1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3 
4 #include <linux/dma-mapping.h>
5 #include <linux/etherdevice.h>
6 #include <linux/interrupt.h>
7 #include <linux/if_vlan.h>
8 #include <linux/ip.h>
9 #include <linux/ipv6.h>
10 #include <linux/module.h>
11 #include <linux/pci.h>
12 #include <linux/aer.h>
13 #include <linux/skbuff.h>
14 #include <linux/sctp.h>
15 #include <linux/vermagic.h>
16 #include <net/gre.h>
17 #include <net/pkt_cls.h>
18 #include <net/tcp.h>
19 #include <net/vxlan.h>
20 
21 #include "hnae3.h"
22 #include "hns3_enet.h"
23 
24 static void hns3_clear_all_ring(struct hnae3_handle *h);
25 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
26 static void hns3_remove_hw_addr(struct net_device *netdev);
27 
28 static const char hns3_driver_name[] = "hns3";
29 const char hns3_driver_version[] = VERMAGIC_STRING;
30 static const char hns3_driver_string[] =
31 			"Hisilicon Ethernet Network Driver for Hip08 Family";
32 static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
33 static struct hnae3_client client;
34 
35 /* hns3_pci_tbl - PCI Device ID Table
36  *
37  * Last entry must be all 0s
38  *
39  * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
40  *   Class, Class Mask, private data (not used) }
41  */
42 static const struct pci_device_id hns3_pci_tbl[] = {
43 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
44 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
45 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
46 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
47 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
48 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
49 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
50 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
51 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
52 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
53 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
54 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
55 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
56 	{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
57 	 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
58 	/* required last entry */
59 	{0, }
60 };
61 MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
62 
63 static irqreturn_t hns3_irq_handle(int irq, void *vector)
64 {
65 	struct hns3_enet_tqp_vector *tqp_vector = vector;
66 
67 	napi_schedule(&tqp_vector->napi);
68 
69 	return IRQ_HANDLED;
70 }
71 
72 /* This callback function is used to set affinity changes to the irq affinity
73  * masks when the irq_set_affinity_notifier function is used.
74  */
75 static void hns3_nic_irq_affinity_notify(struct irq_affinity_notify *notify,
76 					 const cpumask_t *mask)
77 {
78 	struct hns3_enet_tqp_vector *tqp_vectors =
79 		container_of(notify, struct hns3_enet_tqp_vector,
80 			     affinity_notify);
81 
82 	tqp_vectors->affinity_mask = *mask;
83 }
84 
85 static void hns3_nic_irq_affinity_release(struct kref *ref)
86 {
87 }
88 
89 static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
90 {
91 	struct hns3_enet_tqp_vector *tqp_vectors;
92 	unsigned int i;
93 
94 	for (i = 0; i < priv->vector_num; i++) {
95 		tqp_vectors = &priv->tqp_vector[i];
96 
97 		if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
98 			continue;
99 
100 		/* clear the affinity notifier and affinity mask */
101 		irq_set_affinity_notifier(tqp_vectors->vector_irq, NULL);
102 		irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
103 
104 		/* release the irq resource */
105 		free_irq(tqp_vectors->vector_irq, tqp_vectors);
106 		tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
107 	}
108 }
109 
110 static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
111 {
112 	struct hns3_enet_tqp_vector *tqp_vectors;
113 	int txrx_int_idx = 0;
114 	int rx_int_idx = 0;
115 	int tx_int_idx = 0;
116 	unsigned int i;
117 	int ret;
118 
119 	for (i = 0; i < priv->vector_num; i++) {
120 		tqp_vectors = &priv->tqp_vector[i];
121 
122 		if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
123 			continue;
124 
125 		if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
126 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
127 				 "%s-%s-%d", priv->netdev->name, "TxRx",
128 				 txrx_int_idx++);
129 			txrx_int_idx++;
130 		} else if (tqp_vectors->rx_group.ring) {
131 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
132 				 "%s-%s-%d", priv->netdev->name, "Rx",
133 				 rx_int_idx++);
134 		} else if (tqp_vectors->tx_group.ring) {
135 			snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
136 				 "%s-%s-%d", priv->netdev->name, "Tx",
137 				 tx_int_idx++);
138 		} else {
139 			/* Skip this unused q_vector */
140 			continue;
141 		}
142 
143 		tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
144 
145 		ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
146 				  tqp_vectors->name,
147 				       tqp_vectors);
148 		if (ret) {
149 			netdev_err(priv->netdev, "request irq(%d) fail\n",
150 				   tqp_vectors->vector_irq);
151 			return ret;
152 		}
153 
154 		tqp_vectors->affinity_notify.notify =
155 					hns3_nic_irq_affinity_notify;
156 		tqp_vectors->affinity_notify.release =
157 					hns3_nic_irq_affinity_release;
158 		irq_set_affinity_notifier(tqp_vectors->vector_irq,
159 					  &tqp_vectors->affinity_notify);
160 		irq_set_affinity_hint(tqp_vectors->vector_irq,
161 				      &tqp_vectors->affinity_mask);
162 
163 		tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
164 	}
165 
166 	return 0;
167 }
168 
169 static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
170 				 u32 mask_en)
171 {
172 	writel(mask_en, tqp_vector->mask_addr);
173 }
174 
175 static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
176 {
177 	napi_enable(&tqp_vector->napi);
178 
179 	/* enable vector */
180 	hns3_mask_vector_irq(tqp_vector, 1);
181 }
182 
183 static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
184 {
185 	/* disable vector */
186 	hns3_mask_vector_irq(tqp_vector, 0);
187 
188 	disable_irq(tqp_vector->vector_irq);
189 	napi_disable(&tqp_vector->napi);
190 }
191 
192 void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
193 				 u32 rl_value)
194 {
195 	u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
196 
197 	/* this defines the configuration for RL (Interrupt Rate Limiter).
198 	 * Rl defines rate of interrupts i.e. number of interrupts-per-second
199 	 * GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
200 	 */
201 
202 	if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
203 	    !tqp_vector->rx_group.coal.gl_adapt_enable)
204 		/* According to the hardware, the range of rl_reg is
205 		 * 0-59 and the unit is 4.
206 		 */
207 		rl_reg |=  HNS3_INT_RL_ENABLE_MASK;
208 
209 	writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
210 }
211 
212 void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
213 				    u32 gl_value)
214 {
215 	u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
216 
217 	writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
218 }
219 
220 void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
221 				    u32 gl_value)
222 {
223 	u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
224 
225 	writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
226 }
227 
228 static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
229 				   struct hns3_nic_priv *priv)
230 {
231 	/* initialize the configuration for interrupt coalescing.
232 	 * 1. GL (Interrupt Gap Limiter)
233 	 * 2. RL (Interrupt Rate Limiter)
234 	 */
235 
236 	/* Default: enable interrupt coalescing self-adaptive and GL */
237 	tqp_vector->tx_group.coal.gl_adapt_enable = 1;
238 	tqp_vector->rx_group.coal.gl_adapt_enable = 1;
239 
240 	tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
241 	tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
242 
243 	tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
244 	tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
245 }
246 
247 static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
248 				      struct hns3_nic_priv *priv)
249 {
250 	struct hnae3_handle *h = priv->ae_handle;
251 
252 	hns3_set_vector_coalesce_tx_gl(tqp_vector,
253 				       tqp_vector->tx_group.coal.int_gl);
254 	hns3_set_vector_coalesce_rx_gl(tqp_vector,
255 				       tqp_vector->rx_group.coal.int_gl);
256 	hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
257 }
258 
259 static int hns3_nic_set_real_num_queue(struct net_device *netdev)
260 {
261 	struct hnae3_handle *h = hns3_get_handle(netdev);
262 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
263 	unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
264 	int i, ret;
265 
266 	if (kinfo->num_tc <= 1) {
267 		netdev_reset_tc(netdev);
268 	} else {
269 		ret = netdev_set_num_tc(netdev, kinfo->num_tc);
270 		if (ret) {
271 			netdev_err(netdev,
272 				   "netdev_set_num_tc fail, ret=%d!\n", ret);
273 			return ret;
274 		}
275 
276 		for (i = 0; i < HNAE3_MAX_TC; i++) {
277 			if (!kinfo->tc_info[i].enable)
278 				continue;
279 
280 			netdev_set_tc_queue(netdev,
281 					    kinfo->tc_info[i].tc,
282 					    kinfo->tc_info[i].tqp_count,
283 					    kinfo->tc_info[i].tqp_offset);
284 		}
285 	}
286 
287 	ret = netif_set_real_num_tx_queues(netdev, queue_size);
288 	if (ret) {
289 		netdev_err(netdev,
290 			   "netif_set_real_num_tx_queues fail, ret=%d!\n",
291 			   ret);
292 		return ret;
293 	}
294 
295 	ret = netif_set_real_num_rx_queues(netdev, queue_size);
296 	if (ret) {
297 		netdev_err(netdev,
298 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
299 		return ret;
300 	}
301 
302 	return 0;
303 }
304 
305 static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
306 {
307 	u16 alloc_tqps, max_rss_size, rss_size;
308 
309 	h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
310 	rss_size = alloc_tqps / h->kinfo.num_tc;
311 
312 	return min_t(u16, rss_size, max_rss_size);
313 }
314 
315 static void hns3_tqp_enable(struct hnae3_queue *tqp)
316 {
317 	u32 rcb_reg;
318 
319 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
320 	rcb_reg |= BIT(HNS3_RING_EN_B);
321 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
322 }
323 
324 static void hns3_tqp_disable(struct hnae3_queue *tqp)
325 {
326 	u32 rcb_reg;
327 
328 	rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
329 	rcb_reg &= ~BIT(HNS3_RING_EN_B);
330 	hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
331 }
332 
333 static int hns3_nic_net_up(struct net_device *netdev)
334 {
335 	struct hns3_nic_priv *priv = netdev_priv(netdev);
336 	struct hnae3_handle *h = priv->ae_handle;
337 	int i, j;
338 	int ret;
339 
340 	ret = hns3_nic_reset_all_ring(h);
341 	if (ret)
342 		return ret;
343 
344 	/* get irq resource for all vectors */
345 	ret = hns3_nic_init_irq(priv);
346 	if (ret) {
347 		netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
348 		return ret;
349 	}
350 
351 	/* enable the vectors */
352 	for (i = 0; i < priv->vector_num; i++)
353 		hns3_vector_enable(&priv->tqp_vector[i]);
354 
355 	/* enable rcb */
356 	for (j = 0; j < h->kinfo.num_tqps; j++)
357 		hns3_tqp_enable(h->kinfo.tqp[j]);
358 
359 	/* start the ae_dev */
360 	ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
361 	if (ret)
362 		goto out_start_err;
363 
364 	clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
365 
366 	return 0;
367 
368 out_start_err:
369 	while (j--)
370 		hns3_tqp_disable(h->kinfo.tqp[j]);
371 
372 	for (j = i - 1; j >= 0; j--)
373 		hns3_vector_disable(&priv->tqp_vector[j]);
374 
375 	hns3_nic_uninit_irq(priv);
376 
377 	return ret;
378 }
379 
380 static int hns3_nic_net_open(struct net_device *netdev)
381 {
382 	struct hns3_nic_priv *priv = netdev_priv(netdev);
383 	struct hnae3_handle *h = hns3_get_handle(netdev);
384 	struct hnae3_knic_private_info *kinfo;
385 	int i, ret;
386 
387 	if (hns3_nic_resetting(netdev))
388 		return -EBUSY;
389 
390 	netif_carrier_off(netdev);
391 
392 	ret = hns3_nic_set_real_num_queue(netdev);
393 	if (ret)
394 		return ret;
395 
396 	ret = hns3_nic_net_up(netdev);
397 	if (ret) {
398 		netdev_err(netdev,
399 			   "hns net up fail, ret=%d!\n", ret);
400 		return ret;
401 	}
402 
403 	kinfo = &h->kinfo;
404 	for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
405 		netdev_set_prio_tc_map(netdev, i,
406 				       kinfo->prio_tc[i]);
407 	}
408 
409 	if (h->ae_algo->ops->set_timer_task)
410 		h->ae_algo->ops->set_timer_task(priv->ae_handle, true);
411 
412 	return 0;
413 }
414 
415 static void hns3_nic_net_down(struct net_device *netdev)
416 {
417 	struct hns3_nic_priv *priv = netdev_priv(netdev);
418 	struct hnae3_handle *h = hns3_get_handle(netdev);
419 	const struct hnae3_ae_ops *ops;
420 	int i;
421 
422 	/* disable vectors */
423 	for (i = 0; i < priv->vector_num; i++)
424 		hns3_vector_disable(&priv->tqp_vector[i]);
425 
426 	/* disable rcb */
427 	for (i = 0; i < h->kinfo.num_tqps; i++)
428 		hns3_tqp_disable(h->kinfo.tqp[i]);
429 
430 	/* stop ae_dev */
431 	ops = priv->ae_handle->ae_algo->ops;
432 	if (ops->stop)
433 		ops->stop(priv->ae_handle);
434 
435 	/* free irq resources */
436 	hns3_nic_uninit_irq(priv);
437 
438 	hns3_clear_all_ring(priv->ae_handle);
439 }
440 
441 static int hns3_nic_net_stop(struct net_device *netdev)
442 {
443 	struct hns3_nic_priv *priv = netdev_priv(netdev);
444 	struct hnae3_handle *h = hns3_get_handle(netdev);
445 
446 	if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
447 		return 0;
448 
449 	if (h->ae_algo->ops->set_timer_task)
450 		h->ae_algo->ops->set_timer_task(priv->ae_handle, false);
451 
452 	netif_tx_stop_all_queues(netdev);
453 	netif_carrier_off(netdev);
454 
455 	hns3_nic_net_down(netdev);
456 
457 	return 0;
458 }
459 
460 static int hns3_nic_uc_sync(struct net_device *netdev,
461 			    const unsigned char *addr)
462 {
463 	struct hnae3_handle *h = hns3_get_handle(netdev);
464 
465 	if (h->ae_algo->ops->add_uc_addr)
466 		return h->ae_algo->ops->add_uc_addr(h, addr);
467 
468 	return 0;
469 }
470 
471 static int hns3_nic_uc_unsync(struct net_device *netdev,
472 			      const unsigned char *addr)
473 {
474 	struct hnae3_handle *h = hns3_get_handle(netdev);
475 
476 	if (h->ae_algo->ops->rm_uc_addr)
477 		return h->ae_algo->ops->rm_uc_addr(h, addr);
478 
479 	return 0;
480 }
481 
482 static int hns3_nic_mc_sync(struct net_device *netdev,
483 			    const unsigned char *addr)
484 {
485 	struct hnae3_handle *h = hns3_get_handle(netdev);
486 
487 	if (h->ae_algo->ops->add_mc_addr)
488 		return h->ae_algo->ops->add_mc_addr(h, addr);
489 
490 	return 0;
491 }
492 
493 static int hns3_nic_mc_unsync(struct net_device *netdev,
494 			      const unsigned char *addr)
495 {
496 	struct hnae3_handle *h = hns3_get_handle(netdev);
497 
498 	if (h->ae_algo->ops->rm_mc_addr)
499 		return h->ae_algo->ops->rm_mc_addr(h, addr);
500 
501 	return 0;
502 }
503 
504 static u8 hns3_get_netdev_flags(struct net_device *netdev)
505 {
506 	u8 flags = 0;
507 
508 	if (netdev->flags & IFF_PROMISC) {
509 		flags = HNAE3_USER_UPE | HNAE3_USER_MPE;
510 	} else {
511 		flags |= HNAE3_VLAN_FLTR;
512 		if (netdev->flags & IFF_ALLMULTI)
513 			flags |= HNAE3_USER_MPE;
514 	}
515 
516 	return flags;
517 }
518 
519 static void hns3_nic_set_rx_mode(struct net_device *netdev)
520 {
521 	struct hnae3_handle *h = hns3_get_handle(netdev);
522 	u8 new_flags;
523 	int ret;
524 
525 	new_flags = hns3_get_netdev_flags(netdev);
526 
527 	ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
528 	if (ret) {
529 		netdev_err(netdev, "sync uc address fail\n");
530 		if (ret == -ENOSPC)
531 			new_flags |= HNAE3_OVERFLOW_UPE;
532 	}
533 
534 	if (netdev->flags & IFF_MULTICAST) {
535 		ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
536 				    hns3_nic_mc_unsync);
537 		if (ret) {
538 			netdev_err(netdev, "sync mc address fail\n");
539 			if (ret == -ENOSPC)
540 				new_flags |= HNAE3_OVERFLOW_MPE;
541 		}
542 	}
543 
544 	hns3_update_promisc_mode(netdev, new_flags);
545 	/* User mode Promisc mode enable and vlan filtering is disabled to
546 	 * let all packets in. MAC-VLAN Table overflow Promisc enabled and
547 	 * vlan fitering is enabled
548 	 */
549 	hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
550 	h->netdev_flags = new_flags;
551 }
552 
553 int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
554 {
555 	struct hns3_nic_priv *priv = netdev_priv(netdev);
556 	struct hnae3_handle *h = priv->ae_handle;
557 
558 	if (h->ae_algo->ops->set_promisc_mode) {
559 		return h->ae_algo->ops->set_promisc_mode(h,
560 						promisc_flags & HNAE3_UPE,
561 						promisc_flags & HNAE3_MPE);
562 	}
563 
564 	return 0;
565 }
566 
567 void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
568 {
569 	struct hns3_nic_priv *priv = netdev_priv(netdev);
570 	struct hnae3_handle *h = priv->ae_handle;
571 	bool last_state;
572 
573 	if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
574 		last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
575 		if (enable != last_state) {
576 			netdev_info(netdev,
577 				    "%s vlan filter\n",
578 				    enable ? "enable" : "disable");
579 			h->ae_algo->ops->enable_vlan_filter(h, enable);
580 		}
581 	}
582 }
583 
584 static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
585 			u16 *mss, u32 *type_cs_vlan_tso)
586 {
587 	u32 l4_offset, hdr_len;
588 	union l3_hdr_info l3;
589 	union l4_hdr_info l4;
590 	u32 l4_paylen;
591 	int ret;
592 
593 	if (!skb_is_gso(skb))
594 		return 0;
595 
596 	ret = skb_cow_head(skb, 0);
597 	if (ret)
598 		return ret;
599 
600 	l3.hdr = skb_network_header(skb);
601 	l4.hdr = skb_transport_header(skb);
602 
603 	/* Software should clear the IPv4's checksum field when tso is
604 	 * needed.
605 	 */
606 	if (l3.v4->version == 4)
607 		l3.v4->check = 0;
608 
609 	/* tunnel packet.*/
610 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
611 					 SKB_GSO_GRE_CSUM |
612 					 SKB_GSO_UDP_TUNNEL |
613 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
614 		if ((!(skb_shinfo(skb)->gso_type &
615 		    SKB_GSO_PARTIAL)) &&
616 		    (skb_shinfo(skb)->gso_type &
617 		    SKB_GSO_UDP_TUNNEL_CSUM)) {
618 			/* Software should clear the udp's checksum
619 			 * field when tso is needed.
620 			 */
621 			l4.udp->check = 0;
622 		}
623 		/* reset l3&l4 pointers from outer to inner headers */
624 		l3.hdr = skb_inner_network_header(skb);
625 		l4.hdr = skb_inner_transport_header(skb);
626 
627 		/* Software should clear the IPv4's checksum field when
628 		 * tso is needed.
629 		 */
630 		if (l3.v4->version == 4)
631 			l3.v4->check = 0;
632 	}
633 
634 	/* normal or tunnel packet*/
635 	l4_offset = l4.hdr - skb->data;
636 	hdr_len = (l4.tcp->doff * 4) + l4_offset;
637 
638 	/* remove payload length from inner pseudo checksum when tso*/
639 	l4_paylen = skb->len - l4_offset;
640 	csum_replace_by_diff(&l4.tcp->check,
641 			     (__force __wsum)htonl(l4_paylen));
642 
643 	/* find the txbd field values */
644 	*paylen = skb->len - hdr_len;
645 	hnae3_set_bit(*type_cs_vlan_tso,
646 		      HNS3_TXD_TSO_B, 1);
647 
648 	/* get MSS for TSO */
649 	*mss = skb_shinfo(skb)->gso_size;
650 
651 	return 0;
652 }
653 
654 static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
655 				u8 *il4_proto)
656 {
657 	union {
658 		struct iphdr *v4;
659 		struct ipv6hdr *v6;
660 		unsigned char *hdr;
661 	} l3;
662 	unsigned char *l4_hdr;
663 	unsigned char *exthdr;
664 	u8 l4_proto_tmp;
665 	__be16 frag_off;
666 
667 	/* find outer header point */
668 	l3.hdr = skb_network_header(skb);
669 	l4_hdr = skb_transport_header(skb);
670 
671 	if (skb->protocol == htons(ETH_P_IPV6)) {
672 		exthdr = l3.hdr + sizeof(*l3.v6);
673 		l4_proto_tmp = l3.v6->nexthdr;
674 		if (l4_hdr != exthdr)
675 			ipv6_skip_exthdr(skb, exthdr - skb->data,
676 					 &l4_proto_tmp, &frag_off);
677 	} else if (skb->protocol == htons(ETH_P_IP)) {
678 		l4_proto_tmp = l3.v4->protocol;
679 	} else {
680 		return -EINVAL;
681 	}
682 
683 	*ol4_proto = l4_proto_tmp;
684 
685 	/* tunnel packet */
686 	if (!skb->encapsulation) {
687 		*il4_proto = 0;
688 		return 0;
689 	}
690 
691 	/* find inner header point */
692 	l3.hdr = skb_inner_network_header(skb);
693 	l4_hdr = skb_inner_transport_header(skb);
694 
695 	if (l3.v6->version == 6) {
696 		exthdr = l3.hdr + sizeof(*l3.v6);
697 		l4_proto_tmp = l3.v6->nexthdr;
698 		if (l4_hdr != exthdr)
699 			ipv6_skip_exthdr(skb, exthdr - skb->data,
700 					 &l4_proto_tmp, &frag_off);
701 	} else if (l3.v4->version == 4) {
702 		l4_proto_tmp = l3.v4->protocol;
703 	}
704 
705 	*il4_proto = l4_proto_tmp;
706 
707 	return 0;
708 }
709 
710 static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
711 				u8 il4_proto, u32 *type_cs_vlan_tso,
712 				u32 *ol_type_vlan_len_msec)
713 {
714 	union {
715 		struct iphdr *v4;
716 		struct ipv6hdr *v6;
717 		unsigned char *hdr;
718 	} l3;
719 	union {
720 		struct tcphdr *tcp;
721 		struct udphdr *udp;
722 		struct gre_base_hdr *gre;
723 		unsigned char *hdr;
724 	} l4;
725 	unsigned char *l2_hdr;
726 	u8 l4_proto = ol4_proto;
727 	u32 ol2_len;
728 	u32 ol3_len;
729 	u32 ol4_len;
730 	u32 l2_len;
731 	u32 l3_len;
732 
733 	l3.hdr = skb_network_header(skb);
734 	l4.hdr = skb_transport_header(skb);
735 
736 	/* compute L2 header size for normal packet, defined in 2 Bytes */
737 	l2_len = l3.hdr - skb->data;
738 	hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
739 			HNS3_TXD_L2LEN_S, l2_len >> 1);
740 
741 	/* tunnel packet*/
742 	if (skb->encapsulation) {
743 		/* compute OL2 header size, defined in 2 Bytes */
744 		ol2_len = l2_len;
745 		hnae3_set_field(*ol_type_vlan_len_msec,
746 				HNS3_TXD_L2LEN_M,
747 				HNS3_TXD_L2LEN_S, ol2_len >> 1);
748 
749 		/* compute OL3 header size, defined in 4 Bytes */
750 		ol3_len = l4.hdr - l3.hdr;
751 		hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_M,
752 				HNS3_TXD_L3LEN_S, ol3_len >> 2);
753 
754 		/* MAC in UDP, MAC in GRE (0x6558)*/
755 		if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
756 			/* switch MAC header ptr from outer to inner header.*/
757 			l2_hdr = skb_inner_mac_header(skb);
758 
759 			/* compute OL4 header size, defined in 4 Bytes. */
760 			ol4_len = l2_hdr - l4.hdr;
761 			hnae3_set_field(*ol_type_vlan_len_msec,
762 					HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
763 					ol4_len >> 2);
764 
765 			/* switch IP header ptr from outer to inner header */
766 			l3.hdr = skb_inner_network_header(skb);
767 
768 			/* compute inner l2 header size, defined in 2 Bytes. */
769 			l2_len = l3.hdr - l2_hdr;
770 			hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
771 					HNS3_TXD_L2LEN_S, l2_len >> 1);
772 		} else {
773 			/* skb packet types not supported by hardware,
774 			 * txbd len fild doesn't be filled.
775 			 */
776 			return;
777 		}
778 
779 		/* switch L4 header pointer from outer to inner */
780 		l4.hdr = skb_inner_transport_header(skb);
781 
782 		l4_proto = il4_proto;
783 	}
784 
785 	/* compute inner(/normal) L3 header size, defined in 4 Bytes */
786 	l3_len = l4.hdr - l3.hdr;
787 	hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_M,
788 			HNS3_TXD_L3LEN_S, l3_len >> 2);
789 
790 	/* compute inner(/normal) L4 header size, defined in 4 Bytes */
791 	switch (l4_proto) {
792 	case IPPROTO_TCP:
793 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
794 				HNS3_TXD_L4LEN_S, l4.tcp->doff);
795 		break;
796 	case IPPROTO_SCTP:
797 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
798 				HNS3_TXD_L4LEN_S,
799 				(sizeof(struct sctphdr) >> 2));
800 		break;
801 	case IPPROTO_UDP:
802 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
803 				HNS3_TXD_L4LEN_S,
804 				(sizeof(struct udphdr) >> 2));
805 		break;
806 	default:
807 		/* skb packet types not supported by hardware,
808 		 * txbd len fild doesn't be filled.
809 		 */
810 		return;
811 	}
812 }
813 
814 /* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
815  * and it is udp packet, which has a dest port as the IANA assigned.
816  * the hardware is expected to do the checksum offload, but the
817  * hardware will not do the checksum offload when udp dest port is
818  * 4789.
819  */
820 static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
821 {
822 #define IANA_VXLAN_PORT	4789
823 	union {
824 		struct tcphdr *tcp;
825 		struct udphdr *udp;
826 		struct gre_base_hdr *gre;
827 		unsigned char *hdr;
828 	} l4;
829 
830 	l4.hdr = skb_transport_header(skb);
831 
832 	if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
833 		return false;
834 
835 	skb_checksum_help(skb);
836 
837 	return true;
838 }
839 
840 static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
841 				   u8 il4_proto, u32 *type_cs_vlan_tso,
842 				   u32 *ol_type_vlan_len_msec)
843 {
844 	union {
845 		struct iphdr *v4;
846 		struct ipv6hdr *v6;
847 		unsigned char *hdr;
848 	} l3;
849 	u32 l4_proto = ol4_proto;
850 
851 	l3.hdr = skb_network_header(skb);
852 
853 	/* define OL3 type and tunnel type(OL4).*/
854 	if (skb->encapsulation) {
855 		/* define outer network header type.*/
856 		if (skb->protocol == htons(ETH_P_IP)) {
857 			if (skb_is_gso(skb))
858 				hnae3_set_field(*ol_type_vlan_len_msec,
859 						HNS3_TXD_OL3T_M,
860 						HNS3_TXD_OL3T_S,
861 						HNS3_OL3T_IPV4_CSUM);
862 			else
863 				hnae3_set_field(*ol_type_vlan_len_msec,
864 						HNS3_TXD_OL3T_M,
865 						HNS3_TXD_OL3T_S,
866 						HNS3_OL3T_IPV4_NO_CSUM);
867 
868 		} else if (skb->protocol == htons(ETH_P_IPV6)) {
869 			hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_M,
870 					HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6);
871 		}
872 
873 		/* define tunnel type(OL4).*/
874 		switch (l4_proto) {
875 		case IPPROTO_UDP:
876 			hnae3_set_field(*ol_type_vlan_len_msec,
877 					HNS3_TXD_TUNTYPE_M,
878 					HNS3_TXD_TUNTYPE_S,
879 					HNS3_TUN_MAC_IN_UDP);
880 			break;
881 		case IPPROTO_GRE:
882 			hnae3_set_field(*ol_type_vlan_len_msec,
883 					HNS3_TXD_TUNTYPE_M,
884 					HNS3_TXD_TUNTYPE_S,
885 					HNS3_TUN_NVGRE);
886 			break;
887 		default:
888 			/* drop the skb tunnel packet if hardware don't support,
889 			 * because hardware can't calculate csum when TSO.
890 			 */
891 			if (skb_is_gso(skb))
892 				return -EDOM;
893 
894 			/* the stack computes the IP header already,
895 			 * driver calculate l4 checksum when not TSO.
896 			 */
897 			skb_checksum_help(skb);
898 			return 0;
899 		}
900 
901 		l3.hdr = skb_inner_network_header(skb);
902 		l4_proto = il4_proto;
903 	}
904 
905 	if (l3.v4->version == 4) {
906 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
907 				HNS3_TXD_L3T_S, HNS3_L3T_IPV4);
908 
909 		/* the stack computes the IP header already, the only time we
910 		 * need the hardware to recompute it is in the case of TSO.
911 		 */
912 		if (skb_is_gso(skb))
913 			hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
914 	} else if (l3.v6->version == 6) {
915 		hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
916 				HNS3_TXD_L3T_S, HNS3_L3T_IPV6);
917 	}
918 
919 	switch (l4_proto) {
920 	case IPPROTO_TCP:
921 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
922 		hnae3_set_field(*type_cs_vlan_tso,
923 				HNS3_TXD_L4T_M,
924 				HNS3_TXD_L4T_S,
925 				HNS3_L4T_TCP);
926 		break;
927 	case IPPROTO_UDP:
928 		if (hns3_tunnel_csum_bug(skb))
929 			break;
930 
931 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
932 		hnae3_set_field(*type_cs_vlan_tso,
933 				HNS3_TXD_L4T_M,
934 				HNS3_TXD_L4T_S,
935 				HNS3_L4T_UDP);
936 		break;
937 	case IPPROTO_SCTP:
938 		hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
939 		hnae3_set_field(*type_cs_vlan_tso,
940 				HNS3_TXD_L4T_M,
941 				HNS3_TXD_L4T_S,
942 				HNS3_L4T_SCTP);
943 		break;
944 	default:
945 		/* drop the skb tunnel packet if hardware don't support,
946 		 * because hardware can't calculate csum when TSO.
947 		 */
948 		if (skb_is_gso(skb))
949 			return -EDOM;
950 
951 		/* the stack computes the IP header already,
952 		 * driver calculate l4 checksum when not TSO.
953 		 */
954 		skb_checksum_help(skb);
955 		return 0;
956 	}
957 
958 	return 0;
959 }
960 
961 static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
962 {
963 	/* Config bd buffer end */
964 	hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_BDTYPE_M,
965 			HNS3_TXD_BDTYPE_S, 0);
966 	hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
967 	hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
968 	hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_SC_M, HNS3_TXD_SC_S, 0);
969 }
970 
971 static int hns3_fill_desc_vtags(struct sk_buff *skb,
972 				struct hns3_enet_ring *tx_ring,
973 				u32 *inner_vlan_flag,
974 				u32 *out_vlan_flag,
975 				u16 *inner_vtag,
976 				u16 *out_vtag)
977 {
978 #define HNS3_TX_VLAN_PRIO_SHIFT 13
979 
980 	if (skb->protocol == htons(ETH_P_8021Q) &&
981 	    !(tx_ring->tqp->handle->kinfo.netdev->features &
982 	    NETIF_F_HW_VLAN_CTAG_TX)) {
983 		/* When HW VLAN acceleration is turned off, and the stack
984 		 * sets the protocol to 802.1q, the driver just need to
985 		 * set the protocol to the encapsulated ethertype.
986 		 */
987 		skb->protocol = vlan_get_protocol(skb);
988 		return 0;
989 	}
990 
991 	if (skb_vlan_tag_present(skb)) {
992 		u16 vlan_tag;
993 
994 		vlan_tag = skb_vlan_tag_get(skb);
995 		vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
996 
997 		/* Based on hw strategy, use out_vtag in two layer tag case,
998 		 * and use inner_vtag in one tag case.
999 		 */
1000 		if (skb->protocol == htons(ETH_P_8021Q)) {
1001 			hnae3_set_bit(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
1002 			*out_vtag = vlan_tag;
1003 		} else {
1004 			hnae3_set_bit(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
1005 			*inner_vtag = vlan_tag;
1006 		}
1007 	} else if (skb->protocol == htons(ETH_P_8021Q)) {
1008 		struct vlan_ethhdr *vhdr;
1009 		int rc;
1010 
1011 		rc = skb_cow_head(skb, 0);
1012 		if (rc < 0)
1013 			return rc;
1014 		vhdr = (struct vlan_ethhdr *)skb->data;
1015 		vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
1016 					<< HNS3_TX_VLAN_PRIO_SHIFT);
1017 	}
1018 
1019 	skb->protocol = vlan_get_protocol(skb);
1020 	return 0;
1021 }
1022 
1023 static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
1024 			  int size, int frag_end, enum hns_desc_type type)
1025 {
1026 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
1027 	struct hns3_desc *desc = &ring->desc[ring->next_to_use];
1028 	struct device *dev = ring_to_dev(ring);
1029 	u32 ol_type_vlan_len_msec = 0;
1030 	u16 bdtp_fe_sc_vld_ra_ri = 0;
1031 	struct skb_frag_struct *frag;
1032 	unsigned int frag_buf_num;
1033 	u32 type_cs_vlan_tso = 0;
1034 	struct sk_buff *skb;
1035 	u16 inner_vtag = 0;
1036 	u16 out_vtag = 0;
1037 	unsigned int k;
1038 	int sizeoflast;
1039 	u32 paylen = 0;
1040 	dma_addr_t dma;
1041 	u16 mss = 0;
1042 	u8 ol4_proto;
1043 	u8 il4_proto;
1044 	int ret;
1045 
1046 	if (type == DESC_TYPE_SKB) {
1047 		skb = (struct sk_buff *)priv;
1048 		paylen = skb->len;
1049 
1050 		ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
1051 					   &ol_type_vlan_len_msec,
1052 					   &inner_vtag, &out_vtag);
1053 		if (unlikely(ret))
1054 			return ret;
1055 
1056 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1057 			skb_reset_mac_len(skb);
1058 
1059 			ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
1060 			if (ret)
1061 				return ret;
1062 			hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
1063 					    &type_cs_vlan_tso,
1064 					    &ol_type_vlan_len_msec);
1065 			ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
1066 						      &type_cs_vlan_tso,
1067 						      &ol_type_vlan_len_msec);
1068 			if (ret)
1069 				return ret;
1070 
1071 			ret = hns3_set_tso(skb, &paylen, &mss,
1072 					   &type_cs_vlan_tso);
1073 			if (ret)
1074 				return ret;
1075 		}
1076 
1077 		/* Set txbd */
1078 		desc->tx.ol_type_vlan_len_msec =
1079 			cpu_to_le32(ol_type_vlan_len_msec);
1080 		desc->tx.type_cs_vlan_tso_len =
1081 			cpu_to_le32(type_cs_vlan_tso);
1082 		desc->tx.paylen = cpu_to_le32(paylen);
1083 		desc->tx.mss = cpu_to_le16(mss);
1084 		desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
1085 		desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
1086 
1087 		dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
1088 	} else {
1089 		frag = (struct skb_frag_struct *)priv;
1090 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
1091 	}
1092 
1093 	if (dma_mapping_error(ring->dev, dma)) {
1094 		ring->stats.sw_err_cnt++;
1095 		return -ENOMEM;
1096 	}
1097 
1098 	desc_cb->length = size;
1099 
1100 	frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1101 	sizeoflast = size % HNS3_MAX_BD_SIZE;
1102 	sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
1103 
1104 	/* When frag size is bigger than hardware limit, split this frag */
1105 	for (k = 0; k < frag_buf_num; k++) {
1106 		/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
1107 		desc_cb->priv = priv;
1108 		desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
1109 		desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
1110 					DESC_TYPE_SKB : DESC_TYPE_PAGE;
1111 
1112 		/* now, fill the descriptor */
1113 		desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
1114 		desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
1115 				(u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
1116 		hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
1117 				       frag_end && (k == frag_buf_num - 1) ?
1118 						1 : 0);
1119 		desc->tx.bdtp_fe_sc_vld_ra_ri =
1120 				cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
1121 
1122 		/* move ring pointer to next.*/
1123 		ring_ptr_move_fw(ring, next_to_use);
1124 
1125 		desc_cb = &ring->desc_cb[ring->next_to_use];
1126 		desc = &ring->desc[ring->next_to_use];
1127 	}
1128 
1129 	return 0;
1130 }
1131 
1132 static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
1133 				   struct hns3_enet_ring *ring)
1134 {
1135 	struct sk_buff *skb = *out_skb;
1136 	struct skb_frag_struct *frag;
1137 	int bdnum_for_frag;
1138 	int frag_num;
1139 	int buf_num;
1140 	int size;
1141 	int i;
1142 
1143 	size = skb_headlen(skb);
1144 	buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1145 
1146 	frag_num = skb_shinfo(skb)->nr_frags;
1147 	for (i = 0; i < frag_num; i++) {
1148 		frag = &skb_shinfo(skb)->frags[i];
1149 		size = skb_frag_size(frag);
1150 		bdnum_for_frag =
1151 			(size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
1152 		if (bdnum_for_frag > HNS3_MAX_BD_PER_FRAG)
1153 			return -ENOMEM;
1154 
1155 		buf_num += bdnum_for_frag;
1156 	}
1157 
1158 	if (buf_num > ring_space(ring))
1159 		return -EBUSY;
1160 
1161 	*bnum = buf_num;
1162 	return 0;
1163 }
1164 
1165 static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
1166 				  struct hns3_enet_ring *ring)
1167 {
1168 	struct sk_buff *skb = *out_skb;
1169 	int buf_num;
1170 
1171 	/* No. of segments (plus a header) */
1172 	buf_num = skb_shinfo(skb)->nr_frags + 1;
1173 
1174 	if (unlikely(ring_space(ring) < buf_num))
1175 		return -EBUSY;
1176 
1177 	*bnum = buf_num;
1178 
1179 	return 0;
1180 }
1181 
1182 static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
1183 {
1184 	struct device *dev = ring_to_dev(ring);
1185 	unsigned int i;
1186 
1187 	for (i = 0; i < ring->desc_num; i++) {
1188 		/* check if this is where we started */
1189 		if (ring->next_to_use == next_to_use_orig)
1190 			break;
1191 
1192 		/* unmap the descriptor dma address */
1193 		if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
1194 			dma_unmap_single(dev,
1195 					 ring->desc_cb[ring->next_to_use].dma,
1196 					ring->desc_cb[ring->next_to_use].length,
1197 					DMA_TO_DEVICE);
1198 		else if (ring->desc_cb[ring->next_to_use].length)
1199 			dma_unmap_page(dev,
1200 				       ring->desc_cb[ring->next_to_use].dma,
1201 				       ring->desc_cb[ring->next_to_use].length,
1202 				       DMA_TO_DEVICE);
1203 
1204 		ring->desc_cb[ring->next_to_use].length = 0;
1205 
1206 		/* rollback one */
1207 		ring_ptr_move_bw(ring, next_to_use);
1208 	}
1209 }
1210 
1211 netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
1212 {
1213 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1214 	struct hns3_nic_ring_data *ring_data =
1215 		&tx_ring_data(priv, skb->queue_mapping);
1216 	struct hns3_enet_ring *ring = ring_data->ring;
1217 	struct netdev_queue *dev_queue;
1218 	struct skb_frag_struct *frag;
1219 	int next_to_use_head;
1220 	int next_to_use_frag;
1221 	int buf_num;
1222 	int seg_num;
1223 	int size;
1224 	int ret;
1225 	int i;
1226 
1227 	/* Prefetch the data used later */
1228 	prefetch(skb->data);
1229 
1230 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
1231 	case -EBUSY:
1232 		u64_stats_update_begin(&ring->syncp);
1233 		ring->stats.tx_busy++;
1234 		u64_stats_update_end(&ring->syncp);
1235 
1236 		goto out_net_tx_busy;
1237 	case -ENOMEM:
1238 		u64_stats_update_begin(&ring->syncp);
1239 		ring->stats.sw_err_cnt++;
1240 		u64_stats_update_end(&ring->syncp);
1241 		netdev_err(netdev, "no memory to xmit!\n");
1242 
1243 		goto out_err_tx_ok;
1244 	default:
1245 		break;
1246 	}
1247 
1248 	/* No. of segments (plus a header) */
1249 	seg_num = skb_shinfo(skb)->nr_frags + 1;
1250 	/* Fill the first part */
1251 	size = skb_headlen(skb);
1252 
1253 	next_to_use_head = ring->next_to_use;
1254 
1255 	ret = priv->ops.fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
1256 				  DESC_TYPE_SKB);
1257 	if (ret)
1258 		goto head_fill_err;
1259 
1260 	next_to_use_frag = ring->next_to_use;
1261 	/* Fill the fragments */
1262 	for (i = 1; i < seg_num; i++) {
1263 		frag = &skb_shinfo(skb)->frags[i - 1];
1264 		size = skb_frag_size(frag);
1265 
1266 		ret = priv->ops.fill_desc(ring, frag, size,
1267 					  seg_num - 1 == i ? 1 : 0,
1268 					  DESC_TYPE_PAGE);
1269 
1270 		if (ret)
1271 			goto frag_fill_err;
1272 	}
1273 
1274 	/* Complete translate all packets */
1275 	dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
1276 	netdev_tx_sent_queue(dev_queue, skb->len);
1277 
1278 	wmb(); /* Commit all data before submit */
1279 
1280 	hnae3_queue_xmit(ring->tqp, buf_num);
1281 
1282 	return NETDEV_TX_OK;
1283 
1284 frag_fill_err:
1285 	hns3_clear_desc(ring, next_to_use_frag);
1286 
1287 head_fill_err:
1288 	hns3_clear_desc(ring, next_to_use_head);
1289 
1290 out_err_tx_ok:
1291 	dev_kfree_skb_any(skb);
1292 	return NETDEV_TX_OK;
1293 
1294 out_net_tx_busy:
1295 	netif_stop_subqueue(netdev, ring_data->queue_index);
1296 	smp_mb(); /* Commit all data before submit */
1297 
1298 	return NETDEV_TX_BUSY;
1299 }
1300 
1301 static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
1302 {
1303 	struct hnae3_handle *h = hns3_get_handle(netdev);
1304 	struct sockaddr *mac_addr = p;
1305 	int ret;
1306 
1307 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1308 		return -EADDRNOTAVAIL;
1309 
1310 	if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
1311 		netdev_info(netdev, "already using mac address %pM\n",
1312 			    mac_addr->sa_data);
1313 		return 0;
1314 	}
1315 
1316 	ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
1317 	if (ret) {
1318 		netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
1319 		return ret;
1320 	}
1321 
1322 	ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
1323 
1324 	return 0;
1325 }
1326 
1327 static int hns3_nic_do_ioctl(struct net_device *netdev,
1328 			     struct ifreq *ifr, int cmd)
1329 {
1330 	struct hnae3_handle *h = hns3_get_handle(netdev);
1331 
1332 	if (!netif_running(netdev))
1333 		return -EINVAL;
1334 
1335 	if (!h->ae_algo->ops->do_ioctl)
1336 		return -EOPNOTSUPP;
1337 
1338 	return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
1339 }
1340 
1341 static int hns3_nic_set_features(struct net_device *netdev,
1342 				 netdev_features_t features)
1343 {
1344 	netdev_features_t changed = netdev->features ^ features;
1345 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1346 	struct hnae3_handle *h = priv->ae_handle;
1347 	int ret;
1348 
1349 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
1350 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1351 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
1352 		else
1353 			priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
1354 	}
1355 
1356 	if (changed & (NETIF_F_GRO_HW) && h->ae_algo->ops->set_gro_en) {
1357 		if (features & NETIF_F_GRO_HW)
1358 			ret = h->ae_algo->ops->set_gro_en(h, true);
1359 		else
1360 			ret = h->ae_algo->ops->set_gro_en(h, false);
1361 		if (ret)
1362 			return ret;
1363 	}
1364 
1365 	if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
1366 	    h->ae_algo->ops->enable_vlan_filter) {
1367 		if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
1368 			h->ae_algo->ops->enable_vlan_filter(h, true);
1369 		else
1370 			h->ae_algo->ops->enable_vlan_filter(h, false);
1371 	}
1372 
1373 	if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
1374 	    h->ae_algo->ops->enable_hw_strip_rxvtag) {
1375 		if (features & NETIF_F_HW_VLAN_CTAG_RX)
1376 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, true);
1377 		else
1378 			ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, false);
1379 
1380 		if (ret)
1381 			return ret;
1382 	}
1383 
1384 	if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
1385 		if (features & NETIF_F_NTUPLE)
1386 			h->ae_algo->ops->enable_fd(h, true);
1387 		else
1388 			h->ae_algo->ops->enable_fd(h, false);
1389 	}
1390 
1391 	netdev->features = features;
1392 	return 0;
1393 }
1394 
1395 static void hns3_nic_get_stats64(struct net_device *netdev,
1396 				 struct rtnl_link_stats64 *stats)
1397 {
1398 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1399 	int queue_num = priv->ae_handle->kinfo.num_tqps;
1400 	struct hnae3_handle *handle = priv->ae_handle;
1401 	struct hns3_enet_ring *ring;
1402 	unsigned int start;
1403 	unsigned int idx;
1404 	u64 tx_bytes = 0;
1405 	u64 rx_bytes = 0;
1406 	u64 tx_pkts = 0;
1407 	u64 rx_pkts = 0;
1408 	u64 tx_drop = 0;
1409 	u64 rx_drop = 0;
1410 
1411 	if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
1412 		return;
1413 
1414 	handle->ae_algo->ops->update_stats(handle, &netdev->stats);
1415 
1416 	for (idx = 0; idx < queue_num; idx++) {
1417 		/* fetch the tx stats */
1418 		ring = priv->ring_data[idx].ring;
1419 		do {
1420 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1421 			tx_bytes += ring->stats.tx_bytes;
1422 			tx_pkts += ring->stats.tx_pkts;
1423 			tx_drop += ring->stats.tx_busy;
1424 			tx_drop += ring->stats.sw_err_cnt;
1425 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1426 
1427 		/* fetch the rx stats */
1428 		ring = priv->ring_data[idx + queue_num].ring;
1429 		do {
1430 			start = u64_stats_fetch_begin_irq(&ring->syncp);
1431 			rx_bytes += ring->stats.rx_bytes;
1432 			rx_pkts += ring->stats.rx_pkts;
1433 			rx_drop += ring->stats.non_vld_descs;
1434 			rx_drop += ring->stats.err_pkt_len;
1435 			rx_drop += ring->stats.l2_err;
1436 		} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1437 	}
1438 
1439 	stats->tx_bytes = tx_bytes;
1440 	stats->tx_packets = tx_pkts;
1441 	stats->rx_bytes = rx_bytes;
1442 	stats->rx_packets = rx_pkts;
1443 
1444 	stats->rx_errors = netdev->stats.rx_errors;
1445 	stats->multicast = netdev->stats.multicast;
1446 	stats->rx_length_errors = netdev->stats.rx_length_errors;
1447 	stats->rx_crc_errors = netdev->stats.rx_crc_errors;
1448 	stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1449 
1450 	stats->tx_errors = netdev->stats.tx_errors;
1451 	stats->rx_dropped = rx_drop + netdev->stats.rx_dropped;
1452 	stats->tx_dropped = tx_drop + netdev->stats.tx_dropped;
1453 	stats->collisions = netdev->stats.collisions;
1454 	stats->rx_over_errors = netdev->stats.rx_over_errors;
1455 	stats->rx_frame_errors = netdev->stats.rx_frame_errors;
1456 	stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
1457 	stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
1458 	stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
1459 	stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
1460 	stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
1461 	stats->tx_window_errors = netdev->stats.tx_window_errors;
1462 	stats->rx_compressed = netdev->stats.rx_compressed;
1463 	stats->tx_compressed = netdev->stats.tx_compressed;
1464 }
1465 
1466 static int hns3_setup_tc(struct net_device *netdev, void *type_data)
1467 {
1468 	struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
1469 	struct hnae3_handle *h = hns3_get_handle(netdev);
1470 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
1471 	u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
1472 	u8 tc = mqprio_qopt->qopt.num_tc;
1473 	u16 mode = mqprio_qopt->mode;
1474 	u8 hw = mqprio_qopt->qopt.hw;
1475 	bool if_running;
1476 	int ret;
1477 
1478 	if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
1479 	       mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
1480 		return -EOPNOTSUPP;
1481 
1482 	if (tc > HNAE3_MAX_TC)
1483 		return -EINVAL;
1484 
1485 	if (!netdev)
1486 		return -EINVAL;
1487 
1488 	if_running = netif_running(netdev);
1489 	if (if_running) {
1490 		hns3_nic_net_stop(netdev);
1491 		msleep(100);
1492 	}
1493 
1494 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
1495 		kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
1496 	if (ret)
1497 		goto out;
1498 
1499 	ret = hns3_nic_set_real_num_queue(netdev);
1500 
1501 out:
1502 	if (if_running)
1503 		hns3_nic_net_open(netdev);
1504 
1505 	return ret;
1506 }
1507 
1508 static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
1509 			     void *type_data)
1510 {
1511 	if (type != TC_SETUP_QDISC_MQPRIO)
1512 		return -EOPNOTSUPP;
1513 
1514 	return hns3_setup_tc(dev, type_data);
1515 }
1516 
1517 static int hns3_vlan_rx_add_vid(struct net_device *netdev,
1518 				__be16 proto, u16 vid)
1519 {
1520 	struct hnae3_handle *h = hns3_get_handle(netdev);
1521 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1522 	int ret = -EIO;
1523 
1524 	if (h->ae_algo->ops->set_vlan_filter)
1525 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
1526 
1527 	if (!ret)
1528 		set_bit(vid, priv->active_vlans);
1529 
1530 	return ret;
1531 }
1532 
1533 static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
1534 				 __be16 proto, u16 vid)
1535 {
1536 	struct hnae3_handle *h = hns3_get_handle(netdev);
1537 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1538 	int ret = -EIO;
1539 
1540 	if (h->ae_algo->ops->set_vlan_filter)
1541 		ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
1542 
1543 	if (!ret)
1544 		clear_bit(vid, priv->active_vlans);
1545 
1546 	return ret;
1547 }
1548 
1549 static int hns3_restore_vlan(struct net_device *netdev)
1550 {
1551 	struct hns3_nic_priv *priv = netdev_priv(netdev);
1552 	int ret = 0;
1553 	u16 vid;
1554 
1555 	for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
1556 		ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
1557 		if (ret) {
1558 			netdev_err(netdev, "Restore vlan: %d filter, ret:%d\n",
1559 				   vid, ret);
1560 			return ret;
1561 		}
1562 	}
1563 
1564 	return ret;
1565 }
1566 
1567 static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
1568 				u8 qos, __be16 vlan_proto)
1569 {
1570 	struct hnae3_handle *h = hns3_get_handle(netdev);
1571 	int ret = -EIO;
1572 
1573 	if (h->ae_algo->ops->set_vf_vlan_filter)
1574 		ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
1575 						   qos, vlan_proto);
1576 
1577 	return ret;
1578 }
1579 
1580 static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
1581 {
1582 	struct hnae3_handle *h = hns3_get_handle(netdev);
1583 	int ret;
1584 
1585 	if (!h->ae_algo->ops->set_mtu)
1586 		return -EOPNOTSUPP;
1587 
1588 	ret = h->ae_algo->ops->set_mtu(h, new_mtu);
1589 	if (ret)
1590 		netdev_err(netdev, "failed to change MTU in hardware %d\n",
1591 			   ret);
1592 	else
1593 		netdev->mtu = new_mtu;
1594 
1595 	return ret;
1596 }
1597 
1598 static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
1599 {
1600 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1601 	struct hns3_enet_ring *tx_ring = NULL;
1602 	int timeout_queue = 0;
1603 	int hw_head, hw_tail;
1604 	int i;
1605 
1606 	/* Find the stopped queue the same way the stack does */
1607 	for (i = 0; i < ndev->real_num_tx_queues; i++) {
1608 		struct netdev_queue *q;
1609 		unsigned long trans_start;
1610 
1611 		q = netdev_get_tx_queue(ndev, i);
1612 		trans_start = q->trans_start;
1613 		if (netif_xmit_stopped(q) &&
1614 		    time_after(jiffies,
1615 			       (trans_start + ndev->watchdog_timeo))) {
1616 			timeout_queue = i;
1617 			break;
1618 		}
1619 	}
1620 
1621 	if (i == ndev->num_tx_queues) {
1622 		netdev_info(ndev,
1623 			    "no netdev TX timeout queue found, timeout count: %llu\n",
1624 			    priv->tx_timeout_count);
1625 		return false;
1626 	}
1627 
1628 	tx_ring = priv->ring_data[timeout_queue].ring;
1629 
1630 	hw_head = readl_relaxed(tx_ring->tqp->io_base +
1631 				HNS3_RING_TX_RING_HEAD_REG);
1632 	hw_tail = readl_relaxed(tx_ring->tqp->io_base +
1633 				HNS3_RING_TX_RING_TAIL_REG);
1634 	netdev_info(ndev,
1635 		    "tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
1636 		    priv->tx_timeout_count,
1637 		    timeout_queue,
1638 		    tx_ring->next_to_use,
1639 		    tx_ring->next_to_clean,
1640 		    hw_head,
1641 		    hw_tail,
1642 		    readl(tx_ring->tqp_vector->mask_addr));
1643 
1644 	return true;
1645 }
1646 
1647 static void hns3_nic_net_timeout(struct net_device *ndev)
1648 {
1649 	struct hns3_nic_priv *priv = netdev_priv(ndev);
1650 	struct hnae3_handle *h = priv->ae_handle;
1651 
1652 	if (!hns3_get_tx_timeo_queue_info(ndev))
1653 		return;
1654 
1655 	priv->tx_timeout_count++;
1656 
1657 	/* request the reset, and let the hclge to determine
1658 	 * which reset level should be done
1659 	 */
1660 	if (h->ae_algo->ops->reset_event)
1661 		h->ae_algo->ops->reset_event(h->pdev, h);
1662 }
1663 
1664 static const struct net_device_ops hns3_nic_netdev_ops = {
1665 	.ndo_open		= hns3_nic_net_open,
1666 	.ndo_stop		= hns3_nic_net_stop,
1667 	.ndo_start_xmit		= hns3_nic_net_xmit,
1668 	.ndo_tx_timeout		= hns3_nic_net_timeout,
1669 	.ndo_set_mac_address	= hns3_nic_net_set_mac_address,
1670 	.ndo_do_ioctl		= hns3_nic_do_ioctl,
1671 	.ndo_change_mtu		= hns3_nic_change_mtu,
1672 	.ndo_set_features	= hns3_nic_set_features,
1673 	.ndo_get_stats64	= hns3_nic_get_stats64,
1674 	.ndo_setup_tc		= hns3_nic_setup_tc,
1675 	.ndo_set_rx_mode	= hns3_nic_set_rx_mode,
1676 	.ndo_vlan_rx_add_vid	= hns3_vlan_rx_add_vid,
1677 	.ndo_vlan_rx_kill_vid	= hns3_vlan_rx_kill_vid,
1678 	.ndo_set_vf_vlan	= hns3_ndo_set_vf_vlan,
1679 };
1680 
1681 static bool hns3_is_phys_func(struct pci_dev *pdev)
1682 {
1683 	u32 dev_id = pdev->device;
1684 
1685 	switch (dev_id) {
1686 	case HNAE3_DEV_ID_GE:
1687 	case HNAE3_DEV_ID_25GE:
1688 	case HNAE3_DEV_ID_25GE_RDMA:
1689 	case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
1690 	case HNAE3_DEV_ID_50GE_RDMA:
1691 	case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
1692 	case HNAE3_DEV_ID_100G_RDMA_MACSEC:
1693 		return true;
1694 	case HNAE3_DEV_ID_100G_VF:
1695 	case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
1696 		return false;
1697 	default:
1698 		dev_warn(&pdev->dev, "un-recognized pci device-id %d",
1699 			 dev_id);
1700 	}
1701 
1702 	return false;
1703 }
1704 
1705 static void hns3_disable_sriov(struct pci_dev *pdev)
1706 {
1707 	/* If our VFs are assigned we cannot shut down SR-IOV
1708 	 * without causing issues, so just leave the hardware
1709 	 * available but disabled
1710 	 */
1711 	if (pci_vfs_assigned(pdev)) {
1712 		dev_warn(&pdev->dev,
1713 			 "disabling driver while VFs are assigned\n");
1714 		return;
1715 	}
1716 
1717 	pci_disable_sriov(pdev);
1718 }
1719 
1720 static void hns3_get_dev_capability(struct pci_dev *pdev,
1721 				    struct hnae3_ae_dev *ae_dev)
1722 {
1723 	if (pdev->revision >= 0x21) {
1724 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
1725 		hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_GRO_B, 1);
1726 	}
1727 }
1728 
1729 /* hns3_probe - Device initialization routine
1730  * @pdev: PCI device information struct
1731  * @ent: entry in hns3_pci_tbl
1732  *
1733  * hns3_probe initializes a PF identified by a pci_dev structure.
1734  * The OS initialization, configuring of the PF private structure,
1735  * and a hardware reset occur.
1736  *
1737  * Returns 0 on success, negative on failure
1738  */
1739 static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1740 {
1741 	struct hnae3_ae_dev *ae_dev;
1742 	int ret;
1743 
1744 	ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
1745 			      GFP_KERNEL);
1746 	if (!ae_dev) {
1747 		ret = -ENOMEM;
1748 		return ret;
1749 	}
1750 
1751 	ae_dev->pdev = pdev;
1752 	ae_dev->flag = ent->driver_data;
1753 	ae_dev->dev_type = HNAE3_DEV_KNIC;
1754 	ae_dev->reset_type = HNAE3_NONE_RESET;
1755 	hns3_get_dev_capability(pdev, ae_dev);
1756 	pci_set_drvdata(pdev, ae_dev);
1757 
1758 	hnae3_register_ae_dev(ae_dev);
1759 
1760 	return 0;
1761 }
1762 
1763 /* hns3_remove - Device removal routine
1764  * @pdev: PCI device information struct
1765  */
1766 static void hns3_remove(struct pci_dev *pdev)
1767 {
1768 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1769 
1770 	if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
1771 		hns3_disable_sriov(pdev);
1772 
1773 	hnae3_unregister_ae_dev(ae_dev);
1774 }
1775 
1776 /**
1777  * hns3_pci_sriov_configure
1778  * @pdev: pointer to a pci_dev structure
1779  * @num_vfs: number of VFs to allocate
1780  *
1781  * Enable or change the number of VFs. Called when the user updates the number
1782  * of VFs in sysfs.
1783  **/
1784 static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
1785 {
1786 	int ret;
1787 
1788 	if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
1789 		dev_warn(&pdev->dev, "Can not config SRIOV\n");
1790 		return -EINVAL;
1791 	}
1792 
1793 	if (num_vfs) {
1794 		ret = pci_enable_sriov(pdev, num_vfs);
1795 		if (ret)
1796 			dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
1797 		else
1798 			return num_vfs;
1799 	} else if (!pci_vfs_assigned(pdev)) {
1800 		pci_disable_sriov(pdev);
1801 	} else {
1802 		dev_warn(&pdev->dev,
1803 			 "Unable to free VFs because some are assigned to VMs.\n");
1804 	}
1805 
1806 	return 0;
1807 }
1808 
1809 static void hns3_shutdown(struct pci_dev *pdev)
1810 {
1811 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1812 
1813 	hnae3_unregister_ae_dev(ae_dev);
1814 	devm_kfree(&pdev->dev, ae_dev);
1815 	pci_set_drvdata(pdev, NULL);
1816 
1817 	if (system_state == SYSTEM_POWER_OFF)
1818 		pci_set_power_state(pdev, PCI_D3hot);
1819 }
1820 
1821 static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
1822 					    pci_channel_state_t state)
1823 {
1824 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1825 	pci_ers_result_t ret;
1826 
1827 	dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
1828 
1829 	if (state == pci_channel_io_perm_failure)
1830 		return PCI_ERS_RESULT_DISCONNECT;
1831 
1832 	if (!ae_dev) {
1833 		dev_err(&pdev->dev,
1834 			"Can't recover - error happened during device init\n");
1835 		return PCI_ERS_RESULT_NONE;
1836 	}
1837 
1838 	if (ae_dev->ops->handle_hw_ras_error)
1839 		ret = ae_dev->ops->handle_hw_ras_error(ae_dev);
1840 	else
1841 		return PCI_ERS_RESULT_NONE;
1842 
1843 	return ret;
1844 }
1845 
1846 static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
1847 {
1848 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1849 	struct device *dev = &pdev->dev;
1850 
1851 	dev_info(dev, "requesting reset due to PCI error\n");
1852 
1853 	/* request the reset */
1854 	if (ae_dev->ops->reset_event) {
1855 		ae_dev->ops->reset_event(pdev, NULL);
1856 		return PCI_ERS_RESULT_RECOVERED;
1857 	}
1858 
1859 	return PCI_ERS_RESULT_DISCONNECT;
1860 }
1861 
1862 static void hns3_reset_prepare(struct pci_dev *pdev)
1863 {
1864 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1865 
1866 	dev_info(&pdev->dev, "hns3 flr prepare\n");
1867 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
1868 		ae_dev->ops->flr_prepare(ae_dev);
1869 }
1870 
1871 static void hns3_reset_done(struct pci_dev *pdev)
1872 {
1873 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1874 
1875 	dev_info(&pdev->dev, "hns3 flr done\n");
1876 	if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
1877 		ae_dev->ops->flr_done(ae_dev);
1878 }
1879 
1880 static const struct pci_error_handlers hns3_err_handler = {
1881 	.error_detected = hns3_error_detected,
1882 	.slot_reset     = hns3_slot_reset,
1883 	.reset_prepare	= hns3_reset_prepare,
1884 	.reset_done	= hns3_reset_done,
1885 };
1886 
1887 static struct pci_driver hns3_driver = {
1888 	.name     = hns3_driver_name,
1889 	.id_table = hns3_pci_tbl,
1890 	.probe    = hns3_probe,
1891 	.remove   = hns3_remove,
1892 	.shutdown = hns3_shutdown,
1893 	.sriov_configure = hns3_pci_sriov_configure,
1894 	.err_handler    = &hns3_err_handler,
1895 };
1896 
1897 /* set default feature to hns3 */
1898 static void hns3_set_default_feature(struct net_device *netdev)
1899 {
1900 	struct hnae3_handle *h = hns3_get_handle(netdev);
1901 	struct pci_dev *pdev = h->pdev;
1902 
1903 	netdev->priv_flags |= IFF_UNICAST_FLT;
1904 
1905 	netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1906 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1907 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1908 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1909 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1910 
1911 	netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
1912 
1913 	netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
1914 
1915 	netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1916 		NETIF_F_HW_VLAN_CTAG_FILTER |
1917 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1918 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1919 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1920 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1921 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1922 
1923 	netdev->vlan_features |=
1924 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
1925 		NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
1926 		NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1927 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1928 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1929 
1930 	netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1931 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
1932 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1933 		NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
1934 		NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
1935 		NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
1936 
1937 	if (pdev->revision >= 0x21) {
1938 		netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER |
1939 			NETIF_F_GRO_HW;
1940 		netdev->features |= NETIF_F_GRO_HW;
1941 
1942 		if (!(h->flags & HNAE3_SUPPORT_VF)) {
1943 			netdev->hw_features |= NETIF_F_NTUPLE;
1944 			netdev->features |= NETIF_F_NTUPLE;
1945 		}
1946 	}
1947 }
1948 
1949 static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
1950 			     struct hns3_desc_cb *cb)
1951 {
1952 	unsigned int order = hnae3_page_order(ring);
1953 	struct page *p;
1954 
1955 	p = dev_alloc_pages(order);
1956 	if (!p)
1957 		return -ENOMEM;
1958 
1959 	cb->priv = p;
1960 	cb->page_offset = 0;
1961 	cb->reuse_flag = 0;
1962 	cb->buf  = page_address(p);
1963 	cb->length = hnae3_page_size(ring);
1964 	cb->type = DESC_TYPE_PAGE;
1965 
1966 	return 0;
1967 }
1968 
1969 static void hns3_free_buffer(struct hns3_enet_ring *ring,
1970 			     struct hns3_desc_cb *cb)
1971 {
1972 	if (cb->type == DESC_TYPE_SKB)
1973 		dev_kfree_skb_any((struct sk_buff *)cb->priv);
1974 	else if (!HNAE3_IS_TX_RING(ring))
1975 		put_page((struct page *)cb->priv);
1976 	memset(cb, 0, sizeof(*cb));
1977 }
1978 
1979 static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
1980 {
1981 	cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
1982 			       cb->length, ring_to_dma_dir(ring));
1983 
1984 	if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
1985 		return -EIO;
1986 
1987 	return 0;
1988 }
1989 
1990 static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
1991 			      struct hns3_desc_cb *cb)
1992 {
1993 	if (cb->type == DESC_TYPE_SKB)
1994 		dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
1995 				 ring_to_dma_dir(ring));
1996 	else if (cb->length)
1997 		dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
1998 			       ring_to_dma_dir(ring));
1999 }
2000 
2001 static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
2002 {
2003 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2004 	ring->desc[i].addr = 0;
2005 }
2006 
2007 static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
2008 {
2009 	struct hns3_desc_cb *cb = &ring->desc_cb[i];
2010 
2011 	if (!ring->desc_cb[i].dma)
2012 		return;
2013 
2014 	hns3_buffer_detach(ring, i);
2015 	hns3_free_buffer(ring, cb);
2016 }
2017 
2018 static void hns3_free_buffers(struct hns3_enet_ring *ring)
2019 {
2020 	int i;
2021 
2022 	for (i = 0; i < ring->desc_num; i++)
2023 		hns3_free_buffer_detach(ring, i);
2024 }
2025 
2026 /* free desc along with its attached buffer */
2027 static void hns3_free_desc(struct hns3_enet_ring *ring)
2028 {
2029 	int size = ring->desc_num * sizeof(ring->desc[0]);
2030 
2031 	hns3_free_buffers(ring);
2032 
2033 	if (ring->desc) {
2034 		dma_free_coherent(ring_to_dev(ring), size,
2035 				  ring->desc, ring->desc_dma_addr);
2036 		ring->desc = NULL;
2037 	}
2038 }
2039 
2040 static int hns3_alloc_desc(struct hns3_enet_ring *ring)
2041 {
2042 	int size = ring->desc_num * sizeof(ring->desc[0]);
2043 
2044 	ring->desc = dma_zalloc_coherent(ring_to_dev(ring), size,
2045 					 &ring->desc_dma_addr,
2046 					 GFP_KERNEL);
2047 	if (!ring->desc)
2048 		return -ENOMEM;
2049 
2050 	return 0;
2051 }
2052 
2053 static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
2054 				   struct hns3_desc_cb *cb)
2055 {
2056 	int ret;
2057 
2058 	ret = hns3_alloc_buffer(ring, cb);
2059 	if (ret)
2060 		goto out;
2061 
2062 	ret = hns3_map_buffer(ring, cb);
2063 	if (ret)
2064 		goto out_with_buf;
2065 
2066 	return 0;
2067 
2068 out_with_buf:
2069 	hns3_free_buffer(ring, cb);
2070 out:
2071 	return ret;
2072 }
2073 
2074 static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
2075 {
2076 	int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
2077 
2078 	if (ret)
2079 		return ret;
2080 
2081 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2082 
2083 	return 0;
2084 }
2085 
2086 /* Allocate memory for raw pkg, and map with dma */
2087 static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
2088 {
2089 	int i, j, ret;
2090 
2091 	for (i = 0; i < ring->desc_num; i++) {
2092 		ret = hns3_alloc_buffer_attach(ring, i);
2093 		if (ret)
2094 			goto out_buffer_fail;
2095 	}
2096 
2097 	return 0;
2098 
2099 out_buffer_fail:
2100 	for (j = i - 1; j >= 0; j--)
2101 		hns3_free_buffer_detach(ring, j);
2102 	return ret;
2103 }
2104 
2105 /* detach a in-used buffer and replace with a reserved one  */
2106 static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
2107 				struct hns3_desc_cb *res_cb)
2108 {
2109 	hns3_unmap_buffer(ring, &ring->desc_cb[i]);
2110 	ring->desc_cb[i] = *res_cb;
2111 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
2112 	ring->desc[i].rx.bd_base_info = 0;
2113 }
2114 
2115 static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
2116 {
2117 	ring->desc_cb[i].reuse_flag = 0;
2118 	ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
2119 		+ ring->desc_cb[i].page_offset);
2120 	ring->desc[i].rx.bd_base_info = 0;
2121 }
2122 
2123 static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
2124 				      int *pkts)
2125 {
2126 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2127 
2128 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
2129 	(*bytes) += desc_cb->length;
2130 	/* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
2131 	hns3_free_buffer_detach(ring, ring->next_to_clean);
2132 
2133 	ring_ptr_move_fw(ring, next_to_clean);
2134 }
2135 
2136 static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
2137 {
2138 	int u = ring->next_to_use;
2139 	int c = ring->next_to_clean;
2140 
2141 	if (unlikely(h > ring->desc_num))
2142 		return 0;
2143 
2144 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
2145 }
2146 
2147 void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
2148 {
2149 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2150 	struct hns3_nic_priv *priv = netdev_priv(netdev);
2151 	struct netdev_queue *dev_queue;
2152 	int bytes, pkts;
2153 	int head;
2154 
2155 	head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
2156 	rmb(); /* Make sure head is ready before touch any data */
2157 
2158 	if (is_ring_empty(ring) || head == ring->next_to_clean)
2159 		return; /* no data to poll */
2160 
2161 	if (unlikely(!is_valid_clean_head(ring, head))) {
2162 		netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
2163 			   ring->next_to_use, ring->next_to_clean);
2164 
2165 		u64_stats_update_begin(&ring->syncp);
2166 		ring->stats.io_err_cnt++;
2167 		u64_stats_update_end(&ring->syncp);
2168 		return;
2169 	}
2170 
2171 	bytes = 0;
2172 	pkts = 0;
2173 	while (head != ring->next_to_clean) {
2174 		hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
2175 		/* Issue prefetch for next Tx descriptor */
2176 		prefetch(&ring->desc_cb[ring->next_to_clean]);
2177 	}
2178 
2179 	ring->tqp_vector->tx_group.total_bytes += bytes;
2180 	ring->tqp_vector->tx_group.total_packets += pkts;
2181 
2182 	u64_stats_update_begin(&ring->syncp);
2183 	ring->stats.tx_bytes += bytes;
2184 	ring->stats.tx_pkts += pkts;
2185 	u64_stats_update_end(&ring->syncp);
2186 
2187 	dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
2188 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
2189 
2190 	if (unlikely(pkts && netif_carrier_ok(netdev) &&
2191 		     (ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
2192 		/* Make sure that anybody stopping the queue after this
2193 		 * sees the new next_to_clean.
2194 		 */
2195 		smp_mb();
2196 		if (netif_tx_queue_stopped(dev_queue) &&
2197 		    !test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
2198 			netif_tx_wake_queue(dev_queue);
2199 			ring->stats.restart_queue++;
2200 		}
2201 	}
2202 }
2203 
2204 static int hns3_desc_unused(struct hns3_enet_ring *ring)
2205 {
2206 	int ntc = ring->next_to_clean;
2207 	int ntu = ring->next_to_use;
2208 
2209 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
2210 }
2211 
2212 static void
2213 hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
2214 {
2215 	struct hns3_desc_cb *desc_cb;
2216 	struct hns3_desc_cb res_cbs;
2217 	int i, ret;
2218 
2219 	for (i = 0; i < cleand_count; i++) {
2220 		desc_cb = &ring->desc_cb[ring->next_to_use];
2221 		if (desc_cb->reuse_flag) {
2222 			u64_stats_update_begin(&ring->syncp);
2223 			ring->stats.reuse_pg_cnt++;
2224 			u64_stats_update_end(&ring->syncp);
2225 
2226 			hns3_reuse_buffer(ring, ring->next_to_use);
2227 		} else {
2228 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
2229 			if (ret) {
2230 				u64_stats_update_begin(&ring->syncp);
2231 				ring->stats.sw_err_cnt++;
2232 				u64_stats_update_end(&ring->syncp);
2233 
2234 				netdev_err(ring->tqp->handle->kinfo.netdev,
2235 					   "hnae reserve buffer map failed.\n");
2236 				break;
2237 			}
2238 			hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
2239 		}
2240 
2241 		ring_ptr_move_fw(ring, next_to_use);
2242 	}
2243 
2244 	wmb(); /* Make all data has been write before submit */
2245 	writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
2246 }
2247 
2248 static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
2249 				struct hns3_enet_ring *ring, int pull_len,
2250 				struct hns3_desc_cb *desc_cb)
2251 {
2252 	struct hns3_desc *desc;
2253 	u32 truesize;
2254 	int size;
2255 	int last_offset;
2256 	bool twobufs;
2257 
2258 	twobufs = ((PAGE_SIZE < 8192) &&
2259 		hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
2260 
2261 	desc = &ring->desc[ring->next_to_clean];
2262 	size = le16_to_cpu(desc->rx.size);
2263 
2264 	truesize = hnae3_buf_size(ring);
2265 
2266 	if (!twobufs)
2267 		last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
2268 
2269 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
2270 			size - pull_len, truesize);
2271 
2272 	 /* Avoid re-using remote pages,flag default unreuse */
2273 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
2274 		return;
2275 
2276 	if (twobufs) {
2277 		/* If we are only owner of page we can reuse it */
2278 		if (likely(page_count(desc_cb->priv) == 1)) {
2279 			/* Flip page offset to other buffer */
2280 			desc_cb->page_offset ^= truesize;
2281 
2282 			desc_cb->reuse_flag = 1;
2283 			/* bump ref count on page before it is given*/
2284 			get_page(desc_cb->priv);
2285 		}
2286 		return;
2287 	}
2288 
2289 	/* Move offset up to the next cache line */
2290 	desc_cb->page_offset += truesize;
2291 
2292 	if (desc_cb->page_offset <= last_offset) {
2293 		desc_cb->reuse_flag = 1;
2294 		/* Bump ref count on page before it is given*/
2295 		get_page(desc_cb->priv);
2296 	}
2297 }
2298 
2299 static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
2300 			     struct hns3_desc *desc)
2301 {
2302 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2303 	int l3_type, l4_type;
2304 	u32 bd_base_info;
2305 	int ol4_type;
2306 	u32 l234info;
2307 
2308 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2309 	l234info = le32_to_cpu(desc->rx.l234_info);
2310 
2311 	skb->ip_summed = CHECKSUM_NONE;
2312 
2313 	skb_checksum_none_assert(skb);
2314 
2315 	if (!(netdev->features & NETIF_F_RXCSUM))
2316 		return;
2317 
2318 	/* We MUST enable hardware checksum before enabling hardware GRO */
2319 	if (skb_shinfo(skb)->gso_size) {
2320 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2321 		return;
2322 	}
2323 
2324 	/* check if hardware has done checksum */
2325 	if (!hnae3_get_bit(bd_base_info, HNS3_RXD_L3L4P_B))
2326 		return;
2327 
2328 	if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L3E_B) ||
2329 		     hnae3_get_bit(l234info, HNS3_RXD_L4E_B) ||
2330 		     hnae3_get_bit(l234info, HNS3_RXD_OL3E_B) ||
2331 		     hnae3_get_bit(l234info, HNS3_RXD_OL4E_B))) {
2332 		u64_stats_update_begin(&ring->syncp);
2333 		ring->stats.l3l4_csum_err++;
2334 		u64_stats_update_end(&ring->syncp);
2335 
2336 		return;
2337 	}
2338 
2339 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2340 				  HNS3_RXD_L3ID_S);
2341 	l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
2342 				  HNS3_RXD_L4ID_S);
2343 
2344 	ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
2345 				   HNS3_RXD_OL4ID_S);
2346 	switch (ol4_type) {
2347 	case HNS3_OL4_TYPE_MAC_IN_UDP:
2348 	case HNS3_OL4_TYPE_NVGRE:
2349 		skb->csum_level = 1;
2350 		/* fall through */
2351 	case HNS3_OL4_TYPE_NO_TUN:
2352 		/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
2353 		if ((l3_type == HNS3_L3_TYPE_IPV4 ||
2354 		     l3_type == HNS3_L3_TYPE_IPV6) &&
2355 		    (l4_type == HNS3_L4_TYPE_UDP ||
2356 		     l4_type == HNS3_L4_TYPE_TCP ||
2357 		     l4_type == HNS3_L4_TYPE_SCTP))
2358 			skb->ip_summed = CHECKSUM_UNNECESSARY;
2359 		break;
2360 	default:
2361 		break;
2362 	}
2363 }
2364 
2365 static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
2366 {
2367 	if (skb_has_frag_list(skb))
2368 		napi_gro_flush(&ring->tqp_vector->napi, false);
2369 
2370 	napi_gro_receive(&ring->tqp_vector->napi, skb);
2371 }
2372 
2373 static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
2374 				struct hns3_desc *desc, u32 l234info,
2375 				u16 *vlan_tag)
2376 {
2377 	struct pci_dev *pdev = ring->tqp->handle->pdev;
2378 
2379 	if (pdev->revision == 0x20) {
2380 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2381 		if (!(*vlan_tag & VLAN_VID_MASK))
2382 			*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2383 
2384 		return (*vlan_tag != 0);
2385 	}
2386 
2387 #define HNS3_STRP_OUTER_VLAN	0x1
2388 #define HNS3_STRP_INNER_VLAN	0x2
2389 
2390 	switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
2391 				HNS3_RXD_STRP_TAGP_S)) {
2392 	case HNS3_STRP_OUTER_VLAN:
2393 		*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
2394 		return true;
2395 	case HNS3_STRP_INNER_VLAN:
2396 		*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
2397 		return true;
2398 	default:
2399 		return false;
2400 	}
2401 }
2402 
2403 static int hns3_alloc_skb(struct hns3_enet_ring *ring, int length,
2404 			  unsigned char *va)
2405 {
2406 #define HNS3_NEED_ADD_FRAG	1
2407 	struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
2408 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2409 	struct sk_buff *skb;
2410 
2411 	ring->skb = napi_alloc_skb(&ring->tqp_vector->napi, HNS3_RX_HEAD_SIZE);
2412 	skb = ring->skb;
2413 	if (unlikely(!skb)) {
2414 		netdev_err(netdev, "alloc rx skb fail\n");
2415 
2416 		u64_stats_update_begin(&ring->syncp);
2417 		ring->stats.sw_err_cnt++;
2418 		u64_stats_update_end(&ring->syncp);
2419 
2420 		return -ENOMEM;
2421 	}
2422 
2423 	prefetchw(skb->data);
2424 
2425 	ring->pending_buf = 1;
2426 	ring->frag_num = 0;
2427 	ring->tail_skb = NULL;
2428 	if (length <= HNS3_RX_HEAD_SIZE) {
2429 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
2430 
2431 		/* We can reuse buffer as-is, just make sure it is local */
2432 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
2433 			desc_cb->reuse_flag = 1;
2434 		else /* This page cannot be reused so discard it */
2435 			put_page(desc_cb->priv);
2436 
2437 		ring_ptr_move_fw(ring, next_to_clean);
2438 		return 0;
2439 	}
2440 	u64_stats_update_begin(&ring->syncp);
2441 	ring->stats.seg_pkt_cnt++;
2442 	u64_stats_update_end(&ring->syncp);
2443 
2444 	ring->pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
2445 	__skb_put(skb, ring->pull_len);
2446 	hns3_nic_reuse_page(skb, ring->frag_num++, ring, ring->pull_len,
2447 			    desc_cb);
2448 	ring_ptr_move_fw(ring, next_to_clean);
2449 
2450 	return HNS3_NEED_ADD_FRAG;
2451 }
2452 
2453 static int hns3_add_frag(struct hns3_enet_ring *ring, struct hns3_desc *desc,
2454 			 struct sk_buff **out_skb, bool pending)
2455 {
2456 	struct sk_buff *skb = *out_skb;
2457 	struct sk_buff *head_skb = *out_skb;
2458 	struct sk_buff *new_skb;
2459 	struct hns3_desc_cb *desc_cb;
2460 	struct hns3_desc *pre_desc;
2461 	u32 bd_base_info;
2462 	int pre_bd;
2463 
2464 	/* if there is pending bd, the SW param next_to_clean has moved
2465 	 * to next and the next is NULL
2466 	 */
2467 	if (pending) {
2468 		pre_bd = (ring->next_to_clean - 1 + ring->desc_num) %
2469 			ring->desc_num;
2470 		pre_desc = &ring->desc[pre_bd];
2471 		bd_base_info = le32_to_cpu(pre_desc->rx.bd_base_info);
2472 	} else {
2473 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2474 	}
2475 
2476 	while (!hnae3_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
2477 		desc = &ring->desc[ring->next_to_clean];
2478 		desc_cb = &ring->desc_cb[ring->next_to_clean];
2479 		bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2480 		if (!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B))
2481 			return -ENXIO;
2482 
2483 		if (unlikely(ring->frag_num >= MAX_SKB_FRAGS)) {
2484 			new_skb = napi_alloc_skb(&ring->tqp_vector->napi,
2485 						 HNS3_RX_HEAD_SIZE);
2486 			if (unlikely(!new_skb)) {
2487 				netdev_err(ring->tqp->handle->kinfo.netdev,
2488 					   "alloc rx skb frag fail\n");
2489 				return -ENXIO;
2490 			}
2491 			ring->frag_num = 0;
2492 
2493 			if (ring->tail_skb) {
2494 				ring->tail_skb->next = new_skb;
2495 				ring->tail_skb = new_skb;
2496 			} else {
2497 				skb_shinfo(skb)->frag_list = new_skb;
2498 				ring->tail_skb = new_skb;
2499 			}
2500 		}
2501 
2502 		if (ring->tail_skb) {
2503 			head_skb->truesize += hnae3_buf_size(ring);
2504 			head_skb->data_len += le16_to_cpu(desc->rx.size);
2505 			head_skb->len += le16_to_cpu(desc->rx.size);
2506 			skb = ring->tail_skb;
2507 		}
2508 
2509 		hns3_nic_reuse_page(skb, ring->frag_num++, ring, 0, desc_cb);
2510 		ring_ptr_move_fw(ring, next_to_clean);
2511 		ring->pending_buf++;
2512 	}
2513 
2514 	return 0;
2515 }
2516 
2517 static void hns3_set_gro_param(struct sk_buff *skb, u32 l234info,
2518 			       u32 bd_base_info)
2519 {
2520 	u16 gro_count;
2521 	u32 l3_type;
2522 
2523 	gro_count = hnae3_get_field(l234info, HNS3_RXD_GRO_COUNT_M,
2524 				    HNS3_RXD_GRO_COUNT_S);
2525 	/* if there is no HW GRO, do not set gro params */
2526 	if (!gro_count)
2527 		return;
2528 
2529 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
2530 	 * to skb_shinfo(skb)->gso_segs
2531 	 */
2532 	NAPI_GRO_CB(skb)->count = gro_count;
2533 
2534 	l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
2535 				  HNS3_RXD_L3ID_S);
2536 	if (l3_type == HNS3_L3_TYPE_IPV4)
2537 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
2538 	else if (l3_type == HNS3_L3_TYPE_IPV6)
2539 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
2540 	else
2541 		return;
2542 
2543 	skb_shinfo(skb)->gso_size = hnae3_get_field(bd_base_info,
2544 						    HNS3_RXD_GRO_SIZE_M,
2545 						    HNS3_RXD_GRO_SIZE_S);
2546 	if (skb_shinfo(skb)->gso_size)
2547 		tcp_gro_complete(skb);
2548 }
2549 
2550 static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
2551 				     struct sk_buff *skb)
2552 {
2553 	struct hnae3_handle *handle = ring->tqp->handle;
2554 	enum pkt_hash_types rss_type;
2555 	struct hns3_desc *desc;
2556 	int last_bd;
2557 
2558 	/* When driver handle the rss type, ring->next_to_clean indicates the
2559 	 * first descriptor of next packet, need -1 here.
2560 	 */
2561 	last_bd = (ring->next_to_clean - 1 + ring->desc_num) % ring->desc_num;
2562 	desc = &ring->desc[last_bd];
2563 
2564 	if (le32_to_cpu(desc->rx.rss_hash))
2565 		rss_type = handle->kinfo.rss_type;
2566 	else
2567 		rss_type = PKT_HASH_TYPE_NONE;
2568 
2569 	skb_set_hash(skb, le32_to_cpu(desc->rx.rss_hash), rss_type);
2570 }
2571 
2572 static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
2573 			     struct sk_buff **out_skb)
2574 {
2575 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2576 	struct sk_buff *skb = ring->skb;
2577 	struct hns3_desc_cb *desc_cb;
2578 	struct hns3_desc *desc;
2579 	u32 bd_base_info;
2580 	u32 l234info;
2581 	int length;
2582 	int ret;
2583 
2584 	desc = &ring->desc[ring->next_to_clean];
2585 	desc_cb = &ring->desc_cb[ring->next_to_clean];
2586 
2587 	prefetch(desc);
2588 
2589 	length = le16_to_cpu(desc->rx.size);
2590 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2591 
2592 	/* Check valid BD */
2593 	if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B)))
2594 		return -ENXIO;
2595 
2596 	if (!skb)
2597 		ring->va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
2598 
2599 	/* Prefetch first cache line of first page
2600 	 * Idea is to cache few bytes of the header of the packet. Our L1 Cache
2601 	 * line size is 64B so need to prefetch twice to make it 128B. But in
2602 	 * actual we can have greater size of caches with 128B Level 1 cache
2603 	 * lines. In such a case, single fetch would suffice to cache in the
2604 	 * relevant part of the header.
2605 	 */
2606 	prefetch(ring->va);
2607 #if L1_CACHE_BYTES < 128
2608 	prefetch(ring->va + L1_CACHE_BYTES);
2609 #endif
2610 
2611 	if (!skb) {
2612 		ret = hns3_alloc_skb(ring, length, ring->va);
2613 		*out_skb = skb = ring->skb;
2614 
2615 		if (ret < 0) /* alloc buffer fail */
2616 			return ret;
2617 		if (ret > 0) { /* need add frag */
2618 			ret = hns3_add_frag(ring, desc, &skb, false);
2619 			if (ret)
2620 				return ret;
2621 
2622 			/* As the head data may be changed when GRO enable, copy
2623 			 * the head data in after other data rx completed
2624 			 */
2625 			memcpy(skb->data, ring->va,
2626 			       ALIGN(ring->pull_len, sizeof(long)));
2627 		}
2628 	} else {
2629 		ret = hns3_add_frag(ring, desc, &skb, true);
2630 		if (ret)
2631 			return ret;
2632 
2633 		/* As the head data may be changed when GRO enable, copy
2634 		 * the head data in after other data rx completed
2635 		 */
2636 		memcpy(skb->data, ring->va,
2637 		       ALIGN(ring->pull_len, sizeof(long)));
2638 	}
2639 
2640 	l234info = le32_to_cpu(desc->rx.l234_info);
2641 	bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
2642 
2643 	/* Based on hw strategy, the tag offloaded will be stored at
2644 	 * ot_vlan_tag in two layer tag case, and stored at vlan_tag
2645 	 * in one layer tag case.
2646 	 */
2647 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
2648 		u16 vlan_tag;
2649 
2650 		if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
2651 			__vlan_hwaccel_put_tag(skb,
2652 					       htons(ETH_P_8021Q),
2653 					       vlan_tag);
2654 	}
2655 
2656 	if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B))) {
2657 		u64_stats_update_begin(&ring->syncp);
2658 		ring->stats.non_vld_descs++;
2659 		u64_stats_update_end(&ring->syncp);
2660 
2661 		dev_kfree_skb_any(skb);
2662 		return -EINVAL;
2663 	}
2664 
2665 	if (unlikely((!desc->rx.pkt_len) ||
2666 		     hnae3_get_bit(l234info, HNS3_RXD_TRUNCAT_B))) {
2667 		u64_stats_update_begin(&ring->syncp);
2668 		ring->stats.err_pkt_len++;
2669 		u64_stats_update_end(&ring->syncp);
2670 
2671 		dev_kfree_skb_any(skb);
2672 		return -EFAULT;
2673 	}
2674 
2675 	if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L2E_B))) {
2676 		u64_stats_update_begin(&ring->syncp);
2677 		ring->stats.l2_err++;
2678 		u64_stats_update_end(&ring->syncp);
2679 
2680 		dev_kfree_skb_any(skb);
2681 		return -EFAULT;
2682 	}
2683 
2684 	u64_stats_update_begin(&ring->syncp);
2685 	ring->stats.rx_pkts++;
2686 	ring->stats.rx_bytes += skb->len;
2687 	u64_stats_update_end(&ring->syncp);
2688 
2689 	ring->tqp_vector->rx_group.total_bytes += skb->len;
2690 
2691 	/* This is needed in order to enable forwarding support */
2692 	hns3_set_gro_param(skb, l234info, bd_base_info);
2693 
2694 	hns3_rx_checksum(ring, skb, desc);
2695 	*out_skb = skb;
2696 	hns3_set_rx_skb_rss_type(ring, skb);
2697 
2698 	return 0;
2699 }
2700 
2701 int hns3_clean_rx_ring(
2702 		struct hns3_enet_ring *ring, int budget,
2703 		void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
2704 {
2705 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
2706 	struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
2707 	int recv_pkts, recv_bds, clean_count, err;
2708 	int unused_count = hns3_desc_unused(ring) - ring->pending_buf;
2709 	struct sk_buff *skb = ring->skb;
2710 	int num;
2711 
2712 	num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
2713 	rmb(); /* Make sure num taken effect before the other data is touched */
2714 
2715 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
2716 	num -= unused_count;
2717 
2718 	while (recv_pkts < budget && recv_bds < num) {
2719 		/* Reuse or realloc buffers */
2720 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
2721 			hns3_nic_alloc_rx_buffers(ring,
2722 						  clean_count + unused_count);
2723 			clean_count = 0;
2724 			unused_count = hns3_desc_unused(ring) -
2725 					ring->pending_buf;
2726 		}
2727 
2728 		/* Poll one pkt */
2729 		err = hns3_handle_rx_bd(ring, &skb);
2730 		if (unlikely(!skb)) /* This fault cannot be repaired */
2731 			goto out;
2732 
2733 		if (err == -ENXIO) { /* Do not get FE for the packet */
2734 			goto out;
2735 		} else if (unlikely(err)) {  /* Do jump the err */
2736 			recv_bds += ring->pending_buf;
2737 			clean_count += ring->pending_buf;
2738 			ring->skb = NULL;
2739 			ring->pending_buf = 0;
2740 			continue;
2741 		}
2742 
2743 		/* Do update ip stack process */
2744 		skb->protocol = eth_type_trans(skb, netdev);
2745 		rx_fn(ring, skb);
2746 		recv_bds += ring->pending_buf;
2747 		clean_count += ring->pending_buf;
2748 		ring->skb = NULL;
2749 		ring->pending_buf = 0;
2750 
2751 		recv_pkts++;
2752 	}
2753 
2754 out:
2755 	/* Make all data has been write before submit */
2756 	if (clean_count + unused_count > 0)
2757 		hns3_nic_alloc_rx_buffers(ring,
2758 					  clean_count + unused_count);
2759 
2760 	return recv_pkts;
2761 }
2762 
2763 static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
2764 {
2765 	struct hns3_enet_tqp_vector *tqp_vector =
2766 					ring_group->ring->tqp_vector;
2767 	enum hns3_flow_level_range new_flow_level;
2768 	int packets_per_msecs;
2769 	int bytes_per_msecs;
2770 	u32 time_passed_ms;
2771 	u16 new_int_gl;
2772 
2773 	if (!ring_group->coal.int_gl || !tqp_vector->last_jiffies)
2774 		return false;
2775 
2776 	if (ring_group->total_packets == 0) {
2777 		ring_group->coal.int_gl = HNS3_INT_GL_50K;
2778 		ring_group->coal.flow_level = HNS3_FLOW_LOW;
2779 		return true;
2780 	}
2781 
2782 	/* Simple throttlerate management
2783 	 * 0-10MB/s   lower     (50000 ints/s)
2784 	 * 10-20MB/s   middle    (20000 ints/s)
2785 	 * 20-1249MB/s high      (18000 ints/s)
2786 	 * > 40000pps  ultra     (8000 ints/s)
2787 	 */
2788 	new_flow_level = ring_group->coal.flow_level;
2789 	new_int_gl = ring_group->coal.int_gl;
2790 	time_passed_ms =
2791 		jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
2792 
2793 	if (!time_passed_ms)
2794 		return false;
2795 
2796 	do_div(ring_group->total_packets, time_passed_ms);
2797 	packets_per_msecs = ring_group->total_packets;
2798 
2799 	do_div(ring_group->total_bytes, time_passed_ms);
2800 	bytes_per_msecs = ring_group->total_bytes;
2801 
2802 #define HNS3_RX_LOW_BYTE_RATE 10000
2803 #define HNS3_RX_MID_BYTE_RATE 20000
2804 
2805 	switch (new_flow_level) {
2806 	case HNS3_FLOW_LOW:
2807 		if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
2808 			new_flow_level = HNS3_FLOW_MID;
2809 		break;
2810 	case HNS3_FLOW_MID:
2811 		if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
2812 			new_flow_level = HNS3_FLOW_HIGH;
2813 		else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
2814 			new_flow_level = HNS3_FLOW_LOW;
2815 		break;
2816 	case HNS3_FLOW_HIGH:
2817 	case HNS3_FLOW_ULTRA:
2818 	default:
2819 		if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
2820 			new_flow_level = HNS3_FLOW_MID;
2821 		break;
2822 	}
2823 
2824 #define HNS3_RX_ULTRA_PACKET_RATE 40
2825 
2826 	if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
2827 	    &tqp_vector->rx_group == ring_group)
2828 		new_flow_level = HNS3_FLOW_ULTRA;
2829 
2830 	switch (new_flow_level) {
2831 	case HNS3_FLOW_LOW:
2832 		new_int_gl = HNS3_INT_GL_50K;
2833 		break;
2834 	case HNS3_FLOW_MID:
2835 		new_int_gl = HNS3_INT_GL_20K;
2836 		break;
2837 	case HNS3_FLOW_HIGH:
2838 		new_int_gl = HNS3_INT_GL_18K;
2839 		break;
2840 	case HNS3_FLOW_ULTRA:
2841 		new_int_gl = HNS3_INT_GL_8K;
2842 		break;
2843 	default:
2844 		break;
2845 	}
2846 
2847 	ring_group->total_bytes = 0;
2848 	ring_group->total_packets = 0;
2849 	ring_group->coal.flow_level = new_flow_level;
2850 	if (new_int_gl != ring_group->coal.int_gl) {
2851 		ring_group->coal.int_gl = new_int_gl;
2852 		return true;
2853 	}
2854 	return false;
2855 }
2856 
2857 static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
2858 {
2859 	struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
2860 	struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
2861 	bool rx_update, tx_update;
2862 
2863 	/* update param every 1000ms */
2864 	if (time_before(jiffies,
2865 			tqp_vector->last_jiffies + msecs_to_jiffies(1000)))
2866 		return;
2867 
2868 	if (rx_group->coal.gl_adapt_enable) {
2869 		rx_update = hns3_get_new_int_gl(rx_group);
2870 		if (rx_update)
2871 			hns3_set_vector_coalesce_rx_gl(tqp_vector,
2872 						       rx_group->coal.int_gl);
2873 	}
2874 
2875 	if (tx_group->coal.gl_adapt_enable) {
2876 		tx_update = hns3_get_new_int_gl(&tqp_vector->tx_group);
2877 		if (tx_update)
2878 			hns3_set_vector_coalesce_tx_gl(tqp_vector,
2879 						       tx_group->coal.int_gl);
2880 	}
2881 
2882 	tqp_vector->last_jiffies = jiffies;
2883 }
2884 
2885 static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
2886 {
2887 	struct hns3_nic_priv *priv = netdev_priv(napi->dev);
2888 	struct hns3_enet_ring *ring;
2889 	int rx_pkt_total = 0;
2890 
2891 	struct hns3_enet_tqp_vector *tqp_vector =
2892 		container_of(napi, struct hns3_enet_tqp_vector, napi);
2893 	bool clean_complete = true;
2894 	int rx_budget;
2895 
2896 	if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2897 		napi_complete(napi);
2898 		return 0;
2899 	}
2900 
2901 	/* Since the actual Tx work is minimal, we can give the Tx a larger
2902 	 * budget and be more aggressive about cleaning up the Tx descriptors.
2903 	 */
2904 	hns3_for_each_ring(ring, tqp_vector->tx_group)
2905 		hns3_clean_tx_ring(ring);
2906 
2907 	/* make sure rx ring budget not smaller than 1 */
2908 	rx_budget = max(budget / tqp_vector->num_tqps, 1);
2909 
2910 	hns3_for_each_ring(ring, tqp_vector->rx_group) {
2911 		int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
2912 						    hns3_rx_skb);
2913 
2914 		if (rx_cleaned >= rx_budget)
2915 			clean_complete = false;
2916 
2917 		rx_pkt_total += rx_cleaned;
2918 	}
2919 
2920 	tqp_vector->rx_group.total_packets += rx_pkt_total;
2921 
2922 	if (!clean_complete)
2923 		return budget;
2924 
2925 	if (napi_complete(napi) &&
2926 	    likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
2927 		hns3_update_new_int_gl(tqp_vector);
2928 		hns3_mask_vector_irq(tqp_vector, 1);
2929 	}
2930 
2931 	return rx_pkt_total;
2932 }
2933 
2934 static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
2935 				      struct hnae3_ring_chain_node *head)
2936 {
2937 	struct pci_dev *pdev = tqp_vector->handle->pdev;
2938 	struct hnae3_ring_chain_node *cur_chain = head;
2939 	struct hnae3_ring_chain_node *chain;
2940 	struct hns3_enet_ring *tx_ring;
2941 	struct hns3_enet_ring *rx_ring;
2942 
2943 	tx_ring = tqp_vector->tx_group.ring;
2944 	if (tx_ring) {
2945 		cur_chain->tqp_index = tx_ring->tqp->tqp_index;
2946 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2947 			      HNAE3_RING_TYPE_TX);
2948 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2949 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
2950 
2951 		cur_chain->next = NULL;
2952 
2953 		while (tx_ring->next) {
2954 			tx_ring = tx_ring->next;
2955 
2956 			chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
2957 					     GFP_KERNEL);
2958 			if (!chain)
2959 				goto err_free_chain;
2960 
2961 			cur_chain->next = chain;
2962 			chain->tqp_index = tx_ring->tqp->tqp_index;
2963 			hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2964 				      HNAE3_RING_TYPE_TX);
2965 			hnae3_set_field(chain->int_gl_idx,
2966 					HNAE3_RING_GL_IDX_M,
2967 					HNAE3_RING_GL_IDX_S,
2968 					HNAE3_RING_GL_TX);
2969 
2970 			cur_chain = chain;
2971 		}
2972 	}
2973 
2974 	rx_ring = tqp_vector->rx_group.ring;
2975 	if (!tx_ring && rx_ring) {
2976 		cur_chain->next = NULL;
2977 		cur_chain->tqp_index = rx_ring->tqp->tqp_index;
2978 		hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
2979 			      HNAE3_RING_TYPE_RX);
2980 		hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2981 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2982 
2983 		rx_ring = rx_ring->next;
2984 	}
2985 
2986 	while (rx_ring) {
2987 		chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
2988 		if (!chain)
2989 			goto err_free_chain;
2990 
2991 		cur_chain->next = chain;
2992 		chain->tqp_index = rx_ring->tqp->tqp_index;
2993 		hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
2994 			      HNAE3_RING_TYPE_RX);
2995 		hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
2996 				HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
2997 
2998 		cur_chain = chain;
2999 
3000 		rx_ring = rx_ring->next;
3001 	}
3002 
3003 	return 0;
3004 
3005 err_free_chain:
3006 	cur_chain = head->next;
3007 	while (cur_chain) {
3008 		chain = cur_chain->next;
3009 		devm_kfree(&pdev->dev, cur_chain);
3010 		cur_chain = chain;
3011 	}
3012 	head->next = NULL;
3013 
3014 	return -ENOMEM;
3015 }
3016 
3017 static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
3018 					struct hnae3_ring_chain_node *head)
3019 {
3020 	struct pci_dev *pdev = tqp_vector->handle->pdev;
3021 	struct hnae3_ring_chain_node *chain_tmp, *chain;
3022 
3023 	chain = head->next;
3024 
3025 	while (chain) {
3026 		chain_tmp = chain->next;
3027 		devm_kfree(&pdev->dev, chain);
3028 		chain = chain_tmp;
3029 	}
3030 }
3031 
3032 static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
3033 				   struct hns3_enet_ring *ring)
3034 {
3035 	ring->next = group->ring;
3036 	group->ring = ring;
3037 
3038 	group->count++;
3039 }
3040 
3041 static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
3042 {
3043 	struct pci_dev *pdev = priv->ae_handle->pdev;
3044 	struct hns3_enet_tqp_vector *tqp_vector;
3045 	int num_vectors = priv->vector_num;
3046 	int numa_node;
3047 	int vector_i;
3048 
3049 	numa_node = dev_to_node(&pdev->dev);
3050 
3051 	for (vector_i = 0; vector_i < num_vectors; vector_i++) {
3052 		tqp_vector = &priv->tqp_vector[vector_i];
3053 		cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
3054 				&tqp_vector->affinity_mask);
3055 	}
3056 }
3057 
3058 static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
3059 {
3060 	struct hnae3_ring_chain_node vector_ring_chain;
3061 	struct hnae3_handle *h = priv->ae_handle;
3062 	struct hns3_enet_tqp_vector *tqp_vector;
3063 	int ret = 0;
3064 	int i;
3065 
3066 	hns3_nic_set_cpumask(priv);
3067 
3068 	for (i = 0; i < priv->vector_num; i++) {
3069 		tqp_vector = &priv->tqp_vector[i];
3070 		hns3_vector_gl_rl_init_hw(tqp_vector, priv);
3071 		tqp_vector->num_tqps = 0;
3072 	}
3073 
3074 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3075 		u16 vector_i = i % priv->vector_num;
3076 		u16 tqp_num = h->kinfo.num_tqps;
3077 
3078 		tqp_vector = &priv->tqp_vector[vector_i];
3079 
3080 		hns3_add_ring_to_group(&tqp_vector->tx_group,
3081 				       priv->ring_data[i].ring);
3082 
3083 		hns3_add_ring_to_group(&tqp_vector->rx_group,
3084 				       priv->ring_data[i + tqp_num].ring);
3085 
3086 		priv->ring_data[i].ring->tqp_vector = tqp_vector;
3087 		priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
3088 		tqp_vector->num_tqps++;
3089 	}
3090 
3091 	for (i = 0; i < priv->vector_num; i++) {
3092 		tqp_vector = &priv->tqp_vector[i];
3093 
3094 		tqp_vector->rx_group.total_bytes = 0;
3095 		tqp_vector->rx_group.total_packets = 0;
3096 		tqp_vector->tx_group.total_bytes = 0;
3097 		tqp_vector->tx_group.total_packets = 0;
3098 		tqp_vector->handle = h;
3099 
3100 		ret = hns3_get_vector_ring_chain(tqp_vector,
3101 						 &vector_ring_chain);
3102 		if (ret)
3103 			goto map_ring_fail;
3104 
3105 		ret = h->ae_algo->ops->map_ring_to_vector(h,
3106 			tqp_vector->vector_irq, &vector_ring_chain);
3107 
3108 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3109 
3110 		if (ret)
3111 			goto map_ring_fail;
3112 
3113 		netif_napi_add(priv->netdev, &tqp_vector->napi,
3114 			       hns3_nic_common_poll, NAPI_POLL_WEIGHT);
3115 	}
3116 
3117 	return 0;
3118 
3119 map_ring_fail:
3120 	while (i--)
3121 		netif_napi_del(&priv->tqp_vector[i].napi);
3122 
3123 	return ret;
3124 }
3125 
3126 static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
3127 {
3128 #define HNS3_VECTOR_PF_MAX_NUM		64
3129 
3130 	struct hnae3_handle *h = priv->ae_handle;
3131 	struct hns3_enet_tqp_vector *tqp_vector;
3132 	struct hnae3_vector_info *vector;
3133 	struct pci_dev *pdev = h->pdev;
3134 	u16 tqp_num = h->kinfo.num_tqps;
3135 	u16 vector_num;
3136 	int ret = 0;
3137 	u16 i;
3138 
3139 	/* RSS size, cpu online and vector_num should be the same */
3140 	/* Should consider 2p/4p later */
3141 	vector_num = min_t(u16, num_online_cpus(), tqp_num);
3142 	vector_num = min_t(u16, vector_num, HNS3_VECTOR_PF_MAX_NUM);
3143 
3144 	vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
3145 			      GFP_KERNEL);
3146 	if (!vector)
3147 		return -ENOMEM;
3148 
3149 	vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
3150 
3151 	priv->vector_num = vector_num;
3152 	priv->tqp_vector = (struct hns3_enet_tqp_vector *)
3153 		devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
3154 			     GFP_KERNEL);
3155 	if (!priv->tqp_vector) {
3156 		ret = -ENOMEM;
3157 		goto out;
3158 	}
3159 
3160 	for (i = 0; i < priv->vector_num; i++) {
3161 		tqp_vector = &priv->tqp_vector[i];
3162 		tqp_vector->idx = i;
3163 		tqp_vector->mask_addr = vector[i].io_addr;
3164 		tqp_vector->vector_irq = vector[i].vector;
3165 		hns3_vector_gl_rl_init(tqp_vector, priv);
3166 	}
3167 
3168 out:
3169 	devm_kfree(&pdev->dev, vector);
3170 	return ret;
3171 }
3172 
3173 static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
3174 {
3175 	group->ring = NULL;
3176 	group->count = 0;
3177 }
3178 
3179 static int hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
3180 {
3181 	struct hnae3_ring_chain_node vector_ring_chain;
3182 	struct hnae3_handle *h = priv->ae_handle;
3183 	struct hns3_enet_tqp_vector *tqp_vector;
3184 	int i, ret;
3185 
3186 	for (i = 0; i < priv->vector_num; i++) {
3187 		tqp_vector = &priv->tqp_vector[i];
3188 
3189 		ret = hns3_get_vector_ring_chain(tqp_vector,
3190 						 &vector_ring_chain);
3191 		if (ret)
3192 			return ret;
3193 
3194 		ret = h->ae_algo->ops->unmap_ring_from_vector(h,
3195 			tqp_vector->vector_irq, &vector_ring_chain);
3196 		if (ret)
3197 			return ret;
3198 
3199 		hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
3200 
3201 		if (tqp_vector->irq_init_flag == HNS3_VECTOR_INITED) {
3202 			irq_set_affinity_notifier(tqp_vector->vector_irq,
3203 						  NULL);
3204 			irq_set_affinity_hint(tqp_vector->vector_irq, NULL);
3205 			free_irq(tqp_vector->vector_irq, tqp_vector);
3206 			tqp_vector->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3207 		}
3208 
3209 		priv->ring_data[i].ring->irq_init_flag = HNS3_VECTOR_NOT_INITED;
3210 		hns3_clear_ring_group(&tqp_vector->rx_group);
3211 		hns3_clear_ring_group(&tqp_vector->tx_group);
3212 		netif_napi_del(&priv->tqp_vector[i].napi);
3213 	}
3214 
3215 	return 0;
3216 }
3217 
3218 static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
3219 {
3220 	struct hnae3_handle *h = priv->ae_handle;
3221 	struct pci_dev *pdev = h->pdev;
3222 	int i, ret;
3223 
3224 	for (i = 0; i < priv->vector_num; i++) {
3225 		struct hns3_enet_tqp_vector *tqp_vector;
3226 
3227 		tqp_vector = &priv->tqp_vector[i];
3228 		ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
3229 		if (ret)
3230 			return ret;
3231 	}
3232 
3233 	devm_kfree(&pdev->dev, priv->tqp_vector);
3234 	return 0;
3235 }
3236 
3237 static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
3238 			     int ring_type)
3239 {
3240 	struct hns3_nic_ring_data *ring_data = priv->ring_data;
3241 	int queue_num = priv->ae_handle->kinfo.num_tqps;
3242 	struct pci_dev *pdev = priv->ae_handle->pdev;
3243 	struct hns3_enet_ring *ring;
3244 
3245 	ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
3246 	if (!ring)
3247 		return -ENOMEM;
3248 
3249 	if (ring_type == HNAE3_RING_TYPE_TX) {
3250 		ring_data[q->tqp_index].ring = ring;
3251 		ring_data[q->tqp_index].queue_index = q->tqp_index;
3252 		ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
3253 	} else {
3254 		ring_data[q->tqp_index + queue_num].ring = ring;
3255 		ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
3256 		ring->io_base = q->io_base;
3257 	}
3258 
3259 	hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
3260 
3261 	ring->tqp = q;
3262 	ring->desc = NULL;
3263 	ring->desc_cb = NULL;
3264 	ring->dev = priv->dev;
3265 	ring->desc_dma_addr = 0;
3266 	ring->buf_size = q->buf_size;
3267 	ring->desc_num = q->desc_num;
3268 	ring->next_to_use = 0;
3269 	ring->next_to_clean = 0;
3270 
3271 	return 0;
3272 }
3273 
3274 static int hns3_queue_to_ring(struct hnae3_queue *tqp,
3275 			      struct hns3_nic_priv *priv)
3276 {
3277 	int ret;
3278 
3279 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
3280 	if (ret)
3281 		return ret;
3282 
3283 	ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
3284 	if (ret) {
3285 		devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
3286 		return ret;
3287 	}
3288 
3289 	return 0;
3290 }
3291 
3292 static int hns3_get_ring_config(struct hns3_nic_priv *priv)
3293 {
3294 	struct hnae3_handle *h = priv->ae_handle;
3295 	struct pci_dev *pdev = h->pdev;
3296 	int i, ret;
3297 
3298 	priv->ring_data =  devm_kzalloc(&pdev->dev,
3299 					array3_size(h->kinfo.num_tqps,
3300 						    sizeof(*priv->ring_data),
3301 						    2),
3302 					GFP_KERNEL);
3303 	if (!priv->ring_data)
3304 		return -ENOMEM;
3305 
3306 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3307 		ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
3308 		if (ret)
3309 			goto err;
3310 	}
3311 
3312 	return 0;
3313 err:
3314 	while (i--) {
3315 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3316 		devm_kfree(priv->dev,
3317 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3318 	}
3319 
3320 	devm_kfree(&pdev->dev, priv->ring_data);
3321 	return ret;
3322 }
3323 
3324 static void hns3_put_ring_config(struct hns3_nic_priv *priv)
3325 {
3326 	struct hnae3_handle *h = priv->ae_handle;
3327 	int i;
3328 
3329 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3330 		devm_kfree(priv->dev, priv->ring_data[i].ring);
3331 		devm_kfree(priv->dev,
3332 			   priv->ring_data[i + h->kinfo.num_tqps].ring);
3333 	}
3334 	devm_kfree(priv->dev, priv->ring_data);
3335 }
3336 
3337 static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
3338 {
3339 	int ret;
3340 
3341 	if (ring->desc_num <= 0 || ring->buf_size <= 0)
3342 		return -EINVAL;
3343 
3344 	ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
3345 				GFP_KERNEL);
3346 	if (!ring->desc_cb) {
3347 		ret = -ENOMEM;
3348 		goto out;
3349 	}
3350 
3351 	ret = hns3_alloc_desc(ring);
3352 	if (ret)
3353 		goto out_with_desc_cb;
3354 
3355 	if (!HNAE3_IS_TX_RING(ring)) {
3356 		ret = hns3_alloc_ring_buffers(ring);
3357 		if (ret)
3358 			goto out_with_desc;
3359 	}
3360 
3361 	return 0;
3362 
3363 out_with_desc:
3364 	hns3_free_desc(ring);
3365 out_with_desc_cb:
3366 	kfree(ring->desc_cb);
3367 	ring->desc_cb = NULL;
3368 out:
3369 	return ret;
3370 }
3371 
3372 static void hns3_fini_ring(struct hns3_enet_ring *ring)
3373 {
3374 	hns3_free_desc(ring);
3375 	kfree(ring->desc_cb);
3376 	ring->desc_cb = NULL;
3377 	ring->next_to_clean = 0;
3378 	ring->next_to_use = 0;
3379 }
3380 
3381 static int hns3_buf_size2type(u32 buf_size)
3382 {
3383 	int bd_size_type;
3384 
3385 	switch (buf_size) {
3386 	case 512:
3387 		bd_size_type = HNS3_BD_SIZE_512_TYPE;
3388 		break;
3389 	case 1024:
3390 		bd_size_type = HNS3_BD_SIZE_1024_TYPE;
3391 		break;
3392 	case 2048:
3393 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3394 		break;
3395 	case 4096:
3396 		bd_size_type = HNS3_BD_SIZE_4096_TYPE;
3397 		break;
3398 	default:
3399 		bd_size_type = HNS3_BD_SIZE_2048_TYPE;
3400 	}
3401 
3402 	return bd_size_type;
3403 }
3404 
3405 static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
3406 {
3407 	dma_addr_t dma = ring->desc_dma_addr;
3408 	struct hnae3_queue *q = ring->tqp;
3409 
3410 	if (!HNAE3_IS_TX_RING(ring)) {
3411 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
3412 			       (u32)dma);
3413 		hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
3414 			       (u32)((dma >> 31) >> 1));
3415 
3416 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
3417 			       hns3_buf_size2type(ring->buf_size));
3418 		hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
3419 			       ring->desc_num / 8 - 1);
3420 
3421 	} else {
3422 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
3423 			       (u32)dma);
3424 		hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
3425 			       (u32)((dma >> 31) >> 1));
3426 
3427 		hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
3428 			       ring->desc_num / 8 - 1);
3429 	}
3430 }
3431 
3432 static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
3433 {
3434 	struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
3435 	int i;
3436 
3437 	for (i = 0; i < HNAE3_MAX_TC; i++) {
3438 		struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
3439 		int j;
3440 
3441 		if (!tc_info->enable)
3442 			continue;
3443 
3444 		for (j = 0; j < tc_info->tqp_count; j++) {
3445 			struct hnae3_queue *q;
3446 
3447 			q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
3448 			hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
3449 				       tc_info->tc);
3450 		}
3451 	}
3452 }
3453 
3454 int hns3_init_all_ring(struct hns3_nic_priv *priv)
3455 {
3456 	struct hnae3_handle *h = priv->ae_handle;
3457 	int ring_num = h->kinfo.num_tqps * 2;
3458 	int i, j;
3459 	int ret;
3460 
3461 	for (i = 0; i < ring_num; i++) {
3462 		ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
3463 		if (ret) {
3464 			dev_err(priv->dev,
3465 				"Alloc ring memory fail! ret=%d\n", ret);
3466 			goto out_when_alloc_ring_memory;
3467 		}
3468 
3469 		u64_stats_init(&priv->ring_data[i].ring->syncp);
3470 	}
3471 
3472 	return 0;
3473 
3474 out_when_alloc_ring_memory:
3475 	for (j = i - 1; j >= 0; j--)
3476 		hns3_fini_ring(priv->ring_data[j].ring);
3477 
3478 	return -ENOMEM;
3479 }
3480 
3481 int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
3482 {
3483 	struct hnae3_handle *h = priv->ae_handle;
3484 	int i;
3485 
3486 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3487 		hns3_fini_ring(priv->ring_data[i].ring);
3488 		hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
3489 	}
3490 	return 0;
3491 }
3492 
3493 /* Set mac addr if it is configured. or leave it to the AE driver */
3494 static int hns3_init_mac_addr(struct net_device *netdev, bool init)
3495 {
3496 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3497 	struct hnae3_handle *h = priv->ae_handle;
3498 	u8 mac_addr_temp[ETH_ALEN];
3499 	int ret = 0;
3500 
3501 	if (h->ae_algo->ops->get_mac_addr && init) {
3502 		h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
3503 		ether_addr_copy(netdev->dev_addr, mac_addr_temp);
3504 	}
3505 
3506 	/* Check if the MAC address is valid, if not get a random one */
3507 	if (!is_valid_ether_addr(netdev->dev_addr)) {
3508 		eth_hw_addr_random(netdev);
3509 		dev_warn(priv->dev, "using random MAC address %pM\n",
3510 			 netdev->dev_addr);
3511 	}
3512 
3513 	if (h->ae_algo->ops->set_mac_addr)
3514 		ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
3515 
3516 	return ret;
3517 }
3518 
3519 static int hns3_restore_fd_rules(struct net_device *netdev)
3520 {
3521 	struct hnae3_handle *h = hns3_get_handle(netdev);
3522 	int ret = 0;
3523 
3524 	if (h->ae_algo->ops->restore_fd_rules)
3525 		ret = h->ae_algo->ops->restore_fd_rules(h);
3526 
3527 	return ret;
3528 }
3529 
3530 static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
3531 {
3532 	struct hnae3_handle *h = hns3_get_handle(netdev);
3533 
3534 	if (h->ae_algo->ops->del_all_fd_entries)
3535 		h->ae_algo->ops->del_all_fd_entries(h, clear_list);
3536 }
3537 
3538 static void hns3_nic_set_priv_ops(struct net_device *netdev)
3539 {
3540 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3541 
3542 	priv->ops.fill_desc = hns3_fill_desc;
3543 	if ((netdev->features & NETIF_F_TSO) ||
3544 	    (netdev->features & NETIF_F_TSO6))
3545 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
3546 	else
3547 		priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
3548 }
3549 
3550 static int hns3_client_start(struct hnae3_handle *handle)
3551 {
3552 	if (!handle->ae_algo->ops->client_start)
3553 		return 0;
3554 
3555 	return handle->ae_algo->ops->client_start(handle);
3556 }
3557 
3558 static void hns3_client_stop(struct hnae3_handle *handle)
3559 {
3560 	if (!handle->ae_algo->ops->client_stop)
3561 		return;
3562 
3563 	handle->ae_algo->ops->client_stop(handle);
3564 }
3565 
3566 static int hns3_client_init(struct hnae3_handle *handle)
3567 {
3568 	struct pci_dev *pdev = handle->pdev;
3569 	u16 alloc_tqps, max_rss_size;
3570 	struct hns3_nic_priv *priv;
3571 	struct net_device *netdev;
3572 	int ret;
3573 
3574 	handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
3575 						    &max_rss_size);
3576 	netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
3577 	if (!netdev)
3578 		return -ENOMEM;
3579 
3580 	priv = netdev_priv(netdev);
3581 	priv->dev = &pdev->dev;
3582 	priv->netdev = netdev;
3583 	priv->ae_handle = handle;
3584 	priv->tx_timeout_count = 0;
3585 
3586 	handle->kinfo.netdev = netdev;
3587 	handle->priv = (void *)priv;
3588 
3589 	hns3_init_mac_addr(netdev, true);
3590 
3591 	hns3_set_default_feature(netdev);
3592 
3593 	netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
3594 	netdev->priv_flags |= IFF_UNICAST_FLT;
3595 	netdev->netdev_ops = &hns3_nic_netdev_ops;
3596 	SET_NETDEV_DEV(netdev, &pdev->dev);
3597 	hns3_ethtool_set_ops(netdev);
3598 	hns3_nic_set_priv_ops(netdev);
3599 
3600 	/* Carrier off reporting is important to ethtool even BEFORE open */
3601 	netif_carrier_off(netdev);
3602 
3603 	ret = hns3_get_ring_config(priv);
3604 	if (ret) {
3605 		ret = -ENOMEM;
3606 		goto out_get_ring_cfg;
3607 	}
3608 
3609 	ret = hns3_nic_alloc_vector_data(priv);
3610 	if (ret) {
3611 		ret = -ENOMEM;
3612 		goto out_alloc_vector_data;
3613 	}
3614 
3615 	ret = hns3_nic_init_vector_data(priv);
3616 	if (ret) {
3617 		ret = -ENOMEM;
3618 		goto out_init_vector_data;
3619 	}
3620 
3621 	ret = hns3_init_all_ring(priv);
3622 	if (ret) {
3623 		ret = -ENOMEM;
3624 		goto out_init_ring_data;
3625 	}
3626 
3627 	ret = register_netdev(netdev);
3628 	if (ret) {
3629 		dev_err(priv->dev, "probe register netdev fail!\n");
3630 		goto out_reg_netdev_fail;
3631 	}
3632 
3633 	ret = hns3_client_start(handle);
3634 	if (ret) {
3635 		dev_err(priv->dev, "hns3_client_start fail! ret=%d\n", ret);
3636 			goto out_reg_netdev_fail;
3637 	}
3638 
3639 	hns3_dcbnl_setup(handle);
3640 
3641 	hns3_dbg_init(handle);
3642 
3643 	/* MTU range: (ETH_MIN_MTU(kernel default) - 9702) */
3644 	netdev->max_mtu = HNS3_MAX_MTU;
3645 
3646 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
3647 
3648 	return ret;
3649 
3650 out_reg_netdev_fail:
3651 out_init_ring_data:
3652 	(void)hns3_nic_uninit_vector_data(priv);
3653 out_init_vector_data:
3654 	hns3_nic_dealloc_vector_data(priv);
3655 out_alloc_vector_data:
3656 	priv->ring_data = NULL;
3657 out_get_ring_cfg:
3658 	priv->ae_handle = NULL;
3659 	free_netdev(netdev);
3660 	return ret;
3661 }
3662 
3663 static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
3664 {
3665 	struct net_device *netdev = handle->kinfo.netdev;
3666 	struct hns3_nic_priv *priv = netdev_priv(netdev);
3667 	int ret;
3668 
3669 	hns3_client_stop(handle);
3670 
3671 	hns3_remove_hw_addr(netdev);
3672 
3673 	if (netdev->reg_state != NETREG_UNINITIALIZED)
3674 		unregister_netdev(netdev);
3675 
3676 	if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
3677 		netdev_warn(netdev, "already uninitialized\n");
3678 		goto out_netdev_free;
3679 	}
3680 
3681 	hns3_del_all_fd_rules(netdev, true);
3682 
3683 	hns3_force_clear_all_rx_ring(handle);
3684 
3685 	ret = hns3_nic_uninit_vector_data(priv);
3686 	if (ret)
3687 		netdev_err(netdev, "uninit vector error\n");
3688 
3689 	ret = hns3_nic_dealloc_vector_data(priv);
3690 	if (ret)
3691 		netdev_err(netdev, "dealloc vector error\n");
3692 
3693 	ret = hns3_uninit_all_ring(priv);
3694 	if (ret)
3695 		netdev_err(netdev, "uninit ring error\n");
3696 
3697 	hns3_put_ring_config(priv);
3698 
3699 	hns3_dbg_uninit(handle);
3700 
3701 	priv->ring_data = NULL;
3702 
3703 out_netdev_free:
3704 	free_netdev(netdev);
3705 }
3706 
3707 static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
3708 {
3709 	struct net_device *netdev = handle->kinfo.netdev;
3710 
3711 	if (!netdev)
3712 		return;
3713 
3714 	if (linkup) {
3715 		netif_carrier_on(netdev);
3716 		netif_tx_wake_all_queues(netdev);
3717 		netdev_info(netdev, "link up\n");
3718 	} else {
3719 		netif_carrier_off(netdev);
3720 		netif_tx_stop_all_queues(netdev);
3721 		netdev_info(netdev, "link down\n");
3722 	}
3723 }
3724 
3725 static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
3726 {
3727 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3728 	struct net_device *ndev = kinfo->netdev;
3729 	bool if_running;
3730 	int ret;
3731 
3732 	if (tc > HNAE3_MAX_TC)
3733 		return -EINVAL;
3734 
3735 	if (!ndev)
3736 		return -ENODEV;
3737 
3738 	if_running = netif_running(ndev);
3739 
3740 	if (if_running) {
3741 		(void)hns3_nic_net_stop(ndev);
3742 		msleep(100);
3743 	}
3744 
3745 	ret = (kinfo->dcb_ops && kinfo->dcb_ops->map_update) ?
3746 		kinfo->dcb_ops->map_update(handle) : -EOPNOTSUPP;
3747 	if (ret)
3748 		goto err_out;
3749 
3750 	ret = hns3_nic_set_real_num_queue(ndev);
3751 
3752 err_out:
3753 	if (if_running)
3754 		(void)hns3_nic_net_open(ndev);
3755 
3756 	return ret;
3757 }
3758 
3759 static int hns3_recover_hw_addr(struct net_device *ndev)
3760 {
3761 	struct netdev_hw_addr_list *list;
3762 	struct netdev_hw_addr *ha, *tmp;
3763 	int ret = 0;
3764 
3765 	/* go through and sync uc_addr entries to the device */
3766 	list = &ndev->uc;
3767 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3768 		ret = hns3_nic_uc_sync(ndev, ha->addr);
3769 		if (ret)
3770 			return ret;
3771 	}
3772 
3773 	/* go through and sync mc_addr entries to the device */
3774 	list = &ndev->mc;
3775 	list_for_each_entry_safe(ha, tmp, &list->list, list) {
3776 		ret = hns3_nic_mc_sync(ndev, ha->addr);
3777 		if (ret)
3778 			return ret;
3779 	}
3780 
3781 	return ret;
3782 }
3783 
3784 static void hns3_remove_hw_addr(struct net_device *netdev)
3785 {
3786 	struct netdev_hw_addr_list *list;
3787 	struct netdev_hw_addr *ha, *tmp;
3788 
3789 	hns3_nic_uc_unsync(netdev, netdev->dev_addr);
3790 
3791 	/* go through and unsync uc_addr entries to the device */
3792 	list = &netdev->uc;
3793 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3794 		hns3_nic_uc_unsync(netdev, ha->addr);
3795 
3796 	/* go through and unsync mc_addr entries to the device */
3797 	list = &netdev->mc;
3798 	list_for_each_entry_safe(ha, tmp, &list->list, list)
3799 		if (ha->refcount > 1)
3800 			hns3_nic_mc_unsync(netdev, ha->addr);
3801 }
3802 
3803 static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
3804 {
3805 	while (ring->next_to_clean != ring->next_to_use) {
3806 		ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
3807 		hns3_free_buffer_detach(ring, ring->next_to_clean);
3808 		ring_ptr_move_fw(ring, next_to_clean);
3809 	}
3810 }
3811 
3812 static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
3813 {
3814 	struct hns3_desc_cb res_cbs;
3815 	int ret;
3816 
3817 	while (ring->next_to_use != ring->next_to_clean) {
3818 		/* When a buffer is not reused, it's memory has been
3819 		 * freed in hns3_handle_rx_bd or will be freed by
3820 		 * stack, so we need to replace the buffer here.
3821 		 */
3822 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3823 			ret = hns3_reserve_buffer_map(ring, &res_cbs);
3824 			if (ret) {
3825 				u64_stats_update_begin(&ring->syncp);
3826 				ring->stats.sw_err_cnt++;
3827 				u64_stats_update_end(&ring->syncp);
3828 				/* if alloc new buffer fail, exit directly
3829 				 * and reclear in up flow.
3830 				 */
3831 				netdev_warn(ring->tqp->handle->kinfo.netdev,
3832 					    "reserve buffer map failed, ret = %d\n",
3833 					    ret);
3834 				return ret;
3835 			}
3836 			hns3_replace_buffer(ring, ring->next_to_use,
3837 					    &res_cbs);
3838 		}
3839 		ring_ptr_move_fw(ring, next_to_use);
3840 	}
3841 
3842 	return 0;
3843 }
3844 
3845 static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
3846 {
3847 	while (ring->next_to_use != ring->next_to_clean) {
3848 		/* When a buffer is not reused, it's memory has been
3849 		 * freed in hns3_handle_rx_bd or will be freed by
3850 		 * stack, so only need to unmap the buffer here.
3851 		 */
3852 		if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
3853 			hns3_unmap_buffer(ring,
3854 					  &ring->desc_cb[ring->next_to_use]);
3855 			ring->desc_cb[ring->next_to_use].dma = 0;
3856 		}
3857 
3858 		ring_ptr_move_fw(ring, next_to_use);
3859 	}
3860 }
3861 
3862 static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
3863 {
3864 	struct net_device *ndev = h->kinfo.netdev;
3865 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3866 	struct hns3_enet_ring *ring;
3867 	u32 i;
3868 
3869 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3870 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3871 		hns3_force_clear_rx_ring(ring);
3872 	}
3873 }
3874 
3875 static void hns3_clear_all_ring(struct hnae3_handle *h)
3876 {
3877 	struct net_device *ndev = h->kinfo.netdev;
3878 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3879 	u32 i;
3880 
3881 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3882 		struct netdev_queue *dev_queue;
3883 		struct hns3_enet_ring *ring;
3884 
3885 		ring = priv->ring_data[i].ring;
3886 		hns3_clear_tx_ring(ring);
3887 		dev_queue = netdev_get_tx_queue(ndev,
3888 						priv->ring_data[i].queue_index);
3889 		netdev_tx_reset_queue(dev_queue);
3890 
3891 		ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3892 		/* Continue to clear other rings even if clearing some
3893 		 * rings failed.
3894 		 */
3895 		hns3_clear_rx_ring(ring);
3896 	}
3897 }
3898 
3899 int hns3_nic_reset_all_ring(struct hnae3_handle *h)
3900 {
3901 	struct net_device *ndev = h->kinfo.netdev;
3902 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3903 	struct hns3_enet_ring *rx_ring;
3904 	int i, j;
3905 	int ret;
3906 
3907 	for (i = 0; i < h->kinfo.num_tqps; i++) {
3908 		ret = h->ae_algo->ops->reset_queue(h, i);
3909 		if (ret)
3910 			return ret;
3911 
3912 		hns3_init_ring_hw(priv->ring_data[i].ring);
3913 
3914 		/* We need to clear tx ring here because self test will
3915 		 * use the ring and will not run down before up
3916 		 */
3917 		hns3_clear_tx_ring(priv->ring_data[i].ring);
3918 		priv->ring_data[i].ring->next_to_clean = 0;
3919 		priv->ring_data[i].ring->next_to_use = 0;
3920 
3921 		rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
3922 		hns3_init_ring_hw(rx_ring);
3923 		ret = hns3_clear_rx_ring(rx_ring);
3924 		if (ret)
3925 			return ret;
3926 
3927 		/* We can not know the hardware head and tail when this
3928 		 * function is called in reset flow, so we reuse all desc.
3929 		 */
3930 		for (j = 0; j < rx_ring->desc_num; j++)
3931 			hns3_reuse_buffer(rx_ring, j);
3932 
3933 		rx_ring->next_to_clean = 0;
3934 		rx_ring->next_to_use = 0;
3935 	}
3936 
3937 	hns3_init_tx_ring_tc(priv);
3938 
3939 	return 0;
3940 }
3941 
3942 static void hns3_store_coal(struct hns3_nic_priv *priv)
3943 {
3944 	/* ethtool only support setting and querying one coal
3945 	 * configuation for now, so save the vector 0' coal
3946 	 * configuation here in order to restore it.
3947 	 */
3948 	memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
3949 	       sizeof(struct hns3_enet_coalesce));
3950 	memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
3951 	       sizeof(struct hns3_enet_coalesce));
3952 }
3953 
3954 static void hns3_restore_coal(struct hns3_nic_priv *priv)
3955 {
3956 	u16 vector_num = priv->vector_num;
3957 	int i;
3958 
3959 	for (i = 0; i < vector_num; i++) {
3960 		memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
3961 		       sizeof(struct hns3_enet_coalesce));
3962 		memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
3963 		       sizeof(struct hns3_enet_coalesce));
3964 	}
3965 }
3966 
3967 static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
3968 {
3969 	struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
3970 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3971 	struct net_device *ndev = kinfo->netdev;
3972 	struct hns3_nic_priv *priv = netdev_priv(ndev);
3973 
3974 	if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
3975 		return 0;
3976 
3977 	/* it is cumbersome for hardware to pick-and-choose entries for deletion
3978 	 * from table space. Hence, for function reset software intervention is
3979 	 * required to delete the entries
3980 	 */
3981 	if (hns3_dev_ongoing_func_reset(ae_dev)) {
3982 		hns3_remove_hw_addr(ndev);
3983 		hns3_del_all_fd_rules(ndev, false);
3984 	}
3985 
3986 	if (!netif_running(ndev))
3987 		return 0;
3988 
3989 	return hns3_nic_net_stop(ndev);
3990 }
3991 
3992 static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
3993 {
3994 	struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3995 	struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
3996 	int ret = 0;
3997 
3998 	clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
3999 
4000 	if (netif_running(kinfo->netdev)) {
4001 		ret = hns3_nic_net_open(kinfo->netdev);
4002 		if (ret) {
4003 			set_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
4004 			netdev_err(kinfo->netdev,
4005 				   "hns net up fail, ret=%d!\n", ret);
4006 			return ret;
4007 		}
4008 	}
4009 
4010 	return ret;
4011 }
4012 
4013 static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
4014 {
4015 	struct net_device *netdev = handle->kinfo.netdev;
4016 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4017 	bool vlan_filter_enable;
4018 	int ret;
4019 
4020 	ret = hns3_init_mac_addr(netdev, false);
4021 	if (ret)
4022 		return ret;
4023 
4024 	ret = hns3_recover_hw_addr(netdev);
4025 	if (ret)
4026 		return ret;
4027 
4028 	ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
4029 	if (ret)
4030 		return ret;
4031 
4032 	vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
4033 	hns3_enable_vlan_filter(netdev, vlan_filter_enable);
4034 
4035 	/* Hardware table is only clear when pf resets */
4036 	if (!(handle->flags & HNAE3_SUPPORT_VF)) {
4037 		ret = hns3_restore_vlan(netdev);
4038 		if (ret)
4039 			return ret;
4040 	}
4041 
4042 	ret = hns3_restore_fd_rules(netdev);
4043 	if (ret)
4044 		return ret;
4045 
4046 	/* Carrier off reporting is important to ethtool even BEFORE open */
4047 	netif_carrier_off(netdev);
4048 
4049 	ret = hns3_nic_alloc_vector_data(priv);
4050 	if (ret)
4051 		return ret;
4052 
4053 	hns3_restore_coal(priv);
4054 
4055 	ret = hns3_nic_init_vector_data(priv);
4056 	if (ret)
4057 		goto err_dealloc_vector;
4058 
4059 	ret = hns3_init_all_ring(priv);
4060 	if (ret)
4061 		goto err_uninit_vector;
4062 
4063 	set_bit(HNS3_NIC_STATE_INITED, &priv->state);
4064 
4065 	return ret;
4066 
4067 err_uninit_vector:
4068 	hns3_nic_uninit_vector_data(priv);
4069 	priv->ring_data = NULL;
4070 err_dealloc_vector:
4071 	hns3_nic_dealloc_vector_data(priv);
4072 
4073 	return ret;
4074 }
4075 
4076 static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
4077 {
4078 	struct net_device *netdev = handle->kinfo.netdev;
4079 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4080 	int ret;
4081 
4082 	if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
4083 		netdev_warn(netdev, "already uninitialized\n");
4084 		return 0;
4085 	}
4086 
4087 	hns3_force_clear_all_rx_ring(handle);
4088 
4089 	ret = hns3_nic_uninit_vector_data(priv);
4090 	if (ret) {
4091 		netdev_err(netdev, "uninit vector error\n");
4092 		return ret;
4093 	}
4094 
4095 	hns3_store_coal(priv);
4096 
4097 	ret = hns3_nic_dealloc_vector_data(priv);
4098 	if (ret)
4099 		netdev_err(netdev, "dealloc vector error\n");
4100 
4101 	ret = hns3_uninit_all_ring(priv);
4102 	if (ret)
4103 		netdev_err(netdev, "uninit ring error\n");
4104 
4105 	clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
4106 
4107 	return ret;
4108 }
4109 
4110 static int hns3_reset_notify(struct hnae3_handle *handle,
4111 			     enum hnae3_reset_notify_type type)
4112 {
4113 	int ret = 0;
4114 
4115 	switch (type) {
4116 	case HNAE3_UP_CLIENT:
4117 		ret = hns3_reset_notify_up_enet(handle);
4118 		break;
4119 	case HNAE3_DOWN_CLIENT:
4120 		ret = hns3_reset_notify_down_enet(handle);
4121 		break;
4122 	case HNAE3_INIT_CLIENT:
4123 		ret = hns3_reset_notify_init_enet(handle);
4124 		break;
4125 	case HNAE3_UNINIT_CLIENT:
4126 		ret = hns3_reset_notify_uninit_enet(handle);
4127 		break;
4128 	default:
4129 		break;
4130 	}
4131 
4132 	return ret;
4133 }
4134 
4135 static int hns3_modify_tqp_num(struct net_device *netdev, u16 new_tqp_num)
4136 {
4137 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4138 	struct hnae3_handle *h = hns3_get_handle(netdev);
4139 	int ret;
4140 
4141 	ret = h->ae_algo->ops->set_channels(h, new_tqp_num);
4142 	if (ret)
4143 		return ret;
4144 
4145 	ret = hns3_get_ring_config(priv);
4146 	if (ret)
4147 		return ret;
4148 
4149 	ret = hns3_nic_alloc_vector_data(priv);
4150 	if (ret)
4151 		goto err_alloc_vector;
4152 
4153 	hns3_restore_coal(priv);
4154 
4155 	ret = hns3_nic_init_vector_data(priv);
4156 	if (ret)
4157 		goto err_uninit_vector;
4158 
4159 	ret = hns3_init_all_ring(priv);
4160 	if (ret)
4161 		goto err_put_ring;
4162 
4163 	return 0;
4164 
4165 err_put_ring:
4166 	hns3_put_ring_config(priv);
4167 err_uninit_vector:
4168 	hns3_nic_uninit_vector_data(priv);
4169 err_alloc_vector:
4170 	hns3_nic_dealloc_vector_data(priv);
4171 	return ret;
4172 }
4173 
4174 static int hns3_adjust_tqps_num(u8 num_tc, u32 new_tqp_num)
4175 {
4176 	return (new_tqp_num / num_tc) * num_tc;
4177 }
4178 
4179 int hns3_set_channels(struct net_device *netdev,
4180 		      struct ethtool_channels *ch)
4181 {
4182 	struct hns3_nic_priv *priv = netdev_priv(netdev);
4183 	struct hnae3_handle *h = hns3_get_handle(netdev);
4184 	struct hnae3_knic_private_info *kinfo = &h->kinfo;
4185 	bool if_running = netif_running(netdev);
4186 	u32 new_tqp_num = ch->combined_count;
4187 	u16 org_tqp_num;
4188 	int ret;
4189 
4190 	if (ch->rx_count || ch->tx_count)
4191 		return -EINVAL;
4192 
4193 	if (new_tqp_num > hns3_get_max_available_channels(h) ||
4194 	    new_tqp_num < kinfo->num_tc) {
4195 		dev_err(&netdev->dev,
4196 			"Change tqps fail, the tqp range is from %d to %d",
4197 			kinfo->num_tc,
4198 			hns3_get_max_available_channels(h));
4199 		return -EINVAL;
4200 	}
4201 
4202 	new_tqp_num = hns3_adjust_tqps_num(kinfo->num_tc, new_tqp_num);
4203 	if (kinfo->num_tqps == new_tqp_num)
4204 		return 0;
4205 
4206 	if (if_running)
4207 		hns3_nic_net_stop(netdev);
4208 
4209 	ret = hns3_nic_uninit_vector_data(priv);
4210 	if (ret) {
4211 		dev_err(&netdev->dev,
4212 			"Unbind vector with tqp fail, nothing is changed");
4213 		goto open_netdev;
4214 	}
4215 
4216 	hns3_store_coal(priv);
4217 
4218 	hns3_nic_dealloc_vector_data(priv);
4219 
4220 	hns3_uninit_all_ring(priv);
4221 	hns3_put_ring_config(priv);
4222 
4223 	org_tqp_num = h->kinfo.num_tqps;
4224 	ret = hns3_modify_tqp_num(netdev, new_tqp_num);
4225 	if (ret) {
4226 		ret = hns3_modify_tqp_num(netdev, org_tqp_num);
4227 		if (ret) {
4228 			/* If revert to old tqp failed, fatal error occurred */
4229 			dev_err(&netdev->dev,
4230 				"Revert to old tqp num fail, ret=%d", ret);
4231 			return ret;
4232 		}
4233 		dev_info(&netdev->dev,
4234 			 "Change tqp num fail, Revert to old tqp num");
4235 	}
4236 
4237 open_netdev:
4238 	if (if_running)
4239 		hns3_nic_net_open(netdev);
4240 
4241 	return ret;
4242 }
4243 
4244 static const struct hnae3_client_ops client_ops = {
4245 	.init_instance = hns3_client_init,
4246 	.uninit_instance = hns3_client_uninit,
4247 	.link_status_change = hns3_link_status_change,
4248 	.setup_tc = hns3_client_setup_tc,
4249 	.reset_notify = hns3_reset_notify,
4250 };
4251 
4252 /* hns3_init_module - Driver registration routine
4253  * hns3_init_module is the first routine called when the driver is
4254  * loaded. All it does is register with the PCI subsystem.
4255  */
4256 static int __init hns3_init_module(void)
4257 {
4258 	int ret;
4259 
4260 	pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
4261 	pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
4262 
4263 	client.type = HNAE3_CLIENT_KNIC;
4264 	snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
4265 		 hns3_driver_name);
4266 
4267 	client.ops = &client_ops;
4268 
4269 	INIT_LIST_HEAD(&client.node);
4270 
4271 	hns3_dbg_register_debugfs(hns3_driver_name);
4272 
4273 	ret = hnae3_register_client(&client);
4274 	if (ret)
4275 		goto err_reg_client;
4276 
4277 	ret = pci_register_driver(&hns3_driver);
4278 	if (ret)
4279 		goto err_reg_driver;
4280 
4281 	return ret;
4282 
4283 err_reg_driver:
4284 	hnae3_unregister_client(&client);
4285 err_reg_client:
4286 	hns3_dbg_unregister_debugfs();
4287 	return ret;
4288 }
4289 module_init(hns3_init_module);
4290 
4291 /* hns3_exit_module - Driver exit cleanup routine
4292  * hns3_exit_module is called just before the driver is removed
4293  * from memory.
4294  */
4295 static void __exit hns3_exit_module(void)
4296 {
4297 	pci_unregister_driver(&hns3_driver);
4298 	hnae3_unregister_client(&client);
4299 	hns3_dbg_unregister_debugfs();
4300 }
4301 module_exit(hns3_exit_module);
4302 
4303 MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
4304 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
4305 MODULE_LICENSE("GPL");
4306 MODULE_ALIAS("pci:hns-nic");
4307 MODULE_VERSION(HNS3_MOD_VERSION);
4308