1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/aer.h>
13 #include <linux/skbuff.h>
14 #include <linux/sctp.h>
15 #include <linux/vermagic.h>
16 #include <net/gre.h>
17 #include <net/pkt_cls.h>
18 #include <net/tcp.h>
19 #include <net/vxlan.h>
20 
21 #include "hnae3.h"
22 #include "hns3_enet.h"
23 
24 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
25 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
26 
27 static void hns3_clear_all_ring(struct hnae3_handle *h);
28 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
29 static void hns3_remove_hw_addr(struct net_device *netdev);
30 
31 static const char hns3_driver_name[] = "hns3";
32 const char hns3_driver_version[] = VERMAGIC_STRING;
33 static const char hns3_driver_string[] =
34 			"Hisilicon Ethernet Network Driver for Hip08 Family";
35 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
36 static struct hnae3_client client;
37 
38 static int debug = -1;
39 module_param(debug, int, 0);
40 MODULE_PARM_DESC(debug, " Network interface message level setting");
41 
42 #define DEFAULT_MSG_LEVEL (NETIF_MSG_PROBE | NETIF_MSG_LINK | \
43 			   NETIF_MSG_IFDOWN | NETIF_MSG_IFUP)
44 
45 /* hns3_pci_tbl - PCI Device ID Table
46  *
47  * Last entry must be all 0s
48  *
49  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
50  *   Class, Class Mask, private data (not used) }
51  */
52 static const struct pci_device_id hns3_pci_tbl[] = {
53 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
54 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
55 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
56 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
57 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
58 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
59 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
60 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
61 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
62 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
63 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
64 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
65 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
66 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
67 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
68 	/* required last entry */
69 	{0, }
70 };
71 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
72 
73 static irqreturn_t hns3_irq_handle(int irq, void *vector)
74 {
75 	struct hns3_enet_tqp_vector *tqp_vector = vector;
76 
77 	napi_schedule_irqoff(&tqp_vector->napi);
78 
79 	return IRQ_HANDLED;
80 }
81 
82 /* This callback function is used to set affinity changes to the irq affinity
83  * masks when the irq_set_affinity_notifier function is used.
84  */
85 static void hns3_nic_irq_affinity_notify(struct irq_affinity_notify *notify,
86 					 const cpumask_t *mask)
87 {
88 	struct hns3_enet_tqp_vector *tqp_vectors =
89 		container_of(notify, struct hns3_enet_tqp_vector,
90 			     affinity_notify);
91 
92 	tqp_vectors->affinity_mask = *mask;
93 }
94 
95 static void hns3_nic_irq_affinity_release(struct kref *ref)
96 {
97 }
98 
99 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
100 {
101 	struct hns3_enet_tqp_vector *tqp_vectors;
102 	unsigned int i;
103 
104 	for (i = 0; i < priv->vector_num; i++) {
105 		tqp_vectors = &priv->tqp_vector[i];
106 
107 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
108 			continue;
109 
110 		/* clear the affinity notifier and affinity mask */
111 		irq_set_affinity_notifier(tqp_vectors->vector_irq, NULL);
112 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
113 
114 		/* release the irq resource */
115 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
116 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
117 	}
118 }
119 
120 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
121 {
122 	struct hns3_enet_tqp_vector *tqp_vectors;
123 	int txrx_int_idx = 0;
124 	int rx_int_idx = 0;
125 	int tx_int_idx = 0;
126 	unsigned int i;
127 	int ret;
128 
129 	for (i = 0; i < priv->vector_num; i++) {
130 		tqp_vectors = &priv->tqp_vector[i];
131 
132 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
133 			continue;
134 
135 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
136 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
137 				 "%s-%s-%d", priv->netdev->name, "TxRx",
138 				 txrx_int_idx++);
139 			txrx_int_idx++;
140 		} else if (tqp_vectors->rx_group.ring) {
141 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
142 				 "%s-%s-%d", priv->netdev->name, "Rx",
143 				 rx_int_idx++);
144 		} else if (tqp_vectors->tx_group.ring) {
145 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
146 				 "%s-%s-%d", priv->netdev->name, "Tx",
147 				 tx_int_idx++);
148 		} else {
149 			/* Skip this unused q_vector */
150 			continue;
151 		}
152 
153 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
154 
155 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
156 				  tqp_vectors->name,
157 				       tqp_vectors);
158 		if (ret) {
159 			netdev_err(priv->netdev, "request irq(%d) fail\n",
160 				   tqp_vectors->vector_irq);
161 			return ret;
162 		}
163 
164 		tqp_vectors->affinity_notify.notify =
165 					hns3_nic_irq_affinity_notify;
166 		tqp_vectors->affinity_notify.release =
167 					hns3_nic_irq_affinity_release;
168 		irq_set_affinity_notifier(tqp_vectors->vector_irq,
169 					  &tqp_vectors->affinity_notify);
170 		irq_set_affinity_hint(tqp_vectors->vector_irq,
171 				      &tqp_vectors->affinity_mask);
172 
173 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
174 	}
175 
176 	return 0;
177 }
178 
179 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
180 				 u32 mask_en)
181 {
182 	writel(mask_en, tqp_vector->mask_addr);
183 }
184 
185 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
186 {
187 	napi_enable(&tqp_vector->napi);
188 
189 	/* enable vector */
190 	hns3_mask_vector_irq(tqp_vector, 1);
191 }
192 
193 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
194 {
195 	/* disable vector */
196 	hns3_mask_vector_irq(tqp_vector, 0);
197 
198 	disable_irq(tqp_vector->vector_irq);
199 	napi_disable(&tqp_vector->napi);
200 }
201 
202 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
203 				 u32 rl_value)
204 {
205 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
206 
207 	/* this defines the configuration for RL (Interrupt Rate Limiter).
208 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
209 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
210 	 */
211 
212 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
213 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
214 		/* According to the hardware, the range of rl_reg is
215 		 * 0-59 and the unit is 4.
216 		 */
217 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
218 
219 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
220 }
221 
222 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
223 				    u32 gl_value)
224 {
225 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
226 
227 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
228 }
229 
230 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
231 				    u32 gl_value)
232 {
233 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
234 
235 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
236 }
237 
238 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
239 				   struct hns3_nic_priv *priv)
240 {
241 	/* initialize the configuration for interrupt coalescing.
242 	 * 1. GL (Interrupt Gap Limiter)
243 	 * 2. RL (Interrupt Rate Limiter)
244 	 */
245 
246 	/* Default: enable interrupt coalescing self-adaptive and GL */
247 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
248 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
249 
250 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
251 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
252 
253 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
254 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
255 }
256 
257 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
258 				      struct hns3_nic_priv *priv)
259 {
260 	struct hnae3_handle *h = priv->ae_handle;
261 
262 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
263 				       tqp_vector->tx_group.coal.int_gl);
264 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
265 				       tqp_vector->rx_group.coal.int_gl);
266 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
267 }
268 
269 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
270 {
271 	struct hnae3_handle *h = hns3_get_handle(netdev);
272 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
273 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
274 	int i, ret;
275 
276 	if (kinfo->num_tc <= 1) {
277 		netdev_reset_tc(netdev);
278 	} else {
279 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
280 		if (ret) {
281 			netdev_err(netdev,
282 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
283 			return ret;
284 		}
285 
286 		for (i = 0; i < HNAE3_MAX_TC; i++) {
287 			if (!kinfo->tc_info[i].enable)
288 				continue;
289 
290 			netdev_set_tc_queue(netdev,
291 					    kinfo->tc_info[i].tc,
292 					    kinfo->tc_info[i].tqp_count,
293 					    kinfo->tc_info[i].tqp_offset);
294 		}
295 	}
296 
297 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
298 	if (ret) {
299 		netdev_err(netdev,
300 			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
301 			   ret);
302 		return ret;
303 	}
304 
305 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
306 	if (ret) {
307 		netdev_err(netdev,
308 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
309 		return ret;
310 	}
311 
312 	return 0;
313 }
314 
315 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
316 {
317 	u16 alloc_tqps, max_rss_size, rss_size;
318 
319 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
320 	rss_size = alloc_tqps / h->kinfo.num_tc;
321 
322 	return min_t(u16, rss_size, max_rss_size);
323 }
324 
325 static void hns3_tqp_enable(struct hnae3_queue *tqp)
326 {
327 	u32 rcb_reg;
328 
329 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
330 	rcb_reg |= BIT(HNS3_RING_EN_B);
331 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
332 }
333 
334 static void hns3_tqp_disable(struct hnae3_queue *tqp)
335 {
336 	u32 rcb_reg;
337 
338 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
339 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
340 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
341 }
342 
343 static int hns3_nic_net_up(struct net_device *netdev)
344 {
345 	struct hns3_nic_priv *priv = netdev_priv(netdev);
346 	struct hnae3_handle *h = priv->ae_handle;
347 	int i, j;
348 	int ret;
349 
350 	ret = hns3_nic_reset_all_ring(h);
351 	if (ret)
352 		return ret;
353 
354 	/* get irq resource for all vectors */
355 	ret = hns3_nic_init_irq(priv);
356 	if (ret) {
357 		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
358 		return ret;
359 	}
360 
361 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
362 
363 	/* enable the vectors */
364 	for (i = 0; i < priv->vector_num; i++)
365 		hns3_vector_enable(&priv->tqp_vector[i]);
366 
367 	/* enable rcb */
368 	for (j = 0; j < h->kinfo.num_tqps; j++)
369 		hns3_tqp_enable(h->kinfo.tqp[j]);
370 
371 	/* start the ae_dev */
372 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
373 	if (ret)
374 		goto out_start_err;
375 
376 	return 0;
377 
378 out_start_err:
379 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
380 	while (j--)
381 		hns3_tqp_disable(h->kinfo.tqp[j]);
382 
383 	for (j = i - 1; j >= 0; j--)
384 		hns3_vector_disable(&priv->tqp_vector[j]);
385 
386 	hns3_nic_uninit_irq(priv);
387 
388 	return ret;
389 }
390 
391 static void hns3_config_xps(struct hns3_nic_priv *priv)
392 {
393 	int i;
394 
395 	for (i = 0; i < priv->vector_num; i++) {
396 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
397 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
398 
399 		while (ring) {
400 			int ret;
401 
402 			ret = netif_set_xps_queue(priv->netdev,
403 						  &tqp_vector->affinity_mask,
404 						  ring->tqp->tqp_index);
405 			if (ret)
406 				netdev_warn(priv->netdev,
407 					    "set xps queue failed: %d", ret);
408 
409 			ring = ring->next;
410 		}
411 	}
412 }
413 
414 static int hns3_nic_net_open(struct net_device *netdev)
415 {
416 	struct hns3_nic_priv *priv = netdev_priv(netdev);
417 	struct hnae3_handle *h = hns3_get_handle(netdev);
418 	struct hnae3_knic_private_info *kinfo;
419 	int i, ret;
420 
421 	if (hns3_nic_resetting(netdev))
422 		return -EBUSY;
423 
424 	netif_carrier_off(netdev);
425 
426 	ret = hns3_nic_set_real_num_queue(netdev);
427 	if (ret)
428 		return ret;
429 
430 	ret = hns3_nic_net_up(netdev);
431 	if (ret) {
432 		netdev_err(netdev,
433 			   "hns net up fail, ret=%d!\n", ret);
434 		return ret;
435 	}
436 
437 	kinfo = &h->kinfo;
438 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
439 		netdev_set_prio_tc_map(netdev, i,
440 				       kinfo->prio_tc[i]);
441 	}
442 
443 	if (h->ae_algo->ops->set_timer_task)
444 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
445 
446 	hns3_config_xps(priv);
447 	return 0;
448 }
449 
450 static void hns3_nic_net_down(struct net_device *netdev)
451 {
452 	struct hns3_nic_priv *priv = netdev_priv(netdev);
453 	struct hnae3_handle *h = hns3_get_handle(netdev);
454 	const struct hnae3_ae_ops *ops;
455 	int i;
456 
457 	/* disable vectors */
458 	for (i = 0; i < priv->vector_num; i++)
459 		hns3_vector_disable(&priv->tqp_vector[i]);
460 
461 	/* disable rcb */
462 	for (i = 0; i < h->kinfo.num_tqps; i++)
463 		hns3_tqp_disable(h->kinfo.tqp[i]);
464 
465 	/* stop ae_dev */
466 	ops = priv->ae_handle->ae_algo->ops;
467 	if (ops->stop)
468 		ops->stop(priv->ae_handle);
469 
470 	/* free irq resources */
471 	hns3_nic_uninit_irq(priv);
472 
473 	hns3_clear_all_ring(priv->ae_handle);
474 }
475 
476 static int hns3_nic_net_stop(struct net_device *netdev)
477 {
478 	struct hns3_nic_priv *priv = netdev_priv(netdev);
479 	struct hnae3_handle *h = hns3_get_handle(netdev);
480 
481 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
482 		return 0;
483 
484 	if (h->ae_algo->ops->set_timer_task)
485 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
486 
487 	netif_tx_stop_all_queues(netdev);
488 	netif_carrier_off(netdev);
489 
490 	hns3_nic_net_down(netdev);
491 
492 	return 0;
493 }
494 
495 static int hns3_nic_uc_sync(struct net_device *netdev,
496 			    const unsigned char *addr)
497 {
498 	struct hnae3_handle *h = hns3_get_handle(netdev);
499 
500 	if (h->ae_algo->ops->add_uc_addr)
501 		return h->ae_algo->ops->add_uc_addr(h, addr);
502 
503 	return 0;
504 }
505 
506 static int hns3_nic_uc_unsync(struct net_device *netdev,
507 			      const unsigned char *addr)
508 {
509 	struct hnae3_handle *h = hns3_get_handle(netdev);
510 
511 	if (h->ae_algo->ops->rm_uc_addr)
512 		return h->ae_algo->ops->rm_uc_addr(h, addr);
513 
514 	return 0;
515 }
516 
517 static int hns3_nic_mc_sync(struct net_device *netdev,
518 			    const unsigned char *addr)
519 {
520 	struct hnae3_handle *h = hns3_get_handle(netdev);
521 
522 	if (h->ae_algo->ops->add_mc_addr)
523 		return h->ae_algo->ops->add_mc_addr(h, addr);
524 
525 	return 0;
526 }
527 
528 static int hns3_nic_mc_unsync(struct net_device *netdev,
529 			      const unsigned char *addr)
530 {
531 	struct hnae3_handle *h = hns3_get_handle(netdev);
532 
533 	if (h->ae_algo->ops->rm_mc_addr)
534 		return h->ae_algo->ops->rm_mc_addr(h, addr);
535 
536 	return 0;
537 }
538 
539 static u8 hns3_get_netdev_flags(struct net_device *netdev)
540 {
541 	u8 flags = 0;
542 
543 	if (netdev->flags & IFF_PROMISC) {
544 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
545 	} else {
546 		flags |= HNAE3_VLAN_FLTR;
547 		if (netdev->flags & IFF_ALLMULTI)
548 			flags |= HNAE3_USER_MPE;
549 	}
550 
551 	return flags;
552 }
553 
554 static void hns3_nic_set_rx_mode(struct net_device *netdev)
555 {
556 	struct hnae3_handle *h = hns3_get_handle(netdev);
557 	u8 new_flags;
558 	int ret;
559 
560 	new_flags = hns3_get_netdev_flags(netdev);
561 
562 	ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
563 	if (ret) {
564 		netdev_err(netdev, "sync uc address fail\n");
565 		if (ret == -ENOSPC)
566 			new_flags |= HNAE3_OVERFLOW_UPE;
567 	}
568 
569 	if (netdev->flags & IFF_MULTICAST) {
570 		ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
571 				    hns3_nic_mc_unsync);
572 		if (ret) {
573 			netdev_err(netdev, "sync mc address fail\n");
574 			if (ret == -ENOSPC)
575 				new_flags |= HNAE3_OVERFLOW_MPE;
576 		}
577 	}
578 
579 	/* User mode Promisc mode enable and vlan filtering is disabled to
580 	 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
581 	 * vlan fitering is enabled
582 	 */
583 	hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
584 	h->netdev_flags = new_flags;
585 	hns3_update_promisc_mode(netdev, new_flags);
586 }
587 
588 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
589 {
590 	struct hns3_nic_priv *priv = netdev_priv(netdev);
591 	struct hnae3_handle *h = priv->ae_handle;
592 
593 	if (h->ae_algo->ops->set_promisc_mode) {
594 		return h->ae_algo->ops->set_promisc_mode(h,
595 						promisc_flags & HNAE3_UPE,
596 						promisc_flags & HNAE3_MPE);
597 	}
598 
599 	return 0;
600 }
601 
602 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
603 {
604 	struct hns3_nic_priv *priv = netdev_priv(netdev);
605 	struct hnae3_handle *h = priv->ae_handle;
606 	bool last_state;
607 
608 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
609 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
610 		if (enable != last_state) {
611 			netdev_info(netdev,
612 				    "%s vlan filter\n",
613 				    enable ? "enable" : "disable");
614 			h->ae_algo->ops->enable_vlan_filter(h, enable);
615 		}
616 	}
617 }
618 
619 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
620 			u16 *mss, u32 *type_cs_vlan_tso)
621 {
622 	u32 l4_offset, hdr_len;
623 	union l3_hdr_info l3;
624 	union l4_hdr_info l4;
625 	u32 l4_paylen;
626 	int ret;
627 
628 	if (!skb_is_gso(skb))
629 		return 0;
630 
631 	ret = skb_cow_head(skb, 0);
632 	if (unlikely(ret))
633 		return ret;
634 
635 	l3.hdr = skb_network_header(skb);
636 	l4.hdr = skb_transport_header(skb);
637 
638 	/* Software should clear the IPv4's checksum field when tso is
639 	 * needed.
640 	 */
641 	if (l3.v4->version == 4)
642 		l3.v4->check = 0;
643 
644 	/* tunnel packet.*/
645 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
646 					 SKB_GSO_GRE_CSUM |
647 					 SKB_GSO_UDP_TUNNEL |
648 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
649 		if ((!(skb_shinfo(skb)->gso_type &
650 		    SKB_GSO_PARTIAL)) &&
651 		    (skb_shinfo(skb)->gso_type &
652 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
653 			/* Software should clear the udp's checksum
654 			 * field when tso is needed.
655 			 */
656 			l4.udp->check = 0;
657 		}
658 		/* reset l3&l4 pointers from outer to inner headers */
659 		l3.hdr = skb_inner_network_header(skb);
660 		l4.hdr = skb_inner_transport_header(skb);
661 
662 		/* Software should clear the IPv4's checksum field when
663 		 * tso is needed.
664 		 */
665 		if (l3.v4->version == 4)
666 			l3.v4->check = 0;
667 	}
668 
669 	/* normal or tunnel packet*/
670 	l4_offset = l4.hdr - skb->data;
671 	hdr_len = (l4.tcp->doff << 2) + l4_offset;
672 
673 	/* remove payload length from inner pseudo checksum when tso*/
674 	l4_paylen = skb->len - l4_offset;
675 	csum_replace_by_diff(&l4.tcp->check,
676 			     (__force __wsum)htonl(l4_paylen));
677 
678 	/* find the txbd field values */
679 	*paylen = skb->len - hdr_len;
680 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
681 
682 	/* get MSS for TSO */
683 	*mss = skb_shinfo(skb)->gso_size;
684 
685 	return 0;
686 }
687 
688 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
689 				u8 *il4_proto)
690 {
691 	union l3_hdr_info l3;
692 	unsigned char *l4_hdr;
693 	unsigned char *exthdr;
694 	u8 l4_proto_tmp;
695 	__be16 frag_off;
696 
697 	/* find outer header point */
698 	l3.hdr = skb_network_header(skb);
699 	l4_hdr = skb_transport_header(skb);
700 
701 	if (skb->protocol == htons(ETH_P_IPV6)) {
702 		exthdr = l3.hdr + sizeof(*l3.v6);
703 		l4_proto_tmp = l3.v6->nexthdr;
704 		if (l4_hdr != exthdr)
705 			ipv6_skip_exthdr(skb, exthdr - skb->data,
706 					 &l4_proto_tmp, &frag_off);
707 	} else if (skb->protocol == htons(ETH_P_IP)) {
708 		l4_proto_tmp = l3.v4->protocol;
709 	} else {
710 		return -EINVAL;
711 	}
712 
713 	*ol4_proto = l4_proto_tmp;
714 
715 	/* tunnel packet */
716 	if (!skb->encapsulation) {
717 		*il4_proto = 0;
718 		return 0;
719 	}
720 
721 	/* find inner header point */
722 	l3.hdr = skb_inner_network_header(skb);
723 	l4_hdr = skb_inner_transport_header(skb);
724 
725 	if (l3.v6->version == 6) {
726 		exthdr = l3.hdr + sizeof(*l3.v6);
727 		l4_proto_tmp = l3.v6->nexthdr;
728 		if (l4_hdr != exthdr)
729 			ipv6_skip_exthdr(skb, exthdr - skb->data,
730 					 &l4_proto_tmp, &frag_off);
731 	} else if (l3.v4->version == 4) {
732 		l4_proto_tmp = l3.v4->protocol;
733 	}
734 
735 	*il4_proto = l4_proto_tmp;
736 
737 	return 0;
738 }
739 
740 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
741  * and it is udp packet, which has a dest port as the IANA assigned.
742  * the hardware is expected to do the checksum offload, but the
743  * hardware will not do the checksum offload when udp dest port is
744  * 4789.
745  */
746 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
747 {
748 	union l4_hdr_info l4;
749 
750 	l4.hdr = skb_transport_header(skb);
751 
752 	if (!(!skb->encapsulation &&
753 	      l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
754 		return false;
755 
756 	skb_checksum_help(skb);
757 
758 	return true;
759 }
760 
761 static void hns3_set_outer_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
762 				  u32 *ol_type_vlan_len_msec)
763 {
764 	u32 l2_len, l3_len, l4_len;
765 	unsigned char *il2_hdr;
766 	union l3_hdr_info l3;
767 	union l4_hdr_info l4;
768 
769 	l3.hdr = skb_network_header(skb);
770 	l4.hdr = skb_transport_header(skb);
771 
772 	/* compute OL2 header size, defined in 2 Bytes */
773 	l2_len = l3.hdr - skb->data;
774 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L2LEN_S, l2_len >> 1);
775 
776 	/* compute OL3 header size, defined in 4 Bytes */
777 	l3_len = l4.hdr - l3.hdr;
778 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S, l3_len >> 2);
779 
780 	il2_hdr = skb_inner_mac_header(skb);
781 	/* compute OL4 header size, defined in 4 Bytes. */
782 	l4_len = il2_hdr - l4.hdr;
783 	hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L4LEN_S, l4_len >> 2);
784 
785 	/* define outer network header type */
786 	if (skb->protocol == htons(ETH_P_IP)) {
787 		if (skb_is_gso(skb))
788 			hns3_set_field(*ol_type_vlan_len_msec,
789 				       HNS3_TXD_OL3T_S,
790 				       HNS3_OL3T_IPV4_CSUM);
791 		else
792 			hns3_set_field(*ol_type_vlan_len_msec,
793 				       HNS3_TXD_OL3T_S,
794 				       HNS3_OL3T_IPV4_NO_CSUM);
795 
796 	} else if (skb->protocol == htons(ETH_P_IPV6)) {
797 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
798 			       HNS3_OL3T_IPV6);
799 	}
800 
801 	if (ol4_proto == IPPROTO_UDP)
802 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
803 			       HNS3_TUN_MAC_IN_UDP);
804 	else if (ol4_proto == IPPROTO_GRE)
805 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_TUNTYPE_S,
806 			       HNS3_TUN_NVGRE);
807 }
808 
809 static int hns3_set_l2l3l4(struct sk_buff *skb, u8 ol4_proto,
810 			   u8 il4_proto, u32 *type_cs_vlan_tso,
811 			   u32 *ol_type_vlan_len_msec)
812 {
813 	unsigned char *l2_hdr = skb->data;
814 	u32 l4_proto = ol4_proto;
815 	union l4_hdr_info l4;
816 	union l3_hdr_info l3;
817 	u32 l2_len, l3_len;
818 
819 	l4.hdr = skb_transport_header(skb);
820 	l3.hdr = skb_network_header(skb);
821 
822 	/* handle encapsulation skb */
823 	if (skb->encapsulation) {
824 		/* If this is a not UDP/GRE encapsulation skb */
825 		if (!(ol4_proto == IPPROTO_UDP || ol4_proto == IPPROTO_GRE)) {
826 			/* drop the skb tunnel packet if hardware don't support,
827 			 * because hardware can't calculate csum when TSO.
828 			 */
829 			if (skb_is_gso(skb))
830 				return -EDOM;
831 
832 			/* the stack computes the IP header already,
833 			 * driver calculate l4 checksum when not TSO.
834 			 */
835 			skb_checksum_help(skb);
836 			return 0;
837 		}
838 
839 		hns3_set_outer_l2l3l4(skb, ol4_proto, ol_type_vlan_len_msec);
840 
841 		/* switch to inner header */
842 		l2_hdr = skb_inner_mac_header(skb);
843 		l3.hdr = skb_inner_network_header(skb);
844 		l4.hdr = skb_inner_transport_header(skb);
845 		l4_proto = il4_proto;
846 	}
847 
848 	if (l3.v4->version == 4) {
849 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
850 			       HNS3_L3T_IPV4);
851 
852 		/* the stack computes the IP header already, the only time we
853 		 * need the hardware to recompute it is in the case of TSO.
854 		 */
855 		if (skb_is_gso(skb))
856 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
857 	} else if (l3.v6->version == 6) {
858 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
859 			       HNS3_L3T_IPV6);
860 	}
861 
862 	/* compute inner(/normal) L2 header size, defined in 2 Bytes */
863 	l2_len = l3.hdr - l2_hdr;
864 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
865 
866 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
867 	l3_len = l4.hdr - l3.hdr;
868 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
869 
870 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
871 	switch (l4_proto) {
872 	case IPPROTO_TCP:
873 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
874 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
875 			       HNS3_L4T_TCP);
876 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
877 			       l4.tcp->doff);
878 		break;
879 	case IPPROTO_UDP:
880 		if (hns3_tunnel_csum_bug(skb))
881 			break;
882 
883 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
884 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
885 			       HNS3_L4T_UDP);
886 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
887 			       (sizeof(struct udphdr) >> 2));
888 		break;
889 	case IPPROTO_SCTP:
890 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
891 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
892 			       HNS3_L4T_SCTP);
893 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
894 			       (sizeof(struct sctphdr) >> 2));
895 		break;
896 	default:
897 		/* drop the skb tunnel packet if hardware don't support,
898 		 * because hardware can't calculate csum when TSO.
899 		 */
900 		if (skb_is_gso(skb))
901 			return -EDOM;
902 
903 		/* the stack computes the IP header already,
904 		 * driver calculate l4 checksum when not TSO.
905 		 */
906 		skb_checksum_help(skb);
907 		return 0;
908 	}
909 
910 	return 0;
911 }
912 
913 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
914 {
915 	/* Config bd buffer end */
916 	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
917 	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
918 }
919 
920 static int hns3_fill_desc_vtags(struct sk_buff *skb,
921 				struct hns3_enet_ring *tx_ring,
922 				u32 *inner_vlan_flag,
923 				u32 *out_vlan_flag,
924 				u16 *inner_vtag,
925 				u16 *out_vtag)
926 {
927 #define HNS3_TX_VLAN_PRIO_SHIFT 13
928 
929 	struct hnae3_handle *handle = tx_ring->tqp->handle;
930 
931 	/* Since HW limitation, if port based insert VLAN enabled, only one VLAN
932 	 * header is allowed in skb, otherwise it will cause RAS error.
933 	 */
934 	if (unlikely(skb_vlan_tagged_multi(skb) &&
935 		     handle->port_base_vlan_state ==
936 		     HNAE3_PORT_BASE_VLAN_ENABLE))
937 		return -EINVAL;
938 
939 	if (skb->protocol == htons(ETH_P_8021Q) &&
940 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
941 	    NETIF_F_HW_VLAN_CTAG_TX)) {
942 		/* When HW VLAN acceleration is turned off, and the stack
943 		 * sets the protocol to 802.1q, the driver just need to
944 		 * set the protocol to the encapsulated ethertype.
945 		 */
946 		skb->protocol = vlan_get_protocol(skb);
947 		return 0;
948 	}
949 
950 	if (skb_vlan_tag_present(skb)) {
951 		u16 vlan_tag;
952 
953 		vlan_tag = skb_vlan_tag_get(skb);
954 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
955 
956 		/* Based on hw strategy, use out_vtag in two layer tag case,
957 		 * and use inner_vtag in one tag case.
958 		 */
959 		if (skb->protocol == htons(ETH_P_8021Q)) {
960 			if (handle->port_base_vlan_state ==
961 			    HNAE3_PORT_BASE_VLAN_DISABLE){
962 				hns3_set_field(*out_vlan_flag,
963 					       HNS3_TXD_OVLAN_B, 1);
964 				*out_vtag = vlan_tag;
965 			} else {
966 				hns3_set_field(*inner_vlan_flag,
967 					       HNS3_TXD_VLAN_B, 1);
968 				*inner_vtag = vlan_tag;
969 			}
970 		} else {
971 			hns3_set_field(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
972 			*inner_vtag = vlan_tag;
973 		}
974 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
975 		struct vlan_ethhdr *vhdr;
976 		int rc;
977 
978 		rc = skb_cow_head(skb, 0);
979 		if (unlikely(rc < 0))
980 			return rc;
981 		vhdr = (struct vlan_ethhdr *)skb->data;
982 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
983 					<< HNS3_TX_VLAN_PRIO_SHIFT);
984 	}
985 
986 	skb->protocol = vlan_get_protocol(skb);
987 	return 0;
988 }
989 
990 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
991 			  int size, int frag_end, enum hns_desc_type type)
992 {
993 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
994 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
995 	struct device *dev = ring_to_dev(ring);
996 	struct skb_frag_struct *frag;
997 	unsigned int frag_buf_num;
998 	int k, sizeoflast;
999 	dma_addr_t dma;
1000 
1001 	if (type == DESC_TYPE_SKB) {
1002 		struct sk_buff *skb = (struct sk_buff *)priv;
1003 		u32 ol_type_vlan_len_msec = 0;
1004 		u32 type_cs_vlan_tso = 0;
1005 		u32 paylen = skb->len;
1006 		u16 inner_vtag = 0;
1007 		u16 out_vtag = 0;
1008 		u16 mss = 0;
1009 		int ret;
1010 
1011 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
1012 					   &ol_type_vlan_len_msec,
1013 					   &inner_vtag, &out_vtag);
1014 		if (unlikely(ret))
1015 			return ret;
1016 
1017 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1018 			u8 ol4_proto, il4_proto;
1019 
1020 			skb_reset_mac_len(skb);
1021 
1022 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1023 			if (unlikely(ret))
1024 				return ret;
1025 
1026 			ret = hns3_set_l2l3l4(skb, ol4_proto, il4_proto,
1027 					      &type_cs_vlan_tso,
1028 					      &ol_type_vlan_len_msec);
1029 			if (unlikely(ret))
1030 				return ret;
1031 
1032 			ret = hns3_set_tso(skb, &paylen, &mss,
1033 					   &type_cs_vlan_tso);
1034 			if (unlikely(ret))
1035 				return ret;
1036 		}
1037 
1038 		/* Set txbd */
1039 		desc->tx.ol_type_vlan_len_msec =
1040 			cpu_to_le32(ol_type_vlan_len_msec);
1041 		desc->tx.type_cs_vlan_tso_len =
1042 			cpu_to_le32(type_cs_vlan_tso);
1043 		desc->tx.paylen = cpu_to_le32(paylen);
1044 		desc->tx.mss = cpu_to_le16(mss);
1045 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1046 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1047 
1048 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1049 	} else {
1050 		frag = (struct skb_frag_struct *)priv;
1051 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1052 	}
1053 
1054 	if (unlikely(dma_mapping_error(dev, dma))) {
1055 		ring->stats.sw_err_cnt++;
1056 		return -ENOMEM;
1057 	}
1058 
1059 	desc_cb->length = size;
1060 
1061 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1062 		u16 bdtp_fe_sc_vld_ra_ri = 0;
1063 
1064 		desc_cb->priv = priv;
1065 		desc_cb->dma = dma;
1066 		desc_cb->type = type;
1067 		desc->addr = cpu_to_le64(dma);
1068 		desc->tx.send_size = cpu_to_le16(size);
1069 		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
1070 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1071 			cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1072 
1073 		ring_ptr_move_fw(ring, next_to_use);
1074 		return 0;
1075 	}
1076 
1077 	frag_buf_num = hns3_tx_bd_count(size);
1078 	sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1079 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1080 
1081 	/* When frag size is bigger than hardware limit, split this frag */
1082 	for (k = 0; k < frag_buf_num; k++) {
1083 		u16 bdtp_fe_sc_vld_ra_ri = 0;
1084 
1085 		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1086 		desc_cb->priv = priv;
1087 		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1088 		desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1089 					DESC_TYPE_SKB : DESC_TYPE_PAGE;
1090 
1091 		/* now, fill the descriptor */
1092 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1093 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1094 				(u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1095 		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1096 				       frag_end && (k == frag_buf_num - 1) ?
1097 						1 : 0);
1098 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1099 				cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1100 
1101 		/* move ring pointer to next.*/
1102 		ring_ptr_move_fw(ring, next_to_use);
1103 
1104 		desc_cb = &ring->desc_cb[ring->next_to_use];
1105 		desc = &ring->desc[ring->next_to_use];
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 static int hns3_nic_bd_num(struct sk_buff *skb)
1112 {
1113 	int size = skb_headlen(skb);
1114 	int i, bd_num;
1115 
1116 	/* if the total len is within the max bd limit */
1117 	if (likely(skb->len <= HNS3_MAX_BD_SIZE))
1118 		return skb_shinfo(skb)->nr_frags + 1;
1119 
1120 	bd_num = hns3_tx_bd_count(size);
1121 
1122 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1123 		struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
1124 		int frag_bd_num;
1125 
1126 		size = skb_frag_size(frag);
1127 		frag_bd_num = hns3_tx_bd_count(size);
1128 
1129 		if (unlikely(frag_bd_num > HNS3_MAX_BD_PER_FRAG))
1130 			return -ENOMEM;
1131 
1132 		bd_num += frag_bd_num;
1133 	}
1134 
1135 	return bd_num;
1136 }
1137 
1138 static unsigned int hns3_gso_hdr_len(struct sk_buff *skb)
1139 {
1140 	if (!skb->encapsulation)
1141 		return skb_transport_offset(skb) + tcp_hdrlen(skb);
1142 
1143 	return skb_inner_transport_offset(skb) + inner_tcp_hdrlen(skb);
1144 }
1145 
1146 /* HW need every continuous 8 buffer data to be larger than MSS,
1147  * we simplify it by ensuring skb_headlen + the first continuous
1148  * 7 frags to to be larger than gso header len + mss, and the remaining
1149  * continuous 7 frags to be larger than MSS except the last 7 frags.
1150  */
1151 static bool hns3_skb_need_linearized(struct sk_buff *skb)
1152 {
1153 	int bd_limit = HNS3_MAX_BD_PER_FRAG - 1;
1154 	unsigned int tot_len = 0;
1155 	int i;
1156 
1157 	for (i = 0; i < bd_limit; i++)
1158 		tot_len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
1159 
1160 	/* ensure headlen + the first 7 frags is greater than mss + header
1161 	 * and the first 7 frags is greater than mss.
1162 	 */
1163 	if (((tot_len + skb_headlen(skb)) < (skb_shinfo(skb)->gso_size +
1164 	    hns3_gso_hdr_len(skb))) || (tot_len < skb_shinfo(skb)->gso_size))
1165 		return true;
1166 
1167 	/* ensure the remaining continuous 7 buffer is greater than mss */
1168 	for (i = 0; i < (skb_shinfo(skb)->nr_frags - bd_limit - 1); i++) {
1169 		tot_len -= skb_frag_size(&skb_shinfo(skb)->frags[i]);
1170 		tot_len += skb_frag_size(&skb_shinfo(skb)->frags[i + bd_limit]);
1171 
1172 		if (tot_len < skb_shinfo(skb)->gso_size)
1173 			return true;
1174 	}
1175 
1176 	return false;
1177 }
1178 
1179 static int hns3_nic_maybe_stop_tx(struct hns3_enet_ring *ring,
1180 				  struct sk_buff **out_skb)
1181 {
1182 	struct sk_buff *skb = *out_skb;
1183 	int bd_num;
1184 
1185 	bd_num = hns3_nic_bd_num(skb);
1186 	if (bd_num < 0)
1187 		return bd_num;
1188 
1189 	if (unlikely(bd_num > HNS3_MAX_BD_PER_FRAG)) {
1190 		struct sk_buff *new_skb;
1191 
1192 		if (skb_is_gso(skb) && !hns3_skb_need_linearized(skb))
1193 			goto out;
1194 
1195 		bd_num = hns3_tx_bd_count(skb->len);
1196 		if (unlikely(ring_space(ring) < bd_num))
1197 			return -EBUSY;
1198 		/* manual split the send packet */
1199 		new_skb = skb_copy(skb, GFP_ATOMIC);
1200 		if (!new_skb)
1201 			return -ENOMEM;
1202 		dev_kfree_skb_any(skb);
1203 		*out_skb = new_skb;
1204 
1205 		u64_stats_update_begin(&ring->syncp);
1206 		ring->stats.tx_copy++;
1207 		u64_stats_update_end(&ring->syncp);
1208 	}
1209 
1210 out:
1211 	if (unlikely(ring_space(ring) < bd_num))
1212 		return -EBUSY;
1213 
1214 	return bd_num;
1215 }
1216 
1217 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1218 {
1219 	struct device *dev = ring_to_dev(ring);
1220 	unsigned int i;
1221 
1222 	for (i = 0; i < ring->desc_num; i++) {
1223 		/* check if this is where we started */
1224 		if (ring->next_to_use == next_to_use_orig)
1225 			break;
1226 
1227 		/* rollback one */
1228 		ring_ptr_move_bw(ring, next_to_use);
1229 
1230 		/* unmap the descriptor dma address */
1231 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1232 			dma_unmap_single(dev,
1233 					 ring->desc_cb[ring->next_to_use].dma,
1234 					ring->desc_cb[ring->next_to_use].length,
1235 					DMA_TO_DEVICE);
1236 		else if (ring->desc_cb[ring->next_to_use].length)
1237 			dma_unmap_page(dev,
1238 				       ring->desc_cb[ring->next_to_use].dma,
1239 				       ring->desc_cb[ring->next_to_use].length,
1240 				       DMA_TO_DEVICE);
1241 
1242 		ring->desc_cb[ring->next_to_use].length = 0;
1243 		ring->desc_cb[ring->next_to_use].dma = 0;
1244 	}
1245 }
1246 
1247 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1248 {
1249 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1250 	struct hns3_nic_ring_data *ring_data =
1251 		&tx_ring_data(priv, skb->queue_mapping);
1252 	struct hns3_enet_ring *ring = ring_data->ring;
1253 	struct netdev_queue *dev_queue;
1254 	struct skb_frag_struct *frag;
1255 	int next_to_use_head;
1256 	int buf_num;
1257 	int seg_num;
1258 	int size;
1259 	int ret;
1260 	int i;
1261 
1262 	/* Prefetch the data used later */
1263 	prefetch(skb->data);
1264 
1265 	buf_num = hns3_nic_maybe_stop_tx(ring, &skb);
1266 	if (unlikely(buf_num <= 0)) {
1267 		if (buf_num == -EBUSY) {
1268 			u64_stats_update_begin(&ring->syncp);
1269 			ring->stats.tx_busy++;
1270 			u64_stats_update_end(&ring->syncp);
1271 			goto out_net_tx_busy;
1272 		} else if (buf_num == -ENOMEM) {
1273 			u64_stats_update_begin(&ring->syncp);
1274 			ring->stats.sw_err_cnt++;
1275 			u64_stats_update_end(&ring->syncp);
1276 		}
1277 
1278 		if (net_ratelimit())
1279 			netdev_err(netdev, "xmit error: %d!\n", buf_num);
1280 
1281 		goto out_err_tx_ok;
1282 	}
1283 
1284 	/* No. of segments (plus a header) */
1285 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1286 	/* Fill the first part */
1287 	size = skb_headlen(skb);
1288 
1289 	next_to_use_head = ring->next_to_use;
1290 
1291 	ret = hns3_fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1292 			     DESC_TYPE_SKB);
1293 	if (unlikely(ret))
1294 		goto fill_err;
1295 
1296 	/* Fill the fragments */
1297 	for (i = 1; i < seg_num; i++) {
1298 		frag = &skb_shinfo(skb)->frags[i - 1];
1299 		size = skb_frag_size(frag);
1300 
1301 		ret = hns3_fill_desc(ring, frag, size,
1302 				     seg_num - 1 == i ? 1 : 0,
1303 				     DESC_TYPE_PAGE);
1304 
1305 		if (unlikely(ret))
1306 			goto fill_err;
1307 	}
1308 
1309 	/* Complete translate all packets */
1310 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1311 	netdev_tx_sent_queue(dev_queue, skb->len);
1312 
1313 	wmb(); /* Commit all data before submit */
1314 
1315 	hnae3_queue_xmit(ring->tqp, buf_num);
1316 
1317 	return NETDEV_TX_OK;
1318 
1319 fill_err:
1320 	hns3_clear_desc(ring, next_to_use_head);
1321 
1322 out_err_tx_ok:
1323 	dev_kfree_skb_any(skb);
1324 	return NETDEV_TX_OK;
1325 
1326 out_net_tx_busy:
1327 	netif_stop_subqueue(netdev, ring_data->queue_index);
1328 	smp_mb(); /* Commit all data before submit */
1329 
1330 	return NETDEV_TX_BUSY;
1331 }
1332 
1333 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1334 {
1335 	struct hnae3_handle *h = hns3_get_handle(netdev);
1336 	struct sockaddr *mac_addr = p;
1337 	int ret;
1338 
1339 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1340 		return -EADDRNOTAVAIL;
1341 
1342 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1343 		netdev_info(netdev, "already using mac address %pM\n",
1344 			    mac_addr->sa_data);
1345 		return 0;
1346 	}
1347 
1348 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1349 	if (ret) {
1350 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1351 		return ret;
1352 	}
1353 
1354 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1355 
1356 	return 0;
1357 }
1358 
1359 static int hns3_nic_do_ioctl(struct net_device *netdev,
1360 			     struct ifreq *ifr, int cmd)
1361 {
1362 	struct hnae3_handle *h = hns3_get_handle(netdev);
1363 
1364 	if (!netif_running(netdev))
1365 		return -EINVAL;
1366 
1367 	if (!h->ae_algo->ops->do_ioctl)
1368 		return -EOPNOTSUPP;
1369 
1370 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1371 }
1372 
1373 static int hns3_nic_set_features(struct net_device *netdev,
1374 				 netdev_features_t features)
1375 {
1376 	netdev_features_t changed = netdev->features ^ features;
1377 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1378 	struct hnae3_handle *h = priv->ae_handle;
1379 	bool enable;
1380 	int ret;
1381 
1382 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1383 		enable = !!(features & NETIF_F_GRO_HW);
1384 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1385 		if (ret)
1386 			return ret;
1387 	}
1388 
1389 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1390 	    h->ae_algo->ops->enable_vlan_filter) {
1391 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1392 		h->ae_algo->ops->enable_vlan_filter(h, enable);
1393 	}
1394 
1395 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1396 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1397 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1398 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1399 		if (ret)
1400 			return ret;
1401 	}
1402 
1403 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1404 		enable = !!(features & NETIF_F_NTUPLE);
1405 		h->ae_algo->ops->enable_fd(h, enable);
1406 	}
1407 
1408 	netdev->features = features;
1409 	return 0;
1410 }
1411 
1412 static void hns3_nic_get_stats64(struct net_device *netdev,
1413 				 struct rtnl_link_stats64 *stats)
1414 {
1415 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1416 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1417 	struct hnae3_handle *handle = priv->ae_handle;
1418 	struct hns3_enet_ring *ring;
1419 	u64 rx_length_errors = 0;
1420 	u64 rx_crc_errors = 0;
1421 	u64 rx_multicast = 0;
1422 	unsigned int start;
1423 	u64 tx_errors = 0;
1424 	u64 rx_errors = 0;
1425 	unsigned int idx;
1426 	u64 tx_bytes = 0;
1427 	u64 rx_bytes = 0;
1428 	u64 tx_pkts = 0;
1429 	u64 rx_pkts = 0;
1430 	u64 tx_drop = 0;
1431 	u64 rx_drop = 0;
1432 
1433 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1434 		return;
1435 
1436 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1437 
1438 	for (idx = 0; idx < queue_num; idx++) {
1439 		/* fetch the tx stats */
1440 		ring = priv->ring_data[idx].ring;
1441 		do {
1442 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1443 			tx_bytes += ring->stats.tx_bytes;
1444 			tx_pkts += ring->stats.tx_pkts;
1445 			tx_drop += ring->stats.sw_err_cnt;
1446 			tx_errors += ring->stats.sw_err_cnt;
1447 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1448 
1449 		/* fetch the rx stats */
1450 		ring = priv->ring_data[idx + queue_num].ring;
1451 		do {
1452 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1453 			rx_bytes += ring->stats.rx_bytes;
1454 			rx_pkts += ring->stats.rx_pkts;
1455 			rx_drop += ring->stats.non_vld_descs;
1456 			rx_drop += ring->stats.l2_err;
1457 			rx_errors += ring->stats.non_vld_descs;
1458 			rx_errors += ring->stats.l2_err;
1459 			rx_crc_errors += ring->stats.l2_err;
1460 			rx_crc_errors += ring->stats.l3l4_csum_err;
1461 			rx_multicast += ring->stats.rx_multicast;
1462 			rx_length_errors += ring->stats.err_pkt_len;
1463 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1464 	}
1465 
1466 	stats->tx_bytes = tx_bytes;
1467 	stats->tx_packets = tx_pkts;
1468 	stats->rx_bytes = rx_bytes;
1469 	stats->rx_packets = rx_pkts;
1470 
1471 	stats->rx_errors = rx_errors;
1472 	stats->multicast = rx_multicast;
1473 	stats->rx_length_errors = rx_length_errors;
1474 	stats->rx_crc_errors = rx_crc_errors;
1475 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1476 
1477 	stats->tx_errors = tx_errors;
1478 	stats->rx_dropped = rx_drop;
1479 	stats->tx_dropped = tx_drop;
1480 	stats->collisions = netdev->stats.collisions;
1481 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1482 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1483 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1484 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1485 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1486 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1487 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1488 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1489 	stats->rx_compressed = netdev->stats.rx_compressed;
1490 	stats->tx_compressed = netdev->stats.tx_compressed;
1491 }
1492 
1493 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1494 {
1495 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1496 	struct hnae3_handle *h = hns3_get_handle(netdev);
1497 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1498 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1499 	u8 tc = mqprio_qopt->qopt.num_tc;
1500 	u16 mode = mqprio_qopt->mode;
1501 	u8 hw = mqprio_qopt->qopt.hw;
1502 
1503 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1504 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1505 		return -EOPNOTSUPP;
1506 
1507 	if (tc > HNAE3_MAX_TC)
1508 		return -EINVAL;
1509 
1510 	if (!netdev)
1511 		return -EINVAL;
1512 
1513 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1514 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1515 }
1516 
1517 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1518 			     void *type_data)
1519 {
1520 	if (type != TC_SETUP_QDISC_MQPRIO)
1521 		return -EOPNOTSUPP;
1522 
1523 	return hns3_setup_tc(dev, type_data);
1524 }
1525 
1526 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1527 				__be16 proto, u16 vid)
1528 {
1529 	struct hnae3_handle *h = hns3_get_handle(netdev);
1530 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1531 	int ret = -EIO;
1532 
1533 	if (h->ae_algo->ops->set_vlan_filter)
1534 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1535 
1536 	if (!ret)
1537 		set_bit(vid, priv->active_vlans);
1538 
1539 	return ret;
1540 }
1541 
1542 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1543 				 __be16 proto, u16 vid)
1544 {
1545 	struct hnae3_handle *h = hns3_get_handle(netdev);
1546 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1547 	int ret = -EIO;
1548 
1549 	if (h->ae_algo->ops->set_vlan_filter)
1550 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1551 
1552 	if (!ret)
1553 		clear_bit(vid, priv->active_vlans);
1554 
1555 	return ret;
1556 }
1557 
1558 static int hns3_restore_vlan(struct net_device *netdev)
1559 {
1560 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1561 	int ret = 0;
1562 	u16 vid;
1563 
1564 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1565 		ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1566 		if (ret) {
1567 			netdev_err(netdev, "Restore vlan: %d filter, ret:%d\n",
1568 				   vid, ret);
1569 			return ret;
1570 		}
1571 	}
1572 
1573 	return ret;
1574 }
1575 
1576 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1577 				u8 qos, __be16 vlan_proto)
1578 {
1579 	struct hnae3_handle *h = hns3_get_handle(netdev);
1580 	int ret = -EIO;
1581 
1582 	if (h->ae_algo->ops->set_vf_vlan_filter)
1583 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1584 						   qos, vlan_proto);
1585 
1586 	return ret;
1587 }
1588 
1589 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1590 {
1591 	struct hnae3_handle *h = hns3_get_handle(netdev);
1592 	int ret;
1593 
1594 	if (hns3_nic_resetting(netdev))
1595 		return -EBUSY;
1596 
1597 	if (!h->ae_algo->ops->set_mtu)
1598 		return -EOPNOTSUPP;
1599 
1600 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1601 	if (ret)
1602 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1603 			   ret);
1604 	else
1605 		netdev->mtu = new_mtu;
1606 
1607 	return ret;
1608 }
1609 
1610 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1611 {
1612 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1613 	struct hnae3_handle *h = hns3_get_handle(ndev);
1614 	struct hns3_enet_ring *tx_ring = NULL;
1615 	struct napi_struct *napi;
1616 	int timeout_queue = 0;
1617 	int hw_head, hw_tail;
1618 	int fbd_num, fbd_oft;
1619 	int ebd_num, ebd_oft;
1620 	int bd_num, bd_err;
1621 	int ring_en, tc;
1622 	int i;
1623 
1624 	/* Find the stopped queue the same way the stack does */
1625 	for (i = 0; i < ndev->num_tx_queues; i++) {
1626 		struct netdev_queue *q;
1627 		unsigned long trans_start;
1628 
1629 		q = netdev_get_tx_queue(ndev, i);
1630 		trans_start = q->trans_start;
1631 		if (netif_xmit_stopped(q) &&
1632 		    time_after(jiffies,
1633 			       (trans_start + ndev->watchdog_timeo))) {
1634 			timeout_queue = i;
1635 			break;
1636 		}
1637 	}
1638 
1639 	if (i == ndev->num_tx_queues) {
1640 		netdev_info(ndev,
1641 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1642 			    priv->tx_timeout_count);
1643 		return false;
1644 	}
1645 
1646 	priv->tx_timeout_count++;
1647 
1648 	tx_ring = priv->ring_data[timeout_queue].ring;
1649 	napi = &tx_ring->tqp_vector->napi;
1650 
1651 	netdev_info(ndev,
1652 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, napi state: %lu\n",
1653 		    priv->tx_timeout_count, timeout_queue, tx_ring->next_to_use,
1654 		    tx_ring->next_to_clean, napi->state);
1655 
1656 	netdev_info(ndev,
1657 		    "tx_pkts: %llu, tx_bytes: %llu, io_err_cnt: %llu, sw_err_cnt: %llu\n",
1658 		    tx_ring->stats.tx_pkts, tx_ring->stats.tx_bytes,
1659 		    tx_ring->stats.io_err_cnt, tx_ring->stats.sw_err_cnt);
1660 
1661 	netdev_info(ndev,
1662 		    "seg_pkt_cnt: %llu, tx_err_cnt: %llu, restart_queue: %llu, tx_busy: %llu\n",
1663 		    tx_ring->stats.seg_pkt_cnt, tx_ring->stats.tx_err_cnt,
1664 		    tx_ring->stats.restart_queue, tx_ring->stats.tx_busy);
1665 
1666 	/* When mac received many pause frames continuous, it's unable to send
1667 	 * packets, which may cause tx timeout
1668 	 */
1669 	if (h->ae_algo->ops->update_stats &&
1670 	    h->ae_algo->ops->get_mac_pause_stats) {
1671 		u64 tx_pause_cnt, rx_pause_cnt;
1672 
1673 		h->ae_algo->ops->update_stats(h, &ndev->stats);
1674 		h->ae_algo->ops->get_mac_pause_stats(h, &tx_pause_cnt,
1675 						     &rx_pause_cnt);
1676 		netdev_info(ndev, "tx_pause_cnt: %llu, rx_pause_cnt: %llu\n",
1677 			    tx_pause_cnt, rx_pause_cnt);
1678 	}
1679 
1680 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1681 				HNS3_RING_TX_RING_HEAD_REG);
1682 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1683 				HNS3_RING_TX_RING_TAIL_REG);
1684 	fbd_num = readl_relaxed(tx_ring->tqp->io_base +
1685 				HNS3_RING_TX_RING_FBDNUM_REG);
1686 	fbd_oft = readl_relaxed(tx_ring->tqp->io_base +
1687 				HNS3_RING_TX_RING_OFFSET_REG);
1688 	ebd_num = readl_relaxed(tx_ring->tqp->io_base +
1689 				HNS3_RING_TX_RING_EBDNUM_REG);
1690 	ebd_oft = readl_relaxed(tx_ring->tqp->io_base +
1691 				HNS3_RING_TX_RING_EBD_OFFSET_REG);
1692 	bd_num = readl_relaxed(tx_ring->tqp->io_base +
1693 			       HNS3_RING_TX_RING_BD_NUM_REG);
1694 	bd_err = readl_relaxed(tx_ring->tqp->io_base +
1695 			       HNS3_RING_TX_RING_BD_ERR_REG);
1696 	ring_en = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_EN_REG);
1697 	tc = readl_relaxed(tx_ring->tqp->io_base + HNS3_RING_TX_RING_TC_REG);
1698 
1699 	netdev_info(ndev,
1700 		    "BD_NUM: 0x%x HW_HEAD: 0x%x, HW_TAIL: 0x%x, BD_ERR: 0x%x, INT: 0x%x\n",
1701 		    bd_num, hw_head, hw_tail, bd_err,
1702 		    readl(tx_ring->tqp_vector->mask_addr));
1703 	netdev_info(ndev,
1704 		    "RING_EN: 0x%x, TC: 0x%x, FBD_NUM: 0x%x FBD_OFT: 0x%x, EBD_NUM: 0x%x, EBD_OFT: 0x%x\n",
1705 		    ring_en, tc, fbd_num, fbd_oft, ebd_num, ebd_oft);
1706 
1707 	return true;
1708 }
1709 
1710 static void hns3_nic_net_timeout(struct net_device *ndev)
1711 {
1712 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1713 	struct hnae3_handle *h = priv->ae_handle;
1714 
1715 	if (!hns3_get_tx_timeo_queue_info(ndev))
1716 		return;
1717 
1718 	/* request the reset, and let the hclge to determine
1719 	 * which reset level should be done
1720 	 */
1721 	if (h->ae_algo->ops->reset_event)
1722 		h->ae_algo->ops->reset_event(h->pdev, h);
1723 }
1724 
1725 static const struct net_device_ops hns3_nic_netdev_ops = {
1726 	.ndo_open		= hns3_nic_net_open,
1727 	.ndo_stop		= hns3_nic_net_stop,
1728 	.ndo_start_xmit		= hns3_nic_net_xmit,
1729 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1730 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1731 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
1732 	.ndo_change_mtu		= hns3_nic_change_mtu,
1733 	.ndo_set_features	= hns3_nic_set_features,
1734 	.ndo_get_stats64	= hns3_nic_get_stats64,
1735 	.ndo_setup_tc		= hns3_nic_setup_tc,
1736 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1737 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1738 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1739 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1740 };
1741 
1742 bool hns3_is_phys_func(struct pci_dev *pdev)
1743 {
1744 	u32 dev_id = pdev->device;
1745 
1746 	switch (dev_id) {
1747 	case HNAE3_DEV_ID_GE:
1748 	case HNAE3_DEV_ID_25GE:
1749 	case HNAE3_DEV_ID_25GE_RDMA:
1750 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1751 	case HNAE3_DEV_ID_50GE_RDMA:
1752 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1753 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1754 		return true;
1755 	case HNAE3_DEV_ID_100G_VF:
1756 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1757 		return false;
1758 	default:
1759 		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1760 			 dev_id);
1761 	}
1762 
1763 	return false;
1764 }
1765 
1766 static void hns3_disable_sriov(struct pci_dev *pdev)
1767 {
1768 	/* If our VFs are assigned we cannot shut down SR-IOV
1769 	 * without causing issues, so just leave the hardware
1770 	 * available but disabled
1771 	 */
1772 	if (pci_vfs_assigned(pdev)) {
1773 		dev_warn(&pdev->dev,
1774 			 "disabling driver while VFs are assigned\n");
1775 		return;
1776 	}
1777 
1778 	pci_disable_sriov(pdev);
1779 }
1780 
1781 static void hns3_get_dev_capability(struct pci_dev *pdev,
1782 				    struct hnae3_ae_dev *ae_dev)
1783 {
1784 	if (pdev->revision >= 0x21) {
1785 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1786 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1787 	}
1788 }
1789 
1790 /* hns3_probe - Device initialization routine
1791  * @pdev: PCI device information struct
1792  * @ent: entry in hns3_pci_tbl
1793  *
1794  * hns3_probe initializes a PF identified by a pci_dev structure.
1795  * The OS initialization, configuring of the PF private structure,
1796  * and a hardware reset occur.
1797  *
1798  * Returns 0 on success, negative on failure
1799  */
1800 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1801 {
1802 	struct hnae3_ae_dev *ae_dev;
1803 	int ret;
1804 
1805 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1806 			      GFP_KERNEL);
1807 	if (!ae_dev) {
1808 		ret = -ENOMEM;
1809 		return ret;
1810 	}
1811 
1812 	ae_dev->pdev = pdev;
1813 	ae_dev->flag = ent->driver_data;
1814 	ae_dev->dev_type = HNAE3_DEV_KNIC;
1815 	ae_dev->reset_type = HNAE3_NONE_RESET;
1816 	hns3_get_dev_capability(pdev, ae_dev);
1817 	pci_set_drvdata(pdev, ae_dev);
1818 
1819 	ret = hnae3_register_ae_dev(ae_dev);
1820 	if (ret) {
1821 		devm_kfree(&pdev->dev, ae_dev);
1822 		pci_set_drvdata(pdev, NULL);
1823 	}
1824 
1825 	return ret;
1826 }
1827 
1828 /* hns3_remove - Device removal routine
1829  * @pdev: PCI device information struct
1830  */
1831 static void hns3_remove(struct pci_dev *pdev)
1832 {
1833 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1834 
1835 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1836 		hns3_disable_sriov(pdev);
1837 
1838 	hnae3_unregister_ae_dev(ae_dev);
1839 	pci_set_drvdata(pdev, NULL);
1840 }
1841 
1842 /**
1843  * hns3_pci_sriov_configure
1844  * @pdev: pointer to a pci_dev structure
1845  * @num_vfs: number of VFs to allocate
1846  *
1847  * Enable or change the number of VFs. Called when the user updates the number
1848  * of VFs in sysfs.
1849  **/
1850 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1851 {
1852 	int ret;
1853 
1854 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1855 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
1856 		return -EINVAL;
1857 	}
1858 
1859 	if (num_vfs) {
1860 		ret = pci_enable_sriov(pdev, num_vfs);
1861 		if (ret)
1862 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1863 		else
1864 			return num_vfs;
1865 	} else if (!pci_vfs_assigned(pdev)) {
1866 		pci_disable_sriov(pdev);
1867 	} else {
1868 		dev_warn(&pdev->dev,
1869 			 "Unable to free VFs because some are assigned to VMs.\n");
1870 	}
1871 
1872 	return 0;
1873 }
1874 
1875 static void hns3_shutdown(struct pci_dev *pdev)
1876 {
1877 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1878 
1879 	hnae3_unregister_ae_dev(ae_dev);
1880 	devm_kfree(&pdev->dev, ae_dev);
1881 	pci_set_drvdata(pdev, NULL);
1882 
1883 	if (system_state == SYSTEM_POWER_OFF)
1884 		pci_set_power_state(pdev, PCI_D3hot);
1885 }
1886 
1887 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1888 					    pci_channel_state_t state)
1889 {
1890 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1891 	pci_ers_result_t ret;
1892 
1893 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1894 
1895 	if (state == pci_channel_io_perm_failure)
1896 		return PCI_ERS_RESULT_DISCONNECT;
1897 
1898 	if (!ae_dev) {
1899 		dev_err(&pdev->dev,
1900 			"Can't recover - error happened during device init\n");
1901 		return PCI_ERS_RESULT_NONE;
1902 	}
1903 
1904 	if (ae_dev->ops->handle_hw_ras_error)
1905 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
1906 	else
1907 		return PCI_ERS_RESULT_NONE;
1908 
1909 	return ret;
1910 }
1911 
1912 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
1913 {
1914 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1915 	struct device *dev = &pdev->dev;
1916 
1917 	dev_info(dev, "requesting reset due to PCI error\n");
1918 
1919 	/* request the reset */
1920 	if (ae_dev->ops->reset_event) {
1921 		if (!ae_dev->override_pci_need_reset)
1922 			ae_dev->ops->reset_event(pdev, NULL);
1923 
1924 		return PCI_ERS_RESULT_RECOVERED;
1925 	}
1926 
1927 	return PCI_ERS_RESULT_DISCONNECT;
1928 }
1929 
1930 static void hns3_reset_prepare(struct pci_dev *pdev)
1931 {
1932 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1933 
1934 	dev_info(&pdev->dev, "hns3 flr prepare\n");
1935 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
1936 		ae_dev->ops->flr_prepare(ae_dev);
1937 }
1938 
1939 static void hns3_reset_done(struct pci_dev *pdev)
1940 {
1941 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1942 
1943 	dev_info(&pdev->dev, "hns3 flr done\n");
1944 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
1945 		ae_dev->ops->flr_done(ae_dev);
1946 }
1947 
1948 static const struct pci_error_handlers hns3_err_handler = {
1949 	.error_detected = hns3_error_detected,
1950 	.slot_reset     = hns3_slot_reset,
1951 	.reset_prepare	= hns3_reset_prepare,
1952 	.reset_done	= hns3_reset_done,
1953 };
1954 
1955 static struct pci_driver hns3_driver = {
1956 	.name     = hns3_driver_name,
1957 	.id_table = hns3_pci_tbl,
1958 	.probe    = hns3_probe,
1959 	.remove   = hns3_remove,
1960 	.shutdown = hns3_shutdown,
1961 	.sriov_configure = hns3_pci_sriov_configure,
1962 	.err_handler    = &hns3_err_handler,
1963 };
1964 
1965 /* set default feature to hns3 */
1966 static void hns3_set_default_feature(struct net_device *netdev)
1967 {
1968 	struct hnae3_handle *h = hns3_get_handle(netdev);
1969 	struct pci_dev *pdev = h->pdev;
1970 
1971 	netdev->priv_flags |= IFF_UNICAST_FLT;
1972 
1973 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1974 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1975 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1976 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1977 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1978 
1979 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1980 
1981 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1982 
1983 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1984 		NETIF_F_HW_VLAN_CTAG_FILTER |
1985 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1986 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1987 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1988 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1989 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1990 
1991 	netdev->vlan_features |=
1992 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1993 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1994 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1995 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1996 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1997 
1998 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1999 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
2000 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2001 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
2002 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
2003 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
2004 
2005 	if (pdev->revision >= 0x21) {
2006 		netdev->hw_features |= NETIF_F_GRO_HW;
2007 		netdev->features |= NETIF_F_GRO_HW;
2008 
2009 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
2010 			netdev->hw_features |= NETIF_F_NTUPLE;
2011 			netdev->features |= NETIF_F_NTUPLE;
2012 		}
2013 	}
2014 }
2015 
2016 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
2017 			     struct hns3_desc_cb *cb)
2018 {
2019 	unsigned int order = hnae3_page_order(ring);
2020 	struct page *p;
2021 
2022 	p = dev_alloc_pages(order);
2023 	if (!p)
2024 		return -ENOMEM;
2025 
2026 	cb->priv = p;
2027 	cb->page_offset = 0;
2028 	cb->reuse_flag = 0;
2029 	cb->buf  = page_address(p);
2030 	cb->length = hnae3_page_size(ring);
2031 	cb->type = DESC_TYPE_PAGE;
2032 
2033 	return 0;
2034 }
2035 
2036 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2037 			     struct hns3_desc_cb *cb)
2038 {
2039 	if (cb->type == DESC_TYPE_SKB)
2040 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
2041 	else if (!HNAE3_IS_TX_RING(ring))
2042 		put_page((struct page *)cb->priv);
2043 	memset(cb, 0, sizeof(*cb));
2044 }
2045 
2046 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2047 {
2048 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2049 			       cb->length, ring_to_dma_dir(ring));
2050 
2051 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2052 		return -EIO;
2053 
2054 	return 0;
2055 }
2056 
2057 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2058 			      struct hns3_desc_cb *cb)
2059 {
2060 	if (cb->type == DESC_TYPE_SKB)
2061 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2062 				 ring_to_dma_dir(ring));
2063 	else if (cb->length)
2064 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2065 			       ring_to_dma_dir(ring));
2066 }
2067 
2068 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2069 {
2070 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2071 	ring->desc[i].addr = 0;
2072 }
2073 
2074 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2075 {
2076 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2077 
2078 	if (!ring->desc_cb[i].dma)
2079 		return;
2080 
2081 	hns3_buffer_detach(ring, i);
2082 	hns3_free_buffer(ring, cb);
2083 }
2084 
2085 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2086 {
2087 	int i;
2088 
2089 	for (i = 0; i < ring->desc_num; i++)
2090 		hns3_free_buffer_detach(ring, i);
2091 }
2092 
2093 /* free desc along with its attached buffer */
2094 static void hns3_free_desc(struct hns3_enet_ring *ring)
2095 {
2096 	int size = ring->desc_num * sizeof(ring->desc[0]);
2097 
2098 	hns3_free_buffers(ring);
2099 
2100 	if (ring->desc) {
2101 		dma_free_coherent(ring_to_dev(ring), size,
2102 				  ring->desc, ring->desc_dma_addr);
2103 		ring->desc = NULL;
2104 	}
2105 }
2106 
2107 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2108 {
2109 	int size = ring->desc_num * sizeof(ring->desc[0]);
2110 
2111 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2112 					&ring->desc_dma_addr, GFP_KERNEL);
2113 	if (!ring->desc)
2114 		return -ENOMEM;
2115 
2116 	return 0;
2117 }
2118 
2119 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2120 				   struct hns3_desc_cb *cb)
2121 {
2122 	int ret;
2123 
2124 	ret = hns3_alloc_buffer(ring, cb);
2125 	if (ret)
2126 		goto out;
2127 
2128 	ret = hns3_map_buffer(ring, cb);
2129 	if (ret)
2130 		goto out_with_buf;
2131 
2132 	return 0;
2133 
2134 out_with_buf:
2135 	hns3_free_buffer(ring, cb);
2136 out:
2137 	return ret;
2138 }
2139 
2140 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2141 {
2142 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2143 
2144 	if (ret)
2145 		return ret;
2146 
2147 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2148 
2149 	return 0;
2150 }
2151 
2152 /* Allocate memory for raw pkg, and map with dma */
2153 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2154 {
2155 	int i, j, ret;
2156 
2157 	for (i = 0; i < ring->desc_num; i++) {
2158 		ret = hns3_alloc_buffer_attach(ring, i);
2159 		if (ret)
2160 			goto out_buffer_fail;
2161 	}
2162 
2163 	return 0;
2164 
2165 out_buffer_fail:
2166 	for (j = i - 1; j >= 0; j--)
2167 		hns3_free_buffer_detach(ring, j);
2168 	return ret;
2169 }
2170 
2171 /* detach a in-used buffer and replace with a reserved one  */
2172 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2173 				struct hns3_desc_cb *res_cb)
2174 {
2175 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2176 	ring->desc_cb[i] = *res_cb;
2177 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2178 	ring->desc[i].rx.bd_base_info = 0;
2179 }
2180 
2181 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2182 {
2183 	ring->desc_cb[i].reuse_flag = 0;
2184 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
2185 		+ ring->desc_cb[i].page_offset);
2186 	ring->desc[i].rx.bd_base_info = 0;
2187 }
2188 
2189 static void hns3_nic_reclaim_desc(struct hns3_enet_ring *ring, int head,
2190 				  int *bytes, int *pkts)
2191 {
2192 	int ntc = ring->next_to_clean;
2193 	struct hns3_desc_cb *desc_cb;
2194 
2195 	while (head != ntc) {
2196 		desc_cb = &ring->desc_cb[ntc];
2197 		(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2198 		(*bytes) += desc_cb->length;
2199 		/* desc_cb will be cleaned, after hnae3_free_buffer_detach */
2200 		hns3_free_buffer_detach(ring, ntc);
2201 
2202 		if (++ntc == ring->desc_num)
2203 			ntc = 0;
2204 
2205 		/* Issue prefetch for next Tx descriptor */
2206 		prefetch(&ring->desc_cb[ntc]);
2207 	}
2208 
2209 	/* This smp_store_release() pairs with smp_load_acquire() in
2210 	 * ring_space called by hns3_nic_net_xmit.
2211 	 */
2212 	smp_store_release(&ring->next_to_clean, ntc);
2213 }
2214 
2215 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2216 {
2217 	int u = ring->next_to_use;
2218 	int c = ring->next_to_clean;
2219 
2220 	if (unlikely(h > ring->desc_num))
2221 		return 0;
2222 
2223 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2224 }
2225 
2226 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2227 {
2228 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2229 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2230 	struct netdev_queue *dev_queue;
2231 	int bytes, pkts;
2232 	int head;
2233 
2234 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2235 	rmb(); /* Make sure head is ready before touch any data */
2236 
2237 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2238 		return; /* no data to poll */
2239 
2240 	if (unlikely(!is_valid_clean_head(ring, head))) {
2241 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2242 			   ring->next_to_use, ring->next_to_clean);
2243 
2244 		u64_stats_update_begin(&ring->syncp);
2245 		ring->stats.io_err_cnt++;
2246 		u64_stats_update_end(&ring->syncp);
2247 		return;
2248 	}
2249 
2250 	bytes = 0;
2251 	pkts = 0;
2252 	hns3_nic_reclaim_desc(ring, head, &bytes, &pkts);
2253 
2254 	ring->tqp_vector->tx_group.total_bytes += bytes;
2255 	ring->tqp_vector->tx_group.total_packets += pkts;
2256 
2257 	u64_stats_update_begin(&ring->syncp);
2258 	ring->stats.tx_bytes += bytes;
2259 	ring->stats.tx_pkts += pkts;
2260 	u64_stats_update_end(&ring->syncp);
2261 
2262 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2263 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2264 
2265 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
2266 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2267 		/* Make sure that anybody stopping the queue after this
2268 		 * sees the new next_to_clean.
2269 		 */
2270 		smp_mb();
2271 		if (netif_tx_queue_stopped(dev_queue) &&
2272 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2273 			netif_tx_wake_queue(dev_queue);
2274 			ring->stats.restart_queue++;
2275 		}
2276 	}
2277 }
2278 
2279 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2280 {
2281 	int ntc = ring->next_to_clean;
2282 	int ntu = ring->next_to_use;
2283 
2284 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2285 }
2286 
2287 static void
2288 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
2289 {
2290 	struct hns3_desc_cb *desc_cb;
2291 	struct hns3_desc_cb res_cbs;
2292 	int i, ret;
2293 
2294 	for (i = 0; i < cleand_count; i++) {
2295 		desc_cb = &ring->desc_cb[ring->next_to_use];
2296 		if (desc_cb->reuse_flag) {
2297 			u64_stats_update_begin(&ring->syncp);
2298 			ring->stats.reuse_pg_cnt++;
2299 			u64_stats_update_end(&ring->syncp);
2300 
2301 			hns3_reuse_buffer(ring, ring->next_to_use);
2302 		} else {
2303 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
2304 			if (ret) {
2305 				u64_stats_update_begin(&ring->syncp);
2306 				ring->stats.sw_err_cnt++;
2307 				u64_stats_update_end(&ring->syncp);
2308 
2309 				netdev_err(ring->tqp->handle->kinfo.netdev,
2310 					   "hnae reserve buffer map failed.\n");
2311 				break;
2312 			}
2313 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2314 
2315 			u64_stats_update_begin(&ring->syncp);
2316 			ring->stats.non_reuse_pg++;
2317 			u64_stats_update_end(&ring->syncp);
2318 		}
2319 
2320 		ring_ptr_move_fw(ring, next_to_use);
2321 	}
2322 
2323 	wmb(); /* Make all data has been write before submit */
2324 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2325 }
2326 
2327 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2328 				struct hns3_enet_ring *ring, int pull_len,
2329 				struct hns3_desc_cb *desc_cb)
2330 {
2331 	struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
2332 	int size = le16_to_cpu(desc->rx.size);
2333 	u32 truesize = hnae3_buf_size(ring);
2334 
2335 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2336 			size - pull_len, truesize);
2337 
2338 	/* Avoid re-using remote pages, or the stack is still using the page
2339 	 * when page_offset rollback to zero, flag default unreuse
2340 	 */
2341 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()) ||
2342 	    (!desc_cb->page_offset && page_count(desc_cb->priv) > 1))
2343 		return;
2344 
2345 	/* Move offset up to the next cache line */
2346 	desc_cb->page_offset += truesize;
2347 
2348 	if (desc_cb->page_offset + truesize <= hnae3_page_size(ring)) {
2349 		desc_cb->reuse_flag = 1;
2350 		/* Bump ref count on page before it is given*/
2351 		get_page(desc_cb->priv);
2352 	} else if (page_count(desc_cb->priv) == 1) {
2353 		desc_cb->reuse_flag = 1;
2354 		desc_cb->page_offset = 0;
2355 		get_page(desc_cb->priv);
2356 	}
2357 }
2358 
2359 static int hns3_gro_complete(struct sk_buff *skb)
2360 {
2361 	__be16 type = skb->protocol;
2362 	struct tcphdr *th;
2363 	int depth = 0;
2364 
2365 	while (type == htons(ETH_P_8021Q)) {
2366 		struct vlan_hdr *vh;
2367 
2368 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2369 			return -EFAULT;
2370 
2371 		vh = (struct vlan_hdr *)(skb->data + depth);
2372 		type = vh->h_vlan_encapsulated_proto;
2373 		depth += VLAN_HLEN;
2374 	}
2375 
2376 	if (type == htons(ETH_P_IP)) {
2377 		depth += sizeof(struct iphdr);
2378 	} else if (type == htons(ETH_P_IPV6)) {
2379 		depth += sizeof(struct ipv6hdr);
2380 	} else {
2381 		netdev_err(skb->dev,
2382 			   "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2383 			   be16_to_cpu(type), depth);
2384 		return -EFAULT;
2385 	}
2386 
2387 	th = (struct tcphdr *)(skb->data + depth);
2388 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2389 	if (th->cwr)
2390 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2391 
2392 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2393 
2394 	return 0;
2395 }
2396 
2397 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2398 			     u32 l234info, u32 bd_base_info, u32 ol_info)
2399 {
2400 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2401 	int l3_type, l4_type;
2402 	int ol4_type;
2403 
2404 	skb->ip_summed = CHECKSUM_NONE;
2405 
2406 	skb_checksum_none_assert(skb);
2407 
2408 	if (!(netdev->features & NETIF_F_RXCSUM))
2409 		return;
2410 
2411 	/* check if hardware has done checksum */
2412 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2413 		return;
2414 
2415 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2416 				 BIT(HNS3_RXD_OL3E_B) |
2417 				 BIT(HNS3_RXD_OL4E_B)))) {
2418 		u64_stats_update_begin(&ring->syncp);
2419 		ring->stats.l3l4_csum_err++;
2420 		u64_stats_update_end(&ring->syncp);
2421 
2422 		return;
2423 	}
2424 
2425 	ol4_type = hnae3_get_field(ol_info, HNS3_RXD_OL4ID_M,
2426 				   HNS3_RXD_OL4ID_S);
2427 	switch (ol4_type) {
2428 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2429 	case HNS3_OL4_TYPE_NVGRE:
2430 		skb->csum_level = 1;
2431 		/* fall through */
2432 	case HNS3_OL4_TYPE_NO_TUN:
2433 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2434 					  HNS3_RXD_L3ID_S);
2435 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2436 					  HNS3_RXD_L4ID_S);
2437 
2438 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2439 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2440 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2441 		    (l4_type == HNS3_L4_TYPE_UDP ||
2442 		     l4_type == HNS3_L4_TYPE_TCP ||
2443 		     l4_type == HNS3_L4_TYPE_SCTP))
2444 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2445 		break;
2446 	default:
2447 		break;
2448 	}
2449 }
2450 
2451 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2452 {
2453 	if (skb_has_frag_list(skb))
2454 		napi_gro_flush(&ring->tqp_vector->napi, false);
2455 
2456 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2457 }
2458 
2459 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2460 				struct hns3_desc *desc, u32 l234info,
2461 				u16 *vlan_tag)
2462 {
2463 	struct hnae3_handle *handle = ring->tqp->handle;
2464 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2465 
2466 	if (pdev->revision == 0x20) {
2467 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2468 		if (!(*vlan_tag & VLAN_VID_MASK))
2469 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2470 
2471 		return (*vlan_tag != 0);
2472 	}
2473 
2474 #define HNS3_STRP_OUTER_VLAN	0x1
2475 #define HNS3_STRP_INNER_VLAN	0x2
2476 #define HNS3_STRP_BOTH		0x3
2477 
2478 	/* Hardware always insert VLAN tag into RX descriptor when
2479 	 * remove the tag from packet, driver needs to determine
2480 	 * reporting which tag to stack.
2481 	 */
2482 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2483 				HNS3_RXD_STRP_TAGP_S)) {
2484 	case HNS3_STRP_OUTER_VLAN:
2485 		if (handle->port_base_vlan_state !=
2486 				HNAE3_PORT_BASE_VLAN_DISABLE)
2487 			return false;
2488 
2489 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2490 		return true;
2491 	case HNS3_STRP_INNER_VLAN:
2492 		if (handle->port_base_vlan_state !=
2493 				HNAE3_PORT_BASE_VLAN_DISABLE)
2494 			return false;
2495 
2496 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2497 		return true;
2498 	case HNS3_STRP_BOTH:
2499 		if (handle->port_base_vlan_state ==
2500 				HNAE3_PORT_BASE_VLAN_DISABLE)
2501 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2502 		else
2503 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2504 
2505 		return true;
2506 	default:
2507 		return false;
2508 	}
2509 }
2510 
2511 static int hns3_alloc_skb(struct hns3_enet_ring *ring, int length,
2512 			  unsigned char *va)
2513 {
2514 #define HNS3_NEED_ADD_FRAG	1
2515 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2516 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2517 	struct sk_buff *skb;
2518 
2519 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2520 	skb = ring->skb;
2521 	if (unlikely(!skb)) {
2522 		netdev_err(netdev, "alloc rx skb fail\n");
2523 
2524 		u64_stats_update_begin(&ring->syncp);
2525 		ring->stats.sw_err_cnt++;
2526 		u64_stats_update_end(&ring->syncp);
2527 
2528 		return -ENOMEM;
2529 	}
2530 
2531 	prefetchw(skb->data);
2532 
2533 	ring->pending_buf = 1;
2534 	ring->frag_num = 0;
2535 	ring->tail_skb = NULL;
2536 	if (length <= HNS3_RX_HEAD_SIZE) {
2537 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2538 
2539 		/* We can reuse buffer as-is, just make sure it is local */
2540 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2541 			desc_cb->reuse_flag = 1;
2542 		else /* This page cannot be reused so discard it */
2543 			put_page(desc_cb->priv);
2544 
2545 		ring_ptr_move_fw(ring, next_to_clean);
2546 		return 0;
2547 	}
2548 	u64_stats_update_begin(&ring->syncp);
2549 	ring->stats.seg_pkt_cnt++;
2550 	u64_stats_update_end(&ring->syncp);
2551 
2552 	ring->pull_len = eth_get_headlen(netdev, va, HNS3_RX_HEAD_SIZE);
2553 	__skb_put(skb, ring->pull_len);
2554 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2555 			    desc_cb);
2556 	ring_ptr_move_fw(ring, next_to_clean);
2557 
2558 	return HNS3_NEED_ADD_FRAG;
2559 }
2560 
2561 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2562 			 struct sk_buff **out_skb, bool pending)
2563 {
2564 	struct sk_buff *skb = *out_skb;
2565 	struct sk_buff *head_skb = *out_skb;
2566 	struct sk_buff *new_skb;
2567 	struct hns3_desc_cb *desc_cb;
2568 	struct hns3_desc *pre_desc;
2569 	u32 bd_base_info;
2570 	int pre_bd;
2571 
2572 	/* if there is pending bd, the SW param next_to_clean has moved
2573 	 * to next and the next is NULL
2574 	 */
2575 	if (pending) {
2576 		pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2577 			ring->desc_num;
2578 		pre_desc = &ring->desc[pre_bd];
2579 		bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2580 	} else {
2581 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2582 	}
2583 
2584 	while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2585 		desc = &ring->desc[ring->next_to_clean];
2586 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2587 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2588 		/* make sure HW write desc complete */
2589 		dma_rmb();
2590 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2591 			return -ENXIO;
2592 
2593 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2594 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2595 						 HNS3_RX_HEAD_SIZE);
2596 			if (unlikely(!new_skb)) {
2597 				netdev_err(ring->tqp->handle->kinfo.netdev,
2598 					   "alloc rx skb frag fail\n");
2599 				return -ENXIO;
2600 			}
2601 			ring->frag_num = 0;
2602 
2603 			if (ring->tail_skb) {
2604 				ring->tail_skb->next = new_skb;
2605 				ring->tail_skb = new_skb;
2606 			} else {
2607 				skb_shinfo(skb)->frag_list = new_skb;
2608 				ring->tail_skb = new_skb;
2609 			}
2610 		}
2611 
2612 		if (ring->tail_skb) {
2613 			head_skb->truesize += hnae3_buf_size(ring);
2614 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2615 			head_skb->len += le16_to_cpu(desc->rx.size);
2616 			skb = ring->tail_skb;
2617 		}
2618 
2619 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2620 		ring_ptr_move_fw(ring, next_to_clean);
2621 		ring->pending_buf++;
2622 	}
2623 
2624 	return 0;
2625 }
2626 
2627 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
2628 				     struct sk_buff *skb, u32 l234info,
2629 				     u32 bd_base_info, u32 ol_info)
2630 {
2631 	u16 gro_count;
2632 	u32 l3_type;
2633 
2634 	gro_count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M,
2635 				    HNS3_RXD_GRO_COUNT_S);
2636 	/* if there is no HW GRO, do not set gro params */
2637 	if (!gro_count) {
2638 		hns3_rx_checksum(ring, skb, l234info, bd_base_info, ol_info);
2639 		return 0;
2640 	}
2641 
2642 	NAPI_GRO_CB(skb)->count = gro_count;
2643 
2644 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2645 				  HNS3_RXD_L3ID_S);
2646 	if (l3_type == HNS3_L3_TYPE_IPV4)
2647 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2648 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2649 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2650 	else
2651 		return -EFAULT;
2652 
2653 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2654 						    HNS3_RXD_GRO_SIZE_M,
2655 						    HNS3_RXD_GRO_SIZE_S);
2656 
2657 	return  hns3_gro_complete(skb);
2658 }
2659 
2660 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2661 				     struct sk_buff *skb, u32 rss_hash)
2662 {
2663 	struct hnae3_handle *handle = ring->tqp->handle;
2664 	enum pkt_hash_types rss_type;
2665 
2666 	if (rss_hash)
2667 		rss_type = handle->kinfo.rss_type;
2668 	else
2669 		rss_type = PKT_HASH_TYPE_NONE;
2670 
2671 	skb_set_hash(skb, rss_hash, rss_type);
2672 }
2673 
2674 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb)
2675 {
2676 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2677 	enum hns3_pkt_l2t_type l2_frame_type;
2678 	u32 bd_base_info, l234info, ol_info;
2679 	struct hns3_desc *desc;
2680 	unsigned int len;
2681 	int pre_ntc, ret;
2682 
2683 	/* bdinfo handled below is only valid on the last BD of the
2684 	 * current packet, and ring->next_to_clean indicates the first
2685 	 * descriptor of next packet, so need - 1 below.
2686 	 */
2687 	pre_ntc = ring->next_to_clean ? (ring->next_to_clean - 1) :
2688 					(ring->desc_num - 1);
2689 	desc = &ring->desc[pre_ntc];
2690 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2691 	l234info = le32_to_cpu(desc->rx.l234_info);
2692 	ol_info = le32_to_cpu(desc->rx.ol_info);
2693 
2694 	/* Based on hw strategy, the tag offloaded will be stored at
2695 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2696 	 * in one layer tag case.
2697 	 */
2698 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2699 		u16 vlan_tag;
2700 
2701 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2702 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2703 					       vlan_tag);
2704 	}
2705 
2706 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) {
2707 		u64_stats_update_begin(&ring->syncp);
2708 		ring->stats.non_vld_descs++;
2709 		u64_stats_update_end(&ring->syncp);
2710 
2711 		return -EINVAL;
2712 	}
2713 
2714 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
2715 				  BIT(HNS3_RXD_L2E_B))))) {
2716 		u64_stats_update_begin(&ring->syncp);
2717 		if (l234info & BIT(HNS3_RXD_L2E_B))
2718 			ring->stats.l2_err++;
2719 		else
2720 			ring->stats.err_pkt_len++;
2721 		u64_stats_update_end(&ring->syncp);
2722 
2723 		return -EFAULT;
2724 	}
2725 
2726 	len = skb->len;
2727 
2728 	/* Do update ip stack process */
2729 	skb->protocol = eth_type_trans(skb, netdev);
2730 
2731 	/* This is needed in order to enable forwarding support */
2732 	ret = hns3_set_gro_and_checksum(ring, skb, l234info,
2733 					bd_base_info, ol_info);
2734 	if (unlikely(ret)) {
2735 		u64_stats_update_begin(&ring->syncp);
2736 		ring->stats.rx_err_cnt++;
2737 		u64_stats_update_end(&ring->syncp);
2738 		return ret;
2739 	}
2740 
2741 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
2742 					HNS3_RXD_DMAC_S);
2743 
2744 	u64_stats_update_begin(&ring->syncp);
2745 	ring->stats.rx_pkts++;
2746 	ring->stats.rx_bytes += len;
2747 
2748 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
2749 		ring->stats.rx_multicast++;
2750 
2751 	u64_stats_update_end(&ring->syncp);
2752 
2753 	ring->tqp_vector->rx_group.total_bytes += len;
2754 
2755 	hns3_set_rx_skb_rss_type(ring, skb, le32_to_cpu(desc->rx.rss_hash));
2756 	return 0;
2757 }
2758 
2759 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2760 			     struct sk_buff **out_skb)
2761 {
2762 	struct sk_buff *skb = ring->skb;
2763 	struct hns3_desc_cb *desc_cb;
2764 	struct hns3_desc *desc;
2765 	u32 bd_base_info;
2766 	int length;
2767 	int ret;
2768 
2769 	desc = &ring->desc[ring->next_to_clean];
2770 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2771 
2772 	prefetch(desc);
2773 
2774 	length = le16_to_cpu(desc->rx.size);
2775 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2776 
2777 	/* Check valid BD */
2778 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2779 		return -ENXIO;
2780 
2781 	if (!skb)
2782 		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2783 
2784 	/* Prefetch first cache line of first page
2785 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2786 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2787 	 * actual we can have greater size of caches with 128B Level 1 cache
2788 	 * lines. In such a case, single fetch would suffice to cache in the
2789 	 * relevant part of the header.
2790 	 */
2791 	prefetch(ring->va);
2792 #if L1_CACHE_BYTES < 128
2793 	prefetch(ring->va + L1_CACHE_BYTES);
2794 #endif
2795 
2796 	if (!skb) {
2797 		ret = hns3_alloc_skb(ring, length, ring->va);
2798 		*out_skb = skb = ring->skb;
2799 
2800 		if (ret < 0) /* alloc buffer fail */
2801 			return ret;
2802 		if (ret > 0) { /* need add frag */
2803 			ret = hns3_add_frag(ring, desc, &skb, false);
2804 			if (ret)
2805 				return ret;
2806 
2807 			/* As the head data may be changed when GRO enable, copy
2808 			 * the head data in after other data rx completed
2809 			 */
2810 			memcpy(skb->data, ring->va,
2811 			       ALIGN(ring->pull_len, sizeof(long)));
2812 		}
2813 	} else {
2814 		ret = hns3_add_frag(ring, desc, &skb, true);
2815 		if (ret)
2816 			return ret;
2817 
2818 		/* As the head data may be changed when GRO enable, copy
2819 		 * the head data in after other data rx completed
2820 		 */
2821 		memcpy(skb->data, ring->va,
2822 		       ALIGN(ring->pull_len, sizeof(long)));
2823 	}
2824 
2825 	ret = hns3_handle_bdinfo(ring, skb);
2826 	if (unlikely(ret)) {
2827 		dev_kfree_skb_any(skb);
2828 		return ret;
2829 	}
2830 
2831 	*out_skb = skb;
2832 
2833 	return 0;
2834 }
2835 
2836 int hns3_clean_rx_ring(
2837 		struct hns3_enet_ring *ring, int budget,
2838 		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2839 {
2840 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2841 	int recv_pkts, recv_bds, clean_count, err;
2842 	int unused_count = hns3_desc_unused(ring);
2843 	struct sk_buff *skb = ring->skb;
2844 	int num;
2845 
2846 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2847 	rmb(); /* Make sure num taken effect before the other data is touched */
2848 
2849 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2850 	num -= unused_count;
2851 	unused_count -= ring->pending_buf;
2852 
2853 	while (recv_pkts < budget && recv_bds < num) {
2854 		/* Reuse or realloc buffers */
2855 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2856 			hns3_nic_alloc_rx_buffers(ring,
2857 						  clean_count + unused_count);
2858 			clean_count = 0;
2859 			unused_count = hns3_desc_unused(ring) -
2860 					ring->pending_buf;
2861 		}
2862 
2863 		/* Poll one pkt */
2864 		err = hns3_handle_rx_bd(ring, &skb);
2865 		if (unlikely(!skb)) /* This fault cannot be repaired */
2866 			goto out;
2867 
2868 		if (err == -ENXIO) { /* Do not get FE for the packet */
2869 			goto out;
2870 		} else if (unlikely(err)) {  /* Do jump the err */
2871 			recv_bds += ring->pending_buf;
2872 			clean_count += ring->pending_buf;
2873 			ring->skb = NULL;
2874 			ring->pending_buf = 0;
2875 			continue;
2876 		}
2877 
2878 		rx_fn(ring, skb);
2879 		recv_bds += ring->pending_buf;
2880 		clean_count += ring->pending_buf;
2881 		ring->skb = NULL;
2882 		ring->pending_buf = 0;
2883 
2884 		recv_pkts++;
2885 	}
2886 
2887 out:
2888 	/* Make all data has been write before submit */
2889 	if (clean_count + unused_count > 0)
2890 		hns3_nic_alloc_rx_buffers(ring,
2891 					  clean_count + unused_count);
2892 
2893 	return recv_pkts;
2894 }
2895 
2896 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2897 {
2898 	struct hns3_enet_tqp_vector *tqp_vector =
2899 					ring_group->ring->tqp_vector;
2900 	enum hns3_flow_level_range new_flow_level;
2901 	int packets_per_msecs;
2902 	int bytes_per_msecs;
2903 	u32 time_passed_ms;
2904 	u16 new_int_gl;
2905 
2906 	if (!tqp_vector->last_jiffies)
2907 		return false;
2908 
2909 	if (ring_group->total_packets == 0) {
2910 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
2911 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
2912 		return true;
2913 	}
2914 
2915 	/* Simple throttlerate management
2916 	 * 0-10MB/s   lower     (50000 ints/s)
2917 	 * 10-20MB/s   middle    (20000 ints/s)
2918 	 * 20-1249MB/s high      (18000 ints/s)
2919 	 * > 40000pps  ultra     (8000 ints/s)
2920 	 */
2921 	new_flow_level = ring_group->coal.flow_level;
2922 	new_int_gl = ring_group->coal.int_gl;
2923 	time_passed_ms =
2924 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2925 
2926 	if (!time_passed_ms)
2927 		return false;
2928 
2929 	do_div(ring_group->total_packets, time_passed_ms);
2930 	packets_per_msecs = ring_group->total_packets;
2931 
2932 	do_div(ring_group->total_bytes, time_passed_ms);
2933 	bytes_per_msecs = ring_group->total_bytes;
2934 
2935 #define HNS3_RX_LOW_BYTE_RATE 10000
2936 #define HNS3_RX_MID_BYTE_RATE 20000
2937 
2938 	switch (new_flow_level) {
2939 	case HNS3_FLOW_LOW:
2940 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2941 			new_flow_level = HNS3_FLOW_MID;
2942 		break;
2943 	case HNS3_FLOW_MID:
2944 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2945 			new_flow_level = HNS3_FLOW_HIGH;
2946 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2947 			new_flow_level = HNS3_FLOW_LOW;
2948 		break;
2949 	case HNS3_FLOW_HIGH:
2950 	case HNS3_FLOW_ULTRA:
2951 	default:
2952 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2953 			new_flow_level = HNS3_FLOW_MID;
2954 		break;
2955 	}
2956 
2957 #define HNS3_RX_ULTRA_PACKET_RATE 40
2958 
2959 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2960 	    &tqp_vector->rx_group == ring_group)
2961 		new_flow_level = HNS3_FLOW_ULTRA;
2962 
2963 	switch (new_flow_level) {
2964 	case HNS3_FLOW_LOW:
2965 		new_int_gl = HNS3_INT_GL_50K;
2966 		break;
2967 	case HNS3_FLOW_MID:
2968 		new_int_gl = HNS3_INT_GL_20K;
2969 		break;
2970 	case HNS3_FLOW_HIGH:
2971 		new_int_gl = HNS3_INT_GL_18K;
2972 		break;
2973 	case HNS3_FLOW_ULTRA:
2974 		new_int_gl = HNS3_INT_GL_8K;
2975 		break;
2976 	default:
2977 		break;
2978 	}
2979 
2980 	ring_group->total_bytes = 0;
2981 	ring_group->total_packets = 0;
2982 	ring_group->coal.flow_level = new_flow_level;
2983 	if (new_int_gl != ring_group->coal.int_gl) {
2984 		ring_group->coal.int_gl = new_int_gl;
2985 		return true;
2986 	}
2987 	return false;
2988 }
2989 
2990 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2991 {
2992 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2993 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2994 	bool rx_update, tx_update;
2995 
2996 	/* update param every 1000ms */
2997 	if (time_before(jiffies,
2998 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
2999 		return;
3000 
3001 	if (rx_group->coal.gl_adapt_enable) {
3002 		rx_update = hns3_get_new_int_gl(rx_group);
3003 		if (rx_update)
3004 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
3005 						       rx_group->coal.int_gl);
3006 	}
3007 
3008 	if (tx_group->coal.gl_adapt_enable) {
3009 		tx_update = hns3_get_new_int_gl(tx_group);
3010 		if (tx_update)
3011 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
3012 						       tx_group->coal.int_gl);
3013 	}
3014 
3015 	tqp_vector->last_jiffies = jiffies;
3016 }
3017 
3018 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
3019 {
3020 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
3021 	struct hns3_enet_ring *ring;
3022 	int rx_pkt_total = 0;
3023 
3024 	struct hns3_enet_tqp_vector *tqp_vector =
3025 		container_of(napi, struct hns3_enet_tqp_vector, napi);
3026 	bool clean_complete = true;
3027 	int rx_budget = budget;
3028 
3029 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3030 		napi_complete(napi);
3031 		return 0;
3032 	}
3033 
3034 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3035 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3036 	 */
3037 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3038 		hns3_clean_tx_ring(ring);
3039 
3040 	/* make sure rx ring budget not smaller than 1 */
3041 	if (tqp_vector->num_tqps > 1)
3042 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3043 
3044 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3045 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3046 						    hns3_rx_skb);
3047 
3048 		if (rx_cleaned >= rx_budget)
3049 			clean_complete = false;
3050 
3051 		rx_pkt_total += rx_cleaned;
3052 	}
3053 
3054 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3055 
3056 	if (!clean_complete)
3057 		return budget;
3058 
3059 	if (napi_complete(napi) &&
3060 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3061 		hns3_update_new_int_gl(tqp_vector);
3062 		hns3_mask_vector_irq(tqp_vector, 1);
3063 	}
3064 
3065 	return rx_pkt_total;
3066 }
3067 
3068 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3069 				      struct hnae3_ring_chain_node *head)
3070 {
3071 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3072 	struct hnae3_ring_chain_node *cur_chain = head;
3073 	struct hnae3_ring_chain_node *chain;
3074 	struct hns3_enet_ring *tx_ring;
3075 	struct hns3_enet_ring *rx_ring;
3076 
3077 	tx_ring = tqp_vector->tx_group.ring;
3078 	if (tx_ring) {
3079 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3080 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3081 			      HNAE3_RING_TYPE_TX);
3082 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3083 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3084 
3085 		cur_chain->next = NULL;
3086 
3087 		while (tx_ring->next) {
3088 			tx_ring = tx_ring->next;
3089 
3090 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3091 					     GFP_KERNEL);
3092 			if (!chain)
3093 				goto err_free_chain;
3094 
3095 			cur_chain->next = chain;
3096 			chain->tqp_index = tx_ring->tqp->tqp_index;
3097 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3098 				      HNAE3_RING_TYPE_TX);
3099 			hnae3_set_field(chain->int_gl_idx,
3100 					HNAE3_RING_GL_IDX_M,
3101 					HNAE3_RING_GL_IDX_S,
3102 					HNAE3_RING_GL_TX);
3103 
3104 			cur_chain = chain;
3105 		}
3106 	}
3107 
3108 	rx_ring = tqp_vector->rx_group.ring;
3109 	if (!tx_ring && rx_ring) {
3110 		cur_chain->next = NULL;
3111 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3112 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3113 			      HNAE3_RING_TYPE_RX);
3114 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3115 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3116 
3117 		rx_ring = rx_ring->next;
3118 	}
3119 
3120 	while (rx_ring) {
3121 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3122 		if (!chain)
3123 			goto err_free_chain;
3124 
3125 		cur_chain->next = chain;
3126 		chain->tqp_index = rx_ring->tqp->tqp_index;
3127 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3128 			      HNAE3_RING_TYPE_RX);
3129 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3130 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3131 
3132 		cur_chain = chain;
3133 
3134 		rx_ring = rx_ring->next;
3135 	}
3136 
3137 	return 0;
3138 
3139 err_free_chain:
3140 	cur_chain = head->next;
3141 	while (cur_chain) {
3142 		chain = cur_chain->next;
3143 		devm_kfree(&pdev->dev, cur_chain);
3144 		cur_chain = chain;
3145 	}
3146 	head->next = NULL;
3147 
3148 	return -ENOMEM;
3149 }
3150 
3151 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3152 					struct hnae3_ring_chain_node *head)
3153 {
3154 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3155 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3156 
3157 	chain = head->next;
3158 
3159 	while (chain) {
3160 		chain_tmp = chain->next;
3161 		devm_kfree(&pdev->dev, chain);
3162 		chain = chain_tmp;
3163 	}
3164 }
3165 
3166 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3167 				   struct hns3_enet_ring *ring)
3168 {
3169 	ring->next = group->ring;
3170 	group->ring = ring;
3171 
3172 	group->count++;
3173 }
3174 
3175 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3176 {
3177 	struct pci_dev *pdev = priv->ae_handle->pdev;
3178 	struct hns3_enet_tqp_vector *tqp_vector;
3179 	int num_vectors = priv->vector_num;
3180 	int numa_node;
3181 	int vector_i;
3182 
3183 	numa_node = dev_to_node(&pdev->dev);
3184 
3185 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3186 		tqp_vector = &priv->tqp_vector[vector_i];
3187 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3188 				&tqp_vector->affinity_mask);
3189 	}
3190 }
3191 
3192 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3193 {
3194 	struct hnae3_ring_chain_node vector_ring_chain;
3195 	struct hnae3_handle *h = priv->ae_handle;
3196 	struct hns3_enet_tqp_vector *tqp_vector;
3197 	int ret = 0;
3198 	int i;
3199 
3200 	hns3_nic_set_cpumask(priv);
3201 
3202 	for (i = 0; i < priv->vector_num; i++) {
3203 		tqp_vector = &priv->tqp_vector[i];
3204 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3205 		tqp_vector->num_tqps = 0;
3206 	}
3207 
3208 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3209 		u16 vector_i = i % priv->vector_num;
3210 		u16 tqp_num = h->kinfo.num_tqps;
3211 
3212 		tqp_vector = &priv->tqp_vector[vector_i];
3213 
3214 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3215 				       priv->ring_data[i].ring);
3216 
3217 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3218 				       priv->ring_data[i + tqp_num].ring);
3219 
3220 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
3221 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3222 		tqp_vector->num_tqps++;
3223 	}
3224 
3225 	for (i = 0; i < priv->vector_num; i++) {
3226 		tqp_vector = &priv->tqp_vector[i];
3227 
3228 		tqp_vector->rx_group.total_bytes = 0;
3229 		tqp_vector->rx_group.total_packets = 0;
3230 		tqp_vector->tx_group.total_bytes = 0;
3231 		tqp_vector->tx_group.total_packets = 0;
3232 		tqp_vector->handle = h;
3233 
3234 		ret = hns3_get_vector_ring_chain(tqp_vector,
3235 						 &vector_ring_chain);
3236 		if (ret)
3237 			goto map_ring_fail;
3238 
3239 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3240 			tqp_vector->vector_irq, &vector_ring_chain);
3241 
3242 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3243 
3244 		if (ret)
3245 			goto map_ring_fail;
3246 
3247 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3248 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3249 	}
3250 
3251 	return 0;
3252 
3253 map_ring_fail:
3254 	while (i--)
3255 		netif_napi_del(&priv->tqp_vector[i].napi);
3256 
3257 	return ret;
3258 }
3259 
3260 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3261 {
3262 #define HNS3_VECTOR_PF_MAX_NUM		64
3263 
3264 	struct hnae3_handle *h = priv->ae_handle;
3265 	struct hns3_enet_tqp_vector *tqp_vector;
3266 	struct hnae3_vector_info *vector;
3267 	struct pci_dev *pdev = h->pdev;
3268 	u16 tqp_num = h->kinfo.num_tqps;
3269 	u16 vector_num;
3270 	int ret = 0;
3271 	u16 i;
3272 
3273 	/* RSS size, cpu online and vector_num should be the same */
3274 	/* Should consider 2p/4p later */
3275 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3276 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3277 
3278 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3279 			      GFP_KERNEL);
3280 	if (!vector)
3281 		return -ENOMEM;
3282 
3283 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3284 
3285 	priv->vector_num = vector_num;
3286 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3287 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3288 			     GFP_KERNEL);
3289 	if (!priv->tqp_vector) {
3290 		ret = -ENOMEM;
3291 		goto out;
3292 	}
3293 
3294 	for (i = 0; i < priv->vector_num; i++) {
3295 		tqp_vector = &priv->tqp_vector[i];
3296 		tqp_vector->idx = i;
3297 		tqp_vector->mask_addr = vector[i].io_addr;
3298 		tqp_vector->vector_irq = vector[i].vector;
3299 		hns3_vector_gl_rl_init(tqp_vector, priv);
3300 	}
3301 
3302 out:
3303 	devm_kfree(&pdev->dev, vector);
3304 	return ret;
3305 }
3306 
3307 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3308 {
3309 	group->ring = NULL;
3310 	group->count = 0;
3311 }
3312 
3313 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3314 {
3315 	struct hnae3_ring_chain_node vector_ring_chain;
3316 	struct hnae3_handle *h = priv->ae_handle;
3317 	struct hns3_enet_tqp_vector *tqp_vector;
3318 	int i;
3319 
3320 	for (i = 0; i < priv->vector_num; i++) {
3321 		tqp_vector = &priv->tqp_vector[i];
3322 
3323 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3324 			continue;
3325 
3326 		hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3327 
3328 		h->ae_algo->ops->unmap_ring_from_vector(h,
3329 			tqp_vector->vector_irq, &vector_ring_chain);
3330 
3331 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3332 
3333 		if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
3334 			irq_set_affinity_notifier(tqp_vector->vector_irq,
3335 						  NULL);
3336 			irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
3337 			free_irq(tqp_vector->vector_irq, tqp_vector);
3338 			tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3339 		}
3340 
3341 		hns3_clear_ring_group(&tqp_vector->rx_group);
3342 		hns3_clear_ring_group(&tqp_vector->tx_group);
3343 		netif_napi_del(&priv->tqp_vector[i].napi);
3344 	}
3345 }
3346 
3347 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3348 {
3349 	struct hnae3_handle *h = priv->ae_handle;
3350 	struct pci_dev *pdev = h->pdev;
3351 	int i, ret;
3352 
3353 	for (i = 0; i < priv->vector_num; i++) {
3354 		struct hns3_enet_tqp_vector *tqp_vector;
3355 
3356 		tqp_vector = &priv->tqp_vector[i];
3357 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3358 		if (ret)
3359 			return ret;
3360 	}
3361 
3362 	devm_kfree(&pdev->dev, priv->tqp_vector);
3363 	return 0;
3364 }
3365 
3366 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3367 			     int ring_type)
3368 {
3369 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
3370 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3371 	struct pci_dev *pdev = priv->ae_handle->pdev;
3372 	struct hns3_enet_ring *ring;
3373 	int desc_num;
3374 
3375 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3376 	if (!ring)
3377 		return -ENOMEM;
3378 
3379 	if (ring_type == HNAE3_RING_TYPE_TX) {
3380 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3381 		ring_data[q->tqp_index].ring = ring;
3382 		ring_data[q->tqp_index].queue_index = q->tqp_index;
3383 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3384 	} else {
3385 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3386 		ring_data[q->tqp_index + queue_num].ring = ring;
3387 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3388 		ring->io_base = q->io_base;
3389 	}
3390 
3391 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3392 
3393 	ring->tqp = q;
3394 	ring->desc = NULL;
3395 	ring->desc_cb = NULL;
3396 	ring->dev = priv->dev;
3397 	ring->desc_dma_addr = 0;
3398 	ring->buf_size = q->buf_size;
3399 	ring->desc_num = desc_num;
3400 	ring->next_to_use = 0;
3401 	ring->next_to_clean = 0;
3402 
3403 	return 0;
3404 }
3405 
3406 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3407 			      struct hns3_nic_priv *priv)
3408 {
3409 	int ret;
3410 
3411 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3412 	if (ret)
3413 		return ret;
3414 
3415 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3416 	if (ret) {
3417 		devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3418 		return ret;
3419 	}
3420 
3421 	return 0;
3422 }
3423 
3424 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3425 {
3426 	struct hnae3_handle *h = priv->ae_handle;
3427 	struct pci_dev *pdev = h->pdev;
3428 	int i, ret;
3429 
3430 	priv->ring_data =  devm_kzalloc(&pdev->dev,
3431 					array3_size(h->kinfo.num_tqps,
3432 						    sizeof(*priv->ring_data),
3433 						    2),
3434 					GFP_KERNEL);
3435 	if (!priv->ring_data)
3436 		return -ENOMEM;
3437 
3438 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3439 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3440 		if (ret)
3441 			goto err;
3442 	}
3443 
3444 	return 0;
3445 err:
3446 	while (i--) {
3447 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3448 		devm_kfree(priv->dev,
3449 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3450 	}
3451 
3452 	devm_kfree(&pdev->dev, priv->ring_data);
3453 	priv->ring_data = NULL;
3454 	return ret;
3455 }
3456 
3457 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3458 {
3459 	struct hnae3_handle *h = priv->ae_handle;
3460 	int i;
3461 
3462 	if (!priv->ring_data)
3463 		return;
3464 
3465 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3466 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3467 		devm_kfree(priv->dev,
3468 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3469 	}
3470 	devm_kfree(priv->dev, priv->ring_data);
3471 	priv->ring_data = NULL;
3472 }
3473 
3474 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3475 {
3476 	int ret;
3477 
3478 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3479 		return -EINVAL;
3480 
3481 	ring->desc_cb = devm_kcalloc(ring_to_dev(ring), ring->desc_num,
3482 				     sizeof(ring->desc_cb[0]), GFP_KERNEL);
3483 	if (!ring->desc_cb) {
3484 		ret = -ENOMEM;
3485 		goto out;
3486 	}
3487 
3488 	ret = hns3_alloc_desc(ring);
3489 	if (ret)
3490 		goto out_with_desc_cb;
3491 
3492 	if (!HNAE3_IS_TX_RING(ring)) {
3493 		ret = hns3_alloc_ring_buffers(ring);
3494 		if (ret)
3495 			goto out_with_desc;
3496 	}
3497 
3498 	return 0;
3499 
3500 out_with_desc:
3501 	hns3_free_desc(ring);
3502 out_with_desc_cb:
3503 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3504 	ring->desc_cb = NULL;
3505 out:
3506 	return ret;
3507 }
3508 
3509 static void hns3_fini_ring(struct hns3_enet_ring *ring)
3510 {
3511 	hns3_free_desc(ring);
3512 	devm_kfree(ring_to_dev(ring), ring->desc_cb);
3513 	ring->desc_cb = NULL;
3514 	ring->next_to_clean = 0;
3515 	ring->next_to_use = 0;
3516 	ring->pending_buf = 0;
3517 	if (ring->skb) {
3518 		dev_kfree_skb_any(ring->skb);
3519 		ring->skb = NULL;
3520 	}
3521 }
3522 
3523 static int hns3_buf_size2type(u32 buf_size)
3524 {
3525 	int bd_size_type;
3526 
3527 	switch (buf_size) {
3528 	case 512:
3529 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3530 		break;
3531 	case 1024:
3532 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3533 		break;
3534 	case 2048:
3535 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3536 		break;
3537 	case 4096:
3538 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3539 		break;
3540 	default:
3541 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3542 	}
3543 
3544 	return bd_size_type;
3545 }
3546 
3547 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3548 {
3549 	dma_addr_t dma = ring->desc_dma_addr;
3550 	struct hnae3_queue *q = ring->tqp;
3551 
3552 	if (!HNAE3_IS_TX_RING(ring)) {
3553 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
3554 			       (u32)dma);
3555 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3556 			       (u32)((dma >> 31) >> 1));
3557 
3558 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3559 			       hns3_buf_size2type(ring->buf_size));
3560 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3561 			       ring->desc_num / 8 - 1);
3562 
3563 	} else {
3564 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3565 			       (u32)dma);
3566 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3567 			       (u32)((dma >> 31) >> 1));
3568 
3569 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3570 			       ring->desc_num / 8 - 1);
3571 	}
3572 }
3573 
3574 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3575 {
3576 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3577 	int i;
3578 
3579 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3580 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3581 		int j;
3582 
3583 		if (!tc_info->enable)
3584 			continue;
3585 
3586 		for (j = 0; j < tc_info->tqp_count; j++) {
3587 			struct hnae3_queue *q;
3588 
3589 			q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3590 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3591 				       tc_info->tc);
3592 		}
3593 	}
3594 }
3595 
3596 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3597 {
3598 	struct hnae3_handle *h = priv->ae_handle;
3599 	int ring_num = h->kinfo.num_tqps * 2;
3600 	int i, j;
3601 	int ret;
3602 
3603 	for (i = 0; i < ring_num; i++) {
3604 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3605 		if (ret) {
3606 			dev_err(priv->dev,
3607 				"Alloc ring memory fail! ret=%d\n", ret);
3608 			goto out_when_alloc_ring_memory;
3609 		}
3610 
3611 		u64_stats_init(&priv->ring_data[i].ring->syncp);
3612 	}
3613 
3614 	return 0;
3615 
3616 out_when_alloc_ring_memory:
3617 	for (j = i - 1; j >= 0; j--)
3618 		hns3_fini_ring(priv->ring_data[j].ring);
3619 
3620 	return -ENOMEM;
3621 }
3622 
3623 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3624 {
3625 	struct hnae3_handle *h = priv->ae_handle;
3626 	int i;
3627 
3628 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3629 		hns3_fini_ring(priv->ring_data[i].ring);
3630 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3631 	}
3632 	return 0;
3633 }
3634 
3635 /* Set mac addr if it is configured. or leave it to the AE driver */
3636 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3637 {
3638 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3639 	struct hnae3_handle *h = priv->ae_handle;
3640 	u8 mac_addr_temp[ETH_ALEN];
3641 	int ret = 0;
3642 
3643 	if (h->ae_algo->ops->get_mac_addr && init) {
3644 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3645 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3646 	}
3647 
3648 	/* Check if the MAC address is valid, if not get a random one */
3649 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3650 		eth_hw_addr_random(netdev);
3651 		dev_warn(priv->dev, "using random MAC address %pM\n",
3652 			 netdev->dev_addr);
3653 	}
3654 
3655 	if (h->ae_algo->ops->set_mac_addr)
3656 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3657 
3658 	return ret;
3659 }
3660 
3661 static int hns3_init_phy(struct net_device *netdev)
3662 {
3663 	struct hnae3_handle *h = hns3_get_handle(netdev);
3664 	int ret = 0;
3665 
3666 	if (h->ae_algo->ops->mac_connect_phy)
3667 		ret = h->ae_algo->ops->mac_connect_phy(h);
3668 
3669 	return ret;
3670 }
3671 
3672 static void hns3_uninit_phy(struct net_device *netdev)
3673 {
3674 	struct hnae3_handle *h = hns3_get_handle(netdev);
3675 
3676 	if (h->ae_algo->ops->mac_disconnect_phy)
3677 		h->ae_algo->ops->mac_disconnect_phy(h);
3678 }
3679 
3680 static int hns3_restore_fd_rules(struct net_device *netdev)
3681 {
3682 	struct hnae3_handle *h = hns3_get_handle(netdev);
3683 	int ret = 0;
3684 
3685 	if (h->ae_algo->ops->restore_fd_rules)
3686 		ret = h->ae_algo->ops->restore_fd_rules(h);
3687 
3688 	return ret;
3689 }
3690 
3691 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3692 {
3693 	struct hnae3_handle *h = hns3_get_handle(netdev);
3694 
3695 	if (h->ae_algo->ops->del_all_fd_entries)
3696 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3697 }
3698 
3699 static int hns3_client_start(struct hnae3_handle *handle)
3700 {
3701 	if (!handle->ae_algo->ops->client_start)
3702 		return 0;
3703 
3704 	return handle->ae_algo->ops->client_start(handle);
3705 }
3706 
3707 static void hns3_client_stop(struct hnae3_handle *handle)
3708 {
3709 	if (!handle->ae_algo->ops->client_stop)
3710 		return;
3711 
3712 	handle->ae_algo->ops->client_stop(handle);
3713 }
3714 
3715 static void hns3_info_show(struct hns3_nic_priv *priv)
3716 {
3717 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3718 
3719 	dev_info(priv->dev, "MAC address: %pM\n", priv->netdev->dev_addr);
3720 	dev_info(priv->dev, "Task queue pairs numbers: %d\n", kinfo->num_tqps);
3721 	dev_info(priv->dev, "RSS size: %d\n", kinfo->rss_size);
3722 	dev_info(priv->dev, "Allocated RSS size: %d\n", kinfo->req_rss_size);
3723 	dev_info(priv->dev, "RX buffer length: %d\n", kinfo->rx_buf_len);
3724 	dev_info(priv->dev, "Desc num per TX queue: %d\n", kinfo->num_tx_desc);
3725 	dev_info(priv->dev, "Desc num per RX queue: %d\n", kinfo->num_rx_desc);
3726 	dev_info(priv->dev, "Total number of enabled TCs: %d\n", kinfo->num_tc);
3727 	dev_info(priv->dev, "Max mtu size: %d\n", priv->netdev->max_mtu);
3728 }
3729 
3730 static int hns3_client_init(struct hnae3_handle *handle)
3731 {
3732 	struct pci_dev *pdev = handle->pdev;
3733 	u16 alloc_tqps, max_rss_size;
3734 	struct hns3_nic_priv *priv;
3735 	struct net_device *netdev;
3736 	int ret;
3737 
3738 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3739 						    &max_rss_size);
3740 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3741 	if (!netdev)
3742 		return -ENOMEM;
3743 
3744 	priv = netdev_priv(netdev);
3745 	priv->dev = &pdev->dev;
3746 	priv->netdev = netdev;
3747 	priv->ae_handle = handle;
3748 	priv->tx_timeout_count = 0;
3749 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3750 
3751 	handle->msg_enable = netif_msg_init(debug, DEFAULT_MSG_LEVEL);
3752 
3753 	handle->kinfo.netdev = netdev;
3754 	handle->priv = (void *)priv;
3755 
3756 	hns3_init_mac_addr(netdev, true);
3757 
3758 	hns3_set_default_feature(netdev);
3759 
3760 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3761 	netdev->priv_flags |= IFF_UNICAST_FLT;
3762 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3763 	SET_NETDEV_DEV(netdev, &pdev->dev);
3764 	hns3_ethtool_set_ops(netdev);
3765 
3766 	/* Carrier off reporting is important to ethtool even BEFORE open */
3767 	netif_carrier_off(netdev);
3768 
3769 	ret = hns3_get_ring_config(priv);
3770 	if (ret) {
3771 		ret = -ENOMEM;
3772 		goto out_get_ring_cfg;
3773 	}
3774 
3775 	ret = hns3_nic_alloc_vector_data(priv);
3776 	if (ret) {
3777 		ret = -ENOMEM;
3778 		goto out_alloc_vector_data;
3779 	}
3780 
3781 	ret = hns3_nic_init_vector_data(priv);
3782 	if (ret) {
3783 		ret = -ENOMEM;
3784 		goto out_init_vector_data;
3785 	}
3786 
3787 	ret = hns3_init_all_ring(priv);
3788 	if (ret) {
3789 		ret = -ENOMEM;
3790 		goto out_init_ring_data;
3791 	}
3792 
3793 	ret = hns3_init_phy(netdev);
3794 	if (ret)
3795 		goto out_init_phy;
3796 
3797 	ret = register_netdev(netdev);
3798 	if (ret) {
3799 		dev_err(priv->dev, "probe register netdev fail!\n");
3800 		goto out_reg_netdev_fail;
3801 	}
3802 
3803 	ret = hns3_client_start(handle);
3804 	if (ret) {
3805 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3806 		goto out_client_start;
3807 	}
3808 
3809 	hns3_dcbnl_setup(handle);
3810 
3811 	hns3_dbg_init(handle);
3812 
3813 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3814 	netdev->max_mtu = HNS3_MAX_MTU;
3815 
3816 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3817 
3818 	if (netif_msg_drv(handle))
3819 		hns3_info_show(priv);
3820 
3821 	return ret;
3822 
3823 out_client_start:
3824 	unregister_netdev(netdev);
3825 out_reg_netdev_fail:
3826 	hns3_uninit_phy(netdev);
3827 out_init_phy:
3828 	hns3_uninit_all_ring(priv);
3829 out_init_ring_data:
3830 	hns3_nic_uninit_vector_data(priv);
3831 out_init_vector_data:
3832 	hns3_nic_dealloc_vector_data(priv);
3833 out_alloc_vector_data:
3834 	priv->ring_data = NULL;
3835 out_get_ring_cfg:
3836 	priv->ae_handle = NULL;
3837 	free_netdev(netdev);
3838 	return ret;
3839 }
3840 
3841 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3842 {
3843 	struct net_device *netdev = handle->kinfo.netdev;
3844 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3845 	int ret;
3846 
3847 	hns3_remove_hw_addr(netdev);
3848 
3849 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3850 		unregister_netdev(netdev);
3851 
3852 	hns3_client_stop(handle);
3853 
3854 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3855 		netdev_warn(netdev, "already uninitialized\n");
3856 		goto out_netdev_free;
3857 	}
3858 
3859 	hns3_del_all_fd_rules(netdev, true);
3860 
3861 	hns3_force_clear_all_rx_ring(handle);
3862 
3863 	hns3_uninit_phy(netdev);
3864 
3865 	hns3_nic_uninit_vector_data(priv);
3866 
3867 	ret = hns3_nic_dealloc_vector_data(priv);
3868 	if (ret)
3869 		netdev_err(netdev, "dealloc vector error\n");
3870 
3871 	ret = hns3_uninit_all_ring(priv);
3872 	if (ret)
3873 		netdev_err(netdev, "uninit ring error\n");
3874 
3875 	hns3_put_ring_config(priv);
3876 
3877 	hns3_dbg_uninit(handle);
3878 
3879 out_netdev_free:
3880 	free_netdev(netdev);
3881 }
3882 
3883 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3884 {
3885 	struct net_device *netdev = handle->kinfo.netdev;
3886 
3887 	if (!netdev)
3888 		return;
3889 
3890 	if (linkup) {
3891 		netif_carrier_on(netdev);
3892 		netif_tx_wake_all_queues(netdev);
3893 		if (netif_msg_link(handle))
3894 			netdev_info(netdev, "link up\n");
3895 	} else {
3896 		netif_carrier_off(netdev);
3897 		netif_tx_stop_all_queues(netdev);
3898 		if (netif_msg_link(handle))
3899 			netdev_info(netdev, "link down\n");
3900 	}
3901 }
3902 
3903 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3904 {
3905 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3906 	struct net_device *ndev = kinfo->netdev;
3907 
3908 	if (tc > HNAE3_MAX_TC)
3909 		return -EINVAL;
3910 
3911 	if (!ndev)
3912 		return -ENODEV;
3913 
3914 	return hns3_nic_set_real_num_queue(ndev);
3915 }
3916 
3917 static int hns3_recover_hw_addr(struct net_device *ndev)
3918 {
3919 	struct netdev_hw_addr_list *list;
3920 	struct netdev_hw_addr *ha, *tmp;
3921 	int ret = 0;
3922 
3923 	netif_addr_lock_bh(ndev);
3924 	/* go through and sync uc_addr entries to the device */
3925 	list = &ndev->uc;
3926 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3927 		ret = hns3_nic_uc_sync(ndev, ha->addr);
3928 		if (ret)
3929 			goto out;
3930 	}
3931 
3932 	/* go through and sync mc_addr entries to the device */
3933 	list = &ndev->mc;
3934 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3935 		ret = hns3_nic_mc_sync(ndev, ha->addr);
3936 		if (ret)
3937 			goto out;
3938 	}
3939 
3940 out:
3941 	netif_addr_unlock_bh(ndev);
3942 	return ret;
3943 }
3944 
3945 static void hns3_remove_hw_addr(struct net_device *netdev)
3946 {
3947 	struct netdev_hw_addr_list *list;
3948 	struct netdev_hw_addr *ha, *tmp;
3949 
3950 	hns3_nic_uc_unsync(netdev, netdev->dev_addr);
3951 
3952 	netif_addr_lock_bh(netdev);
3953 	/* go through and unsync uc_addr entries to the device */
3954 	list = &netdev->uc;
3955 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3956 		hns3_nic_uc_unsync(netdev, ha->addr);
3957 
3958 	/* go through and unsync mc_addr entries to the device */
3959 	list = &netdev->mc;
3960 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3961 		if (ha->refcount > 1)
3962 			hns3_nic_mc_unsync(netdev, ha->addr);
3963 
3964 	netif_addr_unlock_bh(netdev);
3965 }
3966 
3967 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3968 {
3969 	while (ring->next_to_clean != ring->next_to_use) {
3970 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3971 		hns3_free_buffer_detach(ring, ring->next_to_clean);
3972 		ring_ptr_move_fw(ring, next_to_clean);
3973 	}
3974 }
3975 
3976 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3977 {
3978 	struct hns3_desc_cb res_cbs;
3979 	int ret;
3980 
3981 	while (ring->next_to_use != ring->next_to_clean) {
3982 		/* When a buffer is not reused, it's memory has been
3983 		 * freed in hns3_handle_rx_bd or will be freed by
3984 		 * stack, so we need to replace the buffer here.
3985 		 */
3986 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3987 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
3988 			if (ret) {
3989 				u64_stats_update_begin(&ring->syncp);
3990 				ring->stats.sw_err_cnt++;
3991 				u64_stats_update_end(&ring->syncp);
3992 				/* if alloc new buffer fail, exit directly
3993 				 * and reclear in up flow.
3994 				 */
3995 				netdev_warn(ring->tqp->handle->kinfo.netdev,
3996 					    "reserve buffer map failed, ret = %d\n",
3997 					    ret);
3998 				return ret;
3999 			}
4000 			hns3_replace_buffer(ring, ring->next_to_use,
4001 					    &res_cbs);
4002 		}
4003 		ring_ptr_move_fw(ring, next_to_use);
4004 	}
4005 
4006 	/* Free the pending skb in rx ring */
4007 	if (ring->skb) {
4008 		dev_kfree_skb_any(ring->skb);
4009 		ring->skb = NULL;
4010 		ring->pending_buf = 0;
4011 	}
4012 
4013 	return 0;
4014 }
4015 
4016 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
4017 {
4018 	while (ring->next_to_use != ring->next_to_clean) {
4019 		/* When a buffer is not reused, it's memory has been
4020 		 * freed in hns3_handle_rx_bd or will be freed by
4021 		 * stack, so only need to unmap the buffer here.
4022 		 */
4023 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
4024 			hns3_unmap_buffer(ring,
4025 					  &ring->desc_cb[ring->next_to_use]);
4026 			ring->desc_cb[ring->next_to_use].dma = 0;
4027 		}
4028 
4029 		ring_ptr_move_fw(ring, next_to_use);
4030 	}
4031 }
4032 
4033 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
4034 {
4035 	struct net_device *ndev = h->kinfo.netdev;
4036 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4037 	struct hns3_enet_ring *ring;
4038 	u32 i;
4039 
4040 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4041 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
4042 		hns3_force_clear_rx_ring(ring);
4043 	}
4044 }
4045 
4046 static void hns3_clear_all_ring(struct hnae3_handle *h)
4047 {
4048 	struct net_device *ndev = h->kinfo.netdev;
4049 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4050 	u32 i;
4051 
4052 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4053 		struct netdev_queue *dev_queue;
4054 		struct hns3_enet_ring *ring;
4055 
4056 		ring = priv->ring_data[i].ring;
4057 		hns3_clear_tx_ring(ring);
4058 		dev_queue = netdev_get_tx_queue(ndev,
4059 						priv->ring_data[i].queue_index);
4060 		netdev_tx_reset_queue(dev_queue);
4061 
4062 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
4063 		/* Continue to clear other rings even if clearing some
4064 		 * rings failed.
4065 		 */
4066 		hns3_clear_rx_ring(ring);
4067 	}
4068 }
4069 
4070 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4071 {
4072 	struct net_device *ndev = h->kinfo.netdev;
4073 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4074 	struct hns3_enet_ring *rx_ring;
4075 	int i, j;
4076 	int ret;
4077 
4078 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4079 		ret = h->ae_algo->ops->reset_queue(h, i);
4080 		if (ret)
4081 			return ret;
4082 
4083 		hns3_init_ring_hw(priv->ring_data[i].ring);
4084 
4085 		/* We need to clear tx ring here because self test will
4086 		 * use the ring and will not run down before up
4087 		 */
4088 		hns3_clear_tx_ring(priv->ring_data[i].ring);
4089 		priv->ring_data[i].ring->next_to_clean = 0;
4090 		priv->ring_data[i].ring->next_to_use = 0;
4091 
4092 		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
4093 		hns3_init_ring_hw(rx_ring);
4094 		ret = hns3_clear_rx_ring(rx_ring);
4095 		if (ret)
4096 			return ret;
4097 
4098 		/* We can not know the hardware head and tail when this
4099 		 * function is called in reset flow, so we reuse all desc.
4100 		 */
4101 		for (j = 0; j < rx_ring->desc_num; j++)
4102 			hns3_reuse_buffer(rx_ring, j);
4103 
4104 		rx_ring->next_to_clean = 0;
4105 		rx_ring->next_to_use = 0;
4106 	}
4107 
4108 	hns3_init_tx_ring_tc(priv);
4109 
4110 	return 0;
4111 }
4112 
4113 static void hns3_store_coal(struct hns3_nic_priv *priv)
4114 {
4115 	/* ethtool only support setting and querying one coal
4116 	 * configuation for now, so save the vector 0' coal
4117 	 * configuation here in order to restore it.
4118 	 */
4119 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4120 	       sizeof(struct hns3_enet_coalesce));
4121 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4122 	       sizeof(struct hns3_enet_coalesce));
4123 }
4124 
4125 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4126 {
4127 	u16 vector_num = priv->vector_num;
4128 	int i;
4129 
4130 	for (i = 0; i < vector_num; i++) {
4131 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4132 		       sizeof(struct hns3_enet_coalesce));
4133 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4134 		       sizeof(struct hns3_enet_coalesce));
4135 	}
4136 }
4137 
4138 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4139 {
4140 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4141 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4142 	struct net_device *ndev = kinfo->netdev;
4143 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4144 
4145 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4146 		return 0;
4147 
4148 	/* it is cumbersome for hardware to pick-and-choose entries for deletion
4149 	 * from table space. Hence, for function reset software intervention is
4150 	 * required to delete the entries
4151 	 */
4152 	if (hns3_dev_ongoing_func_reset(ae_dev)) {
4153 		hns3_remove_hw_addr(ndev);
4154 		hns3_del_all_fd_rules(ndev, false);
4155 	}
4156 
4157 	if (!netif_running(ndev))
4158 		return 0;
4159 
4160 	return hns3_nic_net_stop(ndev);
4161 }
4162 
4163 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4164 {
4165 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4166 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4167 	int ret = 0;
4168 
4169 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4170 
4171 	if (netif_running(kinfo->netdev)) {
4172 		ret = hns3_nic_net_open(kinfo->netdev);
4173 		if (ret) {
4174 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4175 			netdev_err(kinfo->netdev,
4176 				   "hns net up fail, ret=%d!\n", ret);
4177 			return ret;
4178 		}
4179 	}
4180 
4181 	return ret;
4182 }
4183 
4184 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4185 {
4186 	struct net_device *netdev = handle->kinfo.netdev;
4187 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4188 	int ret;
4189 
4190 	/* Carrier off reporting is important to ethtool even BEFORE open */
4191 	netif_carrier_off(netdev);
4192 
4193 	ret = hns3_get_ring_config(priv);
4194 	if (ret)
4195 		return ret;
4196 
4197 	ret = hns3_nic_alloc_vector_data(priv);
4198 	if (ret)
4199 		goto err_put_ring;
4200 
4201 	hns3_restore_coal(priv);
4202 
4203 	ret = hns3_nic_init_vector_data(priv);
4204 	if (ret)
4205 		goto err_dealloc_vector;
4206 
4207 	ret = hns3_init_all_ring(priv);
4208 	if (ret)
4209 		goto err_uninit_vector;
4210 
4211 	ret = hns3_client_start(handle);
4212 	if (ret) {
4213 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4214 		goto err_uninit_ring;
4215 	}
4216 
4217 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4218 
4219 	return ret;
4220 
4221 err_uninit_ring:
4222 	hns3_uninit_all_ring(priv);
4223 err_uninit_vector:
4224 	hns3_nic_uninit_vector_data(priv);
4225 err_dealloc_vector:
4226 	hns3_nic_dealloc_vector_data(priv);
4227 err_put_ring:
4228 	hns3_put_ring_config(priv);
4229 
4230 	return ret;
4231 }
4232 
4233 static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
4234 {
4235 	struct net_device *netdev = handle->kinfo.netdev;
4236 	bool vlan_filter_enable;
4237 	int ret;
4238 
4239 	ret = hns3_init_mac_addr(netdev, false);
4240 	if (ret)
4241 		return ret;
4242 
4243 	ret = hns3_recover_hw_addr(netdev);
4244 	if (ret)
4245 		return ret;
4246 
4247 	ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4248 	if (ret)
4249 		return ret;
4250 
4251 	vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4252 	hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4253 
4254 	/* Hardware table is only clear when pf resets */
4255 	if (!(handle->flags & HNAE3_SUPPORT_VF)) {
4256 		ret = hns3_restore_vlan(netdev);
4257 		if (ret)
4258 			return ret;
4259 	}
4260 
4261 	return hns3_restore_fd_rules(netdev);
4262 }
4263 
4264 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4265 {
4266 	struct net_device *netdev = handle->kinfo.netdev;
4267 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4268 	int ret;
4269 
4270 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4271 		netdev_warn(netdev, "already uninitialized\n");
4272 		return 0;
4273 	}
4274 
4275 	hns3_force_clear_all_rx_ring(handle);
4276 
4277 	hns3_nic_uninit_vector_data(priv);
4278 
4279 	hns3_store_coal(priv);
4280 
4281 	ret = hns3_nic_dealloc_vector_data(priv);
4282 	if (ret)
4283 		netdev_err(netdev, "dealloc vector error\n");
4284 
4285 	ret = hns3_uninit_all_ring(priv);
4286 	if (ret)
4287 		netdev_err(netdev, "uninit ring error\n");
4288 
4289 	hns3_put_ring_config(priv);
4290 
4291 	return ret;
4292 }
4293 
4294 static int hns3_reset_notify(struct hnae3_handle *handle,
4295 			     enum hnae3_reset_notify_type type)
4296 {
4297 	int ret = 0;
4298 
4299 	switch (type) {
4300 	case HNAE3_UP_CLIENT:
4301 		ret = hns3_reset_notify_up_enet(handle);
4302 		break;
4303 	case HNAE3_DOWN_CLIENT:
4304 		ret = hns3_reset_notify_down_enet(handle);
4305 		break;
4306 	case HNAE3_INIT_CLIENT:
4307 		ret = hns3_reset_notify_init_enet(handle);
4308 		break;
4309 	case HNAE3_UNINIT_CLIENT:
4310 		ret = hns3_reset_notify_uninit_enet(handle);
4311 		break;
4312 	case HNAE3_RESTORE_CLIENT:
4313 		ret = hns3_reset_notify_restore_enet(handle);
4314 		break;
4315 	default:
4316 		break;
4317 	}
4318 
4319 	return ret;
4320 }
4321 
4322 int hns3_set_channels(struct net_device *netdev,
4323 		      struct ethtool_channels *ch)
4324 {
4325 	struct hnae3_handle *h = hns3_get_handle(netdev);
4326 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4327 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4328 	u32 new_tqp_num = ch->combined_count;
4329 	u16 org_tqp_num;
4330 	int ret;
4331 
4332 	if (ch->rx_count || ch->tx_count)
4333 		return -EINVAL;
4334 
4335 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4336 	    new_tqp_num < 1) {
4337 		dev_err(&netdev->dev,
4338 			"Change tqps fail, the tqp range is from 1 to %d",
4339 			hns3_get_max_available_channels(h));
4340 		return -EINVAL;
4341 	}
4342 
4343 	if (kinfo->rss_size == new_tqp_num)
4344 		return 0;
4345 
4346 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4347 	if (ret)
4348 		return ret;
4349 
4350 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4351 	if (ret)
4352 		return ret;
4353 
4354 	org_tqp_num = h->kinfo.num_tqps;
4355 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num, rxfh_configured);
4356 	if (ret) {
4357 		ret = h->ae_algo->ops->set_channels(h, org_tqp_num,
4358 						    rxfh_configured);
4359 		if (ret) {
4360 			/* If revert to old tqp failed, fatal error occurred */
4361 			dev_err(&netdev->dev,
4362 				"Revert to old tqp num fail, ret=%d", ret);
4363 			return ret;
4364 		}
4365 		dev_info(&netdev->dev,
4366 			 "Change tqp num fail, Revert to old tqp num");
4367 	}
4368 	ret = hns3_reset_notify(h, HNAE3_INIT_CLIENT);
4369 	if (ret)
4370 		return ret;
4371 
4372 	return hns3_reset_notify(h, HNAE3_UP_CLIENT);
4373 }
4374 
4375 static const struct hnae3_client_ops client_ops = {
4376 	.init_instance = hns3_client_init,
4377 	.uninit_instance = hns3_client_uninit,
4378 	.link_status_change = hns3_link_status_change,
4379 	.setup_tc = hns3_client_setup_tc,
4380 	.reset_notify = hns3_reset_notify,
4381 };
4382 
4383 /* hns3_init_module - Driver registration routine
4384  * hns3_init_module is the first routine called when the driver is
4385  * loaded. All it does is register with the PCI subsystem.
4386  */
4387 static int __init hns3_init_module(void)
4388 {
4389 	int ret;
4390 
4391 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4392 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4393 
4394 	client.type = HNAE3_CLIENT_KNIC;
4395 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4396 		 hns3_driver_name);
4397 
4398 	client.ops = &client_ops;
4399 
4400 	INIT_LIST_HEAD(&client.node);
4401 
4402 	hns3_dbg_register_debugfs(hns3_driver_name);
4403 
4404 	ret = hnae3_register_client(&client);
4405 	if (ret)
4406 		goto err_reg_client;
4407 
4408 	ret = pci_register_driver(&hns3_driver);
4409 	if (ret)
4410 		goto err_reg_driver;
4411 
4412 	return ret;
4413 
4414 err_reg_driver:
4415 	hnae3_unregister_client(&client);
4416 err_reg_client:
4417 	hns3_dbg_unregister_debugfs();
4418 	return ret;
4419 }
4420 module_init(hns3_init_module);
4421 
4422 /* hns3_exit_module - Driver exit cleanup routine
4423  * hns3_exit_module is called just before the driver is removed
4424  * from memory.
4425  */
4426 static void __exit hns3_exit_module(void)
4427 {
4428 	pci_unregister_driver(&hns3_driver);
4429 	hnae3_unregister_client(&client);
4430 	hns3_dbg_unregister_debugfs();
4431 }
4432 module_exit(hns3_exit_module);
4433 
4434 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4435 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4436 MODULE_LICENSE("GPL");
4437 MODULE_ALIAS("pci:hns-nic");
4438 MODULE_VERSION(HNS3_MOD_VERSION);
4439