1 /*
2  * Copyright (c) 2016~2017 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/dma-mapping.h>
11 #include <linux/etherdevice.h>
12 #include <linux/interrupt.h>
13 #include <linux/if_vlan.h>
14 #include <linux/ip.h>
15 #include <linux/ipv6.h>
16 #include <linux/module.h>
17 #include <linux/pci.h>
18 #include <linux/skbuff.h>
19 #include <linux/sctp.h>
20 #include <linux/vermagic.h>
21 #include <net/gre.h>
22 #include <net/pkt_cls.h>
23 #include <net/vxlan.h>
24 
25 #include "hnae3.h"
26 #include "hns3_enet.h"
27 
28 static const char hns3_driver_name[] = "hns3";
29 const char hns3_driver_version[] = VERMAGIC_STRING;
30 static const char hns3_driver_string[] =
31 			"Hisilicon Ethernet Network Driver for Hip08 Family";
32 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
33 static struct hnae3_client client;
34 
35 /* hns3_pci_tbl - PCI Device ID Table
36  *
37  * Last entry must be all 0s
38  *
39  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
40  *   Class, Class Mask, private data (not used) }
41  */
42 static const struct pci_device_id hns3_pci_tbl[] = {
43 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
44 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
45 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
46 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
47 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
48 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
49 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
50 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
51 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
52 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
53 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
54 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
55 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
56 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
57 	/* required last entry */
58 	{0, }
59 };
60 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
61 
62 static irqreturn_t hns3_irq_handle(int irq, void *dev)
63 {
64 	struct hns3_enet_tqp_vector *tqp_vector = dev;
65 
66 	napi_schedule(&tqp_vector->napi);
67 
68 	return IRQ_HANDLED;
69 }
70 
71 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
72 {
73 	struct hns3_enet_tqp_vector *tqp_vectors;
74 	unsigned int i;
75 
76 	for (i = 0; i < priv->vector_num; i++) {
77 		tqp_vectors = &priv->tqp_vector[i];
78 
79 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
80 			continue;
81 
82 		/* release the irq resource */
83 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
84 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
85 	}
86 }
87 
88 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
89 {
90 	struct hns3_enet_tqp_vector *tqp_vectors;
91 	int txrx_int_idx = 0;
92 	int rx_int_idx = 0;
93 	int tx_int_idx = 0;
94 	unsigned int i;
95 	int ret;
96 
97 	for (i = 0; i < priv->vector_num; i++) {
98 		tqp_vectors = &priv->tqp_vector[i];
99 
100 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
101 			continue;
102 
103 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
104 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
105 				 "%s-%s-%d", priv->netdev->name, "TxRx",
106 				 txrx_int_idx++);
107 			txrx_int_idx++;
108 		} else if (tqp_vectors->rx_group.ring) {
109 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
110 				 "%s-%s-%d", priv->netdev->name, "Rx",
111 				 rx_int_idx++);
112 		} else if (tqp_vectors->tx_group.ring) {
113 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
114 				 "%s-%s-%d", priv->netdev->name, "Tx",
115 				 tx_int_idx++);
116 		} else {
117 			/* Skip this unused q_vector */
118 			continue;
119 		}
120 
121 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
122 
123 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
124 				  tqp_vectors->name,
125 				       tqp_vectors);
126 		if (ret) {
127 			netdev_err(priv->netdev, "request irq(%d) fail\n",
128 				   tqp_vectors->vector_irq);
129 			return ret;
130 		}
131 
132 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
133 	}
134 
135 	return 0;
136 }
137 
138 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
139 				 u32 mask_en)
140 {
141 	writel(mask_en, tqp_vector->mask_addr);
142 }
143 
144 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
145 {
146 	napi_enable(&tqp_vector->napi);
147 
148 	/* enable vector */
149 	hns3_mask_vector_irq(tqp_vector, 1);
150 }
151 
152 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
153 {
154 	/* disable vector */
155 	hns3_mask_vector_irq(tqp_vector, 0);
156 
157 	disable_irq(tqp_vector->vector_irq);
158 	napi_disable(&tqp_vector->napi);
159 }
160 
161 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
162 				 u32 rl_value)
163 {
164 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
165 
166 	/* this defines the configuration for RL (Interrupt Rate Limiter).
167 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
168 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
169 	 */
170 
171 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
172 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
173 		/* According to the hardware, the range of rl_reg is
174 		 * 0-59 and the unit is 4.
175 		 */
176 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
177 
178 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
179 }
180 
181 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
182 				    u32 gl_value)
183 {
184 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
185 
186 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
187 }
188 
189 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
190 				    u32 gl_value)
191 {
192 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
193 
194 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
195 }
196 
197 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
198 				   struct hns3_nic_priv *priv)
199 {
200 	struct hnae3_handle *h = priv->ae_handle;
201 
202 	/* initialize the configuration for interrupt coalescing.
203 	 * 1. GL (Interrupt Gap Limiter)
204 	 * 2. RL (Interrupt Rate Limiter)
205 	 */
206 
207 	/* Default: enable interrupt coalescing self-adaptive and GL */
208 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
209 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
210 
211 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
212 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
213 
214 	/* Default: disable RL */
215 	h->kinfo.int_rl_setting = 0;
216 
217 	tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
218 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
219 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
220 }
221 
222 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
223 				      struct hns3_nic_priv *priv)
224 {
225 	struct hnae3_handle *h = priv->ae_handle;
226 
227 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
228 				       tqp_vector->tx_group.coal.int_gl);
229 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
230 				       tqp_vector->rx_group.coal.int_gl);
231 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
232 }
233 
234 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
235 {
236 	struct hnae3_handle *h = hns3_get_handle(netdev);
237 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
238 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
239 	int ret;
240 
241 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
242 	if (ret) {
243 		netdev_err(netdev,
244 			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
245 			   ret);
246 		return ret;
247 	}
248 
249 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
250 	if (ret) {
251 		netdev_err(netdev,
252 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
253 		return ret;
254 	}
255 
256 	return 0;
257 }
258 
259 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
260 {
261 	u16 free_tqps, max_rss_size, max_tqps;
262 
263 	h->ae_algo->ops->get_tqps_and_rss_info(h, &free_tqps, &max_rss_size);
264 	max_tqps = h->kinfo.num_tc * max_rss_size;
265 
266 	return min_t(u16, max_tqps, (free_tqps + h->kinfo.num_tqps));
267 }
268 
269 static int hns3_nic_net_up(struct net_device *netdev)
270 {
271 	struct hns3_nic_priv *priv = netdev_priv(netdev);
272 	struct hnae3_handle *h = priv->ae_handle;
273 	int i, j;
274 	int ret;
275 
276 	/* get irq resource for all vectors */
277 	ret = hns3_nic_init_irq(priv);
278 	if (ret) {
279 		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
280 		return ret;
281 	}
282 
283 	/* enable the vectors */
284 	for (i = 0; i < priv->vector_num; i++)
285 		hns3_vector_enable(&priv->tqp_vector[i]);
286 
287 	/* start the ae_dev */
288 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
289 	if (ret)
290 		goto out_start_err;
291 
292 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
293 
294 	return 0;
295 
296 out_start_err:
297 	for (j = i - 1; j >= 0; j--)
298 		hns3_vector_disable(&priv->tqp_vector[j]);
299 
300 	hns3_nic_uninit_irq(priv);
301 
302 	return ret;
303 }
304 
305 static int hns3_nic_net_open(struct net_device *netdev)
306 {
307 	struct hns3_nic_priv *priv = netdev_priv(netdev);
308 	int ret;
309 
310 	netif_carrier_off(netdev);
311 
312 	ret = hns3_nic_set_real_num_queue(netdev);
313 	if (ret)
314 		return ret;
315 
316 	ret = hns3_nic_net_up(netdev);
317 	if (ret) {
318 		netdev_err(netdev,
319 			   "hns net up fail, ret=%d!\n", ret);
320 		return ret;
321 	}
322 
323 	priv->ae_handle->last_reset_time = jiffies;
324 	return 0;
325 }
326 
327 static void hns3_nic_net_down(struct net_device *netdev)
328 {
329 	struct hns3_nic_priv *priv = netdev_priv(netdev);
330 	const struct hnae3_ae_ops *ops;
331 	int i;
332 
333 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
334 		return;
335 
336 	/* stop ae_dev */
337 	ops = priv->ae_handle->ae_algo->ops;
338 	if (ops->stop)
339 		ops->stop(priv->ae_handle);
340 
341 	/* disable vectors */
342 	for (i = 0; i < priv->vector_num; i++)
343 		hns3_vector_disable(&priv->tqp_vector[i]);
344 
345 	/* free irq resources */
346 	hns3_nic_uninit_irq(priv);
347 }
348 
349 static int hns3_nic_net_stop(struct net_device *netdev)
350 {
351 	netif_tx_stop_all_queues(netdev);
352 	netif_carrier_off(netdev);
353 
354 	hns3_nic_net_down(netdev);
355 
356 	return 0;
357 }
358 
359 static int hns3_nic_uc_sync(struct net_device *netdev,
360 			    const unsigned char *addr)
361 {
362 	struct hnae3_handle *h = hns3_get_handle(netdev);
363 
364 	if (h->ae_algo->ops->add_uc_addr)
365 		return h->ae_algo->ops->add_uc_addr(h, addr);
366 
367 	return 0;
368 }
369 
370 static int hns3_nic_uc_unsync(struct net_device *netdev,
371 			      const unsigned char *addr)
372 {
373 	struct hnae3_handle *h = hns3_get_handle(netdev);
374 
375 	if (h->ae_algo->ops->rm_uc_addr)
376 		return h->ae_algo->ops->rm_uc_addr(h, addr);
377 
378 	return 0;
379 }
380 
381 static int hns3_nic_mc_sync(struct net_device *netdev,
382 			    const unsigned char *addr)
383 {
384 	struct hnae3_handle *h = hns3_get_handle(netdev);
385 
386 	if (h->ae_algo->ops->add_mc_addr)
387 		return h->ae_algo->ops->add_mc_addr(h, addr);
388 
389 	return 0;
390 }
391 
392 static int hns3_nic_mc_unsync(struct net_device *netdev,
393 			      const unsigned char *addr)
394 {
395 	struct hnae3_handle *h = hns3_get_handle(netdev);
396 
397 	if (h->ae_algo->ops->rm_mc_addr)
398 		return h->ae_algo->ops->rm_mc_addr(h, addr);
399 
400 	return 0;
401 }
402 
403 static void hns3_nic_set_rx_mode(struct net_device *netdev)
404 {
405 	struct hnae3_handle *h = hns3_get_handle(netdev);
406 
407 	if (h->ae_algo->ops->set_promisc_mode) {
408 		if (netdev->flags & IFF_PROMISC)
409 			h->ae_algo->ops->set_promisc_mode(h, 1);
410 		else
411 			h->ae_algo->ops->set_promisc_mode(h, 0);
412 	}
413 	if (__dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync))
414 		netdev_err(netdev, "sync uc address fail\n");
415 	if (netdev->flags & IFF_MULTICAST)
416 		if (__dev_mc_sync(netdev, hns3_nic_mc_sync, hns3_nic_mc_unsync))
417 			netdev_err(netdev, "sync mc address fail\n");
418 }
419 
420 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
421 			u16 *mss, u32 *type_cs_vlan_tso)
422 {
423 	u32 l4_offset, hdr_len;
424 	union l3_hdr_info l3;
425 	union l4_hdr_info l4;
426 	u32 l4_paylen;
427 	int ret;
428 
429 	if (!skb_is_gso(skb))
430 		return 0;
431 
432 	ret = skb_cow_head(skb, 0);
433 	if (ret)
434 		return ret;
435 
436 	l3.hdr = skb_network_header(skb);
437 	l4.hdr = skb_transport_header(skb);
438 
439 	/* Software should clear the IPv4's checksum field when tso is
440 	 * needed.
441 	 */
442 	if (l3.v4->version == 4)
443 		l3.v4->check = 0;
444 
445 	/* tunnel packet.*/
446 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
447 					 SKB_GSO_GRE_CSUM |
448 					 SKB_GSO_UDP_TUNNEL |
449 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
450 		if ((!(skb_shinfo(skb)->gso_type &
451 		    SKB_GSO_PARTIAL)) &&
452 		    (skb_shinfo(skb)->gso_type &
453 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
454 			/* Software should clear the udp's checksum
455 			 * field when tso is needed.
456 			 */
457 			l4.udp->check = 0;
458 		}
459 		/* reset l3&l4 pointers from outer to inner headers */
460 		l3.hdr = skb_inner_network_header(skb);
461 		l4.hdr = skb_inner_transport_header(skb);
462 
463 		/* Software should clear the IPv4's checksum field when
464 		 * tso is needed.
465 		 */
466 		if (l3.v4->version == 4)
467 			l3.v4->check = 0;
468 	}
469 
470 	/* normal or tunnel packet*/
471 	l4_offset = l4.hdr - skb->data;
472 	hdr_len = (l4.tcp->doff * 4) + l4_offset;
473 
474 	/* remove payload length from inner pseudo checksum when tso*/
475 	l4_paylen = skb->len - l4_offset;
476 	csum_replace_by_diff(&l4.tcp->check,
477 			     (__force __wsum)htonl(l4_paylen));
478 
479 	/* find the txbd field values */
480 	*paylen = skb->len - hdr_len;
481 	hnae_set_bit(*type_cs_vlan_tso,
482 		     HNS3_TXD_TSO_B, 1);
483 
484 	/* get MSS for TSO */
485 	*mss = skb_shinfo(skb)->gso_size;
486 
487 	return 0;
488 }
489 
490 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
491 				u8 *il4_proto)
492 {
493 	union {
494 		struct iphdr *v4;
495 		struct ipv6hdr *v6;
496 		unsigned char *hdr;
497 	} l3;
498 	unsigned char *l4_hdr;
499 	unsigned char *exthdr;
500 	u8 l4_proto_tmp;
501 	__be16 frag_off;
502 
503 	/* find outer header point */
504 	l3.hdr = skb_network_header(skb);
505 	l4_hdr = skb_inner_transport_header(skb);
506 
507 	if (skb->protocol == htons(ETH_P_IPV6)) {
508 		exthdr = l3.hdr + sizeof(*l3.v6);
509 		l4_proto_tmp = l3.v6->nexthdr;
510 		if (l4_hdr != exthdr)
511 			ipv6_skip_exthdr(skb, exthdr - skb->data,
512 					 &l4_proto_tmp, &frag_off);
513 	} else if (skb->protocol == htons(ETH_P_IP)) {
514 		l4_proto_tmp = l3.v4->protocol;
515 	} else {
516 		return -EINVAL;
517 	}
518 
519 	*ol4_proto = l4_proto_tmp;
520 
521 	/* tunnel packet */
522 	if (!skb->encapsulation) {
523 		*il4_proto = 0;
524 		return 0;
525 	}
526 
527 	/* find inner header point */
528 	l3.hdr = skb_inner_network_header(skb);
529 	l4_hdr = skb_inner_transport_header(skb);
530 
531 	if (l3.v6->version == 6) {
532 		exthdr = l3.hdr + sizeof(*l3.v6);
533 		l4_proto_tmp = l3.v6->nexthdr;
534 		if (l4_hdr != exthdr)
535 			ipv6_skip_exthdr(skb, exthdr - skb->data,
536 					 &l4_proto_tmp, &frag_off);
537 	} else if (l3.v4->version == 4) {
538 		l4_proto_tmp = l3.v4->protocol;
539 	}
540 
541 	*il4_proto = l4_proto_tmp;
542 
543 	return 0;
544 }
545 
546 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
547 				u8 il4_proto, u32 *type_cs_vlan_tso,
548 				u32 *ol_type_vlan_len_msec)
549 {
550 	union {
551 		struct iphdr *v4;
552 		struct ipv6hdr *v6;
553 		unsigned char *hdr;
554 	} l3;
555 	union {
556 		struct tcphdr *tcp;
557 		struct udphdr *udp;
558 		struct gre_base_hdr *gre;
559 		unsigned char *hdr;
560 	} l4;
561 	unsigned char *l2_hdr;
562 	u8 l4_proto = ol4_proto;
563 	u32 ol2_len;
564 	u32 ol3_len;
565 	u32 ol4_len;
566 	u32 l2_len;
567 	u32 l3_len;
568 
569 	l3.hdr = skb_network_header(skb);
570 	l4.hdr = skb_transport_header(skb);
571 
572 	/* compute L2 header size for normal packet, defined in 2 Bytes */
573 	l2_len = l3.hdr - skb->data;
574 	hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
575 		       HNS3_TXD_L2LEN_S, l2_len >> 1);
576 
577 	/* tunnel packet*/
578 	if (skb->encapsulation) {
579 		/* compute OL2 header size, defined in 2 Bytes */
580 		ol2_len = l2_len;
581 		hnae_set_field(*ol_type_vlan_len_msec,
582 			       HNS3_TXD_L2LEN_M,
583 			       HNS3_TXD_L2LEN_S, ol2_len >> 1);
584 
585 		/* compute OL3 header size, defined in 4 Bytes */
586 		ol3_len = l4.hdr - l3.hdr;
587 		hnae_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_M,
588 			       HNS3_TXD_L3LEN_S, ol3_len >> 2);
589 
590 		/* MAC in UDP, MAC in GRE (0x6558)*/
591 		if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
592 			/* switch MAC header ptr from outer to inner header.*/
593 			l2_hdr = skb_inner_mac_header(skb);
594 
595 			/* compute OL4 header size, defined in 4 Bytes. */
596 			ol4_len = l2_hdr - l4.hdr;
597 			hnae_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_M,
598 				       HNS3_TXD_L4LEN_S, ol4_len >> 2);
599 
600 			/* switch IP header ptr from outer to inner header */
601 			l3.hdr = skb_inner_network_header(skb);
602 
603 			/* compute inner l2 header size, defined in 2 Bytes. */
604 			l2_len = l3.hdr - l2_hdr;
605 			hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
606 				       HNS3_TXD_L2LEN_S, l2_len >> 1);
607 		} else {
608 			/* skb packet types not supported by hardware,
609 			 * txbd len fild doesn't be filled.
610 			 */
611 			return;
612 		}
613 
614 		/* switch L4 header pointer from outer to inner */
615 		l4.hdr = skb_inner_transport_header(skb);
616 
617 		l4_proto = il4_proto;
618 	}
619 
620 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
621 	l3_len = l4.hdr - l3.hdr;
622 	hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_M,
623 		       HNS3_TXD_L3LEN_S, l3_len >> 2);
624 
625 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
626 	switch (l4_proto) {
627 	case IPPROTO_TCP:
628 		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
629 			       HNS3_TXD_L4LEN_S, l4.tcp->doff);
630 		break;
631 	case IPPROTO_SCTP:
632 		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
633 			       HNS3_TXD_L4LEN_S, (sizeof(struct sctphdr) >> 2));
634 		break;
635 	case IPPROTO_UDP:
636 		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
637 			       HNS3_TXD_L4LEN_S, (sizeof(struct udphdr) >> 2));
638 		break;
639 	default:
640 		/* skb packet types not supported by hardware,
641 		 * txbd len fild doesn't be filled.
642 		 */
643 		return;
644 	}
645 }
646 
647 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
648 				   u8 il4_proto, u32 *type_cs_vlan_tso,
649 				   u32 *ol_type_vlan_len_msec)
650 {
651 	union {
652 		struct iphdr *v4;
653 		struct ipv6hdr *v6;
654 		unsigned char *hdr;
655 	} l3;
656 	u32 l4_proto = ol4_proto;
657 
658 	l3.hdr = skb_network_header(skb);
659 
660 	/* define OL3 type and tunnel type(OL4).*/
661 	if (skb->encapsulation) {
662 		/* define outer network header type.*/
663 		if (skb->protocol == htons(ETH_P_IP)) {
664 			if (skb_is_gso(skb))
665 				hnae_set_field(*ol_type_vlan_len_msec,
666 					       HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
667 					       HNS3_OL3T_IPV4_CSUM);
668 			else
669 				hnae_set_field(*ol_type_vlan_len_msec,
670 					       HNS3_TXD_OL3T_M, HNS3_TXD_OL3T_S,
671 					       HNS3_OL3T_IPV4_NO_CSUM);
672 
673 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
674 			hnae_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_M,
675 				       HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6);
676 		}
677 
678 		/* define tunnel type(OL4).*/
679 		switch (l4_proto) {
680 		case IPPROTO_UDP:
681 			hnae_set_field(*ol_type_vlan_len_msec,
682 				       HNS3_TXD_TUNTYPE_M,
683 				       HNS3_TXD_TUNTYPE_S,
684 				       HNS3_TUN_MAC_IN_UDP);
685 			break;
686 		case IPPROTO_GRE:
687 			hnae_set_field(*ol_type_vlan_len_msec,
688 				       HNS3_TXD_TUNTYPE_M,
689 				       HNS3_TXD_TUNTYPE_S,
690 				       HNS3_TUN_NVGRE);
691 			break;
692 		default:
693 			/* drop the skb tunnel packet if hardware don't support,
694 			 * because hardware can't calculate csum when TSO.
695 			 */
696 			if (skb_is_gso(skb))
697 				return -EDOM;
698 
699 			/* the stack computes the IP header already,
700 			 * driver calculate l4 checksum when not TSO.
701 			 */
702 			skb_checksum_help(skb);
703 			return 0;
704 		}
705 
706 		l3.hdr = skb_inner_network_header(skb);
707 		l4_proto = il4_proto;
708 	}
709 
710 	if (l3.v4->version == 4) {
711 		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
712 			       HNS3_TXD_L3T_S, HNS3_L3T_IPV4);
713 
714 		/* the stack computes the IP header already, the only time we
715 		 * need the hardware to recompute it is in the case of TSO.
716 		 */
717 		if (skb_is_gso(skb))
718 			hnae_set_bit(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
719 
720 		hnae_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
721 	} else if (l3.v6->version == 6) {
722 		hnae_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
723 			       HNS3_TXD_L3T_S, HNS3_L3T_IPV6);
724 		hnae_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
725 	}
726 
727 	switch (l4_proto) {
728 	case IPPROTO_TCP:
729 		hnae_set_field(*type_cs_vlan_tso,
730 			       HNS3_TXD_L4T_M,
731 			       HNS3_TXD_L4T_S,
732 			       HNS3_L4T_TCP);
733 		break;
734 	case IPPROTO_UDP:
735 		hnae_set_field(*type_cs_vlan_tso,
736 			       HNS3_TXD_L4T_M,
737 			       HNS3_TXD_L4T_S,
738 			       HNS3_L4T_UDP);
739 		break;
740 	case IPPROTO_SCTP:
741 		hnae_set_field(*type_cs_vlan_tso,
742 			       HNS3_TXD_L4T_M,
743 			       HNS3_TXD_L4T_S,
744 			       HNS3_L4T_SCTP);
745 		break;
746 	default:
747 		/* drop the skb tunnel packet if hardware don't support,
748 		 * because hardware can't calculate csum when TSO.
749 		 */
750 		if (skb_is_gso(skb))
751 			return -EDOM;
752 
753 		/* the stack computes the IP header already,
754 		 * driver calculate l4 checksum when not TSO.
755 		 */
756 		skb_checksum_help(skb);
757 		return 0;
758 	}
759 
760 	return 0;
761 }
762 
763 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
764 {
765 	/* Config bd buffer end */
766 	hnae_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_BDTYPE_M,
767 		       HNS3_TXD_BDTYPE_S, 0);
768 	hnae_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
769 	hnae_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
770 	hnae_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_SC_M, HNS3_TXD_SC_S, 0);
771 }
772 
773 static int hns3_fill_desc_vtags(struct sk_buff *skb,
774 				struct hns3_enet_ring *tx_ring,
775 				u32 *inner_vlan_flag,
776 				u32 *out_vlan_flag,
777 				u16 *inner_vtag,
778 				u16 *out_vtag)
779 {
780 #define HNS3_TX_VLAN_PRIO_SHIFT 13
781 
782 	if (skb->protocol == htons(ETH_P_8021Q) &&
783 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
784 	    NETIF_F_HW_VLAN_CTAG_TX)) {
785 		/* When HW VLAN acceleration is turned off, and the stack
786 		 * sets the protocol to 802.1q, the driver just need to
787 		 * set the protocol to the encapsulated ethertype.
788 		 */
789 		skb->protocol = vlan_get_protocol(skb);
790 		return 0;
791 	}
792 
793 	if (skb_vlan_tag_present(skb)) {
794 		u16 vlan_tag;
795 
796 		vlan_tag = skb_vlan_tag_get(skb);
797 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
798 
799 		/* Based on hw strategy, use out_vtag in two layer tag case,
800 		 * and use inner_vtag in one tag case.
801 		 */
802 		if (skb->protocol == htons(ETH_P_8021Q)) {
803 			hnae_set_bit(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
804 			*out_vtag = vlan_tag;
805 		} else {
806 			hnae_set_bit(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
807 			*inner_vtag = vlan_tag;
808 		}
809 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
810 		struct vlan_ethhdr *vhdr;
811 		int rc;
812 
813 		rc = skb_cow_head(skb, 0);
814 		if (rc < 0)
815 			return rc;
816 		vhdr = (struct vlan_ethhdr *)skb->data;
817 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
818 					<< HNS3_TX_VLAN_PRIO_SHIFT);
819 	}
820 
821 	skb->protocol = vlan_get_protocol(skb);
822 	return 0;
823 }
824 
825 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
826 			  int size, dma_addr_t dma, int frag_end,
827 			  enum hns_desc_type type)
828 {
829 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
830 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
831 	u32 ol_type_vlan_len_msec = 0;
832 	u16 bdtp_fe_sc_vld_ra_ri = 0;
833 	u32 type_cs_vlan_tso = 0;
834 	struct sk_buff *skb;
835 	u16 inner_vtag = 0;
836 	u16 out_vtag = 0;
837 	u32 paylen = 0;
838 	u16 mss = 0;
839 	__be16 protocol;
840 	u8 ol4_proto;
841 	u8 il4_proto;
842 	int ret;
843 
844 	/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
845 	desc_cb->priv = priv;
846 	desc_cb->length = size;
847 	desc_cb->dma = dma;
848 	desc_cb->type = type;
849 
850 	/* now, fill the descriptor */
851 	desc->addr = cpu_to_le64(dma);
852 	desc->tx.send_size = cpu_to_le16((u16)size);
853 	hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
854 	desc->tx.bdtp_fe_sc_vld_ra_ri = cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
855 
856 	if (type == DESC_TYPE_SKB) {
857 		skb = (struct sk_buff *)priv;
858 		paylen = skb->len;
859 
860 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
861 					   &ol_type_vlan_len_msec,
862 					   &inner_vtag, &out_vtag);
863 		if (unlikely(ret))
864 			return ret;
865 
866 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
867 			skb_reset_mac_len(skb);
868 			protocol = skb->protocol;
869 
870 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
871 			if (ret)
872 				return ret;
873 			hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
874 					    &type_cs_vlan_tso,
875 					    &ol_type_vlan_len_msec);
876 			ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
877 						      &type_cs_vlan_tso,
878 						      &ol_type_vlan_len_msec);
879 			if (ret)
880 				return ret;
881 
882 			ret = hns3_set_tso(skb, &paylen, &mss,
883 					   &type_cs_vlan_tso);
884 			if (ret)
885 				return ret;
886 		}
887 
888 		/* Set txbd */
889 		desc->tx.ol_type_vlan_len_msec =
890 			cpu_to_le32(ol_type_vlan_len_msec);
891 		desc->tx.type_cs_vlan_tso_len =
892 			cpu_to_le32(type_cs_vlan_tso);
893 		desc->tx.paylen = cpu_to_le32(paylen);
894 		desc->tx.mss = cpu_to_le16(mss);
895 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
896 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
897 	}
898 
899 	/* move ring pointer to next.*/
900 	ring_ptr_move_fw(ring, next_to_use);
901 
902 	return 0;
903 }
904 
905 static int hns3_fill_desc_tso(struct hns3_enet_ring *ring, void *priv,
906 			      int size, dma_addr_t dma, int frag_end,
907 			      enum hns_desc_type type)
908 {
909 	unsigned int frag_buf_num;
910 	unsigned int k;
911 	int sizeoflast;
912 	int ret;
913 
914 	frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
915 	sizeoflast = size % HNS3_MAX_BD_SIZE;
916 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
917 
918 	/* When the frag size is bigger than hardware, split this frag */
919 	for (k = 0; k < frag_buf_num; k++) {
920 		ret = hns3_fill_desc(ring, priv,
921 				     (k == frag_buf_num - 1) ?
922 				sizeoflast : HNS3_MAX_BD_SIZE,
923 				dma + HNS3_MAX_BD_SIZE * k,
924 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
925 				(type == DESC_TYPE_SKB && !k) ?
926 					DESC_TYPE_SKB : DESC_TYPE_PAGE);
927 		if (ret)
928 			return ret;
929 	}
930 
931 	return 0;
932 }
933 
934 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
935 				   struct hns3_enet_ring *ring)
936 {
937 	struct sk_buff *skb = *out_skb;
938 	struct skb_frag_struct *frag;
939 	int bdnum_for_frag;
940 	int frag_num;
941 	int buf_num;
942 	int size;
943 	int i;
944 
945 	size = skb_headlen(skb);
946 	buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
947 
948 	frag_num = skb_shinfo(skb)->nr_frags;
949 	for (i = 0; i < frag_num; i++) {
950 		frag = &skb_shinfo(skb)->frags[i];
951 		size = skb_frag_size(frag);
952 		bdnum_for_frag =
953 			(size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
954 		if (bdnum_for_frag > HNS3_MAX_BD_PER_FRAG)
955 			return -ENOMEM;
956 
957 		buf_num += bdnum_for_frag;
958 	}
959 
960 	if (buf_num > ring_space(ring))
961 		return -EBUSY;
962 
963 	*bnum = buf_num;
964 	return 0;
965 }
966 
967 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
968 				  struct hns3_enet_ring *ring)
969 {
970 	struct sk_buff *skb = *out_skb;
971 	int buf_num;
972 
973 	/* No. of segments (plus a header) */
974 	buf_num = skb_shinfo(skb)->nr_frags + 1;
975 
976 	if (buf_num > ring_space(ring))
977 		return -EBUSY;
978 
979 	*bnum = buf_num;
980 
981 	return 0;
982 }
983 
984 static void hns_nic_dma_unmap(struct hns3_enet_ring *ring, int next_to_use_orig)
985 {
986 	struct device *dev = ring_to_dev(ring);
987 	unsigned int i;
988 
989 	for (i = 0; i < ring->desc_num; i++) {
990 		/* check if this is where we started */
991 		if (ring->next_to_use == next_to_use_orig)
992 			break;
993 
994 		/* unmap the descriptor dma address */
995 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
996 			dma_unmap_single(dev,
997 					 ring->desc_cb[ring->next_to_use].dma,
998 					ring->desc_cb[ring->next_to_use].length,
999 					DMA_TO_DEVICE);
1000 		else
1001 			dma_unmap_page(dev,
1002 				       ring->desc_cb[ring->next_to_use].dma,
1003 				       ring->desc_cb[ring->next_to_use].length,
1004 				       DMA_TO_DEVICE);
1005 
1006 		/* rollback one */
1007 		ring_ptr_move_bw(ring, next_to_use);
1008 	}
1009 }
1010 
1011 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1012 {
1013 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1014 	struct hns3_nic_ring_data *ring_data =
1015 		&tx_ring_data(priv, skb->queue_mapping);
1016 	struct hns3_enet_ring *ring = ring_data->ring;
1017 	struct device *dev = priv->dev;
1018 	struct netdev_queue *dev_queue;
1019 	struct skb_frag_struct *frag;
1020 	int next_to_use_head;
1021 	int next_to_use_frag;
1022 	dma_addr_t dma;
1023 	int buf_num;
1024 	int seg_num;
1025 	int size;
1026 	int ret;
1027 	int i;
1028 
1029 	/* Prefetch the data used later */
1030 	prefetch(skb->data);
1031 
1032 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1033 	case -EBUSY:
1034 		u64_stats_update_begin(&ring->syncp);
1035 		ring->stats.tx_busy++;
1036 		u64_stats_update_end(&ring->syncp);
1037 
1038 		goto out_net_tx_busy;
1039 	case -ENOMEM:
1040 		u64_stats_update_begin(&ring->syncp);
1041 		ring->stats.sw_err_cnt++;
1042 		u64_stats_update_end(&ring->syncp);
1043 		netdev_err(netdev, "no memory to xmit!\n");
1044 
1045 		goto out_err_tx_ok;
1046 	default:
1047 		break;
1048 	}
1049 
1050 	/* No. of segments (plus a header) */
1051 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1052 	/* Fill the first part */
1053 	size = skb_headlen(skb);
1054 
1055 	next_to_use_head = ring->next_to_use;
1056 
1057 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1058 	if (dma_mapping_error(dev, dma)) {
1059 		netdev_err(netdev, "TX head DMA map failed\n");
1060 		ring->stats.sw_err_cnt++;
1061 		goto out_err_tx_ok;
1062 	}
1063 
1064 	ret = priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
1065 			   DESC_TYPE_SKB);
1066 	if (ret)
1067 		goto head_dma_map_err;
1068 
1069 	next_to_use_frag = ring->next_to_use;
1070 	/* Fill the fragments */
1071 	for (i = 1; i < seg_num; i++) {
1072 		frag = &skb_shinfo(skb)->frags[i - 1];
1073 		size = skb_frag_size(frag);
1074 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1075 		if (dma_mapping_error(dev, dma)) {
1076 			netdev_err(netdev, "TX frag(%d) DMA map failed\n", i);
1077 			ring->stats.sw_err_cnt++;
1078 			goto frag_dma_map_err;
1079 		}
1080 		ret = priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
1081 				    seg_num - 1 == i ? 1 : 0,
1082 				    DESC_TYPE_PAGE);
1083 
1084 		if (ret)
1085 			goto frag_dma_map_err;
1086 	}
1087 
1088 	/* Complete translate all packets */
1089 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1090 	netdev_tx_sent_queue(dev_queue, skb->len);
1091 
1092 	wmb(); /* Commit all data before submit */
1093 
1094 	hnae_queue_xmit(ring->tqp, buf_num);
1095 
1096 	return NETDEV_TX_OK;
1097 
1098 frag_dma_map_err:
1099 	hns_nic_dma_unmap(ring, next_to_use_frag);
1100 
1101 head_dma_map_err:
1102 	hns_nic_dma_unmap(ring, next_to_use_head);
1103 
1104 out_err_tx_ok:
1105 	dev_kfree_skb_any(skb);
1106 	return NETDEV_TX_OK;
1107 
1108 out_net_tx_busy:
1109 	netif_stop_subqueue(netdev, ring_data->queue_index);
1110 	smp_mb(); /* Commit all data before submit */
1111 
1112 	return NETDEV_TX_BUSY;
1113 }
1114 
1115 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1116 {
1117 	struct hnae3_handle *h = hns3_get_handle(netdev);
1118 	struct sockaddr *mac_addr = p;
1119 	int ret;
1120 
1121 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1122 		return -EADDRNOTAVAIL;
1123 
1124 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1125 	if (ret) {
1126 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1127 		return ret;
1128 	}
1129 
1130 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1131 
1132 	return 0;
1133 }
1134 
1135 static int hns3_nic_set_features(struct net_device *netdev,
1136 				 netdev_features_t features)
1137 {
1138 	netdev_features_t changed = netdev->features ^ features;
1139 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1140 	struct hnae3_handle *h = priv->ae_handle;
1141 	int ret;
1142 
1143 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1144 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1145 			priv->ops.fill_desc = hns3_fill_desc_tso;
1146 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1147 		} else {
1148 			priv->ops.fill_desc = hns3_fill_desc;
1149 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1150 		}
1151 	}
1152 
1153 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1154 	    h->ae_algo->ops->enable_vlan_filter) {
1155 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
1156 			h->ae_algo->ops->enable_vlan_filter(h, true);
1157 		else
1158 			h->ae_algo->ops->enable_vlan_filter(h, false);
1159 	}
1160 
1161 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1162 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1163 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
1164 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, true);
1165 		else
1166 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, false);
1167 
1168 		if (ret)
1169 			return ret;
1170 	}
1171 
1172 	netdev->features = features;
1173 	return 0;
1174 }
1175 
1176 static void hns3_nic_get_stats64(struct net_device *netdev,
1177 				 struct rtnl_link_stats64 *stats)
1178 {
1179 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1180 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1181 	struct hnae3_handle *handle = priv->ae_handle;
1182 	struct hns3_enet_ring *ring;
1183 	unsigned int start;
1184 	unsigned int idx;
1185 	u64 tx_bytes = 0;
1186 	u64 rx_bytes = 0;
1187 	u64 tx_pkts = 0;
1188 	u64 rx_pkts = 0;
1189 	u64 tx_drop = 0;
1190 	u64 rx_drop = 0;
1191 
1192 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1193 		return;
1194 
1195 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1196 
1197 	for (idx = 0; idx < queue_num; idx++) {
1198 		/* fetch the tx stats */
1199 		ring = priv->ring_data[idx].ring;
1200 		do {
1201 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1202 			tx_bytes += ring->stats.tx_bytes;
1203 			tx_pkts += ring->stats.tx_pkts;
1204 			tx_drop += ring->stats.tx_busy;
1205 			tx_drop += ring->stats.sw_err_cnt;
1206 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1207 
1208 		/* fetch the rx stats */
1209 		ring = priv->ring_data[idx + queue_num].ring;
1210 		do {
1211 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1212 			rx_bytes += ring->stats.rx_bytes;
1213 			rx_pkts += ring->stats.rx_pkts;
1214 			rx_drop += ring->stats.non_vld_descs;
1215 			rx_drop += ring->stats.err_pkt_len;
1216 			rx_drop += ring->stats.l2_err;
1217 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1218 	}
1219 
1220 	stats->tx_bytes = tx_bytes;
1221 	stats->tx_packets = tx_pkts;
1222 	stats->rx_bytes = rx_bytes;
1223 	stats->rx_packets = rx_pkts;
1224 
1225 	stats->rx_errors = netdev->stats.rx_errors;
1226 	stats->multicast = netdev->stats.multicast;
1227 	stats->rx_length_errors = netdev->stats.rx_length_errors;
1228 	stats->rx_crc_errors = netdev->stats.rx_crc_errors;
1229 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1230 
1231 	stats->tx_errors = netdev->stats.tx_errors;
1232 	stats->rx_dropped = rx_drop + netdev->stats.rx_dropped;
1233 	stats->tx_dropped = tx_drop + netdev->stats.tx_dropped;
1234 	stats->collisions = netdev->stats.collisions;
1235 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1236 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1237 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1238 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1239 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1240 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1241 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1242 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1243 	stats->rx_compressed = netdev->stats.rx_compressed;
1244 	stats->tx_compressed = netdev->stats.tx_compressed;
1245 }
1246 
1247 static void hns3_add_tunnel_port(struct net_device *netdev, u16 port,
1248 				 enum hns3_udp_tnl_type type)
1249 {
1250 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1251 	struct hns3_udp_tunnel *udp_tnl = &priv->udp_tnl[type];
1252 	struct hnae3_handle *h = priv->ae_handle;
1253 
1254 	if (udp_tnl->used && udp_tnl->dst_port == port) {
1255 		udp_tnl->used++;
1256 		return;
1257 	}
1258 
1259 	if (udp_tnl->used) {
1260 		netdev_warn(netdev,
1261 			    "UDP tunnel [%d], port [%d] offload\n", type, port);
1262 		return;
1263 	}
1264 
1265 	udp_tnl->dst_port = port;
1266 	udp_tnl->used = 1;
1267 	/* TBD send command to hardware to add port */
1268 	if (h->ae_algo->ops->add_tunnel_udp)
1269 		h->ae_algo->ops->add_tunnel_udp(h, port);
1270 }
1271 
1272 static void hns3_del_tunnel_port(struct net_device *netdev, u16 port,
1273 				 enum hns3_udp_tnl_type type)
1274 {
1275 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1276 	struct hns3_udp_tunnel *udp_tnl = &priv->udp_tnl[type];
1277 	struct hnae3_handle *h = priv->ae_handle;
1278 
1279 	if (!udp_tnl->used || udp_tnl->dst_port != port) {
1280 		netdev_warn(netdev,
1281 			    "Invalid UDP tunnel port %d\n", port);
1282 		return;
1283 	}
1284 
1285 	udp_tnl->used--;
1286 	if (udp_tnl->used)
1287 		return;
1288 
1289 	udp_tnl->dst_port = 0;
1290 	/* TBD send command to hardware to del port  */
1291 	if (h->ae_algo->ops->del_tunnel_udp)
1292 		h->ae_algo->ops->del_tunnel_udp(h, port);
1293 }
1294 
1295 /* hns3_nic_udp_tunnel_add - Get notifiacetion about UDP tunnel ports
1296  * @netdev: This physical ports's netdev
1297  * @ti: Tunnel information
1298  */
1299 static void hns3_nic_udp_tunnel_add(struct net_device *netdev,
1300 				    struct udp_tunnel_info *ti)
1301 {
1302 	u16 port_n = ntohs(ti->port);
1303 
1304 	switch (ti->type) {
1305 	case UDP_TUNNEL_TYPE_VXLAN:
1306 		hns3_add_tunnel_port(netdev, port_n, HNS3_UDP_TNL_VXLAN);
1307 		break;
1308 	case UDP_TUNNEL_TYPE_GENEVE:
1309 		hns3_add_tunnel_port(netdev, port_n, HNS3_UDP_TNL_GENEVE);
1310 		break;
1311 	default:
1312 		netdev_err(netdev, "unsupported tunnel type %d\n", ti->type);
1313 		break;
1314 	}
1315 }
1316 
1317 static void hns3_nic_udp_tunnel_del(struct net_device *netdev,
1318 				    struct udp_tunnel_info *ti)
1319 {
1320 	u16 port_n = ntohs(ti->port);
1321 
1322 	switch (ti->type) {
1323 	case UDP_TUNNEL_TYPE_VXLAN:
1324 		hns3_del_tunnel_port(netdev, port_n, HNS3_UDP_TNL_VXLAN);
1325 		break;
1326 	case UDP_TUNNEL_TYPE_GENEVE:
1327 		hns3_del_tunnel_port(netdev, port_n, HNS3_UDP_TNL_GENEVE);
1328 		break;
1329 	default:
1330 		break;
1331 	}
1332 }
1333 
1334 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1335 {
1336 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1337 	struct hnae3_handle *h = hns3_get_handle(netdev);
1338 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1339 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1340 	u8 tc = mqprio_qopt->qopt.num_tc;
1341 	u16 mode = mqprio_qopt->mode;
1342 	u8 hw = mqprio_qopt->qopt.hw;
1343 	bool if_running;
1344 	unsigned int i;
1345 	int ret;
1346 
1347 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1348 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1349 		return -EOPNOTSUPP;
1350 
1351 	if (tc > HNAE3_MAX_TC)
1352 		return -EINVAL;
1353 
1354 	if (!netdev)
1355 		return -EINVAL;
1356 
1357 	if_running = netif_running(netdev);
1358 	if (if_running) {
1359 		hns3_nic_net_stop(netdev);
1360 		msleep(100);
1361 	}
1362 
1363 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1364 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1365 	if (ret)
1366 		goto out;
1367 
1368 	if (tc <= 1) {
1369 		netdev_reset_tc(netdev);
1370 	} else {
1371 		ret = netdev_set_num_tc(netdev, tc);
1372 		if (ret)
1373 			goto out;
1374 
1375 		for (i = 0; i < HNAE3_MAX_TC; i++) {
1376 			if (!kinfo->tc_info[i].enable)
1377 				continue;
1378 
1379 			netdev_set_tc_queue(netdev,
1380 					    kinfo->tc_info[i].tc,
1381 					    kinfo->tc_info[i].tqp_count,
1382 					    kinfo->tc_info[i].tqp_offset);
1383 		}
1384 	}
1385 
1386 	ret = hns3_nic_set_real_num_queue(netdev);
1387 
1388 out:
1389 	if (if_running)
1390 		hns3_nic_net_open(netdev);
1391 
1392 	return ret;
1393 }
1394 
1395 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1396 			     void *type_data)
1397 {
1398 	if (type != TC_SETUP_QDISC_MQPRIO)
1399 		return -EOPNOTSUPP;
1400 
1401 	return hns3_setup_tc(dev, type_data);
1402 }
1403 
1404 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1405 				__be16 proto, u16 vid)
1406 {
1407 	struct hnae3_handle *h = hns3_get_handle(netdev);
1408 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1409 	int ret = -EIO;
1410 
1411 	if (h->ae_algo->ops->set_vlan_filter)
1412 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1413 
1414 	if (!ret)
1415 		set_bit(vid, priv->active_vlans);
1416 
1417 	return ret;
1418 }
1419 
1420 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1421 				 __be16 proto, u16 vid)
1422 {
1423 	struct hnae3_handle *h = hns3_get_handle(netdev);
1424 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1425 	int ret = -EIO;
1426 
1427 	if (h->ae_algo->ops->set_vlan_filter)
1428 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1429 
1430 	if (!ret)
1431 		clear_bit(vid, priv->active_vlans);
1432 
1433 	return ret;
1434 }
1435 
1436 static void hns3_restore_vlan(struct net_device *netdev)
1437 {
1438 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1439 	u16 vid;
1440 	int ret;
1441 
1442 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1443 		ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1444 		if (ret)
1445 			netdev_warn(netdev, "Restore vlan: %d filter, ret:%d\n",
1446 				    vid, ret);
1447 	}
1448 }
1449 
1450 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1451 				u8 qos, __be16 vlan_proto)
1452 {
1453 	struct hnae3_handle *h = hns3_get_handle(netdev);
1454 	int ret = -EIO;
1455 
1456 	if (h->ae_algo->ops->set_vf_vlan_filter)
1457 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1458 						   qos, vlan_proto);
1459 
1460 	return ret;
1461 }
1462 
1463 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1464 {
1465 	struct hnae3_handle *h = hns3_get_handle(netdev);
1466 	bool if_running = netif_running(netdev);
1467 	int ret;
1468 
1469 	if (!h->ae_algo->ops->set_mtu)
1470 		return -EOPNOTSUPP;
1471 
1472 	/* if this was called with netdev up then bring netdevice down */
1473 	if (if_running) {
1474 		(void)hns3_nic_net_stop(netdev);
1475 		msleep(100);
1476 	}
1477 
1478 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1479 	if (ret) {
1480 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1481 			   ret);
1482 		return ret;
1483 	}
1484 
1485 	netdev->mtu = new_mtu;
1486 
1487 	/* if the netdev was running earlier, bring it up again */
1488 	if (if_running && hns3_nic_net_open(netdev))
1489 		ret = -EINVAL;
1490 
1491 	return ret;
1492 }
1493 
1494 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1495 {
1496 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1497 	struct hns3_enet_ring *tx_ring = NULL;
1498 	int timeout_queue = 0;
1499 	int hw_head, hw_tail;
1500 	int i;
1501 
1502 	/* Find the stopped queue the same way the stack does */
1503 	for (i = 0; i < ndev->real_num_tx_queues; i++) {
1504 		struct netdev_queue *q;
1505 		unsigned long trans_start;
1506 
1507 		q = netdev_get_tx_queue(ndev, i);
1508 		trans_start = q->trans_start;
1509 		if (netif_xmit_stopped(q) &&
1510 		    time_after(jiffies,
1511 			       (trans_start + ndev->watchdog_timeo))) {
1512 			timeout_queue = i;
1513 			break;
1514 		}
1515 	}
1516 
1517 	if (i == ndev->num_tx_queues) {
1518 		netdev_info(ndev,
1519 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1520 			    priv->tx_timeout_count);
1521 		return false;
1522 	}
1523 
1524 	tx_ring = priv->ring_data[timeout_queue].ring;
1525 
1526 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1527 				HNS3_RING_TX_RING_HEAD_REG);
1528 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1529 				HNS3_RING_TX_RING_TAIL_REG);
1530 	netdev_info(ndev,
1531 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1532 		    priv->tx_timeout_count,
1533 		    timeout_queue,
1534 		    tx_ring->next_to_use,
1535 		    tx_ring->next_to_clean,
1536 		    hw_head,
1537 		    hw_tail,
1538 		    readl(tx_ring->tqp_vector->mask_addr));
1539 
1540 	return true;
1541 }
1542 
1543 static void hns3_nic_net_timeout(struct net_device *ndev)
1544 {
1545 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1546 	struct hnae3_handle *h = priv->ae_handle;
1547 
1548 	if (!hns3_get_tx_timeo_queue_info(ndev))
1549 		return;
1550 
1551 	priv->tx_timeout_count++;
1552 
1553 	if (time_before(jiffies, (h->last_reset_time + ndev->watchdog_timeo)))
1554 		return;
1555 
1556 	/* request the reset */
1557 	if (h->ae_algo->ops->reset_event)
1558 		h->ae_algo->ops->reset_event(h);
1559 }
1560 
1561 static const struct net_device_ops hns3_nic_netdev_ops = {
1562 	.ndo_open		= hns3_nic_net_open,
1563 	.ndo_stop		= hns3_nic_net_stop,
1564 	.ndo_start_xmit		= hns3_nic_net_xmit,
1565 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1566 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1567 	.ndo_change_mtu		= hns3_nic_change_mtu,
1568 	.ndo_set_features	= hns3_nic_set_features,
1569 	.ndo_get_stats64	= hns3_nic_get_stats64,
1570 	.ndo_setup_tc		= hns3_nic_setup_tc,
1571 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1572 	.ndo_udp_tunnel_add	= hns3_nic_udp_tunnel_add,
1573 	.ndo_udp_tunnel_del	= hns3_nic_udp_tunnel_del,
1574 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1575 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1576 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1577 };
1578 
1579 /* hns3_probe - Device initialization routine
1580  * @pdev: PCI device information struct
1581  * @ent: entry in hns3_pci_tbl
1582  *
1583  * hns3_probe initializes a PF identified by a pci_dev structure.
1584  * The OS initialization, configuring of the PF private structure,
1585  * and a hardware reset occur.
1586  *
1587  * Returns 0 on success, negative on failure
1588  */
1589 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1590 {
1591 	struct hnae3_ae_dev *ae_dev;
1592 	int ret;
1593 
1594 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1595 			      GFP_KERNEL);
1596 	if (!ae_dev) {
1597 		ret = -ENOMEM;
1598 		return ret;
1599 	}
1600 
1601 	ae_dev->pdev = pdev;
1602 	ae_dev->flag = ent->driver_data;
1603 	ae_dev->dev_type = HNAE3_DEV_KNIC;
1604 	pci_set_drvdata(pdev, ae_dev);
1605 
1606 	return hnae3_register_ae_dev(ae_dev);
1607 }
1608 
1609 /* hns3_remove - Device removal routine
1610  * @pdev: PCI device information struct
1611  */
1612 static void hns3_remove(struct pci_dev *pdev)
1613 {
1614 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1615 
1616 	hnae3_unregister_ae_dev(ae_dev);
1617 }
1618 
1619 static struct pci_driver hns3_driver = {
1620 	.name     = hns3_driver_name,
1621 	.id_table = hns3_pci_tbl,
1622 	.probe    = hns3_probe,
1623 	.remove   = hns3_remove,
1624 };
1625 
1626 /* set default feature to hns3 */
1627 static void hns3_set_default_feature(struct net_device *netdev)
1628 {
1629 	struct hnae3_handle *h = hns3_get_handle(netdev);
1630 
1631 	netdev->priv_flags |= IFF_UNICAST_FLT;
1632 
1633 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1634 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1635 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1636 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1637 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1638 
1639 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1640 
1641 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1642 
1643 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1644 		NETIF_F_HW_VLAN_CTAG_FILTER |
1645 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1646 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1647 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1648 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1649 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1650 
1651 	netdev->vlan_features |=
1652 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1653 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1654 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1655 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1656 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1657 
1658 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1659 		NETIF_F_HW_VLAN_CTAG_TX |
1660 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1661 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1662 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1663 		NETIF_F_GSO_UDP_TUNNEL_CSUM;
1664 
1665 	if (!(h->flags & HNAE3_SUPPORT_VF))
1666 		netdev->hw_features |=
1667 			NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_CTAG_RX;
1668 }
1669 
1670 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1671 			     struct hns3_desc_cb *cb)
1672 {
1673 	unsigned int order = hnae_page_order(ring);
1674 	struct page *p;
1675 
1676 	p = dev_alloc_pages(order);
1677 	if (!p)
1678 		return -ENOMEM;
1679 
1680 	cb->priv = p;
1681 	cb->page_offset = 0;
1682 	cb->reuse_flag = 0;
1683 	cb->buf  = page_address(p);
1684 	cb->length = hnae_page_size(ring);
1685 	cb->type = DESC_TYPE_PAGE;
1686 
1687 	return 0;
1688 }
1689 
1690 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1691 			     struct hns3_desc_cb *cb)
1692 {
1693 	if (cb->type == DESC_TYPE_SKB)
1694 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
1695 	else if (!HNAE3_IS_TX_RING(ring))
1696 		put_page((struct page *)cb->priv);
1697 	memset(cb, 0, sizeof(*cb));
1698 }
1699 
1700 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1701 {
1702 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1703 			       cb->length, ring_to_dma_dir(ring));
1704 
1705 	if (dma_mapping_error(ring_to_dev(ring), cb->dma))
1706 		return -EIO;
1707 
1708 	return 0;
1709 }
1710 
1711 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1712 			      struct hns3_desc_cb *cb)
1713 {
1714 	if (cb->type == DESC_TYPE_SKB)
1715 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1716 				 ring_to_dma_dir(ring));
1717 	else
1718 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1719 			       ring_to_dma_dir(ring));
1720 }
1721 
1722 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
1723 {
1724 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1725 	ring->desc[i].addr = 0;
1726 }
1727 
1728 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
1729 {
1730 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
1731 
1732 	if (!ring->desc_cb[i].dma)
1733 		return;
1734 
1735 	hns3_buffer_detach(ring, i);
1736 	hns3_free_buffer(ring, cb);
1737 }
1738 
1739 static void hns3_free_buffers(struct hns3_enet_ring *ring)
1740 {
1741 	int i;
1742 
1743 	for (i = 0; i < ring->desc_num; i++)
1744 		hns3_free_buffer_detach(ring, i);
1745 }
1746 
1747 /* free desc along with its attached buffer */
1748 static void hns3_free_desc(struct hns3_enet_ring *ring)
1749 {
1750 	hns3_free_buffers(ring);
1751 
1752 	dma_unmap_single(ring_to_dev(ring), ring->desc_dma_addr,
1753 			 ring->desc_num * sizeof(ring->desc[0]),
1754 			 DMA_BIDIRECTIONAL);
1755 	ring->desc_dma_addr = 0;
1756 	kfree(ring->desc);
1757 	ring->desc = NULL;
1758 }
1759 
1760 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
1761 {
1762 	int size = ring->desc_num * sizeof(ring->desc[0]);
1763 
1764 	ring->desc = kzalloc(size, GFP_KERNEL);
1765 	if (!ring->desc)
1766 		return -ENOMEM;
1767 
1768 	ring->desc_dma_addr = dma_map_single(ring_to_dev(ring), ring->desc,
1769 					     size, DMA_BIDIRECTIONAL);
1770 	if (dma_mapping_error(ring_to_dev(ring), ring->desc_dma_addr)) {
1771 		ring->desc_dma_addr = 0;
1772 		kfree(ring->desc);
1773 		ring->desc = NULL;
1774 		return -ENOMEM;
1775 	}
1776 
1777 	return 0;
1778 }
1779 
1780 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
1781 				   struct hns3_desc_cb *cb)
1782 {
1783 	int ret;
1784 
1785 	ret = hns3_alloc_buffer(ring, cb);
1786 	if (ret)
1787 		goto out;
1788 
1789 	ret = hns3_map_buffer(ring, cb);
1790 	if (ret)
1791 		goto out_with_buf;
1792 
1793 	return 0;
1794 
1795 out_with_buf:
1796 	hns3_free_buffer(ring, cb);
1797 out:
1798 	return ret;
1799 }
1800 
1801 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
1802 {
1803 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
1804 
1805 	if (ret)
1806 		return ret;
1807 
1808 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1809 
1810 	return 0;
1811 }
1812 
1813 /* Allocate memory for raw pkg, and map with dma */
1814 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
1815 {
1816 	int i, j, ret;
1817 
1818 	for (i = 0; i < ring->desc_num; i++) {
1819 		ret = hns3_alloc_buffer_attach(ring, i);
1820 		if (ret)
1821 			goto out_buffer_fail;
1822 	}
1823 
1824 	return 0;
1825 
1826 out_buffer_fail:
1827 	for (j = i - 1; j >= 0; j--)
1828 		hns3_free_buffer_detach(ring, j);
1829 	return ret;
1830 }
1831 
1832 /* detach a in-used buffer and replace with a reserved one  */
1833 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
1834 				struct hns3_desc_cb *res_cb)
1835 {
1836 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1837 	ring->desc_cb[i] = *res_cb;
1838 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
1839 }
1840 
1841 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
1842 {
1843 	ring->desc_cb[i].reuse_flag = 0;
1844 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
1845 		+ ring->desc_cb[i].page_offset);
1846 }
1847 
1848 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
1849 				      int *pkts)
1850 {
1851 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
1852 
1853 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
1854 	(*bytes) += desc_cb->length;
1855 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
1856 	hns3_free_buffer_detach(ring, ring->next_to_clean);
1857 
1858 	ring_ptr_move_fw(ring, next_to_clean);
1859 }
1860 
1861 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
1862 {
1863 	int u = ring->next_to_use;
1864 	int c = ring->next_to_clean;
1865 
1866 	if (unlikely(h > ring->desc_num))
1867 		return 0;
1868 
1869 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
1870 }
1871 
1872 bool hns3_clean_tx_ring(struct hns3_enet_ring *ring, int budget)
1873 {
1874 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
1875 	struct netdev_queue *dev_queue;
1876 	int bytes, pkts;
1877 	int head;
1878 
1879 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
1880 	rmb(); /* Make sure head is ready before touch any data */
1881 
1882 	if (is_ring_empty(ring) || head == ring->next_to_clean)
1883 		return true; /* no data to poll */
1884 
1885 	if (!is_valid_clean_head(ring, head)) {
1886 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
1887 			   ring->next_to_use, ring->next_to_clean);
1888 
1889 		u64_stats_update_begin(&ring->syncp);
1890 		ring->stats.io_err_cnt++;
1891 		u64_stats_update_end(&ring->syncp);
1892 		return true;
1893 	}
1894 
1895 	bytes = 0;
1896 	pkts = 0;
1897 	while (head != ring->next_to_clean && budget) {
1898 		hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
1899 		/* Issue prefetch for next Tx descriptor */
1900 		prefetch(&ring->desc_cb[ring->next_to_clean]);
1901 		budget--;
1902 	}
1903 
1904 	ring->tqp_vector->tx_group.total_bytes += bytes;
1905 	ring->tqp_vector->tx_group.total_packets += pkts;
1906 
1907 	u64_stats_update_begin(&ring->syncp);
1908 	ring->stats.tx_bytes += bytes;
1909 	ring->stats.tx_pkts += pkts;
1910 	u64_stats_update_end(&ring->syncp);
1911 
1912 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
1913 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
1914 
1915 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
1916 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
1917 		/* Make sure that anybody stopping the queue after this
1918 		 * sees the new next_to_clean.
1919 		 */
1920 		smp_mb();
1921 		if (netif_tx_queue_stopped(dev_queue)) {
1922 			netif_tx_wake_queue(dev_queue);
1923 			ring->stats.restart_queue++;
1924 		}
1925 	}
1926 
1927 	return !!budget;
1928 }
1929 
1930 static int hns3_desc_unused(struct hns3_enet_ring *ring)
1931 {
1932 	int ntc = ring->next_to_clean;
1933 	int ntu = ring->next_to_use;
1934 
1935 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
1936 }
1937 
1938 static void
1939 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
1940 {
1941 	struct hns3_desc_cb *desc_cb;
1942 	struct hns3_desc_cb res_cbs;
1943 	int i, ret;
1944 
1945 	for (i = 0; i < cleand_count; i++) {
1946 		desc_cb = &ring->desc_cb[ring->next_to_use];
1947 		if (desc_cb->reuse_flag) {
1948 			u64_stats_update_begin(&ring->syncp);
1949 			ring->stats.reuse_pg_cnt++;
1950 			u64_stats_update_end(&ring->syncp);
1951 
1952 			hns3_reuse_buffer(ring, ring->next_to_use);
1953 		} else {
1954 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
1955 			if (ret) {
1956 				u64_stats_update_begin(&ring->syncp);
1957 				ring->stats.sw_err_cnt++;
1958 				u64_stats_update_end(&ring->syncp);
1959 
1960 				netdev_err(ring->tqp->handle->kinfo.netdev,
1961 					   "hnae reserve buffer map failed.\n");
1962 				break;
1963 			}
1964 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
1965 		}
1966 
1967 		ring_ptr_move_fw(ring, next_to_use);
1968 	}
1969 
1970 	wmb(); /* Make all data has been write before submit */
1971 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
1972 }
1973 
1974 /* hns3_nic_get_headlen - determine size of header for LRO/GRO
1975  * @data: pointer to the start of the headers
1976  * @max: total length of section to find headers in
1977  *
1978  * This function is meant to determine the length of headers that will
1979  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
1980  * motivation of doing this is to only perform one pull for IPv4 TCP
1981  * packets so that we can do basic things like calculating the gso_size
1982  * based on the average data per packet.
1983  */
1984 static unsigned int hns3_nic_get_headlen(unsigned char *data, u32 flag,
1985 					 unsigned int max_size)
1986 {
1987 	unsigned char *network;
1988 	u8 hlen;
1989 
1990 	/* This should never happen, but better safe than sorry */
1991 	if (max_size < ETH_HLEN)
1992 		return max_size;
1993 
1994 	/* Initialize network frame pointer */
1995 	network = data;
1996 
1997 	/* Set first protocol and move network header forward */
1998 	network += ETH_HLEN;
1999 
2000 	/* Handle any vlan tag if present */
2001 	if (hnae_get_field(flag, HNS3_RXD_VLAN_M, HNS3_RXD_VLAN_S)
2002 		== HNS3_RX_FLAG_VLAN_PRESENT) {
2003 		if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
2004 			return max_size;
2005 
2006 		network += VLAN_HLEN;
2007 	}
2008 
2009 	/* Handle L3 protocols */
2010 	if (hnae_get_field(flag, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S)
2011 		== HNS3_RX_FLAG_L3ID_IPV4) {
2012 		if ((typeof(max_size))(network - data) >
2013 		    (max_size - sizeof(struct iphdr)))
2014 			return max_size;
2015 
2016 		/* Access ihl as a u8 to avoid unaligned access on ia64 */
2017 		hlen = (network[0] & 0x0F) << 2;
2018 
2019 		/* Verify hlen meets minimum size requirements */
2020 		if (hlen < sizeof(struct iphdr))
2021 			return network - data;
2022 
2023 		/* Record next protocol if header is present */
2024 	} else if (hnae_get_field(flag, HNS3_RXD_L3ID_M, HNS3_RXD_L3ID_S)
2025 		== HNS3_RX_FLAG_L3ID_IPV6) {
2026 		if ((typeof(max_size))(network - data) >
2027 		    (max_size - sizeof(struct ipv6hdr)))
2028 			return max_size;
2029 
2030 		/* Record next protocol */
2031 		hlen = sizeof(struct ipv6hdr);
2032 	} else {
2033 		return network - data;
2034 	}
2035 
2036 	/* Relocate pointer to start of L4 header */
2037 	network += hlen;
2038 
2039 	/* Finally sort out TCP/UDP */
2040 	if (hnae_get_field(flag, HNS3_RXD_L4ID_M, HNS3_RXD_L4ID_S)
2041 		== HNS3_RX_FLAG_L4ID_TCP) {
2042 		if ((typeof(max_size))(network - data) >
2043 		    (max_size - sizeof(struct tcphdr)))
2044 			return max_size;
2045 
2046 		/* Access doff as a u8 to avoid unaligned access on ia64 */
2047 		hlen = (network[12] & 0xF0) >> 2;
2048 
2049 		/* Verify hlen meets minimum size requirements */
2050 		if (hlen < sizeof(struct tcphdr))
2051 			return network - data;
2052 
2053 		network += hlen;
2054 	} else if (hnae_get_field(flag, HNS3_RXD_L4ID_M, HNS3_RXD_L4ID_S)
2055 		== HNS3_RX_FLAG_L4ID_UDP) {
2056 		if ((typeof(max_size))(network - data) >
2057 		    (max_size - sizeof(struct udphdr)))
2058 			return max_size;
2059 
2060 		network += sizeof(struct udphdr);
2061 	}
2062 
2063 	/* If everything has gone correctly network should be the
2064 	 * data section of the packet and will be the end of the header.
2065 	 * If not then it probably represents the end of the last recognized
2066 	 * header.
2067 	 */
2068 	if ((typeof(max_size))(network - data) < max_size)
2069 		return network - data;
2070 	else
2071 		return max_size;
2072 }
2073 
2074 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2075 				struct hns3_enet_ring *ring, int pull_len,
2076 				struct hns3_desc_cb *desc_cb)
2077 {
2078 	struct hns3_desc *desc;
2079 	int truesize, size;
2080 	int last_offset;
2081 	bool twobufs;
2082 
2083 	twobufs = ((PAGE_SIZE < 8192) &&
2084 		hnae_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2085 
2086 	desc = &ring->desc[ring->next_to_clean];
2087 	size = le16_to_cpu(desc->rx.size);
2088 
2089 	truesize = hnae_buf_size(ring);
2090 
2091 	if (!twobufs)
2092 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
2093 
2094 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2095 			size - pull_len, truesize);
2096 
2097 	 /* Avoid re-using remote pages,flag default unreuse */
2098 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2099 		return;
2100 
2101 	if (twobufs) {
2102 		/* If we are only owner of page we can reuse it */
2103 		if (likely(page_count(desc_cb->priv) == 1)) {
2104 			/* Flip page offset to other buffer */
2105 			desc_cb->page_offset ^= truesize;
2106 
2107 			desc_cb->reuse_flag = 1;
2108 			/* bump ref count on page before it is given*/
2109 			get_page(desc_cb->priv);
2110 		}
2111 		return;
2112 	}
2113 
2114 	/* Move offset up to the next cache line */
2115 	desc_cb->page_offset += truesize;
2116 
2117 	if (desc_cb->page_offset <= last_offset) {
2118 		desc_cb->reuse_flag = 1;
2119 		/* Bump ref count on page before it is given*/
2120 		get_page(desc_cb->priv);
2121 	}
2122 }
2123 
2124 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2125 			     struct hns3_desc *desc)
2126 {
2127 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2128 	int l3_type, l4_type;
2129 	u32 bd_base_info;
2130 	int ol4_type;
2131 	u32 l234info;
2132 
2133 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2134 	l234info = le32_to_cpu(desc->rx.l234_info);
2135 
2136 	skb->ip_summed = CHECKSUM_NONE;
2137 
2138 	skb_checksum_none_assert(skb);
2139 
2140 	if (!(netdev->features & NETIF_F_RXCSUM))
2141 		return;
2142 
2143 	/* check if hardware has done checksum */
2144 	if (!hnae_get_bit(bd_base_info, HNS3_RXD_L3L4P_B))
2145 		return;
2146 
2147 	if (unlikely(hnae_get_bit(l234info, HNS3_RXD_L3E_B) ||
2148 		     hnae_get_bit(l234info, HNS3_RXD_L4E_B) ||
2149 		     hnae_get_bit(l234info, HNS3_RXD_OL3E_B) ||
2150 		     hnae_get_bit(l234info, HNS3_RXD_OL4E_B))) {
2151 		netdev_err(netdev, "L3/L4 error pkt\n");
2152 		u64_stats_update_begin(&ring->syncp);
2153 		ring->stats.l3l4_csum_err++;
2154 		u64_stats_update_end(&ring->syncp);
2155 
2156 		return;
2157 	}
2158 
2159 	l3_type = hnae_get_field(l234info, HNS3_RXD_L3ID_M,
2160 				 HNS3_RXD_L3ID_S);
2161 	l4_type = hnae_get_field(l234info, HNS3_RXD_L4ID_M,
2162 				 HNS3_RXD_L4ID_S);
2163 
2164 	ol4_type = hnae_get_field(l234info, HNS3_RXD_OL4ID_M, HNS3_RXD_OL4ID_S);
2165 	switch (ol4_type) {
2166 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2167 	case HNS3_OL4_TYPE_NVGRE:
2168 		skb->csum_level = 1;
2169 	case HNS3_OL4_TYPE_NO_TUN:
2170 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2171 		if (l3_type == HNS3_L3_TYPE_IPV4 ||
2172 		    (l3_type == HNS3_L3_TYPE_IPV6 &&
2173 		     (l4_type == HNS3_L4_TYPE_UDP ||
2174 		      l4_type == HNS3_L4_TYPE_TCP ||
2175 		      l4_type == HNS3_L4_TYPE_SCTP)))
2176 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2177 		break;
2178 	}
2179 }
2180 
2181 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2182 {
2183 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2184 }
2185 
2186 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2187 			     struct sk_buff **out_skb, int *out_bnum)
2188 {
2189 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2190 	struct hns3_desc_cb *desc_cb;
2191 	struct hns3_desc *desc;
2192 	struct sk_buff *skb;
2193 	unsigned char *va;
2194 	u32 bd_base_info;
2195 	int pull_len;
2196 	u32 l234info;
2197 	int length;
2198 	int bnum;
2199 
2200 	desc = &ring->desc[ring->next_to_clean];
2201 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2202 
2203 	prefetch(desc);
2204 
2205 	length = le16_to_cpu(desc->rx.pkt_len);
2206 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2207 	l234info = le32_to_cpu(desc->rx.l234_info);
2208 
2209 	/* Check valid BD */
2210 	if (!hnae_get_bit(bd_base_info, HNS3_RXD_VLD_B))
2211 		return -EFAULT;
2212 
2213 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2214 
2215 	/* Prefetch first cache line of first page
2216 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2217 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2218 	 * actual we can have greater size of caches with 128B Level 1 cache
2219 	 * lines. In such a case, single fetch would suffice to cache in the
2220 	 * relevant part of the header.
2221 	 */
2222 	prefetch(va);
2223 #if L1_CACHE_BYTES < 128
2224 	prefetch(va + L1_CACHE_BYTES);
2225 #endif
2226 
2227 	skb = *out_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2228 					HNS3_RX_HEAD_SIZE);
2229 	if (unlikely(!skb)) {
2230 		netdev_err(netdev, "alloc rx skb fail\n");
2231 
2232 		u64_stats_update_begin(&ring->syncp);
2233 		ring->stats.sw_err_cnt++;
2234 		u64_stats_update_end(&ring->syncp);
2235 
2236 		return -ENOMEM;
2237 	}
2238 
2239 	prefetchw(skb->data);
2240 
2241 	/* Based on hw strategy, the tag offloaded will be stored at
2242 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2243 	 * in one layer tag case.
2244 	 */
2245 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2246 		u16 vlan_tag;
2247 
2248 		vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2249 		if (!(vlan_tag & VLAN_VID_MASK))
2250 			vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2251 		if (vlan_tag & VLAN_VID_MASK)
2252 			__vlan_hwaccel_put_tag(skb,
2253 					       htons(ETH_P_8021Q),
2254 					       vlan_tag);
2255 	}
2256 
2257 	bnum = 1;
2258 	if (length <= HNS3_RX_HEAD_SIZE) {
2259 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2260 
2261 		/* We can reuse buffer as-is, just make sure it is local */
2262 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2263 			desc_cb->reuse_flag = 1;
2264 		else /* This page cannot be reused so discard it */
2265 			put_page(desc_cb->priv);
2266 
2267 		ring_ptr_move_fw(ring, next_to_clean);
2268 	} else {
2269 		u64_stats_update_begin(&ring->syncp);
2270 		ring->stats.seg_pkt_cnt++;
2271 		u64_stats_update_end(&ring->syncp);
2272 
2273 		pull_len = hns3_nic_get_headlen(va, l234info,
2274 						HNS3_RX_HEAD_SIZE);
2275 		memcpy(__skb_put(skb, pull_len), va,
2276 		       ALIGN(pull_len, sizeof(long)));
2277 
2278 		hns3_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
2279 		ring_ptr_move_fw(ring, next_to_clean);
2280 
2281 		while (!hnae_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
2282 			desc = &ring->desc[ring->next_to_clean];
2283 			desc_cb = &ring->desc_cb[ring->next_to_clean];
2284 			bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2285 			hns3_nic_reuse_page(skb, bnum, ring, 0, desc_cb);
2286 			ring_ptr_move_fw(ring, next_to_clean);
2287 			bnum++;
2288 		}
2289 	}
2290 
2291 	*out_bnum = bnum;
2292 
2293 	if (unlikely(!hnae_get_bit(bd_base_info, HNS3_RXD_VLD_B))) {
2294 		netdev_err(netdev, "no valid bd,%016llx,%016llx\n",
2295 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
2296 		u64_stats_update_begin(&ring->syncp);
2297 		ring->stats.non_vld_descs++;
2298 		u64_stats_update_end(&ring->syncp);
2299 
2300 		dev_kfree_skb_any(skb);
2301 		return -EINVAL;
2302 	}
2303 
2304 	if (unlikely((!desc->rx.pkt_len) ||
2305 		     hnae_get_bit(l234info, HNS3_RXD_TRUNCAT_B))) {
2306 		netdev_err(netdev, "truncated pkt\n");
2307 		u64_stats_update_begin(&ring->syncp);
2308 		ring->stats.err_pkt_len++;
2309 		u64_stats_update_end(&ring->syncp);
2310 
2311 		dev_kfree_skb_any(skb);
2312 		return -EFAULT;
2313 	}
2314 
2315 	if (unlikely(hnae_get_bit(l234info, HNS3_RXD_L2E_B))) {
2316 		netdev_err(netdev, "L2 error pkt\n");
2317 		u64_stats_update_begin(&ring->syncp);
2318 		ring->stats.l2_err++;
2319 		u64_stats_update_end(&ring->syncp);
2320 
2321 		dev_kfree_skb_any(skb);
2322 		return -EFAULT;
2323 	}
2324 
2325 	u64_stats_update_begin(&ring->syncp);
2326 	ring->stats.rx_pkts++;
2327 	ring->stats.rx_bytes += skb->len;
2328 	u64_stats_update_end(&ring->syncp);
2329 
2330 	ring->tqp_vector->rx_group.total_bytes += skb->len;
2331 
2332 	hns3_rx_checksum(ring, skb, desc);
2333 	return 0;
2334 }
2335 
2336 int hns3_clean_rx_ring(
2337 		struct hns3_enet_ring *ring, int budget,
2338 		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2339 {
2340 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2341 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2342 	int recv_pkts, recv_bds, clean_count, err;
2343 	int unused_count = hns3_desc_unused(ring);
2344 	struct sk_buff *skb = NULL;
2345 	int num, bnum = 0;
2346 
2347 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2348 	rmb(); /* Make sure num taken effect before the other data is touched */
2349 
2350 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2351 	num -= unused_count;
2352 
2353 	while (recv_pkts < budget && recv_bds < num) {
2354 		/* Reuse or realloc buffers */
2355 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2356 			hns3_nic_alloc_rx_buffers(ring,
2357 						  clean_count + unused_count);
2358 			clean_count = 0;
2359 			unused_count = hns3_desc_unused(ring);
2360 		}
2361 
2362 		/* Poll one pkt */
2363 		err = hns3_handle_rx_bd(ring, &skb, &bnum);
2364 		if (unlikely(!skb)) /* This fault cannot be repaired */
2365 			goto out;
2366 
2367 		recv_bds += bnum;
2368 		clean_count += bnum;
2369 		if (unlikely(err)) {  /* Do jump the err */
2370 			recv_pkts++;
2371 			continue;
2372 		}
2373 
2374 		/* Do update ip stack process */
2375 		skb->protocol = eth_type_trans(skb, netdev);
2376 		rx_fn(ring, skb);
2377 
2378 		recv_pkts++;
2379 	}
2380 
2381 out:
2382 	/* Make all data has been write before submit */
2383 	if (clean_count + unused_count > 0)
2384 		hns3_nic_alloc_rx_buffers(ring,
2385 					  clean_count + unused_count);
2386 
2387 	return recv_pkts;
2388 }
2389 
2390 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2391 {
2392 	struct hns3_enet_tqp_vector *tqp_vector =
2393 					ring_group->ring->tqp_vector;
2394 	enum hns3_flow_level_range new_flow_level;
2395 	int packets_per_msecs;
2396 	int bytes_per_msecs;
2397 	u32 time_passed_ms;
2398 	u16 new_int_gl;
2399 
2400 	if (!ring_group->coal.int_gl || !tqp_vector->last_jiffies)
2401 		return false;
2402 
2403 	if (ring_group->total_packets == 0) {
2404 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
2405 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
2406 		return true;
2407 	}
2408 
2409 	/* Simple throttlerate management
2410 	 * 0-10MB/s   lower     (50000 ints/s)
2411 	 * 10-20MB/s   middle    (20000 ints/s)
2412 	 * 20-1249MB/s high      (18000 ints/s)
2413 	 * > 40000pps  ultra     (8000 ints/s)
2414 	 */
2415 	new_flow_level = ring_group->coal.flow_level;
2416 	new_int_gl = ring_group->coal.int_gl;
2417 	time_passed_ms =
2418 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2419 
2420 	if (!time_passed_ms)
2421 		return false;
2422 
2423 	do_div(ring_group->total_packets, time_passed_ms);
2424 	packets_per_msecs = ring_group->total_packets;
2425 
2426 	do_div(ring_group->total_bytes, time_passed_ms);
2427 	bytes_per_msecs = ring_group->total_bytes;
2428 
2429 #define HNS3_RX_LOW_BYTE_RATE 10000
2430 #define HNS3_RX_MID_BYTE_RATE 20000
2431 
2432 	switch (new_flow_level) {
2433 	case HNS3_FLOW_LOW:
2434 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2435 			new_flow_level = HNS3_FLOW_MID;
2436 		break;
2437 	case HNS3_FLOW_MID:
2438 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2439 			new_flow_level = HNS3_FLOW_HIGH;
2440 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2441 			new_flow_level = HNS3_FLOW_LOW;
2442 		break;
2443 	case HNS3_FLOW_HIGH:
2444 	case HNS3_FLOW_ULTRA:
2445 	default:
2446 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2447 			new_flow_level = HNS3_FLOW_MID;
2448 		break;
2449 	}
2450 
2451 #define HNS3_RX_ULTRA_PACKET_RATE 40
2452 
2453 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2454 	    &tqp_vector->rx_group == ring_group)
2455 		new_flow_level = HNS3_FLOW_ULTRA;
2456 
2457 	switch (new_flow_level) {
2458 	case HNS3_FLOW_LOW:
2459 		new_int_gl = HNS3_INT_GL_50K;
2460 		break;
2461 	case HNS3_FLOW_MID:
2462 		new_int_gl = HNS3_INT_GL_20K;
2463 		break;
2464 	case HNS3_FLOW_HIGH:
2465 		new_int_gl = HNS3_INT_GL_18K;
2466 		break;
2467 	case HNS3_FLOW_ULTRA:
2468 		new_int_gl = HNS3_INT_GL_8K;
2469 		break;
2470 	default:
2471 		break;
2472 	}
2473 
2474 	ring_group->total_bytes = 0;
2475 	ring_group->total_packets = 0;
2476 	ring_group->coal.flow_level = new_flow_level;
2477 	if (new_int_gl != ring_group->coal.int_gl) {
2478 		ring_group->coal.int_gl = new_int_gl;
2479 		return true;
2480 	}
2481 	return false;
2482 }
2483 
2484 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2485 {
2486 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2487 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2488 	bool rx_update, tx_update;
2489 
2490 	if (tqp_vector->int_adapt_down > 0) {
2491 		tqp_vector->int_adapt_down--;
2492 		return;
2493 	}
2494 
2495 	if (rx_group->coal.gl_adapt_enable) {
2496 		rx_update = hns3_get_new_int_gl(rx_group);
2497 		if (rx_update)
2498 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
2499 						       rx_group->coal.int_gl);
2500 	}
2501 
2502 	if (tx_group->coal.gl_adapt_enable) {
2503 		tx_update = hns3_get_new_int_gl(&tqp_vector->tx_group);
2504 		if (tx_update)
2505 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
2506 						       tx_group->coal.int_gl);
2507 	}
2508 
2509 	tqp_vector->last_jiffies = jiffies;
2510 	tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
2511 }
2512 
2513 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2514 {
2515 	struct hns3_enet_ring *ring;
2516 	int rx_pkt_total = 0;
2517 
2518 	struct hns3_enet_tqp_vector *tqp_vector =
2519 		container_of(napi, struct hns3_enet_tqp_vector, napi);
2520 	bool clean_complete = true;
2521 	int rx_budget;
2522 
2523 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2524 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2525 	 */
2526 	hns3_for_each_ring(ring, tqp_vector->tx_group) {
2527 		if (!hns3_clean_tx_ring(ring, budget))
2528 			clean_complete = false;
2529 	}
2530 
2531 	/* make sure rx ring budget not smaller than 1 */
2532 	rx_budget = max(budget / tqp_vector->num_tqps, 1);
2533 
2534 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
2535 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2536 						    hns3_rx_skb);
2537 
2538 		if (rx_cleaned >= rx_budget)
2539 			clean_complete = false;
2540 
2541 		rx_pkt_total += rx_cleaned;
2542 	}
2543 
2544 	tqp_vector->rx_group.total_packets += rx_pkt_total;
2545 
2546 	if (!clean_complete)
2547 		return budget;
2548 
2549 	napi_complete(napi);
2550 	hns3_update_new_int_gl(tqp_vector);
2551 	hns3_mask_vector_irq(tqp_vector, 1);
2552 
2553 	return rx_pkt_total;
2554 }
2555 
2556 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2557 				      struct hnae3_ring_chain_node *head)
2558 {
2559 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2560 	struct hnae3_ring_chain_node *cur_chain = head;
2561 	struct hnae3_ring_chain_node *chain;
2562 	struct hns3_enet_ring *tx_ring;
2563 	struct hns3_enet_ring *rx_ring;
2564 
2565 	tx_ring = tqp_vector->tx_group.ring;
2566 	if (tx_ring) {
2567 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2568 		hnae_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2569 			     HNAE3_RING_TYPE_TX);
2570 		hnae_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2571 			       HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2572 
2573 		cur_chain->next = NULL;
2574 
2575 		while (tx_ring->next) {
2576 			tx_ring = tx_ring->next;
2577 
2578 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2579 					     GFP_KERNEL);
2580 			if (!chain)
2581 				return -ENOMEM;
2582 
2583 			cur_chain->next = chain;
2584 			chain->tqp_index = tx_ring->tqp->tqp_index;
2585 			hnae_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2586 				     HNAE3_RING_TYPE_TX);
2587 			hnae_set_field(chain->int_gl_idx,
2588 				       HNAE3_RING_GL_IDX_M,
2589 				       HNAE3_RING_GL_IDX_S,
2590 				       HNAE3_RING_GL_TX);
2591 
2592 			cur_chain = chain;
2593 		}
2594 	}
2595 
2596 	rx_ring = tqp_vector->rx_group.ring;
2597 	if (!tx_ring && rx_ring) {
2598 		cur_chain->next = NULL;
2599 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2600 		hnae_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2601 			     HNAE3_RING_TYPE_RX);
2602 		hnae_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2603 			       HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2604 
2605 		rx_ring = rx_ring->next;
2606 	}
2607 
2608 	while (rx_ring) {
2609 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2610 		if (!chain)
2611 			return -ENOMEM;
2612 
2613 		cur_chain->next = chain;
2614 		chain->tqp_index = rx_ring->tqp->tqp_index;
2615 		hnae_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2616 			     HNAE3_RING_TYPE_RX);
2617 		hnae_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2618 			       HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2619 
2620 		cur_chain = chain;
2621 
2622 		rx_ring = rx_ring->next;
2623 	}
2624 
2625 	return 0;
2626 }
2627 
2628 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2629 					struct hnae3_ring_chain_node *head)
2630 {
2631 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2632 	struct hnae3_ring_chain_node *chain_tmp, *chain;
2633 
2634 	chain = head->next;
2635 
2636 	while (chain) {
2637 		chain_tmp = chain->next;
2638 		devm_kfree(&pdev->dev, chain);
2639 		chain = chain_tmp;
2640 	}
2641 }
2642 
2643 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
2644 				   struct hns3_enet_ring *ring)
2645 {
2646 	ring->next = group->ring;
2647 	group->ring = ring;
2648 
2649 	group->count++;
2650 }
2651 
2652 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
2653 {
2654 	struct hnae3_ring_chain_node vector_ring_chain;
2655 	struct hnae3_handle *h = priv->ae_handle;
2656 	struct hns3_enet_tqp_vector *tqp_vector;
2657 	int ret = 0;
2658 	u16 i;
2659 
2660 	for (i = 0; i < priv->vector_num; i++) {
2661 		tqp_vector = &priv->tqp_vector[i];
2662 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
2663 		tqp_vector->num_tqps = 0;
2664 	}
2665 
2666 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2667 		u16 vector_i = i % priv->vector_num;
2668 		u16 tqp_num = h->kinfo.num_tqps;
2669 
2670 		tqp_vector = &priv->tqp_vector[vector_i];
2671 
2672 		hns3_add_ring_to_group(&tqp_vector->tx_group,
2673 				       priv->ring_data[i].ring);
2674 
2675 		hns3_add_ring_to_group(&tqp_vector->rx_group,
2676 				       priv->ring_data[i + tqp_num].ring);
2677 
2678 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
2679 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
2680 		tqp_vector->num_tqps++;
2681 	}
2682 
2683 	for (i = 0; i < priv->vector_num; i++) {
2684 		tqp_vector = &priv->tqp_vector[i];
2685 
2686 		tqp_vector->rx_group.total_bytes = 0;
2687 		tqp_vector->rx_group.total_packets = 0;
2688 		tqp_vector->tx_group.total_bytes = 0;
2689 		tqp_vector->tx_group.total_packets = 0;
2690 		tqp_vector->handle = h;
2691 
2692 		ret = hns3_get_vector_ring_chain(tqp_vector,
2693 						 &vector_ring_chain);
2694 		if (ret)
2695 			return ret;
2696 
2697 		ret = h->ae_algo->ops->map_ring_to_vector(h,
2698 			tqp_vector->vector_irq, &vector_ring_chain);
2699 
2700 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2701 
2702 		if (ret)
2703 			return ret;
2704 
2705 		netif_napi_add(priv->netdev, &tqp_vector->napi,
2706 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
2707 	}
2708 
2709 	return 0;
2710 }
2711 
2712 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
2713 {
2714 	struct hnae3_handle *h = priv->ae_handle;
2715 	struct hns3_enet_tqp_vector *tqp_vector;
2716 	struct hnae3_vector_info *vector;
2717 	struct pci_dev *pdev = h->pdev;
2718 	u16 tqp_num = h->kinfo.num_tqps;
2719 	u16 vector_num;
2720 	int ret = 0;
2721 	u16 i;
2722 
2723 	/* RSS size, cpu online and vector_num should be the same */
2724 	/* Should consider 2p/4p later */
2725 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
2726 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
2727 			      GFP_KERNEL);
2728 	if (!vector)
2729 		return -ENOMEM;
2730 
2731 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
2732 
2733 	priv->vector_num = vector_num;
2734 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
2735 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
2736 			     GFP_KERNEL);
2737 	if (!priv->tqp_vector) {
2738 		ret = -ENOMEM;
2739 		goto out;
2740 	}
2741 
2742 	for (i = 0; i < priv->vector_num; i++) {
2743 		tqp_vector = &priv->tqp_vector[i];
2744 		tqp_vector->idx = i;
2745 		tqp_vector->mask_addr = vector[i].io_addr;
2746 		tqp_vector->vector_irq = vector[i].vector;
2747 		hns3_vector_gl_rl_init(tqp_vector, priv);
2748 	}
2749 
2750 out:
2751 	devm_kfree(&pdev->dev, vector);
2752 	return ret;
2753 }
2754 
2755 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
2756 {
2757 	group->ring = NULL;
2758 	group->count = 0;
2759 }
2760 
2761 static int hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
2762 {
2763 	struct hnae3_ring_chain_node vector_ring_chain;
2764 	struct hnae3_handle *h = priv->ae_handle;
2765 	struct hns3_enet_tqp_vector *tqp_vector;
2766 	int i, ret;
2767 
2768 	for (i = 0; i < priv->vector_num; i++) {
2769 		tqp_vector = &priv->tqp_vector[i];
2770 
2771 		ret = hns3_get_vector_ring_chain(tqp_vector,
2772 						 &vector_ring_chain);
2773 		if (ret)
2774 			return ret;
2775 
2776 		ret = h->ae_algo->ops->unmap_ring_from_vector(h,
2777 			tqp_vector->vector_irq, &vector_ring_chain);
2778 		if (ret)
2779 			return ret;
2780 
2781 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
2782 		if (ret)
2783 			return ret;
2784 
2785 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
2786 
2787 		if (priv->tqp_vector[i].irq_init_flag == HNS3_VECTOR_INITED) {
2788 			(void)irq_set_affinity_hint(
2789 				priv->tqp_vector[i].vector_irq,
2790 						    NULL);
2791 			free_irq(priv->tqp_vector[i].vector_irq,
2792 				 &priv->tqp_vector[i]);
2793 		}
2794 
2795 		priv->ring_data[i].ring->irq_init_flag = HNS3_VECTOR_NOT_INITED;
2796 		hns3_clear_ring_group(&tqp_vector->rx_group);
2797 		hns3_clear_ring_group(&tqp_vector->tx_group);
2798 		netif_napi_del(&priv->tqp_vector[i].napi);
2799 	}
2800 
2801 	return 0;
2802 }
2803 
2804 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
2805 {
2806 	struct hnae3_handle *h = priv->ae_handle;
2807 	struct pci_dev *pdev = h->pdev;
2808 	int i, ret;
2809 
2810 	for (i = 0; i < priv->vector_num; i++) {
2811 		struct hns3_enet_tqp_vector *tqp_vector;
2812 
2813 		tqp_vector = &priv->tqp_vector[i];
2814 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
2815 		if (ret)
2816 			return ret;
2817 	}
2818 
2819 	devm_kfree(&pdev->dev, priv->tqp_vector);
2820 	return 0;
2821 }
2822 
2823 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
2824 			     int ring_type)
2825 {
2826 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
2827 	int queue_num = priv->ae_handle->kinfo.num_tqps;
2828 	struct pci_dev *pdev = priv->ae_handle->pdev;
2829 	struct hns3_enet_ring *ring;
2830 
2831 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
2832 	if (!ring)
2833 		return -ENOMEM;
2834 
2835 	if (ring_type == HNAE3_RING_TYPE_TX) {
2836 		ring_data[q->tqp_index].ring = ring;
2837 		ring_data[q->tqp_index].queue_index = q->tqp_index;
2838 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
2839 	} else {
2840 		ring_data[q->tqp_index + queue_num].ring = ring;
2841 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
2842 		ring->io_base = q->io_base;
2843 	}
2844 
2845 	hnae_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
2846 
2847 	ring->tqp = q;
2848 	ring->desc = NULL;
2849 	ring->desc_cb = NULL;
2850 	ring->dev = priv->dev;
2851 	ring->desc_dma_addr = 0;
2852 	ring->buf_size = q->buf_size;
2853 	ring->desc_num = q->desc_num;
2854 	ring->next_to_use = 0;
2855 	ring->next_to_clean = 0;
2856 
2857 	return 0;
2858 }
2859 
2860 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
2861 			      struct hns3_nic_priv *priv)
2862 {
2863 	int ret;
2864 
2865 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
2866 	if (ret)
2867 		return ret;
2868 
2869 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
2870 	if (ret)
2871 		return ret;
2872 
2873 	return 0;
2874 }
2875 
2876 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
2877 {
2878 	struct hnae3_handle *h = priv->ae_handle;
2879 	struct pci_dev *pdev = h->pdev;
2880 	int i, ret;
2881 
2882 	priv->ring_data =  devm_kzalloc(&pdev->dev, h->kinfo.num_tqps *
2883 					sizeof(*priv->ring_data) * 2,
2884 					GFP_KERNEL);
2885 	if (!priv->ring_data)
2886 		return -ENOMEM;
2887 
2888 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2889 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
2890 		if (ret)
2891 			goto err;
2892 	}
2893 
2894 	return 0;
2895 err:
2896 	devm_kfree(&pdev->dev, priv->ring_data);
2897 	return ret;
2898 }
2899 
2900 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
2901 {
2902 	struct hnae3_handle *h = priv->ae_handle;
2903 	int i;
2904 
2905 	for (i = 0; i < h->kinfo.num_tqps; i++) {
2906 		devm_kfree(priv->dev, priv->ring_data[i].ring);
2907 		devm_kfree(priv->dev,
2908 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
2909 	}
2910 	devm_kfree(priv->dev, priv->ring_data);
2911 }
2912 
2913 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
2914 {
2915 	int ret;
2916 
2917 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
2918 		return -EINVAL;
2919 
2920 	ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
2921 				GFP_KERNEL);
2922 	if (!ring->desc_cb) {
2923 		ret = -ENOMEM;
2924 		goto out;
2925 	}
2926 
2927 	ret = hns3_alloc_desc(ring);
2928 	if (ret)
2929 		goto out_with_desc_cb;
2930 
2931 	if (!HNAE3_IS_TX_RING(ring)) {
2932 		ret = hns3_alloc_ring_buffers(ring);
2933 		if (ret)
2934 			goto out_with_desc;
2935 	}
2936 
2937 	return 0;
2938 
2939 out_with_desc:
2940 	hns3_free_desc(ring);
2941 out_with_desc_cb:
2942 	kfree(ring->desc_cb);
2943 	ring->desc_cb = NULL;
2944 out:
2945 	return ret;
2946 }
2947 
2948 static void hns3_fini_ring(struct hns3_enet_ring *ring)
2949 {
2950 	hns3_free_desc(ring);
2951 	kfree(ring->desc_cb);
2952 	ring->desc_cb = NULL;
2953 	ring->next_to_clean = 0;
2954 	ring->next_to_use = 0;
2955 }
2956 
2957 static int hns3_buf_size2type(u32 buf_size)
2958 {
2959 	int bd_size_type;
2960 
2961 	switch (buf_size) {
2962 	case 512:
2963 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
2964 		break;
2965 	case 1024:
2966 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
2967 		break;
2968 	case 2048:
2969 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2970 		break;
2971 	case 4096:
2972 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
2973 		break;
2974 	default:
2975 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
2976 	}
2977 
2978 	return bd_size_type;
2979 }
2980 
2981 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
2982 {
2983 	dma_addr_t dma = ring->desc_dma_addr;
2984 	struct hnae3_queue *q = ring->tqp;
2985 
2986 	if (!HNAE3_IS_TX_RING(ring)) {
2987 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
2988 			       (u32)dma);
2989 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
2990 			       (u32)((dma >> 31) >> 1));
2991 
2992 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
2993 			       hns3_buf_size2type(ring->buf_size));
2994 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
2995 			       ring->desc_num / 8 - 1);
2996 
2997 	} else {
2998 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
2999 			       (u32)dma);
3000 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3001 			       (u32)((dma >> 31) >> 1));
3002 
3003 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_LEN_REG,
3004 			       hns3_buf_size2type(ring->buf_size));
3005 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3006 			       ring->desc_num / 8 - 1);
3007 	}
3008 }
3009 
3010 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3011 {
3012 	struct hnae3_handle *h = priv->ae_handle;
3013 	int ring_num = h->kinfo.num_tqps * 2;
3014 	int i, j;
3015 	int ret;
3016 
3017 	for (i = 0; i < ring_num; i++) {
3018 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3019 		if (ret) {
3020 			dev_err(priv->dev,
3021 				"Alloc ring memory fail! ret=%d\n", ret);
3022 			goto out_when_alloc_ring_memory;
3023 		}
3024 
3025 		hns3_init_ring_hw(priv->ring_data[i].ring);
3026 
3027 		u64_stats_init(&priv->ring_data[i].ring->syncp);
3028 	}
3029 
3030 	return 0;
3031 
3032 out_when_alloc_ring_memory:
3033 	for (j = i - 1; j >= 0; j--)
3034 		hns3_fini_ring(priv->ring_data[j].ring);
3035 
3036 	return -ENOMEM;
3037 }
3038 
3039 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3040 {
3041 	struct hnae3_handle *h = priv->ae_handle;
3042 	int i;
3043 
3044 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3045 		if (h->ae_algo->ops->reset_queue)
3046 			h->ae_algo->ops->reset_queue(h, i);
3047 
3048 		hns3_fini_ring(priv->ring_data[i].ring);
3049 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3050 	}
3051 	return 0;
3052 }
3053 
3054 /* Set mac addr if it is configured. or leave it to the AE driver */
3055 static void hns3_init_mac_addr(struct net_device *netdev)
3056 {
3057 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3058 	struct hnae3_handle *h = priv->ae_handle;
3059 	u8 mac_addr_temp[ETH_ALEN];
3060 
3061 	if (h->ae_algo->ops->get_mac_addr) {
3062 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3063 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3064 	}
3065 
3066 	/* Check if the MAC address is valid, if not get a random one */
3067 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3068 		eth_hw_addr_random(netdev);
3069 		dev_warn(priv->dev, "using random MAC address %pM\n",
3070 			 netdev->dev_addr);
3071 	}
3072 
3073 	if (h->ae_algo->ops->set_mac_addr)
3074 		h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3075 
3076 }
3077 
3078 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3079 {
3080 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3081 
3082 	if ((netdev->features & NETIF_F_TSO) ||
3083 	    (netdev->features & NETIF_F_TSO6)) {
3084 		priv->ops.fill_desc = hns3_fill_desc_tso;
3085 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3086 	} else {
3087 		priv->ops.fill_desc = hns3_fill_desc;
3088 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3089 	}
3090 }
3091 
3092 static int hns3_client_init(struct hnae3_handle *handle)
3093 {
3094 	struct pci_dev *pdev = handle->pdev;
3095 	struct hns3_nic_priv *priv;
3096 	struct net_device *netdev;
3097 	int ret;
3098 
3099 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv),
3100 				   hns3_get_max_available_channels(handle));
3101 	if (!netdev)
3102 		return -ENOMEM;
3103 
3104 	priv = netdev_priv(netdev);
3105 	priv->dev = &pdev->dev;
3106 	priv->netdev = netdev;
3107 	priv->ae_handle = handle;
3108 	priv->ae_handle->reset_level = HNAE3_NONE_RESET;
3109 	priv->ae_handle->last_reset_time = jiffies;
3110 	priv->tx_timeout_count = 0;
3111 
3112 	handle->kinfo.netdev = netdev;
3113 	handle->priv = (void *)priv;
3114 
3115 	hns3_init_mac_addr(netdev);
3116 
3117 	hns3_set_default_feature(netdev);
3118 
3119 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3120 	netdev->priv_flags |= IFF_UNICAST_FLT;
3121 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3122 	SET_NETDEV_DEV(netdev, &pdev->dev);
3123 	hns3_ethtool_set_ops(netdev);
3124 	hns3_nic_set_priv_ops(netdev);
3125 
3126 	/* Carrier off reporting is important to ethtool even BEFORE open */
3127 	netif_carrier_off(netdev);
3128 
3129 	ret = hns3_get_ring_config(priv);
3130 	if (ret) {
3131 		ret = -ENOMEM;
3132 		goto out_get_ring_cfg;
3133 	}
3134 
3135 	ret = hns3_nic_alloc_vector_data(priv);
3136 	if (ret) {
3137 		ret = -ENOMEM;
3138 		goto out_alloc_vector_data;
3139 	}
3140 
3141 	ret = hns3_nic_init_vector_data(priv);
3142 	if (ret) {
3143 		ret = -ENOMEM;
3144 		goto out_init_vector_data;
3145 	}
3146 
3147 	ret = hns3_init_all_ring(priv);
3148 	if (ret) {
3149 		ret = -ENOMEM;
3150 		goto out_init_ring_data;
3151 	}
3152 
3153 	ret = register_netdev(netdev);
3154 	if (ret) {
3155 		dev_err(priv->dev, "probe register netdev fail!\n");
3156 		goto out_reg_netdev_fail;
3157 	}
3158 
3159 	hns3_dcbnl_setup(handle);
3160 
3161 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9706) */
3162 	netdev->max_mtu = HNS3_MAX_MTU - (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
3163 
3164 	return ret;
3165 
3166 out_reg_netdev_fail:
3167 out_init_ring_data:
3168 	(void)hns3_nic_uninit_vector_data(priv);
3169 out_init_vector_data:
3170 	hns3_nic_dealloc_vector_data(priv);
3171 out_alloc_vector_data:
3172 	priv->ring_data = NULL;
3173 out_get_ring_cfg:
3174 	priv->ae_handle = NULL;
3175 	free_netdev(netdev);
3176 	return ret;
3177 }
3178 
3179 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3180 {
3181 	struct net_device *netdev = handle->kinfo.netdev;
3182 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3183 	int ret;
3184 
3185 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3186 		unregister_netdev(netdev);
3187 
3188 	ret = hns3_nic_uninit_vector_data(priv);
3189 	if (ret)
3190 		netdev_err(netdev, "uninit vector error\n");
3191 
3192 	ret = hns3_nic_dealloc_vector_data(priv);
3193 	if (ret)
3194 		netdev_err(netdev, "dealloc vector error\n");
3195 
3196 	ret = hns3_uninit_all_ring(priv);
3197 	if (ret)
3198 		netdev_err(netdev, "uninit ring error\n");
3199 
3200 	hns3_put_ring_config(priv);
3201 
3202 	priv->ring_data = NULL;
3203 
3204 	free_netdev(netdev);
3205 }
3206 
3207 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3208 {
3209 	struct net_device *netdev = handle->kinfo.netdev;
3210 
3211 	if (!netdev)
3212 		return;
3213 
3214 	if (linkup) {
3215 		netif_carrier_on(netdev);
3216 		netif_tx_wake_all_queues(netdev);
3217 		netdev_info(netdev, "link up\n");
3218 	} else {
3219 		netif_carrier_off(netdev);
3220 		netif_tx_stop_all_queues(netdev);
3221 		netdev_info(netdev, "link down\n");
3222 	}
3223 }
3224 
3225 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3226 {
3227 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3228 	struct net_device *ndev = kinfo->netdev;
3229 	bool if_running;
3230 	int ret;
3231 	u8 i;
3232 
3233 	if (tc > HNAE3_MAX_TC)
3234 		return -EINVAL;
3235 
3236 	if (!ndev)
3237 		return -ENODEV;
3238 
3239 	if_running = netif_running(ndev);
3240 
3241 	ret = netdev_set_num_tc(ndev, tc);
3242 	if (ret)
3243 		return ret;
3244 
3245 	if (if_running) {
3246 		(void)hns3_nic_net_stop(ndev);
3247 		msleep(100);
3248 	}
3249 
3250 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->map_update) ?
3251 		kinfo->dcb_ops->map_update(handle) : -EOPNOTSUPP;
3252 	if (ret)
3253 		goto err_out;
3254 
3255 	if (tc <= 1) {
3256 		netdev_reset_tc(ndev);
3257 		goto out;
3258 	}
3259 
3260 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3261 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3262 
3263 		if (tc_info->enable)
3264 			netdev_set_tc_queue(ndev,
3265 					    tc_info->tc,
3266 					    tc_info->tqp_count,
3267 					    tc_info->tqp_offset);
3268 	}
3269 
3270 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
3271 		netdev_set_prio_tc_map(ndev, i,
3272 				       kinfo->prio_tc[i]);
3273 	}
3274 
3275 out:
3276 	ret = hns3_nic_set_real_num_queue(ndev);
3277 
3278 err_out:
3279 	if (if_running)
3280 		(void)hns3_nic_net_open(ndev);
3281 
3282 	return ret;
3283 }
3284 
3285 static void hns3_recover_hw_addr(struct net_device *ndev)
3286 {
3287 	struct netdev_hw_addr_list *list;
3288 	struct netdev_hw_addr *ha, *tmp;
3289 
3290 	/* go through and sync uc_addr entries to the device */
3291 	list = &ndev->uc;
3292 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3293 		hns3_nic_uc_sync(ndev, ha->addr);
3294 
3295 	/* go through and sync mc_addr entries to the device */
3296 	list = &ndev->mc;
3297 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3298 		hns3_nic_mc_sync(ndev, ha->addr);
3299 }
3300 
3301 static void hns3_drop_skb_data(struct hns3_enet_ring *ring, struct sk_buff *skb)
3302 {
3303 	dev_kfree_skb_any(skb);
3304 }
3305 
3306 static void hns3_clear_all_ring(struct hnae3_handle *h)
3307 {
3308 	struct net_device *ndev = h->kinfo.netdev;
3309 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3310 	u32 i;
3311 
3312 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3313 		struct netdev_queue *dev_queue;
3314 		struct hns3_enet_ring *ring;
3315 
3316 		ring = priv->ring_data[i].ring;
3317 		hns3_clean_tx_ring(ring, ring->desc_num);
3318 		dev_queue = netdev_get_tx_queue(ndev,
3319 						priv->ring_data[i].queue_index);
3320 		netdev_tx_reset_queue(dev_queue);
3321 
3322 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3323 		hns3_clean_rx_ring(ring, ring->desc_num, hns3_drop_skb_data);
3324 	}
3325 }
3326 
3327 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3328 {
3329 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3330 	struct net_device *ndev = kinfo->netdev;
3331 
3332 	if (!netif_running(ndev))
3333 		return -EIO;
3334 
3335 	return hns3_nic_net_stop(ndev);
3336 }
3337 
3338 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
3339 {
3340 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3341 	int ret = 0;
3342 
3343 	if (netif_running(kinfo->netdev)) {
3344 		ret = hns3_nic_net_up(kinfo->netdev);
3345 		if (ret) {
3346 			netdev_err(kinfo->netdev,
3347 				   "hns net up fail, ret=%d!\n", ret);
3348 			return ret;
3349 		}
3350 		handle->last_reset_time = jiffies;
3351 	}
3352 
3353 	return ret;
3354 }
3355 
3356 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
3357 {
3358 	struct net_device *netdev = handle->kinfo.netdev;
3359 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3360 	int ret;
3361 
3362 	hns3_init_mac_addr(netdev);
3363 	hns3_nic_set_rx_mode(netdev);
3364 	hns3_recover_hw_addr(netdev);
3365 
3366 	/* Hardware table is only clear when pf resets */
3367 	if (!(handle->flags & HNAE3_SUPPORT_VF))
3368 		hns3_restore_vlan(netdev);
3369 
3370 	/* Carrier off reporting is important to ethtool even BEFORE open */
3371 	netif_carrier_off(netdev);
3372 
3373 	ret = hns3_get_ring_config(priv);
3374 	if (ret)
3375 		return ret;
3376 
3377 	ret = hns3_nic_init_vector_data(priv);
3378 	if (ret)
3379 		return ret;
3380 
3381 	ret = hns3_init_all_ring(priv);
3382 	if (ret) {
3383 		hns3_nic_uninit_vector_data(priv);
3384 		priv->ring_data = NULL;
3385 	}
3386 
3387 	return ret;
3388 }
3389 
3390 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
3391 {
3392 	struct net_device *netdev = handle->kinfo.netdev;
3393 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3394 	int ret;
3395 
3396 	hns3_clear_all_ring(handle);
3397 
3398 	ret = hns3_nic_uninit_vector_data(priv);
3399 	if (ret) {
3400 		netdev_err(netdev, "uninit vector error\n");
3401 		return ret;
3402 	}
3403 
3404 	ret = hns3_uninit_all_ring(priv);
3405 	if (ret)
3406 		netdev_err(netdev, "uninit ring error\n");
3407 
3408 	hns3_put_ring_config(priv);
3409 
3410 	priv->ring_data = NULL;
3411 
3412 	return ret;
3413 }
3414 
3415 static int hns3_reset_notify(struct hnae3_handle *handle,
3416 			     enum hnae3_reset_notify_type type)
3417 {
3418 	int ret = 0;
3419 
3420 	switch (type) {
3421 	case HNAE3_UP_CLIENT:
3422 		ret = hns3_reset_notify_up_enet(handle);
3423 		break;
3424 	case HNAE3_DOWN_CLIENT:
3425 		ret = hns3_reset_notify_down_enet(handle);
3426 		break;
3427 	case HNAE3_INIT_CLIENT:
3428 		ret = hns3_reset_notify_init_enet(handle);
3429 		break;
3430 	case HNAE3_UNINIT_CLIENT:
3431 		ret = hns3_reset_notify_uninit_enet(handle);
3432 		break;
3433 	default:
3434 		break;
3435 	}
3436 
3437 	return ret;
3438 }
3439 
3440 static void hns3_restore_coal(struct hns3_nic_priv *priv,
3441 			      struct hns3_enet_coalesce *tx,
3442 			      struct hns3_enet_coalesce *rx)
3443 {
3444 	u16 vector_num = priv->vector_num;
3445 	int i;
3446 
3447 	for (i = 0; i < vector_num; i++) {
3448 		memcpy(&priv->tqp_vector[i].tx_group.coal, tx,
3449 		       sizeof(struct hns3_enet_coalesce));
3450 		memcpy(&priv->tqp_vector[i].rx_group.coal, rx,
3451 		       sizeof(struct hns3_enet_coalesce));
3452 	}
3453 }
3454 
3455 static int hns3_modify_tqp_num(struct net_device *netdev, u16 new_tqp_num,
3456 			       struct hns3_enet_coalesce *tx,
3457 			       struct hns3_enet_coalesce *rx)
3458 {
3459 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3460 	struct hnae3_handle *h = hns3_get_handle(netdev);
3461 	int ret;
3462 
3463 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num);
3464 	if (ret)
3465 		return ret;
3466 
3467 	ret = hns3_get_ring_config(priv);
3468 	if (ret)
3469 		return ret;
3470 
3471 	ret = hns3_nic_alloc_vector_data(priv);
3472 	if (ret)
3473 		goto err_alloc_vector;
3474 
3475 	hns3_restore_coal(priv, tx, rx);
3476 
3477 	ret = hns3_nic_init_vector_data(priv);
3478 	if (ret)
3479 		goto err_uninit_vector;
3480 
3481 	ret = hns3_init_all_ring(priv);
3482 	if (ret)
3483 		goto err_put_ring;
3484 
3485 	return 0;
3486 
3487 err_put_ring:
3488 	hns3_put_ring_config(priv);
3489 err_uninit_vector:
3490 	hns3_nic_uninit_vector_data(priv);
3491 err_alloc_vector:
3492 	hns3_nic_dealloc_vector_data(priv);
3493 	return ret;
3494 }
3495 
3496 static int hns3_adjust_tqps_num(u8 num_tc, u32 new_tqp_num)
3497 {
3498 	return (new_tqp_num / num_tc) * num_tc;
3499 }
3500 
3501 int hns3_set_channels(struct net_device *netdev,
3502 		      struct ethtool_channels *ch)
3503 {
3504 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3505 	struct hnae3_handle *h = hns3_get_handle(netdev);
3506 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
3507 	struct hns3_enet_coalesce tx_coal, rx_coal;
3508 	bool if_running = netif_running(netdev);
3509 	u32 new_tqp_num = ch->combined_count;
3510 	u16 org_tqp_num;
3511 	int ret;
3512 
3513 	if (ch->rx_count || ch->tx_count)
3514 		return -EINVAL;
3515 
3516 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
3517 	    new_tqp_num < kinfo->num_tc) {
3518 		dev_err(&netdev->dev,
3519 			"Change tqps fail, the tqp range is from %d to %d",
3520 			kinfo->num_tc,
3521 			hns3_get_max_available_channels(h));
3522 		return -EINVAL;
3523 	}
3524 
3525 	new_tqp_num = hns3_adjust_tqps_num(kinfo->num_tc, new_tqp_num);
3526 	if (kinfo->num_tqps == new_tqp_num)
3527 		return 0;
3528 
3529 	if (if_running)
3530 		hns3_nic_net_stop(netdev);
3531 
3532 	hns3_clear_all_ring(h);
3533 
3534 	ret = hns3_nic_uninit_vector_data(priv);
3535 	if (ret) {
3536 		dev_err(&netdev->dev,
3537 			"Unbind vector with tqp fail, nothing is changed");
3538 		goto open_netdev;
3539 	}
3540 
3541 	/* Changing the tqp num may also change the vector num,
3542 	 * ethtool only support setting and querying one coal
3543 	 * configuation for now, so save the vector 0' coal
3544 	 * configuation here in order to restore it.
3545 	 */
3546 	memcpy(&tx_coal, &priv->tqp_vector[0].tx_group.coal,
3547 	       sizeof(struct hns3_enet_coalesce));
3548 	memcpy(&rx_coal, &priv->tqp_vector[0].rx_group.coal,
3549 	       sizeof(struct hns3_enet_coalesce));
3550 
3551 	hns3_nic_dealloc_vector_data(priv);
3552 
3553 	hns3_uninit_all_ring(priv);
3554 	hns3_put_ring_config(priv);
3555 
3556 	org_tqp_num = h->kinfo.num_tqps;
3557 	ret = hns3_modify_tqp_num(netdev, new_tqp_num, &tx_coal, &rx_coal);
3558 	if (ret) {
3559 		ret = hns3_modify_tqp_num(netdev, org_tqp_num,
3560 					  &tx_coal, &rx_coal);
3561 		if (ret) {
3562 			/* If revert to old tqp failed, fatal error occurred */
3563 			dev_err(&netdev->dev,
3564 				"Revert to old tqp num fail, ret=%d", ret);
3565 			return ret;
3566 		}
3567 		dev_info(&netdev->dev,
3568 			 "Change tqp num fail, Revert to old tqp num");
3569 	}
3570 
3571 open_netdev:
3572 	if (if_running)
3573 		hns3_nic_net_open(netdev);
3574 
3575 	return ret;
3576 }
3577 
3578 static const struct hnae3_client_ops client_ops = {
3579 	.init_instance = hns3_client_init,
3580 	.uninit_instance = hns3_client_uninit,
3581 	.link_status_change = hns3_link_status_change,
3582 	.setup_tc = hns3_client_setup_tc,
3583 	.reset_notify = hns3_reset_notify,
3584 };
3585 
3586 /* hns3_init_module - Driver registration routine
3587  * hns3_init_module is the first routine called when the driver is
3588  * loaded. All it does is register with the PCI subsystem.
3589  */
3590 static int __init hns3_init_module(void)
3591 {
3592 	int ret;
3593 
3594 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
3595 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
3596 
3597 	client.type = HNAE3_CLIENT_KNIC;
3598 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
3599 		 hns3_driver_name);
3600 
3601 	client.ops = &client_ops;
3602 
3603 	ret = hnae3_register_client(&client);
3604 	if (ret)
3605 		return ret;
3606 
3607 	ret = pci_register_driver(&hns3_driver);
3608 	if (ret)
3609 		hnae3_unregister_client(&client);
3610 
3611 	return ret;
3612 }
3613 module_init(hns3_init_module);
3614 
3615 /* hns3_exit_module - Driver exit cleanup routine
3616  * hns3_exit_module is called just before the driver is removed
3617  * from memory.
3618  */
3619 static void __exit hns3_exit_module(void)
3620 {
3621 	pci_unregister_driver(&hns3_driver);
3622 	hnae3_unregister_client(&client);
3623 }
3624 module_exit(hns3_exit_module);
3625 
3626 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
3627 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3628 MODULE_LICENSE("GPL");
3629 MODULE_ALIAS("pci:hns-nic");
3630