1 /* 2 * Copyright (c) 2014-2015 Hisilicon Limited. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/cpumask.h> 12 #include <linux/etherdevice.h> 13 #include <linux/if_vlan.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/module.h> 19 #include <linux/phy.h> 20 #include <linux/platform_device.h> 21 #include <linux/skbuff.h> 22 23 #include "hnae.h" 24 #include "hns_enet.h" 25 #include "hns_dsaf_mac.h" 26 27 #define NIC_MAX_Q_PER_VF 16 28 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 29 30 #define SERVICE_TIMER_HZ (1 * HZ) 31 32 #define NIC_TX_CLEAN_MAX_NUM 256 33 #define NIC_RX_CLEAN_MAX_NUM 64 34 35 #define RCB_IRQ_NOT_INITED 0 36 #define RCB_IRQ_INITED 1 37 #define HNS_BUFFER_SIZE_2048 2048 38 39 #define BD_MAX_SEND_SIZE 8191 40 #define SKB_TMP_LEN(SKB) \ 41 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) 42 43 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 44 int size, dma_addr_t dma, int frag_end, 45 int buf_num, enum hns_desc_type type, int mtu) 46 { 47 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 48 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 49 struct iphdr *iphdr; 50 struct ipv6hdr *ipv6hdr; 51 struct sk_buff *skb; 52 __be16 protocol; 53 u8 bn_pid = 0; 54 u8 rrcfv = 0; 55 u8 ip_offset = 0; 56 u8 tvsvsn = 0; 57 u16 mss = 0; 58 u8 l4_len = 0; 59 u16 paylen = 0; 60 61 desc_cb->priv = priv; 62 desc_cb->length = size; 63 desc_cb->dma = dma; 64 desc_cb->type = type; 65 66 desc->addr = cpu_to_le64(dma); 67 desc->tx.send_size = cpu_to_le16((u16)size); 68 69 /* config bd buffer end */ 70 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 71 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 72 73 /* fill port_id in the tx bd for sending management pkts */ 74 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 75 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 76 77 if (type == DESC_TYPE_SKB) { 78 skb = (struct sk_buff *)priv; 79 80 if (skb->ip_summed == CHECKSUM_PARTIAL) { 81 skb_reset_mac_len(skb); 82 protocol = skb->protocol; 83 ip_offset = ETH_HLEN; 84 85 if (protocol == htons(ETH_P_8021Q)) { 86 ip_offset += VLAN_HLEN; 87 protocol = vlan_get_protocol(skb); 88 skb->protocol = protocol; 89 } 90 91 if (skb->protocol == htons(ETH_P_IP)) { 92 iphdr = ip_hdr(skb); 93 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 94 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 95 96 /* check for tcp/udp header */ 97 if (iphdr->protocol == IPPROTO_TCP && 98 skb_is_gso(skb)) { 99 hnae_set_bit(tvsvsn, 100 HNSV2_TXD_TSE_B, 1); 101 l4_len = tcp_hdrlen(skb); 102 mss = skb_shinfo(skb)->gso_size; 103 paylen = skb->len - SKB_TMP_LEN(skb); 104 } 105 } else if (skb->protocol == htons(ETH_P_IPV6)) { 106 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 107 ipv6hdr = ipv6_hdr(skb); 108 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 109 110 /* check for tcp/udp header */ 111 if (ipv6hdr->nexthdr == IPPROTO_TCP && 112 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 113 hnae_set_bit(tvsvsn, 114 HNSV2_TXD_TSE_B, 1); 115 l4_len = tcp_hdrlen(skb); 116 mss = skb_shinfo(skb)->gso_size; 117 paylen = skb->len - SKB_TMP_LEN(skb); 118 } 119 } 120 desc->tx.ip_offset = ip_offset; 121 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 122 desc->tx.mss = cpu_to_le16(mss); 123 desc->tx.l4_len = l4_len; 124 desc->tx.paylen = cpu_to_le16(paylen); 125 } 126 } 127 128 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 129 130 desc->tx.bn_pid = bn_pid; 131 desc->tx.ra_ri_cs_fe_vld = rrcfv; 132 133 ring_ptr_move_fw(ring, next_to_use); 134 } 135 136 static const struct acpi_device_id hns_enet_acpi_match[] = { 137 { "HISI00C1", 0 }, 138 { "HISI00C2", 0 }, 139 { }, 140 }; 141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 142 143 static void fill_desc(struct hnae_ring *ring, void *priv, 144 int size, dma_addr_t dma, int frag_end, 145 int buf_num, enum hns_desc_type type, int mtu) 146 { 147 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 148 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 149 struct sk_buff *skb; 150 __be16 protocol; 151 u32 ip_offset; 152 u32 asid_bufnum_pid = 0; 153 u32 flag_ipoffset = 0; 154 155 desc_cb->priv = priv; 156 desc_cb->length = size; 157 desc_cb->dma = dma; 158 desc_cb->type = type; 159 160 desc->addr = cpu_to_le64(dma); 161 desc->tx.send_size = cpu_to_le16((u16)size); 162 163 /*config bd buffer end */ 164 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 165 166 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 167 168 if (type == DESC_TYPE_SKB) { 169 skb = (struct sk_buff *)priv; 170 171 if (skb->ip_summed == CHECKSUM_PARTIAL) { 172 protocol = skb->protocol; 173 ip_offset = ETH_HLEN; 174 175 /*if it is a SW VLAN check the next protocol*/ 176 if (protocol == htons(ETH_P_8021Q)) { 177 ip_offset += VLAN_HLEN; 178 protocol = vlan_get_protocol(skb); 179 skb->protocol = protocol; 180 } 181 182 if (skb->protocol == htons(ETH_P_IP)) { 183 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 184 /* check for tcp/udp header */ 185 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 186 187 } else if (skb->protocol == htons(ETH_P_IPV6)) { 188 /* ipv6 has not l3 cs, check for L4 header */ 189 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 190 } 191 192 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 193 } 194 } 195 196 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 197 198 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 199 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 200 201 ring_ptr_move_fw(ring, next_to_use); 202 } 203 204 static void unfill_desc(struct hnae_ring *ring) 205 { 206 ring_ptr_move_bw(ring, next_to_use); 207 } 208 209 static int hns_nic_maybe_stop_tx( 210 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 211 { 212 struct sk_buff *skb = *out_skb; 213 struct sk_buff *new_skb = NULL; 214 int buf_num; 215 216 /* no. of segments (plus a header) */ 217 buf_num = skb_shinfo(skb)->nr_frags + 1; 218 219 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 220 if (ring_space(ring) < 1) 221 return -EBUSY; 222 223 new_skb = skb_copy(skb, GFP_ATOMIC); 224 if (!new_skb) 225 return -ENOMEM; 226 227 dev_kfree_skb_any(skb); 228 *out_skb = new_skb; 229 buf_num = 1; 230 } else if (buf_num > ring_space(ring)) { 231 return -EBUSY; 232 } 233 234 *bnum = buf_num; 235 return 0; 236 } 237 238 static int hns_nic_maybe_stop_tso( 239 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 240 { 241 int i; 242 int size; 243 int buf_num; 244 int frag_num; 245 struct sk_buff *skb = *out_skb; 246 struct sk_buff *new_skb = NULL; 247 struct skb_frag_struct *frag; 248 249 size = skb_headlen(skb); 250 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 251 252 frag_num = skb_shinfo(skb)->nr_frags; 253 for (i = 0; i < frag_num; i++) { 254 frag = &skb_shinfo(skb)->frags[i]; 255 size = skb_frag_size(frag); 256 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 257 } 258 259 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 260 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 261 if (ring_space(ring) < buf_num) 262 return -EBUSY; 263 /* manual split the send packet */ 264 new_skb = skb_copy(skb, GFP_ATOMIC); 265 if (!new_skb) 266 return -ENOMEM; 267 dev_kfree_skb_any(skb); 268 *out_skb = new_skb; 269 270 } else if (ring_space(ring) < buf_num) { 271 return -EBUSY; 272 } 273 274 *bnum = buf_num; 275 return 0; 276 } 277 278 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 279 int size, dma_addr_t dma, int frag_end, 280 int buf_num, enum hns_desc_type type, int mtu) 281 { 282 int frag_buf_num; 283 int sizeoflast; 284 int k; 285 286 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 287 sizeoflast = size % BD_MAX_SEND_SIZE; 288 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 289 290 /* when the frag size is bigger than hardware, split this frag */ 291 for (k = 0; k < frag_buf_num; k++) 292 fill_v2_desc(ring, priv, 293 (k == frag_buf_num - 1) ? 294 sizeoflast : BD_MAX_SEND_SIZE, 295 dma + BD_MAX_SEND_SIZE * k, 296 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 297 buf_num, 298 (type == DESC_TYPE_SKB && !k) ? 299 DESC_TYPE_SKB : DESC_TYPE_PAGE, 300 mtu); 301 } 302 303 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev, 304 struct sk_buff *skb, 305 struct hns_nic_ring_data *ring_data) 306 { 307 struct hns_nic_priv *priv = netdev_priv(ndev); 308 struct hnae_ring *ring = ring_data->ring; 309 struct device *dev = ring_to_dev(ring); 310 struct netdev_queue *dev_queue; 311 struct skb_frag_struct *frag; 312 int buf_num; 313 int seg_num; 314 dma_addr_t dma; 315 int size, next_to_use; 316 int i; 317 318 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 319 case -EBUSY: 320 ring->stats.tx_busy++; 321 goto out_net_tx_busy; 322 case -ENOMEM: 323 ring->stats.sw_err_cnt++; 324 netdev_err(ndev, "no memory to xmit!\n"); 325 goto out_err_tx_ok; 326 default: 327 break; 328 } 329 330 /* no. of segments (plus a header) */ 331 seg_num = skb_shinfo(skb)->nr_frags + 1; 332 next_to_use = ring->next_to_use; 333 334 /* fill the first part */ 335 size = skb_headlen(skb); 336 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 337 if (dma_mapping_error(dev, dma)) { 338 netdev_err(ndev, "TX head DMA map failed\n"); 339 ring->stats.sw_err_cnt++; 340 goto out_err_tx_ok; 341 } 342 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 343 buf_num, DESC_TYPE_SKB, ndev->mtu); 344 345 /* fill the fragments */ 346 for (i = 1; i < seg_num; i++) { 347 frag = &skb_shinfo(skb)->frags[i - 1]; 348 size = skb_frag_size(frag); 349 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 350 if (dma_mapping_error(dev, dma)) { 351 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 352 ring->stats.sw_err_cnt++; 353 goto out_map_frag_fail; 354 } 355 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 356 seg_num - 1 == i ? 1 : 0, buf_num, 357 DESC_TYPE_PAGE, ndev->mtu); 358 } 359 360 /*complete translate all packets*/ 361 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 362 netdev_tx_sent_queue(dev_queue, skb->len); 363 364 netif_trans_update(ndev); 365 ndev->stats.tx_bytes += skb->len; 366 ndev->stats.tx_packets++; 367 368 wmb(); /* commit all data before submit */ 369 assert(skb->queue_mapping < priv->ae_handle->q_num); 370 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 371 ring->stats.tx_pkts++; 372 ring->stats.tx_bytes += skb->len; 373 374 return NETDEV_TX_OK; 375 376 out_map_frag_fail: 377 378 while (ring->next_to_use != next_to_use) { 379 unfill_desc(ring); 380 if (ring->next_to_use != next_to_use) 381 dma_unmap_page(dev, 382 ring->desc_cb[ring->next_to_use].dma, 383 ring->desc_cb[ring->next_to_use].length, 384 DMA_TO_DEVICE); 385 else 386 dma_unmap_single(dev, 387 ring->desc_cb[next_to_use].dma, 388 ring->desc_cb[next_to_use].length, 389 DMA_TO_DEVICE); 390 } 391 392 out_err_tx_ok: 393 394 dev_kfree_skb_any(skb); 395 return NETDEV_TX_OK; 396 397 out_net_tx_busy: 398 399 netif_stop_subqueue(ndev, skb->queue_mapping); 400 401 /* Herbert's original patch had: 402 * smp_mb__after_netif_stop_queue(); 403 * but since that doesn't exist yet, just open code it. 404 */ 405 smp_mb(); 406 return NETDEV_TX_BUSY; 407 } 408 409 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 410 struct hnae_ring *ring, int pull_len, 411 struct hnae_desc_cb *desc_cb) 412 { 413 struct hnae_desc *desc; 414 u32 truesize; 415 int size; 416 int last_offset; 417 bool twobufs; 418 419 twobufs = ((PAGE_SIZE < 8192) && 420 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 421 422 desc = &ring->desc[ring->next_to_clean]; 423 size = le16_to_cpu(desc->rx.size); 424 425 if (twobufs) { 426 truesize = hnae_buf_size(ring); 427 } else { 428 truesize = ALIGN(size, L1_CACHE_BYTES); 429 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 430 } 431 432 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 433 size - pull_len, truesize); 434 435 /* avoid re-using remote pages,flag default unreuse */ 436 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 437 return; 438 439 if (twobufs) { 440 /* if we are only owner of page we can reuse it */ 441 if (likely(page_count(desc_cb->priv) == 1)) { 442 /* flip page offset to other buffer */ 443 desc_cb->page_offset ^= truesize; 444 445 desc_cb->reuse_flag = 1; 446 /* bump ref count on page before it is given*/ 447 get_page(desc_cb->priv); 448 } 449 return; 450 } 451 452 /* move offset up to the next cache line */ 453 desc_cb->page_offset += truesize; 454 455 if (desc_cb->page_offset <= last_offset) { 456 desc_cb->reuse_flag = 1; 457 /* bump ref count on page before it is given*/ 458 get_page(desc_cb->priv); 459 } 460 } 461 462 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 463 { 464 *out_bnum = hnae_get_field(bnum_flag, 465 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 466 } 467 468 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 469 { 470 *out_bnum = hnae_get_field(bnum_flag, 471 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 472 } 473 474 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 475 struct sk_buff *skb, u32 flag) 476 { 477 struct net_device *netdev = ring_data->napi.dev; 478 u32 l3id; 479 u32 l4id; 480 481 /* check if RX checksum offload is enabled */ 482 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 483 return; 484 485 /* In hardware, we only support checksum for the following protocols: 486 * 1) IPv4, 487 * 2) TCP(over IPv4 or IPv6), 488 * 3) UDP(over IPv4 or IPv6), 489 * 4) SCTP(over IPv4 or IPv6) 490 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 491 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 492 * 493 * Hardware limitation: 494 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 495 * Error" bit (which usually can be used to indicate whether checksum 496 * was calculated by the hardware and if there was any error encountered 497 * during checksum calculation). 498 * 499 * Software workaround: 500 * We do get info within the RX descriptor about the kind of L3/L4 501 * protocol coming in the packet and the error status. These errors 502 * might not just be checksum errors but could be related to version, 503 * length of IPv4, UDP, TCP etc. 504 * Because there is no-way of knowing if it is a L3/L4 error due to bad 505 * checksum or any other L3/L4 error, we will not (cannot) convey 506 * checksum status for such cases to upper stack and will not maintain 507 * the RX L3/L4 checksum counters as well. 508 */ 509 510 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 511 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 512 513 /* check L3 protocol for which checksum is supported */ 514 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 515 return; 516 517 /* check for any(not just checksum)flagged L3 protocol errors */ 518 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 519 return; 520 521 /* we do not support checksum of fragmented packets */ 522 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 523 return; 524 525 /* check L4 protocol for which checksum is supported */ 526 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 527 (l4id != HNS_RX_FLAG_L4ID_UDP) && 528 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 529 return; 530 531 /* check for any(not just checksum)flagged L4 protocol errors */ 532 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 533 return; 534 535 /* now, this has to be a packet with valid RX checksum */ 536 skb->ip_summed = CHECKSUM_UNNECESSARY; 537 } 538 539 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 540 struct sk_buff **out_skb, int *out_bnum) 541 { 542 struct hnae_ring *ring = ring_data->ring; 543 struct net_device *ndev = ring_data->napi.dev; 544 struct hns_nic_priv *priv = netdev_priv(ndev); 545 struct sk_buff *skb; 546 struct hnae_desc *desc; 547 struct hnae_desc_cb *desc_cb; 548 unsigned char *va; 549 int bnum, length, i; 550 int pull_len; 551 u32 bnum_flag; 552 553 desc = &ring->desc[ring->next_to_clean]; 554 desc_cb = &ring->desc_cb[ring->next_to_clean]; 555 556 prefetch(desc); 557 558 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 559 560 /* prefetch first cache line of first page */ 561 prefetch(va); 562 #if L1_CACHE_BYTES < 128 563 prefetch(va + L1_CACHE_BYTES); 564 #endif 565 566 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 567 HNS_RX_HEAD_SIZE); 568 if (unlikely(!skb)) { 569 netdev_err(ndev, "alloc rx skb fail\n"); 570 ring->stats.sw_err_cnt++; 571 return -ENOMEM; 572 } 573 574 prefetchw(skb->data); 575 length = le16_to_cpu(desc->rx.pkt_len); 576 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 577 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 578 *out_bnum = bnum; 579 580 if (length <= HNS_RX_HEAD_SIZE) { 581 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 582 583 /* we can reuse buffer as-is, just make sure it is local */ 584 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 585 desc_cb->reuse_flag = 1; 586 else /* this page cannot be reused so discard it */ 587 put_page(desc_cb->priv); 588 589 ring_ptr_move_fw(ring, next_to_clean); 590 591 if (unlikely(bnum != 1)) { /* check err*/ 592 *out_bnum = 1; 593 goto out_bnum_err; 594 } 595 } else { 596 ring->stats.seg_pkt_cnt++; 597 598 pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE); 599 memcpy(__skb_put(skb, pull_len), va, 600 ALIGN(pull_len, sizeof(long))); 601 602 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 603 ring_ptr_move_fw(ring, next_to_clean); 604 605 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 606 *out_bnum = 1; 607 goto out_bnum_err; 608 } 609 for (i = 1; i < bnum; i++) { 610 desc = &ring->desc[ring->next_to_clean]; 611 desc_cb = &ring->desc_cb[ring->next_to_clean]; 612 613 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 614 ring_ptr_move_fw(ring, next_to_clean); 615 } 616 } 617 618 /* check except process, free skb and jump the desc */ 619 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 620 out_bnum_err: 621 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 622 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 623 bnum, ring->max_desc_num_per_pkt, 624 length, (int)MAX_SKB_FRAGS, 625 ((u64 *)desc)[0], ((u64 *)desc)[1]); 626 ring->stats.err_bd_num++; 627 dev_kfree_skb_any(skb); 628 return -EDOM; 629 } 630 631 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 632 633 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 634 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 635 ((u64 *)desc)[0], ((u64 *)desc)[1]); 636 ring->stats.non_vld_descs++; 637 dev_kfree_skb_any(skb); 638 return -EINVAL; 639 } 640 641 if (unlikely((!desc->rx.pkt_len) || 642 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 643 ring->stats.err_pkt_len++; 644 dev_kfree_skb_any(skb); 645 return -EFAULT; 646 } 647 648 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 649 ring->stats.l2_err++; 650 dev_kfree_skb_any(skb); 651 return -EFAULT; 652 } 653 654 ring->stats.rx_pkts++; 655 ring->stats.rx_bytes += skb->len; 656 657 /* indicate to upper stack if our hardware has already calculated 658 * the RX checksum 659 */ 660 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 661 662 return 0; 663 } 664 665 static void 666 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 667 { 668 int i, ret; 669 struct hnae_desc_cb res_cbs; 670 struct hnae_desc_cb *desc_cb; 671 struct hnae_ring *ring = ring_data->ring; 672 struct net_device *ndev = ring_data->napi.dev; 673 674 for (i = 0; i < cleand_count; i++) { 675 desc_cb = &ring->desc_cb[ring->next_to_use]; 676 if (desc_cb->reuse_flag) { 677 ring->stats.reuse_pg_cnt++; 678 hnae_reuse_buffer(ring, ring->next_to_use); 679 } else { 680 ret = hnae_reserve_buffer_map(ring, &res_cbs); 681 if (ret) { 682 ring->stats.sw_err_cnt++; 683 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 684 break; 685 } 686 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 687 } 688 689 ring_ptr_move_fw(ring, next_to_use); 690 } 691 692 wmb(); /* make all data has been write before submit */ 693 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 694 } 695 696 /* return error number for error or number of desc left to take 697 */ 698 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 699 struct sk_buff *skb) 700 { 701 struct net_device *ndev = ring_data->napi.dev; 702 703 skb->protocol = eth_type_trans(skb, ndev); 704 (void)napi_gro_receive(&ring_data->napi, skb); 705 } 706 707 static int hns_desc_unused(struct hnae_ring *ring) 708 { 709 int ntc = ring->next_to_clean; 710 int ntu = ring->next_to_use; 711 712 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 713 } 714 715 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */ 716 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */ 717 718 #define HNS_COAL_BDNUM 3 719 720 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring) 721 { 722 bool coal_enable = ring->q->handle->coal_adapt_en; 723 724 if (coal_enable && 725 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE) 726 return HNS_COAL_BDNUM; 727 else 728 return 0; 729 } 730 731 static void hns_update_rx_rate(struct hnae_ring *ring) 732 { 733 bool coal_enable = ring->q->handle->coal_adapt_en; 734 u32 time_passed_ms; 735 u64 total_bytes; 736 737 if (!coal_enable || 738 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4))) 739 return; 740 741 /* ring->stats.rx_bytes overflowed */ 742 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) { 743 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 744 ring->coal_last_jiffies = jiffies; 745 return; 746 } 747 748 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes; 749 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies); 750 do_div(total_bytes, time_passed_ms); 751 ring->coal_rx_rate = total_bytes >> 10; 752 753 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 754 ring->coal_last_jiffies = jiffies; 755 } 756 757 /** 758 * smooth_alg - smoothing algrithm for adjusting coalesce parameter 759 **/ 760 static u32 smooth_alg(u32 new_param, u32 old_param) 761 { 762 u32 gap = (new_param > old_param) ? new_param - old_param 763 : old_param - new_param; 764 765 if (gap > 8) 766 gap >>= 3; 767 768 if (new_param > old_param) 769 return old_param + gap; 770 else 771 return old_param - gap; 772 } 773 774 /** 775 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate 776 * @ring_data: pointer to hns_nic_ring_data 777 **/ 778 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data) 779 { 780 struct hnae_ring *ring = ring_data->ring; 781 struct hnae_handle *handle = ring->q->handle; 782 u32 new_coal_param, old_coal_param = ring->coal_param; 783 784 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE) 785 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM; 786 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE) 787 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM; 788 else 789 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM; 790 791 if (new_coal_param == old_coal_param && 792 new_coal_param == handle->coal_param) 793 return; 794 795 new_coal_param = smooth_alg(new_coal_param, old_coal_param); 796 ring->coal_param = new_coal_param; 797 798 /** 799 * Because all ring in one port has one coalesce param, when one ring 800 * calculate its own coalesce param, it cannot write to hardware at 801 * once. There are three conditions as follows: 802 * 1. current ring's coalesce param is larger than the hardware. 803 * 2. or ring which adapt last time can change again. 804 * 3. timeout. 805 */ 806 if (new_coal_param == handle->coal_param) { 807 handle->coal_last_jiffies = jiffies; 808 handle->coal_ring_idx = ring_data->queue_index; 809 } else if (new_coal_param > handle->coal_param || 810 handle->coal_ring_idx == ring_data->queue_index || 811 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) { 812 handle->dev->ops->set_coalesce_usecs(handle, 813 new_coal_param); 814 handle->dev->ops->set_coalesce_frames(handle, 815 1, new_coal_param); 816 handle->coal_param = new_coal_param; 817 handle->coal_ring_idx = ring_data->queue_index; 818 handle->coal_last_jiffies = jiffies; 819 } 820 } 821 822 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 823 int budget, void *v) 824 { 825 struct hnae_ring *ring = ring_data->ring; 826 struct sk_buff *skb; 827 int num, bnum; 828 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 829 int recv_pkts, recv_bds, clean_count, err; 830 int unused_count = hns_desc_unused(ring); 831 832 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 833 rmb(); /* make sure num taken effect before the other data is touched */ 834 835 recv_pkts = 0, recv_bds = 0, clean_count = 0; 836 num -= unused_count; 837 838 while (recv_pkts < budget && recv_bds < num) { 839 /* reuse or realloc buffers */ 840 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 841 hns_nic_alloc_rx_buffers(ring_data, 842 clean_count + unused_count); 843 clean_count = 0; 844 unused_count = hns_desc_unused(ring); 845 } 846 847 /* poll one pkt */ 848 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 849 if (unlikely(!skb)) /* this fault cannot be repaired */ 850 goto out; 851 852 recv_bds += bnum; 853 clean_count += bnum; 854 if (unlikely(err)) { /* do jump the err */ 855 recv_pkts++; 856 continue; 857 } 858 859 /* do update ip stack process*/ 860 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 861 ring_data, skb); 862 recv_pkts++; 863 } 864 865 out: 866 /* make all data has been write before submit */ 867 if (clean_count + unused_count > 0) 868 hns_nic_alloc_rx_buffers(ring_data, 869 clean_count + unused_count); 870 871 return recv_pkts; 872 } 873 874 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 875 { 876 struct hnae_ring *ring = ring_data->ring; 877 int num = 0; 878 bool rx_stopped; 879 880 hns_update_rx_rate(ring); 881 882 /* for hardware bug fixed */ 883 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 884 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 885 886 if (num <= hns_coal_rx_bdnum(ring)) { 887 if (ring->q->handle->coal_adapt_en) 888 hns_nic_adpt_coalesce(ring_data); 889 890 rx_stopped = true; 891 } else { 892 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 893 ring_data->ring, 1); 894 895 rx_stopped = false; 896 } 897 898 return rx_stopped; 899 } 900 901 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 902 { 903 struct hnae_ring *ring = ring_data->ring; 904 int num; 905 906 hns_update_rx_rate(ring); 907 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 908 909 if (num <= hns_coal_rx_bdnum(ring)) { 910 if (ring->q->handle->coal_adapt_en) 911 hns_nic_adpt_coalesce(ring_data); 912 913 return true; 914 } 915 916 return false; 917 } 918 919 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 920 int *bytes, int *pkts) 921 { 922 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 923 924 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 925 (*bytes) += desc_cb->length; 926 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 927 hnae_free_buffer_detach(ring, ring->next_to_clean); 928 929 ring_ptr_move_fw(ring, next_to_clean); 930 } 931 932 static int is_valid_clean_head(struct hnae_ring *ring, int h) 933 { 934 int u = ring->next_to_use; 935 int c = ring->next_to_clean; 936 937 if (unlikely(h > ring->desc_num)) 938 return 0; 939 940 assert(u > 0 && u < ring->desc_num); 941 assert(c > 0 && c < ring->desc_num); 942 assert(u != c && h != c); /* must be checked before call this func */ 943 944 return u > c ? (h > c && h <= u) : (h > c || h <= u); 945 } 946 947 /* netif_tx_lock will turn down the performance, set only when necessary */ 948 #ifdef CONFIG_NET_POLL_CONTROLLER 949 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock) 950 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock) 951 #else 952 #define NETIF_TX_LOCK(ring) 953 #define NETIF_TX_UNLOCK(ring) 954 #endif 955 956 /* reclaim all desc in one budget 957 * return error or number of desc left 958 */ 959 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 960 int budget, void *v) 961 { 962 struct hnae_ring *ring = ring_data->ring; 963 struct net_device *ndev = ring_data->napi.dev; 964 struct netdev_queue *dev_queue; 965 struct hns_nic_priv *priv = netdev_priv(ndev); 966 int head; 967 int bytes, pkts; 968 969 NETIF_TX_LOCK(ring); 970 971 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 972 rmb(); /* make sure head is ready before touch any data */ 973 974 if (is_ring_empty(ring) || head == ring->next_to_clean) { 975 NETIF_TX_UNLOCK(ring); 976 return 0; /* no data to poll */ 977 } 978 979 if (!is_valid_clean_head(ring, head)) { 980 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 981 ring->next_to_use, ring->next_to_clean); 982 ring->stats.io_err_cnt++; 983 NETIF_TX_UNLOCK(ring); 984 return -EIO; 985 } 986 987 bytes = 0; 988 pkts = 0; 989 while (head != ring->next_to_clean) { 990 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 991 /* issue prefetch for next Tx descriptor */ 992 prefetch(&ring->desc_cb[ring->next_to_clean]); 993 } 994 995 NETIF_TX_UNLOCK(ring); 996 997 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 998 netdev_tx_completed_queue(dev_queue, pkts, bytes); 999 1000 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 1001 netif_carrier_on(ndev); 1002 1003 if (unlikely(pkts && netif_carrier_ok(ndev) && 1004 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 1005 /* Make sure that anybody stopping the queue after this 1006 * sees the new next_to_clean. 1007 */ 1008 smp_mb(); 1009 if (netif_tx_queue_stopped(dev_queue) && 1010 !test_bit(NIC_STATE_DOWN, &priv->state)) { 1011 netif_tx_wake_queue(dev_queue); 1012 ring->stats.restart_queue++; 1013 } 1014 } 1015 return 0; 1016 } 1017 1018 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 1019 { 1020 struct hnae_ring *ring = ring_data->ring; 1021 int head; 1022 1023 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1024 1025 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1026 1027 if (head != ring->next_to_clean) { 1028 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1029 ring_data->ring, 1); 1030 1031 return false; 1032 } else { 1033 return true; 1034 } 1035 } 1036 1037 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1038 { 1039 struct hnae_ring *ring = ring_data->ring; 1040 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1041 1042 if (head == ring->next_to_clean) 1043 return true; 1044 else 1045 return false; 1046 } 1047 1048 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1049 { 1050 struct hnae_ring *ring = ring_data->ring; 1051 struct net_device *ndev = ring_data->napi.dev; 1052 struct netdev_queue *dev_queue; 1053 int head; 1054 int bytes, pkts; 1055 1056 NETIF_TX_LOCK(ring); 1057 1058 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1059 bytes = 0; 1060 pkts = 0; 1061 while (head != ring->next_to_clean) 1062 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1063 1064 NETIF_TX_UNLOCK(ring); 1065 1066 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1067 netdev_tx_reset_queue(dev_queue); 1068 } 1069 1070 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1071 { 1072 int clean_complete = 0; 1073 struct hns_nic_ring_data *ring_data = 1074 container_of(napi, struct hns_nic_ring_data, napi); 1075 struct hnae_ring *ring = ring_data->ring; 1076 1077 try_again: 1078 clean_complete += ring_data->poll_one( 1079 ring_data, budget - clean_complete, 1080 ring_data->ex_process); 1081 1082 if (clean_complete < budget) { 1083 if (ring_data->fini_process(ring_data)) { 1084 napi_complete(napi); 1085 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1086 } else { 1087 goto try_again; 1088 } 1089 } 1090 1091 return clean_complete; 1092 } 1093 1094 static irqreturn_t hns_irq_handle(int irq, void *dev) 1095 { 1096 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1097 1098 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1099 ring_data->ring, 1); 1100 napi_schedule(&ring_data->napi); 1101 1102 return IRQ_HANDLED; 1103 } 1104 1105 /** 1106 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1107 *@ndev: net device 1108 */ 1109 static void hns_nic_adjust_link(struct net_device *ndev) 1110 { 1111 struct hns_nic_priv *priv = netdev_priv(ndev); 1112 struct hnae_handle *h = priv->ae_handle; 1113 int state = 1; 1114 1115 if (ndev->phydev) { 1116 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1117 ndev->phydev->duplex); 1118 state = ndev->phydev->link; 1119 } 1120 state = state && h->dev->ops->get_status(h); 1121 1122 if (state != priv->link) { 1123 if (state) { 1124 netif_carrier_on(ndev); 1125 netif_tx_wake_all_queues(ndev); 1126 netdev_info(ndev, "link up\n"); 1127 } else { 1128 netif_carrier_off(ndev); 1129 netdev_info(ndev, "link down\n"); 1130 } 1131 priv->link = state; 1132 } 1133 } 1134 1135 /** 1136 *hns_nic_init_phy - init phy 1137 *@ndev: net device 1138 *@h: ae handle 1139 * Return 0 on success, negative on failure 1140 */ 1141 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1142 { 1143 struct phy_device *phy_dev = h->phy_dev; 1144 int ret; 1145 1146 if (!h->phy_dev) 1147 return 0; 1148 1149 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1150 phy_dev->dev_flags = 0; 1151 1152 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1153 h->phy_if); 1154 } else { 1155 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1156 } 1157 if (unlikely(ret)) 1158 return -ENODEV; 1159 1160 phy_dev->supported &= h->if_support; 1161 phy_dev->advertising = phy_dev->supported; 1162 1163 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1164 phy_dev->autoneg = false; 1165 1166 return 0; 1167 } 1168 1169 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1170 { 1171 struct hns_nic_priv *priv = netdev_priv(netdev); 1172 struct hnae_handle *h = priv->ae_handle; 1173 1174 napi_enable(&priv->ring_data[idx].napi); 1175 1176 enable_irq(priv->ring_data[idx].ring->irq); 1177 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1178 1179 return 0; 1180 } 1181 1182 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1183 { 1184 struct hns_nic_priv *priv = netdev_priv(ndev); 1185 struct hnae_handle *h = priv->ae_handle; 1186 struct sockaddr *mac_addr = p; 1187 int ret; 1188 1189 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1190 return -EADDRNOTAVAIL; 1191 1192 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1193 if (ret) { 1194 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1195 return ret; 1196 } 1197 1198 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); 1199 1200 return 0; 1201 } 1202 1203 static void hns_nic_update_stats(struct net_device *netdev) 1204 { 1205 struct hns_nic_priv *priv = netdev_priv(netdev); 1206 struct hnae_handle *h = priv->ae_handle; 1207 1208 h->dev->ops->update_stats(h, &netdev->stats); 1209 } 1210 1211 /* set mac addr if it is configed. or leave it to the AE driver */ 1212 static void hns_init_mac_addr(struct net_device *ndev) 1213 { 1214 struct hns_nic_priv *priv = netdev_priv(ndev); 1215 1216 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { 1217 eth_hw_addr_random(ndev); 1218 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1219 ndev->dev_addr); 1220 } 1221 } 1222 1223 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1224 { 1225 struct hns_nic_priv *priv = netdev_priv(netdev); 1226 struct hnae_handle *h = priv->ae_handle; 1227 1228 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1229 disable_irq(priv->ring_data[idx].ring->irq); 1230 1231 napi_disable(&priv->ring_data[idx].napi); 1232 } 1233 1234 static int hns_nic_init_affinity_mask(int q_num, int ring_idx, 1235 struct hnae_ring *ring, cpumask_t *mask) 1236 { 1237 int cpu; 1238 1239 /* Diffrent irq banlance between 16core and 32core. 1240 * The cpu mask set by ring index according to the ring flag 1241 * which indicate the ring is tx or rx. 1242 */ 1243 if (q_num == num_possible_cpus()) { 1244 if (is_tx_ring(ring)) 1245 cpu = ring_idx; 1246 else 1247 cpu = ring_idx - q_num; 1248 } else { 1249 if (is_tx_ring(ring)) 1250 cpu = ring_idx * 2; 1251 else 1252 cpu = (ring_idx - q_num) * 2 + 1; 1253 } 1254 1255 cpumask_clear(mask); 1256 cpumask_set_cpu(cpu, mask); 1257 1258 return cpu; 1259 } 1260 1261 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1262 { 1263 struct hnae_handle *h = priv->ae_handle; 1264 struct hns_nic_ring_data *rd; 1265 int i; 1266 int ret; 1267 int cpu; 1268 1269 for (i = 0; i < h->q_num * 2; i++) { 1270 rd = &priv->ring_data[i]; 1271 1272 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1273 break; 1274 1275 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1276 "%s-%s%d", priv->netdev->name, 1277 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); 1278 1279 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1280 1281 ret = request_irq(rd->ring->irq, 1282 hns_irq_handle, 0, rd->ring->ring_name, rd); 1283 if (ret) { 1284 netdev_err(priv->netdev, "request irq(%d) fail\n", 1285 rd->ring->irq); 1286 return ret; 1287 } 1288 disable_irq(rd->ring->irq); 1289 1290 cpu = hns_nic_init_affinity_mask(h->q_num, i, 1291 rd->ring, &rd->mask); 1292 1293 if (cpu_online(cpu)) 1294 irq_set_affinity_hint(rd->ring->irq, 1295 &rd->mask); 1296 1297 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1298 } 1299 1300 return 0; 1301 } 1302 1303 static int hns_nic_net_up(struct net_device *ndev) 1304 { 1305 struct hns_nic_priv *priv = netdev_priv(ndev); 1306 struct hnae_handle *h = priv->ae_handle; 1307 int i, j; 1308 int ret; 1309 1310 ret = hns_nic_init_irq(priv); 1311 if (ret != 0) { 1312 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1313 return ret; 1314 } 1315 1316 for (i = 0; i < h->q_num * 2; i++) { 1317 ret = hns_nic_ring_open(ndev, i); 1318 if (ret) 1319 goto out_has_some_queues; 1320 } 1321 1322 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1323 if (ret) 1324 goto out_set_mac_addr_err; 1325 1326 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1327 if (ret) 1328 goto out_start_err; 1329 1330 if (ndev->phydev) 1331 phy_start(ndev->phydev); 1332 1333 clear_bit(NIC_STATE_DOWN, &priv->state); 1334 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1335 1336 return 0; 1337 1338 out_start_err: 1339 netif_stop_queue(ndev); 1340 out_set_mac_addr_err: 1341 out_has_some_queues: 1342 for (j = i - 1; j >= 0; j--) 1343 hns_nic_ring_close(ndev, j); 1344 1345 set_bit(NIC_STATE_DOWN, &priv->state); 1346 1347 return ret; 1348 } 1349 1350 static void hns_nic_net_down(struct net_device *ndev) 1351 { 1352 int i; 1353 struct hnae_ae_ops *ops; 1354 struct hns_nic_priv *priv = netdev_priv(ndev); 1355 1356 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1357 return; 1358 1359 (void)del_timer_sync(&priv->service_timer); 1360 netif_tx_stop_all_queues(ndev); 1361 netif_carrier_off(ndev); 1362 netif_tx_disable(ndev); 1363 priv->link = 0; 1364 1365 if (ndev->phydev) 1366 phy_stop(ndev->phydev); 1367 1368 ops = priv->ae_handle->dev->ops; 1369 1370 if (ops->stop) 1371 ops->stop(priv->ae_handle); 1372 1373 netif_tx_stop_all_queues(ndev); 1374 1375 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1376 hns_nic_ring_close(ndev, i); 1377 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1378 1379 /* clean tx buffers*/ 1380 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1381 } 1382 } 1383 1384 void hns_nic_net_reset(struct net_device *ndev) 1385 { 1386 struct hns_nic_priv *priv = netdev_priv(ndev); 1387 struct hnae_handle *handle = priv->ae_handle; 1388 1389 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1390 usleep_range(1000, 2000); 1391 1392 (void)hnae_reinit_handle(handle); 1393 1394 clear_bit(NIC_STATE_RESETTING, &priv->state); 1395 } 1396 1397 void hns_nic_net_reinit(struct net_device *netdev) 1398 { 1399 struct hns_nic_priv *priv = netdev_priv(netdev); 1400 enum hnae_port_type type = priv->ae_handle->port_type; 1401 1402 netif_trans_update(priv->netdev); 1403 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1404 usleep_range(1000, 2000); 1405 1406 hns_nic_net_down(netdev); 1407 1408 /* Only do hns_nic_net_reset in debug mode 1409 * because of hardware limitation. 1410 */ 1411 if (type == HNAE_PORT_DEBUG) 1412 hns_nic_net_reset(netdev); 1413 1414 (void)hns_nic_net_up(netdev); 1415 clear_bit(NIC_STATE_REINITING, &priv->state); 1416 } 1417 1418 static int hns_nic_net_open(struct net_device *ndev) 1419 { 1420 struct hns_nic_priv *priv = netdev_priv(ndev); 1421 struct hnae_handle *h = priv->ae_handle; 1422 int ret; 1423 1424 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1425 return -EBUSY; 1426 1427 priv->link = 0; 1428 netif_carrier_off(ndev); 1429 1430 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1431 if (ret < 0) { 1432 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1433 ret); 1434 return ret; 1435 } 1436 1437 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1438 if (ret < 0) { 1439 netdev_err(ndev, 1440 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1441 return ret; 1442 } 1443 1444 ret = hns_nic_net_up(ndev); 1445 if (ret) { 1446 netdev_err(ndev, 1447 "hns net up fail, ret=%d!\n", ret); 1448 return ret; 1449 } 1450 1451 return 0; 1452 } 1453 1454 static int hns_nic_net_stop(struct net_device *ndev) 1455 { 1456 hns_nic_net_down(ndev); 1457 1458 return 0; 1459 } 1460 1461 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1462 static void hns_nic_net_timeout(struct net_device *ndev) 1463 { 1464 struct hns_nic_priv *priv = netdev_priv(ndev); 1465 1466 hns_tx_timeout_reset(priv); 1467 } 1468 1469 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr, 1470 int cmd) 1471 { 1472 struct phy_device *phy_dev = netdev->phydev; 1473 1474 if (!netif_running(netdev)) 1475 return -EINVAL; 1476 1477 if (!phy_dev) 1478 return -ENOTSUPP; 1479 1480 return phy_mii_ioctl(phy_dev, ifr, cmd); 1481 } 1482 1483 /* use only for netconsole to poll with the device without interrupt */ 1484 #ifdef CONFIG_NET_POLL_CONTROLLER 1485 static void hns_nic_poll_controller(struct net_device *ndev) 1486 { 1487 struct hns_nic_priv *priv = netdev_priv(ndev); 1488 unsigned long flags; 1489 int i; 1490 1491 local_irq_save(flags); 1492 for (i = 0; i < priv->ae_handle->q_num * 2; i++) 1493 napi_schedule(&priv->ring_data[i].napi); 1494 local_irq_restore(flags); 1495 } 1496 #endif 1497 1498 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1499 struct net_device *ndev) 1500 { 1501 struct hns_nic_priv *priv = netdev_priv(ndev); 1502 1503 assert(skb->queue_mapping < ndev->ae_handle->q_num); 1504 1505 return hns_nic_net_xmit_hw(ndev, skb, 1506 &tx_ring_data(priv, skb->queue_mapping)); 1507 } 1508 1509 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, 1510 struct sk_buff *skb) 1511 { 1512 dev_kfree_skb_any(skb); 1513 } 1514 1515 #define HNS_LB_TX_RING 0 1516 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) 1517 { 1518 struct sk_buff *skb; 1519 struct ethhdr *ethhdr; 1520 int frame_len; 1521 1522 /* allocate test skb */ 1523 skb = alloc_skb(64, GFP_KERNEL); 1524 if (!skb) 1525 return NULL; 1526 1527 skb_put(skb, 64); 1528 skb->dev = ndev; 1529 memset(skb->data, 0xFF, skb->len); 1530 1531 /* must be tcp/ip package */ 1532 ethhdr = (struct ethhdr *)skb->data; 1533 ethhdr->h_proto = htons(ETH_P_IP); 1534 1535 frame_len = skb->len & (~1ul); 1536 memset(&skb->data[frame_len / 2], 0xAA, 1537 frame_len / 2 - 1); 1538 1539 skb->queue_mapping = HNS_LB_TX_RING; 1540 1541 return skb; 1542 } 1543 1544 static int hns_enable_serdes_lb(struct net_device *ndev) 1545 { 1546 struct hns_nic_priv *priv = netdev_priv(ndev); 1547 struct hnae_handle *h = priv->ae_handle; 1548 struct hnae_ae_ops *ops = h->dev->ops; 1549 int speed, duplex; 1550 int ret; 1551 1552 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); 1553 if (ret) 1554 return ret; 1555 1556 ret = ops->start ? ops->start(h) : 0; 1557 if (ret) 1558 return ret; 1559 1560 /* link adjust duplex*/ 1561 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1562 speed = 1000; 1563 else 1564 speed = 10000; 1565 duplex = 1; 1566 1567 ops->adjust_link(h, speed, duplex); 1568 1569 /* wait h/w ready */ 1570 mdelay(300); 1571 1572 return 0; 1573 } 1574 1575 static void hns_disable_serdes_lb(struct net_device *ndev) 1576 { 1577 struct hns_nic_priv *priv = netdev_priv(ndev); 1578 struct hnae_handle *h = priv->ae_handle; 1579 struct hnae_ae_ops *ops = h->dev->ops; 1580 1581 ops->stop(h); 1582 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); 1583 } 1584 1585 /** 1586 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The 1587 *function as follows: 1588 * 1. if one rx ring has found the page_offset is not equal 0 between head 1589 * and tail, it means that the chip fetched the wrong descs for the ring 1590 * which buffer size is 4096. 1591 * 2. we set the chip serdes loopback and set rss indirection to the ring. 1592 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring 1593 * recieving all packages and it will fetch new descriptions. 1594 * 4. recover to the original state. 1595 * 1596 *@ndev: net device 1597 */ 1598 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) 1599 { 1600 struct hns_nic_priv *priv = netdev_priv(ndev); 1601 struct hnae_handle *h = priv->ae_handle; 1602 struct hnae_ae_ops *ops = h->dev->ops; 1603 struct hns_nic_ring_data *rd; 1604 struct hnae_ring *ring; 1605 struct sk_buff *skb; 1606 u32 *org_indir; 1607 u32 *cur_indir; 1608 int indir_size; 1609 int head, tail; 1610 int fetch_num; 1611 int i, j; 1612 bool found; 1613 int retry_times; 1614 int ret = 0; 1615 1616 /* alloc indir memory */ 1617 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); 1618 org_indir = kzalloc(indir_size, GFP_KERNEL); 1619 if (!org_indir) 1620 return -ENOMEM; 1621 1622 /* store the orginal indirection */ 1623 ops->get_rss(h, org_indir, NULL, NULL); 1624 1625 cur_indir = kzalloc(indir_size, GFP_KERNEL); 1626 if (!cur_indir) { 1627 ret = -ENOMEM; 1628 goto cur_indir_alloc_err; 1629 } 1630 1631 /* set loopback */ 1632 if (hns_enable_serdes_lb(ndev)) { 1633 ret = -EINVAL; 1634 goto enable_serdes_lb_err; 1635 } 1636 1637 /* foreach every rx ring to clear fetch desc */ 1638 for (i = 0; i < h->q_num; i++) { 1639 ring = &h->qs[i]->rx_ring; 1640 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1641 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); 1642 found = false; 1643 fetch_num = ring_dist(ring, head, tail); 1644 1645 while (head != tail) { 1646 if (ring->desc_cb[head].page_offset != 0) { 1647 found = true; 1648 break; 1649 } 1650 1651 head++; 1652 if (head == ring->desc_num) 1653 head = 0; 1654 } 1655 1656 if (found) { 1657 for (j = 0; j < indir_size / sizeof(*org_indir); j++) 1658 cur_indir[j] = i; 1659 ops->set_rss(h, cur_indir, NULL, 0); 1660 1661 for (j = 0; j < fetch_num; j++) { 1662 /* alloc one skb and init */ 1663 skb = hns_assemble_skb(ndev); 1664 if (!skb) 1665 goto out; 1666 rd = &tx_ring_data(priv, skb->queue_mapping); 1667 hns_nic_net_xmit_hw(ndev, skb, rd); 1668 1669 retry_times = 0; 1670 while (retry_times++ < 10) { 1671 mdelay(10); 1672 /* clean rx */ 1673 rd = &rx_ring_data(priv, i); 1674 if (rd->poll_one(rd, fetch_num, 1675 hns_nic_drop_rx_fetch)) 1676 break; 1677 } 1678 1679 retry_times = 0; 1680 while (retry_times++ < 10) { 1681 mdelay(10); 1682 /* clean tx ring 0 send package */ 1683 rd = &tx_ring_data(priv, 1684 HNS_LB_TX_RING); 1685 if (rd->poll_one(rd, fetch_num, NULL)) 1686 break; 1687 } 1688 } 1689 } 1690 } 1691 1692 out: 1693 /* restore everything */ 1694 ops->set_rss(h, org_indir, NULL, 0); 1695 hns_disable_serdes_lb(ndev); 1696 enable_serdes_lb_err: 1697 kfree(cur_indir); 1698 cur_indir_alloc_err: 1699 kfree(org_indir); 1700 1701 return ret; 1702 } 1703 1704 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1705 { 1706 struct hns_nic_priv *priv = netdev_priv(ndev); 1707 struct hnae_handle *h = priv->ae_handle; 1708 bool if_running = netif_running(ndev); 1709 int ret; 1710 1711 /* MTU < 68 is an error and causes problems on some kernels */ 1712 if (new_mtu < 68) 1713 return -EINVAL; 1714 1715 /* MTU no change */ 1716 if (new_mtu == ndev->mtu) 1717 return 0; 1718 1719 if (!h->dev->ops->set_mtu) 1720 return -ENOTSUPP; 1721 1722 if (if_running) { 1723 (void)hns_nic_net_stop(ndev); 1724 msleep(100); 1725 } 1726 1727 if (priv->enet_ver != AE_VERSION_1 && 1728 ndev->mtu <= BD_SIZE_2048_MAX_MTU && 1729 new_mtu > BD_SIZE_2048_MAX_MTU) { 1730 /* update desc */ 1731 hnae_reinit_all_ring_desc(h); 1732 1733 /* clear the package which the chip has fetched */ 1734 ret = hns_nic_clear_all_rx_fetch(ndev); 1735 1736 /* the page offset must be consist with desc */ 1737 hnae_reinit_all_ring_page_off(h); 1738 1739 if (ret) { 1740 netdev_err(ndev, "clear the fetched desc fail\n"); 1741 goto out; 1742 } 1743 } 1744 1745 ret = h->dev->ops->set_mtu(h, new_mtu); 1746 if (ret) { 1747 netdev_err(ndev, "set mtu fail, return value %d\n", 1748 ret); 1749 goto out; 1750 } 1751 1752 /* finally, set new mtu to netdevice */ 1753 ndev->mtu = new_mtu; 1754 1755 out: 1756 if (if_running) { 1757 if (hns_nic_net_open(ndev)) { 1758 netdev_err(ndev, "hns net open fail\n"); 1759 ret = -EINVAL; 1760 } 1761 } 1762 1763 return ret; 1764 } 1765 1766 static int hns_nic_set_features(struct net_device *netdev, 1767 netdev_features_t features) 1768 { 1769 struct hns_nic_priv *priv = netdev_priv(netdev); 1770 1771 switch (priv->enet_ver) { 1772 case AE_VERSION_1: 1773 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1774 netdev_info(netdev, "enet v1 do not support tso!\n"); 1775 break; 1776 default: 1777 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1778 priv->ops.fill_desc = fill_tso_desc; 1779 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1780 /* The chip only support 7*4096 */ 1781 netif_set_gso_max_size(netdev, 7 * 4096); 1782 } else { 1783 priv->ops.fill_desc = fill_v2_desc; 1784 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1785 } 1786 break; 1787 } 1788 netdev->features = features; 1789 return 0; 1790 } 1791 1792 static netdev_features_t hns_nic_fix_features( 1793 struct net_device *netdev, netdev_features_t features) 1794 { 1795 struct hns_nic_priv *priv = netdev_priv(netdev); 1796 1797 switch (priv->enet_ver) { 1798 case AE_VERSION_1: 1799 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1800 NETIF_F_HW_VLAN_CTAG_FILTER); 1801 break; 1802 default: 1803 break; 1804 } 1805 return features; 1806 } 1807 1808 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1809 { 1810 struct hns_nic_priv *priv = netdev_priv(netdev); 1811 struct hnae_handle *h = priv->ae_handle; 1812 1813 if (h->dev->ops->add_uc_addr) 1814 return h->dev->ops->add_uc_addr(h, addr); 1815 1816 return 0; 1817 } 1818 1819 static int hns_nic_uc_unsync(struct net_device *netdev, 1820 const unsigned char *addr) 1821 { 1822 struct hns_nic_priv *priv = netdev_priv(netdev); 1823 struct hnae_handle *h = priv->ae_handle; 1824 1825 if (h->dev->ops->rm_uc_addr) 1826 return h->dev->ops->rm_uc_addr(h, addr); 1827 1828 return 0; 1829 } 1830 1831 /** 1832 * nic_set_multicast_list - set mutl mac address 1833 * @netdev: net device 1834 * @p: mac address 1835 * 1836 * return void 1837 */ 1838 static void hns_set_multicast_list(struct net_device *ndev) 1839 { 1840 struct hns_nic_priv *priv = netdev_priv(ndev); 1841 struct hnae_handle *h = priv->ae_handle; 1842 struct netdev_hw_addr *ha = NULL; 1843 1844 if (!h) { 1845 netdev_err(ndev, "hnae handle is null\n"); 1846 return; 1847 } 1848 1849 if (h->dev->ops->clr_mc_addr) 1850 if (h->dev->ops->clr_mc_addr(h)) 1851 netdev_err(ndev, "clear multicast address fail\n"); 1852 1853 if (h->dev->ops->set_mc_addr) { 1854 netdev_for_each_mc_addr(ha, ndev) 1855 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1856 netdev_err(ndev, "set multicast fail\n"); 1857 } 1858 } 1859 1860 static void hns_nic_set_rx_mode(struct net_device *ndev) 1861 { 1862 struct hns_nic_priv *priv = netdev_priv(ndev); 1863 struct hnae_handle *h = priv->ae_handle; 1864 1865 if (h->dev->ops->set_promisc_mode) { 1866 if (ndev->flags & IFF_PROMISC) 1867 h->dev->ops->set_promisc_mode(h, 1); 1868 else 1869 h->dev->ops->set_promisc_mode(h, 0); 1870 } 1871 1872 hns_set_multicast_list(ndev); 1873 1874 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1875 netdev_err(ndev, "sync uc address fail\n"); 1876 } 1877 1878 static void hns_nic_get_stats64(struct net_device *ndev, 1879 struct rtnl_link_stats64 *stats) 1880 { 1881 int idx = 0; 1882 u64 tx_bytes = 0; 1883 u64 rx_bytes = 0; 1884 u64 tx_pkts = 0; 1885 u64 rx_pkts = 0; 1886 struct hns_nic_priv *priv = netdev_priv(ndev); 1887 struct hnae_handle *h = priv->ae_handle; 1888 1889 for (idx = 0; idx < h->q_num; idx++) { 1890 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1891 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1892 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1893 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1894 } 1895 1896 stats->tx_bytes = tx_bytes; 1897 stats->tx_packets = tx_pkts; 1898 stats->rx_bytes = rx_bytes; 1899 stats->rx_packets = rx_pkts; 1900 1901 stats->rx_errors = ndev->stats.rx_errors; 1902 stats->multicast = ndev->stats.multicast; 1903 stats->rx_length_errors = ndev->stats.rx_length_errors; 1904 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1905 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1906 1907 stats->tx_errors = ndev->stats.tx_errors; 1908 stats->rx_dropped = ndev->stats.rx_dropped; 1909 stats->tx_dropped = ndev->stats.tx_dropped; 1910 stats->collisions = ndev->stats.collisions; 1911 stats->rx_over_errors = ndev->stats.rx_over_errors; 1912 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1913 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1914 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1915 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1916 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1917 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1918 stats->tx_window_errors = ndev->stats.tx_window_errors; 1919 stats->rx_compressed = ndev->stats.rx_compressed; 1920 stats->tx_compressed = ndev->stats.tx_compressed; 1921 } 1922 1923 static u16 1924 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1925 struct net_device *sb_dev, 1926 select_queue_fallback_t fallback) 1927 { 1928 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1929 struct hns_nic_priv *priv = netdev_priv(ndev); 1930 1931 /* fix hardware broadcast/multicast packets queue loopback */ 1932 if (!AE_IS_VER1(priv->enet_ver) && 1933 is_multicast_ether_addr(eth_hdr->h_dest)) 1934 return 0; 1935 else 1936 return fallback(ndev, skb, NULL); 1937 } 1938 1939 static const struct net_device_ops hns_nic_netdev_ops = { 1940 .ndo_open = hns_nic_net_open, 1941 .ndo_stop = hns_nic_net_stop, 1942 .ndo_start_xmit = hns_nic_net_xmit, 1943 .ndo_tx_timeout = hns_nic_net_timeout, 1944 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1945 .ndo_change_mtu = hns_nic_change_mtu, 1946 .ndo_do_ioctl = hns_nic_do_ioctl, 1947 .ndo_set_features = hns_nic_set_features, 1948 .ndo_fix_features = hns_nic_fix_features, 1949 .ndo_get_stats64 = hns_nic_get_stats64, 1950 #ifdef CONFIG_NET_POLL_CONTROLLER 1951 .ndo_poll_controller = hns_nic_poll_controller, 1952 #endif 1953 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1954 .ndo_select_queue = hns_nic_select_queue, 1955 }; 1956 1957 static void hns_nic_update_link_status(struct net_device *netdev) 1958 { 1959 struct hns_nic_priv *priv = netdev_priv(netdev); 1960 1961 struct hnae_handle *h = priv->ae_handle; 1962 1963 if (h->phy_dev) { 1964 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1965 return; 1966 1967 (void)genphy_read_status(h->phy_dev); 1968 } 1969 hns_nic_adjust_link(netdev); 1970 } 1971 1972 /* for dumping key regs*/ 1973 static void hns_nic_dump(struct hns_nic_priv *priv) 1974 { 1975 struct hnae_handle *h = priv->ae_handle; 1976 struct hnae_ae_ops *ops = h->dev->ops; 1977 u32 *data, reg_num, i; 1978 1979 if (ops->get_regs_len && ops->get_regs) { 1980 reg_num = ops->get_regs_len(priv->ae_handle); 1981 reg_num = (reg_num + 3ul) & ~3ul; 1982 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 1983 if (data) { 1984 ops->get_regs(priv->ae_handle, data); 1985 for (i = 0; i < reg_num; i += 4) 1986 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 1987 i, data[i], data[i + 1], 1988 data[i + 2], data[i + 3]); 1989 kfree(data); 1990 } 1991 } 1992 1993 for (i = 0; i < h->q_num; i++) { 1994 pr_info("tx_queue%d_next_to_clean:%d\n", 1995 i, h->qs[i]->tx_ring.next_to_clean); 1996 pr_info("tx_queue%d_next_to_use:%d\n", 1997 i, h->qs[i]->tx_ring.next_to_use); 1998 pr_info("rx_queue%d_next_to_clean:%d\n", 1999 i, h->qs[i]->rx_ring.next_to_clean); 2000 pr_info("rx_queue%d_next_to_use:%d\n", 2001 i, h->qs[i]->rx_ring.next_to_use); 2002 } 2003 } 2004 2005 /* for resetting subtask */ 2006 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 2007 { 2008 enum hnae_port_type type = priv->ae_handle->port_type; 2009 2010 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 2011 return; 2012 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2013 2014 /* If we're already down, removing or resetting, just bail */ 2015 if (test_bit(NIC_STATE_DOWN, &priv->state) || 2016 test_bit(NIC_STATE_REMOVING, &priv->state) || 2017 test_bit(NIC_STATE_RESETTING, &priv->state)) 2018 return; 2019 2020 hns_nic_dump(priv); 2021 netdev_info(priv->netdev, "try to reset %s port!\n", 2022 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 2023 2024 rtnl_lock(); 2025 /* put off any impending NetWatchDogTimeout */ 2026 netif_trans_update(priv->netdev); 2027 hns_nic_net_reinit(priv->netdev); 2028 2029 rtnl_unlock(); 2030 } 2031 2032 /* for doing service complete*/ 2033 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 2034 { 2035 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 2036 /* make sure to commit the things */ 2037 smp_mb__before_atomic(); 2038 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2039 } 2040 2041 static void hns_nic_service_task(struct work_struct *work) 2042 { 2043 struct hns_nic_priv *priv 2044 = container_of(work, struct hns_nic_priv, service_task); 2045 struct hnae_handle *h = priv->ae_handle; 2046 2047 hns_nic_update_link_status(priv->netdev); 2048 h->dev->ops->update_led_status(h); 2049 hns_nic_update_stats(priv->netdev); 2050 2051 hns_nic_reset_subtask(priv); 2052 hns_nic_service_event_complete(priv); 2053 } 2054 2055 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 2056 { 2057 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 2058 !test_bit(NIC_STATE_REMOVING, &priv->state) && 2059 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 2060 (void)schedule_work(&priv->service_task); 2061 } 2062 2063 static void hns_nic_service_timer(struct timer_list *t) 2064 { 2065 struct hns_nic_priv *priv = from_timer(priv, t, service_timer); 2066 2067 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 2068 2069 hns_nic_task_schedule(priv); 2070 } 2071 2072 /** 2073 * hns_tx_timeout_reset - initiate reset due to Tx timeout 2074 * @priv: driver private struct 2075 **/ 2076 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 2077 { 2078 /* Do the reset outside of interrupt context */ 2079 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 2080 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2081 netdev_warn(priv->netdev, 2082 "initiating reset due to tx timeout(%llu,0x%lx)\n", 2083 priv->tx_timeout_count, priv->state); 2084 priv->tx_timeout_count++; 2085 hns_nic_task_schedule(priv); 2086 } 2087 } 2088 2089 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 2090 { 2091 struct hnae_handle *h = priv->ae_handle; 2092 struct hns_nic_ring_data *rd; 2093 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 2094 int i; 2095 2096 if (h->q_num > NIC_MAX_Q_PER_VF) { 2097 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 2098 return -EINVAL; 2099 } 2100 2101 priv->ring_data = kzalloc(array3_size(h->q_num, 2102 sizeof(*priv->ring_data), 2), 2103 GFP_KERNEL); 2104 if (!priv->ring_data) 2105 return -ENOMEM; 2106 2107 for (i = 0; i < h->q_num; i++) { 2108 rd = &priv->ring_data[i]; 2109 rd->queue_index = i; 2110 rd->ring = &h->qs[i]->tx_ring; 2111 rd->poll_one = hns_nic_tx_poll_one; 2112 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 2113 hns_nic_tx_fini_pro_v2; 2114 2115 netif_napi_add(priv->netdev, &rd->napi, 2116 hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM); 2117 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2118 } 2119 for (i = h->q_num; i < h->q_num * 2; i++) { 2120 rd = &priv->ring_data[i]; 2121 rd->queue_index = i - h->q_num; 2122 rd->ring = &h->qs[i - h->q_num]->rx_ring; 2123 rd->poll_one = hns_nic_rx_poll_one; 2124 rd->ex_process = hns_nic_rx_up_pro; 2125 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 2126 hns_nic_rx_fini_pro_v2; 2127 2128 netif_napi_add(priv->netdev, &rd->napi, 2129 hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM); 2130 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2131 } 2132 2133 return 0; 2134 } 2135 2136 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 2137 { 2138 struct hnae_handle *h = priv->ae_handle; 2139 int i; 2140 2141 for (i = 0; i < h->q_num * 2; i++) { 2142 netif_napi_del(&priv->ring_data[i].napi); 2143 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 2144 (void)irq_set_affinity_hint( 2145 priv->ring_data[i].ring->irq, 2146 NULL); 2147 free_irq(priv->ring_data[i].ring->irq, 2148 &priv->ring_data[i]); 2149 } 2150 2151 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2152 } 2153 kfree(priv->ring_data); 2154 } 2155 2156 static void hns_nic_set_priv_ops(struct net_device *netdev) 2157 { 2158 struct hns_nic_priv *priv = netdev_priv(netdev); 2159 struct hnae_handle *h = priv->ae_handle; 2160 2161 if (AE_IS_VER1(priv->enet_ver)) { 2162 priv->ops.fill_desc = fill_desc; 2163 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 2164 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2165 } else { 2166 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 2167 if ((netdev->features & NETIF_F_TSO) || 2168 (netdev->features & NETIF_F_TSO6)) { 2169 priv->ops.fill_desc = fill_tso_desc; 2170 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 2171 /* This chip only support 7*4096 */ 2172 netif_set_gso_max_size(netdev, 7 * 4096); 2173 } else { 2174 priv->ops.fill_desc = fill_v2_desc; 2175 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2176 } 2177 /* enable tso when init 2178 * control tso on/off through TSE bit in bd 2179 */ 2180 h->dev->ops->set_tso_stats(h, 1); 2181 } 2182 } 2183 2184 static int hns_nic_try_get_ae(struct net_device *ndev) 2185 { 2186 struct hns_nic_priv *priv = netdev_priv(ndev); 2187 struct hnae_handle *h; 2188 int ret; 2189 2190 h = hnae_get_handle(&priv->netdev->dev, 2191 priv->fwnode, priv->port_id, NULL); 2192 if (IS_ERR_OR_NULL(h)) { 2193 ret = -ENODEV; 2194 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 2195 goto out; 2196 } 2197 priv->ae_handle = h; 2198 2199 ret = hns_nic_init_phy(ndev, h); 2200 if (ret) { 2201 dev_err(priv->dev, "probe phy device fail!\n"); 2202 goto out_init_phy; 2203 } 2204 2205 ret = hns_nic_init_ring_data(priv); 2206 if (ret) { 2207 ret = -ENOMEM; 2208 goto out_init_ring_data; 2209 } 2210 2211 hns_nic_set_priv_ops(ndev); 2212 2213 ret = register_netdev(ndev); 2214 if (ret) { 2215 dev_err(priv->dev, "probe register netdev fail!\n"); 2216 goto out_reg_ndev_fail; 2217 } 2218 return 0; 2219 2220 out_reg_ndev_fail: 2221 hns_nic_uninit_ring_data(priv); 2222 priv->ring_data = NULL; 2223 out_init_phy: 2224 out_init_ring_data: 2225 hnae_put_handle(priv->ae_handle); 2226 priv->ae_handle = NULL; 2227 out: 2228 return ret; 2229 } 2230 2231 static int hns_nic_notifier_action(struct notifier_block *nb, 2232 unsigned long action, void *data) 2233 { 2234 struct hns_nic_priv *priv = 2235 container_of(nb, struct hns_nic_priv, notifier_block); 2236 2237 assert(action == HNAE_AE_REGISTER); 2238 2239 if (!hns_nic_try_get_ae(priv->netdev)) { 2240 hnae_unregister_notifier(&priv->notifier_block); 2241 priv->notifier_block.notifier_call = NULL; 2242 } 2243 return 0; 2244 } 2245 2246 static int hns_nic_dev_probe(struct platform_device *pdev) 2247 { 2248 struct device *dev = &pdev->dev; 2249 struct net_device *ndev; 2250 struct hns_nic_priv *priv; 2251 u32 port_id; 2252 int ret; 2253 2254 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2255 if (!ndev) 2256 return -ENOMEM; 2257 2258 platform_set_drvdata(pdev, ndev); 2259 2260 priv = netdev_priv(ndev); 2261 priv->dev = dev; 2262 priv->netdev = ndev; 2263 2264 if (dev_of_node(dev)) { 2265 struct device_node *ae_node; 2266 2267 if (of_device_is_compatible(dev->of_node, 2268 "hisilicon,hns-nic-v1")) 2269 priv->enet_ver = AE_VERSION_1; 2270 else 2271 priv->enet_ver = AE_VERSION_2; 2272 2273 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2274 if (!ae_node) { 2275 ret = -ENODEV; 2276 dev_err(dev, "not find ae-handle\n"); 2277 goto out_read_prop_fail; 2278 } 2279 priv->fwnode = &ae_node->fwnode; 2280 } else if (is_acpi_node(dev->fwnode)) { 2281 struct fwnode_reference_args args; 2282 2283 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2284 priv->enet_ver = AE_VERSION_1; 2285 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2286 priv->enet_ver = AE_VERSION_2; 2287 else 2288 return -ENXIO; 2289 2290 /* try to find port-idx-in-ae first */ 2291 ret = acpi_node_get_property_reference(dev->fwnode, 2292 "ae-handle", 0, &args); 2293 if (ret) { 2294 dev_err(dev, "not find ae-handle\n"); 2295 goto out_read_prop_fail; 2296 } 2297 if (!is_acpi_device_node(args.fwnode)) { 2298 ret = -EINVAL; 2299 goto out_read_prop_fail; 2300 } 2301 priv->fwnode = args.fwnode; 2302 } else { 2303 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2304 return -ENXIO; 2305 } 2306 2307 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2308 if (ret) { 2309 /* only for old code compatible */ 2310 ret = device_property_read_u32(dev, "port-id", &port_id); 2311 if (ret) 2312 goto out_read_prop_fail; 2313 /* for old dts, we need to caculate the port offset */ 2314 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2315 : port_id - HNS_SRV_OFFSET; 2316 } 2317 priv->port_id = port_id; 2318 2319 hns_init_mac_addr(ndev); 2320 2321 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2322 ndev->priv_flags |= IFF_UNICAST_FLT; 2323 ndev->netdev_ops = &hns_nic_netdev_ops; 2324 hns_ethtool_set_ops(ndev); 2325 2326 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2327 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2328 NETIF_F_GRO; 2329 ndev->vlan_features |= 2330 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2331 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2332 2333 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2334 ndev->min_mtu = MAC_MIN_MTU; 2335 switch (priv->enet_ver) { 2336 case AE_VERSION_2: 2337 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6; 2338 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2339 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2340 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2341 ndev->max_mtu = MAC_MAX_MTU_V2 - 2342 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2343 break; 2344 default: 2345 ndev->max_mtu = MAC_MAX_MTU - 2346 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2347 break; 2348 } 2349 2350 SET_NETDEV_DEV(ndev, dev); 2351 2352 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2353 dev_dbg(dev, "set mask to 64bit\n"); 2354 else 2355 dev_err(dev, "set mask to 64bit fail!\n"); 2356 2357 /* carrier off reporting is important to ethtool even BEFORE open */ 2358 netif_carrier_off(ndev); 2359 2360 timer_setup(&priv->service_timer, hns_nic_service_timer, 0); 2361 INIT_WORK(&priv->service_task, hns_nic_service_task); 2362 2363 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2364 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2365 set_bit(NIC_STATE_DOWN, &priv->state); 2366 2367 if (hns_nic_try_get_ae(priv->netdev)) { 2368 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2369 ret = hnae_register_notifier(&priv->notifier_block); 2370 if (ret) { 2371 dev_err(dev, "register notifier fail!\n"); 2372 goto out_notify_fail; 2373 } 2374 dev_dbg(dev, "has not handle, register notifier!\n"); 2375 } 2376 2377 return 0; 2378 2379 out_notify_fail: 2380 (void)cancel_work_sync(&priv->service_task); 2381 out_read_prop_fail: 2382 free_netdev(ndev); 2383 return ret; 2384 } 2385 2386 static int hns_nic_dev_remove(struct platform_device *pdev) 2387 { 2388 struct net_device *ndev = platform_get_drvdata(pdev); 2389 struct hns_nic_priv *priv = netdev_priv(ndev); 2390 2391 if (ndev->reg_state != NETREG_UNINITIALIZED) 2392 unregister_netdev(ndev); 2393 2394 if (priv->ring_data) 2395 hns_nic_uninit_ring_data(priv); 2396 priv->ring_data = NULL; 2397 2398 if (ndev->phydev) 2399 phy_disconnect(ndev->phydev); 2400 2401 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2402 hnae_put_handle(priv->ae_handle); 2403 priv->ae_handle = NULL; 2404 if (priv->notifier_block.notifier_call) 2405 hnae_unregister_notifier(&priv->notifier_block); 2406 priv->notifier_block.notifier_call = NULL; 2407 2408 set_bit(NIC_STATE_REMOVING, &priv->state); 2409 (void)cancel_work_sync(&priv->service_task); 2410 2411 free_netdev(ndev); 2412 return 0; 2413 } 2414 2415 static const struct of_device_id hns_enet_of_match[] = { 2416 {.compatible = "hisilicon,hns-nic-v1",}, 2417 {.compatible = "hisilicon,hns-nic-v2",}, 2418 {}, 2419 }; 2420 2421 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2422 2423 static struct platform_driver hns_nic_dev_driver = { 2424 .driver = { 2425 .name = "hns-nic", 2426 .of_match_table = hns_enet_of_match, 2427 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2428 }, 2429 .probe = hns_nic_dev_probe, 2430 .remove = hns_nic_dev_remove, 2431 }; 2432 2433 module_platform_driver(hns_nic_dev_driver); 2434 2435 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2436 MODULE_AUTHOR("Hisilicon, Inc."); 2437 MODULE_LICENSE("GPL"); 2438 MODULE_ALIAS("platform:hns-nic"); 2439