1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/aer.h>
13 #include <linux/skbuff.h>
14 #include <linux/sctp.h>
15 #include <linux/vermagic.h>
16 #include <net/gre.h>
17 #include <net/pkt_cls.h>
18 #include <net/tcp.h>
19 #include <net/vxlan.h>
20 
21 #include "hnae3.h"
22 #include "hns3_enet.h"
23 
24 static void hns3_clear_all_ring(struct hnae3_handle *h);
25 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
26 static void hns3_remove_hw_addr(struct net_device *netdev);
27 
28 static const char hns3_driver_name[] = "hns3";
29 const char hns3_driver_version[] = VERMAGIC_STRING;
30 static const char hns3_driver_string[] =
31 			"Hisilicon Ethernet Network Driver for Hip08 Family";
32 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
33 static struct hnae3_client client;
34 
35 /* hns3_pci_tbl - PCI Device ID Table
36  *
37  * Last entry must be all 0s
38  *
39  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
40  *   Class, Class Mask, private data (not used) }
41  */
42 static const struct pci_device_id hns3_pci_tbl[] = {
43 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
44 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
45 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
46 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
47 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
48 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
49 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
50 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
51 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
52 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
53 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
54 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
55 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
56 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
57 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
58 	/* required last entry */
59 	{0, }
60 };
61 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
62 
63 static irqreturn_t hns3_irq_handle(int irq, void *vector)
64 {
65 	struct hns3_enet_tqp_vector *tqp_vector = vector;
66 
67 	napi_schedule(&tqp_vector->napi);
68 
69 	return IRQ_HANDLED;
70 }
71 
72 /* This callback function is used to set affinity changes to the irq affinity
73  * masks when the irq_set_affinity_notifier function is used.
74  */
75 static void hns3_nic_irq_affinity_notify(struct irq_affinity_notify *notify,
76 					 const cpumask_t *mask)
77 {
78 	struct hns3_enet_tqp_vector *tqp_vectors =
79 		container_of(notify, struct hns3_enet_tqp_vector,
80 			     affinity_notify);
81 
82 	tqp_vectors->affinity_mask = *mask;
83 }
84 
85 static void hns3_nic_irq_affinity_release(struct kref *ref)
86 {
87 }
88 
89 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
90 {
91 	struct hns3_enet_tqp_vector *tqp_vectors;
92 	unsigned int i;
93 
94 	for (i = 0; i < priv->vector_num; i++) {
95 		tqp_vectors = &priv->tqp_vector[i];
96 
97 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
98 			continue;
99 
100 		/* clear the affinity notifier and affinity mask */
101 		irq_set_affinity_notifier(tqp_vectors->vector_irq, NULL);
102 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
103 
104 		/* release the irq resource */
105 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
106 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
107 	}
108 }
109 
110 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
111 {
112 	struct hns3_enet_tqp_vector *tqp_vectors;
113 	int txrx_int_idx = 0;
114 	int rx_int_idx = 0;
115 	int tx_int_idx = 0;
116 	unsigned int i;
117 	int ret;
118 
119 	for (i = 0; i < priv->vector_num; i++) {
120 		tqp_vectors = &priv->tqp_vector[i];
121 
122 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
123 			continue;
124 
125 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
126 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
127 				 "%s-%s-%d", priv->netdev->name, "TxRx",
128 				 txrx_int_idx++);
129 			txrx_int_idx++;
130 		} else if (tqp_vectors->rx_group.ring) {
131 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
132 				 "%s-%s-%d", priv->netdev->name, "Rx",
133 				 rx_int_idx++);
134 		} else if (tqp_vectors->tx_group.ring) {
135 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
136 				 "%s-%s-%d", priv->netdev->name, "Tx",
137 				 tx_int_idx++);
138 		} else {
139 			/* Skip this unused q_vector */
140 			continue;
141 		}
142 
143 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
144 
145 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
146 				  tqp_vectors->name,
147 				       tqp_vectors);
148 		if (ret) {
149 			netdev_err(priv->netdev, "request irq(%d) fail\n",
150 				   tqp_vectors->vector_irq);
151 			return ret;
152 		}
153 
154 		tqp_vectors->affinity_notify.notify =
155 					hns3_nic_irq_affinity_notify;
156 		tqp_vectors->affinity_notify.release =
157 					hns3_nic_irq_affinity_release;
158 		irq_set_affinity_notifier(tqp_vectors->vector_irq,
159 					  &tqp_vectors->affinity_notify);
160 		irq_set_affinity_hint(tqp_vectors->vector_irq,
161 				      &tqp_vectors->affinity_mask);
162 
163 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
164 	}
165 
166 	return 0;
167 }
168 
169 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
170 				 u32 mask_en)
171 {
172 	writel(mask_en, tqp_vector->mask_addr);
173 }
174 
175 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
176 {
177 	napi_enable(&tqp_vector->napi);
178 
179 	/* enable vector */
180 	hns3_mask_vector_irq(tqp_vector, 1);
181 }
182 
183 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
184 {
185 	/* disable vector */
186 	hns3_mask_vector_irq(tqp_vector, 0);
187 
188 	disable_irq(tqp_vector->vector_irq);
189 	napi_disable(&tqp_vector->napi);
190 }
191 
192 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
193 				 u32 rl_value)
194 {
195 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
196 
197 	/* this defines the configuration for RL (Interrupt Rate Limiter).
198 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
199 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
200 	 */
201 
202 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
203 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
204 		/* According to the hardware, the range of rl_reg is
205 		 * 0-59 and the unit is 4.
206 		 */
207 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
208 
209 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
210 }
211 
212 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
213 				    u32 gl_value)
214 {
215 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
216 
217 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
218 }
219 
220 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
221 				    u32 gl_value)
222 {
223 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
224 
225 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
226 }
227 
228 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
229 				   struct hns3_nic_priv *priv)
230 {
231 	/* initialize the configuration for interrupt coalescing.
232 	 * 1. GL (Interrupt Gap Limiter)
233 	 * 2. RL (Interrupt Rate Limiter)
234 	 */
235 
236 	/* Default: enable interrupt coalescing self-adaptive and GL */
237 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
238 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
239 
240 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
241 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
242 
243 	tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
244 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
245 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
246 }
247 
248 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
249 				      struct hns3_nic_priv *priv)
250 {
251 	struct hnae3_handle *h = priv->ae_handle;
252 
253 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
254 				       tqp_vector->tx_group.coal.int_gl);
255 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
256 				       tqp_vector->rx_group.coal.int_gl);
257 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
258 }
259 
260 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
261 {
262 	struct hnae3_handle *h = hns3_get_handle(netdev);
263 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
264 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
265 	int i, ret;
266 
267 	if (kinfo->num_tc <= 1) {
268 		netdev_reset_tc(netdev);
269 	} else {
270 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
271 		if (ret) {
272 			netdev_err(netdev,
273 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
274 			return ret;
275 		}
276 
277 		for (i = 0; i < HNAE3_MAX_TC; i++) {
278 			if (!kinfo->tc_info[i].enable)
279 				continue;
280 
281 			netdev_set_tc_queue(netdev,
282 					    kinfo->tc_info[i].tc,
283 					    kinfo->tc_info[i].tqp_count,
284 					    kinfo->tc_info[i].tqp_offset);
285 		}
286 	}
287 
288 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
289 	if (ret) {
290 		netdev_err(netdev,
291 			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
292 			   ret);
293 		return ret;
294 	}
295 
296 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
297 	if (ret) {
298 		netdev_err(netdev,
299 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
300 		return ret;
301 	}
302 
303 	return 0;
304 }
305 
306 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
307 {
308 	u16 alloc_tqps, max_rss_size, rss_size;
309 
310 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
311 	rss_size = alloc_tqps / h->kinfo.num_tc;
312 
313 	return min_t(u16, rss_size, max_rss_size);
314 }
315 
316 static void hns3_tqp_enable(struct hnae3_queue *tqp)
317 {
318 	u32 rcb_reg;
319 
320 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
321 	rcb_reg |= BIT(HNS3_RING_EN_B);
322 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
323 }
324 
325 static void hns3_tqp_disable(struct hnae3_queue *tqp)
326 {
327 	u32 rcb_reg;
328 
329 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
330 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
331 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
332 }
333 
334 static int hns3_nic_net_up(struct net_device *netdev)
335 {
336 	struct hns3_nic_priv *priv = netdev_priv(netdev);
337 	struct hnae3_handle *h = priv->ae_handle;
338 	int i, j;
339 	int ret;
340 
341 	ret = hns3_nic_reset_all_ring(h);
342 	if (ret)
343 		return ret;
344 
345 	/* get irq resource for all vectors */
346 	ret = hns3_nic_init_irq(priv);
347 	if (ret) {
348 		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
349 		return ret;
350 	}
351 
352 	/* enable the vectors */
353 	for (i = 0; i < priv->vector_num; i++)
354 		hns3_vector_enable(&priv->tqp_vector[i]);
355 
356 	/* enable rcb */
357 	for (j = 0; j < h->kinfo.num_tqps; j++)
358 		hns3_tqp_enable(h->kinfo.tqp[j]);
359 
360 	/* start the ae_dev */
361 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
362 	if (ret)
363 		goto out_start_err;
364 
365 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
366 
367 	return 0;
368 
369 out_start_err:
370 	while (j--)
371 		hns3_tqp_disable(h->kinfo.tqp[j]);
372 
373 	for (j = i - 1; j >= 0; j--)
374 		hns3_vector_disable(&priv->tqp_vector[j]);
375 
376 	hns3_nic_uninit_irq(priv);
377 
378 	return ret;
379 }
380 
381 static int hns3_nic_net_open(struct net_device *netdev)
382 {
383 	struct hnae3_handle *h = hns3_get_handle(netdev);
384 	struct hnae3_knic_private_info *kinfo;
385 	int i, ret;
386 
387 	if (hns3_nic_resetting(netdev))
388 		return -EBUSY;
389 
390 	netif_carrier_off(netdev);
391 
392 	ret = hns3_nic_set_real_num_queue(netdev);
393 	if (ret)
394 		return ret;
395 
396 	ret = hns3_nic_net_up(netdev);
397 	if (ret) {
398 		netdev_err(netdev,
399 			   "hns net up fail, ret=%d!\n", ret);
400 		return ret;
401 	}
402 
403 	kinfo = &h->kinfo;
404 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
405 		netdev_set_prio_tc_map(netdev, i,
406 				       kinfo->prio_tc[i]);
407 	}
408 
409 	return 0;
410 }
411 
412 static void hns3_nic_net_down(struct net_device *netdev)
413 {
414 	struct hns3_nic_priv *priv = netdev_priv(netdev);
415 	struct hnae3_handle *h = hns3_get_handle(netdev);
416 	const struct hnae3_ae_ops *ops;
417 	int i;
418 
419 	/* disable vectors */
420 	for (i = 0; i < priv->vector_num; i++)
421 		hns3_vector_disable(&priv->tqp_vector[i]);
422 
423 	/* disable rcb */
424 	for (i = 0; i < h->kinfo.num_tqps; i++)
425 		hns3_tqp_disable(h->kinfo.tqp[i]);
426 
427 	/* stop ae_dev */
428 	ops = priv->ae_handle->ae_algo->ops;
429 	if (ops->stop)
430 		ops->stop(priv->ae_handle);
431 
432 	/* free irq resources */
433 	hns3_nic_uninit_irq(priv);
434 
435 	hns3_clear_all_ring(priv->ae_handle);
436 }
437 
438 static int hns3_nic_net_stop(struct net_device *netdev)
439 {
440 	struct hns3_nic_priv *priv = netdev_priv(netdev);
441 
442 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
443 		return 0;
444 
445 	netif_tx_stop_all_queues(netdev);
446 	netif_carrier_off(netdev);
447 
448 	hns3_nic_net_down(netdev);
449 
450 	return 0;
451 }
452 
453 static int hns3_nic_uc_sync(struct net_device *netdev,
454 			    const unsigned char *addr)
455 {
456 	struct hnae3_handle *h = hns3_get_handle(netdev);
457 
458 	if (h->ae_algo->ops->add_uc_addr)
459 		return h->ae_algo->ops->add_uc_addr(h, addr);
460 
461 	return 0;
462 }
463 
464 static int hns3_nic_uc_unsync(struct net_device *netdev,
465 			      const unsigned char *addr)
466 {
467 	struct hnae3_handle *h = hns3_get_handle(netdev);
468 
469 	if (h->ae_algo->ops->rm_uc_addr)
470 		return h->ae_algo->ops->rm_uc_addr(h, addr);
471 
472 	return 0;
473 }
474 
475 static int hns3_nic_mc_sync(struct net_device *netdev,
476 			    const unsigned char *addr)
477 {
478 	struct hnae3_handle *h = hns3_get_handle(netdev);
479 
480 	if (h->ae_algo->ops->add_mc_addr)
481 		return h->ae_algo->ops->add_mc_addr(h, addr);
482 
483 	return 0;
484 }
485 
486 static int hns3_nic_mc_unsync(struct net_device *netdev,
487 			      const unsigned char *addr)
488 {
489 	struct hnae3_handle *h = hns3_get_handle(netdev);
490 
491 	if (h->ae_algo->ops->rm_mc_addr)
492 		return h->ae_algo->ops->rm_mc_addr(h, addr);
493 
494 	return 0;
495 }
496 
497 static u8 hns3_get_netdev_flags(struct net_device *netdev)
498 {
499 	u8 flags = 0;
500 
501 	if (netdev->flags & IFF_PROMISC) {
502 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE;
503 	} else {
504 		flags |= HNAE3_VLAN_FLTR;
505 		if (netdev->flags & IFF_ALLMULTI)
506 			flags |= HNAE3_USER_MPE;
507 	}
508 
509 	return flags;
510 }
511 
512 static void hns3_nic_set_rx_mode(struct net_device *netdev)
513 {
514 	struct hnae3_handle *h = hns3_get_handle(netdev);
515 	u8 new_flags;
516 	int ret;
517 
518 	new_flags = hns3_get_netdev_flags(netdev);
519 
520 	ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
521 	if (ret) {
522 		netdev_err(netdev, "sync uc address fail\n");
523 		if (ret == -ENOSPC)
524 			new_flags |= HNAE3_OVERFLOW_UPE;
525 	}
526 
527 	if (netdev->flags & IFF_MULTICAST) {
528 		ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
529 				    hns3_nic_mc_unsync);
530 		if (ret) {
531 			netdev_err(netdev, "sync mc address fail\n");
532 			if (ret == -ENOSPC)
533 				new_flags |= HNAE3_OVERFLOW_MPE;
534 		}
535 	}
536 
537 	hns3_update_promisc_mode(netdev, new_flags);
538 	/* User mode Promisc mode enable and vlan filtering is disabled to
539 	 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
540 	 * vlan fitering is enabled
541 	 */
542 	hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
543 	h->netdev_flags = new_flags;
544 }
545 
546 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
547 {
548 	struct hns3_nic_priv *priv = netdev_priv(netdev);
549 	struct hnae3_handle *h = priv->ae_handle;
550 
551 	if (h->ae_algo->ops->set_promisc_mode) {
552 		return h->ae_algo->ops->set_promisc_mode(h,
553 						promisc_flags & HNAE3_UPE,
554 						promisc_flags & HNAE3_MPE);
555 	}
556 
557 	return 0;
558 }
559 
560 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
561 {
562 	struct hns3_nic_priv *priv = netdev_priv(netdev);
563 	struct hnae3_handle *h = priv->ae_handle;
564 	bool last_state;
565 
566 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
567 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
568 		if (enable != last_state) {
569 			netdev_info(netdev,
570 				    "%s vlan filter\n",
571 				    enable ? "enable" : "disable");
572 			h->ae_algo->ops->enable_vlan_filter(h, enable);
573 		}
574 	}
575 }
576 
577 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
578 			u16 *mss, u32 *type_cs_vlan_tso)
579 {
580 	u32 l4_offset, hdr_len;
581 	union l3_hdr_info l3;
582 	union l4_hdr_info l4;
583 	u32 l4_paylen;
584 	int ret;
585 
586 	if (!skb_is_gso(skb))
587 		return 0;
588 
589 	ret = skb_cow_head(skb, 0);
590 	if (ret)
591 		return ret;
592 
593 	l3.hdr = skb_network_header(skb);
594 	l4.hdr = skb_transport_header(skb);
595 
596 	/* Software should clear the IPv4's checksum field when tso is
597 	 * needed.
598 	 */
599 	if (l3.v4->version == 4)
600 		l3.v4->check = 0;
601 
602 	/* tunnel packet.*/
603 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
604 					 SKB_GSO_GRE_CSUM |
605 					 SKB_GSO_UDP_TUNNEL |
606 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
607 		if ((!(skb_shinfo(skb)->gso_type &
608 		    SKB_GSO_PARTIAL)) &&
609 		    (skb_shinfo(skb)->gso_type &
610 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
611 			/* Software should clear the udp's checksum
612 			 * field when tso is needed.
613 			 */
614 			l4.udp->check = 0;
615 		}
616 		/* reset l3&l4 pointers from outer to inner headers */
617 		l3.hdr = skb_inner_network_header(skb);
618 		l4.hdr = skb_inner_transport_header(skb);
619 
620 		/* Software should clear the IPv4's checksum field when
621 		 * tso is needed.
622 		 */
623 		if (l3.v4->version == 4)
624 			l3.v4->check = 0;
625 	}
626 
627 	/* normal or tunnel packet*/
628 	l4_offset = l4.hdr - skb->data;
629 	hdr_len = (l4.tcp->doff * 4) + l4_offset;
630 
631 	/* remove payload length from inner pseudo checksum when tso*/
632 	l4_paylen = skb->len - l4_offset;
633 	csum_replace_by_diff(&l4.tcp->check,
634 			     (__force __wsum)htonl(l4_paylen));
635 
636 	/* find the txbd field values */
637 	*paylen = skb->len - hdr_len;
638 	hnae3_set_bit(*type_cs_vlan_tso,
639 		      HNS3_TXD_TSO_B, 1);
640 
641 	/* get MSS for TSO */
642 	*mss = skb_shinfo(skb)->gso_size;
643 
644 	return 0;
645 }
646 
647 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
648 				u8 *il4_proto)
649 {
650 	union {
651 		struct iphdr *v4;
652 		struct ipv6hdr *v6;
653 		unsigned char *hdr;
654 	} l3;
655 	unsigned char *l4_hdr;
656 	unsigned char *exthdr;
657 	u8 l4_proto_tmp;
658 	__be16 frag_off;
659 
660 	/* find outer header point */
661 	l3.hdr = skb_network_header(skb);
662 	l4_hdr = skb_transport_header(skb);
663 
664 	if (skb->protocol == htons(ETH_P_IPV6)) {
665 		exthdr = l3.hdr + sizeof(*l3.v6);
666 		l4_proto_tmp = l3.v6->nexthdr;
667 		if (l4_hdr != exthdr)
668 			ipv6_skip_exthdr(skb, exthdr - skb->data,
669 					 &l4_proto_tmp, &frag_off);
670 	} else if (skb->protocol == htons(ETH_P_IP)) {
671 		l4_proto_tmp = l3.v4->protocol;
672 	} else {
673 		return -EINVAL;
674 	}
675 
676 	*ol4_proto = l4_proto_tmp;
677 
678 	/* tunnel packet */
679 	if (!skb->encapsulation) {
680 		*il4_proto = 0;
681 		return 0;
682 	}
683 
684 	/* find inner header point */
685 	l3.hdr = skb_inner_network_header(skb);
686 	l4_hdr = skb_inner_transport_header(skb);
687 
688 	if (l3.v6->version == 6) {
689 		exthdr = l3.hdr + sizeof(*l3.v6);
690 		l4_proto_tmp = l3.v6->nexthdr;
691 		if (l4_hdr != exthdr)
692 			ipv6_skip_exthdr(skb, exthdr - skb->data,
693 					 &l4_proto_tmp, &frag_off);
694 	} else if (l3.v4->version == 4) {
695 		l4_proto_tmp = l3.v4->protocol;
696 	}
697 
698 	*il4_proto = l4_proto_tmp;
699 
700 	return 0;
701 }
702 
703 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
704 				u8 il4_proto, u32 *type_cs_vlan_tso,
705 				u32 *ol_type_vlan_len_msec)
706 {
707 	union {
708 		struct iphdr *v4;
709 		struct ipv6hdr *v6;
710 		unsigned char *hdr;
711 	} l3;
712 	union {
713 		struct tcphdr *tcp;
714 		struct udphdr *udp;
715 		struct gre_base_hdr *gre;
716 		unsigned char *hdr;
717 	} l4;
718 	unsigned char *l2_hdr;
719 	u8 l4_proto = ol4_proto;
720 	u32 ol2_len;
721 	u32 ol3_len;
722 	u32 ol4_len;
723 	u32 l2_len;
724 	u32 l3_len;
725 
726 	l3.hdr = skb_network_header(skb);
727 	l4.hdr = skb_transport_header(skb);
728 
729 	/* compute L2 header size for normal packet, defined in 2 Bytes */
730 	l2_len = l3.hdr - skb->data;
731 	hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
732 			HNS3_TXD_L2LEN_S, l2_len >> 1);
733 
734 	/* tunnel packet*/
735 	if (skb->encapsulation) {
736 		/* compute OL2 header size, defined in 2 Bytes */
737 		ol2_len = l2_len;
738 		hnae3_set_field(*ol_type_vlan_len_msec,
739 				HNS3_TXD_L2LEN_M,
740 				HNS3_TXD_L2LEN_S, ol2_len >> 1);
741 
742 		/* compute OL3 header size, defined in 4 Bytes */
743 		ol3_len = l4.hdr - l3.hdr;
744 		hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_M,
745 				HNS3_TXD_L3LEN_S, ol3_len >> 2);
746 
747 		/* MAC in UDP, MAC in GRE (0x6558)*/
748 		if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
749 			/* switch MAC header ptr from outer to inner header.*/
750 			l2_hdr = skb_inner_mac_header(skb);
751 
752 			/* compute OL4 header size, defined in 4 Bytes. */
753 			ol4_len = l2_hdr - l4.hdr;
754 			hnae3_set_field(*ol_type_vlan_len_msec,
755 					HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
756 					ol4_len >> 2);
757 
758 			/* switch IP header ptr from outer to inner header */
759 			l3.hdr = skb_inner_network_header(skb);
760 
761 			/* compute inner l2 header size, defined in 2 Bytes. */
762 			l2_len = l3.hdr - l2_hdr;
763 			hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
764 					HNS3_TXD_L2LEN_S, l2_len >> 1);
765 		} else {
766 			/* skb packet types not supported by hardware,
767 			 * txbd len fild doesn't be filled.
768 			 */
769 			return;
770 		}
771 
772 		/* switch L4 header pointer from outer to inner */
773 		l4.hdr = skb_inner_transport_header(skb);
774 
775 		l4_proto = il4_proto;
776 	}
777 
778 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
779 	l3_len = l4.hdr - l3.hdr;
780 	hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_M,
781 			HNS3_TXD_L3LEN_S, l3_len >> 2);
782 
783 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
784 	switch (l4_proto) {
785 	case IPPROTO_TCP:
786 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
787 				HNS3_TXD_L4LEN_S, l4.tcp->doff);
788 		break;
789 	case IPPROTO_SCTP:
790 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
791 				HNS3_TXD_L4LEN_S,
792 				(sizeof(struct sctphdr) >> 2));
793 		break;
794 	case IPPROTO_UDP:
795 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
796 				HNS3_TXD_L4LEN_S,
797 				(sizeof(struct udphdr) >> 2));
798 		break;
799 	default:
800 		/* skb packet types not supported by hardware,
801 		 * txbd len fild doesn't be filled.
802 		 */
803 		return;
804 	}
805 }
806 
807 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
808  * and it is udp packet, which has a dest port as the IANA assigned.
809  * the hardware is expected to do the checksum offload, but the
810  * hardware will not do the checksum offload when udp dest port is
811  * 4789.
812  */
813 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
814 {
815 #define IANA_VXLAN_PORT	4789
816 	union {
817 		struct tcphdr *tcp;
818 		struct udphdr *udp;
819 		struct gre_base_hdr *gre;
820 		unsigned char *hdr;
821 	} l4;
822 
823 	l4.hdr = skb_transport_header(skb);
824 
825 	if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
826 		return false;
827 
828 	skb_checksum_help(skb);
829 
830 	return true;
831 }
832 
833 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
834 				   u8 il4_proto, u32 *type_cs_vlan_tso,
835 				   u32 *ol_type_vlan_len_msec)
836 {
837 	union {
838 		struct iphdr *v4;
839 		struct ipv6hdr *v6;
840 		unsigned char *hdr;
841 	} l3;
842 	u32 l4_proto = ol4_proto;
843 
844 	l3.hdr = skb_network_header(skb);
845 
846 	/* define OL3 type and tunnel type(OL4).*/
847 	if (skb->encapsulation) {
848 		/* define outer network header type.*/
849 		if (skb->protocol == htons(ETH_P_IP)) {
850 			if (skb_is_gso(skb))
851 				hnae3_set_field(*ol_type_vlan_len_msec,
852 						HNS3_TXD_OL3T_M,
853 						HNS3_TXD_OL3T_S,
854 						HNS3_OL3T_IPV4_CSUM);
855 			else
856 				hnae3_set_field(*ol_type_vlan_len_msec,
857 						HNS3_TXD_OL3T_M,
858 						HNS3_TXD_OL3T_S,
859 						HNS3_OL3T_IPV4_NO_CSUM);
860 
861 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
862 			hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_M,
863 					HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6);
864 		}
865 
866 		/* define tunnel type(OL4).*/
867 		switch (l4_proto) {
868 		case IPPROTO_UDP:
869 			hnae3_set_field(*ol_type_vlan_len_msec,
870 					HNS3_TXD_TUNTYPE_M,
871 					HNS3_TXD_TUNTYPE_S,
872 					HNS3_TUN_MAC_IN_UDP);
873 			break;
874 		case IPPROTO_GRE:
875 			hnae3_set_field(*ol_type_vlan_len_msec,
876 					HNS3_TXD_TUNTYPE_M,
877 					HNS3_TXD_TUNTYPE_S,
878 					HNS3_TUN_NVGRE);
879 			break;
880 		default:
881 			/* drop the skb tunnel packet if hardware don't support,
882 			 * because hardware can't calculate csum when TSO.
883 			 */
884 			if (skb_is_gso(skb))
885 				return -EDOM;
886 
887 			/* the stack computes the IP header already,
888 			 * driver calculate l4 checksum when not TSO.
889 			 */
890 			skb_checksum_help(skb);
891 			return 0;
892 		}
893 
894 		l3.hdr = skb_inner_network_header(skb);
895 		l4_proto = il4_proto;
896 	}
897 
898 	if (l3.v4->version == 4) {
899 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
900 				HNS3_TXD_L3T_S, HNS3_L3T_IPV4);
901 
902 		/* the stack computes the IP header already, the only time we
903 		 * need the hardware to recompute it is in the case of TSO.
904 		 */
905 		if (skb_is_gso(skb))
906 			hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
907 	} else if (l3.v6->version == 6) {
908 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
909 				HNS3_TXD_L3T_S, HNS3_L3T_IPV6);
910 	}
911 
912 	switch (l4_proto) {
913 	case IPPROTO_TCP:
914 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
915 		hnae3_set_field(*type_cs_vlan_tso,
916 				HNS3_TXD_L4T_M,
917 				HNS3_TXD_L4T_S,
918 				HNS3_L4T_TCP);
919 		break;
920 	case IPPROTO_UDP:
921 		if (hns3_tunnel_csum_bug(skb))
922 			break;
923 
924 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
925 		hnae3_set_field(*type_cs_vlan_tso,
926 				HNS3_TXD_L4T_M,
927 				HNS3_TXD_L4T_S,
928 				HNS3_L4T_UDP);
929 		break;
930 	case IPPROTO_SCTP:
931 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
932 		hnae3_set_field(*type_cs_vlan_tso,
933 				HNS3_TXD_L4T_M,
934 				HNS3_TXD_L4T_S,
935 				HNS3_L4T_SCTP);
936 		break;
937 	default:
938 		/* drop the skb tunnel packet if hardware don't support,
939 		 * because hardware can't calculate csum when TSO.
940 		 */
941 		if (skb_is_gso(skb))
942 			return -EDOM;
943 
944 		/* the stack computes the IP header already,
945 		 * driver calculate l4 checksum when not TSO.
946 		 */
947 		skb_checksum_help(skb);
948 		return 0;
949 	}
950 
951 	return 0;
952 }
953 
954 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
955 {
956 	/* Config bd buffer end */
957 	hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_BDTYPE_M,
958 			HNS3_TXD_BDTYPE_S, 0);
959 	hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
960 	hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
961 	hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_SC_M, HNS3_TXD_SC_S, 0);
962 }
963 
964 static int hns3_fill_desc_vtags(struct sk_buff *skb,
965 				struct hns3_enet_ring *tx_ring,
966 				u32 *inner_vlan_flag,
967 				u32 *out_vlan_flag,
968 				u16 *inner_vtag,
969 				u16 *out_vtag)
970 {
971 #define HNS3_TX_VLAN_PRIO_SHIFT 13
972 
973 	if (skb->protocol == htons(ETH_P_8021Q) &&
974 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
975 	    NETIF_F_HW_VLAN_CTAG_TX)) {
976 		/* When HW VLAN acceleration is turned off, and the stack
977 		 * sets the protocol to 802.1q, the driver just need to
978 		 * set the protocol to the encapsulated ethertype.
979 		 */
980 		skb->protocol = vlan_get_protocol(skb);
981 		return 0;
982 	}
983 
984 	if (skb_vlan_tag_present(skb)) {
985 		u16 vlan_tag;
986 
987 		vlan_tag = skb_vlan_tag_get(skb);
988 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
989 
990 		/* Based on hw strategy, use out_vtag in two layer tag case,
991 		 * and use inner_vtag in one tag case.
992 		 */
993 		if (skb->protocol == htons(ETH_P_8021Q)) {
994 			hnae3_set_bit(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
995 			*out_vtag = vlan_tag;
996 		} else {
997 			hnae3_set_bit(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
998 			*inner_vtag = vlan_tag;
999 		}
1000 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
1001 		struct vlan_ethhdr *vhdr;
1002 		int rc;
1003 
1004 		rc = skb_cow_head(skb, 0);
1005 		if (rc < 0)
1006 			return rc;
1007 		vhdr = (struct vlan_ethhdr *)skb->data;
1008 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
1009 					<< HNS3_TX_VLAN_PRIO_SHIFT);
1010 	}
1011 
1012 	skb->protocol = vlan_get_protocol(skb);
1013 	return 0;
1014 }
1015 
1016 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1017 			  int size, int frag_end, enum hns_desc_type type)
1018 {
1019 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1020 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1021 	struct device *dev = ring_to_dev(ring);
1022 	u32 ol_type_vlan_len_msec = 0;
1023 	u16 bdtp_fe_sc_vld_ra_ri = 0;
1024 	struct skb_frag_struct *frag;
1025 	unsigned int frag_buf_num;
1026 	u32 type_cs_vlan_tso = 0;
1027 	struct sk_buff *skb;
1028 	u16 inner_vtag = 0;
1029 	u16 out_vtag = 0;
1030 	unsigned int k;
1031 	int sizeoflast;
1032 	u32 paylen = 0;
1033 	dma_addr_t dma;
1034 	u16 mss = 0;
1035 	u8 ol4_proto;
1036 	u8 il4_proto;
1037 	int ret;
1038 
1039 	if (type == DESC_TYPE_SKB) {
1040 		skb = (struct sk_buff *)priv;
1041 		paylen = skb->len;
1042 
1043 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
1044 					   &ol_type_vlan_len_msec,
1045 					   &inner_vtag, &out_vtag);
1046 		if (unlikely(ret))
1047 			return ret;
1048 
1049 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1050 			skb_reset_mac_len(skb);
1051 
1052 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1053 			if (ret)
1054 				return ret;
1055 			hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
1056 					    &type_cs_vlan_tso,
1057 					    &ol_type_vlan_len_msec);
1058 			ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
1059 						      &type_cs_vlan_tso,
1060 						      &ol_type_vlan_len_msec);
1061 			if (ret)
1062 				return ret;
1063 
1064 			ret = hns3_set_tso(skb, &paylen, &mss,
1065 					   &type_cs_vlan_tso);
1066 			if (ret)
1067 				return ret;
1068 		}
1069 
1070 		/* Set txbd */
1071 		desc->tx.ol_type_vlan_len_msec =
1072 			cpu_to_le32(ol_type_vlan_len_msec);
1073 		desc->tx.type_cs_vlan_tso_len =
1074 			cpu_to_le32(type_cs_vlan_tso);
1075 		desc->tx.paylen = cpu_to_le32(paylen);
1076 		desc->tx.mss = cpu_to_le16(mss);
1077 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1078 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1079 
1080 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1081 	} else {
1082 		frag = (struct skb_frag_struct *)priv;
1083 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1084 	}
1085 
1086 	if (dma_mapping_error(ring->dev, dma)) {
1087 		ring->stats.sw_err_cnt++;
1088 		return -ENOMEM;
1089 	}
1090 
1091 	desc_cb->length = size;
1092 
1093 	frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1094 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1095 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1096 
1097 	/* When frag size is bigger than hardware limit, split this frag */
1098 	for (k = 0; k < frag_buf_num; k++) {
1099 		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1100 		desc_cb->priv = priv;
1101 		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1102 		desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1103 					DESC_TYPE_SKB : DESC_TYPE_PAGE;
1104 
1105 		/* now, fill the descriptor */
1106 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1107 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1108 				(u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1109 		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1110 				       frag_end && (k == frag_buf_num - 1) ?
1111 						1 : 0);
1112 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1113 				cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1114 
1115 		/* move ring pointer to next.*/
1116 		ring_ptr_move_fw(ring, next_to_use);
1117 
1118 		desc_cb = &ring->desc_cb[ring->next_to_use];
1119 		desc = &ring->desc[ring->next_to_use];
1120 	}
1121 
1122 	return 0;
1123 }
1124 
1125 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1126 				   struct hns3_enet_ring *ring)
1127 {
1128 	struct sk_buff *skb = *out_skb;
1129 	struct skb_frag_struct *frag;
1130 	int bdnum_for_frag;
1131 	int frag_num;
1132 	int buf_num;
1133 	int size;
1134 	int i;
1135 
1136 	size = skb_headlen(skb);
1137 	buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1138 
1139 	frag_num = skb_shinfo(skb)->nr_frags;
1140 	for (i = 0; i < frag_num; i++) {
1141 		frag = &skb_shinfo(skb)->frags[i];
1142 		size = skb_frag_size(frag);
1143 		bdnum_for_frag =
1144 			(size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1145 		if (bdnum_for_frag > HNS3_MAX_BD_PER_FRAG)
1146 			return -ENOMEM;
1147 
1148 		buf_num += bdnum_for_frag;
1149 	}
1150 
1151 	if (buf_num > ring_space(ring))
1152 		return -EBUSY;
1153 
1154 	*bnum = buf_num;
1155 	return 0;
1156 }
1157 
1158 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1159 				  struct hns3_enet_ring *ring)
1160 {
1161 	struct sk_buff *skb = *out_skb;
1162 	int buf_num;
1163 
1164 	/* No. of segments (plus a header) */
1165 	buf_num = skb_shinfo(skb)->nr_frags + 1;
1166 
1167 	if (unlikely(ring_space(ring) < buf_num))
1168 		return -EBUSY;
1169 
1170 	*bnum = buf_num;
1171 
1172 	return 0;
1173 }
1174 
1175 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1176 {
1177 	struct device *dev = ring_to_dev(ring);
1178 	unsigned int i;
1179 
1180 	for (i = 0; i < ring->desc_num; i++) {
1181 		/* check if this is where we started */
1182 		if (ring->next_to_use == next_to_use_orig)
1183 			break;
1184 
1185 		/* unmap the descriptor dma address */
1186 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1187 			dma_unmap_single(dev,
1188 					 ring->desc_cb[ring->next_to_use].dma,
1189 					ring->desc_cb[ring->next_to_use].length,
1190 					DMA_TO_DEVICE);
1191 		else if (ring->desc_cb[ring->next_to_use].length)
1192 			dma_unmap_page(dev,
1193 				       ring->desc_cb[ring->next_to_use].dma,
1194 				       ring->desc_cb[ring->next_to_use].length,
1195 				       DMA_TO_DEVICE);
1196 
1197 		ring->desc_cb[ring->next_to_use].length = 0;
1198 
1199 		/* rollback one */
1200 		ring_ptr_move_bw(ring, next_to_use);
1201 	}
1202 }
1203 
1204 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1205 {
1206 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1207 	struct hns3_nic_ring_data *ring_data =
1208 		&tx_ring_data(priv, skb->queue_mapping);
1209 	struct hns3_enet_ring *ring = ring_data->ring;
1210 	struct netdev_queue *dev_queue;
1211 	struct skb_frag_struct *frag;
1212 	int next_to_use_head;
1213 	int next_to_use_frag;
1214 	int buf_num;
1215 	int seg_num;
1216 	int size;
1217 	int ret;
1218 	int i;
1219 
1220 	/* Prefetch the data used later */
1221 	prefetch(skb->data);
1222 
1223 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1224 	case -EBUSY:
1225 		u64_stats_update_begin(&ring->syncp);
1226 		ring->stats.tx_busy++;
1227 		u64_stats_update_end(&ring->syncp);
1228 
1229 		goto out_net_tx_busy;
1230 	case -ENOMEM:
1231 		u64_stats_update_begin(&ring->syncp);
1232 		ring->stats.sw_err_cnt++;
1233 		u64_stats_update_end(&ring->syncp);
1234 		netdev_err(netdev, "no memory to xmit!\n");
1235 
1236 		goto out_err_tx_ok;
1237 	default:
1238 		break;
1239 	}
1240 
1241 	/* No. of segments (plus a header) */
1242 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1243 	/* Fill the first part */
1244 	size = skb_headlen(skb);
1245 
1246 	next_to_use_head = ring->next_to_use;
1247 
1248 	ret = priv->ops.fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1249 				  DESC_TYPE_SKB);
1250 	if (ret)
1251 		goto head_fill_err;
1252 
1253 	next_to_use_frag = ring->next_to_use;
1254 	/* Fill the fragments */
1255 	for (i = 1; i < seg_num; i++) {
1256 		frag = &skb_shinfo(skb)->frags[i - 1];
1257 		size = skb_frag_size(frag);
1258 
1259 		ret = priv->ops.fill_desc(ring, frag, size,
1260 					  seg_num - 1 == i ? 1 : 0,
1261 					  DESC_TYPE_PAGE);
1262 
1263 		if (ret)
1264 			goto frag_fill_err;
1265 	}
1266 
1267 	/* Complete translate all packets */
1268 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1269 	netdev_tx_sent_queue(dev_queue, skb->len);
1270 
1271 	wmb(); /* Commit all data before submit */
1272 
1273 	hnae3_queue_xmit(ring->tqp, buf_num);
1274 
1275 	return NETDEV_TX_OK;
1276 
1277 frag_fill_err:
1278 	hns3_clear_desc(ring, next_to_use_frag);
1279 
1280 head_fill_err:
1281 	hns3_clear_desc(ring, next_to_use_head);
1282 
1283 out_err_tx_ok:
1284 	dev_kfree_skb_any(skb);
1285 	return NETDEV_TX_OK;
1286 
1287 out_net_tx_busy:
1288 	netif_stop_subqueue(netdev, ring_data->queue_index);
1289 	smp_mb(); /* Commit all data before submit */
1290 
1291 	return NETDEV_TX_BUSY;
1292 }
1293 
1294 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1295 {
1296 	struct hnae3_handle *h = hns3_get_handle(netdev);
1297 	struct sockaddr *mac_addr = p;
1298 	int ret;
1299 
1300 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1301 		return -EADDRNOTAVAIL;
1302 
1303 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1304 		netdev_info(netdev, "already using mac address %pM\n",
1305 			    mac_addr->sa_data);
1306 		return 0;
1307 	}
1308 
1309 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1310 	if (ret) {
1311 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1312 		return ret;
1313 	}
1314 
1315 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1316 
1317 	return 0;
1318 }
1319 
1320 static int hns3_nic_do_ioctl(struct net_device *netdev,
1321 			     struct ifreq *ifr, int cmd)
1322 {
1323 	struct hnae3_handle *h = hns3_get_handle(netdev);
1324 
1325 	if (!netif_running(netdev))
1326 		return -EINVAL;
1327 
1328 	if (!h->ae_algo->ops->do_ioctl)
1329 		return -EOPNOTSUPP;
1330 
1331 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1332 }
1333 
1334 static int hns3_nic_set_features(struct net_device *netdev,
1335 				 netdev_features_t features)
1336 {
1337 	netdev_features_t changed = netdev->features ^ features;
1338 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1339 	struct hnae3_handle *h = priv->ae_handle;
1340 	int ret;
1341 
1342 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1343 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1344 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1345 		else
1346 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1347 	}
1348 
1349 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1350 		if (features & NETIF_F_GRO_HW)
1351 			ret = h->ae_algo->ops->set_gro_en(h, true);
1352 		else
1353 			ret = h->ae_algo->ops->set_gro_en(h, false);
1354 		if (ret)
1355 			return ret;
1356 	}
1357 
1358 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1359 	    h->ae_algo->ops->enable_vlan_filter) {
1360 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
1361 			h->ae_algo->ops->enable_vlan_filter(h, true);
1362 		else
1363 			h->ae_algo->ops->enable_vlan_filter(h, false);
1364 	}
1365 
1366 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1367 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1368 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
1369 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, true);
1370 		else
1371 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, false);
1372 
1373 		if (ret)
1374 			return ret;
1375 	}
1376 
1377 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1378 		if (features & NETIF_F_NTUPLE)
1379 			h->ae_algo->ops->enable_fd(h, true);
1380 		else
1381 			h->ae_algo->ops->enable_fd(h, false);
1382 	}
1383 
1384 	netdev->features = features;
1385 	return 0;
1386 }
1387 
1388 static void hns3_nic_get_stats64(struct net_device *netdev,
1389 				 struct rtnl_link_stats64 *stats)
1390 {
1391 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1392 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1393 	struct hnae3_handle *handle = priv->ae_handle;
1394 	struct hns3_enet_ring *ring;
1395 	unsigned int start;
1396 	unsigned int idx;
1397 	u64 tx_bytes = 0;
1398 	u64 rx_bytes = 0;
1399 	u64 tx_pkts = 0;
1400 	u64 rx_pkts = 0;
1401 	u64 tx_drop = 0;
1402 	u64 rx_drop = 0;
1403 
1404 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1405 		return;
1406 
1407 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1408 
1409 	for (idx = 0; idx < queue_num; idx++) {
1410 		/* fetch the tx stats */
1411 		ring = priv->ring_data[idx].ring;
1412 		do {
1413 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1414 			tx_bytes += ring->stats.tx_bytes;
1415 			tx_pkts += ring->stats.tx_pkts;
1416 			tx_drop += ring->stats.tx_busy;
1417 			tx_drop += ring->stats.sw_err_cnt;
1418 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1419 
1420 		/* fetch the rx stats */
1421 		ring = priv->ring_data[idx + queue_num].ring;
1422 		do {
1423 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1424 			rx_bytes += ring->stats.rx_bytes;
1425 			rx_pkts += ring->stats.rx_pkts;
1426 			rx_drop += ring->stats.non_vld_descs;
1427 			rx_drop += ring->stats.err_pkt_len;
1428 			rx_drop += ring->stats.l2_err;
1429 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1430 	}
1431 
1432 	stats->tx_bytes = tx_bytes;
1433 	stats->tx_packets = tx_pkts;
1434 	stats->rx_bytes = rx_bytes;
1435 	stats->rx_packets = rx_pkts;
1436 
1437 	stats->rx_errors = netdev->stats.rx_errors;
1438 	stats->multicast = netdev->stats.multicast;
1439 	stats->rx_length_errors = netdev->stats.rx_length_errors;
1440 	stats->rx_crc_errors = netdev->stats.rx_crc_errors;
1441 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1442 
1443 	stats->tx_errors = netdev->stats.tx_errors;
1444 	stats->rx_dropped = rx_drop + netdev->stats.rx_dropped;
1445 	stats->tx_dropped = tx_drop + netdev->stats.tx_dropped;
1446 	stats->collisions = netdev->stats.collisions;
1447 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1448 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1449 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1450 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1451 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1452 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1453 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1454 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1455 	stats->rx_compressed = netdev->stats.rx_compressed;
1456 	stats->tx_compressed = netdev->stats.tx_compressed;
1457 }
1458 
1459 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1460 {
1461 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1462 	struct hnae3_handle *h = hns3_get_handle(netdev);
1463 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1464 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1465 	u8 tc = mqprio_qopt->qopt.num_tc;
1466 	u16 mode = mqprio_qopt->mode;
1467 	u8 hw = mqprio_qopt->qopt.hw;
1468 	bool if_running;
1469 	int ret;
1470 
1471 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1472 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1473 		return -EOPNOTSUPP;
1474 
1475 	if (tc > HNAE3_MAX_TC)
1476 		return -EINVAL;
1477 
1478 	if (!netdev)
1479 		return -EINVAL;
1480 
1481 	if_running = netif_running(netdev);
1482 	if (if_running) {
1483 		hns3_nic_net_stop(netdev);
1484 		msleep(100);
1485 	}
1486 
1487 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1488 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1489 	if (ret)
1490 		goto out;
1491 
1492 	ret = hns3_nic_set_real_num_queue(netdev);
1493 
1494 out:
1495 	if (if_running)
1496 		hns3_nic_net_open(netdev);
1497 
1498 	return ret;
1499 }
1500 
1501 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1502 			     void *type_data)
1503 {
1504 	if (type != TC_SETUP_QDISC_MQPRIO)
1505 		return -EOPNOTSUPP;
1506 
1507 	return hns3_setup_tc(dev, type_data);
1508 }
1509 
1510 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1511 				__be16 proto, u16 vid)
1512 {
1513 	struct hnae3_handle *h = hns3_get_handle(netdev);
1514 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1515 	int ret = -EIO;
1516 
1517 	if (h->ae_algo->ops->set_vlan_filter)
1518 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1519 
1520 	if (!ret)
1521 		set_bit(vid, priv->active_vlans);
1522 
1523 	return ret;
1524 }
1525 
1526 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1527 				 __be16 proto, u16 vid)
1528 {
1529 	struct hnae3_handle *h = hns3_get_handle(netdev);
1530 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1531 	int ret = -EIO;
1532 
1533 	if (h->ae_algo->ops->set_vlan_filter)
1534 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1535 
1536 	if (!ret)
1537 		clear_bit(vid, priv->active_vlans);
1538 
1539 	return ret;
1540 }
1541 
1542 static int hns3_restore_vlan(struct net_device *netdev)
1543 {
1544 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1545 	int ret = 0;
1546 	u16 vid;
1547 
1548 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1549 		ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1550 		if (ret) {
1551 			netdev_err(netdev, "Restore vlan: %d filter, ret:%d\n",
1552 				   vid, ret);
1553 			return ret;
1554 		}
1555 	}
1556 
1557 	return ret;
1558 }
1559 
1560 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1561 				u8 qos, __be16 vlan_proto)
1562 {
1563 	struct hnae3_handle *h = hns3_get_handle(netdev);
1564 	int ret = -EIO;
1565 
1566 	if (h->ae_algo->ops->set_vf_vlan_filter)
1567 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1568 						   qos, vlan_proto);
1569 
1570 	return ret;
1571 }
1572 
1573 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1574 {
1575 	struct hnae3_handle *h = hns3_get_handle(netdev);
1576 	int ret;
1577 
1578 	if (!h->ae_algo->ops->set_mtu)
1579 		return -EOPNOTSUPP;
1580 
1581 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1582 	if (ret)
1583 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1584 			   ret);
1585 	else
1586 		netdev->mtu = new_mtu;
1587 
1588 	return ret;
1589 }
1590 
1591 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1592 {
1593 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1594 	struct hns3_enet_ring *tx_ring = NULL;
1595 	int timeout_queue = 0;
1596 	int hw_head, hw_tail;
1597 	int i;
1598 
1599 	/* Find the stopped queue the same way the stack does */
1600 	for (i = 0; i < ndev->real_num_tx_queues; i++) {
1601 		struct netdev_queue *q;
1602 		unsigned long trans_start;
1603 
1604 		q = netdev_get_tx_queue(ndev, i);
1605 		trans_start = q->trans_start;
1606 		if (netif_xmit_stopped(q) &&
1607 		    time_after(jiffies,
1608 			       (trans_start + ndev->watchdog_timeo))) {
1609 			timeout_queue = i;
1610 			break;
1611 		}
1612 	}
1613 
1614 	if (i == ndev->num_tx_queues) {
1615 		netdev_info(ndev,
1616 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1617 			    priv->tx_timeout_count);
1618 		return false;
1619 	}
1620 
1621 	tx_ring = priv->ring_data[timeout_queue].ring;
1622 
1623 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1624 				HNS3_RING_TX_RING_HEAD_REG);
1625 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1626 				HNS3_RING_TX_RING_TAIL_REG);
1627 	netdev_info(ndev,
1628 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1629 		    priv->tx_timeout_count,
1630 		    timeout_queue,
1631 		    tx_ring->next_to_use,
1632 		    tx_ring->next_to_clean,
1633 		    hw_head,
1634 		    hw_tail,
1635 		    readl(tx_ring->tqp_vector->mask_addr));
1636 
1637 	return true;
1638 }
1639 
1640 static void hns3_nic_net_timeout(struct net_device *ndev)
1641 {
1642 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1643 	struct hnae3_handle *h = priv->ae_handle;
1644 
1645 	if (!hns3_get_tx_timeo_queue_info(ndev))
1646 		return;
1647 
1648 	priv->tx_timeout_count++;
1649 
1650 	/* request the reset, and let the hclge to determine
1651 	 * which reset level should be done
1652 	 */
1653 	if (h->ae_algo->ops->reset_event)
1654 		h->ae_algo->ops->reset_event(h->pdev, h);
1655 }
1656 
1657 static const struct net_device_ops hns3_nic_netdev_ops = {
1658 	.ndo_open		= hns3_nic_net_open,
1659 	.ndo_stop		= hns3_nic_net_stop,
1660 	.ndo_start_xmit		= hns3_nic_net_xmit,
1661 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1662 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1663 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
1664 	.ndo_change_mtu		= hns3_nic_change_mtu,
1665 	.ndo_set_features	= hns3_nic_set_features,
1666 	.ndo_get_stats64	= hns3_nic_get_stats64,
1667 	.ndo_setup_tc		= hns3_nic_setup_tc,
1668 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1669 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1670 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1671 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1672 };
1673 
1674 static bool hns3_is_phys_func(struct pci_dev *pdev)
1675 {
1676 	u32 dev_id = pdev->device;
1677 
1678 	switch (dev_id) {
1679 	case HNAE3_DEV_ID_GE:
1680 	case HNAE3_DEV_ID_25GE:
1681 	case HNAE3_DEV_ID_25GE_RDMA:
1682 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1683 	case HNAE3_DEV_ID_50GE_RDMA:
1684 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1685 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1686 		return true;
1687 	case HNAE3_DEV_ID_100G_VF:
1688 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1689 		return false;
1690 	default:
1691 		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1692 			 dev_id);
1693 	}
1694 
1695 	return false;
1696 }
1697 
1698 static void hns3_disable_sriov(struct pci_dev *pdev)
1699 {
1700 	/* If our VFs are assigned we cannot shut down SR-IOV
1701 	 * without causing issues, so just leave the hardware
1702 	 * available but disabled
1703 	 */
1704 	if (pci_vfs_assigned(pdev)) {
1705 		dev_warn(&pdev->dev,
1706 			 "disabling driver while VFs are assigned\n");
1707 		return;
1708 	}
1709 
1710 	pci_disable_sriov(pdev);
1711 }
1712 
1713 static void hns3_get_dev_capability(struct pci_dev *pdev,
1714 				    struct hnae3_ae_dev *ae_dev)
1715 {
1716 	if (pdev->revision >= 0x21) {
1717 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1718 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1719 	}
1720 }
1721 
1722 /* hns3_probe - Device initialization routine
1723  * @pdev: PCI device information struct
1724  * @ent: entry in hns3_pci_tbl
1725  *
1726  * hns3_probe initializes a PF identified by a pci_dev structure.
1727  * The OS initialization, configuring of the PF private structure,
1728  * and a hardware reset occur.
1729  *
1730  * Returns 0 on success, negative on failure
1731  */
1732 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1733 {
1734 	struct hnae3_ae_dev *ae_dev;
1735 	int ret;
1736 
1737 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1738 			      GFP_KERNEL);
1739 	if (!ae_dev) {
1740 		ret = -ENOMEM;
1741 		return ret;
1742 	}
1743 
1744 	ae_dev->pdev = pdev;
1745 	ae_dev->flag = ent->driver_data;
1746 	ae_dev->dev_type = HNAE3_DEV_KNIC;
1747 	ae_dev->reset_type = HNAE3_NONE_RESET;
1748 	hns3_get_dev_capability(pdev, ae_dev);
1749 	pci_set_drvdata(pdev, ae_dev);
1750 
1751 	hnae3_register_ae_dev(ae_dev);
1752 
1753 	return 0;
1754 }
1755 
1756 /* hns3_remove - Device removal routine
1757  * @pdev: PCI device information struct
1758  */
1759 static void hns3_remove(struct pci_dev *pdev)
1760 {
1761 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1762 
1763 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1764 		hns3_disable_sriov(pdev);
1765 
1766 	hnae3_unregister_ae_dev(ae_dev);
1767 }
1768 
1769 /**
1770  * hns3_pci_sriov_configure
1771  * @pdev: pointer to a pci_dev structure
1772  * @num_vfs: number of VFs to allocate
1773  *
1774  * Enable or change the number of VFs. Called when the user updates the number
1775  * of VFs in sysfs.
1776  **/
1777 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1778 {
1779 	int ret;
1780 
1781 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1782 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
1783 		return -EINVAL;
1784 	}
1785 
1786 	if (num_vfs) {
1787 		ret = pci_enable_sriov(pdev, num_vfs);
1788 		if (ret)
1789 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1790 		else
1791 			return num_vfs;
1792 	} else if (!pci_vfs_assigned(pdev)) {
1793 		pci_disable_sriov(pdev);
1794 	} else {
1795 		dev_warn(&pdev->dev,
1796 			 "Unable to free VFs because some are assigned to VMs.\n");
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 static void hns3_shutdown(struct pci_dev *pdev)
1803 {
1804 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1805 
1806 	hnae3_unregister_ae_dev(ae_dev);
1807 	devm_kfree(&pdev->dev, ae_dev);
1808 	pci_set_drvdata(pdev, NULL);
1809 
1810 	if (system_state == SYSTEM_POWER_OFF)
1811 		pci_set_power_state(pdev, PCI_D3hot);
1812 }
1813 
1814 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1815 					    pci_channel_state_t state)
1816 {
1817 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1818 	pci_ers_result_t ret;
1819 
1820 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1821 
1822 	if (state == pci_channel_io_perm_failure)
1823 		return PCI_ERS_RESULT_DISCONNECT;
1824 
1825 	if (!ae_dev) {
1826 		dev_err(&pdev->dev,
1827 			"Can't recover - error happened during device init\n");
1828 		return PCI_ERS_RESULT_NONE;
1829 	}
1830 
1831 	if (ae_dev->ops->process_hw_error)
1832 		ret = ae_dev->ops->process_hw_error(ae_dev);
1833 	else
1834 		return PCI_ERS_RESULT_NONE;
1835 
1836 	return ret;
1837 }
1838 
1839 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
1840 {
1841 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1842 	struct device *dev = &pdev->dev;
1843 
1844 	dev_info(dev, "requesting reset due to PCI error\n");
1845 
1846 	/* request the reset */
1847 	if (ae_dev->ops->reset_event) {
1848 		ae_dev->ops->reset_event(pdev, NULL);
1849 		return PCI_ERS_RESULT_RECOVERED;
1850 	}
1851 
1852 	return PCI_ERS_RESULT_DISCONNECT;
1853 }
1854 
1855 static void hns3_reset_prepare(struct pci_dev *pdev)
1856 {
1857 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1858 
1859 	dev_info(&pdev->dev, "hns3 flr prepare\n");
1860 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
1861 		ae_dev->ops->flr_prepare(ae_dev);
1862 }
1863 
1864 static void hns3_reset_done(struct pci_dev *pdev)
1865 {
1866 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1867 
1868 	dev_info(&pdev->dev, "hns3 flr done\n");
1869 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
1870 		ae_dev->ops->flr_done(ae_dev);
1871 }
1872 
1873 static const struct pci_error_handlers hns3_err_handler = {
1874 	.error_detected = hns3_error_detected,
1875 	.slot_reset     = hns3_slot_reset,
1876 	.reset_prepare	= hns3_reset_prepare,
1877 	.reset_done	= hns3_reset_done,
1878 };
1879 
1880 static struct pci_driver hns3_driver = {
1881 	.name     = hns3_driver_name,
1882 	.id_table = hns3_pci_tbl,
1883 	.probe    = hns3_probe,
1884 	.remove   = hns3_remove,
1885 	.shutdown = hns3_shutdown,
1886 	.sriov_configure = hns3_pci_sriov_configure,
1887 	.err_handler    = &hns3_err_handler,
1888 };
1889 
1890 /* set default feature to hns3 */
1891 static void hns3_set_default_feature(struct net_device *netdev)
1892 {
1893 	struct hnae3_handle *h = hns3_get_handle(netdev);
1894 	struct pci_dev *pdev = h->pdev;
1895 
1896 	netdev->priv_flags |= IFF_UNICAST_FLT;
1897 
1898 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1899 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1900 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1901 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1902 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1903 
1904 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1905 
1906 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1907 
1908 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1909 		NETIF_F_HW_VLAN_CTAG_FILTER |
1910 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1911 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1912 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1913 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1914 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1915 
1916 	netdev->vlan_features |=
1917 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1918 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1919 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1920 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1921 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1922 
1923 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1924 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1925 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1926 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1927 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1928 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1929 
1930 	if (pdev->revision >= 0x21) {
1931 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER |
1932 			NETIF_F_GRO_HW;
1933 		netdev->features |= NETIF_F_GRO_HW;
1934 
1935 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
1936 			netdev->hw_features |= NETIF_F_NTUPLE;
1937 			netdev->features |= NETIF_F_NTUPLE;
1938 		}
1939 	}
1940 }
1941 
1942 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1943 			     struct hns3_desc_cb *cb)
1944 {
1945 	unsigned int order = hnae3_page_order(ring);
1946 	struct page *p;
1947 
1948 	p = dev_alloc_pages(order);
1949 	if (!p)
1950 		return -ENOMEM;
1951 
1952 	cb->priv = p;
1953 	cb->page_offset = 0;
1954 	cb->reuse_flag = 0;
1955 	cb->buf  = page_address(p);
1956 	cb->length = hnae3_page_size(ring);
1957 	cb->type = DESC_TYPE_PAGE;
1958 
1959 	return 0;
1960 }
1961 
1962 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1963 			     struct hns3_desc_cb *cb)
1964 {
1965 	if (cb->type == DESC_TYPE_SKB)
1966 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
1967 	else if (!HNAE3_IS_TX_RING(ring))
1968 		put_page((struct page *)cb->priv);
1969 	memset(cb, 0, sizeof(*cb));
1970 }
1971 
1972 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1973 {
1974 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1975 			       cb->length, ring_to_dma_dir(ring));
1976 
1977 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
1978 		return -EIO;
1979 
1980 	return 0;
1981 }
1982 
1983 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1984 			      struct hns3_desc_cb *cb)
1985 {
1986 	if (cb->type == DESC_TYPE_SKB)
1987 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1988 				 ring_to_dma_dir(ring));
1989 	else if (cb->length)
1990 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1991 			       ring_to_dma_dir(ring));
1992 }
1993 
1994 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
1995 {
1996 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
1997 	ring->desc[i].addr = 0;
1998 }
1999 
2000 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2001 {
2002 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2003 
2004 	if (!ring->desc_cb[i].dma)
2005 		return;
2006 
2007 	hns3_buffer_detach(ring, i);
2008 	hns3_free_buffer(ring, cb);
2009 }
2010 
2011 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2012 {
2013 	int i;
2014 
2015 	for (i = 0; i < ring->desc_num; i++)
2016 		hns3_free_buffer_detach(ring, i);
2017 }
2018 
2019 /* free desc along with its attached buffer */
2020 static void hns3_free_desc(struct hns3_enet_ring *ring)
2021 {
2022 	int size = ring->desc_num * sizeof(ring->desc[0]);
2023 
2024 	hns3_free_buffers(ring);
2025 
2026 	if (ring->desc) {
2027 		dma_free_coherent(ring_to_dev(ring), size,
2028 				  ring->desc, ring->desc_dma_addr);
2029 		ring->desc = NULL;
2030 	}
2031 }
2032 
2033 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2034 {
2035 	int size = ring->desc_num * sizeof(ring->desc[0]);
2036 
2037 	ring->desc = dma_zalloc_coherent(ring_to_dev(ring), size,
2038 					 &ring->desc_dma_addr,
2039 					 GFP_KERNEL);
2040 	if (!ring->desc)
2041 		return -ENOMEM;
2042 
2043 	return 0;
2044 }
2045 
2046 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2047 				   struct hns3_desc_cb *cb)
2048 {
2049 	int ret;
2050 
2051 	ret = hns3_alloc_buffer(ring, cb);
2052 	if (ret)
2053 		goto out;
2054 
2055 	ret = hns3_map_buffer(ring, cb);
2056 	if (ret)
2057 		goto out_with_buf;
2058 
2059 	return 0;
2060 
2061 out_with_buf:
2062 	hns3_free_buffer(ring, cb);
2063 out:
2064 	return ret;
2065 }
2066 
2067 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2068 {
2069 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2070 
2071 	if (ret)
2072 		return ret;
2073 
2074 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2075 
2076 	return 0;
2077 }
2078 
2079 /* Allocate memory for raw pkg, and map with dma */
2080 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2081 {
2082 	int i, j, ret;
2083 
2084 	for (i = 0; i < ring->desc_num; i++) {
2085 		ret = hns3_alloc_buffer_attach(ring, i);
2086 		if (ret)
2087 			goto out_buffer_fail;
2088 	}
2089 
2090 	return 0;
2091 
2092 out_buffer_fail:
2093 	for (j = i - 1; j >= 0; j--)
2094 		hns3_free_buffer_detach(ring, j);
2095 	return ret;
2096 }
2097 
2098 /* detach a in-used buffer and replace with a reserved one  */
2099 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2100 				struct hns3_desc_cb *res_cb)
2101 {
2102 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2103 	ring->desc_cb[i] = *res_cb;
2104 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2105 	ring->desc[i].rx.bd_base_info = 0;
2106 }
2107 
2108 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2109 {
2110 	ring->desc_cb[i].reuse_flag = 0;
2111 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
2112 		+ ring->desc_cb[i].page_offset);
2113 	ring->desc[i].rx.bd_base_info = 0;
2114 }
2115 
2116 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
2117 				      int *pkts)
2118 {
2119 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2120 
2121 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2122 	(*bytes) += desc_cb->length;
2123 	/* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
2124 	hns3_free_buffer_detach(ring, ring->next_to_clean);
2125 
2126 	ring_ptr_move_fw(ring, next_to_clean);
2127 }
2128 
2129 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2130 {
2131 	int u = ring->next_to_use;
2132 	int c = ring->next_to_clean;
2133 
2134 	if (unlikely(h > ring->desc_num))
2135 		return 0;
2136 
2137 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2138 }
2139 
2140 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2141 {
2142 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2143 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2144 	struct netdev_queue *dev_queue;
2145 	int bytes, pkts;
2146 	int head;
2147 
2148 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2149 	rmb(); /* Make sure head is ready before touch any data */
2150 
2151 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2152 		return; /* no data to poll */
2153 
2154 	if (unlikely(!is_valid_clean_head(ring, head))) {
2155 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2156 			   ring->next_to_use, ring->next_to_clean);
2157 
2158 		u64_stats_update_begin(&ring->syncp);
2159 		ring->stats.io_err_cnt++;
2160 		u64_stats_update_end(&ring->syncp);
2161 		return;
2162 	}
2163 
2164 	bytes = 0;
2165 	pkts = 0;
2166 	while (head != ring->next_to_clean) {
2167 		hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
2168 		/* Issue prefetch for next Tx descriptor */
2169 		prefetch(&ring->desc_cb[ring->next_to_clean]);
2170 	}
2171 
2172 	ring->tqp_vector->tx_group.total_bytes += bytes;
2173 	ring->tqp_vector->tx_group.total_packets += pkts;
2174 
2175 	u64_stats_update_begin(&ring->syncp);
2176 	ring->stats.tx_bytes += bytes;
2177 	ring->stats.tx_pkts += pkts;
2178 	u64_stats_update_end(&ring->syncp);
2179 
2180 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2181 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2182 
2183 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
2184 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2185 		/* Make sure that anybody stopping the queue after this
2186 		 * sees the new next_to_clean.
2187 		 */
2188 		smp_mb();
2189 		if (netif_tx_queue_stopped(dev_queue) &&
2190 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2191 			netif_tx_wake_queue(dev_queue);
2192 			ring->stats.restart_queue++;
2193 		}
2194 	}
2195 }
2196 
2197 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2198 {
2199 	int ntc = ring->next_to_clean;
2200 	int ntu = ring->next_to_use;
2201 
2202 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2203 }
2204 
2205 static void
2206 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
2207 {
2208 	struct hns3_desc_cb *desc_cb;
2209 	struct hns3_desc_cb res_cbs;
2210 	int i, ret;
2211 
2212 	for (i = 0; i < cleand_count; i++) {
2213 		desc_cb = &ring->desc_cb[ring->next_to_use];
2214 		if (desc_cb->reuse_flag) {
2215 			u64_stats_update_begin(&ring->syncp);
2216 			ring->stats.reuse_pg_cnt++;
2217 			u64_stats_update_end(&ring->syncp);
2218 
2219 			hns3_reuse_buffer(ring, ring->next_to_use);
2220 		} else {
2221 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
2222 			if (ret) {
2223 				u64_stats_update_begin(&ring->syncp);
2224 				ring->stats.sw_err_cnt++;
2225 				u64_stats_update_end(&ring->syncp);
2226 
2227 				netdev_err(ring->tqp->handle->kinfo.netdev,
2228 					   "hnae reserve buffer map failed.\n");
2229 				break;
2230 			}
2231 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2232 		}
2233 
2234 		ring_ptr_move_fw(ring, next_to_use);
2235 	}
2236 
2237 	wmb(); /* Make all data has been write before submit */
2238 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2239 }
2240 
2241 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2242 				struct hns3_enet_ring *ring, int pull_len,
2243 				struct hns3_desc_cb *desc_cb)
2244 {
2245 	struct hns3_desc *desc;
2246 	u32 truesize;
2247 	int size;
2248 	int last_offset;
2249 	bool twobufs;
2250 
2251 	twobufs = ((PAGE_SIZE < 8192) &&
2252 		hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2253 
2254 	desc = &ring->desc[ring->next_to_clean];
2255 	size = le16_to_cpu(desc->rx.size);
2256 
2257 	truesize = hnae3_buf_size(ring);
2258 
2259 	if (!twobufs)
2260 		last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2261 
2262 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2263 			size - pull_len, truesize);
2264 
2265 	 /* Avoid re-using remote pages,flag default unreuse */
2266 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2267 		return;
2268 
2269 	if (twobufs) {
2270 		/* If we are only owner of page we can reuse it */
2271 		if (likely(page_count(desc_cb->priv) == 1)) {
2272 			/* Flip page offset to other buffer */
2273 			desc_cb->page_offset ^= truesize;
2274 
2275 			desc_cb->reuse_flag = 1;
2276 			/* bump ref count on page before it is given*/
2277 			get_page(desc_cb->priv);
2278 		}
2279 		return;
2280 	}
2281 
2282 	/* Move offset up to the next cache line */
2283 	desc_cb->page_offset += truesize;
2284 
2285 	if (desc_cb->page_offset <= last_offset) {
2286 		desc_cb->reuse_flag = 1;
2287 		/* Bump ref count on page before it is given*/
2288 		get_page(desc_cb->priv);
2289 	}
2290 }
2291 
2292 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2293 			     struct hns3_desc *desc)
2294 {
2295 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2296 	int l3_type, l4_type;
2297 	u32 bd_base_info;
2298 	int ol4_type;
2299 	u32 l234info;
2300 
2301 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2302 	l234info = le32_to_cpu(desc->rx.l234_info);
2303 
2304 	skb->ip_summed = CHECKSUM_NONE;
2305 
2306 	skb_checksum_none_assert(skb);
2307 
2308 	if (!(netdev->features & NETIF_F_RXCSUM))
2309 		return;
2310 
2311 	/* We MUST enable hardware checksum before enabling hardware GRO */
2312 	if (skb_shinfo(skb)->gso_size) {
2313 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2314 		return;
2315 	}
2316 
2317 	/* check if hardware has done checksum */
2318 	if (!hnae3_get_bit(bd_base_info, HNS3_RXD_L3L4P_B))
2319 		return;
2320 
2321 	if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L3E_B) ||
2322 		     hnae3_get_bit(l234info, HNS3_RXD_L4E_B) ||
2323 		     hnae3_get_bit(l234info, HNS3_RXD_OL3E_B) ||
2324 		     hnae3_get_bit(l234info, HNS3_RXD_OL4E_B))) {
2325 		u64_stats_update_begin(&ring->syncp);
2326 		ring->stats.l3l4_csum_err++;
2327 		u64_stats_update_end(&ring->syncp);
2328 
2329 		return;
2330 	}
2331 
2332 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2333 				  HNS3_RXD_L3ID_S);
2334 	l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2335 				  HNS3_RXD_L4ID_S);
2336 
2337 	ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2338 				   HNS3_RXD_OL4ID_S);
2339 	switch (ol4_type) {
2340 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2341 	case HNS3_OL4_TYPE_NVGRE:
2342 		skb->csum_level = 1;
2343 		/* fall through */
2344 	case HNS3_OL4_TYPE_NO_TUN:
2345 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2346 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2347 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2348 		    (l4_type == HNS3_L4_TYPE_UDP ||
2349 		     l4_type == HNS3_L4_TYPE_TCP ||
2350 		     l4_type == HNS3_L4_TYPE_SCTP))
2351 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2352 		break;
2353 	default:
2354 		break;
2355 	}
2356 }
2357 
2358 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2359 {
2360 	if (skb_has_frag_list(skb))
2361 		napi_gro_flush(&ring->tqp_vector->napi, false);
2362 
2363 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2364 }
2365 
2366 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2367 				struct hns3_desc *desc, u32 l234info,
2368 				u16 *vlan_tag)
2369 {
2370 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2371 
2372 	if (pdev->revision == 0x20) {
2373 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2374 		if (!(*vlan_tag & VLAN_VID_MASK))
2375 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2376 
2377 		return (*vlan_tag != 0);
2378 	}
2379 
2380 #define HNS3_STRP_OUTER_VLAN	0x1
2381 #define HNS3_STRP_INNER_VLAN	0x2
2382 
2383 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2384 				HNS3_RXD_STRP_TAGP_S)) {
2385 	case HNS3_STRP_OUTER_VLAN:
2386 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2387 		return true;
2388 	case HNS3_STRP_INNER_VLAN:
2389 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2390 		return true;
2391 	default:
2392 		return false;
2393 	}
2394 }
2395 
2396 static int hns3_alloc_skb(struct hns3_enet_ring *ring, int length,
2397 			  unsigned char *va)
2398 {
2399 #define HNS3_NEED_ADD_FRAG	1
2400 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2401 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2402 	struct sk_buff *skb;
2403 
2404 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2405 	skb = ring->skb;
2406 	if (unlikely(!skb)) {
2407 		netdev_err(netdev, "alloc rx skb fail\n");
2408 
2409 		u64_stats_update_begin(&ring->syncp);
2410 		ring->stats.sw_err_cnt++;
2411 		u64_stats_update_end(&ring->syncp);
2412 
2413 		return -ENOMEM;
2414 	}
2415 
2416 	prefetchw(skb->data);
2417 
2418 	ring->pending_buf = 1;
2419 	ring->frag_num = 0;
2420 	ring->tail_skb = NULL;
2421 	if (length <= HNS3_RX_HEAD_SIZE) {
2422 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2423 
2424 		/* We can reuse buffer as-is, just make sure it is local */
2425 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2426 			desc_cb->reuse_flag = 1;
2427 		else /* This page cannot be reused so discard it */
2428 			put_page(desc_cb->priv);
2429 
2430 		ring_ptr_move_fw(ring, next_to_clean);
2431 		return 0;
2432 	}
2433 	u64_stats_update_begin(&ring->syncp);
2434 	ring->stats.seg_pkt_cnt++;
2435 	u64_stats_update_end(&ring->syncp);
2436 
2437 	ring->pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2438 	__skb_put(skb, ring->pull_len);
2439 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2440 			    desc_cb);
2441 	ring_ptr_move_fw(ring, next_to_clean);
2442 
2443 	return HNS3_NEED_ADD_FRAG;
2444 }
2445 
2446 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2447 			 struct sk_buff **out_skb, bool pending)
2448 {
2449 	struct sk_buff *skb = *out_skb;
2450 	struct sk_buff *head_skb = *out_skb;
2451 	struct sk_buff *new_skb;
2452 	struct hns3_desc_cb *desc_cb;
2453 	struct hns3_desc *pre_desc;
2454 	u32 bd_base_info;
2455 	int pre_bd;
2456 
2457 	/* if there is pending bd, the SW param next_to_clean has moved
2458 	 * to next and the next is NULL
2459 	 */
2460 	if (pending) {
2461 		pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2462 			ring->desc_num;
2463 		pre_desc = &ring->desc[pre_bd];
2464 		bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2465 	} else {
2466 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2467 	}
2468 
2469 	while (!hnae3_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
2470 		desc = &ring->desc[ring->next_to_clean];
2471 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2472 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2473 		if (!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B))
2474 			return -ENXIO;
2475 
2476 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2477 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2478 						 HNS3_RX_HEAD_SIZE);
2479 			if (unlikely(!new_skb)) {
2480 				netdev_err(ring->tqp->handle->kinfo.netdev,
2481 					   "alloc rx skb frag fail\n");
2482 				return -ENXIO;
2483 			}
2484 			ring->frag_num = 0;
2485 
2486 			if (ring->tail_skb) {
2487 				ring->tail_skb->next = new_skb;
2488 				ring->tail_skb = new_skb;
2489 			} else {
2490 				skb_shinfo(skb)->frag_list = new_skb;
2491 				ring->tail_skb = new_skb;
2492 			}
2493 		}
2494 
2495 		if (ring->tail_skb) {
2496 			head_skb->truesize += hnae3_buf_size(ring);
2497 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2498 			head_skb->len += le16_to_cpu(desc->rx.size);
2499 			skb = ring->tail_skb;
2500 		}
2501 
2502 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2503 		ring_ptr_move_fw(ring, next_to_clean);
2504 		ring->pending_buf++;
2505 	}
2506 
2507 	return 0;
2508 }
2509 
2510 static void hns3_set_gro_param(struct sk_buff *skb, u32 l234info,
2511 			       u32 bd_base_info)
2512 {
2513 	u16 gro_count;
2514 	u32 l3_type;
2515 
2516 	gro_count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M,
2517 				    HNS3_RXD_GRO_COUNT_S);
2518 	/* if there is no HW GRO, do not set gro params */
2519 	if (!gro_count)
2520 		return;
2521 
2522 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
2523 	 * to skb_shinfo(skb)->gso_segs
2524 	 */
2525 	NAPI_GRO_CB(skb)->count = gro_count;
2526 
2527 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2528 				  HNS3_RXD_L3ID_S);
2529 	if (l3_type == HNS3_L3_TYPE_IPV4)
2530 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2531 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2532 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2533 	else
2534 		return;
2535 
2536 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2537 						    HNS3_RXD_GRO_SIZE_M,
2538 						    HNS3_RXD_GRO_SIZE_S);
2539 	if (skb_shinfo(skb)->gso_size)
2540 		tcp_gro_complete(skb);
2541 }
2542 
2543 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2544 				     struct sk_buff *skb)
2545 {
2546 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2547 	struct hnae3_handle *handle = ring->tqp->handle;
2548 	enum pkt_hash_types rss_type;
2549 
2550 	if (le32_to_cpu(desc->rx.rss_hash))
2551 		rss_type = handle->kinfo.rss_type;
2552 	else
2553 		rss_type = PKT_HASH_TYPE_NONE;
2554 
2555 	skb_set_hash(skb, le32_to_cpu(desc->rx.rss_hash), rss_type);
2556 }
2557 
2558 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2559 			     struct sk_buff **out_skb)
2560 {
2561 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2562 	struct sk_buff *skb = ring->skb;
2563 	struct hns3_desc_cb *desc_cb;
2564 	struct hns3_desc *desc;
2565 	u32 bd_base_info;
2566 	u32 l234info;
2567 	int length;
2568 	int ret;
2569 
2570 	desc = &ring->desc[ring->next_to_clean];
2571 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2572 
2573 	prefetch(desc);
2574 
2575 	length = le16_to_cpu(desc->rx.size);
2576 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2577 
2578 	/* Check valid BD */
2579 	if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B)))
2580 		return -ENXIO;
2581 
2582 	if (!skb)
2583 		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2584 
2585 	/* Prefetch first cache line of first page
2586 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2587 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2588 	 * actual we can have greater size of caches with 128B Level 1 cache
2589 	 * lines. In such a case, single fetch would suffice to cache in the
2590 	 * relevant part of the header.
2591 	 */
2592 	prefetch(ring->va);
2593 #if L1_CACHE_BYTES < 128
2594 	prefetch(ring->va + L1_CACHE_BYTES);
2595 #endif
2596 
2597 	if (!skb) {
2598 		ret = hns3_alloc_skb(ring, length, ring->va);
2599 		*out_skb = skb = ring->skb;
2600 
2601 		if (ret < 0) /* alloc buffer fail */
2602 			return ret;
2603 		if (ret > 0) { /* need add frag */
2604 			ret = hns3_add_frag(ring, desc, &skb, false);
2605 			if (ret)
2606 				return ret;
2607 
2608 			/* As the head data may be changed when GRO enable, copy
2609 			 * the head data in after other data rx completed
2610 			 */
2611 			memcpy(skb->data, ring->va,
2612 			       ALIGN(ring->pull_len, sizeof(long)));
2613 		}
2614 	} else {
2615 		ret = hns3_add_frag(ring, desc, &skb, true);
2616 		if (ret)
2617 			return ret;
2618 
2619 		/* As the head data may be changed when GRO enable, copy
2620 		 * the head data in after other data rx completed
2621 		 */
2622 		memcpy(skb->data, ring->va,
2623 		       ALIGN(ring->pull_len, sizeof(long)));
2624 	}
2625 
2626 	l234info = le32_to_cpu(desc->rx.l234_info);
2627 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2628 
2629 	/* Based on hw strategy, the tag offloaded will be stored at
2630 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2631 	 * in one layer tag case.
2632 	 */
2633 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2634 		u16 vlan_tag;
2635 
2636 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2637 			__vlan_hwaccel_put_tag(skb,
2638 					       htons(ETH_P_8021Q),
2639 					       vlan_tag);
2640 	}
2641 
2642 	if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B))) {
2643 		u64_stats_update_begin(&ring->syncp);
2644 		ring->stats.non_vld_descs++;
2645 		u64_stats_update_end(&ring->syncp);
2646 
2647 		dev_kfree_skb_any(skb);
2648 		return -EINVAL;
2649 	}
2650 
2651 	if (unlikely((!desc->rx.pkt_len) ||
2652 		     hnae3_get_bit(l234info, HNS3_RXD_TRUNCAT_B))) {
2653 		u64_stats_update_begin(&ring->syncp);
2654 		ring->stats.err_pkt_len++;
2655 		u64_stats_update_end(&ring->syncp);
2656 
2657 		dev_kfree_skb_any(skb);
2658 		return -EFAULT;
2659 	}
2660 
2661 	if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L2E_B))) {
2662 		u64_stats_update_begin(&ring->syncp);
2663 		ring->stats.l2_err++;
2664 		u64_stats_update_end(&ring->syncp);
2665 
2666 		dev_kfree_skb_any(skb);
2667 		return -EFAULT;
2668 	}
2669 
2670 	u64_stats_update_begin(&ring->syncp);
2671 	ring->stats.rx_pkts++;
2672 	ring->stats.rx_bytes += skb->len;
2673 	u64_stats_update_end(&ring->syncp);
2674 
2675 	ring->tqp_vector->rx_group.total_bytes += skb->len;
2676 
2677 	/* This is needed in order to enable forwarding support */
2678 	hns3_set_gro_param(skb, l234info, bd_base_info);
2679 
2680 	hns3_rx_checksum(ring, skb, desc);
2681 	*out_skb = skb;
2682 	hns3_set_rx_skb_rss_type(ring, skb);
2683 
2684 	return 0;
2685 }
2686 
2687 int hns3_clean_rx_ring(
2688 		struct hns3_enet_ring *ring, int budget,
2689 		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2690 {
2691 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2692 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2693 	int recv_pkts, recv_bds, clean_count, err;
2694 	int unused_count = hns3_desc_unused(ring) - ring->pending_buf;
2695 	struct sk_buff *skb = ring->skb;
2696 	int num;
2697 
2698 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2699 	rmb(); /* Make sure num taken effect before the other data is touched */
2700 
2701 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2702 	num -= unused_count;
2703 
2704 	while (recv_pkts < budget && recv_bds < num) {
2705 		/* Reuse or realloc buffers */
2706 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2707 			hns3_nic_alloc_rx_buffers(ring,
2708 						  clean_count + unused_count);
2709 			clean_count = 0;
2710 			unused_count = hns3_desc_unused(ring) -
2711 					ring->pending_buf;
2712 		}
2713 
2714 		/* Poll one pkt */
2715 		err = hns3_handle_rx_bd(ring, &skb);
2716 		if (unlikely(!skb)) /* This fault cannot be repaired */
2717 			goto out;
2718 
2719 		if (err == -ENXIO) { /* Do not get FE for the packet */
2720 			goto out;
2721 		} else if (unlikely(err)) {  /* Do jump the err */
2722 			recv_bds += ring->pending_buf;
2723 			clean_count += ring->pending_buf;
2724 			ring->skb = NULL;
2725 			ring->pending_buf = 0;
2726 			continue;
2727 		}
2728 
2729 		/* Do update ip stack process */
2730 		skb->protocol = eth_type_trans(skb, netdev);
2731 		rx_fn(ring, skb);
2732 		recv_bds += ring->pending_buf;
2733 		clean_count += ring->pending_buf;
2734 		ring->skb = NULL;
2735 		ring->pending_buf = 0;
2736 
2737 		recv_pkts++;
2738 	}
2739 
2740 out:
2741 	/* Make all data has been write before submit */
2742 	if (clean_count + unused_count > 0)
2743 		hns3_nic_alloc_rx_buffers(ring,
2744 					  clean_count + unused_count);
2745 
2746 	return recv_pkts;
2747 }
2748 
2749 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2750 {
2751 	struct hns3_enet_tqp_vector *tqp_vector =
2752 					ring_group->ring->tqp_vector;
2753 	enum hns3_flow_level_range new_flow_level;
2754 	int packets_per_msecs;
2755 	int bytes_per_msecs;
2756 	u32 time_passed_ms;
2757 	u16 new_int_gl;
2758 
2759 	if (!ring_group->coal.int_gl || !tqp_vector->last_jiffies)
2760 		return false;
2761 
2762 	if (ring_group->total_packets == 0) {
2763 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
2764 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
2765 		return true;
2766 	}
2767 
2768 	/* Simple throttlerate management
2769 	 * 0-10MB/s   lower     (50000 ints/s)
2770 	 * 10-20MB/s   middle    (20000 ints/s)
2771 	 * 20-1249MB/s high      (18000 ints/s)
2772 	 * > 40000pps  ultra     (8000 ints/s)
2773 	 */
2774 	new_flow_level = ring_group->coal.flow_level;
2775 	new_int_gl = ring_group->coal.int_gl;
2776 	time_passed_ms =
2777 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2778 
2779 	if (!time_passed_ms)
2780 		return false;
2781 
2782 	do_div(ring_group->total_packets, time_passed_ms);
2783 	packets_per_msecs = ring_group->total_packets;
2784 
2785 	do_div(ring_group->total_bytes, time_passed_ms);
2786 	bytes_per_msecs = ring_group->total_bytes;
2787 
2788 #define HNS3_RX_LOW_BYTE_RATE 10000
2789 #define HNS3_RX_MID_BYTE_RATE 20000
2790 
2791 	switch (new_flow_level) {
2792 	case HNS3_FLOW_LOW:
2793 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2794 			new_flow_level = HNS3_FLOW_MID;
2795 		break;
2796 	case HNS3_FLOW_MID:
2797 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2798 			new_flow_level = HNS3_FLOW_HIGH;
2799 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2800 			new_flow_level = HNS3_FLOW_LOW;
2801 		break;
2802 	case HNS3_FLOW_HIGH:
2803 	case HNS3_FLOW_ULTRA:
2804 	default:
2805 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2806 			new_flow_level = HNS3_FLOW_MID;
2807 		break;
2808 	}
2809 
2810 #define HNS3_RX_ULTRA_PACKET_RATE 40
2811 
2812 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2813 	    &tqp_vector->rx_group == ring_group)
2814 		new_flow_level = HNS3_FLOW_ULTRA;
2815 
2816 	switch (new_flow_level) {
2817 	case HNS3_FLOW_LOW:
2818 		new_int_gl = HNS3_INT_GL_50K;
2819 		break;
2820 	case HNS3_FLOW_MID:
2821 		new_int_gl = HNS3_INT_GL_20K;
2822 		break;
2823 	case HNS3_FLOW_HIGH:
2824 		new_int_gl = HNS3_INT_GL_18K;
2825 		break;
2826 	case HNS3_FLOW_ULTRA:
2827 		new_int_gl = HNS3_INT_GL_8K;
2828 		break;
2829 	default:
2830 		break;
2831 	}
2832 
2833 	ring_group->total_bytes = 0;
2834 	ring_group->total_packets = 0;
2835 	ring_group->coal.flow_level = new_flow_level;
2836 	if (new_int_gl != ring_group->coal.int_gl) {
2837 		ring_group->coal.int_gl = new_int_gl;
2838 		return true;
2839 	}
2840 	return false;
2841 }
2842 
2843 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2844 {
2845 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2846 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2847 	bool rx_update, tx_update;
2848 
2849 	if (tqp_vector->int_adapt_down > 0) {
2850 		tqp_vector->int_adapt_down--;
2851 		return;
2852 	}
2853 
2854 	if (rx_group->coal.gl_adapt_enable) {
2855 		rx_update = hns3_get_new_int_gl(rx_group);
2856 		if (rx_update)
2857 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
2858 						       rx_group->coal.int_gl);
2859 	}
2860 
2861 	if (tx_group->coal.gl_adapt_enable) {
2862 		tx_update = hns3_get_new_int_gl(&tqp_vector->tx_group);
2863 		if (tx_update)
2864 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
2865 						       tx_group->coal.int_gl);
2866 	}
2867 
2868 	tqp_vector->last_jiffies = jiffies;
2869 	tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
2870 }
2871 
2872 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2873 {
2874 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
2875 	struct hns3_enet_ring *ring;
2876 	int rx_pkt_total = 0;
2877 
2878 	struct hns3_enet_tqp_vector *tqp_vector =
2879 		container_of(napi, struct hns3_enet_tqp_vector, napi);
2880 	bool clean_complete = true;
2881 	int rx_budget;
2882 
2883 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2884 		napi_complete(napi);
2885 		return 0;
2886 	}
2887 
2888 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2889 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2890 	 */
2891 	hns3_for_each_ring(ring, tqp_vector->tx_group)
2892 		hns3_clean_tx_ring(ring);
2893 
2894 	/* make sure rx ring budget not smaller than 1 */
2895 	rx_budget = max(budget / tqp_vector->num_tqps, 1);
2896 
2897 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
2898 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2899 						    hns3_rx_skb);
2900 
2901 		if (rx_cleaned >= rx_budget)
2902 			clean_complete = false;
2903 
2904 		rx_pkt_total += rx_cleaned;
2905 	}
2906 
2907 	tqp_vector->rx_group.total_packets += rx_pkt_total;
2908 
2909 	if (!clean_complete)
2910 		return budget;
2911 
2912 	if (likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) &&
2913 	    napi_complete(napi)) {
2914 		hns3_update_new_int_gl(tqp_vector);
2915 		hns3_mask_vector_irq(tqp_vector, 1);
2916 	}
2917 
2918 	return rx_pkt_total;
2919 }
2920 
2921 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2922 				      struct hnae3_ring_chain_node *head)
2923 {
2924 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2925 	struct hnae3_ring_chain_node *cur_chain = head;
2926 	struct hnae3_ring_chain_node *chain;
2927 	struct hns3_enet_ring *tx_ring;
2928 	struct hns3_enet_ring *rx_ring;
2929 
2930 	tx_ring = tqp_vector->tx_group.ring;
2931 	if (tx_ring) {
2932 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2933 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2934 			      HNAE3_RING_TYPE_TX);
2935 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2936 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2937 
2938 		cur_chain->next = NULL;
2939 
2940 		while (tx_ring->next) {
2941 			tx_ring = tx_ring->next;
2942 
2943 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2944 					     GFP_KERNEL);
2945 			if (!chain)
2946 				goto err_free_chain;
2947 
2948 			cur_chain->next = chain;
2949 			chain->tqp_index = tx_ring->tqp->tqp_index;
2950 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2951 				      HNAE3_RING_TYPE_TX);
2952 			hnae3_set_field(chain->int_gl_idx,
2953 					HNAE3_RING_GL_IDX_M,
2954 					HNAE3_RING_GL_IDX_S,
2955 					HNAE3_RING_GL_TX);
2956 
2957 			cur_chain = chain;
2958 		}
2959 	}
2960 
2961 	rx_ring = tqp_vector->rx_group.ring;
2962 	if (!tx_ring && rx_ring) {
2963 		cur_chain->next = NULL;
2964 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2965 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2966 			      HNAE3_RING_TYPE_RX);
2967 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2968 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2969 
2970 		rx_ring = rx_ring->next;
2971 	}
2972 
2973 	while (rx_ring) {
2974 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2975 		if (!chain)
2976 			goto err_free_chain;
2977 
2978 		cur_chain->next = chain;
2979 		chain->tqp_index = rx_ring->tqp->tqp_index;
2980 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2981 			      HNAE3_RING_TYPE_RX);
2982 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2983 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2984 
2985 		cur_chain = chain;
2986 
2987 		rx_ring = rx_ring->next;
2988 	}
2989 
2990 	return 0;
2991 
2992 err_free_chain:
2993 	cur_chain = head->next;
2994 	while (cur_chain) {
2995 		chain = cur_chain->next;
2996 		devm_kfree(&pdev->dev, chain);
2997 		cur_chain = chain;
2998 	}
2999 
3000 	return -ENOMEM;
3001 }
3002 
3003 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3004 					struct hnae3_ring_chain_node *head)
3005 {
3006 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3007 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3008 
3009 	chain = head->next;
3010 
3011 	while (chain) {
3012 		chain_tmp = chain->next;
3013 		devm_kfree(&pdev->dev, chain);
3014 		chain = chain_tmp;
3015 	}
3016 }
3017 
3018 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3019 				   struct hns3_enet_ring *ring)
3020 {
3021 	ring->next = group->ring;
3022 	group->ring = ring;
3023 
3024 	group->count++;
3025 }
3026 
3027 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3028 {
3029 	struct pci_dev *pdev = priv->ae_handle->pdev;
3030 	struct hns3_enet_tqp_vector *tqp_vector;
3031 	int num_vectors = priv->vector_num;
3032 	int numa_node;
3033 	int vector_i;
3034 
3035 	numa_node = dev_to_node(&pdev->dev);
3036 
3037 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3038 		tqp_vector = &priv->tqp_vector[vector_i];
3039 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3040 				&tqp_vector->affinity_mask);
3041 	}
3042 }
3043 
3044 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3045 {
3046 	struct hnae3_ring_chain_node vector_ring_chain;
3047 	struct hnae3_handle *h = priv->ae_handle;
3048 	struct hns3_enet_tqp_vector *tqp_vector;
3049 	int ret = 0;
3050 	int i;
3051 
3052 	hns3_nic_set_cpumask(priv);
3053 
3054 	for (i = 0; i < priv->vector_num; i++) {
3055 		tqp_vector = &priv->tqp_vector[i];
3056 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3057 		tqp_vector->num_tqps = 0;
3058 	}
3059 
3060 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3061 		u16 vector_i = i % priv->vector_num;
3062 		u16 tqp_num = h->kinfo.num_tqps;
3063 
3064 		tqp_vector = &priv->tqp_vector[vector_i];
3065 
3066 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3067 				       priv->ring_data[i].ring);
3068 
3069 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3070 				       priv->ring_data[i + tqp_num].ring);
3071 
3072 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
3073 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3074 		tqp_vector->num_tqps++;
3075 	}
3076 
3077 	for (i = 0; i < priv->vector_num; i++) {
3078 		tqp_vector = &priv->tqp_vector[i];
3079 
3080 		tqp_vector->rx_group.total_bytes = 0;
3081 		tqp_vector->rx_group.total_packets = 0;
3082 		tqp_vector->tx_group.total_bytes = 0;
3083 		tqp_vector->tx_group.total_packets = 0;
3084 		tqp_vector->handle = h;
3085 
3086 		ret = hns3_get_vector_ring_chain(tqp_vector,
3087 						 &vector_ring_chain);
3088 		if (ret)
3089 			return ret;
3090 
3091 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3092 			tqp_vector->vector_irq, &vector_ring_chain);
3093 
3094 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3095 
3096 		if (ret)
3097 			goto map_ring_fail;
3098 
3099 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3100 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3101 	}
3102 
3103 	return 0;
3104 
3105 map_ring_fail:
3106 	while (i--)
3107 		netif_napi_del(&priv->tqp_vector[i].napi);
3108 
3109 	return ret;
3110 }
3111 
3112 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3113 {
3114 	struct hnae3_handle *h = priv->ae_handle;
3115 	struct hns3_enet_tqp_vector *tqp_vector;
3116 	struct hnae3_vector_info *vector;
3117 	struct pci_dev *pdev = h->pdev;
3118 	u16 tqp_num = h->kinfo.num_tqps;
3119 	u16 vector_num;
3120 	int ret = 0;
3121 	u16 i;
3122 
3123 	/* RSS size, cpu online and vector_num should be the same */
3124 	/* Should consider 2p/4p later */
3125 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3126 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3127 			      GFP_KERNEL);
3128 	if (!vector)
3129 		return -ENOMEM;
3130 
3131 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3132 
3133 	priv->vector_num = vector_num;
3134 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3135 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3136 			     GFP_KERNEL);
3137 	if (!priv->tqp_vector) {
3138 		ret = -ENOMEM;
3139 		goto out;
3140 	}
3141 
3142 	for (i = 0; i < priv->vector_num; i++) {
3143 		tqp_vector = &priv->tqp_vector[i];
3144 		tqp_vector->idx = i;
3145 		tqp_vector->mask_addr = vector[i].io_addr;
3146 		tqp_vector->vector_irq = vector[i].vector;
3147 		hns3_vector_gl_rl_init(tqp_vector, priv);
3148 	}
3149 
3150 out:
3151 	devm_kfree(&pdev->dev, vector);
3152 	return ret;
3153 }
3154 
3155 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3156 {
3157 	group->ring = NULL;
3158 	group->count = 0;
3159 }
3160 
3161 static int hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3162 {
3163 	struct hnae3_ring_chain_node vector_ring_chain;
3164 	struct hnae3_handle *h = priv->ae_handle;
3165 	struct hns3_enet_tqp_vector *tqp_vector;
3166 	int i, ret;
3167 
3168 	for (i = 0; i < priv->vector_num; i++) {
3169 		tqp_vector = &priv->tqp_vector[i];
3170 
3171 		ret = hns3_get_vector_ring_chain(tqp_vector,
3172 						 &vector_ring_chain);
3173 		if (ret)
3174 			return ret;
3175 
3176 		ret = h->ae_algo->ops->unmap_ring_from_vector(h,
3177 			tqp_vector->vector_irq, &vector_ring_chain);
3178 		if (ret)
3179 			return ret;
3180 
3181 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3182 
3183 		if (priv->tqp_vector[i].irq_init_flag == HNS3_VECTOR_INITED) {
3184 			(void)irq_set_affinity_hint(
3185 				priv->tqp_vector[i].vector_irq,
3186 						    NULL);
3187 			free_irq(priv->tqp_vector[i].vector_irq,
3188 				 &priv->tqp_vector[i]);
3189 		}
3190 
3191 		priv->ring_data[i].ring->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3192 		hns3_clear_ring_group(&tqp_vector->rx_group);
3193 		hns3_clear_ring_group(&tqp_vector->tx_group);
3194 		netif_napi_del(&priv->tqp_vector[i].napi);
3195 	}
3196 
3197 	return 0;
3198 }
3199 
3200 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3201 {
3202 	struct hnae3_handle *h = priv->ae_handle;
3203 	struct pci_dev *pdev = h->pdev;
3204 	int i, ret;
3205 
3206 	for (i = 0; i < priv->vector_num; i++) {
3207 		struct hns3_enet_tqp_vector *tqp_vector;
3208 
3209 		tqp_vector = &priv->tqp_vector[i];
3210 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3211 		if (ret)
3212 			return ret;
3213 	}
3214 
3215 	devm_kfree(&pdev->dev, priv->tqp_vector);
3216 	return 0;
3217 }
3218 
3219 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3220 			     int ring_type)
3221 {
3222 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
3223 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3224 	struct pci_dev *pdev = priv->ae_handle->pdev;
3225 	struct hns3_enet_ring *ring;
3226 
3227 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3228 	if (!ring)
3229 		return -ENOMEM;
3230 
3231 	if (ring_type == HNAE3_RING_TYPE_TX) {
3232 		ring_data[q->tqp_index].ring = ring;
3233 		ring_data[q->tqp_index].queue_index = q->tqp_index;
3234 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3235 	} else {
3236 		ring_data[q->tqp_index + queue_num].ring = ring;
3237 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3238 		ring->io_base = q->io_base;
3239 	}
3240 
3241 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3242 
3243 	ring->tqp = q;
3244 	ring->desc = NULL;
3245 	ring->desc_cb = NULL;
3246 	ring->dev = priv->dev;
3247 	ring->desc_dma_addr = 0;
3248 	ring->buf_size = q->buf_size;
3249 	ring->desc_num = q->desc_num;
3250 	ring->next_to_use = 0;
3251 	ring->next_to_clean = 0;
3252 
3253 	return 0;
3254 }
3255 
3256 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3257 			      struct hns3_nic_priv *priv)
3258 {
3259 	int ret;
3260 
3261 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3262 	if (ret)
3263 		return ret;
3264 
3265 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3266 	if (ret) {
3267 		devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3268 		return ret;
3269 	}
3270 
3271 	return 0;
3272 }
3273 
3274 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3275 {
3276 	struct hnae3_handle *h = priv->ae_handle;
3277 	struct pci_dev *pdev = h->pdev;
3278 	int i, ret;
3279 
3280 	priv->ring_data =  devm_kzalloc(&pdev->dev,
3281 					array3_size(h->kinfo.num_tqps,
3282 						    sizeof(*priv->ring_data),
3283 						    2),
3284 					GFP_KERNEL);
3285 	if (!priv->ring_data)
3286 		return -ENOMEM;
3287 
3288 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3289 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3290 		if (ret)
3291 			goto err;
3292 	}
3293 
3294 	return 0;
3295 err:
3296 	while (i--) {
3297 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3298 		devm_kfree(priv->dev,
3299 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3300 	}
3301 
3302 	devm_kfree(&pdev->dev, priv->ring_data);
3303 	return ret;
3304 }
3305 
3306 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3307 {
3308 	struct hnae3_handle *h = priv->ae_handle;
3309 	int i;
3310 
3311 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3312 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3313 		devm_kfree(priv->dev,
3314 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3315 	}
3316 	devm_kfree(priv->dev, priv->ring_data);
3317 }
3318 
3319 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3320 {
3321 	int ret;
3322 
3323 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3324 		return -EINVAL;
3325 
3326 	ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
3327 				GFP_KERNEL);
3328 	if (!ring->desc_cb) {
3329 		ret = -ENOMEM;
3330 		goto out;
3331 	}
3332 
3333 	ret = hns3_alloc_desc(ring);
3334 	if (ret)
3335 		goto out_with_desc_cb;
3336 
3337 	if (!HNAE3_IS_TX_RING(ring)) {
3338 		ret = hns3_alloc_ring_buffers(ring);
3339 		if (ret)
3340 			goto out_with_desc;
3341 	}
3342 
3343 	return 0;
3344 
3345 out_with_desc:
3346 	hns3_free_desc(ring);
3347 out_with_desc_cb:
3348 	kfree(ring->desc_cb);
3349 	ring->desc_cb = NULL;
3350 out:
3351 	return ret;
3352 }
3353 
3354 static void hns3_fini_ring(struct hns3_enet_ring *ring)
3355 {
3356 	hns3_free_desc(ring);
3357 	kfree(ring->desc_cb);
3358 	ring->desc_cb = NULL;
3359 	ring->next_to_clean = 0;
3360 	ring->next_to_use = 0;
3361 }
3362 
3363 static int hns3_buf_size2type(u32 buf_size)
3364 {
3365 	int bd_size_type;
3366 
3367 	switch (buf_size) {
3368 	case 512:
3369 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3370 		break;
3371 	case 1024:
3372 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3373 		break;
3374 	case 2048:
3375 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3376 		break;
3377 	case 4096:
3378 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3379 		break;
3380 	default:
3381 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3382 	}
3383 
3384 	return bd_size_type;
3385 }
3386 
3387 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3388 {
3389 	dma_addr_t dma = ring->desc_dma_addr;
3390 	struct hnae3_queue *q = ring->tqp;
3391 
3392 	if (!HNAE3_IS_TX_RING(ring)) {
3393 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
3394 			       (u32)dma);
3395 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3396 			       (u32)((dma >> 31) >> 1));
3397 
3398 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3399 			       hns3_buf_size2type(ring->buf_size));
3400 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3401 			       ring->desc_num / 8 - 1);
3402 
3403 	} else {
3404 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3405 			       (u32)dma);
3406 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3407 			       (u32)((dma >> 31) >> 1));
3408 
3409 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3410 			       ring->desc_num / 8 - 1);
3411 	}
3412 }
3413 
3414 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3415 {
3416 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3417 	int i;
3418 
3419 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3420 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3421 		int j;
3422 
3423 		if (!tc_info->enable)
3424 			continue;
3425 
3426 		for (j = 0; j < tc_info->tqp_count; j++) {
3427 			struct hnae3_queue *q;
3428 
3429 			q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3430 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3431 				       tc_info->tc);
3432 		}
3433 	}
3434 }
3435 
3436 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3437 {
3438 	struct hnae3_handle *h = priv->ae_handle;
3439 	int ring_num = h->kinfo.num_tqps * 2;
3440 	int i, j;
3441 	int ret;
3442 
3443 	for (i = 0; i < ring_num; i++) {
3444 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3445 		if (ret) {
3446 			dev_err(priv->dev,
3447 				"Alloc ring memory fail! ret=%d\n", ret);
3448 			goto out_when_alloc_ring_memory;
3449 		}
3450 
3451 		u64_stats_init(&priv->ring_data[i].ring->syncp);
3452 	}
3453 
3454 	return 0;
3455 
3456 out_when_alloc_ring_memory:
3457 	for (j = i - 1; j >= 0; j--)
3458 		hns3_fini_ring(priv->ring_data[j].ring);
3459 
3460 	return -ENOMEM;
3461 }
3462 
3463 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3464 {
3465 	struct hnae3_handle *h = priv->ae_handle;
3466 	int i;
3467 
3468 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3469 		hns3_fini_ring(priv->ring_data[i].ring);
3470 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3471 	}
3472 	return 0;
3473 }
3474 
3475 /* Set mac addr if it is configured. or leave it to the AE driver */
3476 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3477 {
3478 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3479 	struct hnae3_handle *h = priv->ae_handle;
3480 	u8 mac_addr_temp[ETH_ALEN];
3481 	int ret = 0;
3482 
3483 	if (h->ae_algo->ops->get_mac_addr && init) {
3484 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3485 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3486 	}
3487 
3488 	/* Check if the MAC address is valid, if not get a random one */
3489 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3490 		eth_hw_addr_random(netdev);
3491 		dev_warn(priv->dev, "using random MAC address %pM\n",
3492 			 netdev->dev_addr);
3493 	}
3494 
3495 	if (h->ae_algo->ops->set_mac_addr)
3496 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3497 
3498 	return ret;
3499 }
3500 
3501 static int hns3_restore_fd_rules(struct net_device *netdev)
3502 {
3503 	struct hnae3_handle *h = hns3_get_handle(netdev);
3504 	int ret = 0;
3505 
3506 	if (h->ae_algo->ops->restore_fd_rules)
3507 		ret = h->ae_algo->ops->restore_fd_rules(h);
3508 
3509 	return ret;
3510 }
3511 
3512 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3513 {
3514 	struct hnae3_handle *h = hns3_get_handle(netdev);
3515 
3516 	if (h->ae_algo->ops->del_all_fd_entries)
3517 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3518 }
3519 
3520 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3521 {
3522 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3523 
3524 	priv->ops.fill_desc = hns3_fill_desc;
3525 	if ((netdev->features & NETIF_F_TSO) ||
3526 	    (netdev->features & NETIF_F_TSO6))
3527 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3528 	else
3529 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3530 }
3531 
3532 static int hns3_client_start(struct hnae3_handle *handle)
3533 {
3534 	if (!handle->ae_algo->ops->client_start)
3535 		return 0;
3536 
3537 	return handle->ae_algo->ops->client_start(handle);
3538 }
3539 
3540 static void hns3_client_stop(struct hnae3_handle *handle)
3541 {
3542 	if (!handle->ae_algo->ops->client_stop)
3543 		return;
3544 
3545 	handle->ae_algo->ops->client_stop(handle);
3546 }
3547 
3548 static int hns3_client_init(struct hnae3_handle *handle)
3549 {
3550 	struct pci_dev *pdev = handle->pdev;
3551 	u16 alloc_tqps, max_rss_size;
3552 	struct hns3_nic_priv *priv;
3553 	struct net_device *netdev;
3554 	int ret;
3555 
3556 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3557 						    &max_rss_size);
3558 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3559 	if (!netdev)
3560 		return -ENOMEM;
3561 
3562 	priv = netdev_priv(netdev);
3563 	priv->dev = &pdev->dev;
3564 	priv->netdev = netdev;
3565 	priv->ae_handle = handle;
3566 	priv->tx_timeout_count = 0;
3567 
3568 	handle->kinfo.netdev = netdev;
3569 	handle->priv = (void *)priv;
3570 
3571 	hns3_init_mac_addr(netdev, true);
3572 
3573 	hns3_set_default_feature(netdev);
3574 
3575 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3576 	netdev->priv_flags |= IFF_UNICAST_FLT;
3577 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3578 	SET_NETDEV_DEV(netdev, &pdev->dev);
3579 	hns3_ethtool_set_ops(netdev);
3580 	hns3_nic_set_priv_ops(netdev);
3581 
3582 	/* Carrier off reporting is important to ethtool even BEFORE open */
3583 	netif_carrier_off(netdev);
3584 
3585 	ret = hns3_get_ring_config(priv);
3586 	if (ret) {
3587 		ret = -ENOMEM;
3588 		goto out_get_ring_cfg;
3589 	}
3590 
3591 	ret = hns3_nic_alloc_vector_data(priv);
3592 	if (ret) {
3593 		ret = -ENOMEM;
3594 		goto out_alloc_vector_data;
3595 	}
3596 
3597 	ret = hns3_nic_init_vector_data(priv);
3598 	if (ret) {
3599 		ret = -ENOMEM;
3600 		goto out_init_vector_data;
3601 	}
3602 
3603 	ret = hns3_init_all_ring(priv);
3604 	if (ret) {
3605 		ret = -ENOMEM;
3606 		goto out_init_ring_data;
3607 	}
3608 
3609 	ret = register_netdev(netdev);
3610 	if (ret) {
3611 		dev_err(priv->dev, "probe register netdev fail!\n");
3612 		goto out_reg_netdev_fail;
3613 	}
3614 
3615 	ret = hns3_client_start(handle);
3616 	if (ret) {
3617 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3618 			goto out_reg_netdev_fail;
3619 	}
3620 
3621 	hns3_dcbnl_setup(handle);
3622 
3623 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3624 	netdev->max_mtu = HNS3_MAX_MTU;
3625 
3626 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3627 
3628 	return ret;
3629 
3630 out_reg_netdev_fail:
3631 out_init_ring_data:
3632 	(void)hns3_nic_uninit_vector_data(priv);
3633 out_init_vector_data:
3634 	hns3_nic_dealloc_vector_data(priv);
3635 out_alloc_vector_data:
3636 	priv->ring_data = NULL;
3637 out_get_ring_cfg:
3638 	priv->ae_handle = NULL;
3639 	free_netdev(netdev);
3640 	return ret;
3641 }
3642 
3643 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3644 {
3645 	struct net_device *netdev = handle->kinfo.netdev;
3646 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3647 	int ret;
3648 
3649 	hns3_client_stop(handle);
3650 
3651 	hns3_remove_hw_addr(netdev);
3652 
3653 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3654 		unregister_netdev(netdev);
3655 
3656 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3657 		netdev_warn(netdev, "already uninitialized\n");
3658 		goto out_netdev_free;
3659 	}
3660 
3661 	hns3_del_all_fd_rules(netdev, true);
3662 
3663 	hns3_force_clear_all_rx_ring(handle);
3664 
3665 	ret = hns3_nic_uninit_vector_data(priv);
3666 	if (ret)
3667 		netdev_err(netdev, "uninit vector error\n");
3668 
3669 	ret = hns3_nic_dealloc_vector_data(priv);
3670 	if (ret)
3671 		netdev_err(netdev, "dealloc vector error\n");
3672 
3673 	ret = hns3_uninit_all_ring(priv);
3674 	if (ret)
3675 		netdev_err(netdev, "uninit ring error\n");
3676 
3677 	hns3_put_ring_config(priv);
3678 
3679 	priv->ring_data = NULL;
3680 
3681 out_netdev_free:
3682 	free_netdev(netdev);
3683 }
3684 
3685 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3686 {
3687 	struct net_device *netdev = handle->kinfo.netdev;
3688 
3689 	if (!netdev)
3690 		return;
3691 
3692 	if (linkup) {
3693 		netif_carrier_on(netdev);
3694 		netif_tx_wake_all_queues(netdev);
3695 		netdev_info(netdev, "link up\n");
3696 	} else {
3697 		netif_carrier_off(netdev);
3698 		netif_tx_stop_all_queues(netdev);
3699 		netdev_info(netdev, "link down\n");
3700 	}
3701 }
3702 
3703 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3704 {
3705 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3706 	struct net_device *ndev = kinfo->netdev;
3707 	bool if_running;
3708 	int ret;
3709 
3710 	if (tc > HNAE3_MAX_TC)
3711 		return -EINVAL;
3712 
3713 	if (!ndev)
3714 		return -ENODEV;
3715 
3716 	if_running = netif_running(ndev);
3717 
3718 	if (if_running) {
3719 		(void)hns3_nic_net_stop(ndev);
3720 		msleep(100);
3721 	}
3722 
3723 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->map_update) ?
3724 		kinfo->dcb_ops->map_update(handle) : -EOPNOTSUPP;
3725 	if (ret)
3726 		goto err_out;
3727 
3728 	ret = hns3_nic_set_real_num_queue(ndev);
3729 
3730 err_out:
3731 	if (if_running)
3732 		(void)hns3_nic_net_open(ndev);
3733 
3734 	return ret;
3735 }
3736 
3737 static int hns3_recover_hw_addr(struct net_device *ndev)
3738 {
3739 	struct netdev_hw_addr_list *list;
3740 	struct netdev_hw_addr *ha, *tmp;
3741 	int ret = 0;
3742 
3743 	/* go through and sync uc_addr entries to the device */
3744 	list = &ndev->uc;
3745 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3746 		ret = hns3_nic_uc_sync(ndev, ha->addr);
3747 		if (ret)
3748 			return ret;
3749 	}
3750 
3751 	/* go through and sync mc_addr entries to the device */
3752 	list = &ndev->mc;
3753 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3754 		ret = hns3_nic_mc_sync(ndev, ha->addr);
3755 		if (ret)
3756 			return ret;
3757 	}
3758 
3759 	return ret;
3760 }
3761 
3762 static void hns3_remove_hw_addr(struct net_device *netdev)
3763 {
3764 	struct netdev_hw_addr_list *list;
3765 	struct netdev_hw_addr *ha, *tmp;
3766 
3767 	hns3_nic_uc_unsync(netdev, netdev->dev_addr);
3768 
3769 	/* go through and unsync uc_addr entries to the device */
3770 	list = &netdev->uc;
3771 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3772 		hns3_nic_uc_unsync(netdev, ha->addr);
3773 
3774 	/* go through and unsync mc_addr entries to the device */
3775 	list = &netdev->mc;
3776 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3777 		if (ha->refcount > 1)
3778 			hns3_nic_mc_unsync(netdev, ha->addr);
3779 }
3780 
3781 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3782 {
3783 	while (ring->next_to_clean != ring->next_to_use) {
3784 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3785 		hns3_free_buffer_detach(ring, ring->next_to_clean);
3786 		ring_ptr_move_fw(ring, next_to_clean);
3787 	}
3788 }
3789 
3790 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3791 {
3792 	struct hns3_desc_cb res_cbs;
3793 	int ret;
3794 
3795 	while (ring->next_to_use != ring->next_to_clean) {
3796 		/* When a buffer is not reused, it's memory has been
3797 		 * freed in hns3_handle_rx_bd or will be freed by
3798 		 * stack, so we need to replace the buffer here.
3799 		 */
3800 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3801 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
3802 			if (ret) {
3803 				u64_stats_update_begin(&ring->syncp);
3804 				ring->stats.sw_err_cnt++;
3805 				u64_stats_update_end(&ring->syncp);
3806 				/* if alloc new buffer fail, exit directly
3807 				 * and reclear in up flow.
3808 				 */
3809 				netdev_warn(ring->tqp->handle->kinfo.netdev,
3810 					    "reserve buffer map failed, ret = %d\n",
3811 					    ret);
3812 				return ret;
3813 			}
3814 			hns3_replace_buffer(ring, ring->next_to_use,
3815 					    &res_cbs);
3816 		}
3817 		ring_ptr_move_fw(ring, next_to_use);
3818 	}
3819 
3820 	return 0;
3821 }
3822 
3823 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3824 {
3825 	while (ring->next_to_use != ring->next_to_clean) {
3826 		/* When a buffer is not reused, it's memory has been
3827 		 * freed in hns3_handle_rx_bd or will be freed by
3828 		 * stack, so only need to unmap the buffer here.
3829 		 */
3830 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3831 			hns3_unmap_buffer(ring,
3832 					  &ring->desc_cb[ring->next_to_use]);
3833 			ring->desc_cb[ring->next_to_use].dma = 0;
3834 		}
3835 
3836 		ring_ptr_move_fw(ring, next_to_use);
3837 	}
3838 }
3839 
3840 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3841 {
3842 	struct net_device *ndev = h->kinfo.netdev;
3843 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3844 	struct hns3_enet_ring *ring;
3845 	u32 i;
3846 
3847 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3848 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3849 		hns3_force_clear_rx_ring(ring);
3850 	}
3851 }
3852 
3853 static void hns3_clear_all_ring(struct hnae3_handle *h)
3854 {
3855 	struct net_device *ndev = h->kinfo.netdev;
3856 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3857 	u32 i;
3858 
3859 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3860 		struct netdev_queue *dev_queue;
3861 		struct hns3_enet_ring *ring;
3862 
3863 		ring = priv->ring_data[i].ring;
3864 		hns3_clear_tx_ring(ring);
3865 		dev_queue = netdev_get_tx_queue(ndev,
3866 						priv->ring_data[i].queue_index);
3867 		netdev_tx_reset_queue(dev_queue);
3868 
3869 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3870 		/* Continue to clear other rings even if clearing some
3871 		 * rings failed.
3872 		 */
3873 		hns3_clear_rx_ring(ring);
3874 	}
3875 }
3876 
3877 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3878 {
3879 	struct net_device *ndev = h->kinfo.netdev;
3880 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3881 	struct hns3_enet_ring *rx_ring;
3882 	int i, j;
3883 	int ret;
3884 
3885 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3886 		ret = h->ae_algo->ops->reset_queue(h, i);
3887 		if (ret)
3888 			return ret;
3889 
3890 		hns3_init_ring_hw(priv->ring_data[i].ring);
3891 
3892 		/* We need to clear tx ring here because self test will
3893 		 * use the ring and will not run down before up
3894 		 */
3895 		hns3_clear_tx_ring(priv->ring_data[i].ring);
3896 		priv->ring_data[i].ring->next_to_clean = 0;
3897 		priv->ring_data[i].ring->next_to_use = 0;
3898 
3899 		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3900 		hns3_init_ring_hw(rx_ring);
3901 		ret = hns3_clear_rx_ring(rx_ring);
3902 		if (ret)
3903 			return ret;
3904 
3905 		/* We can not know the hardware head and tail when this
3906 		 * function is called in reset flow, so we reuse all desc.
3907 		 */
3908 		for (j = 0; j < rx_ring->desc_num; j++)
3909 			hns3_reuse_buffer(rx_ring, j);
3910 
3911 		rx_ring->next_to_clean = 0;
3912 		rx_ring->next_to_use = 0;
3913 	}
3914 
3915 	hns3_init_tx_ring_tc(priv);
3916 
3917 	return 0;
3918 }
3919 
3920 static void hns3_store_coal(struct hns3_nic_priv *priv)
3921 {
3922 	/* ethtool only support setting and querying one coal
3923 	 * configuation for now, so save the vector 0' coal
3924 	 * configuation here in order to restore it.
3925 	 */
3926 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
3927 	       sizeof(struct hns3_enet_coalesce));
3928 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
3929 	       sizeof(struct hns3_enet_coalesce));
3930 }
3931 
3932 static void hns3_restore_coal(struct hns3_nic_priv *priv)
3933 {
3934 	u16 vector_num = priv->vector_num;
3935 	int i;
3936 
3937 	for (i = 0; i < vector_num; i++) {
3938 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
3939 		       sizeof(struct hns3_enet_coalesce));
3940 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
3941 		       sizeof(struct hns3_enet_coalesce));
3942 	}
3943 }
3944 
3945 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3946 {
3947 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
3948 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3949 	struct net_device *ndev = kinfo->netdev;
3950 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3951 
3952 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
3953 		return 0;
3954 
3955 	/* it is cumbersome for hardware to pick-and-choose entries for deletion
3956 	 * from table space. Hence, for function reset software intervention is
3957 	 * required to delete the entries
3958 	 */
3959 	if (hns3_dev_ongoing_func_reset(ae_dev)) {
3960 		hns3_remove_hw_addr(ndev);
3961 		hns3_del_all_fd_rules(ndev, false);
3962 	}
3963 
3964 	if (!netif_running(ndev))
3965 		return 0;
3966 
3967 	return hns3_nic_net_stop(ndev);
3968 }
3969 
3970 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
3971 {
3972 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3973 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
3974 	int ret = 0;
3975 
3976 	if (netif_running(kinfo->netdev)) {
3977 		ret = hns3_nic_net_up(kinfo->netdev);
3978 		if (ret) {
3979 			netdev_err(kinfo->netdev,
3980 				   "hns net up fail, ret=%d!\n", ret);
3981 			return ret;
3982 		}
3983 	}
3984 
3985 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
3986 
3987 	return ret;
3988 }
3989 
3990 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
3991 {
3992 	struct net_device *netdev = handle->kinfo.netdev;
3993 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3994 	bool vlan_filter_enable;
3995 	int ret;
3996 
3997 	ret = hns3_init_mac_addr(netdev, false);
3998 	if (ret)
3999 		return ret;
4000 
4001 	ret = hns3_recover_hw_addr(netdev);
4002 	if (ret)
4003 		return ret;
4004 
4005 	ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4006 	if (ret)
4007 		return ret;
4008 
4009 	vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4010 	hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4011 
4012 	/* Hardware table is only clear when pf resets */
4013 	if (!(handle->flags & HNAE3_SUPPORT_VF)) {
4014 		ret = hns3_restore_vlan(netdev);
4015 		if (ret)
4016 			return ret;
4017 	}
4018 
4019 	ret = hns3_restore_fd_rules(netdev);
4020 	if (ret)
4021 		return ret;
4022 
4023 	/* Carrier off reporting is important to ethtool even BEFORE open */
4024 	netif_carrier_off(netdev);
4025 
4026 	ret = hns3_nic_alloc_vector_data(priv);
4027 	if (ret)
4028 		return ret;
4029 
4030 	hns3_restore_coal(priv);
4031 
4032 	ret = hns3_nic_init_vector_data(priv);
4033 	if (ret)
4034 		goto err_dealloc_vector;
4035 
4036 	ret = hns3_init_all_ring(priv);
4037 	if (ret)
4038 		goto err_uninit_vector;
4039 
4040 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4041 
4042 	return ret;
4043 
4044 err_uninit_vector:
4045 	hns3_nic_uninit_vector_data(priv);
4046 	priv->ring_data = NULL;
4047 err_dealloc_vector:
4048 	hns3_nic_dealloc_vector_data(priv);
4049 
4050 	return ret;
4051 }
4052 
4053 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4054 {
4055 	struct net_device *netdev = handle->kinfo.netdev;
4056 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4057 	int ret;
4058 
4059 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4060 		netdev_warn(netdev, "already uninitialized\n");
4061 		return 0;
4062 	}
4063 
4064 	hns3_force_clear_all_rx_ring(handle);
4065 
4066 	ret = hns3_nic_uninit_vector_data(priv);
4067 	if (ret) {
4068 		netdev_err(netdev, "uninit vector error\n");
4069 		return ret;
4070 	}
4071 
4072 	hns3_store_coal(priv);
4073 
4074 	ret = hns3_nic_dealloc_vector_data(priv);
4075 	if (ret)
4076 		netdev_err(netdev, "dealloc vector error\n");
4077 
4078 	ret = hns3_uninit_all_ring(priv);
4079 	if (ret)
4080 		netdev_err(netdev, "uninit ring error\n");
4081 
4082 	clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
4083 
4084 	return ret;
4085 }
4086 
4087 static int hns3_reset_notify(struct hnae3_handle *handle,
4088 			     enum hnae3_reset_notify_type type)
4089 {
4090 	int ret = 0;
4091 
4092 	switch (type) {
4093 	case HNAE3_UP_CLIENT:
4094 		ret = hns3_reset_notify_up_enet(handle);
4095 		break;
4096 	case HNAE3_DOWN_CLIENT:
4097 		ret = hns3_reset_notify_down_enet(handle);
4098 		break;
4099 	case HNAE3_INIT_CLIENT:
4100 		ret = hns3_reset_notify_init_enet(handle);
4101 		break;
4102 	case HNAE3_UNINIT_CLIENT:
4103 		ret = hns3_reset_notify_uninit_enet(handle);
4104 		break;
4105 	default:
4106 		break;
4107 	}
4108 
4109 	return ret;
4110 }
4111 
4112 static int hns3_modify_tqp_num(struct net_device *netdev, u16 new_tqp_num)
4113 {
4114 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4115 	struct hnae3_handle *h = hns3_get_handle(netdev);
4116 	int ret;
4117 
4118 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num);
4119 	if (ret)
4120 		return ret;
4121 
4122 	ret = hns3_get_ring_config(priv);
4123 	if (ret)
4124 		return ret;
4125 
4126 	ret = hns3_nic_alloc_vector_data(priv);
4127 	if (ret)
4128 		goto err_alloc_vector;
4129 
4130 	hns3_restore_coal(priv);
4131 
4132 	ret = hns3_nic_init_vector_data(priv);
4133 	if (ret)
4134 		goto err_uninit_vector;
4135 
4136 	ret = hns3_init_all_ring(priv);
4137 	if (ret)
4138 		goto err_put_ring;
4139 
4140 	return 0;
4141 
4142 err_put_ring:
4143 	hns3_put_ring_config(priv);
4144 err_uninit_vector:
4145 	hns3_nic_uninit_vector_data(priv);
4146 err_alloc_vector:
4147 	hns3_nic_dealloc_vector_data(priv);
4148 	return ret;
4149 }
4150 
4151 static int hns3_adjust_tqps_num(u8 num_tc, u32 new_tqp_num)
4152 {
4153 	return (new_tqp_num / num_tc) * num_tc;
4154 }
4155 
4156 int hns3_set_channels(struct net_device *netdev,
4157 		      struct ethtool_channels *ch)
4158 {
4159 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4160 	struct hnae3_handle *h = hns3_get_handle(netdev);
4161 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4162 	bool if_running = netif_running(netdev);
4163 	u32 new_tqp_num = ch->combined_count;
4164 	u16 org_tqp_num;
4165 	int ret;
4166 
4167 	if (ch->rx_count || ch->tx_count)
4168 		return -EINVAL;
4169 
4170 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4171 	    new_tqp_num < kinfo->num_tc) {
4172 		dev_err(&netdev->dev,
4173 			"Change tqps fail, the tqp range is from %d to %d",
4174 			kinfo->num_tc,
4175 			hns3_get_max_available_channels(h));
4176 		return -EINVAL;
4177 	}
4178 
4179 	new_tqp_num = hns3_adjust_tqps_num(kinfo->num_tc, new_tqp_num);
4180 	if (kinfo->num_tqps == new_tqp_num)
4181 		return 0;
4182 
4183 	if (if_running)
4184 		hns3_nic_net_stop(netdev);
4185 
4186 	ret = hns3_nic_uninit_vector_data(priv);
4187 	if (ret) {
4188 		dev_err(&netdev->dev,
4189 			"Unbind vector with tqp fail, nothing is changed");
4190 		goto open_netdev;
4191 	}
4192 
4193 	hns3_store_coal(priv);
4194 
4195 	hns3_nic_dealloc_vector_data(priv);
4196 
4197 	hns3_uninit_all_ring(priv);
4198 	hns3_put_ring_config(priv);
4199 
4200 	org_tqp_num = h->kinfo.num_tqps;
4201 	ret = hns3_modify_tqp_num(netdev, new_tqp_num);
4202 	if (ret) {
4203 		ret = hns3_modify_tqp_num(netdev, org_tqp_num);
4204 		if (ret) {
4205 			/* If revert to old tqp failed, fatal error occurred */
4206 			dev_err(&netdev->dev,
4207 				"Revert to old tqp num fail, ret=%d", ret);
4208 			return ret;
4209 		}
4210 		dev_info(&netdev->dev,
4211 			 "Change tqp num fail, Revert to old tqp num");
4212 	}
4213 
4214 open_netdev:
4215 	if (if_running)
4216 		hns3_nic_net_open(netdev);
4217 
4218 	return ret;
4219 }
4220 
4221 static const struct hnae3_client_ops client_ops = {
4222 	.init_instance = hns3_client_init,
4223 	.uninit_instance = hns3_client_uninit,
4224 	.link_status_change = hns3_link_status_change,
4225 	.setup_tc = hns3_client_setup_tc,
4226 	.reset_notify = hns3_reset_notify,
4227 };
4228 
4229 /* hns3_init_module - Driver registration routine
4230  * hns3_init_module is the first routine called when the driver is
4231  * loaded. All it does is register with the PCI subsystem.
4232  */
4233 static int __init hns3_init_module(void)
4234 {
4235 	int ret;
4236 
4237 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4238 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4239 
4240 	client.type = HNAE3_CLIENT_KNIC;
4241 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4242 		 hns3_driver_name);
4243 
4244 	client.ops = &client_ops;
4245 
4246 	INIT_LIST_HEAD(&client.node);
4247 
4248 	ret = hnae3_register_client(&client);
4249 	if (ret)
4250 		return ret;
4251 
4252 	ret = pci_register_driver(&hns3_driver);
4253 	if (ret)
4254 		hnae3_unregister_client(&client);
4255 
4256 	return ret;
4257 }
4258 module_init(hns3_init_module);
4259 
4260 /* hns3_exit_module - Driver exit cleanup routine
4261  * hns3_exit_module is called just before the driver is removed
4262  * from memory.
4263  */
4264 static void __exit hns3_exit_module(void)
4265 {
4266 	pci_unregister_driver(&hns3_driver);
4267 	hnae3_unregister_client(&client);
4268 }
4269 module_exit(hns3_exit_module);
4270 
4271 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4272 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4273 MODULE_LICENSE("GPL");
4274 MODULE_ALIAS("pci:hns-nic");
4275 MODULE_VERSION(HNS3_MOD_VERSION);
4276