(priv->dev, "probe register netdev fail!\n");
3653 		goto out_reg_netdev_fail;
3654 	}
3655 
3656 	ret = hns3_client_start(handle);
3657 	if (ret) {
3658 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3659 			goto out_client_start;
3660 	}
3661 
3662 	hns3_dcbnl_setup(handle);
3663 
3664 	hns3_dbg_init(handle);
3665 
3666 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3667 	netdev->max_mtu = HNS3_MAX_MTU;
3668 
3669 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3670 
3671 	return ret;
3672 
3673 out_client_start:
3674 	unregister_netdev(netdev);
3675 out_reg_netdev_fail:
3676 	hns3_uninit_phy(netdev);
3677 out_init_phy:
3678 	hns3_uninit_all_ring(priv);
3679 out_init_ring_data:
3680 	hns3_nic_uninit_vector_data(priv);
3681 out_init_vector_data:
3682 	hns3_nic_dealloc_vector_data(priv);
3683 out_alloc_vector_data:
3684 	priv->ring_data = NULL;
3685 out_get_ring_cfg:
3686 	priv->ae_handle = NULL;
3687 	free_netdev(netdev);
3688 	return ret;
3689 }
3690 
3691 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3692 {
3693 	struct net_device *netdev = handle->kinfo.netdev;
3694 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3695 	int ret;
3696 
3697 	hns3_client_stop(handle);
3698 
3699 	hns3_remove_hw_addr(netdev);
3700 
3701 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3702 		unregister_netdev(netdev);
3703 
3704 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3705 		netdev_warn(netdev, "already uninitialized\n");
3706 		goto out_netdev_free;
3707 	}
3708 
3709 	hns3_del_all_fd_rules(netdev, true);
3710 
3711 	hns3_force_clear_all_rx_ring(handle);
3712 
3713 	hns3_uninit_phy(netdev);
3714 
3715 	hns3_nic_uninit_vector_data(priv);
3716 
3717 	ret = hns3_nic_dealloc_vector_data(priv);
3718 	if (ret)
3719 		netdev_err(netdev, "dealloc vector error\n");
3720 
3721 	ret = hns3_uninit_all_ring(priv);
3722 	if (ret)
3723 		netdev_err(netdev, "uninit ring error\n");
3724 
3725 	hns3_put_ring_config(priv);
3726 
3727 	hns3_dbg_uninit(handle);
3728 
3729 	priv->ring_data = NULL;
3730 
3731 out_netdev_free:
3732 	free_netdev(netdev);
3733 }
3734 
3735 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3736 {
3737 	struct net_device *netdev = handle->kinfo.netdev;
3738 
3739 	if (!netdev)
3740 		return;
3741 
3742 	if (linkup) {
3743 		netif_carrier_on(netdev);
3744 		netif_tx_wake_all_queues(netdev);
3745 		netdev_info(netdev, "link up\n");
3746 	} else {
3747 		netif_carrier_off(netdev);
3748 		netif_tx_stop_all_queues(netdev);
3749 		netdev_info(netdev, "link down\n");
3750 	}
3751 }
3752 
3753 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3754 {
3755 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3756 	struct net_device *ndev = kinfo->netdev;
3757 
3758 	if (tc > HNAE3_MAX_TC)
3759 		return -EINVAL;
3760 
3761 	if (!ndev)
3762 		return -ENODEV;
3763 
3764 	return hns3_nic_set_real_num_queue(ndev);
3765 }
3766 
3767 static int hns3_recover_hw_addr(struct net_device *ndev)
3768 {
3769 	struct netdev_hw_addr_list *list;
3770 	struct netdev_hw_addr *ha, *tmp;
3771 	int ret = 0;
3772 
3773 	/* go through and sync uc_addr entries to the device */
3774 	list = &ndev->uc;
3775 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3776 		ret = hns3_nic_uc_sync(ndev, ha->addr);
3777 		if (ret)
3778 			return ret;
3779 	}
3780 
3781 	/* go through and sync mc_addr entries to the device */
3782 	list = &ndev->mc;
3783 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3784 		ret = hns3_nic_mc_sync(ndev, ha->addr);
3785 		if (ret)
3786 			return ret;
3787 	}
3788 
3789 	return ret;
3790 }
3791 
3792 static void hns3_remove_hw_addr(struct net_device *netdev)
3793 {
3794 	struct netdev_hw_addr_list *list;
3795 	struct netdev_hw_addr *ha, *tmp;
3796 
3797 	hns3_nic_uc_unsync(netdev, netdev->dev_addr);
3798 
3799 	/* go through and unsync uc_addr entries to the device */
3800 	list = &netdev->uc;
3801 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3802 		hns3_nic_uc_unsync(netdev, ha->addr);
3803 
3804 	/* go through and unsync mc_addr entries to the device */
3805 	list = &netdev->mc;
3806 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3807 		if (ha->refcount > 1)
3808 			hns3_nic_mc_unsync(netdev, ha->addr);
3809 }
3810 
3811 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3812 {
3813 	while (ring->next_to_clean != ring->next_to_use) {
3814 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3815 		hns3_free_buffer_detach(ring, ring->next_to_clean);
3816 		ring_ptr_move_fw(ring, next_to_clean);
3817 	}
3818 }
3819 
3820 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3821 {
3822 	struct hns3_desc_cb res_cbs;
3823 	int ret;
3824 
3825 	while (ring->next_to_use != ring->next_to_clean) {
3826 		/* When a buffer is not reused, it's memory has been
3827 		 * freed in hns3_handle_rx_bd or will be freed by
3828 		 * stack, so we need to replace the buffer here.
3829 		 */
3830 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3831 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
3832 			if (ret) {
3833 				u64_stats_update_begin(&ring->syncp);
3834 				ring->stats.sw_err_cnt++;
3835 				u64_stats_update_end(&ring->syncp);
3836 				/* if alloc new buffer fail, exit directly
3837 				 * and reclear in up flow.
3838 				 */
3839 				netdev_warn(ring->tqp->handle->kinfo.netdev,
3840 					    "reserve buffer map failed, ret = %d\n",
3841 					    ret);
3842 				return ret;
3843 			}
3844 			hns3_replace_buffer(ring, ring->next_to_use,
3845 					    &res_cbs);
3846 		}
3847 		ring_ptr_move_fw(ring, next_to_use);
3848 	}
3849 
3850 	return 0;
3851 }
3852 
3853 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3854 {
3855 	while (ring->next_to_use != ring->next_to_clean) {
3856 		/* When a buffer is not reused, it's memory has been
3857 		 * freed in hns3_handle_rx_bd or will be freed by
3858 		 * stack, so only need to unmap the buffer here.
3859 		 */
3860 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3861 			hns3_unmap_buffer(ring,
3862 					  &ring->desc_cb[ring->next_to_use]);
3863 			ring->desc_cb[ring->next_to_use].dma = 0;
3864 		}
3865 
3866 		ring_ptr_move_fw(ring, next_to_use);
3867 	}
3868 }
3869 
3870 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3871 {
3872 	struct net_device *ndev = h->kinfo.netdev;
3873 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3874 	struct hns3_enet_ring *ring;
3875 	u32 i;
3876 
3877 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3878 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3879 		hns3_force_clear_rx_ring(ring);
3880 	}
3881 }
3882 
3883 static void hns3_clear_all_ring(struct hnae3_handle *h)
3884 {
3885 	struct net_device *ndev = h->kinfo.netdev;
3886 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3887 	u32 i;
3888 
3889 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3890 		struct netdev_queue *dev_queue;
3891 		struct hns3_enet_ring *ring;
3892 
3893 		ring = priv->ring_data[i].ring;
3894 		hns3_clear_tx_ring(ring);
3895 		dev_queue = netdev_get_tx_queue(ndev,
3896 						priv->ring_data[i].queue_index);
3897 		netdev_tx_reset_queue(dev_queue);
3898 
3899 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3900 		/* Continue to clear other rings even if clearing some
3901 		 * rings failed.
3902 		 */
3903 		hns3_clear_rx_ring(ring);
3904 	}
3905 }
3906 
3907 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3908 {
3909 	struct net_device *ndev = h->kinfo.netdev;
3910 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3911 	struct hns3_enet_ring *rx_ring;
3912 	int i, j;
3913 	int ret;
3914 
3915 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3916 		ret = h->ae_algo->ops->reset_queue(h, i);
3917 		if (ret)
3918 			return ret;
3919 
3920 		hns3_init_ring_hw(priv->ring_data[i].ring);
3921 
3922 		/* We need to clear tx ring here because self test will
3923 		 * use the ring and will not run down before up
3924 		 */
3925 		hns3_clear_tx_ring(priv->ring_data[i].ring);
3926 		priv->ring_data[i].ring->next_to_clean = 0;
3927 		priv->ring_data[i].ring->next_to_use = 0;
3928 
3929 		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3930 		hns3_init_ring_hw(rx_ring);
3931 		ret = hns3_clear_rx_ring(rx_ring);
3932 		if (ret)
3933 			return ret;
3934 
3935 		/* We can not know the hardware head and tail when this
3936 		 * function is called in reset flow, so we reuse all desc.
3937 		 */
3938 		for (j = 0; j < rx_ring->desc_num; j++)
3939 			hns3_reuse_buffer(rx_ring, j);
3940 
3941 		rx_ring->next_to_clean = 0;
3942 		rx_ring->next_to_use = 0;
3943 	}
3944 
3945 	hns3_init_tx_ring_tc(priv);
3946 
3947 	return 0;
3948 }
3949 
3950 static void hns3_store_coal(struct hns3_nic_priv *priv)
3951 {
3952 	/* ethtool only support setting and querying one coal
3953 	 * configuation for now, so save the vector 0' coal
3954 	 * configuation here in order to restore it.
3955 	 */
3956 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
3957 	       sizeof(struct hns3_enet_coalesce));
3958 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
3959 	       sizeof(struct hns3_enet_coalesce));
3960 }
3961 
3962 static void hns3_restore_coal(struct hns3_nic_priv *priv)
3963 {
3964 	u16 vector_num = priv->vector_num;
3965 	int i;
3966 
3967 	for (i = 0; i < vector_num; i++) {
3968 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
3969 		       sizeof(struct hns3_enet_coalesce));
3970 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
3971 		       sizeof(struct hns3_enet_coalesce));
3972 	}
3973 }
3974 
3975 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3976 {
3977 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
3978 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3979 	struct net_device *ndev = kinfo->netdev;
3980 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3981 
3982 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
3983 		return 0;
3984 
3985 	/* it is cumbersome for hardware to pick-and-choose entries for deletion
3986 	 * from table space. Hence, for function reset software intervention is
3987 	 * required to delete the entries
3988 	 */
3989 	if (hns3_dev_ongoing_func_reset(ae_dev)) {
3990 		hns3_remove_hw_addr(ndev);
3991 		hns3_del_all_fd_rules(ndev, false);
3992 	}
3993 
3994 	if (!netif_running(ndev))
3995 		return 0;
3996 
3997 	return hns3_nic_net_stop(ndev);
3998 }
3999 
4000 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4001 {
4002 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4003 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4004 	int ret = 0;
4005 
4006 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4007 
4008 	if (netif_running(kinfo->netdev)) {
4009 		ret = hns3_nic_net_open(kinfo->netdev);
4010 		if (ret) {
4011 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4012 			netdev_err(kinfo->netdev,
4013 				   "hns net up fail, ret=%d!\n", ret);
4014 			return ret;
4015 		}
4016 	}
4017 
4018 	return ret;
4019 }
4020 
4021 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4022 {
4023 	struct net_device *netdev = handle->kinfo.netdev;
4024 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4025 	int ret;
4026 
4027 	/* Carrier off reporting is important to ethtool even BEFORE open */
4028 	netif_carrier_off(netdev);
4029 
4030 	ret = hns3_get_ring_config(priv);
4031 	if (ret)
4032 		return ret;
4033 
4034 	ret = hns3_nic_alloc_vector_data(priv);
4035 	if (ret)
4036 		goto err_put_ring;
4037 
4038 	hns3_restore_coal(priv);
4039 
4040 	ret = hns3_nic_init_vector_data(priv);
4041 	if (ret)
4042 		goto err_dealloc_vector;
4043 
4044 	ret = hns3_init_all_ring(priv);
4045 	if (ret)
4046 		goto err_uninit_vector;
4047 
4048 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4049 
4050 	return ret;
4051 
4052 err_uninit_vector:
4053 	hns3_nic_uninit_vector_data(priv);
4054 	priv->ring_data = NULL;
4055 err_dealloc_vector:
4056 	hns3_nic_dealloc_vector_data(priv);
4057 err_put_ring:
4058 	hns3_put_ring_config(priv);
4059 	priv->ring_data = NULL;
4060 
4061 	return ret;
4062 }
4063 
4064 static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
4065 {
4066 	struct net_device *netdev = handle->kinfo.netdev;
4067 	bool vlan_filter_enable;
4068 	int ret;
4069 
4070 	ret = hns3_init_mac_addr(netdev, false);
4071 	if (ret)
4072 		return ret;
4073 
4074 	ret = hns3_recover_hw_addr(netdev);
4075 	if (ret)
4076 		return ret;
4077 
4078 	ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4079 	if (ret)
4080 		return ret;
4081 
4082 	vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4083 	hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4084 
4085 	/* Hardware table is only clear when pf resets */
4086 	if (!(handle->flags & HNAE3_SUPPORT_VF)) {
4087 		ret = hns3_restore_vlan(netdev);
4088 		if (ret)
4089 			return ret;
4090 	}
4091 
4092 	return hns3_restore_fd_rules(netdev);
4093 }
4094 
4095 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4096 {
4097 	struct net_device *netdev = handle->kinfo.netdev;
4098 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4099 	int ret;
4100 
4101 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4102 		netdev_warn(netdev, "already uninitialized\n");
4103 		return 0;
4104 	}
4105 
4106 	hns3_force_clear_all_rx_ring(handle);
4107 
4108 	hns3_nic_uninit_vector_data(priv);
4109 
4110 	hns3_store_coal(priv);
4111 
4112 	ret = hns3_nic_dealloc_vector_data(priv);
4113 	if (ret)
4114 		netdev_err(netdev, "dealloc vector error\n");
4115 
4116 	ret = hns3_uninit_all_ring(priv);
4117 	if (ret)
4118 		netdev_err(netdev, "uninit ring error\n");
4119 
4120 	hns3_put_ring_config(priv);
4121 	priv->ring_data = NULL;
4122 
4123 	clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
4124 
4125 	return ret;
4126 }
4127 
4128 static int hns3_reset_notify(struct hnae3_handle *handle,
4129 			     enum hnae3_reset_notify_type type)
4130 {
4131 	int ret = 0;
4132 
4133 	switch (type) {
4134 	case HNAE3_UP_CLIENT:
4135 		ret = hns3_reset_notify_up_enet(handle);
4136 		break;
4137 	case HNAE3_DOWN_CLIENT:
4138 		ret = hns3_reset_notify_down_enet(handle);
4139 		break;
4140 	case HNAE3_INIT_CLIENT:
4141 		ret = hns3_reset_notify_init_enet(handle);
4142 		break;
4143 	case HNAE3_UNINIT_CLIENT:
4144 		ret = hns3_reset_notify_uninit_enet(handle);
4145 		break;
4146 	case HNAE3_RESTORE_CLIENT:
4147 		ret = hns3_reset_notify_restore_enet(handle);
4148 		break;
4149 	default:
4150 		break;
4151 	}
4152 
4153 	return ret;
4154 }
4155 
4156 int hns3_set_channels(struct net_device *netdev,
4157 		      struct ethtool_channels *ch)
4158 {
4159 	struct hnae3_handle *h = hns3_get_handle(netdev);
4160 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4161 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4162 	u32 new_tqp_num = ch->combined_count;
4163 	u16 org_tqp_num;
4164 	int ret;
4165 
4166 	if (ch->rx_count || ch->tx_count)
4167 		return -EINVAL;
4168 
4169 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4170 	    new_tqp_num < 1) {
4171 		dev_err(&netdev->dev,
4172 			"Change tqps fail, the tqp range is from 1 to %d",
4173 			hns3_get_max_available_channels(h));
4174 		return -EINVAL;
4175 	}
4176 
4177 	if (kinfo->rss_size == new_tqp_num)
4178 		return 0;
4179 
4180 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4181 	if (ret)
4182 		return ret;
4183 
4184 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4185 	if (ret)
4186 		return ret;
4187 
4188 	org_tqp_num = h->kinfo.num_tqps;
4189 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num, rxfh_configured);
4190 	if (ret) {
4191 		ret = h->ae_algo->ops->set_channels(h, org_tqp_num,
4192 						    rxfh_configured);
4193 		if (ret) {
4194 			/* If revert to old tqp failed, fatal error occurred */
4195 			dev_err(&netdev->dev,
4196 				"Revert to old tqp num fail, ret=%d", ret);
4197 			return ret;
4198 		}
4199 		dev_info(&netdev->dev,
4200 			 "Change tqp num fail, Revert to old tqp num");
4201 	}
4202 	ret = hns3_reset_notify(h, HNAE3_INIT_CLIENT);
4203 	if (ret)
4204 		return ret;
4205 
4206 	return hns3_reset_notify(h, HNAE3_UP_CLIENT);
4207 }
4208 
4209 static const struct hnae3_client_ops client_ops = {
4210 	.init_instance = hns3_client_init,
4211 	.uninit_instance = hns3_client_uninit,
4212 	.link_status_change = hns3_link_status_change,
4213 	.setup_tc = hns3_client_setup_tc,
4214 	.reset_notify = hns3_reset_notify,
4215 };
4216 
4217 /* hns3_init_module - Driver registration routine
4218  * hns3_init_module is the first routine called when the driver is
4219  * loaded. All it does is register with the PCI subsystem.
4220  */
4221 static int __init hns3_init_module(void)
4222 {
4223 	int ret;
4224 
4225 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4226 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4227 
4228 	client.type = HNAE3_CLIENT_KNIC;
4229 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4230 		 hns3_driver_name);
4231 
4232 	client.ops = &client_ops;
4233 
4234 	INIT_LIST_HEAD(&client.node);
4235 
4236 	hns3_dbg_register_debugfs(hns3_driver_name);
4237 
4238 	ret = hnae3_register_client(&client);
4239 	if (ret)
4240 		goto err_reg_client;
4241 
4242 	ret = pci_register_driver(&hns3_driver);
4243 	if (ret)
4244 		goto err_reg_driver;
4245 
4246 	return ret;
4247 
4248 err_reg_driver:
4249 	hnae3_unregister_client(&client);
4250 err_reg_client:
4251 	hns3_dbg_unregister_debugfs();
4252 	return ret;
4253 }
4254 module_init(hns3_init_module);
4255 
4256 /* hns3_exit_module - Driver exit cleanup routine
4257  * hns3_exit_module is called just before the driver is removed
4258  * from memory.
4259  */
4260 static void __exit hns3_exit_module(void)
4261 {
4262 	pci_unregister_driver(&hns3_driver);
4263 	hnae3_unregister_client(&client);
4264 	hns3_dbg_unregister_debugfs();
4265 }
4266 module_exit(hns3_exit_module);
4267 
4268 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4269 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4270 MODULE_LICENSE("GPL");
4271 MODULE_ALIAS("pci:hns-nic");
4272 MODULE_VERSION(HNS3_MOD_VERSION);
4273