1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #ifdef CONFIG_RFS_ACCEL
8 #include <linux/cpu_rmap.h>
9 #endif
10 #include <linux/if_vlan.h>
11 #include <linux/irq.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/pci.h>
16 #include <linux/aer.h>
17 #include <linux/skbuff.h>
18 #include <linux/sctp.h>
19 #include <net/gre.h>
20 #include <net/ip6_checksum.h>
21 #include <net/pkt_cls.h>
22 #include <net/tcp.h>
23 #include <net/vxlan.h>
24 #include <net/geneve.h>
25 
26 #include "hnae3.h"
27 #include "hns3_enet.h"
28 /* All hns3 tracepoints are defined by the include below, which
29  * must be included exactly once across the whole kernel with
30  * CREATE_TRACE_POINTS defined
31  */
32 #define CREATE_TRACE_POINTS
33 #include "hns3_trace.h"
34 
35 #define hns3_set_field(origin, shift, val)	((origin) |= (val) << (shift))
36 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
37 
38 #define hns3_rl_err(fmt, ...)						\
39 	do {								\
40 		if (net_ratelimit())					\
41 			netdev_err(fmt, ##__VA_ARGS__);			\
42 	} while (0)
43 
44 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force);
45 
46 static const char hns3_driver_name[] = "hns3";
47 static const char hns3_driver_string[] =
48 			"Hisilicon Ethernet Network Driver for Hip08 Family";
49 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
50 static struct hnae3_client client;
51 
52 static int debug = -1;
53 module_param(debug, int, 0);
54 MODULE_PARM_DESC(debug, " Network interface message level setting");
55 
56 static unsigned int tx_spare_buf_size;
57 module_param(tx_spare_buf_size, uint, 0400);
58 MODULE_PARM_DESC(tx_spare_buf_size, "Size used to allocate tx spare buffer");
59 
60 static unsigned int tx_sgl = 1;
61 module_param(tx_sgl, uint, 0600);
62 MODULE_PARM_DESC(tx_sgl, "Minimum number of frags when using dma_map_sg() to optimize the IOMMU mapping");
63 
64 static bool page_pool_enabled = true;
65 module_param(page_pool_enabled, bool, 0400);
66 
67 #define HNS3_SGL_SIZE(nfrag)	(sizeof(struct scatterlist) * (nfrag) +	\
68 				 sizeof(struct sg_table))
69 #define HNS3_MAX_SGL_SIZE	ALIGN(HNS3_SGL_SIZE(HNS3_MAX_TSO_BD_NUM), \
70 				      dma_get_cache_alignment())
71 
72 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
73 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
74 
75 #define HNS3_INNER_VLAN_TAG	1
76 #define HNS3_OUTER_VLAN_TAG	2
77 
78 #define HNS3_MIN_TX_LEN		33U
79 #define HNS3_MIN_TUN_PKT_LEN	65U
80 
81 /* hns3_pci_tbl - PCI Device ID Table
82  *
83  * Last entry must be all 0s
84  *
85  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
86  *   Class, Class Mask, private data (not used) }
87  */
88 static const struct pci_device_id hns3_pci_tbl[] = {
89 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
90 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
91 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
92 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
93 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
94 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
95 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
96 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
97 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
98 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
99 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
100 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
101 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_200G_RDMA),
102 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
103 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
104 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
105 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
106 	/* required last entry */
107 	{0,}
108 };
109 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
110 
111 #define HNS3_RX_PTYPE_ENTRY(ptype, l, s, t) \
112 	{	ptype, \
113 		l, \
114 		CHECKSUM_##s, \
115 		HNS3_L3_TYPE_##t, \
116 		1 }
117 
118 #define HNS3_RX_PTYPE_UNUSED_ENTRY(ptype) \
119 		{ ptype, 0, CHECKSUM_NONE, HNS3_L3_TYPE_PARSE_FAIL, 0 }
120 
121 static const struct hns3_rx_ptype hns3_rx_ptype_tbl[] = {
122 	HNS3_RX_PTYPE_UNUSED_ENTRY(0),
123 	HNS3_RX_PTYPE_ENTRY(1, 0, COMPLETE, ARP),
124 	HNS3_RX_PTYPE_ENTRY(2, 0, COMPLETE, RARP),
125 	HNS3_RX_PTYPE_ENTRY(3, 0, COMPLETE, LLDP),
126 	HNS3_RX_PTYPE_ENTRY(4, 0, COMPLETE, PARSE_FAIL),
127 	HNS3_RX_PTYPE_ENTRY(5, 0, COMPLETE, PARSE_FAIL),
128 	HNS3_RX_PTYPE_ENTRY(6, 0, COMPLETE, PARSE_FAIL),
129 	HNS3_RX_PTYPE_ENTRY(7, 0, COMPLETE, CNM),
130 	HNS3_RX_PTYPE_ENTRY(8, 0, NONE, PARSE_FAIL),
131 	HNS3_RX_PTYPE_UNUSED_ENTRY(9),
132 	HNS3_RX_PTYPE_UNUSED_ENTRY(10),
133 	HNS3_RX_PTYPE_UNUSED_ENTRY(11),
134 	HNS3_RX_PTYPE_UNUSED_ENTRY(12),
135 	HNS3_RX_PTYPE_UNUSED_ENTRY(13),
136 	HNS3_RX_PTYPE_UNUSED_ENTRY(14),
137 	HNS3_RX_PTYPE_UNUSED_ENTRY(15),
138 	HNS3_RX_PTYPE_ENTRY(16, 0, COMPLETE, PARSE_FAIL),
139 	HNS3_RX_PTYPE_ENTRY(17, 0, COMPLETE, IPV4),
140 	HNS3_RX_PTYPE_ENTRY(18, 0, COMPLETE, IPV4),
141 	HNS3_RX_PTYPE_ENTRY(19, 0, UNNECESSARY, IPV4),
142 	HNS3_RX_PTYPE_ENTRY(20, 0, UNNECESSARY, IPV4),
143 	HNS3_RX_PTYPE_ENTRY(21, 0, NONE, IPV4),
144 	HNS3_RX_PTYPE_ENTRY(22, 0, UNNECESSARY, IPV4),
145 	HNS3_RX_PTYPE_ENTRY(23, 0, NONE, IPV4),
146 	HNS3_RX_PTYPE_ENTRY(24, 0, NONE, IPV4),
147 	HNS3_RX_PTYPE_ENTRY(25, 0, UNNECESSARY, IPV4),
148 	HNS3_RX_PTYPE_UNUSED_ENTRY(26),
149 	HNS3_RX_PTYPE_UNUSED_ENTRY(27),
150 	HNS3_RX_PTYPE_UNUSED_ENTRY(28),
151 	HNS3_RX_PTYPE_ENTRY(29, 0, COMPLETE, PARSE_FAIL),
152 	HNS3_RX_PTYPE_ENTRY(30, 0, COMPLETE, PARSE_FAIL),
153 	HNS3_RX_PTYPE_ENTRY(31, 0, COMPLETE, IPV4),
154 	HNS3_RX_PTYPE_ENTRY(32, 0, COMPLETE, IPV4),
155 	HNS3_RX_PTYPE_ENTRY(33, 1, UNNECESSARY, IPV4),
156 	HNS3_RX_PTYPE_ENTRY(34, 1, UNNECESSARY, IPV4),
157 	HNS3_RX_PTYPE_ENTRY(35, 1, UNNECESSARY, IPV4),
158 	HNS3_RX_PTYPE_ENTRY(36, 0, COMPLETE, IPV4),
159 	HNS3_RX_PTYPE_ENTRY(37, 0, COMPLETE, IPV4),
160 	HNS3_RX_PTYPE_UNUSED_ENTRY(38),
161 	HNS3_RX_PTYPE_ENTRY(39, 0, COMPLETE, IPV6),
162 	HNS3_RX_PTYPE_ENTRY(40, 0, COMPLETE, IPV6),
163 	HNS3_RX_PTYPE_ENTRY(41, 1, UNNECESSARY, IPV6),
164 	HNS3_RX_PTYPE_ENTRY(42, 1, UNNECESSARY, IPV6),
165 	HNS3_RX_PTYPE_ENTRY(43, 1, UNNECESSARY, IPV6),
166 	HNS3_RX_PTYPE_ENTRY(44, 0, COMPLETE, IPV6),
167 	HNS3_RX_PTYPE_ENTRY(45, 0, COMPLETE, IPV6),
168 	HNS3_RX_PTYPE_UNUSED_ENTRY(46),
169 	HNS3_RX_PTYPE_UNUSED_ENTRY(47),
170 	HNS3_RX_PTYPE_UNUSED_ENTRY(48),
171 	HNS3_RX_PTYPE_UNUSED_ENTRY(49),
172 	HNS3_RX_PTYPE_UNUSED_ENTRY(50),
173 	HNS3_RX_PTYPE_UNUSED_ENTRY(51),
174 	HNS3_RX_PTYPE_UNUSED_ENTRY(52),
175 	HNS3_RX_PTYPE_UNUSED_ENTRY(53),
176 	HNS3_RX_PTYPE_UNUSED_ENTRY(54),
177 	HNS3_RX_PTYPE_UNUSED_ENTRY(55),
178 	HNS3_RX_PTYPE_UNUSED_ENTRY(56),
179 	HNS3_RX_PTYPE_UNUSED_ENTRY(57),
180 	HNS3_RX_PTYPE_UNUSED_ENTRY(58),
181 	HNS3_RX_PTYPE_UNUSED_ENTRY(59),
182 	HNS3_RX_PTYPE_UNUSED_ENTRY(60),
183 	HNS3_RX_PTYPE_UNUSED_ENTRY(61),
184 	HNS3_RX_PTYPE_UNUSED_ENTRY(62),
185 	HNS3_RX_PTYPE_UNUSED_ENTRY(63),
186 	HNS3_RX_PTYPE_UNUSED_ENTRY(64),
187 	HNS3_RX_PTYPE_UNUSED_ENTRY(65),
188 	HNS3_RX_PTYPE_UNUSED_ENTRY(66),
189 	HNS3_RX_PTYPE_UNUSED_ENTRY(67),
190 	HNS3_RX_PTYPE_UNUSED_ENTRY(68),
191 	HNS3_RX_PTYPE_UNUSED_ENTRY(69),
192 	HNS3_RX_PTYPE_UNUSED_ENTRY(70),
193 	HNS3_RX_PTYPE_UNUSED_ENTRY(71),
194 	HNS3_RX_PTYPE_UNUSED_ENTRY(72),
195 	HNS3_RX_PTYPE_UNUSED_ENTRY(73),
196 	HNS3_RX_PTYPE_UNUSED_ENTRY(74),
197 	HNS3_RX_PTYPE_UNUSED_ENTRY(75),
198 	HNS3_RX_PTYPE_UNUSED_ENTRY(76),
199 	HNS3_RX_PTYPE_UNUSED_ENTRY(77),
200 	HNS3_RX_PTYPE_UNUSED_ENTRY(78),
201 	HNS3_RX_PTYPE_UNUSED_ENTRY(79),
202 	HNS3_RX_PTYPE_UNUSED_ENTRY(80),
203 	HNS3_RX_PTYPE_UNUSED_ENTRY(81),
204 	HNS3_RX_PTYPE_UNUSED_ENTRY(82),
205 	HNS3_RX_PTYPE_UNUSED_ENTRY(83),
206 	HNS3_RX_PTYPE_UNUSED_ENTRY(84),
207 	HNS3_RX_PTYPE_UNUSED_ENTRY(85),
208 	HNS3_RX_PTYPE_UNUSED_ENTRY(86),
209 	HNS3_RX_PTYPE_UNUSED_ENTRY(87),
210 	HNS3_RX_PTYPE_UNUSED_ENTRY(88),
211 	HNS3_RX_PTYPE_UNUSED_ENTRY(89),
212 	HNS3_RX_PTYPE_UNUSED_ENTRY(90),
213 	HNS3_RX_PTYPE_UNUSED_ENTRY(91),
214 	HNS3_RX_PTYPE_UNUSED_ENTRY(92),
215 	HNS3_RX_PTYPE_UNUSED_ENTRY(93),
216 	HNS3_RX_PTYPE_UNUSED_ENTRY(94),
217 	HNS3_RX_PTYPE_UNUSED_ENTRY(95),
218 	HNS3_RX_PTYPE_UNUSED_ENTRY(96),
219 	HNS3_RX_PTYPE_UNUSED_ENTRY(97),
220 	HNS3_RX_PTYPE_UNUSED_ENTRY(98),
221 	HNS3_RX_PTYPE_UNUSED_ENTRY(99),
222 	HNS3_RX_PTYPE_UNUSED_ENTRY(100),
223 	HNS3_RX_PTYPE_UNUSED_ENTRY(101),
224 	HNS3_RX_PTYPE_UNUSED_ENTRY(102),
225 	HNS3_RX_PTYPE_UNUSED_ENTRY(103),
226 	HNS3_RX_PTYPE_UNUSED_ENTRY(104),
227 	HNS3_RX_PTYPE_UNUSED_ENTRY(105),
228 	HNS3_RX_PTYPE_UNUSED_ENTRY(106),
229 	HNS3_RX_PTYPE_UNUSED_ENTRY(107),
230 	HNS3_RX_PTYPE_UNUSED_ENTRY(108),
231 	HNS3_RX_PTYPE_UNUSED_ENTRY(109),
232 	HNS3_RX_PTYPE_UNUSED_ENTRY(110),
233 	HNS3_RX_PTYPE_ENTRY(111, 0, COMPLETE, IPV6),
234 	HNS3_RX_PTYPE_ENTRY(112, 0, COMPLETE, IPV6),
235 	HNS3_RX_PTYPE_ENTRY(113, 0, UNNECESSARY, IPV6),
236 	HNS3_RX_PTYPE_ENTRY(114, 0, UNNECESSARY, IPV6),
237 	HNS3_RX_PTYPE_ENTRY(115, 0, NONE, IPV6),
238 	HNS3_RX_PTYPE_ENTRY(116, 0, UNNECESSARY, IPV6),
239 	HNS3_RX_PTYPE_ENTRY(117, 0, NONE, IPV6),
240 	HNS3_RX_PTYPE_ENTRY(118, 0, NONE, IPV6),
241 	HNS3_RX_PTYPE_ENTRY(119, 0, UNNECESSARY, IPV6),
242 	HNS3_RX_PTYPE_UNUSED_ENTRY(120),
243 	HNS3_RX_PTYPE_UNUSED_ENTRY(121),
244 	HNS3_RX_PTYPE_UNUSED_ENTRY(122),
245 	HNS3_RX_PTYPE_ENTRY(123, 0, COMPLETE, PARSE_FAIL),
246 	HNS3_RX_PTYPE_ENTRY(124, 0, COMPLETE, PARSE_FAIL),
247 	HNS3_RX_PTYPE_ENTRY(125, 0, COMPLETE, IPV4),
248 	HNS3_RX_PTYPE_ENTRY(126, 0, COMPLETE, IPV4),
249 	HNS3_RX_PTYPE_ENTRY(127, 1, UNNECESSARY, IPV4),
250 	HNS3_RX_PTYPE_ENTRY(128, 1, UNNECESSARY, IPV4),
251 	HNS3_RX_PTYPE_ENTRY(129, 1, UNNECESSARY, IPV4),
252 	HNS3_RX_PTYPE_ENTRY(130, 0, COMPLETE, IPV4),
253 	HNS3_RX_PTYPE_ENTRY(131, 0, COMPLETE, IPV4),
254 	HNS3_RX_PTYPE_UNUSED_ENTRY(132),
255 	HNS3_RX_PTYPE_ENTRY(133, 0, COMPLETE, IPV6),
256 	HNS3_RX_PTYPE_ENTRY(134, 0, COMPLETE, IPV6),
257 	HNS3_RX_PTYPE_ENTRY(135, 1, UNNECESSARY, IPV6),
258 	HNS3_RX_PTYPE_ENTRY(136, 1, UNNECESSARY, IPV6),
259 	HNS3_RX_PTYPE_ENTRY(137, 1, UNNECESSARY, IPV6),
260 	HNS3_RX_PTYPE_ENTRY(138, 0, COMPLETE, IPV6),
261 	HNS3_RX_PTYPE_ENTRY(139, 0, COMPLETE, IPV6),
262 	HNS3_RX_PTYPE_UNUSED_ENTRY(140),
263 	HNS3_RX_PTYPE_UNUSED_ENTRY(141),
264 	HNS3_RX_PTYPE_UNUSED_ENTRY(142),
265 	HNS3_RX_PTYPE_UNUSED_ENTRY(143),
266 	HNS3_RX_PTYPE_UNUSED_ENTRY(144),
267 	HNS3_RX_PTYPE_UNUSED_ENTRY(145),
268 	HNS3_RX_PTYPE_UNUSED_ENTRY(146),
269 	HNS3_RX_PTYPE_UNUSED_ENTRY(147),
270 	HNS3_RX_PTYPE_UNUSED_ENTRY(148),
271 	HNS3_RX_PTYPE_UNUSED_ENTRY(149),
272 	HNS3_RX_PTYPE_UNUSED_ENTRY(150),
273 	HNS3_RX_PTYPE_UNUSED_ENTRY(151),
274 	HNS3_RX_PTYPE_UNUSED_ENTRY(152),
275 	HNS3_RX_PTYPE_UNUSED_ENTRY(153),
276 	HNS3_RX_PTYPE_UNUSED_ENTRY(154),
277 	HNS3_RX_PTYPE_UNUSED_ENTRY(155),
278 	HNS3_RX_PTYPE_UNUSED_ENTRY(156),
279 	HNS3_RX_PTYPE_UNUSED_ENTRY(157),
280 	HNS3_RX_PTYPE_UNUSED_ENTRY(158),
281 	HNS3_RX_PTYPE_UNUSED_ENTRY(159),
282 	HNS3_RX_PTYPE_UNUSED_ENTRY(160),
283 	HNS3_RX_PTYPE_UNUSED_ENTRY(161),
284 	HNS3_RX_PTYPE_UNUSED_ENTRY(162),
285 	HNS3_RX_PTYPE_UNUSED_ENTRY(163),
286 	HNS3_RX_PTYPE_UNUSED_ENTRY(164),
287 	HNS3_RX_PTYPE_UNUSED_ENTRY(165),
288 	HNS3_RX_PTYPE_UNUSED_ENTRY(166),
289 	HNS3_RX_PTYPE_UNUSED_ENTRY(167),
290 	HNS3_RX_PTYPE_UNUSED_ENTRY(168),
291 	HNS3_RX_PTYPE_UNUSED_ENTRY(169),
292 	HNS3_RX_PTYPE_UNUSED_ENTRY(170),
293 	HNS3_RX_PTYPE_UNUSED_ENTRY(171),
294 	HNS3_RX_PTYPE_UNUSED_ENTRY(172),
295 	HNS3_RX_PTYPE_UNUSED_ENTRY(173),
296 	HNS3_RX_PTYPE_UNUSED_ENTRY(174),
297 	HNS3_RX_PTYPE_UNUSED_ENTRY(175),
298 	HNS3_RX_PTYPE_UNUSED_ENTRY(176),
299 	HNS3_RX_PTYPE_UNUSED_ENTRY(177),
300 	HNS3_RX_PTYPE_UNUSED_ENTRY(178),
301 	HNS3_RX_PTYPE_UNUSED_ENTRY(179),
302 	HNS3_RX_PTYPE_UNUSED_ENTRY(180),
303 	HNS3_RX_PTYPE_UNUSED_ENTRY(181),
304 	HNS3_RX_PTYPE_UNUSED_ENTRY(182),
305 	HNS3_RX_PTYPE_UNUSED_ENTRY(183),
306 	HNS3_RX_PTYPE_UNUSED_ENTRY(184),
307 	HNS3_RX_PTYPE_UNUSED_ENTRY(185),
308 	HNS3_RX_PTYPE_UNUSED_ENTRY(186),
309 	HNS3_RX_PTYPE_UNUSED_ENTRY(187),
310 	HNS3_RX_PTYPE_UNUSED_ENTRY(188),
311 	HNS3_RX_PTYPE_UNUSED_ENTRY(189),
312 	HNS3_RX_PTYPE_UNUSED_ENTRY(190),
313 	HNS3_RX_PTYPE_UNUSED_ENTRY(191),
314 	HNS3_RX_PTYPE_UNUSED_ENTRY(192),
315 	HNS3_RX_PTYPE_UNUSED_ENTRY(193),
316 	HNS3_RX_PTYPE_UNUSED_ENTRY(194),
317 	HNS3_RX_PTYPE_UNUSED_ENTRY(195),
318 	HNS3_RX_PTYPE_UNUSED_ENTRY(196),
319 	HNS3_RX_PTYPE_UNUSED_ENTRY(197),
320 	HNS3_RX_PTYPE_UNUSED_ENTRY(198),
321 	HNS3_RX_PTYPE_UNUSED_ENTRY(199),
322 	HNS3_RX_PTYPE_UNUSED_ENTRY(200),
323 	HNS3_RX_PTYPE_UNUSED_ENTRY(201),
324 	HNS3_RX_PTYPE_UNUSED_ENTRY(202),
325 	HNS3_RX_PTYPE_UNUSED_ENTRY(203),
326 	HNS3_RX_PTYPE_UNUSED_ENTRY(204),
327 	HNS3_RX_PTYPE_UNUSED_ENTRY(205),
328 	HNS3_RX_PTYPE_UNUSED_ENTRY(206),
329 	HNS3_RX_PTYPE_UNUSED_ENTRY(207),
330 	HNS3_RX_PTYPE_UNUSED_ENTRY(208),
331 	HNS3_RX_PTYPE_UNUSED_ENTRY(209),
332 	HNS3_RX_PTYPE_UNUSED_ENTRY(210),
333 	HNS3_RX_PTYPE_UNUSED_ENTRY(211),
334 	HNS3_RX_PTYPE_UNUSED_ENTRY(212),
335 	HNS3_RX_PTYPE_UNUSED_ENTRY(213),
336 	HNS3_RX_PTYPE_UNUSED_ENTRY(214),
337 	HNS3_RX_PTYPE_UNUSED_ENTRY(215),
338 	HNS3_RX_PTYPE_UNUSED_ENTRY(216),
339 	HNS3_RX_PTYPE_UNUSED_ENTRY(217),
340 	HNS3_RX_PTYPE_UNUSED_ENTRY(218),
341 	HNS3_RX_PTYPE_UNUSED_ENTRY(219),
342 	HNS3_RX_PTYPE_UNUSED_ENTRY(220),
343 	HNS3_RX_PTYPE_UNUSED_ENTRY(221),
344 	HNS3_RX_PTYPE_UNUSED_ENTRY(222),
345 	HNS3_RX_PTYPE_UNUSED_ENTRY(223),
346 	HNS3_RX_PTYPE_UNUSED_ENTRY(224),
347 	HNS3_RX_PTYPE_UNUSED_ENTRY(225),
348 	HNS3_RX_PTYPE_UNUSED_ENTRY(226),
349 	HNS3_RX_PTYPE_UNUSED_ENTRY(227),
350 	HNS3_RX_PTYPE_UNUSED_ENTRY(228),
351 	HNS3_RX_PTYPE_UNUSED_ENTRY(229),
352 	HNS3_RX_PTYPE_UNUSED_ENTRY(230),
353 	HNS3_RX_PTYPE_UNUSED_ENTRY(231),
354 	HNS3_RX_PTYPE_UNUSED_ENTRY(232),
355 	HNS3_RX_PTYPE_UNUSED_ENTRY(233),
356 	HNS3_RX_PTYPE_UNUSED_ENTRY(234),
357 	HNS3_RX_PTYPE_UNUSED_ENTRY(235),
358 	HNS3_RX_PTYPE_UNUSED_ENTRY(236),
359 	HNS3_RX_PTYPE_UNUSED_ENTRY(237),
360 	HNS3_RX_PTYPE_UNUSED_ENTRY(238),
361 	HNS3_RX_PTYPE_UNUSED_ENTRY(239),
362 	HNS3_RX_PTYPE_UNUSED_ENTRY(240),
363 	HNS3_RX_PTYPE_UNUSED_ENTRY(241),
364 	HNS3_RX_PTYPE_UNUSED_ENTRY(242),
365 	HNS3_RX_PTYPE_UNUSED_ENTRY(243),
366 	HNS3_RX_PTYPE_UNUSED_ENTRY(244),
367 	HNS3_RX_PTYPE_UNUSED_ENTRY(245),
368 	HNS3_RX_PTYPE_UNUSED_ENTRY(246),
369 	HNS3_RX_PTYPE_UNUSED_ENTRY(247),
370 	HNS3_RX_PTYPE_UNUSED_ENTRY(248),
371 	HNS3_RX_PTYPE_UNUSED_ENTRY(249),
372 	HNS3_RX_PTYPE_UNUSED_ENTRY(250),
373 	HNS3_RX_PTYPE_UNUSED_ENTRY(251),
374 	HNS3_RX_PTYPE_UNUSED_ENTRY(252),
375 	HNS3_RX_PTYPE_UNUSED_ENTRY(253),
376 	HNS3_RX_PTYPE_UNUSED_ENTRY(254),
377 	HNS3_RX_PTYPE_UNUSED_ENTRY(255),
378 };
379 
380 #define HNS3_INVALID_PTYPE \
381 		ARRAY_SIZE(hns3_rx_ptype_tbl)
382 
383 static irqreturn_t hns3_irq_handle(int irq, void *vector)
384 {
385 	struct hns3_enet_tqp_vector *tqp_vector = vector;
386 
387 	napi_schedule_irqoff(&tqp_vector->napi);
388 	tqp_vector->event_cnt++;
389 
390 	return IRQ_HANDLED;
391 }
392 
393 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
394 {
395 	struct hns3_enet_tqp_vector *tqp_vectors;
396 	unsigned int i;
397 
398 	for (i = 0; i < priv->vector_num; i++) {
399 		tqp_vectors = &priv->tqp_vector[i];
400 
401 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
402 			continue;
403 
404 		/* clear the affinity mask */
405 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
406 
407 		/* release the irq resource */
408 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
409 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
410 	}
411 }
412 
413 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
414 {
415 	struct hns3_enet_tqp_vector *tqp_vectors;
416 	int txrx_int_idx = 0;
417 	int rx_int_idx = 0;
418 	int tx_int_idx = 0;
419 	unsigned int i;
420 	int ret;
421 
422 	for (i = 0; i < priv->vector_num; i++) {
423 		tqp_vectors = &priv->tqp_vector[i];
424 
425 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
426 			continue;
427 
428 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
429 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
430 				 "%s-%s-%s-%d", hns3_driver_name,
431 				 pci_name(priv->ae_handle->pdev),
432 				 "TxRx", txrx_int_idx++);
433 			txrx_int_idx++;
434 		} else if (tqp_vectors->rx_group.ring) {
435 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
436 				 "%s-%s-%s-%d", hns3_driver_name,
437 				 pci_name(priv->ae_handle->pdev),
438 				 "Rx", rx_int_idx++);
439 		} else if (tqp_vectors->tx_group.ring) {
440 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN,
441 				 "%s-%s-%s-%d", hns3_driver_name,
442 				 pci_name(priv->ae_handle->pdev),
443 				 "Tx", tx_int_idx++);
444 		} else {
445 			/* Skip this unused q_vector */
446 			continue;
447 		}
448 
449 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
450 
451 		irq_set_status_flags(tqp_vectors->vector_irq, IRQ_NOAUTOEN);
452 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
453 				  tqp_vectors->name, tqp_vectors);
454 		if (ret) {
455 			netdev_err(priv->netdev, "request irq(%d) fail\n",
456 				   tqp_vectors->vector_irq);
457 			hns3_nic_uninit_irq(priv);
458 			return ret;
459 		}
460 
461 		irq_set_affinity_hint(tqp_vectors->vector_irq,
462 				      &tqp_vectors->affinity_mask);
463 
464 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
465 	}
466 
467 	return 0;
468 }
469 
470 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
471 				 u32 mask_en)
472 {
473 	writel(mask_en, tqp_vector->mask_addr);
474 }
475 
476 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
477 {
478 	napi_enable(&tqp_vector->napi);
479 	enable_irq(tqp_vector->vector_irq);
480 
481 	/* enable vector */
482 	hns3_mask_vector_irq(tqp_vector, 1);
483 }
484 
485 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
486 {
487 	/* disable vector */
488 	hns3_mask_vector_irq(tqp_vector, 0);
489 
490 	disable_irq(tqp_vector->vector_irq);
491 	napi_disable(&tqp_vector->napi);
492 	cancel_work_sync(&tqp_vector->rx_group.dim.work);
493 	cancel_work_sync(&tqp_vector->tx_group.dim.work);
494 }
495 
496 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
497 				 u32 rl_value)
498 {
499 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
500 
501 	/* this defines the configuration for RL (Interrupt Rate Limiter).
502 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
503 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
504 	 */
505 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.adapt_enable &&
506 	    !tqp_vector->rx_group.coal.adapt_enable)
507 		/* According to the hardware, the range of rl_reg is
508 		 * 0-59 and the unit is 4.
509 		 */
510 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
511 
512 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
513 }
514 
515 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
516 				    u32 gl_value)
517 {
518 	u32 new_val;
519 
520 	if (tqp_vector->rx_group.coal.unit_1us)
521 		new_val = gl_value | HNS3_INT_GL_1US;
522 	else
523 		new_val = hns3_gl_usec_to_reg(gl_value);
524 
525 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
526 }
527 
528 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
529 				    u32 gl_value)
530 {
531 	u32 new_val;
532 
533 	if (tqp_vector->tx_group.coal.unit_1us)
534 		new_val = gl_value | HNS3_INT_GL_1US;
535 	else
536 		new_val = hns3_gl_usec_to_reg(gl_value);
537 
538 	writel(new_val, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
539 }
540 
541 void hns3_set_vector_coalesce_tx_ql(struct hns3_enet_tqp_vector *tqp_vector,
542 				    u32 ql_value)
543 {
544 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_TX_QL_OFFSET);
545 }
546 
547 void hns3_set_vector_coalesce_rx_ql(struct hns3_enet_tqp_vector *tqp_vector,
548 				    u32 ql_value)
549 {
550 	writel(ql_value, tqp_vector->mask_addr + HNS3_VECTOR_RX_QL_OFFSET);
551 }
552 
553 static void hns3_vector_coalesce_init(struct hns3_enet_tqp_vector *tqp_vector,
554 				      struct hns3_nic_priv *priv)
555 {
556 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
557 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
558 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
559 	struct hns3_enet_coalesce *ptx_coal = &priv->tx_coal;
560 	struct hns3_enet_coalesce *prx_coal = &priv->rx_coal;
561 
562 	tx_coal->adapt_enable = ptx_coal->adapt_enable;
563 	rx_coal->adapt_enable = prx_coal->adapt_enable;
564 
565 	tx_coal->int_gl = ptx_coal->int_gl;
566 	rx_coal->int_gl = prx_coal->int_gl;
567 
568 	rx_coal->flow_level = prx_coal->flow_level;
569 	tx_coal->flow_level = ptx_coal->flow_level;
570 
571 	/* device version above V3(include V3), GL can configure 1us
572 	 * unit, so uses 1us unit.
573 	 */
574 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
575 		tx_coal->unit_1us = 1;
576 		rx_coal->unit_1us = 1;
577 	}
578 
579 	if (ae_dev->dev_specs.int_ql_max) {
580 		tx_coal->ql_enable = 1;
581 		rx_coal->ql_enable = 1;
582 		tx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
583 		rx_coal->int_ql_max = ae_dev->dev_specs.int_ql_max;
584 		tx_coal->int_ql = ptx_coal->int_ql;
585 		rx_coal->int_ql = prx_coal->int_ql;
586 	}
587 }
588 
589 static void
590 hns3_vector_coalesce_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
591 			     struct hns3_nic_priv *priv)
592 {
593 	struct hns3_enet_coalesce *tx_coal = &tqp_vector->tx_group.coal;
594 	struct hns3_enet_coalesce *rx_coal = &tqp_vector->rx_group.coal;
595 	struct hnae3_handle *h = priv->ae_handle;
596 
597 	hns3_set_vector_coalesce_tx_gl(tqp_vector, tx_coal->int_gl);
598 	hns3_set_vector_coalesce_rx_gl(tqp_vector, rx_coal->int_gl);
599 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
600 
601 	if (tx_coal->ql_enable)
602 		hns3_set_vector_coalesce_tx_ql(tqp_vector, tx_coal->int_ql);
603 
604 	if (rx_coal->ql_enable)
605 		hns3_set_vector_coalesce_rx_ql(tqp_vector, rx_coal->int_ql);
606 }
607 
608 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
609 {
610 	struct hnae3_handle *h = hns3_get_handle(netdev);
611 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
612 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
613 	unsigned int queue_size = kinfo->num_tqps;
614 	int i, ret;
615 
616 	if (tc_info->num_tc <= 1 && !tc_info->mqprio_active) {
617 		netdev_reset_tc(netdev);
618 	} else {
619 		ret = netdev_set_num_tc(netdev, tc_info->num_tc);
620 		if (ret) {
621 			netdev_err(netdev,
622 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
623 			return ret;
624 		}
625 
626 		for (i = 0; i < tc_info->num_tc; i++)
627 			netdev_set_tc_queue(netdev, i, tc_info->tqp_count[i],
628 					    tc_info->tqp_offset[i]);
629 	}
630 
631 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
632 	if (ret) {
633 		netdev_err(netdev,
634 			   "netif_set_real_num_tx_queues fail, ret=%d!\n", ret);
635 		return ret;
636 	}
637 
638 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
639 	if (ret) {
640 		netdev_err(netdev,
641 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
642 		return ret;
643 	}
644 
645 	return 0;
646 }
647 
648 u16 hns3_get_max_available_channels(struct hnae3_handle *h)
649 {
650 	u16 alloc_tqps, max_rss_size, rss_size;
651 
652 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
653 	rss_size = alloc_tqps / h->kinfo.tc_info.num_tc;
654 
655 	return min_t(u16, rss_size, max_rss_size);
656 }
657 
658 static void hns3_tqp_enable(struct hnae3_queue *tqp)
659 {
660 	u32 rcb_reg;
661 
662 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
663 	rcb_reg |= BIT(HNS3_RING_EN_B);
664 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
665 }
666 
667 static void hns3_tqp_disable(struct hnae3_queue *tqp)
668 {
669 	u32 rcb_reg;
670 
671 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
672 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
673 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
674 }
675 
676 static void hns3_free_rx_cpu_rmap(struct net_device *netdev)
677 {
678 #ifdef CONFIG_RFS_ACCEL
679 	free_irq_cpu_rmap(netdev->rx_cpu_rmap);
680 	netdev->rx_cpu_rmap = NULL;
681 #endif
682 }
683 
684 static int hns3_set_rx_cpu_rmap(struct net_device *netdev)
685 {
686 #ifdef CONFIG_RFS_ACCEL
687 	struct hns3_nic_priv *priv = netdev_priv(netdev);
688 	struct hns3_enet_tqp_vector *tqp_vector;
689 	int i, ret;
690 
691 	if (!netdev->rx_cpu_rmap) {
692 		netdev->rx_cpu_rmap = alloc_irq_cpu_rmap(priv->vector_num);
693 		if (!netdev->rx_cpu_rmap)
694 			return -ENOMEM;
695 	}
696 
697 	for (i = 0; i < priv->vector_num; i++) {
698 		tqp_vector = &priv->tqp_vector[i];
699 		ret = irq_cpu_rmap_add(netdev->rx_cpu_rmap,
700 				       tqp_vector->vector_irq);
701 		if (ret) {
702 			hns3_free_rx_cpu_rmap(netdev);
703 			return ret;
704 		}
705 	}
706 #endif
707 	return 0;
708 }
709 
710 static int hns3_nic_net_up(struct net_device *netdev)
711 {
712 	struct hns3_nic_priv *priv = netdev_priv(netdev);
713 	struct hnae3_handle *h = priv->ae_handle;
714 	int i, j;
715 	int ret;
716 
717 	ret = hns3_nic_reset_all_ring(h);
718 	if (ret)
719 		return ret;
720 
721 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
722 
723 	/* enable the vectors */
724 	for (i = 0; i < priv->vector_num; i++)
725 		hns3_vector_enable(&priv->tqp_vector[i]);
726 
727 	/* enable rcb */
728 	for (j = 0; j < h->kinfo.num_tqps; j++)
729 		hns3_tqp_enable(h->kinfo.tqp[j]);
730 
731 	/* start the ae_dev */
732 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
733 	if (ret) {
734 		set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
735 		while (j--)
736 			hns3_tqp_disable(h->kinfo.tqp[j]);
737 
738 		for (j = i - 1; j >= 0; j--)
739 			hns3_vector_disable(&priv->tqp_vector[j]);
740 	}
741 
742 	return ret;
743 }
744 
745 static void hns3_config_xps(struct hns3_nic_priv *priv)
746 {
747 	int i;
748 
749 	for (i = 0; i < priv->vector_num; i++) {
750 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
751 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
752 
753 		while (ring) {
754 			int ret;
755 
756 			ret = netif_set_xps_queue(priv->netdev,
757 						  &tqp_vector->affinity_mask,
758 						  ring->tqp->tqp_index);
759 			if (ret)
760 				netdev_warn(priv->netdev,
761 					    "set xps queue failed: %d", ret);
762 
763 			ring = ring->next;
764 		}
765 	}
766 }
767 
768 static int hns3_nic_net_open(struct net_device *netdev)
769 {
770 	struct hns3_nic_priv *priv = netdev_priv(netdev);
771 	struct hnae3_handle *h = hns3_get_handle(netdev);
772 	struct hnae3_knic_private_info *kinfo;
773 	int i, ret;
774 
775 	if (hns3_nic_resetting(netdev))
776 		return -EBUSY;
777 
778 	if (!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
779 		netdev_warn(netdev, "net open repeatedly!\n");
780 		return 0;
781 	}
782 
783 	netif_carrier_off(netdev);
784 
785 	ret = hns3_nic_set_real_num_queue(netdev);
786 	if (ret)
787 		return ret;
788 
789 	ret = hns3_nic_net_up(netdev);
790 	if (ret) {
791 		netdev_err(netdev, "net up fail, ret=%d!\n", ret);
792 		return ret;
793 	}
794 
795 	kinfo = &h->kinfo;
796 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++)
797 		netdev_set_prio_tc_map(netdev, i, kinfo->tc_info.prio_tc[i]);
798 
799 	if (h->ae_algo->ops->set_timer_task)
800 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
801 
802 	hns3_config_xps(priv);
803 
804 	netif_dbg(h, drv, netdev, "net open\n");
805 
806 	return 0;
807 }
808 
809 static void hns3_reset_tx_queue(struct hnae3_handle *h)
810 {
811 	struct net_device *ndev = h->kinfo.netdev;
812 	struct hns3_nic_priv *priv = netdev_priv(ndev);
813 	struct netdev_queue *dev_queue;
814 	u32 i;
815 
816 	for (i = 0; i < h->kinfo.num_tqps; i++) {
817 		dev_queue = netdev_get_tx_queue(ndev,
818 						priv->ring[i].queue_index);
819 		netdev_tx_reset_queue(dev_queue);
820 	}
821 }
822 
823 static void hns3_nic_net_down(struct net_device *netdev)
824 {
825 	struct hns3_nic_priv *priv = netdev_priv(netdev);
826 	struct hnae3_handle *h = hns3_get_handle(netdev);
827 	const struct hnae3_ae_ops *ops;
828 	int i;
829 
830 	/* disable vectors */
831 	for (i = 0; i < priv->vector_num; i++)
832 		hns3_vector_disable(&priv->tqp_vector[i]);
833 
834 	/* disable rcb */
835 	for (i = 0; i < h->kinfo.num_tqps; i++)
836 		hns3_tqp_disable(h->kinfo.tqp[i]);
837 
838 	/* stop ae_dev */
839 	ops = priv->ae_handle->ae_algo->ops;
840 	if (ops->stop)
841 		ops->stop(priv->ae_handle);
842 
843 	/* delay ring buffer clearing to hns3_reset_notify_uninit_enet
844 	 * during reset process, because driver may not be able
845 	 * to disable the ring through firmware when downing the netdev.
846 	 */
847 	if (!hns3_nic_resetting(netdev))
848 		hns3_clear_all_ring(priv->ae_handle, false);
849 
850 	hns3_reset_tx_queue(priv->ae_handle);
851 }
852 
853 static int hns3_nic_net_stop(struct net_device *netdev)
854 {
855 	struct hns3_nic_priv *priv = netdev_priv(netdev);
856 	struct hnae3_handle *h = hns3_get_handle(netdev);
857 
858 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
859 		return 0;
860 
861 	netif_dbg(h, drv, netdev, "net stop\n");
862 
863 	if (h->ae_algo->ops->set_timer_task)
864 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
865 
866 	netif_carrier_off(netdev);
867 	netif_tx_disable(netdev);
868 
869 	hns3_nic_net_down(netdev);
870 
871 	return 0;
872 }
873 
874 static int hns3_nic_uc_sync(struct net_device *netdev,
875 			    const unsigned char *addr)
876 {
877 	struct hnae3_handle *h = hns3_get_handle(netdev);
878 
879 	if (h->ae_algo->ops->add_uc_addr)
880 		return h->ae_algo->ops->add_uc_addr(h, addr);
881 
882 	return 0;
883 }
884 
885 static int hns3_nic_uc_unsync(struct net_device *netdev,
886 			      const unsigned char *addr)
887 {
888 	struct hnae3_handle *h = hns3_get_handle(netdev);
889 
890 	/* need ignore the request of removing device address, because
891 	 * we store the device address and other addresses of uc list
892 	 * in the function's mac filter list.
893 	 */
894 	if (ether_addr_equal(addr, netdev->dev_addr))
895 		return 0;
896 
897 	if (h->ae_algo->ops->rm_uc_addr)
898 		return h->ae_algo->ops->rm_uc_addr(h, addr);
899 
900 	return 0;
901 }
902 
903 static int hns3_nic_mc_sync(struct net_device *netdev,
904 			    const unsigned char *addr)
905 {
906 	struct hnae3_handle *h = hns3_get_handle(netdev);
907 
908 	if (h->ae_algo->ops->add_mc_addr)
909 		return h->ae_algo->ops->add_mc_addr(h, addr);
910 
911 	return 0;
912 }
913 
914 static int hns3_nic_mc_unsync(struct net_device *netdev,
915 			      const unsigned char *addr)
916 {
917 	struct hnae3_handle *h = hns3_get_handle(netdev);
918 
919 	if (h->ae_algo->ops->rm_mc_addr)
920 		return h->ae_algo->ops->rm_mc_addr(h, addr);
921 
922 	return 0;
923 }
924 
925 static u8 hns3_get_netdev_flags(struct net_device *netdev)
926 {
927 	u8 flags = 0;
928 
929 	if (netdev->flags & IFF_PROMISC)
930 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
931 	else if (netdev->flags & IFF_ALLMULTI)
932 		flags = HNAE3_USER_MPE;
933 
934 	return flags;
935 }
936 
937 static void hns3_nic_set_rx_mode(struct net_device *netdev)
938 {
939 	struct hnae3_handle *h = hns3_get_handle(netdev);
940 	u8 new_flags;
941 
942 	new_flags = hns3_get_netdev_flags(netdev);
943 
944 	__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
945 	__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync);
946 
947 	/* User mode Promisc mode enable and vlan filtering is disabled to
948 	 * let all packets in.
949 	 */
950 	h->netdev_flags = new_flags;
951 	hns3_request_update_promisc_mode(h);
952 }
953 
954 void hns3_request_update_promisc_mode(struct hnae3_handle *handle)
955 {
956 	const struct hnae3_ae_ops *ops = handle->ae_algo->ops;
957 
958 	if (ops->request_update_promisc_mode)
959 		ops->request_update_promisc_mode(handle);
960 }
961 
962 static u32 hns3_tx_spare_space(struct hns3_enet_ring *ring)
963 {
964 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
965 	u32 ntc, ntu;
966 
967 	/* This smp_load_acquire() pairs with smp_store_release() in
968 	 * hns3_tx_spare_update() called in tx desc cleaning process.
969 	 */
970 	ntc = smp_load_acquire(&tx_spare->last_to_clean);
971 	ntu = tx_spare->next_to_use;
972 
973 	if (ntc > ntu)
974 		return ntc - ntu - 1;
975 
976 	/* The free tx buffer is divided into two part, so pick the
977 	 * larger one.
978 	 */
979 	return max(ntc, tx_spare->len - ntu) - 1;
980 }
981 
982 static void hns3_tx_spare_update(struct hns3_enet_ring *ring)
983 {
984 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
985 
986 	if (!tx_spare ||
987 	    tx_spare->last_to_clean == tx_spare->next_to_clean)
988 		return;
989 
990 	/* This smp_store_release() pairs with smp_load_acquire() in
991 	 * hns3_tx_spare_space() called in xmit process.
992 	 */
993 	smp_store_release(&tx_spare->last_to_clean,
994 			  tx_spare->next_to_clean);
995 }
996 
997 static bool hns3_can_use_tx_bounce(struct hns3_enet_ring *ring,
998 				   struct sk_buff *skb,
999 				   u32 space)
1000 {
1001 	u32 len = skb->len <= ring->tx_copybreak ? skb->len :
1002 				skb_headlen(skb);
1003 
1004 	if (len > ring->tx_copybreak)
1005 		return false;
1006 
1007 	if (ALIGN(len, dma_get_cache_alignment()) > space) {
1008 		u64_stats_update_begin(&ring->syncp);
1009 		ring->stats.tx_spare_full++;
1010 		u64_stats_update_end(&ring->syncp);
1011 		return false;
1012 	}
1013 
1014 	return true;
1015 }
1016 
1017 static bool hns3_can_use_tx_sgl(struct hns3_enet_ring *ring,
1018 				struct sk_buff *skb,
1019 				u32 space)
1020 {
1021 	if (skb->len <= ring->tx_copybreak || !tx_sgl ||
1022 	    (!skb_has_frag_list(skb) &&
1023 	     skb_shinfo(skb)->nr_frags < tx_sgl))
1024 		return false;
1025 
1026 	if (space < HNS3_MAX_SGL_SIZE) {
1027 		u64_stats_update_begin(&ring->syncp);
1028 		ring->stats.tx_spare_full++;
1029 		u64_stats_update_end(&ring->syncp);
1030 		return false;
1031 	}
1032 
1033 	return true;
1034 }
1035 
1036 static void hns3_init_tx_spare_buffer(struct hns3_enet_ring *ring)
1037 {
1038 	struct hns3_tx_spare *tx_spare;
1039 	struct page *page;
1040 	u32 alloc_size;
1041 	dma_addr_t dma;
1042 	int order;
1043 
1044 	alloc_size = tx_spare_buf_size ? tx_spare_buf_size :
1045 		     ring->tqp->handle->kinfo.tx_spare_buf_size;
1046 	if (!alloc_size)
1047 		return;
1048 
1049 	order = get_order(alloc_size);
1050 	tx_spare = devm_kzalloc(ring_to_dev(ring), sizeof(*tx_spare),
1051 				GFP_KERNEL);
1052 	if (!tx_spare) {
1053 		/* The driver still work without the tx spare buffer */
1054 		dev_warn(ring_to_dev(ring), "failed to allocate hns3_tx_spare\n");
1055 		return;
1056 	}
1057 
1058 	page = alloc_pages_node(dev_to_node(ring_to_dev(ring)),
1059 				GFP_KERNEL, order);
1060 	if (!page) {
1061 		dev_warn(ring_to_dev(ring), "failed to allocate tx spare pages\n");
1062 		devm_kfree(ring_to_dev(ring), tx_spare);
1063 		return;
1064 	}
1065 
1066 	dma = dma_map_page(ring_to_dev(ring), page, 0,
1067 			   PAGE_SIZE << order, DMA_TO_DEVICE);
1068 	if (dma_mapping_error(ring_to_dev(ring), dma)) {
1069 		dev_warn(ring_to_dev(ring), "failed to map pages for tx spare\n");
1070 		put_page(page);
1071 		devm_kfree(ring_to_dev(ring), tx_spare);
1072 		return;
1073 	}
1074 
1075 	tx_spare->dma = dma;
1076 	tx_spare->buf = page_address(page);
1077 	tx_spare->len = PAGE_SIZE << order;
1078 	ring->tx_spare = tx_spare;
1079 }
1080 
1081 /* Use hns3_tx_spare_space() to make sure there is enough buffer
1082  * before calling below function to allocate tx buffer.
1083  */
1084 static void *hns3_tx_spare_alloc(struct hns3_enet_ring *ring,
1085 				 unsigned int size, dma_addr_t *dma,
1086 				 u32 *cb_len)
1087 {
1088 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1089 	u32 ntu = tx_spare->next_to_use;
1090 
1091 	size = ALIGN(size, dma_get_cache_alignment());
1092 	*cb_len = size;
1093 
1094 	/* Tx spare buffer wraps back here because the end of
1095 	 * freed tx buffer is not enough.
1096 	 */
1097 	if (ntu + size > tx_spare->len) {
1098 		*cb_len += (tx_spare->len - ntu);
1099 		ntu = 0;
1100 	}
1101 
1102 	tx_spare->next_to_use = ntu + size;
1103 	if (tx_spare->next_to_use == tx_spare->len)
1104 		tx_spare->next_to_use = 0;
1105 
1106 	*dma = tx_spare->dma + ntu;
1107 
1108 	return tx_spare->buf + ntu;
1109 }
1110 
1111 static void hns3_tx_spare_rollback(struct hns3_enet_ring *ring, u32 len)
1112 {
1113 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1114 
1115 	if (len > tx_spare->next_to_use) {
1116 		len -= tx_spare->next_to_use;
1117 		tx_spare->next_to_use = tx_spare->len - len;
1118 	} else {
1119 		tx_spare->next_to_use -= len;
1120 	}
1121 }
1122 
1123 static void hns3_tx_spare_reclaim_cb(struct hns3_enet_ring *ring,
1124 				     struct hns3_desc_cb *cb)
1125 {
1126 	struct hns3_tx_spare *tx_spare = ring->tx_spare;
1127 	u32 ntc = tx_spare->next_to_clean;
1128 	u32 len = cb->length;
1129 
1130 	tx_spare->next_to_clean += len;
1131 
1132 	if (tx_spare->next_to_clean >= tx_spare->len) {
1133 		tx_spare->next_to_clean -= tx_spare->len;
1134 
1135 		if (tx_spare->next_to_clean) {
1136 			ntc = 0;
1137 			len = tx_spare->next_to_clean;
1138 		}
1139 	}
1140 
1141 	/* This tx spare buffer is only really reclaimed after calling
1142 	 * hns3_tx_spare_update(), so it is still safe to use the info in
1143 	 * the tx buffer to do the dma sync or sg unmapping after
1144 	 * tx_spare->next_to_clean is moved forword.
1145 	 */
1146 	if (cb->type & (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL)) {
1147 		dma_addr_t dma = tx_spare->dma + ntc;
1148 
1149 		dma_sync_single_for_cpu(ring_to_dev(ring), dma, len,
1150 					DMA_TO_DEVICE);
1151 	} else {
1152 		struct sg_table *sgt = tx_spare->buf + ntc;
1153 
1154 		dma_unmap_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
1155 			     DMA_TO_DEVICE);
1156 	}
1157 }
1158 
1159 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen_fdop_ol4cs,
1160 			u16 *mss, u32 *type_cs_vlan_tso, u32 *send_bytes)
1161 {
1162 	u32 l4_offset, hdr_len;
1163 	union l3_hdr_info l3;
1164 	union l4_hdr_info l4;
1165 	u32 l4_paylen;
1166 	int ret;
1167 
1168 	if (!skb_is_gso(skb))
1169 		return 0;
1170 
1171 	ret = skb_cow_head(skb, 0);
1172 	if (unlikely(ret < 0))
1173 		return ret;
1174 
1175 	l3.hdr = skb_network_header(skb);
1176 	l4.hdr = skb_transport_header(skb);
1177 
1178 	/* Software should clear the IPv4's checksum field when tso is
1179 	 * needed.
1180 	 */
1181 	if (l3.v4->version == 4)
1182 		l3.v4->check = 0;
1183 
1184 	/* tunnel packet */
1185 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1186 					 SKB_GSO_GRE_CSUM |
1187 					 SKB_GSO_UDP_TUNNEL |
1188 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
1189 		/* reset l3&l4 pointers from outer to inner headers */
1190 		l3.hdr = skb_inner_network_header(skb);
1191 		l4.hdr = skb_inner_transport_header(skb);
1192 
1193 		/* Software should clear the IPv4's checksum field when
1194 		 * tso is needed.
1195 		 */
1196 		if (l3.v4->version == 4)
1197 			l3.v4->check = 0;
1198 	}
1199 
1200 	/* normal or tunnel packet */
1201 	l4_offset = l4.hdr - skb->data;
1202 
1203 	/* remove payload length from inner pseudo checksum when tso */
1204 	l4_paylen = skb->len - l4_offset;
1205 
1206 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
1207 		hdr_len = sizeof(*l4.udp) + l4_offset;
1208 		csum_replace_by_diff(&l4.udp->check,
1209 				     (__force __wsum)htonl(l4_paylen));
1210 	} else {
1211 		hdr_len = (l4.tcp->doff << 2) + l4_offset;
1212 		csum_replace_by_diff(&l4.tcp->check,
1213 				     (__force __wsum)htonl(l4_paylen));
1214 	}
1215 
1216 	*send_bytes = (skb_shinfo(skb)->gso_segs - 1) * hdr_len + skb->len;
1217 
1218 	/* find the txbd field values */
1219 	*paylen_fdop_ol4cs = skb->len - hdr_len;
1220 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
1221 
1222 	/* offload outer UDP header checksum */
1223 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)
1224 		hns3_set_field(*paylen_fdop_ol4cs, HNS3_TXD_OL4CS_B, 1);
1225 
1226 	/* get MSS for TSO */
1227 	*mss = skb_shinfo(skb)->gso_size;
1228 
1229 	trace_hns3_tso(skb);
1230 
1231 	return 0;
1232 }
1233 
1234 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
1235 				u8 *il4_proto)
1236 {
1237 	union l3_hdr_info l3;
1238 	unsigned char *l4_hdr;
1239 	unsigned char *exthdr;
1240 	u8 l4_proto_tmp;
1241 	__be16 frag_off;
1242 
1243 	/* find outer header point */
1244 	l3.hdr = skb_network_header(skb);
1245 	l4_hdr = skb_transport_header(skb);
1246 
1247 	if (skb->protocol == htons(ETH_P_IPV6)) {
1248 		exthdr = l3.hdr + sizeof(*l3.v6);
1249 		l4_proto_tmp = l3.v6->nexthdr;
1250 		if (l4_hdr != exthdr)
1251 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1252 					 &l4_proto_tmp, &frag_off);
1253 	} else if (skb->protocol == htons(ETH_P_IP)) {
1254 		l4_proto_tmp = l3.v4->protocol;
1255 	} else {
1256 		return -EINVAL;
1257 	}
1258 
1259 	*ol4_proto = l4_proto_tmp;
1260 
1261 	/* tunnel packet */
1262 	if (!skb->encapsulation) {
1263 		*il4_proto = 0;
1264 		return 0;
1265 	}
1266 
1267 	/* find inner header point */
1268 	l3.hdr = skb_inner_network_header(skb);
1269 	l4_hdr = skb_inner_transport_header(skb);
1270 
1271 	if (l3.v6->version == 6) {
1272 		exthdr = l3.hdr + sizeof(*l3.v6);
1273 		l4_proto_tmp = l3.v6->nexthdr;
1274 		if (l4_hdr != exthdr)
1275 			ipv6_skip_exthdr(skb, exthdr - skb->data,
1276 					 &l4_proto_tmp, &frag_off);
1277 	} else if (l3.v4->version == 4) {
1278 		l4_proto_tmp = l3.v4->protocol;
1279 	}
1280 
1281 	*il4_proto = l4_proto_tmp;
1282 
1283 	return 0;
1284 }
1285 
1286 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
1287  * and it is udp packet, which has a dest port as the IANA assigned.
1288  * the hardware is expected to do the checksum offload, but the
1289  * hardware will not do the checksum offload when udp dest port is
1290  * 4789, 4790 or 6081.
1291  */
1292 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
1293 {
1294 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1295 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
1296 	union l4_hdr_info l4;
1297 
1298 	/* device version above V3(include V3), the hardware can
1299 	 * do this checksum offload.
1300 	 */
1301 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
1302 		return false;
1303 
1304 	l4.hdr = skb_transport_header(skb);
1305 
1306 	if (!(!skb->encapsulation &&
1307 	      (l4.udp->dest == htons(IANA_VXLAN_UDP_PORT) ||
1308 	      l4.udp->dest == htons(GENEVE_UDP_PORT) ||
1309 	      l4.udp->dest == htons(4790))))
1310 		return false;
1311 
1312 	return true;
1313 }
1314 
1315 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1316 				  u32 *ol_type_vlan_len_msec)
1317 {
1318 	u32 l2_len, l3_len, l4_len;
1319 	unsigned char *il2_hdr;
1320 	union l3_hdr_info l3;
1321 	union l4_hdr_info l4;
1322 
1323 	l3.hdr = skb_network_header(skb);
1324 	l4.hdr = skb_transport_header(skb);
1325 
1326 	/* compute OL2 header size, defined in 2 Bytes */
1327 	l2_len = l3.hdr - skb->data;
1328 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
1329 
1330 	/* compute OL3 header size, defined in 4 Bytes */
1331 	l3_len = l4.hdr - l3.hdr;
1332 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
1333 
1334 	il2_hdr = skb_inner_mac_header(skb);
1335 	/* compute OL4 header size, defined in 4 Bytes */
1336 	l4_len = il2_hdr - l4.hdr;
1337 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
1338 
1339 	/* define outer network header type */
1340 	if (skb->protocol == htons(ETH_P_IP)) {
1341 		if (skb_is_gso(skb))
1342 			hns3_set_field(*ol_type_vlan_len_msec,
1343 				       HNS3_TXD_OL3T_S,
1344 				       HNS3_OL3T_IPV4_CSUM);
1345 		else
1346 			hns3_set_field(*ol_type_vlan_len_msec,
1347 				       HNS3_TXD_OL3T_S,
1348 				       HNS3_OL3T_IPV4_NO_CSUM);
1349 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
1350 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
1351 			       HNS3_OL3T_IPV6);
1352 	}
1353 
1354 	if (ol4_proto == IPPROTO_UDP)
1355 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1356 			       HNS3_TUN_MAC_IN_UDP);
1357 	else if (ol4_proto == IPPROTO_GRE)
1358 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
1359 			       HNS3_TUN_NVGRE);
1360 }
1361 
1362 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
1363 			   u8 il4_proto, u32 *type_cs_vlan_tso,
1364 			   u32 *ol_type_vlan_len_msec)
1365 {
1366 	unsigned char *l2_hdr = skb->data;
1367 	u32 l4_proto = ol4_proto;
1368 	union l4_hdr_info l4;
1369 	union l3_hdr_info l3;
1370 	u32 l2_len, l3_len;
1371 
1372 	l4.hdr = skb_transport_header(skb);
1373 	l3.hdr = skb_network_header(skb);
1374 
1375 	/* handle encapsulation skb */
1376 	if (skb->encapsulation) {
1377 		/* If this is a not UDP/GRE encapsulation skb */
1378 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
1379 			/* drop the skb tunnel packet if hardware don't support,
1380 			 * because hardware can't calculate csum when TSO.
1381 			 */
1382 			if (skb_is_gso(skb))
1383 				return -EDOM;
1384 
1385 			/* the stack computes the IP header already,
1386 			 * driver calculate l4 checksum when not TSO.
1387 			 */
1388 			return skb_checksum_help(skb);
1389 		}
1390 
1391 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
1392 
1393 		/* switch to inner header */
1394 		l2_hdr = skb_inner_mac_header(skb);
1395 		l3.hdr = skb_inner_network_header(skb);
1396 		l4.hdr = skb_inner_transport_header(skb);
1397 		l4_proto = il4_proto;
1398 	}
1399 
1400 	if (l3.v4->version == 4) {
1401 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1402 			       HNS3_L3T_IPV4);
1403 
1404 		/* the stack computes the IP header already, the only time we
1405 		 * need the hardware to recompute it is in the case of TSO.
1406 		 */
1407 		if (skb_is_gso(skb))
1408 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
1409 	} else if (l3.v6->version == 6) {
1410 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
1411 			       HNS3_L3T_IPV6);
1412 	}
1413 
1414 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
1415 	l2_len = l3.hdr - l2_hdr;
1416 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
1417 
1418 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
1419 	l3_len = l4.hdr - l3.hdr;
1420 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
1421 
1422 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
1423 	switch (l4_proto) {
1424 	case IPPROTO_TCP:
1425 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1426 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1427 			       HNS3_L4T_TCP);
1428 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1429 			       l4.tcp->doff);
1430 		break;
1431 	case IPPROTO_UDP:
1432 		if (hns3_tunnel_csum_bug(skb)) {
1433 			int ret = skb_put_padto(skb, HNS3_MIN_TUN_PKT_LEN);
1434 
1435 			return ret ? ret : skb_checksum_help(skb);
1436 		}
1437 
1438 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1439 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1440 			       HNS3_L4T_UDP);
1441 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1442 			       (sizeof(struct udphdr) >> 2));
1443 		break;
1444 	case IPPROTO_SCTP:
1445 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
1446 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
1447 			       HNS3_L4T_SCTP);
1448 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
1449 			       (sizeof(struct sctphdr) >> 2));
1450 		break;
1451 	default:
1452 		/* drop the skb tunnel packet if hardware don't support,
1453 		 * because hardware can't calculate csum when TSO.
1454 		 */
1455 		if (skb_is_gso(skb))
1456 			return -EDOM;
1457 
1458 		/* the stack computes the IP header already,
1459 		 * driver calculate l4 checksum when not TSO.
1460 		 */
1461 		return skb_checksum_help(skb);
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 static int hns3_handle_vtags(struct hns3_enet_ring *tx_ring,
1468 			     struct sk_buff *skb)
1469 {
1470 	struct hnae3_handle *handle = tx_ring->tqp->handle;
1471 	struct hnae3_ae_dev *ae_dev;
1472 	struct vlan_ethhdr *vhdr;
1473 	int rc;
1474 
1475 	if (!(skb->protocol == htons(ETH_P_8021Q) ||
1476 	      skb_vlan_tag_present(skb)))
1477 		return 0;
1478 
1479 	/* For HW limitation on HNAE3_DEVICE_VERSION_V2, if port based insert
1480 	 * VLAN enabled, only one VLAN header is allowed in skb, otherwise it
1481 	 * will cause RAS error.
1482 	 */
1483 	ae_dev = pci_get_drvdata(handle->pdev);
1484 	if (unlikely(skb_vlan_tagged_multi(skb) &&
1485 		     ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
1486 		     handle->port_base_vlan_state ==
1487 		     HNAE3_PORT_BASE_VLAN_ENABLE))
1488 		return -EINVAL;
1489 
1490 	if (skb->protocol == htons(ETH_P_8021Q) &&
1491 	    !(handle->kinfo.netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1492 		/* When HW VLAN acceleration is turned off, and the stack
1493 		 * sets the protocol to 802.1q, the driver just need to
1494 		 * set the protocol to the encapsulated ethertype.
1495 		 */
1496 		skb->protocol = vlan_get_protocol(skb);
1497 		return 0;
1498 	}
1499 
1500 	if (skb_vlan_tag_present(skb)) {
1501 		/* Based on hw strategy, use out_vtag in two layer tag case,
1502 		 * and use inner_vtag in one tag case.
1503 		 */
1504 		if (skb->protocol == htons(ETH_P_8021Q) &&
1505 		    handle->port_base_vlan_state ==
1506 		    HNAE3_PORT_BASE_VLAN_DISABLE)
1507 			rc = HNS3_OUTER_VLAN_TAG;
1508 		else
1509 			rc = HNS3_INNER_VLAN_TAG;
1510 
1511 		skb->protocol = vlan_get_protocol(skb);
1512 		return rc;
1513 	}
1514 
1515 	rc = skb_cow_head(skb, 0);
1516 	if (unlikely(rc < 0))
1517 		return rc;
1518 
1519 	vhdr = (struct vlan_ethhdr *)skb->data;
1520 	vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority << VLAN_PRIO_SHIFT)
1521 					 & VLAN_PRIO_MASK);
1522 
1523 	skb->protocol = vlan_get_protocol(skb);
1524 	return 0;
1525 }
1526 
1527 /* check if the hardware is capable of checksum offloading */
1528 static bool hns3_check_hw_tx_csum(struct sk_buff *skb)
1529 {
1530 	struct hns3_nic_priv *priv = netdev_priv(skb->dev);
1531 
1532 	/* Kindly note, due to backward compatibility of the TX descriptor,
1533 	 * HW checksum of the non-IP packets and GSO packets is handled at
1534 	 * different place in the following code
1535 	 */
1536 	if (skb_csum_is_sctp(skb) || skb_is_gso(skb) ||
1537 	    !test_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state))
1538 		return false;
1539 
1540 	return true;
1541 }
1542 
1543 static int hns3_fill_skb_desc(struct hns3_enet_ring *ring,
1544 			      struct sk_buff *skb, struct hns3_desc *desc,
1545 			      struct hns3_desc_cb *desc_cb)
1546 {
1547 	u32 ol_type_vlan_len_msec = 0;
1548 	u32 paylen_ol4cs = skb->len;
1549 	u32 type_cs_vlan_tso = 0;
1550 	u16 mss_hw_csum = 0;
1551 	u16 inner_vtag = 0;
1552 	u16 out_vtag = 0;
1553 	int ret;
1554 
1555 	ret = hns3_handle_vtags(ring, skb);
1556 	if (unlikely(ret < 0)) {
1557 		u64_stats_update_begin(&ring->syncp);
1558 		ring->stats.tx_vlan_err++;
1559 		u64_stats_update_end(&ring->syncp);
1560 		return ret;
1561 	} else if (ret == HNS3_INNER_VLAN_TAG) {
1562 		inner_vtag = skb_vlan_tag_get(skb);
1563 		inner_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1564 				VLAN_PRIO_MASK;
1565 		hns3_set_field(type_cs_vlan_tso, HNS3_TXD_VLAN_B, 1);
1566 	} else if (ret == HNS3_OUTER_VLAN_TAG) {
1567 		out_vtag = skb_vlan_tag_get(skb);
1568 		out_vtag |= (skb->priority << VLAN_PRIO_SHIFT) &
1569 				VLAN_PRIO_MASK;
1570 		hns3_set_field(ol_type_vlan_len_msec, HNS3_TXD_OVLAN_B,
1571 			       1);
1572 	}
1573 
1574 	desc_cb->send_bytes = skb->len;
1575 
1576 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1577 		u8 ol4_proto, il4_proto;
1578 
1579 		if (hns3_check_hw_tx_csum(skb)) {
1580 			/* set checksum start and offset, defined in 2 Bytes */
1581 			hns3_set_field(type_cs_vlan_tso, HNS3_TXD_CSUM_START_S,
1582 				       skb_checksum_start_offset(skb) >> 1);
1583 			hns3_set_field(ol_type_vlan_len_msec,
1584 				       HNS3_TXD_CSUM_OFFSET_S,
1585 				       skb->csum_offset >> 1);
1586 			mss_hw_csum |= BIT(HNS3_TXD_HW_CS_B);
1587 			goto out_hw_tx_csum;
1588 		}
1589 
1590 		skb_reset_mac_len(skb);
1591 
1592 		ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1593 		if (unlikely(ret < 0)) {
1594 			u64_stats_update_begin(&ring->syncp);
1595 			ring->stats.tx_l4_proto_err++;
1596 			u64_stats_update_end(&ring->syncp);
1597 			return ret;
1598 		}
1599 
1600 		ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1601 				      &type_cs_vlan_tso,
1602 				      &ol_type_vlan_len_msec);
1603 		if (unlikely(ret < 0)) {
1604 			u64_stats_update_begin(&ring->syncp);
1605 			ring->stats.tx_l2l3l4_err++;
1606 			u64_stats_update_end(&ring->syncp);
1607 			return ret;
1608 		}
1609 
1610 		ret = hns3_set_tso(skb, &paylen_ol4cs, &mss_hw_csum,
1611 				   &type_cs_vlan_tso, &desc_cb->send_bytes);
1612 		if (unlikely(ret < 0)) {
1613 			u64_stats_update_begin(&ring->syncp);
1614 			ring->stats.tx_tso_err++;
1615 			u64_stats_update_end(&ring->syncp);
1616 			return ret;
1617 		}
1618 	}
1619 
1620 out_hw_tx_csum:
1621 	/* Set txbd */
1622 	desc->tx.ol_type_vlan_len_msec =
1623 		cpu_to_le32(ol_type_vlan_len_msec);
1624 	desc->tx.type_cs_vlan_tso_len = cpu_to_le32(type_cs_vlan_tso);
1625 	desc->tx.paylen_ol4cs = cpu_to_le32(paylen_ol4cs);
1626 	desc->tx.mss_hw_csum = cpu_to_le16(mss_hw_csum);
1627 	desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1628 	desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1629 
1630 	return 0;
1631 }
1632 
1633 static int hns3_fill_desc(struct hns3_enet_ring *ring, dma_addr_t dma,
1634 			  unsigned int size)
1635 {
1636 #define HNS3_LIKELY_BD_NUM	1
1637 
1638 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1639 	unsigned int frag_buf_num;
1640 	int k, sizeoflast;
1641 
1642 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1643 		desc->addr = cpu_to_le64(dma);
1644 		desc->tx.send_size = cpu_to_le16(size);
1645 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1646 			cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1647 
1648 		trace_hns3_tx_desc(ring, ring->next_to_use);
1649 		ring_ptr_move_fw(ring, next_to_use);
1650 		return HNS3_LIKELY_BD_NUM;
1651 	}
1652 
1653 	frag_buf_num = hns3_tx_bd_count(size);
1654 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1655 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1656 
1657 	/* When frag size is bigger than hardware limit, split this frag */
1658 	for (k = 0; k < frag_buf_num; k++) {
1659 		/* now, fill the descriptor */
1660 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1661 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1662 				     (u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1663 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1664 				cpu_to_le16(BIT(HNS3_TXD_VLD_B));
1665 
1666 		trace_hns3_tx_desc(ring, ring->next_to_use);
1667 		/* move ring pointer to next */
1668 		ring_ptr_move_fw(ring, next_to_use);
1669 
1670 		desc = &ring->desc[ring->next_to_use];
1671 	}
1672 
1673 	return frag_buf_num;
1674 }
1675 
1676 static int hns3_map_and_fill_desc(struct hns3_enet_ring *ring, void *priv,
1677 				  unsigned int type)
1678 {
1679 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1680 	struct device *dev = ring_to_dev(ring);
1681 	unsigned int size;
1682 	dma_addr_t dma;
1683 
1684 	if (type & (DESC_TYPE_FRAGLIST_SKB | DESC_TYPE_SKB)) {
1685 		struct sk_buff *skb = (struct sk_buff *)priv;
1686 
1687 		size = skb_headlen(skb);
1688 		if (!size)
1689 			return 0;
1690 
1691 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1692 	} else if (type & DESC_TYPE_BOUNCE_HEAD) {
1693 		/* Head data has been filled in hns3_handle_tx_bounce(),
1694 		 * just return 0 here.
1695 		 */
1696 		return 0;
1697 	} else {
1698 		skb_frag_t *frag = (skb_frag_t *)priv;
1699 
1700 		size = skb_frag_size(frag);
1701 		if (!size)
1702 			return 0;
1703 
1704 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1705 	}
1706 
1707 	if (unlikely(dma_mapping_error(dev, dma))) {
1708 		u64_stats_update_begin(&ring->syncp);
1709 		ring->stats.sw_err_cnt++;
1710 		u64_stats_update_end(&ring->syncp);
1711 		return -ENOMEM;
1712 	}
1713 
1714 	desc_cb->priv = priv;
1715 	desc_cb->length = size;
1716 	desc_cb->dma = dma;
1717 	desc_cb->type = type;
1718 
1719 	return hns3_fill_desc(ring, dma, size);
1720 }
1721 
1722 static unsigned int hns3_skb_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1723 				    unsigned int bd_num)
1724 {
1725 	unsigned int size;
1726 	int i;
1727 
1728 	size = skb_headlen(skb);
1729 	while (size > HNS3_MAX_BD_SIZE) {
1730 		bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1731 		size -= HNS3_MAX_BD_SIZE;
1732 
1733 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1734 			return bd_num;
1735 	}
1736 
1737 	if (size) {
1738 		bd_size[bd_num++] = size;
1739 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1740 			return bd_num;
1741 	}
1742 
1743 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1744 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1745 		size = skb_frag_size(frag);
1746 		if (!size)
1747 			continue;
1748 
1749 		while (size > HNS3_MAX_BD_SIZE) {
1750 			bd_size[bd_num++] = HNS3_MAX_BD_SIZE;
1751 			size -= HNS3_MAX_BD_SIZE;
1752 
1753 			if (bd_num > HNS3_MAX_TSO_BD_NUM)
1754 				return bd_num;
1755 		}
1756 
1757 		bd_size[bd_num++] = size;
1758 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1759 			return bd_num;
1760 	}
1761 
1762 	return bd_num;
1763 }
1764 
1765 static unsigned int hns3_tx_bd_num(struct sk_buff *skb, unsigned int *bd_size,
1766 				   u8 max_non_tso_bd_num, unsigned int bd_num,
1767 				   unsigned int recursion_level)
1768 {
1769 #define HNS3_MAX_RECURSION_LEVEL	24
1770 
1771 	struct sk_buff *frag_skb;
1772 
1773 	/* If the total len is within the max bd limit */
1774 	if (likely(skb->len <= HNS3_MAX_BD_SIZE && !recursion_level &&
1775 		   !skb_has_frag_list(skb) &&
1776 		   skb_shinfo(skb)->nr_frags < max_non_tso_bd_num))
1777 		return skb_shinfo(skb)->nr_frags + 1U;
1778 
1779 	if (unlikely(recursion_level >= HNS3_MAX_RECURSION_LEVEL))
1780 		return UINT_MAX;
1781 
1782 	bd_num = hns3_skb_bd_num(skb, bd_size, bd_num);
1783 	if (!skb_has_frag_list(skb) || bd_num > HNS3_MAX_TSO_BD_NUM)
1784 		return bd_num;
1785 
1786 	skb_walk_frags(skb, frag_skb) {
1787 		bd_num = hns3_tx_bd_num(frag_skb, bd_size, max_non_tso_bd_num,
1788 					bd_num, recursion_level + 1);
1789 		if (bd_num > HNS3_MAX_TSO_BD_NUM)
1790 			return bd_num;
1791 	}
1792 
1793 	return bd_num;
1794 }
1795 
1796 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1797 {
1798 	if (!skb->encapsulation)
1799 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1800 
1801 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1802 }
1803 
1804 /* HW need every continuous max_non_tso_bd_num buffer data to be larger
1805  * than MSS, we simplify it by ensuring skb_headlen + the first continuous
1806  * max_non_tso_bd_num - 1 frags to be larger than gso header len + mss,
1807  * and the remaining continuous max_non_tso_bd_num - 1 frags to be larger
1808  * than MSS except the last max_non_tso_bd_num - 1 frags.
1809  */
1810 static bool hns3_skb_need_linearized(struct sk_buff *skb, unsigned int *bd_size,
1811 				     unsigned int bd_num, u8 max_non_tso_bd_num)
1812 {
1813 	unsigned int tot_len = 0;
1814 	int i;
1815 
1816 	for (i = 0; i < max_non_tso_bd_num - 1U; i++)
1817 		tot_len += bd_size[i];
1818 
1819 	/* ensure the first max_non_tso_bd_num frags is greater than
1820 	 * mss + header
1821 	 */
1822 	if (tot_len + bd_size[max_non_tso_bd_num - 1U] <
1823 	    skb_shinfo(skb)->gso_size + hns3_gso_hdr_len(skb))
1824 		return true;
1825 
1826 	/* ensure every continuous max_non_tso_bd_num - 1 buffer is greater
1827 	 * than mss except the last one.
1828 	 */
1829 	for (i = 0; i < bd_num - max_non_tso_bd_num; i++) {
1830 		tot_len -= bd_size[i];
1831 		tot_len += bd_size[i + max_non_tso_bd_num - 1U];
1832 
1833 		if (tot_len < skb_shinfo(skb)->gso_size)
1834 			return true;
1835 	}
1836 
1837 	return false;
1838 }
1839 
1840 void hns3_shinfo_pack(struct skb_shared_info *shinfo, __u32 *size)
1841 {
1842 	int i;
1843 
1844 	for (i = 0; i < MAX_SKB_FRAGS; i++)
1845 		size[i] = skb_frag_size(&shinfo->frags[i]);
1846 }
1847 
1848 static int hns3_skb_linearize(struct hns3_enet_ring *ring,
1849 			      struct sk_buff *skb,
1850 			      u8 max_non_tso_bd_num,
1851 			      unsigned int bd_num)
1852 {
1853 	/* 'bd_num == UINT_MAX' means the skb' fraglist has a
1854 	 * recursion level of over HNS3_MAX_RECURSION_LEVEL.
1855 	 */
1856 	if (bd_num == UINT_MAX) {
1857 		u64_stats_update_begin(&ring->syncp);
1858 		ring->stats.over_max_recursion++;
1859 		u64_stats_update_end(&ring->syncp);
1860 		return -ENOMEM;
1861 	}
1862 
1863 	/* The skb->len has exceeded the hw limitation, linearization
1864 	 * will not help.
1865 	 */
1866 	if (skb->len > HNS3_MAX_TSO_SIZE ||
1867 	    (!skb_is_gso(skb) && skb->len >
1868 	     HNS3_MAX_NON_TSO_SIZE(max_non_tso_bd_num))) {
1869 		u64_stats_update_begin(&ring->syncp);
1870 		ring->stats.hw_limitation++;
1871 		u64_stats_update_end(&ring->syncp);
1872 		return -ENOMEM;
1873 	}
1874 
1875 	if (__skb_linearize(skb)) {
1876 		u64_stats_update_begin(&ring->syncp);
1877 		ring->stats.sw_err_cnt++;
1878 		u64_stats_update_end(&ring->syncp);
1879 		return -ENOMEM;
1880 	}
1881 
1882 	return 0;
1883 }
1884 
1885 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1886 				  struct net_device *netdev,
1887 				  struct sk_buff *skb)
1888 {
1889 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1890 	u8 max_non_tso_bd_num = priv->max_non_tso_bd_num;
1891 	unsigned int bd_size[HNS3_MAX_TSO_BD_NUM + 1U];
1892 	unsigned int bd_num;
1893 
1894 	bd_num = hns3_tx_bd_num(skb, bd_size, max_non_tso_bd_num, 0, 0);
1895 	if (unlikely(bd_num > max_non_tso_bd_num)) {
1896 		if (bd_num <= HNS3_MAX_TSO_BD_NUM && skb_is_gso(skb) &&
1897 		    !hns3_skb_need_linearized(skb, bd_size, bd_num,
1898 					      max_non_tso_bd_num)) {
1899 			trace_hns3_over_max_bd(skb);
1900 			goto out;
1901 		}
1902 
1903 		if (hns3_skb_linearize(ring, skb, max_non_tso_bd_num,
1904 				       bd_num))
1905 			return -ENOMEM;
1906 
1907 		bd_num = hns3_tx_bd_count(skb->len);
1908 
1909 		u64_stats_update_begin(&ring->syncp);
1910 		ring->stats.tx_copy++;
1911 		u64_stats_update_end(&ring->syncp);
1912 	}
1913 
1914 out:
1915 	if (likely(ring_space(ring) >= bd_num))
1916 		return bd_num;
1917 
1918 	netif_stop_subqueue(netdev, ring->queue_index);
1919 	smp_mb(); /* Memory barrier before checking ring_space */
1920 
1921 	/* Start queue in case hns3_clean_tx_ring has just made room
1922 	 * available and has not seen the queue stopped state performed
1923 	 * by netif_stop_subqueue above.
1924 	 */
1925 	if (ring_space(ring) >= bd_num && netif_carrier_ok(netdev) &&
1926 	    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
1927 		netif_start_subqueue(netdev, ring->queue_index);
1928 		return bd_num;
1929 	}
1930 
1931 	u64_stats_update_begin(&ring->syncp);
1932 	ring->stats.tx_busy++;
1933 	u64_stats_update_end(&ring->syncp);
1934 
1935 	return -EBUSY;
1936 }
1937 
1938 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1939 {
1940 	struct device *dev = ring_to_dev(ring);
1941 	unsigned int i;
1942 
1943 	for (i = 0; i < ring->desc_num; i++) {
1944 		struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1945 		struct hns3_desc_cb *desc_cb;
1946 
1947 		memset(desc, 0, sizeof(*desc));
1948 
1949 		/* check if this is where we started */
1950 		if (ring->next_to_use == next_to_use_orig)
1951 			break;
1952 
1953 		/* rollback one */
1954 		ring_ptr_move_bw(ring, next_to_use);
1955 
1956 		desc_cb = &ring->desc_cb[ring->next_to_use];
1957 
1958 		if (!desc_cb->dma)
1959 			continue;
1960 
1961 		/* unmap the descriptor dma address */
1962 		if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
1963 			dma_unmap_single(dev, desc_cb->dma, desc_cb->length,
1964 					 DMA_TO_DEVICE);
1965 		else if (desc_cb->type &
1966 			 (DESC_TYPE_BOUNCE_HEAD | DESC_TYPE_BOUNCE_ALL))
1967 			hns3_tx_spare_rollback(ring, desc_cb->length);
1968 		else if (desc_cb->length)
1969 			dma_unmap_page(dev, desc_cb->dma, desc_cb->length,
1970 				       DMA_TO_DEVICE);
1971 
1972 		desc_cb->length = 0;
1973 		desc_cb->dma = 0;
1974 		desc_cb->type = DESC_TYPE_UNKNOWN;
1975 	}
1976 }
1977 
1978 static int hns3_fill_skb_to_desc(struct hns3_enet_ring *ring,
1979 				 struct sk_buff *skb, unsigned int type)
1980 {
1981 	struct sk_buff *frag_skb;
1982 	int i, ret, bd_num = 0;
1983 
1984 	ret = hns3_map_and_fill_desc(ring, skb, type);
1985 	if (unlikely(ret < 0))
1986 		return ret;
1987 
1988 	bd_num += ret;
1989 
1990 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1991 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1992 
1993 		ret = hns3_map_and_fill_desc(ring, frag, DESC_TYPE_PAGE);
1994 		if (unlikely(ret < 0))
1995 			return ret;
1996 
1997 		bd_num += ret;
1998 	}
1999 
2000 	skb_walk_frags(skb, frag_skb) {
2001 		ret = hns3_fill_skb_to_desc(ring, frag_skb,
2002 					    DESC_TYPE_FRAGLIST_SKB);
2003 		if (unlikely(ret < 0))
2004 			return ret;
2005 
2006 		bd_num += ret;
2007 	}
2008 
2009 	return bd_num;
2010 }
2011 
2012 static void hns3_tx_doorbell(struct hns3_enet_ring *ring, int num,
2013 			     bool doorbell)
2014 {
2015 	ring->pending_buf += num;
2016 
2017 	if (!doorbell) {
2018 		u64_stats_update_begin(&ring->syncp);
2019 		ring->stats.tx_more++;
2020 		u64_stats_update_end(&ring->syncp);
2021 		return;
2022 	}
2023 
2024 	if (!ring->pending_buf)
2025 		return;
2026 
2027 	writel(ring->pending_buf,
2028 	       ring->tqp->io_base + HNS3_RING_TX_RING_TAIL_REG);
2029 	ring->pending_buf = 0;
2030 	WRITE_ONCE(ring->last_to_use, ring->next_to_use);
2031 }
2032 
2033 static void hns3_tsyn(struct net_device *netdev, struct sk_buff *skb,
2034 		      struct hns3_desc *desc)
2035 {
2036 	struct hnae3_handle *h = hns3_get_handle(netdev);
2037 
2038 	if (!(h->ae_algo->ops->set_tx_hwts_info &&
2039 	      h->ae_algo->ops->set_tx_hwts_info(h, skb)))
2040 		return;
2041 
2042 	desc->tx.bdtp_fe_sc_vld_ra_ri |= cpu_to_le16(BIT(HNS3_TXD_TSYN_B));
2043 }
2044 
2045 static int hns3_handle_tx_bounce(struct hns3_enet_ring *ring,
2046 				 struct sk_buff *skb)
2047 {
2048 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2049 	unsigned int type = DESC_TYPE_BOUNCE_HEAD;
2050 	unsigned int size = skb_headlen(skb);
2051 	dma_addr_t dma;
2052 	int bd_num = 0;
2053 	u32 cb_len;
2054 	void *buf;
2055 	int ret;
2056 
2057 	if (skb->len <= ring->tx_copybreak) {
2058 		size = skb->len;
2059 		type = DESC_TYPE_BOUNCE_ALL;
2060 	}
2061 
2062 	/* hns3_can_use_tx_bounce() is called to ensure the below
2063 	 * function can always return the tx buffer.
2064 	 */
2065 	buf = hns3_tx_spare_alloc(ring, size, &dma, &cb_len);
2066 
2067 	ret = skb_copy_bits(skb, 0, buf, size);
2068 	if (unlikely(ret < 0)) {
2069 		hns3_tx_spare_rollback(ring, cb_len);
2070 		u64_stats_update_begin(&ring->syncp);
2071 		ring->stats.copy_bits_err++;
2072 		u64_stats_update_end(&ring->syncp);
2073 		return ret;
2074 	}
2075 
2076 	desc_cb->priv = skb;
2077 	desc_cb->length = cb_len;
2078 	desc_cb->dma = dma;
2079 	desc_cb->type = type;
2080 
2081 	bd_num += hns3_fill_desc(ring, dma, size);
2082 
2083 	if (type == DESC_TYPE_BOUNCE_HEAD) {
2084 		ret = hns3_fill_skb_to_desc(ring, skb,
2085 					    DESC_TYPE_BOUNCE_HEAD);
2086 		if (unlikely(ret < 0))
2087 			return ret;
2088 
2089 		bd_num += ret;
2090 	}
2091 
2092 	dma_sync_single_for_device(ring_to_dev(ring), dma, size,
2093 				   DMA_TO_DEVICE);
2094 
2095 	u64_stats_update_begin(&ring->syncp);
2096 	ring->stats.tx_bounce++;
2097 	u64_stats_update_end(&ring->syncp);
2098 	return bd_num;
2099 }
2100 
2101 static int hns3_handle_tx_sgl(struct hns3_enet_ring *ring,
2102 			      struct sk_buff *skb)
2103 {
2104 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2105 	u32 nfrag = skb_shinfo(skb)->nr_frags + 1;
2106 	struct sg_table *sgt;
2107 	int i, bd_num = 0;
2108 	dma_addr_t dma;
2109 	u32 cb_len;
2110 	int nents;
2111 
2112 	if (skb_has_frag_list(skb))
2113 		nfrag = HNS3_MAX_TSO_BD_NUM;
2114 
2115 	/* hns3_can_use_tx_sgl() is called to ensure the below
2116 	 * function can always return the tx buffer.
2117 	 */
2118 	sgt = hns3_tx_spare_alloc(ring, HNS3_SGL_SIZE(nfrag),
2119 				  &dma, &cb_len);
2120 
2121 	/* scatterlist follows by the sg table */
2122 	sgt->sgl = (struct scatterlist *)(sgt + 1);
2123 	sg_init_table(sgt->sgl, nfrag);
2124 	nents = skb_to_sgvec(skb, sgt->sgl, 0, skb->len);
2125 	if (unlikely(nents < 0)) {
2126 		hns3_tx_spare_rollback(ring, cb_len);
2127 		u64_stats_update_begin(&ring->syncp);
2128 		ring->stats.skb2sgl_err++;
2129 		u64_stats_update_end(&ring->syncp);
2130 		return -ENOMEM;
2131 	}
2132 
2133 	sgt->orig_nents = nents;
2134 	sgt->nents = dma_map_sg(ring_to_dev(ring), sgt->sgl, sgt->orig_nents,
2135 				DMA_TO_DEVICE);
2136 	if (unlikely(!sgt->nents)) {
2137 		hns3_tx_spare_rollback(ring, cb_len);
2138 		u64_stats_update_begin(&ring->syncp);
2139 		ring->stats.map_sg_err++;
2140 		u64_stats_update_end(&ring->syncp);
2141 		return -ENOMEM;
2142 	}
2143 
2144 	desc_cb->priv = skb;
2145 	desc_cb->length = cb_len;
2146 	desc_cb->dma = dma;
2147 	desc_cb->type = DESC_TYPE_SGL_SKB;
2148 
2149 	for (i = 0; i < sgt->nents; i++)
2150 		bd_num += hns3_fill_desc(ring, sg_dma_address(sgt->sgl + i),
2151 					 sg_dma_len(sgt->sgl + i));
2152 
2153 	u64_stats_update_begin(&ring->syncp);
2154 	ring->stats.tx_sgl++;
2155 	u64_stats_update_end(&ring->syncp);
2156 
2157 	return bd_num;
2158 }
2159 
2160 static int hns3_handle_desc_filling(struct hns3_enet_ring *ring,
2161 				    struct sk_buff *skb)
2162 {
2163 	u32 space;
2164 
2165 	if (!ring->tx_spare)
2166 		goto out;
2167 
2168 	space = hns3_tx_spare_space(ring);
2169 
2170 	if (hns3_can_use_tx_sgl(ring, skb, space))
2171 		return hns3_handle_tx_sgl(ring, skb);
2172 
2173 	if (hns3_can_use_tx_bounce(ring, skb, space))
2174 		return hns3_handle_tx_bounce(ring, skb);
2175 
2176 out:
2177 	return hns3_fill_skb_to_desc(ring, skb, DESC_TYPE_SKB);
2178 }
2179 
2180 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
2181 {
2182 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2183 	struct hns3_enet_ring *ring = &priv->ring[skb->queue_mapping];
2184 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
2185 	struct netdev_queue *dev_queue;
2186 	int pre_ntu, next_to_use_head;
2187 	bool doorbell;
2188 	int ret;
2189 
2190 	/* Hardware can only handle short frames above 32 bytes */
2191 	if (skb_put_padto(skb, HNS3_MIN_TX_LEN)) {
2192 		hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2193 
2194 		u64_stats_update_begin(&ring->syncp);
2195 		ring->stats.sw_err_cnt++;
2196 		u64_stats_update_end(&ring->syncp);
2197 
2198 		return NETDEV_TX_OK;
2199 	}
2200 
2201 	/* Prefetch the data used later */
2202 	prefetch(skb->data);
2203 
2204 	ret = hns3_nic_maybe_stop_tx(ring, netdev, skb);
2205 	if (unlikely(ret <= 0)) {
2206 		if (ret == -EBUSY) {
2207 			hns3_tx_doorbell(ring, 0, true);
2208 			return NETDEV_TX_BUSY;
2209 		}
2210 
2211 		hns3_rl_err(netdev, "xmit error: %d!\n", ret);
2212 		goto out_err_tx_ok;
2213 	}
2214 
2215 	next_to_use_head = ring->next_to_use;
2216 
2217 	ret = hns3_fill_skb_desc(ring, skb, &ring->desc[ring->next_to_use],
2218 				 desc_cb);
2219 	if (unlikely(ret < 0))
2220 		goto fill_err;
2221 
2222 	/* 'ret < 0' means filling error, 'ret == 0' means skb->len is
2223 	 * zero, which is unlikely, and 'ret > 0' means how many tx desc
2224 	 * need to be notified to the hw.
2225 	 */
2226 	ret = hns3_handle_desc_filling(ring, skb);
2227 	if (unlikely(ret <= 0))
2228 		goto fill_err;
2229 
2230 	pre_ntu = ring->next_to_use ? (ring->next_to_use - 1) :
2231 					(ring->desc_num - 1);
2232 
2233 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP))
2234 		hns3_tsyn(netdev, skb, &ring->desc[pre_ntu]);
2235 
2236 	ring->desc[pre_ntu].tx.bdtp_fe_sc_vld_ra_ri |=
2237 				cpu_to_le16(BIT(HNS3_TXD_FE_B));
2238 	trace_hns3_tx_desc(ring, pre_ntu);
2239 
2240 	skb_tx_timestamp(skb);
2241 
2242 	/* Complete translate all packets */
2243 	dev_queue = netdev_get_tx_queue(netdev, ring->queue_index);
2244 	doorbell = __netdev_tx_sent_queue(dev_queue, desc_cb->send_bytes,
2245 					  netdev_xmit_more());
2246 	hns3_tx_doorbell(ring, ret, doorbell);
2247 
2248 	return NETDEV_TX_OK;
2249 
2250 fill_err:
2251 	hns3_clear_desc(ring, next_to_use_head);
2252 
2253 out_err_tx_ok:
2254 	dev_kfree_skb_any(skb);
2255 	hns3_tx_doorbell(ring, 0, !netdev_xmit_more());
2256 	return NETDEV_TX_OK;
2257 }
2258 
2259 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
2260 {
2261 	struct hnae3_handle *h = hns3_get_handle(netdev);
2262 	struct sockaddr *mac_addr = p;
2263 	int ret;
2264 
2265 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
2266 		return -EADDRNOTAVAIL;
2267 
2268 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
2269 		netdev_info(netdev, "already using mac address %pM\n",
2270 			    mac_addr->sa_data);
2271 		return 0;
2272 	}
2273 
2274 	/* For VF device, if there is a perm_addr, then the user will not
2275 	 * be allowed to change the address.
2276 	 */
2277 	if (!hns3_is_phys_func(h->pdev) &&
2278 	    !is_zero_ether_addr(netdev->perm_addr)) {
2279 		netdev_err(netdev, "has permanent MAC %pM, user MAC %pM not allow\n",
2280 			   netdev->perm_addr, mac_addr->sa_data);
2281 		return -EPERM;
2282 	}
2283 
2284 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
2285 	if (ret) {
2286 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
2287 		return ret;
2288 	}
2289 
2290 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
2291 
2292 	return 0;
2293 }
2294 
2295 static int hns3_nic_do_ioctl(struct net_device *netdev,
2296 			     struct ifreq *ifr, int cmd)
2297 {
2298 	struct hnae3_handle *h = hns3_get_handle(netdev);
2299 
2300 	if (!netif_running(netdev))
2301 		return -EINVAL;
2302 
2303 	if (!h->ae_algo->ops->do_ioctl)
2304 		return -EOPNOTSUPP;
2305 
2306 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
2307 }
2308 
2309 static int hns3_nic_set_features(struct net_device *netdev,
2310 				 netdev_features_t features)
2311 {
2312 	netdev_features_t changed = netdev->features ^ features;
2313 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2314 	struct hnae3_handle *h = priv->ae_handle;
2315 	bool enable;
2316 	int ret;
2317 
2318 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
2319 		enable = !!(features & NETIF_F_GRO_HW);
2320 		ret = h->ae_algo->ops->set_gro_en(h, enable);
2321 		if (ret)
2322 			return ret;
2323 	}
2324 
2325 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
2326 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
2327 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
2328 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
2329 		if (ret)
2330 			return ret;
2331 	}
2332 
2333 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
2334 		enable = !!(features & NETIF_F_NTUPLE);
2335 		h->ae_algo->ops->enable_fd(h, enable);
2336 	}
2337 
2338 	if ((netdev->features & NETIF_F_HW_TC) > (features & NETIF_F_HW_TC) &&
2339 	    h->ae_algo->ops->cls_flower_active(h)) {
2340 		netdev_err(netdev,
2341 			   "there are offloaded TC filters active, cannot disable HW TC offload");
2342 		return -EINVAL;
2343 	}
2344 
2345 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
2346 	    h->ae_algo->ops->enable_vlan_filter) {
2347 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
2348 		ret = h->ae_algo->ops->enable_vlan_filter(h, enable);
2349 		if (ret)
2350 			return ret;
2351 	}
2352 
2353 	netdev->features = features;
2354 	return 0;
2355 }
2356 
2357 static netdev_features_t hns3_features_check(struct sk_buff *skb,
2358 					     struct net_device *dev,
2359 					     netdev_features_t features)
2360 {
2361 #define HNS3_MAX_HDR_LEN	480U
2362 #define HNS3_MAX_L4_HDR_LEN	60U
2363 
2364 	size_t len;
2365 
2366 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2367 		return features;
2368 
2369 	if (skb->encapsulation)
2370 		len = skb_inner_transport_header(skb) - skb->data;
2371 	else
2372 		len = skb_transport_header(skb) - skb->data;
2373 
2374 	/* Assume L4 is 60 byte as TCP is the only protocol with a
2375 	 * a flexible value, and it's max len is 60 bytes.
2376 	 */
2377 	len += HNS3_MAX_L4_HDR_LEN;
2378 
2379 	/* Hardware only supports checksum on the skb with a max header
2380 	 * len of 480 bytes.
2381 	 */
2382 	if (len > HNS3_MAX_HDR_LEN)
2383 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2384 
2385 	return features;
2386 }
2387 
2388 static void hns3_nic_get_stats64(struct net_device *netdev,
2389 				 struct rtnl_link_stats64 *stats)
2390 {
2391 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2392 	int queue_num = priv->ae_handle->kinfo.num_tqps;
2393 	struct hnae3_handle *handle = priv->ae_handle;
2394 	struct hns3_enet_ring *ring;
2395 	u64 rx_length_errors = 0;
2396 	u64 rx_crc_errors = 0;
2397 	u64 rx_multicast = 0;
2398 	unsigned int start;
2399 	u64 tx_errors = 0;
2400 	u64 rx_errors = 0;
2401 	unsigned int idx;
2402 	u64 tx_bytes = 0;
2403 	u64 rx_bytes = 0;
2404 	u64 tx_pkts = 0;
2405 	u64 rx_pkts = 0;
2406 	u64 tx_drop = 0;
2407 	u64 rx_drop = 0;
2408 
2409 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
2410 		return;
2411 
2412 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
2413 
2414 	for (idx = 0; idx < queue_num; idx++) {
2415 		/* fetch the tx stats */
2416 		ring = &priv->ring[idx];
2417 		do {
2418 			start = u64_stats_fetch_begin_irq(&ring->syncp);
2419 			tx_bytes += ring->stats.tx_bytes;
2420 			tx_pkts += ring->stats.tx_pkts;
2421 			tx_drop += ring->stats.sw_err_cnt;
2422 			tx_drop += ring->stats.tx_vlan_err;
2423 			tx_drop += ring->stats.tx_l4_proto_err;
2424 			tx_drop += ring->stats.tx_l2l3l4_err;
2425 			tx_drop += ring->stats.tx_tso_err;
2426 			tx_drop += ring->stats.over_max_recursion;
2427 			tx_drop += ring->stats.hw_limitation;
2428 			tx_drop += ring->stats.copy_bits_err;
2429 			tx_drop += ring->stats.skb2sgl_err;
2430 			tx_drop += ring->stats.map_sg_err;
2431 			tx_errors += ring->stats.sw_err_cnt;
2432 			tx_errors += ring->stats.tx_vlan_err;
2433 			tx_errors += ring->stats.tx_l4_proto_err;
2434 			tx_errors += ring->stats.tx_l2l3l4_err;
2435 			tx_errors += ring->stats.tx_tso_err;
2436 			tx_errors += ring->stats.over_max_recursion;
2437 			tx_errors += ring->stats.hw_limitation;
2438 			tx_errors += ring->stats.copy_bits_err;
2439 			tx_errors += ring->stats.skb2sgl_err;
2440 			tx_errors += ring->stats.map_sg_err;
2441 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
2442 
2443 		/* fetch the rx stats */
2444 		ring = &priv->ring[idx + queue_num];
2445 		do {
2446 			start = u64_stats_fetch_begin_irq(&ring->syncp);
2447 			rx_bytes += ring->stats.rx_bytes;
2448 			rx_pkts += ring->stats.rx_pkts;
2449 			rx_drop += ring->stats.l2_err;
2450 			rx_errors += ring->stats.l2_err;
2451 			rx_errors += ring->stats.l3l4_csum_err;
2452 			rx_crc_errors += ring->stats.l2_err;
2453 			rx_multicast += ring->stats.rx_multicast;
2454 			rx_length_errors += ring->stats.err_pkt_len;
2455 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
2456 	}
2457 
2458 	stats->tx_bytes = tx_bytes;
2459 	stats->tx_packets = tx_pkts;
2460 	stats->rx_bytes = rx_bytes;
2461 	stats->rx_packets = rx_pkts;
2462 
2463 	stats->rx_errors = rx_errors;
2464 	stats->multicast = rx_multicast;
2465 	stats->rx_length_errors = rx_length_errors;
2466 	stats->rx_crc_errors = rx_crc_errors;
2467 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
2468 
2469 	stats->tx_errors = tx_errors;
2470 	stats->rx_dropped = rx_drop;
2471 	stats->tx_dropped = tx_drop;
2472 	stats->collisions = netdev->stats.collisions;
2473 	stats->rx_over_errors = netdev->stats.rx_over_errors;
2474 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
2475 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
2476 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
2477 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
2478 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
2479 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
2480 	stats->tx_window_errors = netdev->stats.tx_window_errors;
2481 	stats->rx_compressed = netdev->stats.rx_compressed;
2482 	stats->tx_compressed = netdev->stats.tx_compressed;
2483 }
2484 
2485 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
2486 {
2487 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2488 	struct hnae3_knic_private_info *kinfo;
2489 	u8 tc = mqprio_qopt->qopt.num_tc;
2490 	u16 mode = mqprio_qopt->mode;
2491 	u8 hw = mqprio_qopt->qopt.hw;
2492 	struct hnae3_handle *h;
2493 
2494 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
2495 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
2496 		return -EOPNOTSUPP;
2497 
2498 	if (tc > HNAE3_MAX_TC)
2499 		return -EINVAL;
2500 
2501 	if (!netdev)
2502 		return -EINVAL;
2503 
2504 	h = hns3_get_handle(netdev);
2505 	kinfo = &h->kinfo;
2506 
2507 	netif_dbg(h, drv, netdev, "setup tc: num_tc=%u\n", tc);
2508 
2509 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
2510 		kinfo->dcb_ops->setup_tc(h, mqprio_qopt) : -EOPNOTSUPP;
2511 }
2512 
2513 static int hns3_setup_tc_cls_flower(struct hns3_nic_priv *priv,
2514 				    struct flow_cls_offload *flow)
2515 {
2516 	int tc = tc_classid_to_hwtc(priv->netdev, flow->classid);
2517 	struct hnae3_handle *h = hns3_get_handle(priv->netdev);
2518 
2519 	switch (flow->command) {
2520 	case FLOW_CLS_REPLACE:
2521 		if (h->ae_algo->ops->add_cls_flower)
2522 			return h->ae_algo->ops->add_cls_flower(h, flow, tc);
2523 		break;
2524 	case FLOW_CLS_DESTROY:
2525 		if (h->ae_algo->ops->del_cls_flower)
2526 			return h->ae_algo->ops->del_cls_flower(h, flow);
2527 		break;
2528 	default:
2529 		break;
2530 	}
2531 
2532 	return -EOPNOTSUPP;
2533 }
2534 
2535 static int hns3_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2536 				  void *cb_priv)
2537 {
2538 	struct hns3_nic_priv *priv = cb_priv;
2539 
2540 	if (!tc_cls_can_offload_and_chain0(priv->netdev, type_data))
2541 		return -EOPNOTSUPP;
2542 
2543 	switch (type) {
2544 	case TC_SETUP_CLSFLOWER:
2545 		return hns3_setup_tc_cls_flower(priv, type_data);
2546 	default:
2547 		return -EOPNOTSUPP;
2548 	}
2549 }
2550 
2551 static LIST_HEAD(hns3_block_cb_list);
2552 
2553 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
2554 			     void *type_data)
2555 {
2556 	struct hns3_nic_priv *priv = netdev_priv(dev);
2557 	int ret;
2558 
2559 	switch (type) {
2560 	case TC_SETUP_QDISC_MQPRIO:
2561 		ret = hns3_setup_tc(dev, type_data);
2562 		break;
2563 	case TC_SETUP_BLOCK:
2564 		ret = flow_block_cb_setup_simple(type_data,
2565 						 &hns3_block_cb_list,
2566 						 hns3_setup_tc_block_cb,
2567 						 priv, priv, true);
2568 		break;
2569 	default:
2570 		return -EOPNOTSUPP;
2571 	}
2572 
2573 	return ret;
2574 }
2575 
2576 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
2577 				__be16 proto, u16 vid)
2578 {
2579 	struct hnae3_handle *h = hns3_get_handle(netdev);
2580 	int ret = -EIO;
2581 
2582 	if (h->ae_algo->ops->set_vlan_filter)
2583 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
2584 
2585 	return ret;
2586 }
2587 
2588 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
2589 				 __be16 proto, u16 vid)
2590 {
2591 	struct hnae3_handle *h = hns3_get_handle(netdev);
2592 	int ret = -EIO;
2593 
2594 	if (h->ae_algo->ops->set_vlan_filter)
2595 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
2596 
2597 	return ret;
2598 }
2599 
2600 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
2601 				u8 qos, __be16 vlan_proto)
2602 {
2603 	struct hnae3_handle *h = hns3_get_handle(netdev);
2604 	int ret = -EIO;
2605 
2606 	netif_dbg(h, drv, netdev,
2607 		  "set vf vlan: vf=%d, vlan=%u, qos=%u, vlan_proto=0x%x\n",
2608 		  vf, vlan, qos, ntohs(vlan_proto));
2609 
2610 	if (h->ae_algo->ops->set_vf_vlan_filter)
2611 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
2612 							  qos, vlan_proto);
2613 
2614 	return ret;
2615 }
2616 
2617 static int hns3_set_vf_spoofchk(struct net_device *netdev, int vf, bool enable)
2618 {
2619 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2620 
2621 	if (hns3_nic_resetting(netdev))
2622 		return -EBUSY;
2623 
2624 	if (!handle->ae_algo->ops->set_vf_spoofchk)
2625 		return -EOPNOTSUPP;
2626 
2627 	return handle->ae_algo->ops->set_vf_spoofchk(handle, vf, enable);
2628 }
2629 
2630 static int hns3_set_vf_trust(struct net_device *netdev, int vf, bool enable)
2631 {
2632 	struct hnae3_handle *handle = hns3_get_handle(netdev);
2633 
2634 	if (!handle->ae_algo->ops->set_vf_trust)
2635 		return -EOPNOTSUPP;
2636 
2637 	return handle->ae_algo->ops->set_vf_trust(handle, vf, enable);
2638 }
2639 
2640 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
2641 {
2642 	struct hnae3_handle *h = hns3_get_handle(netdev);
2643 	int ret;
2644 
2645 	if (hns3_nic_resetting(netdev))
2646 		return -EBUSY;
2647 
2648 	if (!h->ae_algo->ops->set_mtu)
2649 		return -EOPNOTSUPP;
2650 
2651 	netif_dbg(h, drv, netdev,
2652 		  "change mtu from %u to %d\n", netdev->mtu, new_mtu);
2653 
2654 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
2655 	if (ret)
2656 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
2657 			   ret);
2658 	else
2659 		netdev->mtu = new_mtu;
2660 
2661 	return ret;
2662 }
2663 
2664 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
2665 {
2666 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2667 	struct hnae3_handle *h = hns3_get_handle(ndev);
2668 	struct hns3_enet_ring *tx_ring;
2669 	struct napi_struct *napi;
2670 	int timeout_queue = 0;
2671 	int hw_head, hw_tail;
2672 	int fbd_num, fbd_oft;
2673 	int ebd_num, ebd_oft;
2674 	int bd_num, bd_err;
2675 	int ring_en, tc;
2676 	int i;
2677 
2678 	/* Find the stopped queue the same way the stack does */
2679 	for (i = 0; i < ndev->num_tx_queues; i++) {
2680 		struct netdev_queue *q;
2681 		unsigned long trans_start;
2682 
2683 		q = netdev_get_tx_queue(ndev, i);
2684 		trans_start = q->trans_start;
2685 		if (netif_xmit_stopped(q) &&
2686 		    time_after(jiffies,
2687 			       (trans_start + ndev->watchdog_timeo))) {
2688 			timeout_queue = i;
2689 			netdev_info(ndev, "queue state: 0x%lx, delta msecs: %u\n",
2690 				    q->state,
2691 				    jiffies_to_msecs(jiffies - trans_start));
2692 			break;
2693 		}
2694 	}
2695 
2696 	if (i == ndev->num_tx_queues) {
2697 		netdev_info(ndev,
2698 			    "no netdev TX timeout queue found, timeout count: %llu\n",
2699 			    priv->tx_timeout_count);
2700 		return false;
2701 	}
2702 
2703 	priv->tx_timeout_count++;
2704 
2705 	tx_ring = &priv->ring[timeout_queue];
2706 	napi = &tx_ring->tqp_vector->napi;
2707 
2708 	netdev_info(ndev,
2709 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
2710 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
2711 		    tx_ring->next_to_clean, napi->state);
2712 
2713 	netdev_info(ndev,
2714 		    "tx_pkts: %llu, tx_bytes: %llu, sw_err_cnt: %llu, tx_pending: %d\n",
2715 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
2716 		    tx_ring->stats.sw_err_cnt, tx_ring->pending_buf);
2717 
2718 	netdev_info(ndev,
2719 		    "seg_pkt_cnt: %llu, tx_more: %llu, restart_queue: %llu, tx_busy: %llu\n",
2720 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_more,
2721 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
2722 
2723 	/* When mac received many pause frames continuous, it's unable to send
2724 	 * packets, which may cause tx timeout
2725 	 */
2726 	if (h->ae_algo->ops->get_mac_stats) {
2727 		struct hns3_mac_stats mac_stats;
2728 
2729 		h->ae_algo->ops->get_mac_stats(h, &mac_stats);
2730 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
2731 			    mac_stats.tx_pause_cnt, mac_stats.rx_pause_cnt);
2732 	}
2733 
2734 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
2735 				HNS3_RING_TX_RING_HEAD_REG);
2736 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
2737 				HNS3_RING_TX_RING_TAIL_REG);
2738 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
2739 				HNS3_RING_TX_RING_FBDNUM_REG);
2740 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
2741 				HNS3_RING_TX_RING_OFFSET_REG);
2742 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
2743 				HNS3_RING_TX_RING_EBDNUM_REG);
2744 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
2745 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
2746 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
2747 			       HNS3_RING_TX_RING_BD_NUM_REG);
2748 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
2749 			       HNS3_RING_TX_RING_BD_ERR_REG);
2750 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
2751 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
2752 
2753 	netdev_info(ndev,
2754 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
2755 		    bd_num, hw_head, hw_tail, bd_err,
2756 		    readl(tx_ring->tqp_vector->mask_addr));
2757 	netdev_info(ndev,
2758 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
2759 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
2760 
2761 	return true;
2762 }
2763 
2764 static void hns3_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
2765 {
2766 	struct hns3_nic_priv *priv = netdev_priv(ndev);
2767 	struct hnae3_handle *h = priv->ae_handle;
2768 
2769 	if (!hns3_get_tx_timeo_queue_info(ndev))
2770 		return;
2771 
2772 	/* request the reset, and let the hclge to determine
2773 	 * which reset level should be done
2774 	 */
2775 	if (h->ae_algo->ops->reset_event)
2776 		h->ae_algo->ops->reset_event(h->pdev, h);
2777 }
2778 
2779 #ifdef CONFIG_RFS_ACCEL
2780 static int hns3_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
2781 			      u16 rxq_index, u32 flow_id)
2782 {
2783 	struct hnae3_handle *h = hns3_get_handle(dev);
2784 	struct flow_keys fkeys;
2785 
2786 	if (!h->ae_algo->ops->add_arfs_entry)
2787 		return -EOPNOTSUPP;
2788 
2789 	if (skb->encapsulation)
2790 		return -EPROTONOSUPPORT;
2791 
2792 	if (!skb_flow_dissect_flow_keys(skb, &fkeys, 0))
2793 		return -EPROTONOSUPPORT;
2794 
2795 	if ((fkeys.basic.n_proto != htons(ETH_P_IP) &&
2796 	     fkeys.basic.n_proto != htons(ETH_P_IPV6)) ||
2797 	    (fkeys.basic.ip_proto != IPPROTO_TCP &&
2798 	     fkeys.basic.ip_proto != IPPROTO_UDP))
2799 		return -EPROTONOSUPPORT;
2800 
2801 	return h->ae_algo->ops->add_arfs_entry(h, rxq_index, flow_id, &fkeys);
2802 }
2803 #endif
2804 
2805 static int hns3_nic_get_vf_config(struct net_device *ndev, int vf,
2806 				  struct ifla_vf_info *ivf)
2807 {
2808 	struct hnae3_handle *h = hns3_get_handle(ndev);
2809 
2810 	if (!h->ae_algo->ops->get_vf_config)
2811 		return -EOPNOTSUPP;
2812 
2813 	return h->ae_algo->ops->get_vf_config(h, vf, ivf);
2814 }
2815 
2816 static int hns3_nic_set_vf_link_state(struct net_device *ndev, int vf,
2817 				      int link_state)
2818 {
2819 	struct hnae3_handle *h = hns3_get_handle(ndev);
2820 
2821 	if (!h->ae_algo->ops->set_vf_link_state)
2822 		return -EOPNOTSUPP;
2823 
2824 	return h->ae_algo->ops->set_vf_link_state(h, vf, link_state);
2825 }
2826 
2827 static int hns3_nic_set_vf_rate(struct net_device *ndev, int vf,
2828 				int min_tx_rate, int max_tx_rate)
2829 {
2830 	struct hnae3_handle *h = hns3_get_handle(ndev);
2831 
2832 	if (!h->ae_algo->ops->set_vf_rate)
2833 		return -EOPNOTSUPP;
2834 
2835 	return h->ae_algo->ops->set_vf_rate(h, vf, min_tx_rate, max_tx_rate,
2836 					    false);
2837 }
2838 
2839 static int hns3_nic_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
2840 {
2841 	struct hnae3_handle *h = hns3_get_handle(netdev);
2842 
2843 	if (!h->ae_algo->ops->set_vf_mac)
2844 		return -EOPNOTSUPP;
2845 
2846 	if (is_multicast_ether_addr(mac)) {
2847 		netdev_err(netdev,
2848 			   "Invalid MAC:%pM specified. Could not set MAC\n",
2849 			   mac);
2850 		return -EINVAL;
2851 	}
2852 
2853 	return h->ae_algo->ops->set_vf_mac(h, vf_id, mac);
2854 }
2855 
2856 static const struct net_device_ops hns3_nic_netdev_ops = {
2857 	.ndo_open		= hns3_nic_net_open,
2858 	.ndo_stop		= hns3_nic_net_stop,
2859 	.ndo_start_xmit		= hns3_nic_net_xmit,
2860 	.ndo_tx_timeout		= hns3_nic_net_timeout,
2861 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
2862 	.ndo_eth_ioctl		= hns3_nic_do_ioctl,
2863 	.ndo_change_mtu		= hns3_nic_change_mtu,
2864 	.ndo_set_features	= hns3_nic_set_features,
2865 	.ndo_features_check	= hns3_features_check,
2866 	.ndo_get_stats64	= hns3_nic_get_stats64,
2867 	.ndo_setup_tc		= hns3_nic_setup_tc,
2868 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
2869 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
2870 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
2871 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
2872 	.ndo_set_vf_spoofchk	= hns3_set_vf_spoofchk,
2873 	.ndo_set_vf_trust	= hns3_set_vf_trust,
2874 #ifdef CONFIG_RFS_ACCEL
2875 	.ndo_rx_flow_steer	= hns3_rx_flow_steer,
2876 #endif
2877 	.ndo_get_vf_config	= hns3_nic_get_vf_config,
2878 	.ndo_set_vf_link_state	= hns3_nic_set_vf_link_state,
2879 	.ndo_set_vf_rate	= hns3_nic_set_vf_rate,
2880 	.ndo_set_vf_mac		= hns3_nic_set_vf_mac,
2881 };
2882 
2883 bool hns3_is_phys_func(struct pci_dev *pdev)
2884 {
2885 	u32 dev_id = pdev->device;
2886 
2887 	switch (dev_id) {
2888 	case HNAE3_DEV_ID_GE:
2889 	case HNAE3_DEV_ID_25GE:
2890 	case HNAE3_DEV_ID_25GE_RDMA:
2891 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
2892 	case HNAE3_DEV_ID_50GE_RDMA:
2893 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
2894 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
2895 	case HNAE3_DEV_ID_200G_RDMA:
2896 		return true;
2897 	case HNAE3_DEV_ID_VF:
2898 	case HNAE3_DEV_ID_RDMA_DCB_PFC_VF:
2899 		return false;
2900 	default:
2901 		dev_warn(&pdev->dev, "un-recognized pci device-id %u",
2902 			 dev_id);
2903 	}
2904 
2905 	return false;
2906 }
2907 
2908 static void hns3_disable_sriov(struct pci_dev *pdev)
2909 {
2910 	/* If our VFs are assigned we cannot shut down SR-IOV
2911 	 * without causing issues, so just leave the hardware
2912 	 * available but disabled
2913 	 */
2914 	if (pci_vfs_assigned(pdev)) {
2915 		dev_warn(&pdev->dev,
2916 			 "disabling driver while VFs are assigned\n");
2917 		return;
2918 	}
2919 
2920 	pci_disable_sriov(pdev);
2921 }
2922 
2923 /* hns3_probe - Device initialization routine
2924  * @pdev: PCI device information struct
2925  * @ent: entry in hns3_pci_tbl
2926  *
2927  * hns3_probe initializes a PF identified by a pci_dev structure.
2928  * The OS initialization, configuring of the PF private structure,
2929  * and a hardware reset occur.
2930  *
2931  * Returns 0 on success, negative on failure
2932  */
2933 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2934 {
2935 	struct hnae3_ae_dev *ae_dev;
2936 	int ret;
2937 
2938 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev), GFP_KERNEL);
2939 	if (!ae_dev)
2940 		return -ENOMEM;
2941 
2942 	ae_dev->pdev = pdev;
2943 	ae_dev->flag = ent->driver_data;
2944 	pci_set_drvdata(pdev, ae_dev);
2945 
2946 	ret = hnae3_register_ae_dev(ae_dev);
2947 	if (ret)
2948 		pci_set_drvdata(pdev, NULL);
2949 
2950 	return ret;
2951 }
2952 
2953 /* hns3_remove - Device removal routine
2954  * @pdev: PCI device information struct
2955  */
2956 static void hns3_remove(struct pci_dev *pdev)
2957 {
2958 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2959 
2960 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
2961 		hns3_disable_sriov(pdev);
2962 
2963 	hnae3_unregister_ae_dev(ae_dev);
2964 	pci_set_drvdata(pdev, NULL);
2965 }
2966 
2967 /**
2968  * hns3_pci_sriov_configure
2969  * @pdev: pointer to a pci_dev structure
2970  * @num_vfs: number of VFs to allocate
2971  *
2972  * Enable or change the number of VFs. Called when the user updates the number
2973  * of VFs in sysfs.
2974  **/
2975 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
2976 {
2977 	int ret;
2978 
2979 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
2980 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
2981 		return -EINVAL;
2982 	}
2983 
2984 	if (num_vfs) {
2985 		ret = pci_enable_sriov(pdev, num_vfs);
2986 		if (ret)
2987 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
2988 		else
2989 			return num_vfs;
2990 	} else if (!pci_vfs_assigned(pdev)) {
2991 		pci_disable_sriov(pdev);
2992 	} else {
2993 		dev_warn(&pdev->dev,
2994 			 "Unable to free VFs because some are assigned to VMs.\n");
2995 	}
2996 
2997 	return 0;
2998 }
2999 
3000 static void hns3_shutdown(struct pci_dev *pdev)
3001 {
3002 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3003 
3004 	hnae3_unregister_ae_dev(ae_dev);
3005 	pci_set_drvdata(pdev, NULL);
3006 
3007 	if (system_state == SYSTEM_POWER_OFF)
3008 		pci_set_power_state(pdev, PCI_D3hot);
3009 }
3010 
3011 static int __maybe_unused hns3_suspend(struct device *dev)
3012 {
3013 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3014 
3015 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3016 		dev_info(dev, "Begin to suspend.\n");
3017 		if (ae_dev->ops && ae_dev->ops->reset_prepare)
3018 			ae_dev->ops->reset_prepare(ae_dev, HNAE3_FUNC_RESET);
3019 	}
3020 
3021 	return 0;
3022 }
3023 
3024 static int __maybe_unused hns3_resume(struct device *dev)
3025 {
3026 	struct hnae3_ae_dev *ae_dev = dev_get_drvdata(dev);
3027 
3028 	if (ae_dev && hns3_is_phys_func(ae_dev->pdev)) {
3029 		dev_info(dev, "Begin to resume.\n");
3030 		if (ae_dev->ops && ae_dev->ops->reset_done)
3031 			ae_dev->ops->reset_done(ae_dev);
3032 	}
3033 
3034 	return 0;
3035 }
3036 
3037 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
3038 					    pci_channel_state_t state)
3039 {
3040 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3041 	pci_ers_result_t ret;
3042 
3043 	dev_info(&pdev->dev, "PCI error detected, state(=%u)!!\n", state);
3044 
3045 	if (state == pci_channel_io_perm_failure)
3046 		return PCI_ERS_RESULT_DISCONNECT;
3047 
3048 	if (!ae_dev || !ae_dev->ops) {
3049 		dev_err(&pdev->dev,
3050 			"Can't recover - error happened before device initialized\n");
3051 		return PCI_ERS_RESULT_NONE;
3052 	}
3053 
3054 	if (ae_dev->ops->handle_hw_ras_error)
3055 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
3056 	else
3057 		return PCI_ERS_RESULT_NONE;
3058 
3059 	return ret;
3060 }
3061 
3062 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
3063 {
3064 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3065 	const struct hnae3_ae_ops *ops;
3066 	enum hnae3_reset_type reset_type;
3067 	struct device *dev = &pdev->dev;
3068 
3069 	if (!ae_dev || !ae_dev->ops)
3070 		return PCI_ERS_RESULT_NONE;
3071 
3072 	ops = ae_dev->ops;
3073 	/* request the reset */
3074 	if (ops->reset_event && ops->get_reset_level &&
3075 	    ops->set_default_reset_request) {
3076 		if (ae_dev->hw_err_reset_req) {
3077 			reset_type = ops->get_reset_level(ae_dev,
3078 						&ae_dev->hw_err_reset_req);
3079 			ops->set_default_reset_request(ae_dev, reset_type);
3080 			dev_info(dev, "requesting reset due to PCI error\n");
3081 			ops->reset_event(pdev, NULL);
3082 		}
3083 
3084 		return PCI_ERS_RESULT_RECOVERED;
3085 	}
3086 
3087 	return PCI_ERS_RESULT_DISCONNECT;
3088 }
3089 
3090 static void hns3_reset_prepare(struct pci_dev *pdev)
3091 {
3092 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3093 
3094 	dev_info(&pdev->dev, "FLR prepare\n");
3095 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_prepare)
3096 		ae_dev->ops->reset_prepare(ae_dev, HNAE3_FLR_RESET);
3097 }
3098 
3099 static void hns3_reset_done(struct pci_dev *pdev)
3100 {
3101 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3102 
3103 	dev_info(&pdev->dev, "FLR done\n");
3104 	if (ae_dev && ae_dev->ops && ae_dev->ops->reset_done)
3105 		ae_dev->ops->reset_done(ae_dev);
3106 }
3107 
3108 static const struct pci_error_handlers hns3_err_handler = {
3109 	.error_detected = hns3_error_detected,
3110 	.slot_reset     = hns3_slot_reset,
3111 	.reset_prepare	= hns3_reset_prepare,
3112 	.reset_done	= hns3_reset_done,
3113 };
3114 
3115 static SIMPLE_DEV_PM_OPS(hns3_pm_ops, hns3_suspend, hns3_resume);
3116 
3117 static struct pci_driver hns3_driver = {
3118 	.name     = hns3_driver_name,
3119 	.id_table = hns3_pci_tbl,
3120 	.probe    = hns3_probe,
3121 	.remove   = hns3_remove,
3122 	.shutdown = hns3_shutdown,
3123 	.driver.pm  = &hns3_pm_ops,
3124 	.sriov_configure = hns3_pci_sriov_configure,
3125 	.err_handler    = &hns3_err_handler,
3126 };
3127 
3128 /* set default feature to hns3 */
3129 static void hns3_set_default_feature(struct net_device *netdev)
3130 {
3131 	struct hnae3_handle *h = hns3_get_handle(netdev);
3132 	struct pci_dev *pdev = h->pdev;
3133 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3134 
3135 	netdev->priv_flags |= IFF_UNICAST_FLT;
3136 
3137 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3138 
3139 	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3140 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
3141 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
3142 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
3143 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
3144 		NETIF_F_SCTP_CRC | NETIF_F_FRAGLIST;
3145 
3146 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
3147 		netdev->features |= NETIF_F_GRO_HW;
3148 
3149 		if (!(h->flags & HNAE3_SUPPORT_VF))
3150 			netdev->features |= NETIF_F_NTUPLE;
3151 	}
3152 
3153 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_GSO_B, ae_dev->caps))
3154 		netdev->features |= NETIF_F_GSO_UDP_L4;
3155 
3156 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
3157 		netdev->features |= NETIF_F_HW_CSUM;
3158 	else
3159 		netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
3160 
3161 	if (test_bit(HNAE3_DEV_SUPPORT_UDP_TUNNEL_CSUM_B, ae_dev->caps))
3162 		netdev->features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
3163 
3164 	if (test_bit(HNAE3_DEV_SUPPORT_FD_FORWARD_TC_B, ae_dev->caps))
3165 		netdev->features |= NETIF_F_HW_TC;
3166 
3167 	netdev->hw_features |= netdev->features;
3168 	if (!test_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps))
3169 		netdev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
3170 
3171 	netdev->vlan_features |= netdev->features &
3172 		~(NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_TX |
3173 		  NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_GRO_HW | NETIF_F_NTUPLE |
3174 		  NETIF_F_HW_TC);
3175 
3176 	netdev->hw_enc_features |= netdev->vlan_features | NETIF_F_TSO_MANGLEID;
3177 }
3178 
3179 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
3180 			     struct hns3_desc_cb *cb)
3181 {
3182 	unsigned int order = hns3_page_order(ring);
3183 	struct page *p;
3184 
3185 	if (ring->page_pool) {
3186 		p = page_pool_dev_alloc_frag(ring->page_pool,
3187 					     &cb->page_offset,
3188 					     hns3_buf_size(ring));
3189 		if (unlikely(!p))
3190 			return -ENOMEM;
3191 
3192 		cb->priv = p;
3193 		cb->buf = page_address(p);
3194 		cb->dma = page_pool_get_dma_addr(p);
3195 		cb->type = DESC_TYPE_PP_FRAG;
3196 		cb->reuse_flag = 0;
3197 		return 0;
3198 	}
3199 
3200 	p = dev_alloc_pages(order);
3201 	if (!p)
3202 		return -ENOMEM;
3203 
3204 	cb->priv = p;
3205 	cb->page_offset = 0;
3206 	cb->reuse_flag = 0;
3207 	cb->buf  = page_address(p);
3208 	cb->length = hns3_page_size(ring);
3209 	cb->type = DESC_TYPE_PAGE;
3210 	page_ref_add(p, USHRT_MAX - 1);
3211 	cb->pagecnt_bias = USHRT_MAX;
3212 
3213 	return 0;
3214 }
3215 
3216 static void hns3_free_buffer(struct hns3_enet_ring *ring,
3217 			     struct hns3_desc_cb *cb, int budget)
3218 {
3219 	if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_HEAD |
3220 			DESC_TYPE_BOUNCE_ALL | DESC_TYPE_SGL_SKB))
3221 		napi_consume_skb(cb->priv, budget);
3222 	else if (!HNAE3_IS_TX_RING(ring)) {
3223 		if (cb->type & DESC_TYPE_PAGE && cb->pagecnt_bias)
3224 			__page_frag_cache_drain(cb->priv, cb->pagecnt_bias);
3225 		else if (cb->type & DESC_TYPE_PP_FRAG)
3226 			page_pool_put_full_page(ring->page_pool, cb->priv,
3227 						false);
3228 	}
3229 	memset(cb, 0, sizeof(*cb));
3230 }
3231 
3232 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
3233 {
3234 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
3235 			       cb->length, ring_to_dma_dir(ring));
3236 
3237 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
3238 		return -EIO;
3239 
3240 	return 0;
3241 }
3242 
3243 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
3244 			      struct hns3_desc_cb *cb)
3245 {
3246 	if (cb->type & (DESC_TYPE_SKB | DESC_TYPE_FRAGLIST_SKB))
3247 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
3248 				 ring_to_dma_dir(ring));
3249 	else if ((cb->type & DESC_TYPE_PAGE) && cb->length)
3250 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
3251 			       ring_to_dma_dir(ring));
3252 	else if (cb->type & (DESC_TYPE_BOUNCE_ALL | DESC_TYPE_BOUNCE_HEAD |
3253 			     DESC_TYPE_SGL_SKB))
3254 		hns3_tx_spare_reclaim_cb(ring, cb);
3255 }
3256 
3257 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
3258 {
3259 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3260 	ring->desc[i].addr = 0;
3261 }
3262 
3263 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i,
3264 				    int budget)
3265 {
3266 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
3267 
3268 	if (!ring->desc_cb[i].dma)
3269 		return;
3270 
3271 	hns3_buffer_detach(ring, i);
3272 	hns3_free_buffer(ring, cb, budget);
3273 }
3274 
3275 static void hns3_free_buffers(struct hns3_enet_ring *ring)
3276 {
3277 	int i;
3278 
3279 	for (i = 0; i < ring->desc_num; i++)
3280 		hns3_free_buffer_detach(ring, i, 0);
3281 }
3282 
3283 /* free desc along with its attached buffer */
3284 static void hns3_free_desc(struct hns3_enet_ring *ring)
3285 {
3286 	int size = ring->desc_num * sizeof(ring->desc[0]);
3287 
3288 	hns3_free_buffers(ring);
3289 
3290 	if (ring->desc) {
3291 		dma_free_coherent(ring_to_dev(ring), size,
3292 				  ring->desc, ring->desc_dma_addr);
3293 		ring->desc = NULL;
3294 	}
3295 }
3296 
3297 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
3298 {
3299 	int size = ring->desc_num * sizeof(ring->desc[0]);
3300 
3301 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
3302 					&ring->desc_dma_addr, GFP_KERNEL);
3303 	if (!ring->desc)
3304 		return -ENOMEM;
3305 
3306 	return 0;
3307 }
3308 
3309 static int hns3_alloc_and_map_buffer(struct hns3_enet_ring *ring,
3310 				   struct hns3_desc_cb *cb)
3311 {
3312 	int ret;
3313 
3314 	ret = hns3_alloc_buffer(ring, cb);
3315 	if (ret || ring->page_pool)
3316 		goto out;
3317 
3318 	ret = hns3_map_buffer(ring, cb);
3319 	if (ret)
3320 		goto out_with_buf;
3321 
3322 	return 0;
3323 
3324 out_with_buf:
3325 	hns3_free_buffer(ring, cb, 0);
3326 out:
3327 	return ret;
3328 }
3329 
3330 static int hns3_alloc_and_attach_buffer(struct hns3_enet_ring *ring, int i)
3331 {
3332 	int ret = hns3_alloc_and_map_buffer(ring, &ring->desc_cb[i]);
3333 
3334 	if (ret)
3335 		return ret;
3336 
3337 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3338 					 ring->desc_cb[i].page_offset);
3339 
3340 	return 0;
3341 }
3342 
3343 /* Allocate memory for raw pkg, and map with dma */
3344 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
3345 {
3346 	int i, j, ret;
3347 
3348 	for (i = 0; i < ring->desc_num; i++) {
3349 		ret = hns3_alloc_and_attach_buffer(ring, i);
3350 		if (ret)
3351 			goto out_buffer_fail;
3352 	}
3353 
3354 	return 0;
3355 
3356 out_buffer_fail:
3357 	for (j = i - 1; j >= 0; j--)
3358 		hns3_free_buffer_detach(ring, j, 0);
3359 	return ret;
3360 }
3361 
3362 /* detach a in-used buffer and replace with a reserved one */
3363 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
3364 				struct hns3_desc_cb *res_cb)
3365 {
3366 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
3367 	ring->desc_cb[i] = *res_cb;
3368 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3369 					 ring->desc_cb[i].page_offset);
3370 	ring->desc[i].rx.bd_base_info = 0;
3371 }
3372 
3373 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
3374 {
3375 	ring->desc_cb[i].reuse_flag = 0;
3376 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma +
3377 					 ring->desc_cb[i].page_offset);
3378 	ring->desc[i].rx.bd_base_info = 0;
3379 
3380 	dma_sync_single_for_device(ring_to_dev(ring),
3381 			ring->desc_cb[i].dma + ring->desc_cb[i].page_offset,
3382 			hns3_buf_size(ring),
3383 			DMA_FROM_DEVICE);
3384 }
3385 
3386 static bool hns3_nic_reclaim_desc(struct hns3_enet_ring *ring,
3387 				  int *bytes, int *pkts, int budget)
3388 {
3389 	/* pair with ring->last_to_use update in hns3_tx_doorbell(),
3390 	 * smp_store_release() is not used in hns3_tx_doorbell() because
3391 	 * the doorbell operation already have the needed barrier operation.
3392 	 */
3393 	int ltu = smp_load_acquire(&ring->last_to_use);
3394 	int ntc = ring->next_to_clean;
3395 	struct hns3_desc_cb *desc_cb;
3396 	bool reclaimed = false;
3397 	struct hns3_desc *desc;
3398 
3399 	while (ltu != ntc) {
3400 		desc = &ring->desc[ntc];
3401 
3402 		if (le16_to_cpu(desc->tx.bdtp_fe_sc_vld_ra_ri) &
3403 				BIT(HNS3_TXD_VLD_B))
3404 			break;
3405 
3406 		desc_cb = &ring->desc_cb[ntc];
3407 
3408 		if (desc_cb->type & (DESC_TYPE_SKB | DESC_TYPE_BOUNCE_ALL |
3409 				     DESC_TYPE_BOUNCE_HEAD |
3410 				     DESC_TYPE_SGL_SKB)) {
3411 			(*pkts)++;
3412 			(*bytes) += desc_cb->send_bytes;
3413 		}
3414 
3415 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
3416 		hns3_free_buffer_detach(ring, ntc, budget);
3417 
3418 		if (++ntc == ring->desc_num)
3419 			ntc = 0;
3420 
3421 		/* Issue prefetch for next Tx descriptor */
3422 		prefetch(&ring->desc_cb[ntc]);
3423 		reclaimed = true;
3424 	}
3425 
3426 	if (unlikely(!reclaimed))
3427 		return false;
3428 
3429 	/* This smp_store_release() pairs with smp_load_acquire() in
3430 	 * ring_space called by hns3_nic_net_xmit.
3431 	 */
3432 	smp_store_release(&ring->next_to_clean, ntc);
3433 
3434 	hns3_tx_spare_update(ring);
3435 
3436 	return true;
3437 }
3438 
3439 void hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
3440 {
3441 	struct net_device *netdev = ring_to_netdev(ring);
3442 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3443 	struct netdev_queue *dev_queue;
3444 	int bytes, pkts;
3445 
3446 	bytes = 0;
3447 	pkts = 0;
3448 
3449 	if (unlikely(!hns3_nic_reclaim_desc(ring, &bytes, &pkts, budget)))
3450 		return;
3451 
3452 	ring->tqp_vector->tx_group.total_bytes += bytes;
3453 	ring->tqp_vector->tx_group.total_packets += pkts;
3454 
3455 	u64_stats_update_begin(&ring->syncp);
3456 	ring->stats.tx_bytes += bytes;
3457 	ring->stats.tx_pkts += pkts;
3458 	u64_stats_update_end(&ring->syncp);
3459 
3460 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
3461 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
3462 
3463 	if (unlikely(netif_carrier_ok(netdev) &&
3464 		     ring_space(ring) > HNS3_MAX_TSO_BD_NUM)) {
3465 		/* Make sure that anybody stopping the queue after this
3466 		 * sees the new next_to_clean.
3467 		 */
3468 		smp_mb();
3469 		if (netif_tx_queue_stopped(dev_queue) &&
3470 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
3471 			netif_tx_wake_queue(dev_queue);
3472 			ring->stats.restart_queue++;
3473 		}
3474 	}
3475 }
3476 
3477 static int hns3_desc_unused(struct hns3_enet_ring *ring)
3478 {
3479 	int ntc = ring->next_to_clean;
3480 	int ntu = ring->next_to_use;
3481 
3482 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
3483 }
3484 
3485 static void hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring,
3486 				      int cleand_count)
3487 {
3488 	struct hns3_desc_cb *desc_cb;
3489 	struct hns3_desc_cb res_cbs;
3490 	int i, ret;
3491 
3492 	for (i = 0; i < cleand_count; i++) {
3493 		desc_cb = &ring->desc_cb[ring->next_to_use];
3494 		if (desc_cb->reuse_flag) {
3495 			u64_stats_update_begin(&ring->syncp);
3496 			ring->stats.reuse_pg_cnt++;
3497 			u64_stats_update_end(&ring->syncp);
3498 
3499 			hns3_reuse_buffer(ring, ring->next_to_use);
3500 		} else {
3501 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
3502 			if (ret) {
3503 				u64_stats_update_begin(&ring->syncp);
3504 				ring->stats.sw_err_cnt++;
3505 				u64_stats_update_end(&ring->syncp);
3506 
3507 				hns3_rl_err(ring_to_netdev(ring),
3508 					    "alloc rx buffer failed: %d\n",
3509 					    ret);
3510 				break;
3511 			}
3512 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
3513 
3514 			u64_stats_update_begin(&ring->syncp);
3515 			ring->stats.non_reuse_pg++;
3516 			u64_stats_update_end(&ring->syncp);
3517 		}
3518 
3519 		ring_ptr_move_fw(ring, next_to_use);
3520 	}
3521 
3522 	writel(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
3523 }
3524 
3525 static bool hns3_can_reuse_page(struct hns3_desc_cb *cb)
3526 {
3527 	return page_count(cb->priv) == cb->pagecnt_bias;
3528 }
3529 
3530 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
3531 				struct hns3_enet_ring *ring, int pull_len,
3532 				struct hns3_desc_cb *desc_cb)
3533 {
3534 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
3535 	u32 frag_offset = desc_cb->page_offset + pull_len;
3536 	int size = le16_to_cpu(desc->rx.size);
3537 	u32 truesize = hns3_buf_size(ring);
3538 	u32 frag_size = size - pull_len;
3539 	bool reused;
3540 
3541 	if (ring->page_pool) {
3542 		skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3543 				frag_size, truesize);
3544 		return;
3545 	}
3546 
3547 	/* Avoid re-using remote or pfmem page */
3548 	if (unlikely(!dev_page_is_reusable(desc_cb->priv)))
3549 		goto out;
3550 
3551 	reused = hns3_can_reuse_page(desc_cb);
3552 
3553 	/* Rx page can be reused when:
3554 	 * 1. Rx page is only owned by the driver when page_offset
3555 	 *    is zero, which means 0 @ truesize will be used by
3556 	 *    stack after skb_add_rx_frag() is called, and the rest
3557 	 *    of rx page can be reused by driver.
3558 	 * Or
3559 	 * 2. Rx page is only owned by the driver when page_offset
3560 	 *    is non-zero, which means page_offset @ truesize will
3561 	 *    be used by stack after skb_add_rx_frag() is called,
3562 	 *    and 0 @ truesize can be reused by driver.
3563 	 */
3564 	if ((!desc_cb->page_offset && reused) ||
3565 	    ((desc_cb->page_offset + truesize + truesize) <=
3566 	     hns3_page_size(ring) && desc_cb->page_offset)) {
3567 		desc_cb->page_offset += truesize;
3568 		desc_cb->reuse_flag = 1;
3569 	} else if (desc_cb->page_offset && reused) {
3570 		desc_cb->page_offset = 0;
3571 		desc_cb->reuse_flag = 1;
3572 	} else if (frag_size <= ring->rx_copybreak) {
3573 		void *frag = napi_alloc_frag(frag_size);
3574 
3575 		if (unlikely(!frag)) {
3576 			u64_stats_update_begin(&ring->syncp);
3577 			ring->stats.frag_alloc_err++;
3578 			u64_stats_update_end(&ring->syncp);
3579 
3580 			hns3_rl_err(ring_to_netdev(ring),
3581 				    "failed to allocate rx frag\n");
3582 			goto out;
3583 		}
3584 
3585 		desc_cb->reuse_flag = 1;
3586 		memcpy(frag, desc_cb->buf + frag_offset, frag_size);
3587 		skb_add_rx_frag(skb, i, virt_to_page(frag),
3588 				offset_in_page(frag), frag_size, frag_size);
3589 
3590 		u64_stats_update_begin(&ring->syncp);
3591 		ring->stats.frag_alloc++;
3592 		u64_stats_update_end(&ring->syncp);
3593 		return;
3594 	}
3595 
3596 out:
3597 	desc_cb->pagecnt_bias--;
3598 
3599 	if (unlikely(!desc_cb->pagecnt_bias)) {
3600 		page_ref_add(desc_cb->priv, USHRT_MAX);
3601 		desc_cb->pagecnt_bias = USHRT_MAX;
3602 	}
3603 
3604 	skb_add_rx_frag(skb, i, desc_cb->priv, frag_offset,
3605 			frag_size, truesize);
3606 
3607 	if (unlikely(!desc_cb->reuse_flag))
3608 		__page_frag_cache_drain(desc_cb->priv, desc_cb->pagecnt_bias);
3609 }
3610 
3611 static int hns3_gro_complete(struct sk_buff *skb, u32 l234info)
3612 {
3613 	__be16 type = skb->protocol;
3614 	struct tcphdr *th;
3615 	int depth = 0;
3616 
3617 	while (eth_type_vlan(type)) {
3618 		struct vlan_hdr *vh;
3619 
3620 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
3621 			return -EFAULT;
3622 
3623 		vh = (struct vlan_hdr *)(skb->data + depth);
3624 		type = vh->h_vlan_encapsulated_proto;
3625 		depth += VLAN_HLEN;
3626 	}
3627 
3628 	skb_set_network_header(skb, depth);
3629 
3630 	if (type == htons(ETH_P_IP)) {
3631 		const struct iphdr *iph = ip_hdr(skb);
3632 
3633 		depth += sizeof(struct iphdr);
3634 		skb_set_transport_header(skb, depth);
3635 		th = tcp_hdr(skb);
3636 		th->check = ~tcp_v4_check(skb->len - depth, iph->saddr,
3637 					  iph->daddr, 0);
3638 	} else if (type == htons(ETH_P_IPV6)) {
3639 		const struct ipv6hdr *iph = ipv6_hdr(skb);
3640 
3641 		depth += sizeof(struct ipv6hdr);
3642 		skb_set_transport_header(skb, depth);
3643 		th = tcp_hdr(skb);
3644 		th->check = ~tcp_v6_check(skb->len - depth, &iph->saddr,
3645 					  &iph->daddr, 0);
3646 	} else {
3647 		hns3_rl_err(skb->dev,
3648 			    "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
3649 			    be16_to_cpu(type), depth);
3650 		return -EFAULT;
3651 	}
3652 
3653 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
3654 	if (th->cwr)
3655 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
3656 
3657 	if (l234info & BIT(HNS3_RXD_GRO_FIXID_B))
3658 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_FIXEDID;
3659 
3660 	skb->csum_start = (unsigned char *)th - skb->head;
3661 	skb->csum_offset = offsetof(struct tcphdr, check);
3662 	skb->ip_summed = CHECKSUM_PARTIAL;
3663 
3664 	trace_hns3_gro(skb);
3665 
3666 	return 0;
3667 }
3668 
3669 static bool hns3_checksum_complete(struct hns3_enet_ring *ring,
3670 				   struct sk_buff *skb, u32 ptype, u16 csum)
3671 {
3672 	if (ptype == HNS3_INVALID_PTYPE ||
3673 	    hns3_rx_ptype_tbl[ptype].ip_summed != CHECKSUM_COMPLETE)
3674 		return false;
3675 
3676 	u64_stats_update_begin(&ring->syncp);
3677 	ring->stats.csum_complete++;
3678 	u64_stats_update_end(&ring->syncp);
3679 	skb->ip_summed = CHECKSUM_COMPLETE;
3680 	skb->csum = csum_unfold((__force __sum16)csum);
3681 
3682 	return true;
3683 }
3684 
3685 static void hns3_rx_handle_csum(struct sk_buff *skb, u32 l234info,
3686 				u32 ol_info, u32 ptype)
3687 {
3688 	int l3_type, l4_type;
3689 	int ol4_type;
3690 
3691 	if (ptype != HNS3_INVALID_PTYPE) {
3692 		skb->csum_level = hns3_rx_ptype_tbl[ptype].csum_level;
3693 		skb->ip_summed = hns3_rx_ptype_tbl[ptype].ip_summed;
3694 
3695 		return;
3696 	}
3697 
3698 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
3699 				   HNS3_RXD_OL4ID_S);
3700 	switch (ol4_type) {
3701 	case HNS3_OL4_TYPE_MAC_IN_UDP:
3702 	case HNS3_OL4_TYPE_NVGRE:
3703 		skb->csum_level = 1;
3704 		fallthrough;
3705 	case HNS3_OL4_TYPE_NO_TUN:
3706 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3707 					  HNS3_RXD_L3ID_S);
3708 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
3709 					  HNS3_RXD_L4ID_S);
3710 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
3711 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
3712 		     l3_type == HNS3_L3_TYPE_IPV6) &&
3713 		    (l4_type == HNS3_L4_TYPE_UDP ||
3714 		     l4_type == HNS3_L4_TYPE_TCP ||
3715 		     l4_type == HNS3_L4_TYPE_SCTP))
3716 			skb->ip_summed = CHECKSUM_UNNECESSARY;
3717 		break;
3718 	default:
3719 		break;
3720 	}
3721 }
3722 
3723 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
3724 			     u32 l234info, u32 bd_base_info, u32 ol_info,
3725 			     u16 csum)
3726 {
3727 	struct net_device *netdev = ring_to_netdev(ring);
3728 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3729 	u32 ptype = HNS3_INVALID_PTYPE;
3730 
3731 	skb->ip_summed = CHECKSUM_NONE;
3732 
3733 	skb_checksum_none_assert(skb);
3734 
3735 	if (!(netdev->features & NETIF_F_RXCSUM))
3736 		return;
3737 
3738 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state))
3739 		ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3740 					HNS3_RXD_PTYPE_S);
3741 
3742 	if (hns3_checksum_complete(ring, skb, ptype, csum))
3743 		return;
3744 
3745 	/* check if hardware has done checksum */
3746 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
3747 		return;
3748 
3749 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
3750 				 BIT(HNS3_RXD_OL3E_B) |
3751 				 BIT(HNS3_RXD_OL4E_B)))) {
3752 		u64_stats_update_begin(&ring->syncp);
3753 		ring->stats.l3l4_csum_err++;
3754 		u64_stats_update_end(&ring->syncp);
3755 
3756 		return;
3757 	}
3758 
3759 	hns3_rx_handle_csum(skb, l234info, ol_info, ptype);
3760 }
3761 
3762 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
3763 {
3764 	if (skb_has_frag_list(skb))
3765 		napi_gro_flush(&ring->tqp_vector->napi, false);
3766 
3767 	napi_gro_receive(&ring->tqp_vector->napi, skb);
3768 }
3769 
3770 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
3771 				struct hns3_desc *desc, u32 l234info,
3772 				u16 *vlan_tag)
3773 {
3774 	struct hnae3_handle *handle = ring->tqp->handle;
3775 	struct pci_dev *pdev = ring->tqp->handle->pdev;
3776 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
3777 
3778 	if (unlikely(ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)) {
3779 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3780 		if (!(*vlan_tag & VLAN_VID_MASK))
3781 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3782 
3783 		return (*vlan_tag != 0);
3784 	}
3785 
3786 #define HNS3_STRP_OUTER_VLAN	0x1
3787 #define HNS3_STRP_INNER_VLAN	0x2
3788 #define HNS3_STRP_BOTH		0x3
3789 
3790 	/* Hardware always insert VLAN tag into RX descriptor when
3791 	 * remove the tag from packet, driver needs to determine
3792 	 * reporting which tag to stack.
3793 	 */
3794 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
3795 				HNS3_RXD_STRP_TAGP_S)) {
3796 	case HNS3_STRP_OUTER_VLAN:
3797 		if (handle->port_base_vlan_state !=
3798 				HNAE3_PORT_BASE_VLAN_DISABLE)
3799 			return false;
3800 
3801 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3802 		return true;
3803 	case HNS3_STRP_INNER_VLAN:
3804 		if (handle->port_base_vlan_state !=
3805 				HNAE3_PORT_BASE_VLAN_DISABLE)
3806 			return false;
3807 
3808 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3809 		return true;
3810 	case HNS3_STRP_BOTH:
3811 		if (handle->port_base_vlan_state ==
3812 				HNAE3_PORT_BASE_VLAN_DISABLE)
3813 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
3814 		else
3815 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
3816 
3817 		return true;
3818 	default:
3819 		return false;
3820 	}
3821 }
3822 
3823 static void hns3_rx_ring_move_fw(struct hns3_enet_ring *ring)
3824 {
3825 	ring->desc[ring->next_to_clean].rx.bd_base_info &=
3826 		cpu_to_le32(~BIT(HNS3_RXD_VLD_B));
3827 	ring->next_to_clean += 1;
3828 
3829 	if (unlikely(ring->next_to_clean == ring->desc_num))
3830 		ring->next_to_clean = 0;
3831 }
3832 
3833 static int hns3_alloc_skb(struct hns3_enet_ring *ring, unsigned int length,
3834 			  unsigned char *va)
3835 {
3836 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
3837 	struct net_device *netdev = ring_to_netdev(ring);
3838 	struct sk_buff *skb;
3839 
3840 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
3841 	skb = ring->skb;
3842 	if (unlikely(!skb)) {
3843 		hns3_rl_err(netdev, "alloc rx skb fail\n");
3844 
3845 		u64_stats_update_begin(&ring->syncp);
3846 		ring->stats.sw_err_cnt++;
3847 		u64_stats_update_end(&ring->syncp);
3848 
3849 		return -ENOMEM;
3850 	}
3851 
3852 	trace_hns3_rx_desc(ring);
3853 	prefetchw(skb->data);
3854 
3855 	ring->pending_buf = 1;
3856 	ring->frag_num = 0;
3857 	ring->tail_skb = NULL;
3858 	if (length <= HNS3_RX_HEAD_SIZE) {
3859 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
3860 
3861 		/* We can reuse buffer as-is, just make sure it is reusable */
3862 		if (dev_page_is_reusable(desc_cb->priv))
3863 			desc_cb->reuse_flag = 1;
3864 		else if (desc_cb->type & DESC_TYPE_PP_FRAG)
3865 			page_pool_put_full_page(ring->page_pool, desc_cb->priv,
3866 						false);
3867 		else /* This page cannot be reused so discard it */
3868 			__page_frag_cache_drain(desc_cb->priv,
3869 						desc_cb->pagecnt_bias);
3870 
3871 		hns3_rx_ring_move_fw(ring);
3872 		return 0;
3873 	}
3874 
3875 	if (ring->page_pool)
3876 		skb_mark_for_recycle(skb);
3877 
3878 	u64_stats_update_begin(&ring->syncp);
3879 	ring->stats.seg_pkt_cnt++;
3880 	u64_stats_update_end(&ring->syncp);
3881 
3882 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
3883 	__skb_put(skb, ring->pull_len);
3884 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
3885 			    desc_cb);
3886 	hns3_rx_ring_move_fw(ring);
3887 
3888 	return 0;
3889 }
3890 
3891 static int hns3_add_frag(struct hns3_enet_ring *ring)
3892 {
3893 	struct sk_buff *skb = ring->skb;
3894 	struct sk_buff *head_skb = skb;
3895 	struct sk_buff *new_skb;
3896 	struct hns3_desc_cb *desc_cb;
3897 	struct hns3_desc *desc;
3898 	u32 bd_base_info;
3899 
3900 	do {
3901 		desc = &ring->desc[ring->next_to_clean];
3902 		desc_cb = &ring->desc_cb[ring->next_to_clean];
3903 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
3904 		/* make sure HW write desc complete */
3905 		dma_rmb();
3906 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
3907 			return -ENXIO;
3908 
3909 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
3910 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi, 0);
3911 			if (unlikely(!new_skb)) {
3912 				hns3_rl_err(ring_to_netdev(ring),
3913 					    "alloc rx fraglist skb fail\n");
3914 				return -ENXIO;
3915 			}
3916 
3917 			if (ring->page_pool)
3918 				skb_mark_for_recycle(new_skb);
3919 
3920 			ring->frag_num = 0;
3921 
3922 			if (ring->tail_skb) {
3923 				ring->tail_skb->next = new_skb;
3924 				ring->tail_skb = new_skb;
3925 			} else {
3926 				skb_shinfo(skb)->frag_list = new_skb;
3927 				ring->tail_skb = new_skb;
3928 			}
3929 		}
3930 
3931 		if (ring->tail_skb) {
3932 			head_skb->truesize += hns3_buf_size(ring);
3933 			head_skb->data_len += le16_to_cpu(desc->rx.size);
3934 			head_skb->len += le16_to_cpu(desc->rx.size);
3935 			skb = ring->tail_skb;
3936 		}
3937 
3938 		dma_sync_single_for_cpu(ring_to_dev(ring),
3939 				desc_cb->dma + desc_cb->page_offset,
3940 				hns3_buf_size(ring),
3941 				DMA_FROM_DEVICE);
3942 
3943 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
3944 		trace_hns3_rx_desc(ring);
3945 		hns3_rx_ring_move_fw(ring);
3946 		ring->pending_buf++;
3947 	} while (!(bd_base_info & BIT(HNS3_RXD_FE_B)));
3948 
3949 	return 0;
3950 }
3951 
3952 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
3953 				     struct sk_buff *skb, u32 l234info,
3954 				     u32 bd_base_info, u32 ol_info, u16 csum)
3955 {
3956 	struct net_device *netdev = ring_to_netdev(ring);
3957 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3958 	u32 l3_type;
3959 
3960 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
3961 						    HNS3_RXD_GRO_SIZE_M,
3962 						    HNS3_RXD_GRO_SIZE_S);
3963 	/* if there is no HW GRO, do not set gro params */
3964 	if (!skb_shinfo(skb)->gso_size) {
3965 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info,
3966 				 csum);
3967 		return 0;
3968 	}
3969 
3970 	NAPI_GRO_CB(skb)->count = hnae3_get_field(l234info,
3971 						  HNS3_RXD_GRO_COUNT_M,
3972 						  HNS3_RXD_GRO_COUNT_S);
3973 
3974 	if (test_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state)) {
3975 		u32 ptype = hnae3_get_field(ol_info, HNS3_RXD_PTYPE_M,
3976 					    HNS3_RXD_PTYPE_S);
3977 
3978 		l3_type = hns3_rx_ptype_tbl[ptype].l3_type;
3979 	} else {
3980 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
3981 					  HNS3_RXD_L3ID_S);
3982 	}
3983 
3984 	if (l3_type == HNS3_L3_TYPE_IPV4)
3985 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
3986 	else if (l3_type == HNS3_L3_TYPE_IPV6)
3987 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
3988 	else
3989 		return -EFAULT;
3990 
3991 	return  hns3_gro_complete(skb, l234info);
3992 }
3993 
3994 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
3995 				     struct sk_buff *skb, u32 rss_hash)
3996 {
3997 	struct hnae3_handle *handle = ring->tqp->handle;
3998 	enum pkt_hash_types rss_type;
3999 
4000 	if (rss_hash)
4001 		rss_type = handle->kinfo.rss_type;
4002 	else
4003 		rss_type = PKT_HASH_TYPE_NONE;
4004 
4005 	skb_set_hash(skb, rss_hash, rss_type);
4006 }
4007 
4008 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
4009 {
4010 	struct net_device *netdev = ring_to_netdev(ring);
4011 	enum hns3_pkt_l2t_type l2_frame_type;
4012 	u32 bd_base_info, l234info, ol_info;
4013 	struct hns3_desc *desc;
4014 	unsigned int len;
4015 	int pre_ntc, ret;
4016 	u16 csum;
4017 
4018 	/* bdinfo handled below is only valid on the last BD of the
4019 	 * current packet, and ring->next_to_clean indicates the first
4020 	 * descriptor of next packet, so need - 1 below.
4021 	 */
4022 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
4023 					(ring->desc_num - 1);
4024 	desc = &ring->desc[pre_ntc];
4025 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4026 	l234info = le32_to_cpu(desc->rx.l234_info);
4027 	ol_info = le32_to_cpu(desc->rx.ol_info);
4028 	csum = le16_to_cpu(desc->csum);
4029 
4030 	if (unlikely(bd_base_info & BIT(HNS3_RXD_TS_VLD_B))) {
4031 		struct hnae3_handle *h = hns3_get_handle(netdev);
4032 		u32 nsec = le32_to_cpu(desc->ts_nsec);
4033 		u32 sec = le32_to_cpu(desc->ts_sec);
4034 
4035 		if (h->ae_algo->ops->get_rx_hwts)
4036 			h->ae_algo->ops->get_rx_hwts(h, skb, nsec, sec);
4037 	}
4038 
4039 	/* Based on hw strategy, the tag offloaded will be stored at
4040 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
4041 	 * in one layer tag case.
4042 	 */
4043 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
4044 		u16 vlan_tag;
4045 
4046 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
4047 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
4048 					       vlan_tag);
4049 	}
4050 
4051 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
4052 				  BIT(HNS3_RXD_L2E_B))))) {
4053 		u64_stats_update_begin(&ring->syncp);
4054 		if (l234info & BIT(HNS3_RXD_L2E_B))
4055 			ring->stats.l2_err++;
4056 		else
4057 			ring->stats.err_pkt_len++;
4058 		u64_stats_update_end(&ring->syncp);
4059 
4060 		return -EFAULT;
4061 	}
4062 
4063 	len = skb->len;
4064 
4065 	/* Do update ip stack process */
4066 	skb->protocol = eth_type_trans(skb, netdev);
4067 
4068 	/* This is needed in order to enable forwarding support */
4069 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
4070 					bd_base_info, ol_info, csum);
4071 	if (unlikely(ret)) {
4072 		u64_stats_update_begin(&ring->syncp);
4073 		ring->stats.rx_err_cnt++;
4074 		u64_stats_update_end(&ring->syncp);
4075 		return ret;
4076 	}
4077 
4078 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
4079 					HNS3_RXD_DMAC_S);
4080 
4081 	u64_stats_update_begin(&ring->syncp);
4082 	ring->stats.rx_pkts++;
4083 	ring->stats.rx_bytes += len;
4084 
4085 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
4086 		ring->stats.rx_multicast++;
4087 
4088 	u64_stats_update_end(&ring->syncp);
4089 
4090 	ring->tqp_vector->rx_group.total_bytes += len;
4091 
4092 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
4093 	return 0;
4094 }
4095 
4096 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring)
4097 {
4098 	struct sk_buff *skb = ring->skb;
4099 	struct hns3_desc_cb *desc_cb;
4100 	struct hns3_desc *desc;
4101 	unsigned int length;
4102 	u32 bd_base_info;
4103 	int ret;
4104 
4105 	desc = &ring->desc[ring->next_to_clean];
4106 	desc_cb = &ring->desc_cb[ring->next_to_clean];
4107 
4108 	prefetch(desc);
4109 
4110 	if (!skb) {
4111 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
4112 		/* Check valid BD */
4113 		if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
4114 			return -ENXIO;
4115 
4116 		dma_rmb();
4117 		length = le16_to_cpu(desc->rx.size);
4118 
4119 		ring->va = desc_cb->buf + desc_cb->page_offset;
4120 
4121 		dma_sync_single_for_cpu(ring_to_dev(ring),
4122 				desc_cb->dma + desc_cb->page_offset,
4123 				hns3_buf_size(ring),
4124 				DMA_FROM_DEVICE);
4125 
4126 		/* Prefetch first cache line of first page.
4127 		 * Idea is to cache few bytes of the header of the packet.
4128 		 * Our L1 Cache line size is 64B so need to prefetch twice to make
4129 		 * it 128B. But in actual we can have greater size of caches with
4130 		 * 128B Level 1 cache lines. In such a case, single fetch would
4131 		 * suffice to cache in the relevant part of the header.
4132 		 */
4133 		net_prefetch(ring->va);
4134 
4135 		ret = hns3_alloc_skb(ring, length, ring->va);
4136 		skb = ring->skb;
4137 
4138 		if (ret < 0) /* alloc buffer fail */
4139 			return ret;
4140 		if (!(bd_base_info & BIT(HNS3_RXD_FE_B))) { /* need add frag */
4141 			ret = hns3_add_frag(ring);
4142 			if (ret)
4143 				return ret;
4144 		}
4145 	} else {
4146 		ret = hns3_add_frag(ring);
4147 		if (ret)
4148 			return ret;
4149 	}
4150 
4151 	/* As the head data may be changed when GRO enable, copy
4152 	 * the head data in after other data rx completed
4153 	 */
4154 	if (skb->len > HNS3_RX_HEAD_SIZE)
4155 		memcpy(skb->data, ring->va,
4156 		       ALIGN(ring->pull_len, sizeof(long)));
4157 
4158 	ret = hns3_handle_bdinfo(ring, skb);
4159 	if (unlikely(ret)) {
4160 		dev_kfree_skb_any(skb);
4161 		return ret;
4162 	}
4163 
4164 	skb_record_rx_queue(skb, ring->tqp->tqp_index);
4165 	return 0;
4166 }
4167 
4168 int hns3_clean_rx_ring(struct hns3_enet_ring *ring, int budget,
4169 		       void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
4170 {
4171 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
4172 	int unused_count = hns3_desc_unused(ring);
4173 	int recv_pkts = 0;
4174 	int err;
4175 
4176 	unused_count -= ring->pending_buf;
4177 
4178 	while (recv_pkts < budget) {
4179 		/* Reuse or realloc buffers */
4180 		if (unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
4181 			hns3_nic_alloc_rx_buffers(ring, unused_count);
4182 			unused_count = hns3_desc_unused(ring) -
4183 					ring->pending_buf;
4184 		}
4185 
4186 		/* Poll one pkt */
4187 		err = hns3_handle_rx_bd(ring);
4188 		/* Do not get FE for the packet or failed to alloc skb */
4189 		if (unlikely(!ring->skb || err == -ENXIO)) {
4190 			goto out;
4191 		} else if (likely(!err)) {
4192 			rx_fn(ring, ring->skb);
4193 			recv_pkts++;
4194 		}
4195 
4196 		unused_count += ring->pending_buf;
4197 		ring->skb = NULL;
4198 		ring->pending_buf = 0;
4199 	}
4200 
4201 out:
4202 	/* Make all data has been write before submit */
4203 	if (unused_count > 0)
4204 		hns3_nic_alloc_rx_buffers(ring, unused_count);
4205 
4206 	return recv_pkts;
4207 }
4208 
4209 static void hns3_update_rx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4210 {
4211 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
4212 	struct dim_sample sample = {};
4213 
4214 	if (!rx_group->coal.adapt_enable)
4215 		return;
4216 
4217 	dim_update_sample(tqp_vector->event_cnt, rx_group->total_packets,
4218 			  rx_group->total_bytes, &sample);
4219 	net_dim(&rx_group->dim, sample);
4220 }
4221 
4222 static void hns3_update_tx_int_coalesce(struct hns3_enet_tqp_vector *tqp_vector)
4223 {
4224 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
4225 	struct dim_sample sample = {};
4226 
4227 	if (!tx_group->coal.adapt_enable)
4228 		return;
4229 
4230 	dim_update_sample(tqp_vector->event_cnt, tx_group->total_packets,
4231 			  tx_group->total_bytes, &sample);
4232 	net_dim(&tx_group->dim, sample);
4233 }
4234 
4235 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
4236 {
4237 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
4238 	struct hns3_enet_ring *ring;
4239 	int rx_pkt_total = 0;
4240 
4241 	struct hns3_enet_tqp_vector *tqp_vector =
4242 		container_of(napi, struct hns3_enet_tqp_vector, napi);
4243 	bool clean_complete = true;
4244 	int rx_budget = budget;
4245 
4246 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4247 		napi_complete(napi);
4248 		return 0;
4249 	}
4250 
4251 	/* Since the actual Tx work is minimal, we can give the Tx a larger
4252 	 * budget and be more aggressive about cleaning up the Tx descriptors.
4253 	 */
4254 	hns3_for_each_ring(ring, tqp_vector->tx_group)
4255 		hns3_clean_tx_ring(ring, budget);
4256 
4257 	/* make sure rx ring budget not smaller than 1 */
4258 	if (tqp_vector->num_tqps > 1)
4259 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
4260 
4261 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
4262 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
4263 						    hns3_rx_skb);
4264 		if (rx_cleaned >= rx_budget)
4265 			clean_complete = false;
4266 
4267 		rx_pkt_total += rx_cleaned;
4268 	}
4269 
4270 	tqp_vector->rx_group.total_packets += rx_pkt_total;
4271 
4272 	if (!clean_complete)
4273 		return budget;
4274 
4275 	if (napi_complete(napi) &&
4276 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
4277 		hns3_update_rx_int_coalesce(tqp_vector);
4278 		hns3_update_tx_int_coalesce(tqp_vector);
4279 
4280 		hns3_mask_vector_irq(tqp_vector, 1);
4281 	}
4282 
4283 	return rx_pkt_total;
4284 }
4285 
4286 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4287 				      struct hnae3_ring_chain_node *head)
4288 {
4289 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4290 	struct hnae3_ring_chain_node *cur_chain = head;
4291 	struct hnae3_ring_chain_node *chain;
4292 	struct hns3_enet_ring *tx_ring;
4293 	struct hns3_enet_ring *rx_ring;
4294 
4295 	tx_ring = tqp_vector->tx_group.ring;
4296 	if (tx_ring) {
4297 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
4298 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
4299 			      HNAE3_RING_TYPE_TX);
4300 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
4301 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
4302 
4303 		cur_chain->next = NULL;
4304 
4305 		while (tx_ring->next) {
4306 			tx_ring = tx_ring->next;
4307 
4308 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
4309 					     GFP_KERNEL);
4310 			if (!chain)
4311 				goto err_free_chain;
4312 
4313 			cur_chain->next = chain;
4314 			chain->tqp_index = tx_ring->tqp->tqp_index;
4315 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4316 				      HNAE3_RING_TYPE_TX);
4317 			hnae3_set_field(chain->int_gl_idx,
4318 					HNAE3_RING_GL_IDX_M,
4319 					HNAE3_RING_GL_IDX_S,
4320 					HNAE3_RING_GL_TX);
4321 
4322 			cur_chain = chain;
4323 		}
4324 	}
4325 
4326 	rx_ring = tqp_vector->rx_group.ring;
4327 	if (!tx_ring && rx_ring) {
4328 		cur_chain->next = NULL;
4329 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
4330 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
4331 			      HNAE3_RING_TYPE_RX);
4332 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
4333 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
4334 
4335 		rx_ring = rx_ring->next;
4336 	}
4337 
4338 	while (rx_ring) {
4339 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
4340 		if (!chain)
4341 			goto err_free_chain;
4342 
4343 		cur_chain->next = chain;
4344 		chain->tqp_index = rx_ring->tqp->tqp_index;
4345 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
4346 			      HNAE3_RING_TYPE_RX);
4347 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
4348 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
4349 
4350 		cur_chain = chain;
4351 
4352 		rx_ring = rx_ring->next;
4353 	}
4354 
4355 	return 0;
4356 
4357 err_free_chain:
4358 	cur_chain = head->next;
4359 	while (cur_chain) {
4360 		chain = cur_chain->next;
4361 		devm_kfree(&pdev->dev, cur_chain);
4362 		cur_chain = chain;
4363 	}
4364 	head->next = NULL;
4365 
4366 	return -ENOMEM;
4367 }
4368 
4369 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
4370 					struct hnae3_ring_chain_node *head)
4371 {
4372 	struct pci_dev *pdev = tqp_vector->handle->pdev;
4373 	struct hnae3_ring_chain_node *chain_tmp, *chain;
4374 
4375 	chain = head->next;
4376 
4377 	while (chain) {
4378 		chain_tmp = chain->next;
4379 		devm_kfree(&pdev->dev, chain);
4380 		chain = chain_tmp;
4381 	}
4382 }
4383 
4384 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
4385 				   struct hns3_enet_ring *ring)
4386 {
4387 	ring->next = group->ring;
4388 	group->ring = ring;
4389 
4390 	group->count++;
4391 }
4392 
4393 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
4394 {
4395 	struct pci_dev *pdev = priv->ae_handle->pdev;
4396 	struct hns3_enet_tqp_vector *tqp_vector;
4397 	int num_vectors = priv->vector_num;
4398 	int numa_node;
4399 	int vector_i;
4400 
4401 	numa_node = dev_to_node(&pdev->dev);
4402 
4403 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
4404 		tqp_vector = &priv->tqp_vector[vector_i];
4405 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
4406 				&tqp_vector->affinity_mask);
4407 	}
4408 }
4409 
4410 static void hns3_rx_dim_work(struct work_struct *work)
4411 {
4412 	struct dim *dim = container_of(work, struct dim, work);
4413 	struct hns3_enet_ring_group *group = container_of(dim,
4414 		struct hns3_enet_ring_group, dim);
4415 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4416 	struct dim_cq_moder cur_moder =
4417 		net_dim_get_rx_moderation(dim->mode, dim->profile_ix);
4418 
4419 	hns3_set_vector_coalesce_rx_gl(group->ring->tqp_vector, cur_moder.usec);
4420 	tqp_vector->rx_group.coal.int_gl = cur_moder.usec;
4421 
4422 	if (cur_moder.pkts < tqp_vector->rx_group.coal.int_ql_max) {
4423 		hns3_set_vector_coalesce_rx_ql(tqp_vector, cur_moder.pkts);
4424 		tqp_vector->rx_group.coal.int_ql = cur_moder.pkts;
4425 	}
4426 
4427 	dim->state = DIM_START_MEASURE;
4428 }
4429 
4430 static void hns3_tx_dim_work(struct work_struct *work)
4431 {
4432 	struct dim *dim = container_of(work, struct dim, work);
4433 	struct hns3_enet_ring_group *group = container_of(dim,
4434 		struct hns3_enet_ring_group, dim);
4435 	struct hns3_enet_tqp_vector *tqp_vector = group->ring->tqp_vector;
4436 	struct dim_cq_moder cur_moder =
4437 		net_dim_get_tx_moderation(dim->mode, dim->profile_ix);
4438 
4439 	hns3_set_vector_coalesce_tx_gl(tqp_vector, cur_moder.usec);
4440 	tqp_vector->tx_group.coal.int_gl = cur_moder.usec;
4441 
4442 	if (cur_moder.pkts < tqp_vector->tx_group.coal.int_ql_max) {
4443 		hns3_set_vector_coalesce_tx_ql(tqp_vector, cur_moder.pkts);
4444 		tqp_vector->tx_group.coal.int_ql = cur_moder.pkts;
4445 	}
4446 
4447 	dim->state = DIM_START_MEASURE;
4448 }
4449 
4450 static void hns3_nic_init_dim(struct hns3_enet_tqp_vector *tqp_vector)
4451 {
4452 	INIT_WORK(&tqp_vector->rx_group.dim.work, hns3_rx_dim_work);
4453 	INIT_WORK(&tqp_vector->tx_group.dim.work, hns3_tx_dim_work);
4454 }
4455 
4456 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
4457 {
4458 	struct hnae3_handle *h = priv->ae_handle;
4459 	struct hns3_enet_tqp_vector *tqp_vector;
4460 	int ret;
4461 	int i;
4462 
4463 	hns3_nic_set_cpumask(priv);
4464 
4465 	for (i = 0; i < priv->vector_num; i++) {
4466 		tqp_vector = &priv->tqp_vector[i];
4467 		hns3_vector_coalesce_init_hw(tqp_vector, priv);
4468 		tqp_vector->num_tqps = 0;
4469 		hns3_nic_init_dim(tqp_vector);
4470 	}
4471 
4472 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4473 		u16 vector_i = i % priv->vector_num;
4474 		u16 tqp_num = h->kinfo.num_tqps;
4475 
4476 		tqp_vector = &priv->tqp_vector[vector_i];
4477 
4478 		hns3_add_ring_to_group(&tqp_vector->tx_group,
4479 				       &priv->ring[i]);
4480 
4481 		hns3_add_ring_to_group(&tqp_vector->rx_group,
4482 				       &priv->ring[i + tqp_num]);
4483 
4484 		priv->ring[i].tqp_vector = tqp_vector;
4485 		priv->ring[i + tqp_num].tqp_vector = tqp_vector;
4486 		tqp_vector->num_tqps++;
4487 	}
4488 
4489 	for (i = 0; i < priv->vector_num; i++) {
4490 		struct hnae3_ring_chain_node vector_ring_chain;
4491 
4492 		tqp_vector = &priv->tqp_vector[i];
4493 
4494 		tqp_vector->rx_group.total_bytes = 0;
4495 		tqp_vector->rx_group.total_packets = 0;
4496 		tqp_vector->tx_group.total_bytes = 0;
4497 		tqp_vector->tx_group.total_packets = 0;
4498 		tqp_vector->handle = h;
4499 
4500 		ret = hns3_get_vector_ring_chain(tqp_vector,
4501 						 &vector_ring_chain);
4502 		if (ret)
4503 			goto map_ring_fail;
4504 
4505 		ret = h->ae_algo->ops->map_ring_to_vector(h,
4506 			tqp_vector->vector_irq, &vector_ring_chain);
4507 
4508 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
4509 
4510 		if (ret)
4511 			goto map_ring_fail;
4512 
4513 		netif_napi_add(priv->netdev, &tqp_vector->napi,
4514 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
4515 	}
4516 
4517 	return 0;
4518 
4519 map_ring_fail:
4520 	while (i--)
4521 		netif_napi_del(&priv->tqp_vector[i].napi);
4522 
4523 	return ret;
4524 }
4525 
4526 static void hns3_nic_init_coal_cfg(struct hns3_nic_priv *priv)
4527 {
4528 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
4529 	struct hns3_enet_coalesce *tx_coal = &priv->tx_coal;
4530 	struct hns3_enet_coalesce *rx_coal = &priv->rx_coal;
4531 
4532 	/* initialize the configuration for interrupt coalescing.
4533 	 * 1. GL (Interrupt Gap Limiter)
4534 	 * 2. RL (Interrupt Rate Limiter)
4535 	 * 3. QL (Interrupt Quantity Limiter)
4536 	 *
4537 	 * Default: enable interrupt coalescing self-adaptive and GL
4538 	 */
4539 	tx_coal->adapt_enable = 1;
4540 	rx_coal->adapt_enable = 1;
4541 
4542 	tx_coal->int_gl = HNS3_INT_GL_50K;
4543 	rx_coal->int_gl = HNS3_INT_GL_50K;
4544 
4545 	rx_coal->flow_level = HNS3_FLOW_LOW;
4546 	tx_coal->flow_level = HNS3_FLOW_LOW;
4547 
4548 	if (ae_dev->dev_specs.int_ql_max) {
4549 		tx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4550 		rx_coal->int_ql = HNS3_INT_QL_DEFAULT_CFG;
4551 	}
4552 }
4553 
4554 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
4555 {
4556 	struct hnae3_handle *h = priv->ae_handle;
4557 	struct hns3_enet_tqp_vector *tqp_vector;
4558 	struct hnae3_vector_info *vector;
4559 	struct pci_dev *pdev = h->pdev;
4560 	u16 tqp_num = h->kinfo.num_tqps;
4561 	u16 vector_num;
4562 	int ret = 0;
4563 	u16 i;
4564 
4565 	/* RSS size, cpu online and vector_num should be the same */
4566 	/* Should consider 2p/4p later */
4567 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
4568 
4569 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
4570 			      GFP_KERNEL);
4571 	if (!vector)
4572 		return -ENOMEM;
4573 
4574 	/* save the actual available vector number */
4575 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
4576 
4577 	priv->vector_num = vector_num;
4578 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
4579 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
4580 			     GFP_KERNEL);
4581 	if (!priv->tqp_vector) {
4582 		ret = -ENOMEM;
4583 		goto out;
4584 	}
4585 
4586 	for (i = 0; i < priv->vector_num; i++) {
4587 		tqp_vector = &priv->tqp_vector[i];
4588 		tqp_vector->idx = i;
4589 		tqp_vector->mask_addr = vector[i].io_addr;
4590 		tqp_vector->vector_irq = vector[i].vector;
4591 		hns3_vector_coalesce_init(tqp_vector, priv);
4592 	}
4593 
4594 out:
4595 	devm_kfree(&pdev->dev, vector);
4596 	return ret;
4597 }
4598 
4599 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
4600 {
4601 	group->ring = NULL;
4602 	group->count = 0;
4603 }
4604 
4605 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
4606 {
4607 	struct hnae3_ring_chain_node vector_ring_chain;
4608 	struct hnae3_handle *h = priv->ae_handle;
4609 	struct hns3_enet_tqp_vector *tqp_vector;
4610 	int i;
4611 
4612 	for (i = 0; i < priv->vector_num; i++) {
4613 		tqp_vector = &priv->tqp_vector[i];
4614 
4615 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
4616 			continue;
4617 
4618 		/* Since the mapping can be overwritten, when fail to get the
4619 		 * chain between vector and ring, we should go on to deal with
4620 		 * the remaining options.
4621 		 */
4622 		if (hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain))
4623 			dev_warn(priv->dev, "failed to get ring chain\n");
4624 
4625 		h->ae_algo->ops->unmap_ring_from_vector(h,
4626 			tqp_vector->vector_irq, &vector_ring_chain);
4627 
4628 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
4629 
4630 		hns3_clear_ring_group(&tqp_vector->rx_group);
4631 		hns3_clear_ring_group(&tqp_vector->tx_group);
4632 		netif_napi_del(&priv->tqp_vector[i].napi);
4633 	}
4634 }
4635 
4636 static void hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
4637 {
4638 	struct hnae3_handle *h = priv->ae_handle;
4639 	struct pci_dev *pdev = h->pdev;
4640 	int i, ret;
4641 
4642 	for (i = 0; i < priv->vector_num; i++) {
4643 		struct hns3_enet_tqp_vector *tqp_vector;
4644 
4645 		tqp_vector = &priv->tqp_vector[i];
4646 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
4647 		if (ret)
4648 			return;
4649 	}
4650 
4651 	devm_kfree(&pdev->dev, priv->tqp_vector);
4652 }
4653 
4654 static void hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
4655 			      unsigned int ring_type)
4656 {
4657 	int queue_num = priv->ae_handle->kinfo.num_tqps;
4658 	struct hns3_enet_ring *ring;
4659 	int desc_num;
4660 
4661 	if (ring_type == HNAE3_RING_TYPE_TX) {
4662 		ring = &priv->ring[q->tqp_index];
4663 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
4664 		ring->queue_index = q->tqp_index;
4665 		ring->tx_copybreak = priv->tx_copybreak;
4666 		ring->last_to_use = 0;
4667 	} else {
4668 		ring = &priv->ring[q->tqp_index + queue_num];
4669 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
4670 		ring->queue_index = q->tqp_index;
4671 		ring->rx_copybreak = priv->rx_copybreak;
4672 	}
4673 
4674 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
4675 
4676 	ring->tqp = q;
4677 	ring->desc = NULL;
4678 	ring->desc_cb = NULL;
4679 	ring->dev = priv->dev;
4680 	ring->desc_dma_addr = 0;
4681 	ring->buf_size = q->buf_size;
4682 	ring->desc_num = desc_num;
4683 	ring->next_to_use = 0;
4684 	ring->next_to_clean = 0;
4685 }
4686 
4687 static void hns3_queue_to_ring(struct hnae3_queue *tqp,
4688 			       struct hns3_nic_priv *priv)
4689 {
4690 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
4691 	hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
4692 }
4693 
4694 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
4695 {
4696 	struct hnae3_handle *h = priv->ae_handle;
4697 	struct pci_dev *pdev = h->pdev;
4698 	int i;
4699 
4700 	priv->ring = devm_kzalloc(&pdev->dev,
4701 				  array3_size(h->kinfo.num_tqps,
4702 					      sizeof(*priv->ring), 2),
4703 				  GFP_KERNEL);
4704 	if (!priv->ring)
4705 		return -ENOMEM;
4706 
4707 	for (i = 0; i < h->kinfo.num_tqps; i++)
4708 		hns3_queue_to_ring(h->kinfo.tqp[i], priv);
4709 
4710 	return 0;
4711 }
4712 
4713 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
4714 {
4715 	if (!priv->ring)
4716 		return;
4717 
4718 	devm_kfree(priv->dev, priv->ring);
4719 	priv->ring = NULL;
4720 }
4721 
4722 static void hns3_alloc_page_pool(struct hns3_enet_ring *ring)
4723 {
4724 	struct page_pool_params pp_params = {
4725 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_PAGE_FRAG |
4726 				PP_FLAG_DMA_SYNC_DEV,
4727 		.order = hns3_page_order(ring),
4728 		.pool_size = ring->desc_num * hns3_buf_size(ring) /
4729 				(PAGE_SIZE << hns3_page_order(ring)),
4730 		.nid = dev_to_node(ring_to_dev(ring)),
4731 		.dev = ring_to_dev(ring),
4732 		.dma_dir = DMA_FROM_DEVICE,
4733 		.offset = 0,
4734 		.max_len = PAGE_SIZE << hns3_page_order(ring),
4735 	};
4736 
4737 	ring->page_pool = page_pool_create(&pp_params);
4738 	if (IS_ERR(ring->page_pool)) {
4739 		dev_warn(ring_to_dev(ring), "page pool creation failed: %ld\n",
4740 			 PTR_ERR(ring->page_pool));
4741 		ring->page_pool = NULL;
4742 	}
4743 }
4744 
4745 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
4746 {
4747 	int ret;
4748 
4749 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
4750 		return -EINVAL;
4751 
4752 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
4753 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
4754 	if (!ring->desc_cb) {
4755 		ret = -ENOMEM;
4756 		goto out;
4757 	}
4758 
4759 	ret = hns3_alloc_desc(ring);
4760 	if (ret)
4761 		goto out_with_desc_cb;
4762 
4763 	if (!HNAE3_IS_TX_RING(ring)) {
4764 		if (page_pool_enabled)
4765 			hns3_alloc_page_pool(ring);
4766 
4767 		ret = hns3_alloc_ring_buffers(ring);
4768 		if (ret)
4769 			goto out_with_desc;
4770 	} else {
4771 		hns3_init_tx_spare_buffer(ring);
4772 	}
4773 
4774 	return 0;
4775 
4776 out_with_desc:
4777 	hns3_free_desc(ring);
4778 out_with_desc_cb:
4779 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
4780 	ring->desc_cb = NULL;
4781 out:
4782 	return ret;
4783 }
4784 
4785 void hns3_fini_ring(struct hns3_enet_ring *ring)
4786 {
4787 	hns3_free_desc(ring);
4788 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
4789 	ring->desc_cb = NULL;
4790 	ring->next_to_clean = 0;
4791 	ring->next_to_use = 0;
4792 	ring->last_to_use = 0;
4793 	ring->pending_buf = 0;
4794 	if (!HNAE3_IS_TX_RING(ring) && ring->skb) {
4795 		dev_kfree_skb_any(ring->skb);
4796 		ring->skb = NULL;
4797 	} else if (HNAE3_IS_TX_RING(ring) && ring->tx_spare) {
4798 		struct hns3_tx_spare *tx_spare = ring->tx_spare;
4799 
4800 		dma_unmap_page(ring_to_dev(ring), tx_spare->dma, tx_spare->len,
4801 			       DMA_TO_DEVICE);
4802 		free_pages((unsigned long)tx_spare->buf,
4803 			   get_order(tx_spare->len));
4804 		devm_kfree(ring_to_dev(ring), tx_spare);
4805 		ring->tx_spare = NULL;
4806 	}
4807 
4808 	if (!HNAE3_IS_TX_RING(ring) && ring->page_pool) {
4809 		page_pool_destroy(ring->page_pool);
4810 		ring->page_pool = NULL;
4811 	}
4812 }
4813 
4814 static int hns3_buf_size2type(u32 buf_size)
4815 {
4816 	int bd_size_type;
4817 
4818 	switch (buf_size) {
4819 	case 512:
4820 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
4821 		break;
4822 	case 1024:
4823 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
4824 		break;
4825 	case 2048:
4826 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4827 		break;
4828 	case 4096:
4829 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
4830 		break;
4831 	default:
4832 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
4833 	}
4834 
4835 	return bd_size_type;
4836 }
4837 
4838 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
4839 {
4840 	dma_addr_t dma = ring->desc_dma_addr;
4841 	struct hnae3_queue *q = ring->tqp;
4842 
4843 	if (!HNAE3_IS_TX_RING(ring)) {
4844 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG, (u32)dma);
4845 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
4846 			       (u32)((dma >> 31) >> 1));
4847 
4848 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
4849 			       hns3_buf_size2type(ring->buf_size));
4850 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
4851 			       ring->desc_num / 8 - 1);
4852 	} else {
4853 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
4854 			       (u32)dma);
4855 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
4856 			       (u32)((dma >> 31) >> 1));
4857 
4858 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
4859 			       ring->desc_num / 8 - 1);
4860 	}
4861 }
4862 
4863 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
4864 {
4865 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4866 	struct hnae3_tc_info *tc_info = &kinfo->tc_info;
4867 	int i;
4868 
4869 	for (i = 0; i < tc_info->num_tc; i++) {
4870 		int j;
4871 
4872 		for (j = 0; j < tc_info->tqp_count[i]; j++) {
4873 			struct hnae3_queue *q;
4874 
4875 			q = priv->ring[tc_info->tqp_offset[i] + j].tqp;
4876 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG, i);
4877 		}
4878 	}
4879 }
4880 
4881 int hns3_init_all_ring(struct hns3_nic_priv *priv)
4882 {
4883 	struct hnae3_handle *h = priv->ae_handle;
4884 	int ring_num = h->kinfo.num_tqps * 2;
4885 	int i, j;
4886 	int ret;
4887 
4888 	for (i = 0; i < ring_num; i++) {
4889 		ret = hns3_alloc_ring_memory(&priv->ring[i]);
4890 		if (ret) {
4891 			dev_err(priv->dev,
4892 				"Alloc ring memory fail! ret=%d\n", ret);
4893 			goto out_when_alloc_ring_memory;
4894 		}
4895 
4896 		u64_stats_init(&priv->ring[i].syncp);
4897 	}
4898 
4899 	return 0;
4900 
4901 out_when_alloc_ring_memory:
4902 	for (j = i - 1; j >= 0; j--)
4903 		hns3_fini_ring(&priv->ring[j]);
4904 
4905 	return -ENOMEM;
4906 }
4907 
4908 static void hns3_uninit_all_ring(struct hns3_nic_priv *priv)
4909 {
4910 	struct hnae3_handle *h = priv->ae_handle;
4911 	int i;
4912 
4913 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4914 		hns3_fini_ring(&priv->ring[i]);
4915 		hns3_fini_ring(&priv->ring[i + h->kinfo.num_tqps]);
4916 	}
4917 }
4918 
4919 /* Set mac addr if it is configured. or leave it to the AE driver */
4920 static int hns3_init_mac_addr(struct net_device *netdev)
4921 {
4922 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4923 	struct hnae3_handle *h = priv->ae_handle;
4924 	u8 mac_addr_temp[ETH_ALEN];
4925 	int ret = 0;
4926 
4927 	if (h->ae_algo->ops->get_mac_addr)
4928 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
4929 
4930 	/* Check if the MAC address is valid, if not get a random one */
4931 	if (!is_valid_ether_addr(mac_addr_temp)) {
4932 		eth_hw_addr_random(netdev);
4933 		dev_warn(priv->dev, "using random MAC address %pM\n",
4934 			 netdev->dev_addr);
4935 	} else if (!ether_addr_equal(netdev->dev_addr, mac_addr_temp)) {
4936 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
4937 		ether_addr_copy(netdev->perm_addr, mac_addr_temp);
4938 	} else {
4939 		return 0;
4940 	}
4941 
4942 	if (h->ae_algo->ops->set_mac_addr)
4943 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
4944 
4945 	return ret;
4946 }
4947 
4948 static int hns3_init_phy(struct net_device *netdev)
4949 {
4950 	struct hnae3_handle *h = hns3_get_handle(netdev);
4951 	int ret = 0;
4952 
4953 	if (h->ae_algo->ops->mac_connect_phy)
4954 		ret = h->ae_algo->ops->mac_connect_phy(h);
4955 
4956 	return ret;
4957 }
4958 
4959 static void hns3_uninit_phy(struct net_device *netdev)
4960 {
4961 	struct hnae3_handle *h = hns3_get_handle(netdev);
4962 
4963 	if (h->ae_algo->ops->mac_disconnect_phy)
4964 		h->ae_algo->ops->mac_disconnect_phy(h);
4965 }
4966 
4967 static int hns3_client_start(struct hnae3_handle *handle)
4968 {
4969 	if (!handle->ae_algo->ops->client_start)
4970 		return 0;
4971 
4972 	return handle->ae_algo->ops->client_start(handle);
4973 }
4974 
4975 static void hns3_client_stop(struct hnae3_handle *handle)
4976 {
4977 	if (!handle->ae_algo->ops->client_stop)
4978 		return;
4979 
4980 	handle->ae_algo->ops->client_stop(handle);
4981 }
4982 
4983 static void hns3_info_show(struct hns3_nic_priv *priv)
4984 {
4985 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
4986 
4987 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
4988 	dev_info(priv->dev, "Task queue pairs numbers: %u\n", kinfo->num_tqps);
4989 	dev_info(priv->dev, "RSS size: %u\n", kinfo->rss_size);
4990 	dev_info(priv->dev, "Allocated RSS size: %u\n", kinfo->req_rss_size);
4991 	dev_info(priv->dev, "RX buffer length: %u\n", kinfo->rx_buf_len);
4992 	dev_info(priv->dev, "Desc num per TX queue: %u\n", kinfo->num_tx_desc);
4993 	dev_info(priv->dev, "Desc num per RX queue: %u\n", kinfo->num_rx_desc);
4994 	dev_info(priv->dev, "Total number of enabled TCs: %u\n",
4995 		 kinfo->tc_info.num_tc);
4996 	dev_info(priv->dev, "Max mtu size: %u\n", priv->netdev->max_mtu);
4997 }
4998 
4999 static void hns3_set_cq_period_mode(struct hns3_nic_priv *priv,
5000 				    enum dim_cq_period_mode mode, bool is_tx)
5001 {
5002 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(priv->ae_handle->pdev);
5003 	struct hnae3_handle *handle = priv->ae_handle;
5004 	int i;
5005 
5006 	if (is_tx) {
5007 		priv->tx_cqe_mode = mode;
5008 
5009 		for (i = 0; i < priv->vector_num; i++)
5010 			priv->tqp_vector[i].tx_group.dim.mode = mode;
5011 	} else {
5012 		priv->rx_cqe_mode = mode;
5013 
5014 		for (i = 0; i < priv->vector_num; i++)
5015 			priv->tqp_vector[i].rx_group.dim.mode = mode;
5016 	}
5017 
5018 	/* only device version above V3(include V3), GL can switch CQ/EQ
5019 	 * period mode.
5020 	 */
5021 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3) {
5022 		u32 new_mode;
5023 		u64 reg;
5024 
5025 		new_mode = (mode == DIM_CQ_PERIOD_MODE_START_FROM_CQE) ?
5026 			HNS3_CQ_MODE_CQE : HNS3_CQ_MODE_EQE;
5027 		reg = is_tx ? HNS3_GL1_CQ_MODE_REG : HNS3_GL0_CQ_MODE_REG;
5028 
5029 		writel(new_mode, handle->kinfo.io_base + reg);
5030 	}
5031 }
5032 
5033 void hns3_cq_period_mode_init(struct hns3_nic_priv *priv,
5034 			      enum dim_cq_period_mode tx_mode,
5035 			      enum dim_cq_period_mode rx_mode)
5036 {
5037 	hns3_set_cq_period_mode(priv, tx_mode, true);
5038 	hns3_set_cq_period_mode(priv, rx_mode, false);
5039 }
5040 
5041 static void hns3_state_init(struct hnae3_handle *handle)
5042 {
5043 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
5044 	struct net_device *netdev = handle->kinfo.netdev;
5045 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5046 
5047 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5048 
5049 	if (ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V3)
5050 		set_bit(HNAE3_PFLAG_LIMIT_PROMISC, &handle->supported_pflags);
5051 
5052 	if (test_bit(HNAE3_DEV_SUPPORT_HW_TX_CSUM_B, ae_dev->caps))
5053 		set_bit(HNS3_NIC_STATE_HW_TX_CSUM_ENABLE, &priv->state);
5054 
5055 	if (hnae3_ae_dev_rxd_adv_layout_supported(ae_dev))
5056 		set_bit(HNS3_NIC_STATE_RXD_ADV_LAYOUT_ENABLE, &priv->state);
5057 }
5058 
5059 static int hns3_client_init(struct hnae3_handle *handle)
5060 {
5061 	struct pci_dev *pdev = handle->pdev;
5062 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
5063 	u16 alloc_tqps, max_rss_size;
5064 	struct hns3_nic_priv *priv;
5065 	struct net_device *netdev;
5066 	int ret;
5067 
5068 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
5069 						    &max_rss_size);
5070 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
5071 	if (!netdev)
5072 		return -ENOMEM;
5073 
5074 	priv = netdev_priv(netdev);
5075 	priv->dev = &pdev->dev;
5076 	priv->netdev = netdev;
5077 	priv->ae_handle = handle;
5078 	priv->tx_timeout_count = 0;
5079 	priv->max_non_tso_bd_num = ae_dev->dev_specs.max_non_tso_bd_num;
5080 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
5081 
5082 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
5083 
5084 	handle->kinfo.netdev = netdev;
5085 	handle->priv = (void *)priv;
5086 
5087 	hns3_init_mac_addr(netdev);
5088 
5089 	hns3_set_default_feature(netdev);
5090 
5091 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
5092 	netdev->priv_flags |= IFF_UNICAST_FLT;
5093 	netdev->netdev_ops = &hns3_nic_netdev_ops;
5094 	SET_NETDEV_DEV(netdev, &pdev->dev);
5095 	hns3_ethtool_set_ops(netdev);
5096 
5097 	/* Carrier off reporting is important to ethtool even BEFORE open */
5098 	netif_carrier_off(netdev);
5099 
5100 	ret = hns3_get_ring_config(priv);
5101 	if (ret) {
5102 		ret = -ENOMEM;
5103 		goto out_get_ring_cfg;
5104 	}
5105 
5106 	hns3_nic_init_coal_cfg(priv);
5107 
5108 	ret = hns3_nic_alloc_vector_data(priv);
5109 	if (ret) {
5110 		ret = -ENOMEM;
5111 		goto out_alloc_vector_data;
5112 	}
5113 
5114 	ret = hns3_nic_init_vector_data(priv);
5115 	if (ret) {
5116 		ret = -ENOMEM;
5117 		goto out_init_vector_data;
5118 	}
5119 
5120 	ret = hns3_init_all_ring(priv);
5121 	if (ret) {
5122 		ret = -ENOMEM;
5123 		goto out_init_ring;
5124 	}
5125 
5126 	hns3_cq_period_mode_init(priv, DIM_CQ_PERIOD_MODE_START_FROM_EQE,
5127 				 DIM_CQ_PERIOD_MODE_START_FROM_EQE);
5128 
5129 	ret = hns3_init_phy(netdev);
5130 	if (ret)
5131 		goto out_init_phy;
5132 
5133 	/* the device can work without cpu rmap, only aRFS needs it */
5134 	ret = hns3_set_rx_cpu_rmap(netdev);
5135 	if (ret)
5136 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5137 
5138 	ret = hns3_nic_init_irq(priv);
5139 	if (ret) {
5140 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5141 		hns3_free_rx_cpu_rmap(netdev);
5142 		goto out_init_irq_fail;
5143 	}
5144 
5145 	ret = hns3_client_start(handle);
5146 	if (ret) {
5147 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5148 		goto out_client_start;
5149 	}
5150 
5151 	hns3_dcbnl_setup(handle);
5152 
5153 	ret = hns3_dbg_init(handle);
5154 	if (ret) {
5155 		dev_err(priv->dev, "failed to init debugfs, ret = %d\n",
5156 			ret);
5157 		goto out_client_start;
5158 	}
5159 
5160 	netdev->max_mtu = HNS3_MAX_MTU(ae_dev->dev_specs.max_frm_size);
5161 
5162 	hns3_state_init(handle);
5163 
5164 	ret = register_netdev(netdev);
5165 	if (ret) {
5166 		dev_err(priv->dev, "probe register netdev fail!\n");
5167 		goto out_reg_netdev_fail;
5168 	}
5169 
5170 	if (netif_msg_drv(handle))
5171 		hns3_info_show(priv);
5172 
5173 	return ret;
5174 
5175 out_reg_netdev_fail:
5176 	hns3_dbg_uninit(handle);
5177 out_client_start:
5178 	hns3_free_rx_cpu_rmap(netdev);
5179 	hns3_nic_uninit_irq(priv);
5180 out_init_irq_fail:
5181 	hns3_uninit_phy(netdev);
5182 out_init_phy:
5183 	hns3_uninit_all_ring(priv);
5184 out_init_ring:
5185 	hns3_nic_uninit_vector_data(priv);
5186 out_init_vector_data:
5187 	hns3_nic_dealloc_vector_data(priv);
5188 out_alloc_vector_data:
5189 	priv->ring = NULL;
5190 out_get_ring_cfg:
5191 	priv->ae_handle = NULL;
5192 	free_netdev(netdev);
5193 	return ret;
5194 }
5195 
5196 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
5197 {
5198 	struct net_device *netdev = handle->kinfo.netdev;
5199 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5200 
5201 	if (netdev->reg_state != NETREG_UNINITIALIZED)
5202 		unregister_netdev(netdev);
5203 
5204 	hns3_client_stop(handle);
5205 
5206 	hns3_uninit_phy(netdev);
5207 
5208 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5209 		netdev_warn(netdev, "already uninitialized\n");
5210 		goto out_netdev_free;
5211 	}
5212 
5213 	hns3_free_rx_cpu_rmap(netdev);
5214 
5215 	hns3_nic_uninit_irq(priv);
5216 
5217 	hns3_clear_all_ring(handle, true);
5218 
5219 	hns3_nic_uninit_vector_data(priv);
5220 
5221 	hns3_nic_dealloc_vector_data(priv);
5222 
5223 	hns3_uninit_all_ring(priv);
5224 
5225 	hns3_put_ring_config(priv);
5226 
5227 out_netdev_free:
5228 	hns3_dbg_uninit(handle);
5229 	free_netdev(netdev);
5230 }
5231 
5232 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
5233 {
5234 	struct net_device *netdev = handle->kinfo.netdev;
5235 
5236 	if (!netdev)
5237 		return;
5238 
5239 	if (linkup) {
5240 		netif_tx_wake_all_queues(netdev);
5241 		netif_carrier_on(netdev);
5242 		if (netif_msg_link(handle))
5243 			netdev_info(netdev, "link up\n");
5244 	} else {
5245 		netif_carrier_off(netdev);
5246 		netif_tx_stop_all_queues(netdev);
5247 		if (netif_msg_link(handle))
5248 			netdev_info(netdev, "link down\n");
5249 	}
5250 }
5251 
5252 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
5253 {
5254 	while (ring->next_to_clean != ring->next_to_use) {
5255 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
5256 		hns3_free_buffer_detach(ring, ring->next_to_clean, 0);
5257 		ring_ptr_move_fw(ring, next_to_clean);
5258 	}
5259 
5260 	ring->pending_buf = 0;
5261 }
5262 
5263 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
5264 {
5265 	struct hns3_desc_cb res_cbs;
5266 	int ret;
5267 
5268 	while (ring->next_to_use != ring->next_to_clean) {
5269 		/* When a buffer is not reused, it's memory has been
5270 		 * freed in hns3_handle_rx_bd or will be freed by
5271 		 * stack, so we need to replace the buffer here.
5272 		 */
5273 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5274 			ret = hns3_alloc_and_map_buffer(ring, &res_cbs);
5275 			if (ret) {
5276 				u64_stats_update_begin(&ring->syncp);
5277 				ring->stats.sw_err_cnt++;
5278 				u64_stats_update_end(&ring->syncp);
5279 				/* if alloc new buffer fail, exit directly
5280 				 * and reclear in up flow.
5281 				 */
5282 				netdev_warn(ring_to_netdev(ring),
5283 					    "reserve buffer map failed, ret = %d\n",
5284 					    ret);
5285 				return ret;
5286 			}
5287 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
5288 		}
5289 		ring_ptr_move_fw(ring, next_to_use);
5290 	}
5291 
5292 	/* Free the pending skb in rx ring */
5293 	if (ring->skb) {
5294 		dev_kfree_skb_any(ring->skb);
5295 		ring->skb = NULL;
5296 		ring->pending_buf = 0;
5297 	}
5298 
5299 	return 0;
5300 }
5301 
5302 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
5303 {
5304 	while (ring->next_to_use != ring->next_to_clean) {
5305 		/* When a buffer is not reused, it's memory has been
5306 		 * freed in hns3_handle_rx_bd or will be freed by
5307 		 * stack, so only need to unmap the buffer here.
5308 		 */
5309 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
5310 			hns3_unmap_buffer(ring,
5311 					  &ring->desc_cb[ring->next_to_use]);
5312 			ring->desc_cb[ring->next_to_use].dma = 0;
5313 		}
5314 
5315 		ring_ptr_move_fw(ring, next_to_use);
5316 	}
5317 }
5318 
5319 static void hns3_clear_all_ring(struct hnae3_handle *h, bool force)
5320 {
5321 	struct net_device *ndev = h->kinfo.netdev;
5322 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5323 	u32 i;
5324 
5325 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5326 		struct hns3_enet_ring *ring;
5327 
5328 		ring = &priv->ring[i];
5329 		hns3_clear_tx_ring(ring);
5330 
5331 		ring = &priv->ring[i + h->kinfo.num_tqps];
5332 		/* Continue to clear other rings even if clearing some
5333 		 * rings failed.
5334 		 */
5335 		if (force)
5336 			hns3_force_clear_rx_ring(ring);
5337 		else
5338 			hns3_clear_rx_ring(ring);
5339 	}
5340 }
5341 
5342 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
5343 {
5344 	struct net_device *ndev = h->kinfo.netdev;
5345 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5346 	struct hns3_enet_ring *rx_ring;
5347 	int i, j;
5348 	int ret;
5349 
5350 	ret = h->ae_algo->ops->reset_queue(h);
5351 	if (ret)
5352 		return ret;
5353 
5354 	for (i = 0; i < h->kinfo.num_tqps; i++) {
5355 		hns3_init_ring_hw(&priv->ring[i]);
5356 
5357 		/* We need to clear tx ring here because self test will
5358 		 * use the ring and will not run down before up
5359 		 */
5360 		hns3_clear_tx_ring(&priv->ring[i]);
5361 		priv->ring[i].next_to_clean = 0;
5362 		priv->ring[i].next_to_use = 0;
5363 		priv->ring[i].last_to_use = 0;
5364 
5365 		rx_ring = &priv->ring[i + h->kinfo.num_tqps];
5366 		hns3_init_ring_hw(rx_ring);
5367 		ret = hns3_clear_rx_ring(rx_ring);
5368 		if (ret)
5369 			return ret;
5370 
5371 		/* We can not know the hardware head and tail when this
5372 		 * function is called in reset flow, so we reuse all desc.
5373 		 */
5374 		for (j = 0; j < rx_ring->desc_num; j++)
5375 			hns3_reuse_buffer(rx_ring, j);
5376 
5377 		rx_ring->next_to_clean = 0;
5378 		rx_ring->next_to_use = 0;
5379 	}
5380 
5381 	hns3_init_tx_ring_tc(priv);
5382 
5383 	return 0;
5384 }
5385 
5386 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
5387 {
5388 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5389 	struct net_device *ndev = kinfo->netdev;
5390 	struct hns3_nic_priv *priv = netdev_priv(ndev);
5391 
5392 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
5393 		return 0;
5394 
5395 	if (!netif_running(ndev))
5396 		return 0;
5397 
5398 	return hns3_nic_net_stop(ndev);
5399 }
5400 
5401 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
5402 {
5403 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
5404 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
5405 	int ret = 0;
5406 
5407 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5408 		netdev_err(kinfo->netdev, "device is not initialized yet\n");
5409 		return -EFAULT;
5410 	}
5411 
5412 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5413 
5414 	if (netif_running(kinfo->netdev)) {
5415 		ret = hns3_nic_net_open(kinfo->netdev);
5416 		if (ret) {
5417 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
5418 			netdev_err(kinfo->netdev,
5419 				   "net up fail, ret=%d!\n", ret);
5420 			return ret;
5421 		}
5422 	}
5423 
5424 	return ret;
5425 }
5426 
5427 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
5428 {
5429 	struct net_device *netdev = handle->kinfo.netdev;
5430 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5431 	int ret;
5432 
5433 	/* Carrier off reporting is important to ethtool even BEFORE open */
5434 	netif_carrier_off(netdev);
5435 
5436 	ret = hns3_get_ring_config(priv);
5437 	if (ret)
5438 		return ret;
5439 
5440 	ret = hns3_nic_alloc_vector_data(priv);
5441 	if (ret)
5442 		goto err_put_ring;
5443 
5444 	ret = hns3_nic_init_vector_data(priv);
5445 	if (ret)
5446 		goto err_dealloc_vector;
5447 
5448 	ret = hns3_init_all_ring(priv);
5449 	if (ret)
5450 		goto err_uninit_vector;
5451 
5452 	hns3_cq_period_mode_init(priv, priv->tx_cqe_mode, priv->rx_cqe_mode);
5453 
5454 	/* the device can work without cpu rmap, only aRFS needs it */
5455 	ret = hns3_set_rx_cpu_rmap(netdev);
5456 	if (ret)
5457 		dev_warn(priv->dev, "set rx cpu rmap fail, ret=%d\n", ret);
5458 
5459 	ret = hns3_nic_init_irq(priv);
5460 	if (ret) {
5461 		dev_err(priv->dev, "init irq failed! ret=%d\n", ret);
5462 		hns3_free_rx_cpu_rmap(netdev);
5463 		goto err_init_irq_fail;
5464 	}
5465 
5466 	if (!hns3_is_phys_func(handle->pdev))
5467 		hns3_init_mac_addr(netdev);
5468 
5469 	ret = hns3_client_start(handle);
5470 	if (ret) {
5471 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
5472 		goto err_client_start_fail;
5473 	}
5474 
5475 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
5476 
5477 	return ret;
5478 
5479 err_client_start_fail:
5480 	hns3_free_rx_cpu_rmap(netdev);
5481 	hns3_nic_uninit_irq(priv);
5482 err_init_irq_fail:
5483 	hns3_uninit_all_ring(priv);
5484 err_uninit_vector:
5485 	hns3_nic_uninit_vector_data(priv);
5486 err_dealloc_vector:
5487 	hns3_nic_dealloc_vector_data(priv);
5488 err_put_ring:
5489 	hns3_put_ring_config(priv);
5490 
5491 	return ret;
5492 }
5493 
5494 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
5495 {
5496 	struct net_device *netdev = handle->kinfo.netdev;
5497 	struct hns3_nic_priv *priv = netdev_priv(netdev);
5498 
5499 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
5500 		netdev_warn(netdev, "already uninitialized\n");
5501 		return 0;
5502 	}
5503 
5504 	hns3_free_rx_cpu_rmap(netdev);
5505 	hns3_nic_uninit_irq(priv);
5506 	hns3_clear_all_ring(handle, true);
5507 	hns3_reset_tx_queue(priv->ae_handle);
5508 
5509 	hns3_nic_uninit_vector_data(priv);
5510 
5511 	hns3_nic_dealloc_vector_data(priv);
5512 
5513 	hns3_uninit_all_ring(priv);
5514 
5515 	hns3_put_ring_config(priv);
5516 
5517 	return 0;
5518 }
5519 
5520 static int hns3_reset_notify(struct hnae3_handle *handle,
5521 			     enum hnae3_reset_notify_type type)
5522 {
5523 	int ret = 0;
5524 
5525 	switch (type) {
5526 	case HNAE3_UP_CLIENT:
5527 		ret = hns3_reset_notify_up_enet(handle);
5528 		break;
5529 	case HNAE3_DOWN_CLIENT:
5530 		ret = hns3_reset_notify_down_enet(handle);
5531 		break;
5532 	case HNAE3_INIT_CLIENT:
5533 		ret = hns3_reset_notify_init_enet(handle);
5534 		break;
5535 	case HNAE3_UNINIT_CLIENT:
5536 		ret = hns3_reset_notify_uninit_enet(handle);
5537 		break;
5538 	default:
5539 		break;
5540 	}
5541 
5542 	return ret;
5543 }
5544 
5545 static int hns3_change_channels(struct hnae3_handle *handle, u32 new_tqp_num,
5546 				bool rxfh_configured)
5547 {
5548 	int ret;
5549 
5550 	ret = handle->ae_algo->ops->set_channels(handle, new_tqp_num,
5551 						 rxfh_configured);
5552 	if (ret) {
5553 		dev_err(&handle->pdev->dev,
5554 			"Change tqp num(%u) fail.\n", new_tqp_num);
5555 		return ret;
5556 	}
5557 
5558 	ret = hns3_reset_notify(handle, HNAE3_INIT_CLIENT);
5559 	if (ret)
5560 		return ret;
5561 
5562 	ret =  hns3_reset_notify(handle, HNAE3_UP_CLIENT);
5563 	if (ret)
5564 		hns3_reset_notify(handle, HNAE3_UNINIT_CLIENT);
5565 
5566 	return ret;
5567 }
5568 
5569 int hns3_set_channels(struct net_device *netdev,
5570 		      struct ethtool_channels *ch)
5571 {
5572 	struct hnae3_handle *h = hns3_get_handle(netdev);
5573 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
5574 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
5575 	u32 new_tqp_num = ch->combined_count;
5576 	u16 org_tqp_num;
5577 	int ret;
5578 
5579 	if (hns3_nic_resetting(netdev))
5580 		return -EBUSY;
5581 
5582 	if (ch->rx_count || ch->tx_count)
5583 		return -EINVAL;
5584 
5585 	if (kinfo->tc_info.mqprio_active) {
5586 		dev_err(&netdev->dev,
5587 			"it's not allowed to set channels via ethtool when MQPRIO mode is on\n");
5588 		return -EINVAL;
5589 	}
5590 
5591 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
5592 	    new_tqp_num < 1) {
5593 		dev_err(&netdev->dev,
5594 			"Change tqps fail, the tqp range is from 1 to %u",
5595 			hns3_get_max_available_channels(h));
5596 		return -EINVAL;
5597 	}
5598 
5599 	if (kinfo->rss_size == new_tqp_num)
5600 		return 0;
5601 
5602 	netif_dbg(h, drv, netdev,
5603 		  "set channels: tqp_num=%u, rxfh=%d\n",
5604 		  new_tqp_num, rxfh_configured);
5605 
5606 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
5607 	if (ret)
5608 		return ret;
5609 
5610 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
5611 	if (ret)
5612 		return ret;
5613 
5614 	org_tqp_num = h->kinfo.num_tqps;
5615 	ret = hns3_change_channels(h, new_tqp_num, rxfh_configured);
5616 	if (ret) {
5617 		int ret1;
5618 
5619 		netdev_warn(netdev,
5620 			    "Change channels fail, revert to old value\n");
5621 		ret1 = hns3_change_channels(h, org_tqp_num, rxfh_configured);
5622 		if (ret1) {
5623 			netdev_err(netdev,
5624 				   "revert to old channel fail\n");
5625 			return ret1;
5626 		}
5627 
5628 		return ret;
5629 	}
5630 
5631 	return 0;
5632 }
5633 
5634 static const struct hns3_hw_error_info hns3_hw_err[] = {
5635 	{ .type = HNAE3_PPU_POISON_ERROR,
5636 	  .msg = "PPU poison" },
5637 	{ .type = HNAE3_CMDQ_ECC_ERROR,
5638 	  .msg = "IMP CMDQ error" },
5639 	{ .type = HNAE3_IMP_RD_POISON_ERROR,
5640 	  .msg = "IMP RD poison" },
5641 	{ .type = HNAE3_ROCEE_AXI_RESP_ERROR,
5642 	  .msg = "ROCEE AXI RESP error" },
5643 };
5644 
5645 static void hns3_process_hw_error(struct hnae3_handle *handle,
5646 				  enum hnae3_hw_error_type type)
5647 {
5648 	int i;
5649 
5650 	for (i = 0; i < ARRAY_SIZE(hns3_hw_err); i++) {
5651 		if (hns3_hw_err[i].type == type) {
5652 			dev_err(&handle->pdev->dev, "Detected %s!\n",
5653 				hns3_hw_err[i].msg);
5654 			break;
5655 		}
5656 	}
5657 }
5658 
5659 static const struct hnae3_client_ops client_ops = {
5660 	.init_instance = hns3_client_init,
5661 	.uninit_instance = hns3_client_uninit,
5662 	.link_status_change = hns3_link_status_change,
5663 	.reset_notify = hns3_reset_notify,
5664 	.process_hw_error = hns3_process_hw_error,
5665 };
5666 
5667 /* hns3_init_module - Driver registration routine
5668  * hns3_init_module is the first routine called when the driver is
5669  * loaded. All it does is register with the PCI subsystem.
5670  */
5671 static int __init hns3_init_module(void)
5672 {
5673 	int ret;
5674 
5675 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
5676 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
5677 
5678 	client.type = HNAE3_CLIENT_KNIC;
5679 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH, "%s",
5680 		 hns3_driver_name);
5681 
5682 	client.ops = &client_ops;
5683 
5684 	INIT_LIST_HEAD(&client.node);
5685 
5686 	hns3_dbg_register_debugfs(hns3_driver_name);
5687 
5688 	ret = hnae3_register_client(&client);
5689 	if (ret)
5690 		goto err_reg_client;
5691 
5692 	ret = pci_register_driver(&hns3_driver);
5693 	if (ret)
5694 		goto err_reg_driver;
5695 
5696 	return ret;
5697 
5698 err_reg_driver:
5699 	hnae3_unregister_client(&client);
5700 err_reg_client:
5701 	hns3_dbg_unregister_debugfs();
5702 	return ret;
5703 }
5704 module_init(hns3_init_module);
5705 
5706 /* hns3_exit_module - Driver exit cleanup routine
5707  * hns3_exit_module is called just before the driver is removed
5708  * from memory.
5709  */
5710 static void __exit hns3_exit_module(void)
5711 {
5712 	pci_unregister_driver(&hns3_driver);
5713 	hnae3_unregister_client(&client);
5714 	hns3_dbg_unregister_debugfs();
5715 }
5716 module_exit(hns3_exit_module);
5717 
5718 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
5719 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
5720 MODULE_LICENSE("GPL");
5721 MODULE_ALIAS("pci:hns-nic");
5722