1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/aer.h>
13 #include <linux/skbuff.h>
14 #include <linux/sctp.h>
15 #include <linux/vermagic.h>
16 #include <net/gre.h>
17 #include <net/pkt_cls.h>
18 #include <net/tcp.h>
19 #include <net/vxlan.h>
20 
21 #include "hnae3.h"
22 #include "hns3_enet.h"
23 
24 #define hns3_set_field(origin, shift, val)	((origin) |= ((val) << (shift)))
25 #define hns3_tx_bd_count(S)	DIV_ROUND_UP(S, HNS3_MAX_BD_SIZE)
26 
27 static void hns3_clear_all_ring(struct hnae3_handle *h);
28 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
29 static void hns3_remove_hw_addr(struct net_device *netdev);
30 
31 static const char hns3_driver_name[] = "hns3";
32 const char hns3_driver_version[] = VERMAGIC_STRING;
33 static const char hns3_driver_string[] =
34 			"Hisilicon Ethernet Network Driver for Hip08 Family";
35 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
36 static struct hnae3_client client;
37 
38 /* hns3_pci_tbl - PCI Device ID Table
39  *
40  * Last entry must be all 0s
41  *
42  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
43  *   Class, Class Mask, private data (not used) }
44  */
45 static const struct pci_device_id hns3_pci_tbl[] = {
46 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
47 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
48 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
49 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
50 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
51 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
52 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
53 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
54 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
55 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
56 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
57 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
58 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
59 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
60 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
61 	/* required last entry */
62 	{0, }
63 };
64 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
65 
66 static irqreturn_t hns3_irq_handle(int irq, void *vector)
67 {
68 	struct hns3_enet_tqp_vector *tqp_vector = vector;
69 
70 	napi_schedule(&tqp_vector->napi);
71 
72 	return IRQ_HANDLED;
73 }
74 
75 /* This callback function is used to set affinity changes to the irq affinity
76  * masks when the irq_set_affinity_notifier function is used.
77  */
78 static void hns3_nic_irq_affinity_notify(struct irq_affinity_notify *notify,
79 					 const cpumask_t *mask)
80 {
81 	struct hns3_enet_tqp_vector *tqp_vectors =
82 		container_of(notify, struct hns3_enet_tqp_vector,
83 			     affinity_notify);
84 
85 	tqp_vectors->affinity_mask = *mask;
86 }
87 
88 static void hns3_nic_irq_affinity_release(struct kref *ref)
89 {
90 }
91 
92 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
93 {
94 	struct hns3_enet_tqp_vector *tqp_vectors;
95 	unsigned int i;
96 
97 	for (i = 0; i < priv->vector_num; i++) {
98 		tqp_vectors = &priv->tqp_vector[i];
99 
100 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
101 			continue;
102 
103 		/* clear the affinity notifier and affinity mask */
104 		irq_set_affinity_notifier(tqp_vectors->vector_irq, NULL);
105 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
106 
107 		/* release the irq resource */
108 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
109 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
110 	}
111 }
112 
113 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
114 {
115 	struct hns3_enet_tqp_vector *tqp_vectors;
116 	int txrx_int_idx = 0;
117 	int rx_int_idx = 0;
118 	int tx_int_idx = 0;
119 	unsigned int i;
120 	int ret;
121 
122 	for (i = 0; i < priv->vector_num; i++) {
123 		tqp_vectors = &priv->tqp_vector[i];
124 
125 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
126 			continue;
127 
128 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
129 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
130 				 "%s-%s-%d", priv->netdev->name, "TxRx",
131 				 txrx_int_idx++);
132 			txrx_int_idx++;
133 		} else if (tqp_vectors->rx_group.ring) {
134 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
135 				 "%s-%s-%d", priv->netdev->name, "Rx",
136 				 rx_int_idx++);
137 		} else if (tqp_vectors->tx_group.ring) {
138 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
139 				 "%s-%s-%d", priv->netdev->name, "Tx",
140 				 tx_int_idx++);
141 		} else {
142 			/* Skip this unused q_vector */
143 			continue;
144 		}
145 
146 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
147 
148 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
149 				  tqp_vectors->name,
150 				       tqp_vectors);
151 		if (ret) {
152 			netdev_err(priv->netdev, "request irq(%d) fail\n",
153 				   tqp_vectors->vector_irq);
154 			return ret;
155 		}
156 
157 		tqp_vectors->affinity_notify.notify =
158 					hns3_nic_irq_affinity_notify;
159 		tqp_vectors->affinity_notify.release =
160 					hns3_nic_irq_affinity_release;
161 		irq_set_affinity_notifier(tqp_vectors->vector_irq,
162 					  &tqp_vectors->affinity_notify);
163 		irq_set_affinity_hint(tqp_vectors->vector_irq,
164 				      &tqp_vectors->affinity_mask);
165 
166 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
167 	}
168 
169 	return 0;
170 }
171 
172 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
173 				 u32 mask_en)
174 {
175 	writel(mask_en, tqp_vector->mask_addr);
176 }
177 
178 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
179 {
180 	napi_enable(&tqp_vector->napi);
181 
182 	/* enable vector */
183 	hns3_mask_vector_irq(tqp_vector, 1);
184 }
185 
186 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
187 {
188 	/* disable vector */
189 	hns3_mask_vector_irq(tqp_vector, 0);
190 
191 	disable_irq(tqp_vector->vector_irq);
192 	napi_disable(&tqp_vector->napi);
193 }
194 
195 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
196 				 u32 rl_value)
197 {
198 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
199 
200 	/* this defines the configuration for RL (Interrupt Rate Limiter).
201 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
202 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
203 	 */
204 
205 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
206 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
207 		/* According to the hardware, the range of rl_reg is
208 		 * 0-59 and the unit is 4.
209 		 */
210 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
211 
212 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
213 }
214 
215 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
216 				    u32 gl_value)
217 {
218 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
219 
220 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
221 }
222 
223 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
224 				    u32 gl_value)
225 {
226 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
227 
228 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
229 }
230 
231 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
232 				   struct hns3_nic_priv *priv)
233 {
234 	/* initialize the configuration for interrupt coalescing.
235 	 * 1. GL (Interrupt Gap Limiter)
236 	 * 2. RL (Interrupt Rate Limiter)
237 	 */
238 
239 	/* Default: enable interrupt coalescing self-adaptive and GL */
240 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
241 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
242 
243 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
244 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
245 
246 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
247 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
248 }
249 
250 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
251 				      struct hns3_nic_priv *priv)
252 {
253 	struct hnae3_handle *h = priv->ae_handle;
254 
255 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
256 				       tqp_vector->tx_group.coal.int_gl);
257 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
258 				       tqp_vector->rx_group.coal.int_gl);
259 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
260 }
261 
262 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
263 {
264 	struct hnae3_handle *h = hns3_get_handle(netdev);
265 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
266 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
267 	int i, ret;
268 
269 	if (kinfo->num_tc <= 1) {
270 		netdev_reset_tc(netdev);
271 	} else {
272 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
273 		if (ret) {
274 			netdev_err(netdev,
275 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
276 			return ret;
277 		}
278 
279 		for (i = 0; i < HNAE3_MAX_TC; i++) {
280 			if (!kinfo->tc_info[i].enable)
281 				continue;
282 
283 			netdev_set_tc_queue(netdev,
284 					    kinfo->tc_info[i].tc,
285 					    kinfo->tc_info[i].tqp_count,
286 					    kinfo->tc_info[i].tqp_offset);
287 		}
288 	}
289 
290 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
291 	if (ret) {
292 		netdev_err(netdev,
293 			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
294 			   ret);
295 		return ret;
296 	}
297 
298 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
299 	if (ret) {
300 		netdev_err(netdev,
301 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
302 		return ret;
303 	}
304 
305 	return 0;
306 }
307 
308 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
309 {
310 	u16 alloc_tqps, max_rss_size, rss_size;
311 
312 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
313 	rss_size = alloc_tqps / h->kinfo.num_tc;
314 
315 	return min_t(u16, rss_size, max_rss_size);
316 }
317 
318 static void hns3_tqp_enable(struct hnae3_queue *tqp)
319 {
320 	u32 rcb_reg;
321 
322 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
323 	rcb_reg |= BIT(HNS3_RING_EN_B);
324 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
325 }
326 
327 static void hns3_tqp_disable(struct hnae3_queue *tqp)
328 {
329 	u32 rcb_reg;
330 
331 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
332 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
333 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
334 }
335 
336 static int hns3_nic_net_up(struct net_device *netdev)
337 {
338 	struct hns3_nic_priv *priv = netdev_priv(netdev);
339 	struct hnae3_handle *h = priv->ae_handle;
340 	int i, j;
341 	int ret;
342 
343 	ret = hns3_nic_reset_all_ring(h);
344 	if (ret)
345 		return ret;
346 
347 	/* get irq resource for all vectors */
348 	ret = hns3_nic_init_irq(priv);
349 	if (ret) {
350 		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
351 		return ret;
352 	}
353 
354 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
355 
356 	/* enable the vectors */
357 	for (i = 0; i < priv->vector_num; i++)
358 		hns3_vector_enable(&priv->tqp_vector[i]);
359 
360 	/* enable rcb */
361 	for (j = 0; j < h->kinfo.num_tqps; j++)
362 		hns3_tqp_enable(h->kinfo.tqp[j]);
363 
364 	/* start the ae_dev */
365 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
366 	if (ret)
367 		goto out_start_err;
368 
369 	return 0;
370 
371 out_start_err:
372 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
373 	while (j--)
374 		hns3_tqp_disable(h->kinfo.tqp[j]);
375 
376 	for (j = i - 1; j >= 0; j--)
377 		hns3_vector_disable(&priv->tqp_vector[j]);
378 
379 	hns3_nic_uninit_irq(priv);
380 
381 	return ret;
382 }
383 
384 static void hns3_config_xps(struct hns3_nic_priv *priv)
385 {
386 	int i;
387 
388 	for (i = 0; i < priv->vector_num; i++) {
389 		struct hns3_enet_tqp_vector *tqp_vector = &priv->tqp_vector[i];
390 		struct hns3_enet_ring *ring = tqp_vector->tx_group.ring;
391 
392 		while (ring) {
393 			int ret;
394 
395 			ret = netif_set_xps_queue(priv->netdev,
396 						  &tqp_vector->affinity_mask,
397 						  ring->tqp->tqp_index);
398 			if (ret)
399 				netdev_warn(priv->netdev,
400 					    "set xps queue failed: %d", ret);
401 
402 			ring = ring->next;
403 		}
404 	}
405 }
406 
407 static int hns3_nic_net_open(struct net_device *netdev)
408 {
409 	struct hns3_nic_priv *priv = netdev_priv(netdev);
410 	struct hnae3_handle *h = hns3_get_handle(netdev);
411 	struct hnae3_knic_private_info *kinfo;
412 	int i, ret;
413 
414 	if (hns3_nic_resetting(netdev))
415 		return -EBUSY;
416 
417 	netif_carrier_off(netdev);
418 
419 	ret = hns3_nic_set_real_num_queue(netdev);
420 	if (ret)
421 		return ret;
422 
423 	ret = hns3_nic_net_up(netdev);
424 	if (ret) {
425 		netdev_err(netdev,
426 			   "hns net up fail, ret=%d!\n", ret);
427 		return ret;
428 	}
429 
430 	kinfo = &h->kinfo;
431 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
432 		netdev_set_prio_tc_map(netdev, i,
433 				       kinfo->prio_tc[i]);
434 	}
435 
436 	if (h->ae_algo->ops->set_timer_task)
437 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
438 
439 	hns3_config_xps(priv);
440 	return 0;
441 }
442 
443 static void hns3_nic_net_down(struct net_device *netdev)
444 {
445 	struct hns3_nic_priv *priv = netdev_priv(netdev);
446 	struct hnae3_handle *h = hns3_get_handle(netdev);
447 	const struct hnae3_ae_ops *ops;
448 	int i;
449 
450 	/* disable vectors */
451 	for (i = 0; i < priv->vector_num; i++)
452 		hns3_vector_disable(&priv->tqp_vector[i]);
453 
454 	/* disable rcb */
455 	for (i = 0; i < h->kinfo.num_tqps; i++)
456 		hns3_tqp_disable(h->kinfo.tqp[i]);
457 
458 	/* stop ae_dev */
459 	ops = priv->ae_handle->ae_algo->ops;
460 	if (ops->stop)
461 		ops->stop(priv->ae_handle);
462 
463 	/* free irq resources */
464 	hns3_nic_uninit_irq(priv);
465 
466 	hns3_clear_all_ring(priv->ae_handle);
467 }
468 
469 static int hns3_nic_net_stop(struct net_device *netdev)
470 {
471 	struct hns3_nic_priv *priv = netdev_priv(netdev);
472 	struct hnae3_handle *h = hns3_get_handle(netdev);
473 
474 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
475 		return 0;
476 
477 	if (h->ae_algo->ops->set_timer_task)
478 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
479 
480 	netif_tx_stop_all_queues(netdev);
481 	netif_carrier_off(netdev);
482 
483 	hns3_nic_net_down(netdev);
484 
485 	return 0;
486 }
487 
488 static int hns3_nic_uc_sync(struct net_device *netdev,
489 			    const unsigned char *addr)
490 {
491 	struct hnae3_handle *h = hns3_get_handle(netdev);
492 
493 	if (h->ae_algo->ops->add_uc_addr)
494 		return h->ae_algo->ops->add_uc_addr(h, addr);
495 
496 	return 0;
497 }
498 
499 static int hns3_nic_uc_unsync(struct net_device *netdev,
500 			      const unsigned char *addr)
501 {
502 	struct hnae3_handle *h = hns3_get_handle(netdev);
503 
504 	if (h->ae_algo->ops->rm_uc_addr)
505 		return h->ae_algo->ops->rm_uc_addr(h, addr);
506 
507 	return 0;
508 }
509 
510 static int hns3_nic_mc_sync(struct net_device *netdev,
511 			    const unsigned char *addr)
512 {
513 	struct hnae3_handle *h = hns3_get_handle(netdev);
514 
515 	if (h->ae_algo->ops->add_mc_addr)
516 		return h->ae_algo->ops->add_mc_addr(h, addr);
517 
518 	return 0;
519 }
520 
521 static int hns3_nic_mc_unsync(struct net_device *netdev,
522 			      const unsigned char *addr)
523 {
524 	struct hnae3_handle *h = hns3_get_handle(netdev);
525 
526 	if (h->ae_algo->ops->rm_mc_addr)
527 		return h->ae_algo->ops->rm_mc_addr(h, addr);
528 
529 	return 0;
530 }
531 
532 static u8 hns3_get_netdev_flags(struct net_device *netdev)
533 {
534 	u8 flags = 0;
535 
536 	if (netdev->flags & IFF_PROMISC) {
537 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE | HNAE3_BPE;
538 	} else {
539 		flags |= HNAE3_VLAN_FLTR;
540 		if (netdev->flags & IFF_ALLMULTI)
541 			flags |= HNAE3_USER_MPE;
542 	}
543 
544 	return flags;
545 }
546 
547 static void hns3_nic_set_rx_mode(struct net_device *netdev)
548 {
549 	struct hnae3_handle *h = hns3_get_handle(netdev);
550 	u8 new_flags;
551 	int ret;
552 
553 	new_flags = hns3_get_netdev_flags(netdev);
554 
555 	ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
556 	if (ret) {
557 		netdev_err(netdev, "sync uc address fail\n");
558 		if (ret == -ENOSPC)
559 			new_flags |= HNAE3_OVERFLOW_UPE;
560 	}
561 
562 	if (netdev->flags & IFF_MULTICAST) {
563 		ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
564 				    hns3_nic_mc_unsync);
565 		if (ret) {
566 			netdev_err(netdev, "sync mc address fail\n");
567 			if (ret == -ENOSPC)
568 				new_flags |= HNAE3_OVERFLOW_MPE;
569 		}
570 	}
571 
572 	/* User mode Promisc mode enable and vlan filtering is disabled to
573 	 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
574 	 * vlan fitering is enabled
575 	 */
576 	hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
577 	h->netdev_flags = new_flags;
578 	hns3_update_promisc_mode(netdev, new_flags);
579 }
580 
581 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
582 {
583 	struct hns3_nic_priv *priv = netdev_priv(netdev);
584 	struct hnae3_handle *h = priv->ae_handle;
585 
586 	if (h->ae_algo->ops->set_promisc_mode) {
587 		return h->ae_algo->ops->set_promisc_mode(h,
588 						promisc_flags & HNAE3_UPE,
589 						promisc_flags & HNAE3_MPE);
590 	}
591 
592 	return 0;
593 }
594 
595 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
596 {
597 	struct hns3_nic_priv *priv = netdev_priv(netdev);
598 	struct hnae3_handle *h = priv->ae_handle;
599 	bool last_state;
600 
601 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
602 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
603 		if (enable != last_state) {
604 			netdev_info(netdev,
605 				    "%s vlan filter\n",
606 				    enable ? "enable" : "disable");
607 			h->ae_algo->ops->enable_vlan_filter(h, enable);
608 		}
609 	}
610 }
611 
612 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
613 			u16 *mss, u32 *type_cs_vlan_tso)
614 {
615 	u32 l4_offset, hdr_len;
616 	union l3_hdr_info l3;
617 	union l4_hdr_info l4;
618 	u32 l4_paylen;
619 	int ret;
620 
621 	if (!skb_is_gso(skb))
622 		return 0;
623 
624 	ret = skb_cow_head(skb, 0);
625 	if (unlikely(ret))
626 		return ret;
627 
628 	l3.hdr = skb_network_header(skb);
629 	l4.hdr = skb_transport_header(skb);
630 
631 	/* Software should clear the IPv4's checksum field when tso is
632 	 * needed.
633 	 */
634 	if (l3.v4->version == 4)
635 		l3.v4->check = 0;
636 
637 	/* tunnel packet.*/
638 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
639 					 SKB_GSO_GRE_CSUM |
640 					 SKB_GSO_UDP_TUNNEL |
641 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
642 		if ((!(skb_shinfo(skb)->gso_type &
643 		    SKB_GSO_PARTIAL)) &&
644 		    (skb_shinfo(skb)->gso_type &
645 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
646 			/* Software should clear the udp's checksum
647 			 * field when tso is needed.
648 			 */
649 			l4.udp->check = 0;
650 		}
651 		/* reset l3&l4 pointers from outer to inner headers */
652 		l3.hdr = skb_inner_network_header(skb);
653 		l4.hdr = skb_inner_transport_header(skb);
654 
655 		/* Software should clear the IPv4's checksum field when
656 		 * tso is needed.
657 		 */
658 		if (l3.v4->version == 4)
659 			l3.v4->check = 0;
660 	}
661 
662 	/* normal or tunnel packet*/
663 	l4_offset = l4.hdr - skb->data;
664 	hdr_len = (l4.tcp->doff << 2) + l4_offset;
665 
666 	/* remove payload length from inner pseudo checksum when tso*/
667 	l4_paylen = skb->len - l4_offset;
668 	csum_replace_by_diff(&l4.tcp->check,
669 			     (__force __wsum)htonl(l4_paylen));
670 
671 	/* find the txbd field values */
672 	*paylen = skb->len - hdr_len;
673 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_TSO_B, 1);
674 
675 	/* get MSS for TSO */
676 	*mss = skb_shinfo(skb)->gso_size;
677 
678 	return 0;
679 }
680 
681 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
682 				u8 *il4_proto)
683 {
684 	union l3_hdr_info l3;
685 	unsigned char *l4_hdr;
686 	unsigned char *exthdr;
687 	u8 l4_proto_tmp;
688 	__be16 frag_off;
689 
690 	/* find outer header point */
691 	l3.hdr = skb_network_header(skb);
692 	l4_hdr = skb_transport_header(skb);
693 
694 	if (skb->protocol == htons(ETH_P_IPV6)) {
695 		exthdr = l3.hdr + sizeof(*l3.v6);
696 		l4_proto_tmp = l3.v6->nexthdr;
697 		if (l4_hdr != exthdr)
698 			ipv6_skip_exthdr(skb, exthdr - skb->data,
699 					 &l4_proto_tmp, &frag_off);
700 	} else if (skb->protocol == htons(ETH_P_IP)) {
701 		l4_proto_tmp = l3.v4->protocol;
702 	} else {
703 		return -EINVAL;
704 	}
705 
706 	*ol4_proto = l4_proto_tmp;
707 
708 	/* tunnel packet */
709 	if (!skb->encapsulation) {
710 		*il4_proto = 0;
711 		return 0;
712 	}
713 
714 	/* find inner header point */
715 	l3.hdr = skb_inner_network_header(skb);
716 	l4_hdr = skb_inner_transport_header(skb);
717 
718 	if (l3.v6->version == 6) {
719 		exthdr = l3.hdr + sizeof(*l3.v6);
720 		l4_proto_tmp = l3.v6->nexthdr;
721 		if (l4_hdr != exthdr)
722 			ipv6_skip_exthdr(skb, exthdr - skb->data,
723 					 &l4_proto_tmp, &frag_off);
724 	} else if (l3.v4->version == 4) {
725 		l4_proto_tmp = l3.v4->protocol;
726 	}
727 
728 	*il4_proto = l4_proto_tmp;
729 
730 	return 0;
731 }
732 
733 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
734 				u8 il4_proto, u32 *type_cs_vlan_tso,
735 				u32 *ol_type_vlan_len_msec)
736 {
737 	union l3_hdr_info l3;
738 	union l4_hdr_info l4;
739 	unsigned char *l2_hdr;
740 	u8 l4_proto = ol4_proto;
741 	u32 ol2_len;
742 	u32 ol3_len;
743 	u32 ol4_len;
744 	u32 l2_len;
745 	u32 l3_len;
746 
747 	l3.hdr = skb_network_header(skb);
748 	l4.hdr = skb_transport_header(skb);
749 
750 	/* compute L2 header size for normal packet, defined in 2 Bytes */
751 	l2_len = l3.hdr - skb->data;
752 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S, l2_len >> 1);
753 
754 	/* tunnel packet*/
755 	if (skb->encapsulation) {
756 		/* compute OL2 header size, defined in 2 Bytes */
757 		ol2_len = l2_len;
758 		hns3_set_field(*ol_type_vlan_len_msec,
759 			       HNS3_TXD_L2LEN_S, ol2_len >> 1);
760 
761 		/* compute OL3 header size, defined in 4 Bytes */
762 		ol3_len = l4.hdr - l3.hdr;
763 		hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_S,
764 			       ol3_len >> 2);
765 
766 		/* MAC in UDP, MAC in GRE (0x6558)*/
767 		if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
768 			/* switch MAC header ptr from outer to inner header.*/
769 			l2_hdr = skb_inner_mac_header(skb);
770 
771 			/* compute OL4 header size, defined in 4 Bytes. */
772 			ol4_len = l2_hdr - l4.hdr;
773 			hns3_set_field(*ol_type_vlan_len_msec,
774 				       HNS3_TXD_L4LEN_S, ol4_len >> 2);
775 
776 			/* switch IP header ptr from outer to inner header */
777 			l3.hdr = skb_inner_network_header(skb);
778 
779 			/* compute inner l2 header size, defined in 2 Bytes. */
780 			l2_len = l3.hdr - l2_hdr;
781 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_S,
782 				       l2_len >> 1);
783 		} else {
784 			/* skb packet types not supported by hardware,
785 			 * txbd len fild doesn't be filled.
786 			 */
787 			return;
788 		}
789 
790 		/* switch L4 header pointer from outer to inner */
791 		l4.hdr = skb_inner_transport_header(skb);
792 
793 		l4_proto = il4_proto;
794 	}
795 
796 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
797 	l3_len = l4.hdr - l3.hdr;
798 	hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_S, l3_len >> 2);
799 
800 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
801 	switch (l4_proto) {
802 	case IPPROTO_TCP:
803 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
804 			       l4.tcp->doff);
805 		break;
806 	case IPPROTO_SCTP:
807 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
808 			       (sizeof(struct sctphdr) >> 2));
809 		break;
810 	case IPPROTO_UDP:
811 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_S,
812 			       (sizeof(struct udphdr) >> 2));
813 		break;
814 	default:
815 		/* skb packet types not supported by hardware,
816 		 * txbd len fild doesn't be filled.
817 		 */
818 		return;
819 	}
820 }
821 
822 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
823  * and it is udp packet, which has a dest port as the IANA assigned.
824  * the hardware is expected to do the checksum offload, but the
825  * hardware will not do the checksum offload when udp dest port is
826  * 4789.
827  */
828 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
829 {
830 	union l4_hdr_info l4;
831 
832 	l4.hdr = skb_transport_header(skb);
833 
834 	if (!(!skb->encapsulation &&
835 	      l4.udp->dest == htons(IANA_VXLAN_UDP_PORT)))
836 		return false;
837 
838 	skb_checksum_help(skb);
839 
840 	return true;
841 }
842 
843 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
844 				   u8 il4_proto, u32 *type_cs_vlan_tso,
845 				   u32 *ol_type_vlan_len_msec)
846 {
847 	union l3_hdr_info l3;
848 	u32 l4_proto = ol4_proto;
849 
850 	l3.hdr = skb_network_header(skb);
851 
852 	/* define OL3 type and tunnel type(OL4).*/
853 	if (skb->encapsulation) {
854 		/* define outer network header type.*/
855 		if (skb->protocol == htons(ETH_P_IP)) {
856 			if (skb_is_gso(skb))
857 				hns3_set_field(*ol_type_vlan_len_msec,
858 					       HNS3_TXD_OL3T_S,
859 					       HNS3_OL3T_IPV4_CSUM);
860 			else
861 				hns3_set_field(*ol_type_vlan_len_msec,
862 					       HNS3_TXD_OL3T_S,
863 					       HNS3_OL3T_IPV4_NO_CSUM);
864 
865 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
866 			hns3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_S,
867 				       HNS3_OL3T_IPV6);
868 		}
869 
870 		/* define tunnel type(OL4).*/
871 		switch (l4_proto) {
872 		case IPPROTO_UDP:
873 			hns3_set_field(*ol_type_vlan_len_msec,
874 				       HNS3_TXD_TUNTYPE_S,
875 				       HNS3_TUN_MAC_IN_UDP);
876 			break;
877 		case IPPROTO_GRE:
878 			hns3_set_field(*ol_type_vlan_len_msec,
879 				       HNS3_TXD_TUNTYPE_S,
880 				       HNS3_TUN_NVGRE);
881 			break;
882 		default:
883 			/* drop the skb tunnel packet if hardware don't support,
884 			 * because hardware can't calculate csum when TSO.
885 			 */
886 			if (skb_is_gso(skb))
887 				return -EDOM;
888 
889 			/* the stack computes the IP header already,
890 			 * driver calculate l4 checksum when not TSO.
891 			 */
892 			skb_checksum_help(skb);
893 			return 0;
894 		}
895 
896 		l3.hdr = skb_inner_network_header(skb);
897 		l4_proto = il4_proto;
898 	}
899 
900 	if (l3.v4->version == 4) {
901 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
902 			       HNS3_L3T_IPV4);
903 
904 		/* the stack computes the IP header already, the only time we
905 		 * need the hardware to recompute it is in the case of TSO.
906 		 */
907 		if (skb_is_gso(skb))
908 			hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
909 	} else if (l3.v6->version == 6) {
910 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_S,
911 			       HNS3_L3T_IPV6);
912 	}
913 
914 	switch (l4_proto) {
915 	case IPPROTO_TCP:
916 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
917 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
918 			       HNS3_L4T_TCP);
919 		break;
920 	case IPPROTO_UDP:
921 		if (hns3_tunnel_csum_bug(skb))
922 			break;
923 
924 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
925 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
926 			       HNS3_L4T_UDP);
927 		break;
928 	case IPPROTO_SCTP:
929 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
930 		hns3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4T_S,
931 			       HNS3_L4T_SCTP);
932 		break;
933 	default:
934 		/* drop the skb tunnel packet if hardware don't support,
935 		 * because hardware can't calculate csum when TSO.
936 		 */
937 		if (skb_is_gso(skb))
938 			return -EDOM;
939 
940 		/* the stack computes the IP header already,
941 		 * driver calculate l4 checksum when not TSO.
942 		 */
943 		skb_checksum_help(skb);
944 		return 0;
945 	}
946 
947 	return 0;
948 }
949 
950 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
951 {
952 	/* Config bd buffer end */
953 	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
954 	hns3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
955 }
956 
957 static int hns3_fill_desc_vtags(struct sk_buff *skb,
958 				struct hns3_enet_ring *tx_ring,
959 				u32 *inner_vlan_flag,
960 				u32 *out_vlan_flag,
961 				u16 *inner_vtag,
962 				u16 *out_vtag)
963 {
964 #define HNS3_TX_VLAN_PRIO_SHIFT 13
965 
966 	struct hnae3_handle *handle = tx_ring->tqp->handle;
967 
968 	/* Since HW limitation, if port based insert VLAN enabled, only one VLAN
969 	 * header is allowed in skb, otherwise it will cause RAS error.
970 	 */
971 	if (unlikely(skb_vlan_tagged_multi(skb) &&
972 		     handle->port_base_vlan_state ==
973 		     HNAE3_PORT_BASE_VLAN_ENABLE))
974 		return -EINVAL;
975 
976 	if (skb->protocol == htons(ETH_P_8021Q) &&
977 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
978 	    NETIF_F_HW_VLAN_CTAG_TX)) {
979 		/* When HW VLAN acceleration is turned off, and the stack
980 		 * sets the protocol to 802.1q, the driver just need to
981 		 * set the protocol to the encapsulated ethertype.
982 		 */
983 		skb->protocol = vlan_get_protocol(skb);
984 		return 0;
985 	}
986 
987 	if (skb_vlan_tag_present(skb)) {
988 		u16 vlan_tag;
989 
990 		vlan_tag = skb_vlan_tag_get(skb);
991 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
992 
993 		/* Based on hw strategy, use out_vtag in two layer tag case,
994 		 * and use inner_vtag in one tag case.
995 		 */
996 		if (skb->protocol == htons(ETH_P_8021Q)) {
997 			if (handle->port_base_vlan_state ==
998 			    HNAE3_PORT_BASE_VLAN_DISABLE){
999 				hns3_set_field(*out_vlan_flag,
1000 					       HNS3_TXD_OVLAN_B, 1);
1001 				*out_vtag = vlan_tag;
1002 			} else {
1003 				hns3_set_field(*inner_vlan_flag,
1004 					       HNS3_TXD_VLAN_B, 1);
1005 				*inner_vtag = vlan_tag;
1006 			}
1007 		} else {
1008 			hns3_set_field(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
1009 			*inner_vtag = vlan_tag;
1010 		}
1011 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
1012 		struct vlan_ethhdr *vhdr;
1013 		int rc;
1014 
1015 		rc = skb_cow_head(skb, 0);
1016 		if (unlikely(rc < 0))
1017 			return rc;
1018 		vhdr = (struct vlan_ethhdr *)skb->data;
1019 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
1020 					<< HNS3_TX_VLAN_PRIO_SHIFT);
1021 	}
1022 
1023 	skb->protocol = vlan_get_protocol(skb);
1024 	return 0;
1025 }
1026 
1027 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1028 			  int size, int frag_end, enum hns_desc_type type)
1029 {
1030 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1031 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1032 	struct device *dev = ring_to_dev(ring);
1033 	struct skb_frag_struct *frag;
1034 	unsigned int frag_buf_num;
1035 	int k, sizeoflast;
1036 	dma_addr_t dma;
1037 
1038 	if (type == DESC_TYPE_SKB) {
1039 		struct sk_buff *skb = (struct sk_buff *)priv;
1040 		u32 ol_type_vlan_len_msec = 0;
1041 		u32 type_cs_vlan_tso = 0;
1042 		u32 paylen = skb->len;
1043 		u16 inner_vtag = 0;
1044 		u16 out_vtag = 0;
1045 		u16 mss = 0;
1046 		int ret;
1047 
1048 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
1049 					   &ol_type_vlan_len_msec,
1050 					   &inner_vtag, &out_vtag);
1051 		if (unlikely(ret))
1052 			return ret;
1053 
1054 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1055 			u8 ol4_proto, il4_proto;
1056 
1057 			skb_reset_mac_len(skb);
1058 
1059 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1060 			if (unlikely(ret))
1061 				return ret;
1062 			hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
1063 					    &type_cs_vlan_tso,
1064 					    &ol_type_vlan_len_msec);
1065 			ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
1066 						      &type_cs_vlan_tso,
1067 						      &ol_type_vlan_len_msec);
1068 			if (unlikely(ret))
1069 				return ret;
1070 
1071 			ret = hns3_set_tso(skb, &paylen, &mss,
1072 					   &type_cs_vlan_tso);
1073 			if (unlikely(ret))
1074 				return ret;
1075 		}
1076 
1077 		/* Set txbd */
1078 		desc->tx.ol_type_vlan_len_msec =
1079 			cpu_to_le32(ol_type_vlan_len_msec);
1080 		desc->tx.type_cs_vlan_tso_len =
1081 			cpu_to_le32(type_cs_vlan_tso);
1082 		desc->tx.paylen = cpu_to_le32(paylen);
1083 		desc->tx.mss = cpu_to_le16(mss);
1084 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1085 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1086 
1087 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1088 	} else {
1089 		frag = (struct skb_frag_struct *)priv;
1090 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1091 	}
1092 
1093 	if (unlikely(dma_mapping_error(ring->dev, dma))) {
1094 		ring->stats.sw_err_cnt++;
1095 		return -ENOMEM;
1096 	}
1097 
1098 	desc_cb->length = size;
1099 
1100 	if (likely(size <= HNS3_MAX_BD_SIZE)) {
1101 		u16 bdtp_fe_sc_vld_ra_ri = 0;
1102 
1103 		desc_cb->priv = priv;
1104 		desc_cb->dma = dma;
1105 		desc_cb->type = type;
1106 		desc->addr = cpu_to_le64(dma);
1107 		desc->tx.send_size = cpu_to_le16(size);
1108 		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri, frag_end);
1109 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1110 			cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1111 
1112 		ring_ptr_move_fw(ring, next_to_use);
1113 		return 0;
1114 	}
1115 
1116 	frag_buf_num = hns3_tx_bd_count(size);
1117 	sizeoflast = size & HNS3_TX_LAST_SIZE_M;
1118 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1119 
1120 	/* When frag size is bigger than hardware limit, split this frag */
1121 	for (k = 0; k < frag_buf_num; k++) {
1122 		u16 bdtp_fe_sc_vld_ra_ri = 0;
1123 
1124 		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1125 		desc_cb->priv = priv;
1126 		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1127 		desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1128 					DESC_TYPE_SKB : DESC_TYPE_PAGE;
1129 
1130 		/* now, fill the descriptor */
1131 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1132 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1133 				(u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1134 		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1135 				       frag_end && (k == frag_buf_num - 1) ?
1136 						1 : 0);
1137 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1138 				cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1139 
1140 		/* move ring pointer to next.*/
1141 		ring_ptr_move_fw(ring, next_to_use);
1142 
1143 		desc_cb = &ring->desc_cb[ring->next_to_use];
1144 		desc = &ring->desc[ring->next_to_use];
1145 	}
1146 
1147 	return 0;
1148 }
1149 
1150 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1151 				   struct hns3_enet_ring *ring)
1152 {
1153 	struct sk_buff *skb = *out_skb;
1154 	struct sk_buff *new_skb = NULL;
1155 	struct skb_frag_struct *frag;
1156 	int bdnum_for_frag;
1157 	int frag_num;
1158 	int buf_num;
1159 	int size;
1160 	int i;
1161 
1162 	size = skb_headlen(skb);
1163 	buf_num = hns3_tx_bd_count(size);
1164 
1165 	frag_num = skb_shinfo(skb)->nr_frags;
1166 	for (i = 0; i < frag_num; i++) {
1167 		frag = &skb_shinfo(skb)->frags[i];
1168 		size = skb_frag_size(frag);
1169 		bdnum_for_frag = hns3_tx_bd_count(size);
1170 		if (unlikely(bdnum_for_frag > HNS3_MAX_BD_PER_FRAG))
1171 			return -ENOMEM;
1172 
1173 		buf_num += bdnum_for_frag;
1174 	}
1175 
1176 	if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1177 		buf_num = hns3_tx_bd_count(skb->len);
1178 		if (ring_space(ring) < buf_num)
1179 			return -EBUSY;
1180 		/* manual split the send packet */
1181 		new_skb = skb_copy(skb, GFP_ATOMIC);
1182 		if (!new_skb)
1183 			return -ENOMEM;
1184 		dev_kfree_skb_any(skb);
1185 		*out_skb = new_skb;
1186 	}
1187 
1188 	if (unlikely(ring_space(ring) < buf_num))
1189 		return -EBUSY;
1190 
1191 	*bnum = buf_num;
1192 	return 0;
1193 }
1194 
1195 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1196 				  struct hns3_enet_ring *ring)
1197 {
1198 	struct sk_buff *skb = *out_skb;
1199 	struct sk_buff *new_skb = NULL;
1200 	int buf_num;
1201 
1202 	/* No. of segments (plus a header) */
1203 	buf_num = skb_shinfo(skb)->nr_frags + 1;
1204 
1205 	if (unlikely(buf_num > HNS3_MAX_BD_PER_FRAG)) {
1206 		buf_num = hns3_tx_bd_count(skb->len);
1207 		if (ring_space(ring) < buf_num)
1208 			return -EBUSY;
1209 		/* manual split the send packet */
1210 		new_skb = skb_copy(skb, GFP_ATOMIC);
1211 		if (!new_skb)
1212 			return -ENOMEM;
1213 		dev_kfree_skb_any(skb);
1214 		*out_skb = new_skb;
1215 	}
1216 
1217 	if (unlikely(ring_space(ring) < buf_num))
1218 		return -EBUSY;
1219 
1220 	*bnum = buf_num;
1221 
1222 	return 0;
1223 }
1224 
1225 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1226 {
1227 	struct device *dev = ring_to_dev(ring);
1228 	unsigned int i;
1229 
1230 	for (i = 0; i < ring->desc_num; i++) {
1231 		/* check if this is where we started */
1232 		if (ring->next_to_use == next_to_use_orig)
1233 			break;
1234 
1235 		/* unmap the descriptor dma address */
1236 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1237 			dma_unmap_single(dev,
1238 					 ring->desc_cb[ring->next_to_use].dma,
1239 					ring->desc_cb[ring->next_to_use].length,
1240 					DMA_TO_DEVICE);
1241 		else if (ring->desc_cb[ring->next_to_use].length)
1242 			dma_unmap_page(dev,
1243 				       ring->desc_cb[ring->next_to_use].dma,
1244 				       ring->desc_cb[ring->next_to_use].length,
1245 				       DMA_TO_DEVICE);
1246 
1247 		ring->desc_cb[ring->next_to_use].length = 0;
1248 
1249 		/* rollback one */
1250 		ring_ptr_move_bw(ring, next_to_use);
1251 	}
1252 }
1253 
1254 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1255 {
1256 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1257 	struct hns3_nic_ring_data *ring_data =
1258 		&tx_ring_data(priv, skb->queue_mapping);
1259 	struct hns3_enet_ring *ring = ring_data->ring;
1260 	struct netdev_queue *dev_queue;
1261 	struct skb_frag_struct *frag;
1262 	int next_to_use_head;
1263 	int next_to_use_frag;
1264 	int buf_num;
1265 	int seg_num;
1266 	int size;
1267 	int ret;
1268 	int i;
1269 
1270 	/* Prefetch the data used later */
1271 	prefetch(skb->data);
1272 
1273 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1274 	case -EBUSY:
1275 		u64_stats_update_begin(&ring->syncp);
1276 		ring->stats.tx_busy++;
1277 		u64_stats_update_end(&ring->syncp);
1278 
1279 		goto out_net_tx_busy;
1280 	case -ENOMEM:
1281 		u64_stats_update_begin(&ring->syncp);
1282 		ring->stats.sw_err_cnt++;
1283 		u64_stats_update_end(&ring->syncp);
1284 		netdev_err(netdev, "no memory to xmit!\n");
1285 
1286 		goto out_err_tx_ok;
1287 	default:
1288 		break;
1289 	}
1290 
1291 	/* No. of segments (plus a header) */
1292 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1293 	/* Fill the first part */
1294 	size = skb_headlen(skb);
1295 
1296 	next_to_use_head = ring->next_to_use;
1297 
1298 	ret = hns3_fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1299 			     DESC_TYPE_SKB);
1300 	if (unlikely(ret))
1301 		goto head_fill_err;
1302 
1303 	next_to_use_frag = ring->next_to_use;
1304 	/* Fill the fragments */
1305 	for (i = 1; i < seg_num; i++) {
1306 		frag = &skb_shinfo(skb)->frags[i - 1];
1307 		size = skb_frag_size(frag);
1308 
1309 		ret = hns3_fill_desc(ring, frag, size,
1310 				     seg_num - 1 == i ? 1 : 0,
1311 				     DESC_TYPE_PAGE);
1312 
1313 		if (unlikely(ret))
1314 			goto frag_fill_err;
1315 	}
1316 
1317 	/* Complete translate all packets */
1318 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1319 	netdev_tx_sent_queue(dev_queue, skb->len);
1320 
1321 	wmb(); /* Commit all data before submit */
1322 
1323 	hnae3_queue_xmit(ring->tqp, buf_num);
1324 
1325 	return NETDEV_TX_OK;
1326 
1327 frag_fill_err:
1328 	hns3_clear_desc(ring, next_to_use_frag);
1329 
1330 head_fill_err:
1331 	hns3_clear_desc(ring, next_to_use_head);
1332 
1333 out_err_tx_ok:
1334 	dev_kfree_skb_any(skb);
1335 	return NETDEV_TX_OK;
1336 
1337 out_net_tx_busy:
1338 	netif_stop_subqueue(netdev, ring_data->queue_index);
1339 	smp_mb(); /* Commit all data before submit */
1340 
1341 	return NETDEV_TX_BUSY;
1342 }
1343 
1344 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1345 {
1346 	struct hnae3_handle *h = hns3_get_handle(netdev);
1347 	struct sockaddr *mac_addr = p;
1348 	int ret;
1349 
1350 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1351 		return -EADDRNOTAVAIL;
1352 
1353 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1354 		netdev_info(netdev, "already using mac address %pM\n",
1355 			    mac_addr->sa_data);
1356 		return 0;
1357 	}
1358 
1359 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1360 	if (ret) {
1361 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1362 		return ret;
1363 	}
1364 
1365 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1366 
1367 	return 0;
1368 }
1369 
1370 static int hns3_nic_do_ioctl(struct net_device *netdev,
1371 			     struct ifreq *ifr, int cmd)
1372 {
1373 	struct hnae3_handle *h = hns3_get_handle(netdev);
1374 
1375 	if (!netif_running(netdev))
1376 		return -EINVAL;
1377 
1378 	if (!h->ae_algo->ops->do_ioctl)
1379 		return -EOPNOTSUPP;
1380 
1381 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1382 }
1383 
1384 static int hns3_nic_set_features(struct net_device *netdev,
1385 				 netdev_features_t features)
1386 {
1387 	netdev_features_t changed = netdev->features ^ features;
1388 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1389 	struct hnae3_handle *h = priv->ae_handle;
1390 	bool enable;
1391 	int ret;
1392 
1393 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1394 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1395 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1396 		else
1397 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1398 	}
1399 
1400 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1401 		enable = !!(features & NETIF_F_GRO_HW);
1402 		ret = h->ae_algo->ops->set_gro_en(h, enable);
1403 		if (ret)
1404 			return ret;
1405 	}
1406 
1407 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1408 	    h->ae_algo->ops->enable_vlan_filter) {
1409 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_FILTER);
1410 		h->ae_algo->ops->enable_vlan_filter(h, enable);
1411 	}
1412 
1413 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1414 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1415 		enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1416 		ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, enable);
1417 		if (ret)
1418 			return ret;
1419 	}
1420 
1421 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1422 		enable = !!(features & NETIF_F_NTUPLE);
1423 		h->ae_algo->ops->enable_fd(h, enable);
1424 	}
1425 
1426 	netdev->features = features;
1427 	return 0;
1428 }
1429 
1430 static void hns3_nic_get_stats64(struct net_device *netdev,
1431 				 struct rtnl_link_stats64 *stats)
1432 {
1433 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1434 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1435 	struct hnae3_handle *handle = priv->ae_handle;
1436 	struct hns3_enet_ring *ring;
1437 	u64 rx_length_errors = 0;
1438 	u64 rx_crc_errors = 0;
1439 	u64 rx_multicast = 0;
1440 	unsigned int start;
1441 	u64 tx_errors = 0;
1442 	u64 rx_errors = 0;
1443 	unsigned int idx;
1444 	u64 tx_bytes = 0;
1445 	u64 rx_bytes = 0;
1446 	u64 tx_pkts = 0;
1447 	u64 rx_pkts = 0;
1448 	u64 tx_drop = 0;
1449 	u64 rx_drop = 0;
1450 
1451 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1452 		return;
1453 
1454 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1455 
1456 	for (idx = 0; idx < queue_num; idx++) {
1457 		/* fetch the tx stats */
1458 		ring = priv->ring_data[idx].ring;
1459 		do {
1460 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1461 			tx_bytes += ring->stats.tx_bytes;
1462 			tx_pkts += ring->stats.tx_pkts;
1463 			tx_drop += ring->stats.sw_err_cnt;
1464 			tx_errors += ring->stats.sw_err_cnt;
1465 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1466 
1467 		/* fetch the rx stats */
1468 		ring = priv->ring_data[idx + queue_num].ring;
1469 		do {
1470 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1471 			rx_bytes += ring->stats.rx_bytes;
1472 			rx_pkts += ring->stats.rx_pkts;
1473 			rx_drop += ring->stats.non_vld_descs;
1474 			rx_drop += ring->stats.l2_err;
1475 			rx_errors += ring->stats.non_vld_descs;
1476 			rx_errors += ring->stats.l2_err;
1477 			rx_crc_errors += ring->stats.l2_err;
1478 			rx_crc_errors += ring->stats.l3l4_csum_err;
1479 			rx_multicast += ring->stats.rx_multicast;
1480 			rx_length_errors += ring->stats.err_pkt_len;
1481 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1482 	}
1483 
1484 	stats->tx_bytes = tx_bytes;
1485 	stats->tx_packets = tx_pkts;
1486 	stats->rx_bytes = rx_bytes;
1487 	stats->rx_packets = rx_pkts;
1488 
1489 	stats->rx_errors = rx_errors;
1490 	stats->multicast = rx_multicast;
1491 	stats->rx_length_errors = rx_length_errors;
1492 	stats->rx_crc_errors = rx_crc_errors;
1493 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1494 
1495 	stats->tx_errors = tx_errors;
1496 	stats->rx_dropped = rx_drop;
1497 	stats->tx_dropped = tx_drop;
1498 	stats->collisions = netdev->stats.collisions;
1499 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1500 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1501 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1502 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1503 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1504 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1505 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1506 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1507 	stats->rx_compressed = netdev->stats.rx_compressed;
1508 	stats->tx_compressed = netdev->stats.tx_compressed;
1509 }
1510 
1511 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1512 {
1513 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1514 	struct hnae3_handle *h = hns3_get_handle(netdev);
1515 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1516 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1517 	u8 tc = mqprio_qopt->qopt.num_tc;
1518 	u16 mode = mqprio_qopt->mode;
1519 	u8 hw = mqprio_qopt->qopt.hw;
1520 
1521 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1522 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1523 		return -EOPNOTSUPP;
1524 
1525 	if (tc > HNAE3_MAX_TC)
1526 		return -EINVAL;
1527 
1528 	if (!netdev)
1529 		return -EINVAL;
1530 
1531 	return (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1532 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1533 }
1534 
1535 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1536 			     void *type_data)
1537 {
1538 	if (type != TC_SETUP_QDISC_MQPRIO)
1539 		return -EOPNOTSUPP;
1540 
1541 	return hns3_setup_tc(dev, type_data);
1542 }
1543 
1544 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1545 				__be16 proto, u16 vid)
1546 {
1547 	struct hnae3_handle *h = hns3_get_handle(netdev);
1548 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1549 	int ret = -EIO;
1550 
1551 	if (h->ae_algo->ops->set_vlan_filter)
1552 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1553 
1554 	if (!ret)
1555 		set_bit(vid, priv->active_vlans);
1556 
1557 	return ret;
1558 }
1559 
1560 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1561 				 __be16 proto, u16 vid)
1562 {
1563 	struct hnae3_handle *h = hns3_get_handle(netdev);
1564 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1565 	int ret = -EIO;
1566 
1567 	if (h->ae_algo->ops->set_vlan_filter)
1568 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1569 
1570 	if (!ret)
1571 		clear_bit(vid, priv->active_vlans);
1572 
1573 	return ret;
1574 }
1575 
1576 static int hns3_restore_vlan(struct net_device *netdev)
1577 {
1578 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1579 	int ret = 0;
1580 	u16 vid;
1581 
1582 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1583 		ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1584 		if (ret) {
1585 			netdev_err(netdev, "Restore vlan: %d filter, ret:%d\n",
1586 				   vid, ret);
1587 			return ret;
1588 		}
1589 	}
1590 
1591 	return ret;
1592 }
1593 
1594 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1595 				u8 qos, __be16 vlan_proto)
1596 {
1597 	struct hnae3_handle *h = hns3_get_handle(netdev);
1598 	int ret = -EIO;
1599 
1600 	if (h->ae_algo->ops->set_vf_vlan_filter)
1601 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1602 						   qos, vlan_proto);
1603 
1604 	return ret;
1605 }
1606 
1607 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1608 {
1609 	struct hnae3_handle *h = hns3_get_handle(netdev);
1610 	int ret;
1611 
1612 	if (hns3_nic_resetting(netdev))
1613 		return -EBUSY;
1614 
1615 	if (!h->ae_algo->ops->set_mtu)
1616 		return -EOPNOTSUPP;
1617 
1618 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1619 	if (ret)
1620 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1621 			   ret);
1622 	else
1623 		netdev->mtu = new_mtu;
1624 
1625 	return ret;
1626 }
1627 
1628 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1629 {
1630 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1631 	struct hns3_enet_ring *tx_ring = NULL;
1632 	int timeout_queue = 0;
1633 	int hw_head, hw_tail;
1634 	int i;
1635 
1636 	/* Find the stopped queue the same way the stack does */
1637 	for (i = 0; i < ndev->real_num_tx_queues; i++) {
1638 		struct netdev_queue *q;
1639 		unsigned long trans_start;
1640 
1641 		q = netdev_get_tx_queue(ndev, i);
1642 		trans_start = q->trans_start;
1643 		if (netif_xmit_stopped(q) &&
1644 		    time_after(jiffies,
1645 			       (trans_start + ndev->watchdog_timeo))) {
1646 			timeout_queue = i;
1647 			break;
1648 		}
1649 	}
1650 
1651 	if (i == ndev->num_tx_queues) {
1652 		netdev_info(ndev,
1653 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1654 			    priv->tx_timeout_count);
1655 		return false;
1656 	}
1657 
1658 	tx_ring = priv->ring_data[timeout_queue].ring;
1659 
1660 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1661 				HNS3_RING_TX_RING_HEAD_REG);
1662 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1663 				HNS3_RING_TX_RING_TAIL_REG);
1664 	netdev_info(ndev,
1665 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1666 		    priv->tx_timeout_count,
1667 		    timeout_queue,
1668 		    tx_ring->next_to_use,
1669 		    tx_ring->next_to_clean,
1670 		    hw_head,
1671 		    hw_tail,
1672 		    readl(tx_ring->tqp_vector->mask_addr));
1673 
1674 	return true;
1675 }
1676 
1677 static void hns3_nic_net_timeout(struct net_device *ndev)
1678 {
1679 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1680 	struct hnae3_handle *h = priv->ae_handle;
1681 
1682 	if (!hns3_get_tx_timeo_queue_info(ndev))
1683 		return;
1684 
1685 	priv->tx_timeout_count++;
1686 
1687 	/* request the reset, and let the hclge to determine
1688 	 * which reset level should be done
1689 	 */
1690 	if (h->ae_algo->ops->reset_event)
1691 		h->ae_algo->ops->reset_event(h->pdev, h);
1692 }
1693 
1694 static const struct net_device_ops hns3_nic_netdev_ops = {
1695 	.ndo_open		= hns3_nic_net_open,
1696 	.ndo_stop		= hns3_nic_net_stop,
1697 	.ndo_start_xmit		= hns3_nic_net_xmit,
1698 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1699 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1700 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
1701 	.ndo_change_mtu		= hns3_nic_change_mtu,
1702 	.ndo_set_features	= hns3_nic_set_features,
1703 	.ndo_get_stats64	= hns3_nic_get_stats64,
1704 	.ndo_setup_tc		= hns3_nic_setup_tc,
1705 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1706 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1707 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1708 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1709 };
1710 
1711 static bool hns3_is_phys_func(struct pci_dev *pdev)
1712 {
1713 	u32 dev_id = pdev->device;
1714 
1715 	switch (dev_id) {
1716 	case HNAE3_DEV_ID_GE:
1717 	case HNAE3_DEV_ID_25GE:
1718 	case HNAE3_DEV_ID_25GE_RDMA:
1719 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1720 	case HNAE3_DEV_ID_50GE_RDMA:
1721 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1722 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1723 		return true;
1724 	case HNAE3_DEV_ID_100G_VF:
1725 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1726 		return false;
1727 	default:
1728 		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1729 			 dev_id);
1730 	}
1731 
1732 	return false;
1733 }
1734 
1735 static void hns3_disable_sriov(struct pci_dev *pdev)
1736 {
1737 	/* If our VFs are assigned we cannot shut down SR-IOV
1738 	 * without causing issues, so just leave the hardware
1739 	 * available but disabled
1740 	 */
1741 	if (pci_vfs_assigned(pdev)) {
1742 		dev_warn(&pdev->dev,
1743 			 "disabling driver while VFs are assigned\n");
1744 		return;
1745 	}
1746 
1747 	pci_disable_sriov(pdev);
1748 }
1749 
1750 static void hns3_get_dev_capability(struct pci_dev *pdev,
1751 				    struct hnae3_ae_dev *ae_dev)
1752 {
1753 	if (pdev->revision >= 0x21) {
1754 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1755 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1756 	}
1757 }
1758 
1759 /* hns3_probe - Device initialization routine
1760  * @pdev: PCI device information struct
1761  * @ent: entry in hns3_pci_tbl
1762  *
1763  * hns3_probe initializes a PF identified by a pci_dev structure.
1764  * The OS initialization, configuring of the PF private structure,
1765  * and a hardware reset occur.
1766  *
1767  * Returns 0 on success, negative on failure
1768  */
1769 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1770 {
1771 	struct hnae3_ae_dev *ae_dev;
1772 	int ret;
1773 
1774 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1775 			      GFP_KERNEL);
1776 	if (!ae_dev) {
1777 		ret = -ENOMEM;
1778 		return ret;
1779 	}
1780 
1781 	ae_dev->pdev = pdev;
1782 	ae_dev->flag = ent->driver_data;
1783 	ae_dev->dev_type = HNAE3_DEV_KNIC;
1784 	ae_dev->reset_type = HNAE3_NONE_RESET;
1785 	hns3_get_dev_capability(pdev, ae_dev);
1786 	pci_set_drvdata(pdev, ae_dev);
1787 
1788 	ret = hnae3_register_ae_dev(ae_dev);
1789 	if (ret) {
1790 		devm_kfree(&pdev->dev, ae_dev);
1791 		pci_set_drvdata(pdev, NULL);
1792 	}
1793 
1794 	return ret;
1795 }
1796 
1797 /* hns3_remove - Device removal routine
1798  * @pdev: PCI device information struct
1799  */
1800 static void hns3_remove(struct pci_dev *pdev)
1801 {
1802 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1803 
1804 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1805 		hns3_disable_sriov(pdev);
1806 
1807 	hnae3_unregister_ae_dev(ae_dev);
1808 	pci_set_drvdata(pdev, NULL);
1809 }
1810 
1811 /**
1812  * hns3_pci_sriov_configure
1813  * @pdev: pointer to a pci_dev structure
1814  * @num_vfs: number of VFs to allocate
1815  *
1816  * Enable or change the number of VFs. Called when the user updates the number
1817  * of VFs in sysfs.
1818  **/
1819 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1820 {
1821 	int ret;
1822 
1823 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1824 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
1825 		return -EINVAL;
1826 	}
1827 
1828 	if (num_vfs) {
1829 		ret = pci_enable_sriov(pdev, num_vfs);
1830 		if (ret)
1831 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1832 		else
1833 			return num_vfs;
1834 	} else if (!pci_vfs_assigned(pdev)) {
1835 		pci_disable_sriov(pdev);
1836 	} else {
1837 		dev_warn(&pdev->dev,
1838 			 "Unable to free VFs because some are assigned to VMs.\n");
1839 	}
1840 
1841 	return 0;
1842 }
1843 
1844 static void hns3_shutdown(struct pci_dev *pdev)
1845 {
1846 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1847 
1848 	hnae3_unregister_ae_dev(ae_dev);
1849 	devm_kfree(&pdev->dev, ae_dev);
1850 	pci_set_drvdata(pdev, NULL);
1851 
1852 	if (system_state == SYSTEM_POWER_OFF)
1853 		pci_set_power_state(pdev, PCI_D3hot);
1854 }
1855 
1856 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1857 					    pci_channel_state_t state)
1858 {
1859 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1860 	pci_ers_result_t ret;
1861 
1862 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1863 
1864 	if (state == pci_channel_io_perm_failure)
1865 		return PCI_ERS_RESULT_DISCONNECT;
1866 
1867 	if (!ae_dev) {
1868 		dev_err(&pdev->dev,
1869 			"Can't recover - error happened during device init\n");
1870 		return PCI_ERS_RESULT_NONE;
1871 	}
1872 
1873 	if (ae_dev->ops->handle_hw_ras_error)
1874 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
1875 	else
1876 		return PCI_ERS_RESULT_NONE;
1877 
1878 	return ret;
1879 }
1880 
1881 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
1882 {
1883 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1884 	struct device *dev = &pdev->dev;
1885 
1886 	dev_info(dev, "requesting reset due to PCI error\n");
1887 
1888 	/* request the reset */
1889 	if (ae_dev->ops->reset_event) {
1890 		if (!ae_dev->override_pci_need_reset)
1891 			ae_dev->ops->reset_event(pdev, NULL);
1892 
1893 		return PCI_ERS_RESULT_RECOVERED;
1894 	}
1895 
1896 	return PCI_ERS_RESULT_DISCONNECT;
1897 }
1898 
1899 static void hns3_reset_prepare(struct pci_dev *pdev)
1900 {
1901 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1902 
1903 	dev_info(&pdev->dev, "hns3 flr prepare\n");
1904 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
1905 		ae_dev->ops->flr_prepare(ae_dev);
1906 }
1907 
1908 static void hns3_reset_done(struct pci_dev *pdev)
1909 {
1910 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1911 
1912 	dev_info(&pdev->dev, "hns3 flr done\n");
1913 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
1914 		ae_dev->ops->flr_done(ae_dev);
1915 }
1916 
1917 static const struct pci_error_handlers hns3_err_handler = {
1918 	.error_detected = hns3_error_detected,
1919 	.slot_reset     = hns3_slot_reset,
1920 	.reset_prepare	= hns3_reset_prepare,
1921 	.reset_done	= hns3_reset_done,
1922 };
1923 
1924 static struct pci_driver hns3_driver = {
1925 	.name     = hns3_driver_name,
1926 	.id_table = hns3_pci_tbl,
1927 	.probe    = hns3_probe,
1928 	.remove   = hns3_remove,
1929 	.shutdown = hns3_shutdown,
1930 	.sriov_configure = hns3_pci_sriov_configure,
1931 	.err_handler    = &hns3_err_handler,
1932 };
1933 
1934 /* set default feature to hns3 */
1935 static void hns3_set_default_feature(struct net_device *netdev)
1936 {
1937 	struct hnae3_handle *h = hns3_get_handle(netdev);
1938 	struct pci_dev *pdev = h->pdev;
1939 
1940 	netdev->priv_flags |= IFF_UNICAST_FLT;
1941 
1942 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1943 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1944 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1945 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1946 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1947 
1948 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1949 
1950 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1951 
1952 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1953 		NETIF_F_HW_VLAN_CTAG_FILTER |
1954 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1955 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1956 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1957 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1958 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1959 
1960 	netdev->vlan_features |=
1961 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1962 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1963 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1964 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1965 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1966 
1967 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1968 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1969 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1970 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1971 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1972 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1973 
1974 	if (pdev->revision >= 0x21) {
1975 		netdev->hw_features |= NETIF_F_GRO_HW;
1976 		netdev->features |= NETIF_F_GRO_HW;
1977 
1978 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
1979 			netdev->hw_features |= NETIF_F_NTUPLE;
1980 			netdev->features |= NETIF_F_NTUPLE;
1981 		}
1982 	}
1983 }
1984 
1985 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1986 			     struct hns3_desc_cb *cb)
1987 {
1988 	unsigned int order = hnae3_page_order(ring);
1989 	struct page *p;
1990 
1991 	p = dev_alloc_pages(order);
1992 	if (!p)
1993 		return -ENOMEM;
1994 
1995 	cb->priv = p;
1996 	cb->page_offset = 0;
1997 	cb->reuse_flag = 0;
1998 	cb->buf  = page_address(p);
1999 	cb->length = hnae3_page_size(ring);
2000 	cb->type = DESC_TYPE_PAGE;
2001 
2002 	return 0;
2003 }
2004 
2005 static void hns3_free_buffer(struct hns3_enet_ring *ring,
2006 			     struct hns3_desc_cb *cb)
2007 {
2008 	if (cb->type == DESC_TYPE_SKB)
2009 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
2010 	else if (!HNAE3_IS_TX_RING(ring))
2011 		put_page((struct page *)cb->priv);
2012 	memset(cb, 0, sizeof(*cb));
2013 }
2014 
2015 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
2016 {
2017 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
2018 			       cb->length, ring_to_dma_dir(ring));
2019 
2020 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
2021 		return -EIO;
2022 
2023 	return 0;
2024 }
2025 
2026 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
2027 			      struct hns3_desc_cb *cb)
2028 {
2029 	if (cb->type == DESC_TYPE_SKB)
2030 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
2031 				 ring_to_dma_dir(ring));
2032 	else if (cb->length)
2033 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
2034 			       ring_to_dma_dir(ring));
2035 }
2036 
2037 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2038 {
2039 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2040 	ring->desc[i].addr = 0;
2041 }
2042 
2043 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2044 {
2045 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2046 
2047 	if (!ring->desc_cb[i].dma)
2048 		return;
2049 
2050 	hns3_buffer_detach(ring, i);
2051 	hns3_free_buffer(ring, cb);
2052 }
2053 
2054 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2055 {
2056 	int i;
2057 
2058 	for (i = 0; i < ring->desc_num; i++)
2059 		hns3_free_buffer_detach(ring, i);
2060 }
2061 
2062 /* free desc along with its attached buffer */
2063 static void hns3_free_desc(struct hns3_enet_ring *ring)
2064 {
2065 	int size = ring->desc_num * sizeof(ring->desc[0]);
2066 
2067 	hns3_free_buffers(ring);
2068 
2069 	if (ring->desc) {
2070 		dma_free_coherent(ring_to_dev(ring), size,
2071 				  ring->desc, ring->desc_dma_addr);
2072 		ring->desc = NULL;
2073 	}
2074 }
2075 
2076 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2077 {
2078 	int size = ring->desc_num * sizeof(ring->desc[0]);
2079 
2080 	ring->desc = dma_alloc_coherent(ring_to_dev(ring), size,
2081 					&ring->desc_dma_addr, GFP_KERNEL);
2082 	if (!ring->desc)
2083 		return -ENOMEM;
2084 
2085 	return 0;
2086 }
2087 
2088 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2089 				   struct hns3_desc_cb *cb)
2090 {
2091 	int ret;
2092 
2093 	ret = hns3_alloc_buffer(ring, cb);
2094 	if (ret)
2095 		goto out;
2096 
2097 	ret = hns3_map_buffer(ring, cb);
2098 	if (ret)
2099 		goto out_with_buf;
2100 
2101 	return 0;
2102 
2103 out_with_buf:
2104 	hns3_free_buffer(ring, cb);
2105 out:
2106 	return ret;
2107 }
2108 
2109 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2110 {
2111 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2112 
2113 	if (ret)
2114 		return ret;
2115 
2116 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2117 
2118 	return 0;
2119 }
2120 
2121 /* Allocate memory for raw pkg, and map with dma */
2122 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2123 {
2124 	int i, j, ret;
2125 
2126 	for (i = 0; i < ring->desc_num; i++) {
2127 		ret = hns3_alloc_buffer_attach(ring, i);
2128 		if (ret)
2129 			goto out_buffer_fail;
2130 	}
2131 
2132 	return 0;
2133 
2134 out_buffer_fail:
2135 	for (j = i - 1; j >= 0; j--)
2136 		hns3_free_buffer_detach(ring, j);
2137 	return ret;
2138 }
2139 
2140 /* detach a in-used buffer and replace with a reserved one  */
2141 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2142 				struct hns3_desc_cb *res_cb)
2143 {
2144 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2145 	ring->desc_cb[i] = *res_cb;
2146 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2147 	ring->desc[i].rx.bd_base_info = 0;
2148 }
2149 
2150 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2151 {
2152 	ring->desc_cb[i].reuse_flag = 0;
2153 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
2154 		+ ring->desc_cb[i].page_offset);
2155 	ring->desc[i].rx.bd_base_info = 0;
2156 }
2157 
2158 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
2159 				      int *pkts)
2160 {
2161 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2162 
2163 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2164 	(*bytes) += desc_cb->length;
2165 	/* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
2166 	hns3_free_buffer_detach(ring, ring->next_to_clean);
2167 
2168 	ring_ptr_move_fw(ring, next_to_clean);
2169 }
2170 
2171 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2172 {
2173 	int u = ring->next_to_use;
2174 	int c = ring->next_to_clean;
2175 
2176 	if (unlikely(h > ring->desc_num))
2177 		return 0;
2178 
2179 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2180 }
2181 
2182 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2183 {
2184 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2185 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2186 	struct netdev_queue *dev_queue;
2187 	int bytes, pkts;
2188 	int head;
2189 
2190 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2191 	rmb(); /* Make sure head is ready before touch any data */
2192 
2193 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2194 		return; /* no data to poll */
2195 
2196 	if (unlikely(!is_valid_clean_head(ring, head))) {
2197 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2198 			   ring->next_to_use, ring->next_to_clean);
2199 
2200 		u64_stats_update_begin(&ring->syncp);
2201 		ring->stats.io_err_cnt++;
2202 		u64_stats_update_end(&ring->syncp);
2203 		return;
2204 	}
2205 
2206 	bytes = 0;
2207 	pkts = 0;
2208 	while (head != ring->next_to_clean) {
2209 		hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
2210 		/* Issue prefetch for next Tx descriptor */
2211 		prefetch(&ring->desc_cb[ring->next_to_clean]);
2212 	}
2213 
2214 	ring->tqp_vector->tx_group.total_bytes += bytes;
2215 	ring->tqp_vector->tx_group.total_packets += pkts;
2216 
2217 	u64_stats_update_begin(&ring->syncp);
2218 	ring->stats.tx_bytes += bytes;
2219 	ring->stats.tx_pkts += pkts;
2220 	u64_stats_update_end(&ring->syncp);
2221 
2222 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2223 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2224 
2225 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
2226 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2227 		/* Make sure that anybody stopping the queue after this
2228 		 * sees the new next_to_clean.
2229 		 */
2230 		smp_mb();
2231 		if (netif_tx_queue_stopped(dev_queue) &&
2232 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2233 			netif_tx_wake_queue(dev_queue);
2234 			ring->stats.restart_queue++;
2235 		}
2236 	}
2237 }
2238 
2239 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2240 {
2241 	int ntc = ring->next_to_clean;
2242 	int ntu = ring->next_to_use;
2243 
2244 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2245 }
2246 
2247 static void
2248 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
2249 {
2250 	struct hns3_desc_cb *desc_cb;
2251 	struct hns3_desc_cb res_cbs;
2252 	int i, ret;
2253 
2254 	for (i = 0; i < cleand_count; i++) {
2255 		desc_cb = &ring->desc_cb[ring->next_to_use];
2256 		if (desc_cb->reuse_flag) {
2257 			u64_stats_update_begin(&ring->syncp);
2258 			ring->stats.reuse_pg_cnt++;
2259 			u64_stats_update_end(&ring->syncp);
2260 
2261 			hns3_reuse_buffer(ring, ring->next_to_use);
2262 		} else {
2263 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
2264 			if (ret) {
2265 				u64_stats_update_begin(&ring->syncp);
2266 				ring->stats.sw_err_cnt++;
2267 				u64_stats_update_end(&ring->syncp);
2268 
2269 				netdev_err(ring->tqp->handle->kinfo.netdev,
2270 					   "hnae reserve buffer map failed.\n");
2271 				break;
2272 			}
2273 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2274 		}
2275 
2276 		ring_ptr_move_fw(ring, next_to_use);
2277 	}
2278 
2279 	wmb(); /* Make all data has been write before submit */
2280 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2281 }
2282 
2283 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2284 				struct hns3_enet_ring *ring, int pull_len,
2285 				struct hns3_desc_cb *desc_cb)
2286 {
2287 	struct hns3_desc *desc;
2288 	u32 truesize;
2289 	int size;
2290 	int last_offset;
2291 	bool twobufs;
2292 
2293 	twobufs = ((PAGE_SIZE < 8192) &&
2294 		hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2295 
2296 	desc = &ring->desc[ring->next_to_clean];
2297 	size = le16_to_cpu(desc->rx.size);
2298 
2299 	truesize = hnae3_buf_size(ring);
2300 
2301 	if (!twobufs)
2302 		last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2303 
2304 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2305 			size - pull_len, truesize);
2306 
2307 	 /* Avoid re-using remote pages,flag default unreuse */
2308 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2309 		return;
2310 
2311 	if (twobufs) {
2312 		/* If we are only owner of page we can reuse it */
2313 		if (likely(page_count(desc_cb->priv) == 1)) {
2314 			/* Flip page offset to other buffer */
2315 			desc_cb->page_offset ^= truesize;
2316 
2317 			desc_cb->reuse_flag = 1;
2318 			/* bump ref count on page before it is given*/
2319 			get_page(desc_cb->priv);
2320 		}
2321 		return;
2322 	}
2323 
2324 	/* Move offset up to the next cache line */
2325 	desc_cb->page_offset += truesize;
2326 
2327 	if (desc_cb->page_offset <= last_offset) {
2328 		desc_cb->reuse_flag = 1;
2329 		/* Bump ref count on page before it is given*/
2330 		get_page(desc_cb->priv);
2331 	}
2332 }
2333 
2334 static int hns3_gro_complete(struct sk_buff *skb)
2335 {
2336 	__be16 type = skb->protocol;
2337 	struct tcphdr *th;
2338 	int depth = 0;
2339 
2340 	while (type == htons(ETH_P_8021Q)) {
2341 		struct vlan_hdr *vh;
2342 
2343 		if ((depth + VLAN_HLEN) > skb_headlen(skb))
2344 			return -EFAULT;
2345 
2346 		vh = (struct vlan_hdr *)(skb->data + depth);
2347 		type = vh->h_vlan_encapsulated_proto;
2348 		depth += VLAN_HLEN;
2349 	}
2350 
2351 	if (type == htons(ETH_P_IP)) {
2352 		depth += sizeof(struct iphdr);
2353 	} else if (type == htons(ETH_P_IPV6)) {
2354 		depth += sizeof(struct ipv6hdr);
2355 	} else {
2356 		netdev_err(skb->dev,
2357 			   "Error: FW GRO supports only IPv4/IPv6, not 0x%04x, depth: %d\n",
2358 			   be16_to_cpu(type), depth);
2359 		return -EFAULT;
2360 	}
2361 
2362 	th = (struct tcphdr *)(skb->data + depth);
2363 	skb_shinfo(skb)->gso_segs = NAPI_GRO_CB(skb)->count;
2364 	if (th->cwr)
2365 		skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
2366 
2367 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2368 
2369 	return 0;
2370 }
2371 
2372 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2373 			     u32 l234info, u32 bd_base_info)
2374 {
2375 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2376 	int l3_type, l4_type;
2377 	int ol4_type;
2378 
2379 	skb->ip_summed = CHECKSUM_NONE;
2380 
2381 	skb_checksum_none_assert(skb);
2382 
2383 	if (!(netdev->features & NETIF_F_RXCSUM))
2384 		return;
2385 
2386 	/* check if hardware has done checksum */
2387 	if (!(bd_base_info & BIT(HNS3_RXD_L3L4P_B)))
2388 		return;
2389 
2390 	if (unlikely(l234info & (BIT(HNS3_RXD_L3E_B) | BIT(HNS3_RXD_L4E_B) |
2391 				 BIT(HNS3_RXD_OL3E_B) |
2392 				 BIT(HNS3_RXD_OL4E_B)))) {
2393 		u64_stats_update_begin(&ring->syncp);
2394 		ring->stats.l3l4_csum_err++;
2395 		u64_stats_update_end(&ring->syncp);
2396 
2397 		return;
2398 	}
2399 
2400 	ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2401 				   HNS3_RXD_OL4ID_S);
2402 	switch (ol4_type) {
2403 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2404 	case HNS3_OL4_TYPE_NVGRE:
2405 		skb->csum_level = 1;
2406 		/* fall through */
2407 	case HNS3_OL4_TYPE_NO_TUN:
2408 		l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2409 					  HNS3_RXD_L3ID_S);
2410 		l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2411 					  HNS3_RXD_L4ID_S);
2412 
2413 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2414 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2415 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2416 		    (l4_type == HNS3_L4_TYPE_UDP ||
2417 		     l4_type == HNS3_L4_TYPE_TCP ||
2418 		     l4_type == HNS3_L4_TYPE_SCTP))
2419 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2420 		break;
2421 	default:
2422 		break;
2423 	}
2424 }
2425 
2426 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2427 {
2428 	if (skb_has_frag_list(skb))
2429 		napi_gro_flush(&ring->tqp_vector->napi, false);
2430 
2431 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2432 }
2433 
2434 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2435 				struct hns3_desc *desc, u32 l234info,
2436 				u16 *vlan_tag)
2437 {
2438 	struct hnae3_handle *handle = ring->tqp->handle;
2439 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2440 
2441 	if (pdev->revision == 0x20) {
2442 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2443 		if (!(*vlan_tag & VLAN_VID_MASK))
2444 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2445 
2446 		return (*vlan_tag != 0);
2447 	}
2448 
2449 #define HNS3_STRP_OUTER_VLAN	0x1
2450 #define HNS3_STRP_INNER_VLAN	0x2
2451 #define HNS3_STRP_BOTH		0x3
2452 
2453 	/* Hardware always insert VLAN tag into RX descriptor when
2454 	 * remove the tag from packet, driver needs to determine
2455 	 * reporting which tag to stack.
2456 	 */
2457 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2458 				HNS3_RXD_STRP_TAGP_S)) {
2459 	case HNS3_STRP_OUTER_VLAN:
2460 		if (handle->port_base_vlan_state !=
2461 				HNAE3_PORT_BASE_VLAN_DISABLE)
2462 			return false;
2463 
2464 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2465 		return true;
2466 	case HNS3_STRP_INNER_VLAN:
2467 		if (handle->port_base_vlan_state !=
2468 				HNAE3_PORT_BASE_VLAN_DISABLE)
2469 			return false;
2470 
2471 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2472 		return true;
2473 	case HNS3_STRP_BOTH:
2474 		if (handle->port_base_vlan_state ==
2475 				HNAE3_PORT_BASE_VLAN_DISABLE)
2476 			*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2477 		else
2478 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2479 
2480 		return true;
2481 	default:
2482 		return false;
2483 	}
2484 }
2485 
2486 static int hns3_alloc_skb(struct hns3_enet_ring *ring, int length,
2487 			  unsigned char *va)
2488 {
2489 #define HNS3_NEED_ADD_FRAG	1
2490 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2491 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2492 	struct sk_buff *skb;
2493 
2494 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2495 	skb = ring->skb;
2496 	if (unlikely(!skb)) {
2497 		netdev_err(netdev, "alloc rx skb fail\n");
2498 
2499 		u64_stats_update_begin(&ring->syncp);
2500 		ring->stats.sw_err_cnt++;
2501 		u64_stats_update_end(&ring->syncp);
2502 
2503 		return -ENOMEM;
2504 	}
2505 
2506 	prefetchw(skb->data);
2507 
2508 	ring->pending_buf = 1;
2509 	ring->frag_num = 0;
2510 	ring->tail_skb = NULL;
2511 	if (length <= HNS3_RX_HEAD_SIZE) {
2512 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2513 
2514 		/* We can reuse buffer as-is, just make sure it is local */
2515 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2516 			desc_cb->reuse_flag = 1;
2517 		else /* This page cannot be reused so discard it */
2518 			put_page(desc_cb->priv);
2519 
2520 		ring_ptr_move_fw(ring, next_to_clean);
2521 		return 0;
2522 	}
2523 	u64_stats_update_begin(&ring->syncp);
2524 	ring->stats.seg_pkt_cnt++;
2525 	u64_stats_update_end(&ring->syncp);
2526 
2527 	ring->pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2528 	__skb_put(skb, ring->pull_len);
2529 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2530 			    desc_cb);
2531 	ring_ptr_move_fw(ring, next_to_clean);
2532 
2533 	return HNS3_NEED_ADD_FRAG;
2534 }
2535 
2536 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2537 			 struct sk_buff **out_skb, bool pending)
2538 {
2539 	struct sk_buff *skb = *out_skb;
2540 	struct sk_buff *head_skb = *out_skb;
2541 	struct sk_buff *new_skb;
2542 	struct hns3_desc_cb *desc_cb;
2543 	struct hns3_desc *pre_desc;
2544 	u32 bd_base_info;
2545 	int pre_bd;
2546 
2547 	/* if there is pending bd, the SW param next_to_clean has moved
2548 	 * to next and the next is NULL
2549 	 */
2550 	if (pending) {
2551 		pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2552 			ring->desc_num;
2553 		pre_desc = &ring->desc[pre_bd];
2554 		bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2555 	} else {
2556 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2557 	}
2558 
2559 	while (!(bd_base_info & BIT(HNS3_RXD_FE_B))) {
2560 		desc = &ring->desc[ring->next_to_clean];
2561 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2562 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2563 		/* make sure HW write desc complete */
2564 		dma_rmb();
2565 		if (!(bd_base_info & BIT(HNS3_RXD_VLD_B)))
2566 			return -ENXIO;
2567 
2568 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2569 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2570 						 HNS3_RX_HEAD_SIZE);
2571 			if (unlikely(!new_skb)) {
2572 				netdev_err(ring->tqp->handle->kinfo.netdev,
2573 					   "alloc rx skb frag fail\n");
2574 				return -ENXIO;
2575 			}
2576 			ring->frag_num = 0;
2577 
2578 			if (ring->tail_skb) {
2579 				ring->tail_skb->next = new_skb;
2580 				ring->tail_skb = new_skb;
2581 			} else {
2582 				skb_shinfo(skb)->frag_list = new_skb;
2583 				ring->tail_skb = new_skb;
2584 			}
2585 		}
2586 
2587 		if (ring->tail_skb) {
2588 			head_skb->truesize += hnae3_buf_size(ring);
2589 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2590 			head_skb->len += le16_to_cpu(desc->rx.size);
2591 			skb = ring->tail_skb;
2592 		}
2593 
2594 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2595 		ring_ptr_move_fw(ring, next_to_clean);
2596 		ring->pending_buf++;
2597 	}
2598 
2599 	return 0;
2600 }
2601 
2602 static int hns3_set_gro_and_checksum(struct hns3_enet_ring *ring,
2603 				     struct sk_buff *skb, u32 l234info,
2604 				     u32 bd_base_info)
2605 {
2606 	u16 gro_count;
2607 	u32 l3_type;
2608 
2609 	gro_count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M,
2610 				    HNS3_RXD_GRO_COUNT_S);
2611 	/* if there is no HW GRO, do not set gro params */
2612 	if (!gro_count) {
2613 		hns3_rx_checksum(ring, skb, l234info, bd_base_info);
2614 		return 0;
2615 	}
2616 
2617 	NAPI_GRO_CB(skb)->count = gro_count;
2618 
2619 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2620 				  HNS3_RXD_L3ID_S);
2621 	if (l3_type == HNS3_L3_TYPE_IPV4)
2622 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2623 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2624 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2625 	else
2626 		return -EFAULT;
2627 
2628 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2629 						    HNS3_RXD_GRO_SIZE_M,
2630 						    HNS3_RXD_GRO_SIZE_S);
2631 
2632 	return  hns3_gro_complete(skb);
2633 }
2634 
2635 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2636 				     struct sk_buff *skb)
2637 {
2638 	struct hnae3_handle *handle = ring->tqp->handle;
2639 	enum pkt_hash_types rss_type;
2640 	struct hns3_desc *desc;
2641 	int last_bd;
2642 
2643 	/* When driver handle the rss type, ring->next_to_clean indicates the
2644 	 * first descriptor of next packet, need -1 here.
2645 	 */
2646 	last_bd = (ring->next_to_clean - 1 + ring->desc_num) % ring->desc_num;
2647 	desc = &ring->desc[last_bd];
2648 
2649 	if (le32_to_cpu(desc->rx.rss_hash))
2650 		rss_type = handle->kinfo.rss_type;
2651 	else
2652 		rss_type = PKT_HASH_TYPE_NONE;
2653 
2654 	skb_set_hash(skb, le32_to_cpu(desc->rx.rss_hash), rss_type);
2655 }
2656 
2657 static int hns3_handle_bdinfo(struct hns3_enet_ring *ring, struct sk_buff *skb,
2658 			      struct hns3_desc *desc)
2659 {
2660 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2661 	u32 bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2662 	u32 l234info = le32_to_cpu(desc->rx.l234_info);
2663 	enum hns3_pkt_l2t_type l2_frame_type;
2664 	unsigned int len;
2665 	int ret;
2666 
2667 	/* Based on hw strategy, the tag offloaded will be stored at
2668 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2669 	 * in one layer tag case.
2670 	 */
2671 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2672 		u16 vlan_tag;
2673 
2674 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2675 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2676 					       vlan_tag);
2677 	}
2678 
2679 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B)))) {
2680 		u64_stats_update_begin(&ring->syncp);
2681 		ring->stats.non_vld_descs++;
2682 		u64_stats_update_end(&ring->syncp);
2683 
2684 		return -EINVAL;
2685 	}
2686 
2687 	if (unlikely(!desc->rx.pkt_len || (l234info & (BIT(HNS3_RXD_TRUNCAT_B) |
2688 				  BIT(HNS3_RXD_L2E_B))))) {
2689 		u64_stats_update_begin(&ring->syncp);
2690 		if (l234info & BIT(HNS3_RXD_L2E_B))
2691 			ring->stats.l2_err++;
2692 		else
2693 			ring->stats.err_pkt_len++;
2694 		u64_stats_update_end(&ring->syncp);
2695 
2696 		return -EFAULT;
2697 	}
2698 
2699 	len = skb->len;
2700 
2701 	/* Do update ip stack process */
2702 	skb->protocol = eth_type_trans(skb, netdev);
2703 
2704 	/* This is needed in order to enable forwarding support */
2705 	ret = hns3_set_gro_and_checksum(ring, skb, l234info, bd_base_info);
2706 	if (unlikely(ret)) {
2707 		u64_stats_update_begin(&ring->syncp);
2708 		ring->stats.rx_err_cnt++;
2709 		u64_stats_update_end(&ring->syncp);
2710 		return ret;
2711 	}
2712 
2713 	l2_frame_type = hnae3_get_field(l234info, HNS3_RXD_DMAC_M,
2714 					HNS3_RXD_DMAC_S);
2715 
2716 	u64_stats_update_begin(&ring->syncp);
2717 	ring->stats.rx_pkts++;
2718 	ring->stats.rx_bytes += len;
2719 
2720 	if (l2_frame_type == HNS3_L2_TYPE_MULTICAST)
2721 		ring->stats.rx_multicast++;
2722 
2723 	u64_stats_update_end(&ring->syncp);
2724 
2725 	ring->tqp_vector->rx_group.total_bytes += len;
2726 	return 0;
2727 }
2728 
2729 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2730 			     struct sk_buff **out_skb)
2731 {
2732 	struct sk_buff *skb = ring->skb;
2733 	struct hns3_desc_cb *desc_cb;
2734 	struct hns3_desc *desc;
2735 	u32 bd_base_info;
2736 	int length;
2737 	int ret;
2738 
2739 	desc = &ring->desc[ring->next_to_clean];
2740 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2741 
2742 	prefetch(desc);
2743 
2744 	length = le16_to_cpu(desc->rx.size);
2745 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2746 
2747 	/* Check valid BD */
2748 	if (unlikely(!(bd_base_info & BIT(HNS3_RXD_VLD_B))))
2749 		return -ENXIO;
2750 
2751 	if (!skb)
2752 		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2753 
2754 	/* Prefetch first cache line of first page
2755 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2756 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2757 	 * actual we can have greater size of caches with 128B Level 1 cache
2758 	 * lines. In such a case, single fetch would suffice to cache in the
2759 	 * relevant part of the header.
2760 	 */
2761 	prefetch(ring->va);
2762 #if L1_CACHE_BYTES < 128
2763 	prefetch(ring->va + L1_CACHE_BYTES);
2764 #endif
2765 
2766 	if (!skb) {
2767 		ret = hns3_alloc_skb(ring, length, ring->va);
2768 		*out_skb = skb = ring->skb;
2769 
2770 		if (ret < 0) /* alloc buffer fail */
2771 			return ret;
2772 		if (ret > 0) { /* need add frag */
2773 			ret = hns3_add_frag(ring, desc, &skb, false);
2774 			if (ret)
2775 				return ret;
2776 
2777 			/* As the head data may be changed when GRO enable, copy
2778 			 * the head data in after other data rx completed
2779 			 */
2780 			memcpy(skb->data, ring->va,
2781 			       ALIGN(ring->pull_len, sizeof(long)));
2782 		}
2783 	} else {
2784 		ret = hns3_add_frag(ring, desc, &skb, true);
2785 		if (ret)
2786 			return ret;
2787 
2788 		/* As the head data may be changed when GRO enable, copy
2789 		 * the head data in after other data rx completed
2790 		 */
2791 		memcpy(skb->data, ring->va,
2792 		       ALIGN(ring->pull_len, sizeof(long)));
2793 	}
2794 
2795 	ret = hns3_handle_bdinfo(ring, skb, desc);
2796 	if (unlikely(ret)) {
2797 		dev_kfree_skb_any(skb);
2798 		return ret;
2799 	}
2800 
2801 	*out_skb = skb;
2802 	hns3_set_rx_skb_rss_type(ring, skb);
2803 
2804 	return 0;
2805 }
2806 
2807 int hns3_clean_rx_ring(
2808 		struct hns3_enet_ring *ring, int budget,
2809 		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2810 {
2811 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2812 	int recv_pkts, recv_bds, clean_count, err;
2813 	int unused_count = hns3_desc_unused(ring) - ring->pending_buf;
2814 	struct sk_buff *skb = ring->skb;
2815 	int num;
2816 
2817 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2818 	rmb(); /* Make sure num taken effect before the other data is touched */
2819 
2820 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2821 	num -= unused_count;
2822 
2823 	while (recv_pkts < budget && recv_bds < num) {
2824 		/* Reuse or realloc buffers */
2825 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2826 			hns3_nic_alloc_rx_buffers(ring,
2827 						  clean_count + unused_count);
2828 			clean_count = 0;
2829 			unused_count = hns3_desc_unused(ring) -
2830 					ring->pending_buf;
2831 		}
2832 
2833 		/* Poll one pkt */
2834 		err = hns3_handle_rx_bd(ring, &skb);
2835 		if (unlikely(!skb)) /* This fault cannot be repaired */
2836 			goto out;
2837 
2838 		if (err == -ENXIO) { /* Do not get FE for the packet */
2839 			goto out;
2840 		} else if (unlikely(err)) {  /* Do jump the err */
2841 			recv_bds += ring->pending_buf;
2842 			clean_count += ring->pending_buf;
2843 			ring->skb = NULL;
2844 			ring->pending_buf = 0;
2845 			continue;
2846 		}
2847 
2848 		rx_fn(ring, skb);
2849 		recv_bds += ring->pending_buf;
2850 		clean_count += ring->pending_buf;
2851 		ring->skb = NULL;
2852 		ring->pending_buf = 0;
2853 
2854 		recv_pkts++;
2855 	}
2856 
2857 out:
2858 	/* Make all data has been write before submit */
2859 	if (clean_count + unused_count > 0)
2860 		hns3_nic_alloc_rx_buffers(ring,
2861 					  clean_count + unused_count);
2862 
2863 	return recv_pkts;
2864 }
2865 
2866 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2867 {
2868 	struct hns3_enet_tqp_vector *tqp_vector =
2869 					ring_group->ring->tqp_vector;
2870 	enum hns3_flow_level_range new_flow_level;
2871 	int packets_per_msecs;
2872 	int bytes_per_msecs;
2873 	u32 time_passed_ms;
2874 	u16 new_int_gl;
2875 
2876 	if (!tqp_vector->last_jiffies)
2877 		return false;
2878 
2879 	if (ring_group->total_packets == 0) {
2880 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
2881 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
2882 		return true;
2883 	}
2884 
2885 	/* Simple throttlerate management
2886 	 * 0-10MB/s   lower     (50000 ints/s)
2887 	 * 10-20MB/s   middle    (20000 ints/s)
2888 	 * 20-1249MB/s high      (18000 ints/s)
2889 	 * > 40000pps  ultra     (8000 ints/s)
2890 	 */
2891 	new_flow_level = ring_group->coal.flow_level;
2892 	new_int_gl = ring_group->coal.int_gl;
2893 	time_passed_ms =
2894 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2895 
2896 	if (!time_passed_ms)
2897 		return false;
2898 
2899 	do_div(ring_group->total_packets, time_passed_ms);
2900 	packets_per_msecs = ring_group->total_packets;
2901 
2902 	do_div(ring_group->total_bytes, time_passed_ms);
2903 	bytes_per_msecs = ring_group->total_bytes;
2904 
2905 #define HNS3_RX_LOW_BYTE_RATE 10000
2906 #define HNS3_RX_MID_BYTE_RATE 20000
2907 
2908 	switch (new_flow_level) {
2909 	case HNS3_FLOW_LOW:
2910 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2911 			new_flow_level = HNS3_FLOW_MID;
2912 		break;
2913 	case HNS3_FLOW_MID:
2914 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2915 			new_flow_level = HNS3_FLOW_HIGH;
2916 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2917 			new_flow_level = HNS3_FLOW_LOW;
2918 		break;
2919 	case HNS3_FLOW_HIGH:
2920 	case HNS3_FLOW_ULTRA:
2921 	default:
2922 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2923 			new_flow_level = HNS3_FLOW_MID;
2924 		break;
2925 	}
2926 
2927 #define HNS3_RX_ULTRA_PACKET_RATE 40
2928 
2929 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2930 	    &tqp_vector->rx_group == ring_group)
2931 		new_flow_level = HNS3_FLOW_ULTRA;
2932 
2933 	switch (new_flow_level) {
2934 	case HNS3_FLOW_LOW:
2935 		new_int_gl = HNS3_INT_GL_50K;
2936 		break;
2937 	case HNS3_FLOW_MID:
2938 		new_int_gl = HNS3_INT_GL_20K;
2939 		break;
2940 	case HNS3_FLOW_HIGH:
2941 		new_int_gl = HNS3_INT_GL_18K;
2942 		break;
2943 	case HNS3_FLOW_ULTRA:
2944 		new_int_gl = HNS3_INT_GL_8K;
2945 		break;
2946 	default:
2947 		break;
2948 	}
2949 
2950 	ring_group->total_bytes = 0;
2951 	ring_group->total_packets = 0;
2952 	ring_group->coal.flow_level = new_flow_level;
2953 	if (new_int_gl != ring_group->coal.int_gl) {
2954 		ring_group->coal.int_gl = new_int_gl;
2955 		return true;
2956 	}
2957 	return false;
2958 }
2959 
2960 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2961 {
2962 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2963 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2964 	bool rx_update, tx_update;
2965 
2966 	/* update param every 1000ms */
2967 	if (time_before(jiffies,
2968 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
2969 		return;
2970 
2971 	if (rx_group->coal.gl_adapt_enable) {
2972 		rx_update = hns3_get_new_int_gl(rx_group);
2973 		if (rx_update)
2974 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
2975 						       rx_group->coal.int_gl);
2976 	}
2977 
2978 	if (tx_group->coal.gl_adapt_enable) {
2979 		tx_update = hns3_get_new_int_gl(tx_group);
2980 		if (tx_update)
2981 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
2982 						       tx_group->coal.int_gl);
2983 	}
2984 
2985 	tqp_vector->last_jiffies = jiffies;
2986 }
2987 
2988 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2989 {
2990 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
2991 	struct hns3_enet_ring *ring;
2992 	int rx_pkt_total = 0;
2993 
2994 	struct hns3_enet_tqp_vector *tqp_vector =
2995 		container_of(napi, struct hns3_enet_tqp_vector, napi);
2996 	bool clean_complete = true;
2997 	int rx_budget = budget;
2998 
2999 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3000 		napi_complete(napi);
3001 		return 0;
3002 	}
3003 
3004 	/* Since the actual Tx work is minimal, we can give the Tx a larger
3005 	 * budget and be more aggressive about cleaning up the Tx descriptors.
3006 	 */
3007 	hns3_for_each_ring(ring, tqp_vector->tx_group)
3008 		hns3_clean_tx_ring(ring);
3009 
3010 	/* make sure rx ring budget not smaller than 1 */
3011 	if (tqp_vector->num_tqps > 1)
3012 		rx_budget = max(budget / tqp_vector->num_tqps, 1);
3013 
3014 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
3015 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
3016 						    hns3_rx_skb);
3017 
3018 		if (rx_cleaned >= rx_budget)
3019 			clean_complete = false;
3020 
3021 		rx_pkt_total += rx_cleaned;
3022 	}
3023 
3024 	tqp_vector->rx_group.total_packets += rx_pkt_total;
3025 
3026 	if (!clean_complete)
3027 		return budget;
3028 
3029 	if (napi_complete(napi) &&
3030 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
3031 		hns3_update_new_int_gl(tqp_vector);
3032 		hns3_mask_vector_irq(tqp_vector, 1);
3033 	}
3034 
3035 	return rx_pkt_total;
3036 }
3037 
3038 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3039 				      struct hnae3_ring_chain_node *head)
3040 {
3041 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3042 	struct hnae3_ring_chain_node *cur_chain = head;
3043 	struct hnae3_ring_chain_node *chain;
3044 	struct hns3_enet_ring *tx_ring;
3045 	struct hns3_enet_ring *rx_ring;
3046 
3047 	tx_ring = tqp_vector->tx_group.ring;
3048 	if (tx_ring) {
3049 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
3050 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3051 			      HNAE3_RING_TYPE_TX);
3052 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3053 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
3054 
3055 		cur_chain->next = NULL;
3056 
3057 		while (tx_ring->next) {
3058 			tx_ring = tx_ring->next;
3059 
3060 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
3061 					     GFP_KERNEL);
3062 			if (!chain)
3063 				goto err_free_chain;
3064 
3065 			cur_chain->next = chain;
3066 			chain->tqp_index = tx_ring->tqp->tqp_index;
3067 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3068 				      HNAE3_RING_TYPE_TX);
3069 			hnae3_set_field(chain->int_gl_idx,
3070 					HNAE3_RING_GL_IDX_M,
3071 					HNAE3_RING_GL_IDX_S,
3072 					HNAE3_RING_GL_TX);
3073 
3074 			cur_chain = chain;
3075 		}
3076 	}
3077 
3078 	rx_ring = tqp_vector->rx_group.ring;
3079 	if (!tx_ring && rx_ring) {
3080 		cur_chain->next = NULL;
3081 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
3082 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
3083 			      HNAE3_RING_TYPE_RX);
3084 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3085 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3086 
3087 		rx_ring = rx_ring->next;
3088 	}
3089 
3090 	while (rx_ring) {
3091 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
3092 		if (!chain)
3093 			goto err_free_chain;
3094 
3095 		cur_chain->next = chain;
3096 		chain->tqp_index = rx_ring->tqp->tqp_index;
3097 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
3098 			      HNAE3_RING_TYPE_RX);
3099 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
3100 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
3101 
3102 		cur_chain = chain;
3103 
3104 		rx_ring = rx_ring->next;
3105 	}
3106 
3107 	return 0;
3108 
3109 err_free_chain:
3110 	cur_chain = head->next;
3111 	while (cur_chain) {
3112 		chain = cur_chain->next;
3113 		devm_kfree(&pdev->dev, cur_chain);
3114 		cur_chain = chain;
3115 	}
3116 	head->next = NULL;
3117 
3118 	return -ENOMEM;
3119 }
3120 
3121 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3122 					struct hnae3_ring_chain_node *head)
3123 {
3124 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3125 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3126 
3127 	chain = head->next;
3128 
3129 	while (chain) {
3130 		chain_tmp = chain->next;
3131 		devm_kfree(&pdev->dev, chain);
3132 		chain = chain_tmp;
3133 	}
3134 }
3135 
3136 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3137 				   struct hns3_enet_ring *ring)
3138 {
3139 	ring->next = group->ring;
3140 	group->ring = ring;
3141 
3142 	group->count++;
3143 }
3144 
3145 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3146 {
3147 	struct pci_dev *pdev = priv->ae_handle->pdev;
3148 	struct hns3_enet_tqp_vector *tqp_vector;
3149 	int num_vectors = priv->vector_num;
3150 	int numa_node;
3151 	int vector_i;
3152 
3153 	numa_node = dev_to_node(&pdev->dev);
3154 
3155 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3156 		tqp_vector = &priv->tqp_vector[vector_i];
3157 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3158 				&tqp_vector->affinity_mask);
3159 	}
3160 }
3161 
3162 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3163 {
3164 	struct hnae3_ring_chain_node vector_ring_chain;
3165 	struct hnae3_handle *h = priv->ae_handle;
3166 	struct hns3_enet_tqp_vector *tqp_vector;
3167 	int ret = 0;
3168 	int i;
3169 
3170 	hns3_nic_set_cpumask(priv);
3171 
3172 	for (i = 0; i < priv->vector_num; i++) {
3173 		tqp_vector = &priv->tqp_vector[i];
3174 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3175 		tqp_vector->num_tqps = 0;
3176 	}
3177 
3178 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3179 		u16 vector_i = i % priv->vector_num;
3180 		u16 tqp_num = h->kinfo.num_tqps;
3181 
3182 		tqp_vector = &priv->tqp_vector[vector_i];
3183 
3184 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3185 				       priv->ring_data[i].ring);
3186 
3187 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3188 				       priv->ring_data[i + tqp_num].ring);
3189 
3190 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
3191 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3192 		tqp_vector->num_tqps++;
3193 	}
3194 
3195 	for (i = 0; i < priv->vector_num; i++) {
3196 		tqp_vector = &priv->tqp_vector[i];
3197 
3198 		tqp_vector->rx_group.total_bytes = 0;
3199 		tqp_vector->rx_group.total_packets = 0;
3200 		tqp_vector->tx_group.total_bytes = 0;
3201 		tqp_vector->tx_group.total_packets = 0;
3202 		tqp_vector->handle = h;
3203 
3204 		ret = hns3_get_vector_ring_chain(tqp_vector,
3205 						 &vector_ring_chain);
3206 		if (ret)
3207 			goto map_ring_fail;
3208 
3209 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3210 			tqp_vector->vector_irq, &vector_ring_chain);
3211 
3212 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3213 
3214 		if (ret)
3215 			goto map_ring_fail;
3216 
3217 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3218 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3219 	}
3220 
3221 	return 0;
3222 
3223 map_ring_fail:
3224 	while (i--)
3225 		netif_napi_del(&priv->tqp_vector[i].napi);
3226 
3227 	return ret;
3228 }
3229 
3230 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3231 {
3232 #define HNS3_VECTOR_PF_MAX_NUM		64
3233 
3234 	struct hnae3_handle *h = priv->ae_handle;
3235 	struct hns3_enet_tqp_vector *tqp_vector;
3236 	struct hnae3_vector_info *vector;
3237 	struct pci_dev *pdev = h->pdev;
3238 	u16 tqp_num = h->kinfo.num_tqps;
3239 	u16 vector_num;
3240 	int ret = 0;
3241 	u16 i;
3242 
3243 	/* RSS size, cpu online and vector_num should be the same */
3244 	/* Should consider 2p/4p later */
3245 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3246 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3247 
3248 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3249 			      GFP_KERNEL);
3250 	if (!vector)
3251 		return -ENOMEM;
3252 
3253 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3254 
3255 	priv->vector_num = vector_num;
3256 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3257 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3258 			     GFP_KERNEL);
3259 	if (!priv->tqp_vector) {
3260 		ret = -ENOMEM;
3261 		goto out;
3262 	}
3263 
3264 	for (i = 0; i < priv->vector_num; i++) {
3265 		tqp_vector = &priv->tqp_vector[i];
3266 		tqp_vector->idx = i;
3267 		tqp_vector->mask_addr = vector[i].io_addr;
3268 		tqp_vector->vector_irq = vector[i].vector;
3269 		hns3_vector_gl_rl_init(tqp_vector, priv);
3270 	}
3271 
3272 out:
3273 	devm_kfree(&pdev->dev, vector);
3274 	return ret;
3275 }
3276 
3277 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3278 {
3279 	group->ring = NULL;
3280 	group->count = 0;
3281 }
3282 
3283 static void hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3284 {
3285 	struct hnae3_ring_chain_node vector_ring_chain;
3286 	struct hnae3_handle *h = priv->ae_handle;
3287 	struct hns3_enet_tqp_vector *tqp_vector;
3288 	int i;
3289 
3290 	for (i = 0; i < priv->vector_num; i++) {
3291 		tqp_vector = &priv->tqp_vector[i];
3292 
3293 		if (!tqp_vector->rx_group.ring && !tqp_vector->tx_group.ring)
3294 			continue;
3295 
3296 		hns3_get_vector_ring_chain(tqp_vector, &vector_ring_chain);
3297 
3298 		h->ae_algo->ops->unmap_ring_from_vector(h,
3299 			tqp_vector->vector_irq, &vector_ring_chain);
3300 
3301 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3302 
3303 		if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
3304 			irq_set_affinity_notifier(tqp_vector->vector_irq,
3305 						  NULL);
3306 			irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
3307 			free_irq(tqp_vector->vector_irq, tqp_vector);
3308 			tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3309 		}
3310 
3311 		hns3_clear_ring_group(&tqp_vector->rx_group);
3312 		hns3_clear_ring_group(&tqp_vector->tx_group);
3313 		netif_napi_del(&priv->tqp_vector[i].napi);
3314 	}
3315 }
3316 
3317 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3318 {
3319 	struct hnae3_handle *h = priv->ae_handle;
3320 	struct pci_dev *pdev = h->pdev;
3321 	int i, ret;
3322 
3323 	for (i = 0; i < priv->vector_num; i++) {
3324 		struct hns3_enet_tqp_vector *tqp_vector;
3325 
3326 		tqp_vector = &priv->tqp_vector[i];
3327 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3328 		if (ret)
3329 			return ret;
3330 	}
3331 
3332 	devm_kfree(&pdev->dev, priv->tqp_vector);
3333 	return 0;
3334 }
3335 
3336 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3337 			     int ring_type)
3338 {
3339 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
3340 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3341 	struct pci_dev *pdev = priv->ae_handle->pdev;
3342 	struct hns3_enet_ring *ring;
3343 	int desc_num;
3344 
3345 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3346 	if (!ring)
3347 		return -ENOMEM;
3348 
3349 	if (ring_type == HNAE3_RING_TYPE_TX) {
3350 		desc_num = priv->ae_handle->kinfo.num_tx_desc;
3351 		ring_data[q->tqp_index].ring = ring;
3352 		ring_data[q->tqp_index].queue_index = q->tqp_index;
3353 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3354 	} else {
3355 		desc_num = priv->ae_handle->kinfo.num_rx_desc;
3356 		ring_data[q->tqp_index + queue_num].ring = ring;
3357 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3358 		ring->io_base = q->io_base;
3359 	}
3360 
3361 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3362 
3363 	ring->tqp = q;
3364 	ring->desc = NULL;
3365 	ring->desc_cb = NULL;
3366 	ring->dev = priv->dev;
3367 	ring->desc_dma_addr = 0;
3368 	ring->buf_size = q->buf_size;
3369 	ring->desc_num = desc_num;
3370 	ring->next_to_use = 0;
3371 	ring->next_to_clean = 0;
3372 
3373 	return 0;
3374 }
3375 
3376 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3377 			      struct hns3_nic_priv *priv)
3378 {
3379 	int ret;
3380 
3381 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3382 	if (ret)
3383 		return ret;
3384 
3385 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3386 	if (ret) {
3387 		devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3388 		return ret;
3389 	}
3390 
3391 	return 0;
3392 }
3393 
3394 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3395 {
3396 	struct hnae3_handle *h = priv->ae_handle;
3397 	struct pci_dev *pdev = h->pdev;
3398 	int i, ret;
3399 
3400 	priv->ring_data =  devm_kzalloc(&pdev->dev,
3401 					array3_size(h->kinfo.num_tqps,
3402 						    sizeof(*priv->ring_data),
3403 						    2),
3404 					GFP_KERNEL);
3405 	if (!priv->ring_data)
3406 		return -ENOMEM;
3407 
3408 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3409 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3410 		if (ret)
3411 			goto err;
3412 	}
3413 
3414 	return 0;
3415 err:
3416 	while (i--) {
3417 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3418 		devm_kfree(priv->dev,
3419 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3420 	}
3421 
3422 	devm_kfree(&pdev->dev, priv->ring_data);
3423 	return ret;
3424 }
3425 
3426 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3427 {
3428 	struct hnae3_handle *h = priv->ae_handle;
3429 	int i;
3430 
3431 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3432 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3433 		devm_kfree(priv->dev,
3434 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3435 	}
3436 	devm_kfree(priv->dev, priv->ring_data);
3437 }
3438 
3439 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3440 {
3441 	int ret;
3442 
3443 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3444 		return -EINVAL;
3445 
3446 	ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
3447 				GFP_KERNEL);
3448 	if (!ring->desc_cb) {
3449 		ret = -ENOMEM;
3450 		goto out;
3451 	}
3452 
3453 	ret = hns3_alloc_desc(ring);
3454 	if (ret)
3455 		goto out_with_desc_cb;
3456 
3457 	if (!HNAE3_IS_TX_RING(ring)) {
3458 		ret = hns3_alloc_ring_buffers(ring);
3459 		if (ret)
3460 			goto out_with_desc;
3461 	}
3462 
3463 	return 0;
3464 
3465 out_with_desc:
3466 	hns3_free_desc(ring);
3467 out_with_desc_cb:
3468 	kfree(ring->desc_cb);
3469 	ring->desc_cb = NULL;
3470 out:
3471 	return ret;
3472 }
3473 
3474 static void hns3_fini_ring(struct hns3_enet_ring *ring)
3475 {
3476 	hns3_free_desc(ring);
3477 	kfree(ring->desc_cb);
3478 	ring->desc_cb = NULL;
3479 	ring->next_to_clean = 0;
3480 	ring->next_to_use = 0;
3481 	ring->pending_buf = 0;
3482 	if (ring->skb) {
3483 		dev_kfree_skb_any(ring->skb);
3484 		ring->skb = NULL;
3485 	}
3486 }
3487 
3488 static int hns3_buf_size2type(u32 buf_size)
3489 {
3490 	int bd_size_type;
3491 
3492 	switch (buf_size) {
3493 	case 512:
3494 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3495 		break;
3496 	case 1024:
3497 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3498 		break;
3499 	case 2048:
3500 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3501 		break;
3502 	case 4096:
3503 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3504 		break;
3505 	default:
3506 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3507 	}
3508 
3509 	return bd_size_type;
3510 }
3511 
3512 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3513 {
3514 	dma_addr_t dma = ring->desc_dma_addr;
3515 	struct hnae3_queue *q = ring->tqp;
3516 
3517 	if (!HNAE3_IS_TX_RING(ring)) {
3518 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
3519 			       (u32)dma);
3520 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3521 			       (u32)((dma >> 31) >> 1));
3522 
3523 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3524 			       hns3_buf_size2type(ring->buf_size));
3525 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3526 			       ring->desc_num / 8 - 1);
3527 
3528 	} else {
3529 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3530 			       (u32)dma);
3531 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3532 			       (u32)((dma >> 31) >> 1));
3533 
3534 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3535 			       ring->desc_num / 8 - 1);
3536 	}
3537 }
3538 
3539 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3540 {
3541 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3542 	int i;
3543 
3544 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3545 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3546 		int j;
3547 
3548 		if (!tc_info->enable)
3549 			continue;
3550 
3551 		for (j = 0; j < tc_info->tqp_count; j++) {
3552 			struct hnae3_queue *q;
3553 
3554 			q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3555 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3556 				       tc_info->tc);
3557 		}
3558 	}
3559 }
3560 
3561 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3562 {
3563 	struct hnae3_handle *h = priv->ae_handle;
3564 	int ring_num = h->kinfo.num_tqps * 2;
3565 	int i, j;
3566 	int ret;
3567 
3568 	for (i = 0; i < ring_num; i++) {
3569 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3570 		if (ret) {
3571 			dev_err(priv->dev,
3572 				"Alloc ring memory fail! ret=%d\n", ret);
3573 			goto out_when_alloc_ring_memory;
3574 		}
3575 
3576 		u64_stats_init(&priv->ring_data[i].ring->syncp);
3577 	}
3578 
3579 	return 0;
3580 
3581 out_when_alloc_ring_memory:
3582 	for (j = i - 1; j >= 0; j--)
3583 		hns3_fini_ring(priv->ring_data[j].ring);
3584 
3585 	return -ENOMEM;
3586 }
3587 
3588 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3589 {
3590 	struct hnae3_handle *h = priv->ae_handle;
3591 	int i;
3592 
3593 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3594 		hns3_fini_ring(priv->ring_data[i].ring);
3595 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3596 	}
3597 	return 0;
3598 }
3599 
3600 /* Set mac addr if it is configured. or leave it to the AE driver */
3601 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3602 {
3603 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3604 	struct hnae3_handle *h = priv->ae_handle;
3605 	u8 mac_addr_temp[ETH_ALEN];
3606 	int ret = 0;
3607 
3608 	if (h->ae_algo->ops->get_mac_addr && init) {
3609 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3610 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3611 	}
3612 
3613 	/* Check if the MAC address is valid, if not get a random one */
3614 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3615 		eth_hw_addr_random(netdev);
3616 		dev_warn(priv->dev, "using random MAC address %pM\n",
3617 			 netdev->dev_addr);
3618 	}
3619 
3620 	if (h->ae_algo->ops->set_mac_addr)
3621 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3622 
3623 	return ret;
3624 }
3625 
3626 static int hns3_init_phy(struct net_device *netdev)
3627 {
3628 	struct hnae3_handle *h = hns3_get_handle(netdev);
3629 	int ret = 0;
3630 
3631 	if (h->ae_algo->ops->mac_connect_phy)
3632 		ret = h->ae_algo->ops->mac_connect_phy(h);
3633 
3634 	return ret;
3635 }
3636 
3637 static void hns3_uninit_phy(struct net_device *netdev)
3638 {
3639 	struct hnae3_handle *h = hns3_get_handle(netdev);
3640 
3641 	if (h->ae_algo->ops->mac_disconnect_phy)
3642 		h->ae_algo->ops->mac_disconnect_phy(h);
3643 }
3644 
3645 static int hns3_restore_fd_rules(struct net_device *netdev)
3646 {
3647 	struct hnae3_handle *h = hns3_get_handle(netdev);
3648 	int ret = 0;
3649 
3650 	if (h->ae_algo->ops->restore_fd_rules)
3651 		ret = h->ae_algo->ops->restore_fd_rules(h);
3652 
3653 	return ret;
3654 }
3655 
3656 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3657 {
3658 	struct hnae3_handle *h = hns3_get_handle(netdev);
3659 
3660 	if (h->ae_algo->ops->del_all_fd_entries)
3661 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3662 }
3663 
3664 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3665 {
3666 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3667 
3668 	if ((netdev->features & NETIF_F_TSO) ||
3669 	    (netdev->features & NETIF_F_TSO6))
3670 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3671 	else
3672 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3673 }
3674 
3675 static int hns3_client_start(struct hnae3_handle *handle)
3676 {
3677 	if (!handle->ae_algo->ops->client_start)
3678 		return 0;
3679 
3680 	return handle->ae_algo->ops->client_start(handle);
3681 }
3682 
3683 static void hns3_client_stop(struct hnae3_handle *handle)
3684 {
3685 	if (!handle->ae_algo->ops->client_stop)
3686 		return;
3687 
3688 	handle->ae_algo->ops->client_stop(handle);
3689 }
3690 
3691 static int hns3_client_init(struct hnae3_handle *handle)
3692 {
3693 	struct pci_dev *pdev = handle->pdev;
3694 	u16 alloc_tqps, max_rss_size;
3695 	struct hns3_nic_priv *priv;
3696 	struct net_device *netdev;
3697 	int ret;
3698 
3699 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3700 						    &max_rss_size);
3701 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3702 	if (!netdev)
3703 		return -ENOMEM;
3704 
3705 	priv = netdev_priv(netdev);
3706 	priv->dev = &pdev->dev;
3707 	priv->netdev = netdev;
3708 	priv->ae_handle = handle;
3709 	priv->tx_timeout_count = 0;
3710 	set_bit(HNS3_NIC_STATE_DOWN, &priv->state);
3711 
3712 	handle->kinfo.netdev = netdev;
3713 	handle->priv = (void *)priv;
3714 
3715 	hns3_init_mac_addr(netdev, true);
3716 
3717 	hns3_set_default_feature(netdev);
3718 
3719 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3720 	netdev->priv_flags |= IFF_UNICAST_FLT;
3721 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3722 	SET_NETDEV_DEV(netdev, &pdev->dev);
3723 	hns3_ethtool_set_ops(netdev);
3724 	hns3_nic_set_priv_ops(netdev);
3725 
3726 	/* Carrier off reporting is important to ethtool even BEFORE open */
3727 	netif_carrier_off(netdev);
3728 
3729 	ret = hns3_get_ring_config(priv);
3730 	if (ret) {
3731 		ret = -ENOMEM;
3732 		goto out_get_ring_cfg;
3733 	}
3734 
3735 	ret = hns3_nic_alloc_vector_data(priv);
3736 	if (ret) {
3737 		ret = -ENOMEM;
3738 		goto out_alloc_vector_data;
3739 	}
3740 
3741 	ret = hns3_nic_init_vector_data(priv);
3742 	if (ret) {
3743 		ret = -ENOMEM;
3744 		goto out_init_vector_data;
3745 	}
3746 
3747 	ret = hns3_init_all_ring(priv);
3748 	if (ret) {
3749 		ret = -ENOMEM;
3750 		goto out_init_ring_data;
3751 	}
3752 
3753 	ret = hns3_init_phy(netdev);
3754 	if (ret)
3755 		goto out_init_phy;
3756 
3757 	ret = register_netdev(netdev);
3758 	if (ret) {
3759 		dev_err(priv->dev, "probe register netdev fail!\n");
3760 		goto out_reg_netdev_fail;
3761 	}
3762 
3763 	ret = hns3_client_start(handle);
3764 	if (ret) {
3765 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3766 			goto out_client_start;
3767 	}
3768 
3769 	hns3_dcbnl_setup(handle);
3770 
3771 	hns3_dbg_init(handle);
3772 
3773 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3774 	netdev->max_mtu = HNS3_MAX_MTU;
3775 
3776 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3777 
3778 	return ret;
3779 
3780 out_client_start:
3781 	unregister_netdev(netdev);
3782 out_reg_netdev_fail:
3783 	hns3_uninit_phy(netdev);
3784 out_init_phy:
3785 	hns3_uninit_all_ring(priv);
3786 out_init_ring_data:
3787 	hns3_nic_uninit_vector_data(priv);
3788 out_init_vector_data:
3789 	hns3_nic_dealloc_vector_data(priv);
3790 out_alloc_vector_data:
3791 	priv->ring_data = NULL;
3792 out_get_ring_cfg:
3793 	priv->ae_handle = NULL;
3794 	free_netdev(netdev);
3795 	return ret;
3796 }
3797 
3798 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3799 {
3800 	struct net_device *netdev = handle->kinfo.netdev;
3801 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3802 	int ret;
3803 
3804 	hns3_remove_hw_addr(netdev);
3805 
3806 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3807 		unregister_netdev(netdev);
3808 
3809 	hns3_client_stop(handle);
3810 
3811 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3812 		netdev_warn(netdev, "already uninitialized\n");
3813 		goto out_netdev_free;
3814 	}
3815 
3816 	hns3_del_all_fd_rules(netdev, true);
3817 
3818 	hns3_force_clear_all_rx_ring(handle);
3819 
3820 	hns3_uninit_phy(netdev);
3821 
3822 	hns3_nic_uninit_vector_data(priv);
3823 
3824 	ret = hns3_nic_dealloc_vector_data(priv);
3825 	if (ret)
3826 		netdev_err(netdev, "dealloc vector error\n");
3827 
3828 	ret = hns3_uninit_all_ring(priv);
3829 	if (ret)
3830 		netdev_err(netdev, "uninit ring error\n");
3831 
3832 	hns3_put_ring_config(priv);
3833 
3834 	hns3_dbg_uninit(handle);
3835 
3836 	priv->ring_data = NULL;
3837 
3838 out_netdev_free:
3839 	free_netdev(netdev);
3840 }
3841 
3842 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3843 {
3844 	struct net_device *netdev = handle->kinfo.netdev;
3845 
3846 	if (!netdev)
3847 		return;
3848 
3849 	if (linkup) {
3850 		netif_carrier_on(netdev);
3851 		netif_tx_wake_all_queues(netdev);
3852 		netdev_info(netdev, "link up\n");
3853 	} else {
3854 		netif_carrier_off(netdev);
3855 		netif_tx_stop_all_queues(netdev);
3856 		netdev_info(netdev, "link down\n");
3857 	}
3858 }
3859 
3860 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3861 {
3862 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3863 	struct net_device *ndev = kinfo->netdev;
3864 
3865 	if (tc > HNAE3_MAX_TC)
3866 		return -EINVAL;
3867 
3868 	if (!ndev)
3869 		return -ENODEV;
3870 
3871 	return hns3_nic_set_real_num_queue(ndev);
3872 }
3873 
3874 static int hns3_recover_hw_addr(struct net_device *ndev)
3875 {
3876 	struct netdev_hw_addr_list *list;
3877 	struct netdev_hw_addr *ha, *tmp;
3878 	int ret = 0;
3879 
3880 	netif_addr_lock_bh(ndev);
3881 	/* go through and sync uc_addr entries to the device */
3882 	list = &ndev->uc;
3883 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3884 		ret = hns3_nic_uc_sync(ndev, ha->addr);
3885 		if (ret)
3886 			goto out;
3887 	}
3888 
3889 	/* go through and sync mc_addr entries to the device */
3890 	list = &ndev->mc;
3891 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3892 		ret = hns3_nic_mc_sync(ndev, ha->addr);
3893 		if (ret)
3894 			goto out;
3895 	}
3896 
3897 out:
3898 	netif_addr_unlock_bh(ndev);
3899 	return ret;
3900 }
3901 
3902 static void hns3_remove_hw_addr(struct net_device *netdev)
3903 {
3904 	struct netdev_hw_addr_list *list;
3905 	struct netdev_hw_addr *ha, *tmp;
3906 
3907 	hns3_nic_uc_unsync(netdev, netdev->dev_addr);
3908 
3909 	netif_addr_lock_bh(netdev);
3910 	/* go through and unsync uc_addr entries to the device */
3911 	list = &netdev->uc;
3912 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3913 		hns3_nic_uc_unsync(netdev, ha->addr);
3914 
3915 	/* go through and unsync mc_addr entries to the device */
3916 	list = &netdev->mc;
3917 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3918 		if (ha->refcount > 1)
3919 			hns3_nic_mc_unsync(netdev, ha->addr);
3920 
3921 	netif_addr_unlock_bh(netdev);
3922 }
3923 
3924 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3925 {
3926 	while (ring->next_to_clean != ring->next_to_use) {
3927 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3928 		hns3_free_buffer_detach(ring, ring->next_to_clean);
3929 		ring_ptr_move_fw(ring, next_to_clean);
3930 	}
3931 }
3932 
3933 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3934 {
3935 	struct hns3_desc_cb res_cbs;
3936 	int ret;
3937 
3938 	while (ring->next_to_use != ring->next_to_clean) {
3939 		/* When a buffer is not reused, it's memory has been
3940 		 * freed in hns3_handle_rx_bd or will be freed by
3941 		 * stack, so we need to replace the buffer here.
3942 		 */
3943 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3944 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
3945 			if (ret) {
3946 				u64_stats_update_begin(&ring->syncp);
3947 				ring->stats.sw_err_cnt++;
3948 				u64_stats_update_end(&ring->syncp);
3949 				/* if alloc new buffer fail, exit directly
3950 				 * and reclear in up flow.
3951 				 */
3952 				netdev_warn(ring->tqp->handle->kinfo.netdev,
3953 					    "reserve buffer map failed, ret = %d\n",
3954 					    ret);
3955 				return ret;
3956 			}
3957 			hns3_replace_buffer(ring, ring->next_to_use,
3958 					    &res_cbs);
3959 		}
3960 		ring_ptr_move_fw(ring, next_to_use);
3961 	}
3962 
3963 	/* Free the pending skb in rx ring */
3964 	if (ring->skb) {
3965 		dev_kfree_skb_any(ring->skb);
3966 		ring->skb = NULL;
3967 		ring->pending_buf = 0;
3968 	}
3969 
3970 	return 0;
3971 }
3972 
3973 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3974 {
3975 	while (ring->next_to_use != ring->next_to_clean) {
3976 		/* When a buffer is not reused, it's memory has been
3977 		 * freed in hns3_handle_rx_bd or will be freed by
3978 		 * stack, so only need to unmap the buffer here.
3979 		 */
3980 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3981 			hns3_unmap_buffer(ring,
3982 					  &ring->desc_cb[ring->next_to_use]);
3983 			ring->desc_cb[ring->next_to_use].dma = 0;
3984 		}
3985 
3986 		ring_ptr_move_fw(ring, next_to_use);
3987 	}
3988 }
3989 
3990 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3991 {
3992 	struct net_device *ndev = h->kinfo.netdev;
3993 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3994 	struct hns3_enet_ring *ring;
3995 	u32 i;
3996 
3997 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3998 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3999 		hns3_force_clear_rx_ring(ring);
4000 	}
4001 }
4002 
4003 static void hns3_clear_all_ring(struct hnae3_handle *h)
4004 {
4005 	struct net_device *ndev = h->kinfo.netdev;
4006 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4007 	u32 i;
4008 
4009 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4010 		struct netdev_queue *dev_queue;
4011 		struct hns3_enet_ring *ring;
4012 
4013 		ring = priv->ring_data[i].ring;
4014 		hns3_clear_tx_ring(ring);
4015 		dev_queue = netdev_get_tx_queue(ndev,
4016 						priv->ring_data[i].queue_index);
4017 		netdev_tx_reset_queue(dev_queue);
4018 
4019 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
4020 		/* Continue to clear other rings even if clearing some
4021 		 * rings failed.
4022 		 */
4023 		hns3_clear_rx_ring(ring);
4024 	}
4025 }
4026 
4027 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
4028 {
4029 	struct net_device *ndev = h->kinfo.netdev;
4030 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4031 	struct hns3_enet_ring *rx_ring;
4032 	int i, j;
4033 	int ret;
4034 
4035 	for (i = 0; i < h->kinfo.num_tqps; i++) {
4036 		ret = h->ae_algo->ops->reset_queue(h, i);
4037 		if (ret)
4038 			return ret;
4039 
4040 		hns3_init_ring_hw(priv->ring_data[i].ring);
4041 
4042 		/* We need to clear tx ring here because self test will
4043 		 * use the ring and will not run down before up
4044 		 */
4045 		hns3_clear_tx_ring(priv->ring_data[i].ring);
4046 		priv->ring_data[i].ring->next_to_clean = 0;
4047 		priv->ring_data[i].ring->next_to_use = 0;
4048 
4049 		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
4050 		hns3_init_ring_hw(rx_ring);
4051 		ret = hns3_clear_rx_ring(rx_ring);
4052 		if (ret)
4053 			return ret;
4054 
4055 		/* We can not know the hardware head and tail when this
4056 		 * function is called in reset flow, so we reuse all desc.
4057 		 */
4058 		for (j = 0; j < rx_ring->desc_num; j++)
4059 			hns3_reuse_buffer(rx_ring, j);
4060 
4061 		rx_ring->next_to_clean = 0;
4062 		rx_ring->next_to_use = 0;
4063 	}
4064 
4065 	hns3_init_tx_ring_tc(priv);
4066 
4067 	return 0;
4068 }
4069 
4070 static void hns3_store_coal(struct hns3_nic_priv *priv)
4071 {
4072 	/* ethtool only support setting and querying one coal
4073 	 * configuation for now, so save the vector 0' coal
4074 	 * configuation here in order to restore it.
4075 	 */
4076 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
4077 	       sizeof(struct hns3_enet_coalesce));
4078 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
4079 	       sizeof(struct hns3_enet_coalesce));
4080 }
4081 
4082 static void hns3_restore_coal(struct hns3_nic_priv *priv)
4083 {
4084 	u16 vector_num = priv->vector_num;
4085 	int i;
4086 
4087 	for (i = 0; i < vector_num; i++) {
4088 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
4089 		       sizeof(struct hns3_enet_coalesce));
4090 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
4091 		       sizeof(struct hns3_enet_coalesce));
4092 	}
4093 }
4094 
4095 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
4096 {
4097 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
4098 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4099 	struct net_device *ndev = kinfo->netdev;
4100 	struct hns3_nic_priv *priv = netdev_priv(ndev);
4101 
4102 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
4103 		return 0;
4104 
4105 	/* it is cumbersome for hardware to pick-and-choose entries for deletion
4106 	 * from table space. Hence, for function reset software intervention is
4107 	 * required to delete the entries
4108 	 */
4109 	if (hns3_dev_ongoing_func_reset(ae_dev)) {
4110 		hns3_remove_hw_addr(ndev);
4111 		hns3_del_all_fd_rules(ndev, false);
4112 	}
4113 
4114 	if (!netif_running(ndev))
4115 		return 0;
4116 
4117 	return hns3_nic_net_stop(ndev);
4118 }
4119 
4120 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
4121 {
4122 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
4123 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
4124 	int ret = 0;
4125 
4126 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4127 
4128 	if (netif_running(kinfo->netdev)) {
4129 		ret = hns3_nic_net_open(kinfo->netdev);
4130 		if (ret) {
4131 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4132 			netdev_err(kinfo->netdev,
4133 				   "hns net up fail, ret=%d!\n", ret);
4134 			return ret;
4135 		}
4136 	}
4137 
4138 	return ret;
4139 }
4140 
4141 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4142 {
4143 	struct net_device *netdev = handle->kinfo.netdev;
4144 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4145 	int ret;
4146 
4147 	/* Carrier off reporting is important to ethtool even BEFORE open */
4148 	netif_carrier_off(netdev);
4149 
4150 	ret = hns3_get_ring_config(priv);
4151 	if (ret)
4152 		return ret;
4153 
4154 	ret = hns3_nic_alloc_vector_data(priv);
4155 	if (ret)
4156 		goto err_put_ring;
4157 
4158 	hns3_restore_coal(priv);
4159 
4160 	ret = hns3_nic_init_vector_data(priv);
4161 	if (ret)
4162 		goto err_dealloc_vector;
4163 
4164 	ret = hns3_init_all_ring(priv);
4165 	if (ret)
4166 		goto err_uninit_vector;
4167 
4168 	ret = hns3_client_start(handle);
4169 	if (ret) {
4170 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
4171 		goto err_uninit_ring;
4172 	}
4173 
4174 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4175 
4176 	return ret;
4177 
4178 err_uninit_ring:
4179 	hns3_uninit_all_ring(priv);
4180 err_uninit_vector:
4181 	hns3_nic_uninit_vector_data(priv);
4182 	priv->ring_data = NULL;
4183 err_dealloc_vector:
4184 	hns3_nic_dealloc_vector_data(priv);
4185 err_put_ring:
4186 	hns3_put_ring_config(priv);
4187 	priv->ring_data = NULL;
4188 
4189 	return ret;
4190 }
4191 
4192 static int hns3_reset_notify_restore_enet(struct hnae3_handle *handle)
4193 {
4194 	struct net_device *netdev = handle->kinfo.netdev;
4195 	bool vlan_filter_enable;
4196 	int ret;
4197 
4198 	ret = hns3_init_mac_addr(netdev, false);
4199 	if (ret)
4200 		return ret;
4201 
4202 	ret = hns3_recover_hw_addr(netdev);
4203 	if (ret)
4204 		return ret;
4205 
4206 	ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4207 	if (ret)
4208 		return ret;
4209 
4210 	vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4211 	hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4212 
4213 	/* Hardware table is only clear when pf resets */
4214 	if (!(handle->flags & HNAE3_SUPPORT_VF)) {
4215 		ret = hns3_restore_vlan(netdev);
4216 		if (ret)
4217 			return ret;
4218 	}
4219 
4220 	return hns3_restore_fd_rules(netdev);
4221 }
4222 
4223 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4224 {
4225 	struct net_device *netdev = handle->kinfo.netdev;
4226 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4227 	int ret;
4228 
4229 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4230 		netdev_warn(netdev, "already uninitialized\n");
4231 		return 0;
4232 	}
4233 
4234 	hns3_force_clear_all_rx_ring(handle);
4235 
4236 	hns3_nic_uninit_vector_data(priv);
4237 
4238 	hns3_store_coal(priv);
4239 
4240 	ret = hns3_nic_dealloc_vector_data(priv);
4241 	if (ret)
4242 		netdev_err(netdev, "dealloc vector error\n");
4243 
4244 	ret = hns3_uninit_all_ring(priv);
4245 	if (ret)
4246 		netdev_err(netdev, "uninit ring error\n");
4247 
4248 	hns3_put_ring_config(priv);
4249 	priv->ring_data = NULL;
4250 
4251 	return ret;
4252 }
4253 
4254 static int hns3_reset_notify(struct hnae3_handle *handle,
4255 			     enum hnae3_reset_notify_type type)
4256 {
4257 	int ret = 0;
4258 
4259 	switch (type) {
4260 	case HNAE3_UP_CLIENT:
4261 		ret = hns3_reset_notify_up_enet(handle);
4262 		break;
4263 	case HNAE3_DOWN_CLIENT:
4264 		ret = hns3_reset_notify_down_enet(handle);
4265 		break;
4266 	case HNAE3_INIT_CLIENT:
4267 		ret = hns3_reset_notify_init_enet(handle);
4268 		break;
4269 	case HNAE3_UNINIT_CLIENT:
4270 		ret = hns3_reset_notify_uninit_enet(handle);
4271 		break;
4272 	case HNAE3_RESTORE_CLIENT:
4273 		ret = hns3_reset_notify_restore_enet(handle);
4274 		break;
4275 	default:
4276 		break;
4277 	}
4278 
4279 	return ret;
4280 }
4281 
4282 int hns3_set_channels(struct net_device *netdev,
4283 		      struct ethtool_channels *ch)
4284 {
4285 	struct hnae3_handle *h = hns3_get_handle(netdev);
4286 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4287 	bool rxfh_configured = netif_is_rxfh_configured(netdev);
4288 	u32 new_tqp_num = ch->combined_count;
4289 	u16 org_tqp_num;
4290 	int ret;
4291 
4292 	if (ch->rx_count || ch->tx_count)
4293 		return -EINVAL;
4294 
4295 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4296 	    new_tqp_num < 1) {
4297 		dev_err(&netdev->dev,
4298 			"Change tqps fail, the tqp range is from 1 to %d",
4299 			hns3_get_max_available_channels(h));
4300 		return -EINVAL;
4301 	}
4302 
4303 	if (kinfo->rss_size == new_tqp_num)
4304 		return 0;
4305 
4306 	ret = hns3_reset_notify(h, HNAE3_DOWN_CLIENT);
4307 	if (ret)
4308 		return ret;
4309 
4310 	ret = hns3_reset_notify(h, HNAE3_UNINIT_CLIENT);
4311 	if (ret)
4312 		return ret;
4313 
4314 	org_tqp_num = h->kinfo.num_tqps;
4315 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num, rxfh_configured);
4316 	if (ret) {
4317 		ret = h->ae_algo->ops->set_channels(h, org_tqp_num,
4318 						    rxfh_configured);
4319 		if (ret) {
4320 			/* If revert to old tqp failed, fatal error occurred */
4321 			dev_err(&netdev->dev,
4322 				"Revert to old tqp num fail, ret=%d", ret);
4323 			return ret;
4324 		}
4325 		dev_info(&netdev->dev,
4326 			 "Change tqp num fail, Revert to old tqp num");
4327 	}
4328 	ret = hns3_reset_notify(h, HNAE3_INIT_CLIENT);
4329 	if (ret)
4330 		return ret;
4331 
4332 	return hns3_reset_notify(h, HNAE3_UP_CLIENT);
4333 }
4334 
4335 static const struct hnae3_client_ops client_ops = {
4336 	.init_instance = hns3_client_init,
4337 	.uninit_instance = hns3_client_uninit,
4338 	.link_status_change = hns3_link_status_change,
4339 	.setup_tc = hns3_client_setup_tc,
4340 	.reset_notify = hns3_reset_notify,
4341 };
4342 
4343 /* hns3_init_module - Driver registration routine
4344  * hns3_init_module is the first routine called when the driver is
4345  * loaded. All it does is register with the PCI subsystem.
4346  */
4347 static int __init hns3_init_module(void)
4348 {
4349 	int ret;
4350 
4351 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4352 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4353 
4354 	client.type = HNAE3_CLIENT_KNIC;
4355 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4356 		 hns3_driver_name);
4357 
4358 	client.ops = &client_ops;
4359 
4360 	INIT_LIST_HEAD(&client.node);
4361 
4362 	hns3_dbg_register_debugfs(hns3_driver_name);
4363 
4364 	ret = hnae3_register_client(&client);
4365 	if (ret)
4366 		goto err_reg_client;
4367 
4368 	ret = pci_register_driver(&hns3_driver);
4369 	if (ret)
4370 		goto err_reg_driver;
4371 
4372 	return ret;
4373 
4374 err_reg_driver:
4375 	hnae3_unregister_client(&client);
4376 err_reg_client:
4377 	hns3_dbg_unregister_debugfs();
4378 	return ret;
4379 }
4380 module_init(hns3_init_module);
4381 
4382 /* hns3_exit_module - Driver exit cleanup routine
4383  * hns3_exit_module is called just before the driver is removed
4384  * from memory.
4385  */
4386 static void __exit hns3_exit_module(void)
4387 {
4388 	pci_unregister_driver(&hns3_driver);
4389 	hnae3_unregister_client(&client);
4390 	hns3_dbg_unregister_debugfs();
4391 }
4392 module_exit(hns3_exit_module);
4393 
4394 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4395 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4396 MODULE_LICENSE("GPL");
4397 MODULE_ALIAS("pci:hns-nic");
4398 MODULE_VERSION(HNS3_MOD_VERSION);
4399