1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22 
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26 
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29 
30 #define SERVICE_TIMER_HZ (1 * HZ)
31 
32 #define NIC_TX_CLEAN_MAX_NUM 256
33 #define NIC_RX_CLEAN_MAX_NUM 64
34 
35 #define RCB_IRQ_NOT_INITED 0
36 #define RCB_IRQ_INITED 1
37 #define HNS_BUFFER_SIZE_2048 2048
38 
39 #define BD_MAX_SEND_SIZE 8191
40 #define SKB_TMP_LEN(SKB) \
41 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
42 
43 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
44 			 int size, dma_addr_t dma, int frag_end,
45 			 int buf_num, enum hns_desc_type type, int mtu)
46 {
47 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
48 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
49 	struct iphdr *iphdr;
50 	struct ipv6hdr *ipv6hdr;
51 	struct sk_buff *skb;
52 	__be16 protocol;
53 	u8 bn_pid = 0;
54 	u8 rrcfv = 0;
55 	u8 ip_offset = 0;
56 	u8 tvsvsn = 0;
57 	u16 mss = 0;
58 	u8 l4_len = 0;
59 	u16 paylen = 0;
60 
61 	desc_cb->priv = priv;
62 	desc_cb->length = size;
63 	desc_cb->dma = dma;
64 	desc_cb->type = type;
65 
66 	desc->addr = cpu_to_le64(dma);
67 	desc->tx.send_size = cpu_to_le16((u16)size);
68 
69 	/* config bd buffer end */
70 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72 
73 	/* fill port_id in the tx bd for sending management pkts */
74 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
75 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
76 
77 	if (type == DESC_TYPE_SKB) {
78 		skb = (struct sk_buff *)priv;
79 
80 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
81 			skb_reset_mac_len(skb);
82 			protocol = skb->protocol;
83 			ip_offset = ETH_HLEN;
84 
85 			if (protocol == htons(ETH_P_8021Q)) {
86 				ip_offset += VLAN_HLEN;
87 				protocol = vlan_get_protocol(skb);
88 				skb->protocol = protocol;
89 			}
90 
91 			if (skb->protocol == htons(ETH_P_IP)) {
92 				iphdr = ip_hdr(skb);
93 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
94 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
95 
96 				/* check for tcp/udp header */
97 				if (iphdr->protocol == IPPROTO_TCP &&
98 				    skb_is_gso(skb)) {
99 					hnae_set_bit(tvsvsn,
100 						     HNSV2_TXD_TSE_B, 1);
101 					l4_len = tcp_hdrlen(skb);
102 					mss = skb_shinfo(skb)->gso_size;
103 					paylen = skb->len - SKB_TMP_LEN(skb);
104 				}
105 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
106 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
107 				ipv6hdr = ipv6_hdr(skb);
108 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
109 
110 				/* check for tcp/udp header */
111 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
112 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
113 					hnae_set_bit(tvsvsn,
114 						     HNSV2_TXD_TSE_B, 1);
115 					l4_len = tcp_hdrlen(skb);
116 					mss = skb_shinfo(skb)->gso_size;
117 					paylen = skb->len - SKB_TMP_LEN(skb);
118 				}
119 			}
120 			desc->tx.ip_offset = ip_offset;
121 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
122 			desc->tx.mss = cpu_to_le16(mss);
123 			desc->tx.l4_len = l4_len;
124 			desc->tx.paylen = cpu_to_le16(paylen);
125 		}
126 	}
127 
128 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
129 
130 	desc->tx.bn_pid = bn_pid;
131 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
132 
133 	ring_ptr_move_fw(ring, next_to_use);
134 }
135 
136 static const struct acpi_device_id hns_enet_acpi_match[] = {
137 	{ "HISI00C1", 0 },
138 	{ "HISI00C2", 0 },
139 	{ },
140 };
141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
142 
143 static void fill_desc(struct hnae_ring *ring, void *priv,
144 		      int size, dma_addr_t dma, int frag_end,
145 		      int buf_num, enum hns_desc_type type, int mtu)
146 {
147 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
148 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
149 	struct sk_buff *skb;
150 	__be16 protocol;
151 	u32 ip_offset;
152 	u32 asid_bufnum_pid = 0;
153 	u32 flag_ipoffset = 0;
154 
155 	desc_cb->priv = priv;
156 	desc_cb->length = size;
157 	desc_cb->dma = dma;
158 	desc_cb->type = type;
159 
160 	desc->addr = cpu_to_le64(dma);
161 	desc->tx.send_size = cpu_to_le16((u16)size);
162 
163 	/*config bd buffer end */
164 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
165 
166 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
167 
168 	if (type == DESC_TYPE_SKB) {
169 		skb = (struct sk_buff *)priv;
170 
171 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
172 			protocol = skb->protocol;
173 			ip_offset = ETH_HLEN;
174 
175 			/*if it is a SW VLAN check the next protocol*/
176 			if (protocol == htons(ETH_P_8021Q)) {
177 				ip_offset += VLAN_HLEN;
178 				protocol = vlan_get_protocol(skb);
179 				skb->protocol = protocol;
180 			}
181 
182 			if (skb->protocol == htons(ETH_P_IP)) {
183 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
184 				/* check for tcp/udp header */
185 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
186 
187 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
188 				/* ipv6 has not l3 cs, check for L4 header */
189 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
190 			}
191 
192 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
193 		}
194 	}
195 
196 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
197 
198 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
199 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
200 
201 	ring_ptr_move_fw(ring, next_to_use);
202 }
203 
204 static void unfill_desc(struct hnae_ring *ring)
205 {
206 	ring_ptr_move_bw(ring, next_to_use);
207 }
208 
209 static int hns_nic_maybe_stop_tx(
210 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
211 {
212 	struct sk_buff *skb = *out_skb;
213 	struct sk_buff *new_skb = NULL;
214 	int buf_num;
215 
216 	/* no. of segments (plus a header) */
217 	buf_num = skb_shinfo(skb)->nr_frags + 1;
218 
219 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
220 		if (ring_space(ring) < 1)
221 			return -EBUSY;
222 
223 		new_skb = skb_copy(skb, GFP_ATOMIC);
224 		if (!new_skb)
225 			return -ENOMEM;
226 
227 		dev_kfree_skb_any(skb);
228 		*out_skb = new_skb;
229 		buf_num = 1;
230 	} else if (buf_num > ring_space(ring)) {
231 		return -EBUSY;
232 	}
233 
234 	*bnum = buf_num;
235 	return 0;
236 }
237 
238 static int hns_nic_maybe_stop_tso(
239 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
240 {
241 	int i;
242 	int size;
243 	int buf_num;
244 	int frag_num;
245 	struct sk_buff *skb = *out_skb;
246 	struct sk_buff *new_skb = NULL;
247 	struct skb_frag_struct *frag;
248 
249 	size = skb_headlen(skb);
250 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
251 
252 	frag_num = skb_shinfo(skb)->nr_frags;
253 	for (i = 0; i < frag_num; i++) {
254 		frag = &skb_shinfo(skb)->frags[i];
255 		size = skb_frag_size(frag);
256 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
257 	}
258 
259 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
260 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
261 		if (ring_space(ring) < buf_num)
262 			return -EBUSY;
263 		/* manual split the send packet */
264 		new_skb = skb_copy(skb, GFP_ATOMIC);
265 		if (!new_skb)
266 			return -ENOMEM;
267 		dev_kfree_skb_any(skb);
268 		*out_skb = new_skb;
269 
270 	} else if (ring_space(ring) < buf_num) {
271 		return -EBUSY;
272 	}
273 
274 	*bnum = buf_num;
275 	return 0;
276 }
277 
278 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
279 			  int size, dma_addr_t dma, int frag_end,
280 			  int buf_num, enum hns_desc_type type, int mtu)
281 {
282 	int frag_buf_num;
283 	int sizeoflast;
284 	int k;
285 
286 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
287 	sizeoflast = size % BD_MAX_SEND_SIZE;
288 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
289 
290 	/* when the frag size is bigger than hardware, split this frag */
291 	for (k = 0; k < frag_buf_num; k++)
292 		fill_v2_desc(ring, priv,
293 			     (k == frag_buf_num - 1) ?
294 					sizeoflast : BD_MAX_SEND_SIZE,
295 			     dma + BD_MAX_SEND_SIZE * k,
296 			     frag_end && (k == frag_buf_num - 1) ? 1 : 0,
297 			     buf_num,
298 			     (type == DESC_TYPE_SKB && !k) ?
299 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
300 			     mtu);
301 }
302 
303 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
304 				struct sk_buff *skb,
305 				struct hns_nic_ring_data *ring_data)
306 {
307 	struct hns_nic_priv *priv = netdev_priv(ndev);
308 	struct hnae_ring *ring = ring_data->ring;
309 	struct device *dev = ring_to_dev(ring);
310 	struct netdev_queue *dev_queue;
311 	struct skb_frag_struct *frag;
312 	int buf_num;
313 	int seg_num;
314 	dma_addr_t dma;
315 	int size, next_to_use;
316 	int i;
317 
318 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
319 	case -EBUSY:
320 		ring->stats.tx_busy++;
321 		goto out_net_tx_busy;
322 	case -ENOMEM:
323 		ring->stats.sw_err_cnt++;
324 		netdev_err(ndev, "no memory to xmit!\n");
325 		goto out_err_tx_ok;
326 	default:
327 		break;
328 	}
329 
330 	/* no. of segments (plus a header) */
331 	seg_num = skb_shinfo(skb)->nr_frags + 1;
332 	next_to_use = ring->next_to_use;
333 
334 	/* fill the first part */
335 	size = skb_headlen(skb);
336 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
337 	if (dma_mapping_error(dev, dma)) {
338 		netdev_err(ndev, "TX head DMA map failed\n");
339 		ring->stats.sw_err_cnt++;
340 		goto out_err_tx_ok;
341 	}
342 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
343 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
344 
345 	/* fill the fragments */
346 	for (i = 1; i < seg_num; i++) {
347 		frag = &skb_shinfo(skb)->frags[i - 1];
348 		size = skb_frag_size(frag);
349 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
350 		if (dma_mapping_error(dev, dma)) {
351 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
352 			ring->stats.sw_err_cnt++;
353 			goto out_map_frag_fail;
354 		}
355 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
356 				    seg_num - 1 == i ? 1 : 0, buf_num,
357 				    DESC_TYPE_PAGE, ndev->mtu);
358 	}
359 
360 	/*complete translate all packets*/
361 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
362 	netdev_tx_sent_queue(dev_queue, skb->len);
363 
364 	netif_trans_update(ndev);
365 	ndev->stats.tx_bytes += skb->len;
366 	ndev->stats.tx_packets++;
367 
368 	wmb(); /* commit all data before submit */
369 	assert(skb->queue_mapping < priv->ae_handle->q_num);
370 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
371 	ring->stats.tx_pkts++;
372 	ring->stats.tx_bytes += skb->len;
373 
374 	return NETDEV_TX_OK;
375 
376 out_map_frag_fail:
377 
378 	while (ring->next_to_use != next_to_use) {
379 		unfill_desc(ring);
380 		if (ring->next_to_use != next_to_use)
381 			dma_unmap_page(dev,
382 				       ring->desc_cb[ring->next_to_use].dma,
383 				       ring->desc_cb[ring->next_to_use].length,
384 				       DMA_TO_DEVICE);
385 		else
386 			dma_unmap_single(dev,
387 					 ring->desc_cb[next_to_use].dma,
388 					 ring->desc_cb[next_to_use].length,
389 					 DMA_TO_DEVICE);
390 	}
391 
392 out_err_tx_ok:
393 
394 	dev_kfree_skb_any(skb);
395 	return NETDEV_TX_OK;
396 
397 out_net_tx_busy:
398 
399 	netif_stop_subqueue(ndev, skb->queue_mapping);
400 
401 	/* Herbert's original patch had:
402 	 *  smp_mb__after_netif_stop_queue();
403 	 * but since that doesn't exist yet, just open code it.
404 	 */
405 	smp_mb();
406 	return NETDEV_TX_BUSY;
407 }
408 
409 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
410 			       struct hnae_ring *ring, int pull_len,
411 			       struct hnae_desc_cb *desc_cb)
412 {
413 	struct hnae_desc *desc;
414 	u32 truesize;
415 	int size;
416 	int last_offset;
417 	bool twobufs;
418 
419 	twobufs = ((PAGE_SIZE < 8192) &&
420 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
421 
422 	desc = &ring->desc[ring->next_to_clean];
423 	size = le16_to_cpu(desc->rx.size);
424 
425 	if (twobufs) {
426 		truesize = hnae_buf_size(ring);
427 	} else {
428 		truesize = ALIGN(size, L1_CACHE_BYTES);
429 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
430 	}
431 
432 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
433 			size - pull_len, truesize);
434 
435 	 /* avoid re-using remote pages,flag default unreuse */
436 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
437 		return;
438 
439 	if (twobufs) {
440 		/* if we are only owner of page we can reuse it */
441 		if (likely(page_count(desc_cb->priv) == 1)) {
442 			/* flip page offset to other buffer */
443 			desc_cb->page_offset ^= truesize;
444 
445 			desc_cb->reuse_flag = 1;
446 			/* bump ref count on page before it is given*/
447 			get_page(desc_cb->priv);
448 		}
449 		return;
450 	}
451 
452 	/* move offset up to the next cache line */
453 	desc_cb->page_offset += truesize;
454 
455 	if (desc_cb->page_offset <= last_offset) {
456 		desc_cb->reuse_flag = 1;
457 		/* bump ref count on page before it is given*/
458 		get_page(desc_cb->priv);
459 	}
460 }
461 
462 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
463 {
464 	*out_bnum = hnae_get_field(bnum_flag,
465 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
466 }
467 
468 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
469 {
470 	*out_bnum = hnae_get_field(bnum_flag,
471 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
472 }
473 
474 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
475 				struct sk_buff *skb, u32 flag)
476 {
477 	struct net_device *netdev = ring_data->napi.dev;
478 	u32 l3id;
479 	u32 l4id;
480 
481 	/* check if RX checksum offload is enabled */
482 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
483 		return;
484 
485 	/* In hardware, we only support checksum for the following protocols:
486 	 * 1) IPv4,
487 	 * 2) TCP(over IPv4 or IPv6),
488 	 * 3) UDP(over IPv4 or IPv6),
489 	 * 4) SCTP(over IPv4 or IPv6)
490 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
491 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
492 	 *
493 	 * Hardware limitation:
494 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
495 	 * Error" bit (which usually can be used to indicate whether checksum
496 	 * was calculated by the hardware and if there was any error encountered
497 	 * during checksum calculation).
498 	 *
499 	 * Software workaround:
500 	 * We do get info within the RX descriptor about the kind of L3/L4
501 	 * protocol coming in the packet and the error status. These errors
502 	 * might not just be checksum errors but could be related to version,
503 	 * length of IPv4, UDP, TCP etc.
504 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
505 	 * checksum or any other L3/L4 error, we will not (cannot) convey
506 	 * checksum status for such cases to upper stack and will not maintain
507 	 * the RX L3/L4 checksum counters as well.
508 	 */
509 
510 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
511 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
512 
513 	/*  check L3 protocol for which checksum is supported */
514 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
515 		return;
516 
517 	/* check for any(not just checksum)flagged L3 protocol errors */
518 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
519 		return;
520 
521 	/* we do not support checksum of fragmented packets */
522 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
523 		return;
524 
525 	/*  check L4 protocol for which checksum is supported */
526 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
527 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
528 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
529 		return;
530 
531 	/* check for any(not just checksum)flagged L4 protocol errors */
532 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
533 		return;
534 
535 	/* now, this has to be a packet with valid RX checksum */
536 	skb->ip_summed = CHECKSUM_UNNECESSARY;
537 }
538 
539 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
540 			       struct sk_buff **out_skb, int *out_bnum)
541 {
542 	struct hnae_ring *ring = ring_data->ring;
543 	struct net_device *ndev = ring_data->napi.dev;
544 	struct hns_nic_priv *priv = netdev_priv(ndev);
545 	struct sk_buff *skb;
546 	struct hnae_desc *desc;
547 	struct hnae_desc_cb *desc_cb;
548 	unsigned char *va;
549 	int bnum, length, i;
550 	int pull_len;
551 	u32 bnum_flag;
552 
553 	desc = &ring->desc[ring->next_to_clean];
554 	desc_cb = &ring->desc_cb[ring->next_to_clean];
555 
556 	prefetch(desc);
557 
558 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
559 
560 	/* prefetch first cache line of first page */
561 	prefetch(va);
562 #if L1_CACHE_BYTES < 128
563 	prefetch(va + L1_CACHE_BYTES);
564 #endif
565 
566 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
567 					HNS_RX_HEAD_SIZE);
568 	if (unlikely(!skb)) {
569 		netdev_err(ndev, "alloc rx skb fail\n");
570 		ring->stats.sw_err_cnt++;
571 		return -ENOMEM;
572 	}
573 
574 	prefetchw(skb->data);
575 	length = le16_to_cpu(desc->rx.pkt_len);
576 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
577 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
578 	*out_bnum = bnum;
579 
580 	if (length <= HNS_RX_HEAD_SIZE) {
581 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
582 
583 		/* we can reuse buffer as-is, just make sure it is local */
584 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
585 			desc_cb->reuse_flag = 1;
586 		else /* this page cannot be reused so discard it */
587 			put_page(desc_cb->priv);
588 
589 		ring_ptr_move_fw(ring, next_to_clean);
590 
591 		if (unlikely(bnum != 1)) { /* check err*/
592 			*out_bnum = 1;
593 			goto out_bnum_err;
594 		}
595 	} else {
596 		ring->stats.seg_pkt_cnt++;
597 
598 		pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE);
599 		memcpy(__skb_put(skb, pull_len), va,
600 		       ALIGN(pull_len, sizeof(long)));
601 
602 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
603 		ring_ptr_move_fw(ring, next_to_clean);
604 
605 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
606 			*out_bnum = 1;
607 			goto out_bnum_err;
608 		}
609 		for (i = 1; i < bnum; i++) {
610 			desc = &ring->desc[ring->next_to_clean];
611 			desc_cb = &ring->desc_cb[ring->next_to_clean];
612 
613 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
614 			ring_ptr_move_fw(ring, next_to_clean);
615 		}
616 	}
617 
618 	/* check except process, free skb and jump the desc */
619 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
620 out_bnum_err:
621 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
622 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
623 			   bnum, ring->max_desc_num_per_pkt,
624 			   length, (int)MAX_SKB_FRAGS,
625 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
626 		ring->stats.err_bd_num++;
627 		dev_kfree_skb_any(skb);
628 		return -EDOM;
629 	}
630 
631 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
632 
633 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
634 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
635 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
636 		ring->stats.non_vld_descs++;
637 		dev_kfree_skb_any(skb);
638 		return -EINVAL;
639 	}
640 
641 	if (unlikely((!desc->rx.pkt_len) ||
642 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
643 		ring->stats.err_pkt_len++;
644 		dev_kfree_skb_any(skb);
645 		return -EFAULT;
646 	}
647 
648 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
649 		ring->stats.l2_err++;
650 		dev_kfree_skb_any(skb);
651 		return -EFAULT;
652 	}
653 
654 	ring->stats.rx_pkts++;
655 	ring->stats.rx_bytes += skb->len;
656 
657 	/* indicate to upper stack if our hardware has already calculated
658 	 * the RX checksum
659 	 */
660 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
661 
662 	return 0;
663 }
664 
665 static void
666 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
667 {
668 	int i, ret;
669 	struct hnae_desc_cb res_cbs;
670 	struct hnae_desc_cb *desc_cb;
671 	struct hnae_ring *ring = ring_data->ring;
672 	struct net_device *ndev = ring_data->napi.dev;
673 
674 	for (i = 0; i < cleand_count; i++) {
675 		desc_cb = &ring->desc_cb[ring->next_to_use];
676 		if (desc_cb->reuse_flag) {
677 			ring->stats.reuse_pg_cnt++;
678 			hnae_reuse_buffer(ring, ring->next_to_use);
679 		} else {
680 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
681 			if (ret) {
682 				ring->stats.sw_err_cnt++;
683 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
684 				break;
685 			}
686 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
687 		}
688 
689 		ring_ptr_move_fw(ring, next_to_use);
690 	}
691 
692 	wmb(); /* make all data has been write before submit */
693 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
694 }
695 
696 /* return error number for error or number of desc left to take
697  */
698 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
699 			      struct sk_buff *skb)
700 {
701 	struct net_device *ndev = ring_data->napi.dev;
702 
703 	skb->protocol = eth_type_trans(skb, ndev);
704 	(void)napi_gro_receive(&ring_data->napi, skb);
705 }
706 
707 static int hns_desc_unused(struct hnae_ring *ring)
708 {
709 	int ntc = ring->next_to_clean;
710 	int ntu = ring->next_to_use;
711 
712 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
713 }
714 
715 #define HNS_LOWEST_LATENCY_RATE		27	/* 27 MB/s */
716 #define HNS_LOW_LATENCY_RATE			80	/* 80 MB/s */
717 
718 #define HNS_COAL_BDNUM			3
719 
720 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
721 {
722 	bool coal_enable = ring->q->handle->coal_adapt_en;
723 
724 	if (coal_enable &&
725 	    ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
726 		return HNS_COAL_BDNUM;
727 	else
728 		return 0;
729 }
730 
731 static void hns_update_rx_rate(struct hnae_ring *ring)
732 {
733 	bool coal_enable = ring->q->handle->coal_adapt_en;
734 	u32 time_passed_ms;
735 	u64 total_bytes;
736 
737 	if (!coal_enable ||
738 	    time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
739 		return;
740 
741 	/* ring->stats.rx_bytes overflowed */
742 	if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
743 		ring->coal_last_rx_bytes = ring->stats.rx_bytes;
744 		ring->coal_last_jiffies = jiffies;
745 		return;
746 	}
747 
748 	total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
749 	time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
750 	do_div(total_bytes, time_passed_ms);
751 	ring->coal_rx_rate = total_bytes >> 10;
752 
753 	ring->coal_last_rx_bytes = ring->stats.rx_bytes;
754 	ring->coal_last_jiffies = jiffies;
755 }
756 
757 /**
758  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
759  **/
760 static u32 smooth_alg(u32 new_param, u32 old_param)
761 {
762 	u32 gap = (new_param > old_param) ? new_param - old_param
763 					  : old_param - new_param;
764 
765 	if (gap > 8)
766 		gap >>= 3;
767 
768 	if (new_param > old_param)
769 		return old_param + gap;
770 	else
771 		return old_param - gap;
772 }
773 
774 /**
775  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
776  * @ring_data: pointer to hns_nic_ring_data
777  **/
778 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
779 {
780 	struct hnae_ring *ring = ring_data->ring;
781 	struct hnae_handle *handle = ring->q->handle;
782 	u32 new_coal_param, old_coal_param = ring->coal_param;
783 
784 	if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
785 		new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
786 	else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
787 		new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
788 	else
789 		new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
790 
791 	if (new_coal_param == old_coal_param &&
792 	    new_coal_param == handle->coal_param)
793 		return;
794 
795 	new_coal_param = smooth_alg(new_coal_param, old_coal_param);
796 	ring->coal_param = new_coal_param;
797 
798 	/**
799 	 * Because all ring in one port has one coalesce param, when one ring
800 	 * calculate its own coalesce param, it cannot write to hardware at
801 	 * once. There are three conditions as follows:
802 	 *       1. current ring's coalesce param is larger than the hardware.
803 	 *       2. or ring which adapt last time can change again.
804 	 *       3. timeout.
805 	 */
806 	if (new_coal_param == handle->coal_param) {
807 		handle->coal_last_jiffies = jiffies;
808 		handle->coal_ring_idx = ring_data->queue_index;
809 	} else if (new_coal_param > handle->coal_param ||
810 		   handle->coal_ring_idx == ring_data->queue_index ||
811 		   time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
812 		handle->dev->ops->set_coalesce_usecs(handle,
813 					new_coal_param);
814 		handle->dev->ops->set_coalesce_frames(handle,
815 					1, new_coal_param);
816 		handle->coal_param = new_coal_param;
817 		handle->coal_ring_idx = ring_data->queue_index;
818 		handle->coal_last_jiffies = jiffies;
819 	}
820 }
821 
822 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
823 			       int budget, void *v)
824 {
825 	struct hnae_ring *ring = ring_data->ring;
826 	struct sk_buff *skb;
827 	int num, bnum;
828 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
829 	int recv_pkts, recv_bds, clean_count, err;
830 	int unused_count = hns_desc_unused(ring);
831 
832 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
833 	rmb(); /* make sure num taken effect before the other data is touched */
834 
835 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
836 	num -= unused_count;
837 
838 	while (recv_pkts < budget && recv_bds < num) {
839 		/* reuse or realloc buffers */
840 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
841 			hns_nic_alloc_rx_buffers(ring_data,
842 						 clean_count + unused_count);
843 			clean_count = 0;
844 			unused_count = hns_desc_unused(ring);
845 		}
846 
847 		/* poll one pkt */
848 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
849 		if (unlikely(!skb)) /* this fault cannot be repaired */
850 			goto out;
851 
852 		recv_bds += bnum;
853 		clean_count += bnum;
854 		if (unlikely(err)) {  /* do jump the err */
855 			recv_pkts++;
856 			continue;
857 		}
858 
859 		/* do update ip stack process*/
860 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
861 							ring_data, skb);
862 		recv_pkts++;
863 	}
864 
865 out:
866 	/* make all data has been write before submit */
867 	if (clean_count + unused_count > 0)
868 		hns_nic_alloc_rx_buffers(ring_data,
869 					 clean_count + unused_count);
870 
871 	return recv_pkts;
872 }
873 
874 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
875 {
876 	struct hnae_ring *ring = ring_data->ring;
877 	int num = 0;
878 	bool rx_stopped;
879 
880 	hns_update_rx_rate(ring);
881 
882 	/* for hardware bug fixed */
883 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
884 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
885 
886 	if (num <= hns_coal_rx_bdnum(ring)) {
887 		if (ring->q->handle->coal_adapt_en)
888 			hns_nic_adpt_coalesce(ring_data);
889 
890 		rx_stopped = true;
891 	} else {
892 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
893 			ring_data->ring, 1);
894 
895 		rx_stopped = false;
896 	}
897 
898 	return rx_stopped;
899 }
900 
901 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
902 {
903 	struct hnae_ring *ring = ring_data->ring;
904 	int num;
905 
906 	hns_update_rx_rate(ring);
907 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
908 
909 	if (num <= hns_coal_rx_bdnum(ring)) {
910 		if (ring->q->handle->coal_adapt_en)
911 			hns_nic_adpt_coalesce(ring_data);
912 
913 		return true;
914 	}
915 
916 	return false;
917 }
918 
919 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
920 					    int *bytes, int *pkts)
921 {
922 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
923 
924 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
925 	(*bytes) += desc_cb->length;
926 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
927 	hnae_free_buffer_detach(ring, ring->next_to_clean);
928 
929 	ring_ptr_move_fw(ring, next_to_clean);
930 }
931 
932 static int is_valid_clean_head(struct hnae_ring *ring, int h)
933 {
934 	int u = ring->next_to_use;
935 	int c = ring->next_to_clean;
936 
937 	if (unlikely(h > ring->desc_num))
938 		return 0;
939 
940 	assert(u > 0 && u < ring->desc_num);
941 	assert(c > 0 && c < ring->desc_num);
942 	assert(u != c && h != c); /* must be checked before call this func */
943 
944 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
945 }
946 
947 /* netif_tx_lock will turn down the performance, set only when necessary */
948 #ifdef CONFIG_NET_POLL_CONTROLLER
949 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
950 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
951 #else
952 #define NETIF_TX_LOCK(ring)
953 #define NETIF_TX_UNLOCK(ring)
954 #endif
955 
956 /* reclaim all desc in one budget
957  * return error or number of desc left
958  */
959 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
960 			       int budget, void *v)
961 {
962 	struct hnae_ring *ring = ring_data->ring;
963 	struct net_device *ndev = ring_data->napi.dev;
964 	struct netdev_queue *dev_queue;
965 	struct hns_nic_priv *priv = netdev_priv(ndev);
966 	int head;
967 	int bytes, pkts;
968 
969 	NETIF_TX_LOCK(ring);
970 
971 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
972 	rmb(); /* make sure head is ready before touch any data */
973 
974 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
975 		NETIF_TX_UNLOCK(ring);
976 		return 0; /* no data to poll */
977 	}
978 
979 	if (!is_valid_clean_head(ring, head)) {
980 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
981 			   ring->next_to_use, ring->next_to_clean);
982 		ring->stats.io_err_cnt++;
983 		NETIF_TX_UNLOCK(ring);
984 		return -EIO;
985 	}
986 
987 	bytes = 0;
988 	pkts = 0;
989 	while (head != ring->next_to_clean) {
990 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
991 		/* issue prefetch for next Tx descriptor */
992 		prefetch(&ring->desc_cb[ring->next_to_clean]);
993 	}
994 
995 	NETIF_TX_UNLOCK(ring);
996 
997 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
998 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
999 
1000 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1001 		netif_carrier_on(ndev);
1002 
1003 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
1004 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1005 		/* Make sure that anybody stopping the queue after this
1006 		 * sees the new next_to_clean.
1007 		 */
1008 		smp_mb();
1009 		if (netif_tx_queue_stopped(dev_queue) &&
1010 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
1011 			netif_tx_wake_queue(dev_queue);
1012 			ring->stats.restart_queue++;
1013 		}
1014 	}
1015 	return 0;
1016 }
1017 
1018 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1019 {
1020 	struct hnae_ring *ring = ring_data->ring;
1021 	int head;
1022 
1023 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1024 
1025 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1026 
1027 	if (head != ring->next_to_clean) {
1028 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1029 			ring_data->ring, 1);
1030 
1031 		return false;
1032 	} else {
1033 		return true;
1034 	}
1035 }
1036 
1037 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1038 {
1039 	struct hnae_ring *ring = ring_data->ring;
1040 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1041 
1042 	if (head == ring->next_to_clean)
1043 		return true;
1044 	else
1045 		return false;
1046 }
1047 
1048 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1049 {
1050 	struct hnae_ring *ring = ring_data->ring;
1051 	struct net_device *ndev = ring_data->napi.dev;
1052 	struct netdev_queue *dev_queue;
1053 	int head;
1054 	int bytes, pkts;
1055 
1056 	NETIF_TX_LOCK(ring);
1057 
1058 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1059 	bytes = 0;
1060 	pkts = 0;
1061 	while (head != ring->next_to_clean)
1062 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1063 
1064 	NETIF_TX_UNLOCK(ring);
1065 
1066 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1067 	netdev_tx_reset_queue(dev_queue);
1068 }
1069 
1070 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1071 {
1072 	int clean_complete = 0;
1073 	struct hns_nic_ring_data *ring_data =
1074 		container_of(napi, struct hns_nic_ring_data, napi);
1075 	struct hnae_ring *ring = ring_data->ring;
1076 
1077 try_again:
1078 	clean_complete += ring_data->poll_one(
1079 				ring_data, budget - clean_complete,
1080 				ring_data->ex_process);
1081 
1082 	if (clean_complete < budget) {
1083 		if (ring_data->fini_process(ring_data)) {
1084 			napi_complete(napi);
1085 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1086 		} else {
1087 			goto try_again;
1088 		}
1089 	}
1090 
1091 	return clean_complete;
1092 }
1093 
1094 static irqreturn_t hns_irq_handle(int irq, void *dev)
1095 {
1096 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1097 
1098 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1099 		ring_data->ring, 1);
1100 	napi_schedule(&ring_data->napi);
1101 
1102 	return IRQ_HANDLED;
1103 }
1104 
1105 /**
1106  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1107  *@ndev: net device
1108  */
1109 static void hns_nic_adjust_link(struct net_device *ndev)
1110 {
1111 	struct hns_nic_priv *priv = netdev_priv(ndev);
1112 	struct hnae_handle *h = priv->ae_handle;
1113 	int state = 1;
1114 
1115 	if (ndev->phydev) {
1116 		h->dev->ops->adjust_link(h, ndev->phydev->speed,
1117 					 ndev->phydev->duplex);
1118 		state = ndev->phydev->link;
1119 	}
1120 	state = state && h->dev->ops->get_status(h);
1121 
1122 	if (state != priv->link) {
1123 		if (state) {
1124 			netif_carrier_on(ndev);
1125 			netif_tx_wake_all_queues(ndev);
1126 			netdev_info(ndev, "link up\n");
1127 		} else {
1128 			netif_carrier_off(ndev);
1129 			netdev_info(ndev, "link down\n");
1130 		}
1131 		priv->link = state;
1132 	}
1133 }
1134 
1135 /**
1136  *hns_nic_init_phy - init phy
1137  *@ndev: net device
1138  *@h: ae handle
1139  * Return 0 on success, negative on failure
1140  */
1141 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1142 {
1143 	struct phy_device *phy_dev = h->phy_dev;
1144 	int ret;
1145 
1146 	if (!h->phy_dev)
1147 		return 0;
1148 
1149 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1150 		phy_dev->dev_flags = 0;
1151 
1152 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1153 					 h->phy_if);
1154 	} else {
1155 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1156 	}
1157 	if (unlikely(ret))
1158 		return -ENODEV;
1159 
1160 	phy_dev->supported &= h->if_support;
1161 	phy_dev->advertising = phy_dev->supported;
1162 
1163 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1164 		phy_dev->autoneg = false;
1165 
1166 	return 0;
1167 }
1168 
1169 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1170 {
1171 	struct hns_nic_priv *priv = netdev_priv(netdev);
1172 	struct hnae_handle *h = priv->ae_handle;
1173 
1174 	napi_enable(&priv->ring_data[idx].napi);
1175 
1176 	enable_irq(priv->ring_data[idx].ring->irq);
1177 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1178 
1179 	return 0;
1180 }
1181 
1182 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1183 {
1184 	struct hns_nic_priv *priv = netdev_priv(ndev);
1185 	struct hnae_handle *h = priv->ae_handle;
1186 	struct sockaddr *mac_addr = p;
1187 	int ret;
1188 
1189 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1190 		return -EADDRNOTAVAIL;
1191 
1192 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1193 	if (ret) {
1194 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1195 		return ret;
1196 	}
1197 
1198 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1199 
1200 	return 0;
1201 }
1202 
1203 static void hns_nic_update_stats(struct net_device *netdev)
1204 {
1205 	struct hns_nic_priv *priv = netdev_priv(netdev);
1206 	struct hnae_handle *h = priv->ae_handle;
1207 
1208 	h->dev->ops->update_stats(h, &netdev->stats);
1209 }
1210 
1211 /* set mac addr if it is configed. or leave it to the AE driver */
1212 static void hns_init_mac_addr(struct net_device *ndev)
1213 {
1214 	struct hns_nic_priv *priv = netdev_priv(ndev);
1215 
1216 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1217 		eth_hw_addr_random(ndev);
1218 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1219 			 ndev->dev_addr);
1220 	}
1221 }
1222 
1223 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1224 {
1225 	struct hns_nic_priv *priv = netdev_priv(netdev);
1226 	struct hnae_handle *h = priv->ae_handle;
1227 
1228 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1229 	disable_irq(priv->ring_data[idx].ring->irq);
1230 
1231 	napi_disable(&priv->ring_data[idx].napi);
1232 }
1233 
1234 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1235 				      struct hnae_ring *ring, cpumask_t *mask)
1236 {
1237 	int cpu;
1238 
1239 	/* Diffrent irq banlance between 16core and 32core.
1240 	 * The cpu mask set by ring index according to the ring flag
1241 	 * which indicate the ring is tx or rx.
1242 	 */
1243 	if (q_num == num_possible_cpus()) {
1244 		if (is_tx_ring(ring))
1245 			cpu = ring_idx;
1246 		else
1247 			cpu = ring_idx - q_num;
1248 	} else {
1249 		if (is_tx_ring(ring))
1250 			cpu = ring_idx * 2;
1251 		else
1252 			cpu = (ring_idx - q_num) * 2 + 1;
1253 	}
1254 
1255 	cpumask_clear(mask);
1256 	cpumask_set_cpu(cpu, mask);
1257 
1258 	return cpu;
1259 }
1260 
1261 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1262 {
1263 	struct hnae_handle *h = priv->ae_handle;
1264 	struct hns_nic_ring_data *rd;
1265 	int i;
1266 	int ret;
1267 	int cpu;
1268 
1269 	for (i = 0; i < h->q_num * 2; i++) {
1270 		rd = &priv->ring_data[i];
1271 
1272 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1273 			break;
1274 
1275 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1276 			 "%s-%s%d", priv->netdev->name,
1277 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1278 
1279 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1280 
1281 		ret = request_irq(rd->ring->irq,
1282 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1283 		if (ret) {
1284 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1285 				   rd->ring->irq);
1286 			return ret;
1287 		}
1288 		disable_irq(rd->ring->irq);
1289 
1290 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1291 						 rd->ring, &rd->mask);
1292 
1293 		if (cpu_online(cpu))
1294 			irq_set_affinity_hint(rd->ring->irq,
1295 					      &rd->mask);
1296 
1297 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1298 	}
1299 
1300 	return 0;
1301 }
1302 
1303 static int hns_nic_net_up(struct net_device *ndev)
1304 {
1305 	struct hns_nic_priv *priv = netdev_priv(ndev);
1306 	struct hnae_handle *h = priv->ae_handle;
1307 	int i, j;
1308 	int ret;
1309 
1310 	ret = hns_nic_init_irq(priv);
1311 	if (ret != 0) {
1312 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1313 		return ret;
1314 	}
1315 
1316 	for (i = 0; i < h->q_num * 2; i++) {
1317 		ret = hns_nic_ring_open(ndev, i);
1318 		if (ret)
1319 			goto out_has_some_queues;
1320 	}
1321 
1322 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1323 	if (ret)
1324 		goto out_set_mac_addr_err;
1325 
1326 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1327 	if (ret)
1328 		goto out_start_err;
1329 
1330 	if (ndev->phydev)
1331 		phy_start(ndev->phydev);
1332 
1333 	clear_bit(NIC_STATE_DOWN, &priv->state);
1334 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1335 
1336 	return 0;
1337 
1338 out_start_err:
1339 	netif_stop_queue(ndev);
1340 out_set_mac_addr_err:
1341 out_has_some_queues:
1342 	for (j = i - 1; j >= 0; j--)
1343 		hns_nic_ring_close(ndev, j);
1344 
1345 	set_bit(NIC_STATE_DOWN, &priv->state);
1346 
1347 	return ret;
1348 }
1349 
1350 static void hns_nic_net_down(struct net_device *ndev)
1351 {
1352 	int i;
1353 	struct hnae_ae_ops *ops;
1354 	struct hns_nic_priv *priv = netdev_priv(ndev);
1355 
1356 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1357 		return;
1358 
1359 	(void)del_timer_sync(&priv->service_timer);
1360 	netif_tx_stop_all_queues(ndev);
1361 	netif_carrier_off(ndev);
1362 	netif_tx_disable(ndev);
1363 	priv->link = 0;
1364 
1365 	if (ndev->phydev)
1366 		phy_stop(ndev->phydev);
1367 
1368 	ops = priv->ae_handle->dev->ops;
1369 
1370 	if (ops->stop)
1371 		ops->stop(priv->ae_handle);
1372 
1373 	netif_tx_stop_all_queues(ndev);
1374 
1375 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1376 		hns_nic_ring_close(ndev, i);
1377 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1378 
1379 		/* clean tx buffers*/
1380 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1381 	}
1382 }
1383 
1384 void hns_nic_net_reset(struct net_device *ndev)
1385 {
1386 	struct hns_nic_priv *priv = netdev_priv(ndev);
1387 	struct hnae_handle *handle = priv->ae_handle;
1388 
1389 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1390 		usleep_range(1000, 2000);
1391 
1392 	(void)hnae_reinit_handle(handle);
1393 
1394 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1395 }
1396 
1397 void hns_nic_net_reinit(struct net_device *netdev)
1398 {
1399 	struct hns_nic_priv *priv = netdev_priv(netdev);
1400 	enum hnae_port_type type = priv->ae_handle->port_type;
1401 
1402 	netif_trans_update(priv->netdev);
1403 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1404 		usleep_range(1000, 2000);
1405 
1406 	hns_nic_net_down(netdev);
1407 
1408 	/* Only do hns_nic_net_reset in debug mode
1409 	 * because of hardware limitation.
1410 	 */
1411 	if (type == HNAE_PORT_DEBUG)
1412 		hns_nic_net_reset(netdev);
1413 
1414 	(void)hns_nic_net_up(netdev);
1415 	clear_bit(NIC_STATE_REINITING, &priv->state);
1416 }
1417 
1418 static int hns_nic_net_open(struct net_device *ndev)
1419 {
1420 	struct hns_nic_priv *priv = netdev_priv(ndev);
1421 	struct hnae_handle *h = priv->ae_handle;
1422 	int ret;
1423 
1424 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1425 		return -EBUSY;
1426 
1427 	priv->link = 0;
1428 	netif_carrier_off(ndev);
1429 
1430 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1431 	if (ret < 0) {
1432 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1433 			   ret);
1434 		return ret;
1435 	}
1436 
1437 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1438 	if (ret < 0) {
1439 		netdev_err(ndev,
1440 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1441 		return ret;
1442 	}
1443 
1444 	ret = hns_nic_net_up(ndev);
1445 	if (ret) {
1446 		netdev_err(ndev,
1447 			   "hns net up fail, ret=%d!\n", ret);
1448 		return ret;
1449 	}
1450 
1451 	return 0;
1452 }
1453 
1454 static int hns_nic_net_stop(struct net_device *ndev)
1455 {
1456 	hns_nic_net_down(ndev);
1457 
1458 	return 0;
1459 }
1460 
1461 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1462 static void hns_nic_net_timeout(struct net_device *ndev)
1463 {
1464 	struct hns_nic_priv *priv = netdev_priv(ndev);
1465 
1466 	hns_tx_timeout_reset(priv);
1467 }
1468 
1469 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1470 			    int cmd)
1471 {
1472 	struct phy_device *phy_dev = netdev->phydev;
1473 
1474 	if (!netif_running(netdev))
1475 		return -EINVAL;
1476 
1477 	if (!phy_dev)
1478 		return -ENOTSUPP;
1479 
1480 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1481 }
1482 
1483 /* use only for netconsole to poll with the device without interrupt */
1484 #ifdef CONFIG_NET_POLL_CONTROLLER
1485 static void hns_nic_poll_controller(struct net_device *ndev)
1486 {
1487 	struct hns_nic_priv *priv = netdev_priv(ndev);
1488 	unsigned long flags;
1489 	int i;
1490 
1491 	local_irq_save(flags);
1492 	for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1493 		napi_schedule(&priv->ring_data[i].napi);
1494 	local_irq_restore(flags);
1495 }
1496 #endif
1497 
1498 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1499 				    struct net_device *ndev)
1500 {
1501 	struct hns_nic_priv *priv = netdev_priv(ndev);
1502 
1503 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1504 
1505 	return hns_nic_net_xmit_hw(ndev, skb,
1506 				   &tx_ring_data(priv, skb->queue_mapping));
1507 }
1508 
1509 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1510 				  struct sk_buff *skb)
1511 {
1512 	dev_kfree_skb_any(skb);
1513 }
1514 
1515 #define HNS_LB_TX_RING	0
1516 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1517 {
1518 	struct sk_buff *skb;
1519 	struct ethhdr *ethhdr;
1520 	int frame_len;
1521 
1522 	/* allocate test skb */
1523 	skb = alloc_skb(64, GFP_KERNEL);
1524 	if (!skb)
1525 		return NULL;
1526 
1527 	skb_put(skb, 64);
1528 	skb->dev = ndev;
1529 	memset(skb->data, 0xFF, skb->len);
1530 
1531 	/* must be tcp/ip package */
1532 	ethhdr = (struct ethhdr *)skb->data;
1533 	ethhdr->h_proto = htons(ETH_P_IP);
1534 
1535 	frame_len = skb->len & (~1ul);
1536 	memset(&skb->data[frame_len / 2], 0xAA,
1537 	       frame_len / 2 - 1);
1538 
1539 	skb->queue_mapping = HNS_LB_TX_RING;
1540 
1541 	return skb;
1542 }
1543 
1544 static int hns_enable_serdes_lb(struct net_device *ndev)
1545 {
1546 	struct hns_nic_priv *priv = netdev_priv(ndev);
1547 	struct hnae_handle *h = priv->ae_handle;
1548 	struct hnae_ae_ops *ops = h->dev->ops;
1549 	int speed, duplex;
1550 	int ret;
1551 
1552 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1553 	if (ret)
1554 		return ret;
1555 
1556 	ret = ops->start ? ops->start(h) : 0;
1557 	if (ret)
1558 		return ret;
1559 
1560 	/* link adjust duplex*/
1561 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1562 		speed = 1000;
1563 	else
1564 		speed = 10000;
1565 	duplex = 1;
1566 
1567 	ops->adjust_link(h, speed, duplex);
1568 
1569 	/* wait h/w ready */
1570 	mdelay(300);
1571 
1572 	return 0;
1573 }
1574 
1575 static void hns_disable_serdes_lb(struct net_device *ndev)
1576 {
1577 	struct hns_nic_priv *priv = netdev_priv(ndev);
1578 	struct hnae_handle *h = priv->ae_handle;
1579 	struct hnae_ae_ops *ops = h->dev->ops;
1580 
1581 	ops->stop(h);
1582 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1583 }
1584 
1585 /**
1586  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1587  *function as follows:
1588  *    1. if one rx ring has found the page_offset is not equal 0 between head
1589  *       and tail, it means that the chip fetched the wrong descs for the ring
1590  *       which buffer size is 4096.
1591  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1592  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1593  *       recieving all packages and it will fetch new descriptions.
1594  *    4. recover to the original state.
1595  *
1596  *@ndev: net device
1597  */
1598 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1599 {
1600 	struct hns_nic_priv *priv = netdev_priv(ndev);
1601 	struct hnae_handle *h = priv->ae_handle;
1602 	struct hnae_ae_ops *ops = h->dev->ops;
1603 	struct hns_nic_ring_data *rd;
1604 	struct hnae_ring *ring;
1605 	struct sk_buff *skb;
1606 	u32 *org_indir;
1607 	u32 *cur_indir;
1608 	int indir_size;
1609 	int head, tail;
1610 	int fetch_num;
1611 	int i, j;
1612 	bool found;
1613 	int retry_times;
1614 	int ret = 0;
1615 
1616 	/* alloc indir memory */
1617 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1618 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1619 	if (!org_indir)
1620 		return -ENOMEM;
1621 
1622 	/* store the orginal indirection */
1623 	ops->get_rss(h, org_indir, NULL, NULL);
1624 
1625 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1626 	if (!cur_indir) {
1627 		ret = -ENOMEM;
1628 		goto cur_indir_alloc_err;
1629 	}
1630 
1631 	/* set loopback */
1632 	if (hns_enable_serdes_lb(ndev)) {
1633 		ret = -EINVAL;
1634 		goto enable_serdes_lb_err;
1635 	}
1636 
1637 	/* foreach every rx ring to clear fetch desc */
1638 	for (i = 0; i < h->q_num; i++) {
1639 		ring = &h->qs[i]->rx_ring;
1640 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1641 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1642 		found = false;
1643 		fetch_num = ring_dist(ring, head, tail);
1644 
1645 		while (head != tail) {
1646 			if (ring->desc_cb[head].page_offset != 0) {
1647 				found = true;
1648 				break;
1649 			}
1650 
1651 			head++;
1652 			if (head == ring->desc_num)
1653 				head = 0;
1654 		}
1655 
1656 		if (found) {
1657 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1658 				cur_indir[j] = i;
1659 			ops->set_rss(h, cur_indir, NULL, 0);
1660 
1661 			for (j = 0; j < fetch_num; j++) {
1662 				/* alloc one skb and init */
1663 				skb = hns_assemble_skb(ndev);
1664 				if (!skb)
1665 					goto out;
1666 				rd = &tx_ring_data(priv, skb->queue_mapping);
1667 				hns_nic_net_xmit_hw(ndev, skb, rd);
1668 
1669 				retry_times = 0;
1670 				while (retry_times++ < 10) {
1671 					mdelay(10);
1672 					/* clean rx */
1673 					rd = &rx_ring_data(priv, i);
1674 					if (rd->poll_one(rd, fetch_num,
1675 							 hns_nic_drop_rx_fetch))
1676 						break;
1677 				}
1678 
1679 				retry_times = 0;
1680 				while (retry_times++ < 10) {
1681 					mdelay(10);
1682 					/* clean tx ring 0 send package */
1683 					rd = &tx_ring_data(priv,
1684 							   HNS_LB_TX_RING);
1685 					if (rd->poll_one(rd, fetch_num, NULL))
1686 						break;
1687 				}
1688 			}
1689 		}
1690 	}
1691 
1692 out:
1693 	/* restore everything */
1694 	ops->set_rss(h, org_indir, NULL, 0);
1695 	hns_disable_serdes_lb(ndev);
1696 enable_serdes_lb_err:
1697 	kfree(cur_indir);
1698 cur_indir_alloc_err:
1699 	kfree(org_indir);
1700 
1701 	return ret;
1702 }
1703 
1704 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1705 {
1706 	struct hns_nic_priv *priv = netdev_priv(ndev);
1707 	struct hnae_handle *h = priv->ae_handle;
1708 	bool if_running = netif_running(ndev);
1709 	int ret;
1710 
1711 	/* MTU < 68 is an error and causes problems on some kernels */
1712 	if (new_mtu < 68)
1713 		return -EINVAL;
1714 
1715 	/* MTU no change */
1716 	if (new_mtu == ndev->mtu)
1717 		return 0;
1718 
1719 	if (!h->dev->ops->set_mtu)
1720 		return -ENOTSUPP;
1721 
1722 	if (if_running) {
1723 		(void)hns_nic_net_stop(ndev);
1724 		msleep(100);
1725 	}
1726 
1727 	if (priv->enet_ver != AE_VERSION_1 &&
1728 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1729 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1730 		/* update desc */
1731 		hnae_reinit_all_ring_desc(h);
1732 
1733 		/* clear the package which the chip has fetched */
1734 		ret = hns_nic_clear_all_rx_fetch(ndev);
1735 
1736 		/* the page offset must be consist with desc */
1737 		hnae_reinit_all_ring_page_off(h);
1738 
1739 		if (ret) {
1740 			netdev_err(ndev, "clear the fetched desc fail\n");
1741 			goto out;
1742 		}
1743 	}
1744 
1745 	ret = h->dev->ops->set_mtu(h, new_mtu);
1746 	if (ret) {
1747 		netdev_err(ndev, "set mtu fail, return value %d\n",
1748 			   ret);
1749 		goto out;
1750 	}
1751 
1752 	/* finally, set new mtu to netdevice */
1753 	ndev->mtu = new_mtu;
1754 
1755 out:
1756 	if (if_running) {
1757 		if (hns_nic_net_open(ndev)) {
1758 			netdev_err(ndev, "hns net open fail\n");
1759 			ret = -EINVAL;
1760 		}
1761 	}
1762 
1763 	return ret;
1764 }
1765 
1766 static int hns_nic_set_features(struct net_device *netdev,
1767 				netdev_features_t features)
1768 {
1769 	struct hns_nic_priv *priv = netdev_priv(netdev);
1770 
1771 	switch (priv->enet_ver) {
1772 	case AE_VERSION_1:
1773 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1774 			netdev_info(netdev, "enet v1 do not support tso!\n");
1775 		break;
1776 	default:
1777 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1778 			priv->ops.fill_desc = fill_tso_desc;
1779 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1780 			/* The chip only support 7*4096 */
1781 			netif_set_gso_max_size(netdev, 7 * 4096);
1782 		} else {
1783 			priv->ops.fill_desc = fill_v2_desc;
1784 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1785 		}
1786 		break;
1787 	}
1788 	netdev->features = features;
1789 	return 0;
1790 }
1791 
1792 static netdev_features_t hns_nic_fix_features(
1793 		struct net_device *netdev, netdev_features_t features)
1794 {
1795 	struct hns_nic_priv *priv = netdev_priv(netdev);
1796 
1797 	switch (priv->enet_ver) {
1798 	case AE_VERSION_1:
1799 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1800 				NETIF_F_HW_VLAN_CTAG_FILTER);
1801 		break;
1802 	default:
1803 		break;
1804 	}
1805 	return features;
1806 }
1807 
1808 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1809 {
1810 	struct hns_nic_priv *priv = netdev_priv(netdev);
1811 	struct hnae_handle *h = priv->ae_handle;
1812 
1813 	if (h->dev->ops->add_uc_addr)
1814 		return h->dev->ops->add_uc_addr(h, addr);
1815 
1816 	return 0;
1817 }
1818 
1819 static int hns_nic_uc_unsync(struct net_device *netdev,
1820 			     const unsigned char *addr)
1821 {
1822 	struct hns_nic_priv *priv = netdev_priv(netdev);
1823 	struct hnae_handle *h = priv->ae_handle;
1824 
1825 	if (h->dev->ops->rm_uc_addr)
1826 		return h->dev->ops->rm_uc_addr(h, addr);
1827 
1828 	return 0;
1829 }
1830 
1831 /**
1832  * nic_set_multicast_list - set mutl mac address
1833  * @netdev: net device
1834  * @p: mac address
1835  *
1836  * return void
1837  */
1838 static void hns_set_multicast_list(struct net_device *ndev)
1839 {
1840 	struct hns_nic_priv *priv = netdev_priv(ndev);
1841 	struct hnae_handle *h = priv->ae_handle;
1842 	struct netdev_hw_addr *ha = NULL;
1843 
1844 	if (!h)	{
1845 		netdev_err(ndev, "hnae handle is null\n");
1846 		return;
1847 	}
1848 
1849 	if (h->dev->ops->clr_mc_addr)
1850 		if (h->dev->ops->clr_mc_addr(h))
1851 			netdev_err(ndev, "clear multicast address fail\n");
1852 
1853 	if (h->dev->ops->set_mc_addr) {
1854 		netdev_for_each_mc_addr(ha, ndev)
1855 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1856 				netdev_err(ndev, "set multicast fail\n");
1857 	}
1858 }
1859 
1860 static void hns_nic_set_rx_mode(struct net_device *ndev)
1861 {
1862 	struct hns_nic_priv *priv = netdev_priv(ndev);
1863 	struct hnae_handle *h = priv->ae_handle;
1864 
1865 	if (h->dev->ops->set_promisc_mode) {
1866 		if (ndev->flags & IFF_PROMISC)
1867 			h->dev->ops->set_promisc_mode(h, 1);
1868 		else
1869 			h->dev->ops->set_promisc_mode(h, 0);
1870 	}
1871 
1872 	hns_set_multicast_list(ndev);
1873 
1874 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1875 		netdev_err(ndev, "sync uc address fail\n");
1876 }
1877 
1878 static void hns_nic_get_stats64(struct net_device *ndev,
1879 				struct rtnl_link_stats64 *stats)
1880 {
1881 	int idx = 0;
1882 	u64 tx_bytes = 0;
1883 	u64 rx_bytes = 0;
1884 	u64 tx_pkts = 0;
1885 	u64 rx_pkts = 0;
1886 	struct hns_nic_priv *priv = netdev_priv(ndev);
1887 	struct hnae_handle *h = priv->ae_handle;
1888 
1889 	for (idx = 0; idx < h->q_num; idx++) {
1890 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1891 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1892 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1893 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1894 	}
1895 
1896 	stats->tx_bytes = tx_bytes;
1897 	stats->tx_packets = tx_pkts;
1898 	stats->rx_bytes = rx_bytes;
1899 	stats->rx_packets = rx_pkts;
1900 
1901 	stats->rx_errors = ndev->stats.rx_errors;
1902 	stats->multicast = ndev->stats.multicast;
1903 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1904 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1905 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1906 
1907 	stats->tx_errors = ndev->stats.tx_errors;
1908 	stats->rx_dropped = ndev->stats.rx_dropped;
1909 	stats->tx_dropped = ndev->stats.tx_dropped;
1910 	stats->collisions = ndev->stats.collisions;
1911 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1912 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1913 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1914 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1915 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1916 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1917 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1918 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1919 	stats->rx_compressed = ndev->stats.rx_compressed;
1920 	stats->tx_compressed = ndev->stats.tx_compressed;
1921 }
1922 
1923 static u16
1924 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1925 		     struct net_device *sb_dev,
1926 		     select_queue_fallback_t fallback)
1927 {
1928 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1929 	struct hns_nic_priv *priv = netdev_priv(ndev);
1930 
1931 	/* fix hardware broadcast/multicast packets queue loopback */
1932 	if (!AE_IS_VER1(priv->enet_ver) &&
1933 	    is_multicast_ether_addr(eth_hdr->h_dest))
1934 		return 0;
1935 	else
1936 		return fallback(ndev, skb, NULL);
1937 }
1938 
1939 static const struct net_device_ops hns_nic_netdev_ops = {
1940 	.ndo_open = hns_nic_net_open,
1941 	.ndo_stop = hns_nic_net_stop,
1942 	.ndo_start_xmit = hns_nic_net_xmit,
1943 	.ndo_tx_timeout = hns_nic_net_timeout,
1944 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1945 	.ndo_change_mtu = hns_nic_change_mtu,
1946 	.ndo_do_ioctl = hns_nic_do_ioctl,
1947 	.ndo_set_features = hns_nic_set_features,
1948 	.ndo_fix_features = hns_nic_fix_features,
1949 	.ndo_get_stats64 = hns_nic_get_stats64,
1950 #ifdef CONFIG_NET_POLL_CONTROLLER
1951 	.ndo_poll_controller = hns_nic_poll_controller,
1952 #endif
1953 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1954 	.ndo_select_queue = hns_nic_select_queue,
1955 };
1956 
1957 static void hns_nic_update_link_status(struct net_device *netdev)
1958 {
1959 	struct hns_nic_priv *priv = netdev_priv(netdev);
1960 
1961 	struct hnae_handle *h = priv->ae_handle;
1962 
1963 	if (h->phy_dev) {
1964 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1965 			return;
1966 
1967 		(void)genphy_read_status(h->phy_dev);
1968 	}
1969 	hns_nic_adjust_link(netdev);
1970 }
1971 
1972 /* for dumping key regs*/
1973 static void hns_nic_dump(struct hns_nic_priv *priv)
1974 {
1975 	struct hnae_handle *h = priv->ae_handle;
1976 	struct hnae_ae_ops *ops = h->dev->ops;
1977 	u32 *data, reg_num, i;
1978 
1979 	if (ops->get_regs_len && ops->get_regs) {
1980 		reg_num = ops->get_regs_len(priv->ae_handle);
1981 		reg_num = (reg_num + 3ul) & ~3ul;
1982 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1983 		if (data) {
1984 			ops->get_regs(priv->ae_handle, data);
1985 			for (i = 0; i < reg_num; i += 4)
1986 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1987 					i, data[i], data[i + 1],
1988 					data[i + 2], data[i + 3]);
1989 			kfree(data);
1990 		}
1991 	}
1992 
1993 	for (i = 0; i < h->q_num; i++) {
1994 		pr_info("tx_queue%d_next_to_clean:%d\n",
1995 			i, h->qs[i]->tx_ring.next_to_clean);
1996 		pr_info("tx_queue%d_next_to_use:%d\n",
1997 			i, h->qs[i]->tx_ring.next_to_use);
1998 		pr_info("rx_queue%d_next_to_clean:%d\n",
1999 			i, h->qs[i]->rx_ring.next_to_clean);
2000 		pr_info("rx_queue%d_next_to_use:%d\n",
2001 			i, h->qs[i]->rx_ring.next_to_use);
2002 	}
2003 }
2004 
2005 /* for resetting subtask */
2006 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2007 {
2008 	enum hnae_port_type type = priv->ae_handle->port_type;
2009 
2010 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2011 		return;
2012 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2013 
2014 	/* If we're already down, removing or resetting, just bail */
2015 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2016 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
2017 	    test_bit(NIC_STATE_RESETTING, &priv->state))
2018 		return;
2019 
2020 	hns_nic_dump(priv);
2021 	netdev_info(priv->netdev, "try to reset %s port!\n",
2022 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2023 
2024 	rtnl_lock();
2025 	/* put off any impending NetWatchDogTimeout */
2026 	netif_trans_update(priv->netdev);
2027 	hns_nic_net_reinit(priv->netdev);
2028 
2029 	rtnl_unlock();
2030 }
2031 
2032 /* for doing service complete*/
2033 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2034 {
2035 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2036 	/* make sure to commit the things */
2037 	smp_mb__before_atomic();
2038 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2039 }
2040 
2041 static void hns_nic_service_task(struct work_struct *work)
2042 {
2043 	struct hns_nic_priv *priv
2044 		= container_of(work, struct hns_nic_priv, service_task);
2045 	struct hnae_handle *h = priv->ae_handle;
2046 
2047 	hns_nic_update_link_status(priv->netdev);
2048 	h->dev->ops->update_led_status(h);
2049 	hns_nic_update_stats(priv->netdev);
2050 
2051 	hns_nic_reset_subtask(priv);
2052 	hns_nic_service_event_complete(priv);
2053 }
2054 
2055 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2056 {
2057 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2058 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2059 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2060 		(void)schedule_work(&priv->service_task);
2061 }
2062 
2063 static void hns_nic_service_timer(struct timer_list *t)
2064 {
2065 	struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2066 
2067 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2068 
2069 	hns_nic_task_schedule(priv);
2070 }
2071 
2072 /**
2073  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2074  * @priv: driver private struct
2075  **/
2076 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2077 {
2078 	/* Do the reset outside of interrupt context */
2079 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2080 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2081 		netdev_warn(priv->netdev,
2082 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2083 			    priv->tx_timeout_count, priv->state);
2084 		priv->tx_timeout_count++;
2085 		hns_nic_task_schedule(priv);
2086 	}
2087 }
2088 
2089 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2090 {
2091 	struct hnae_handle *h = priv->ae_handle;
2092 	struct hns_nic_ring_data *rd;
2093 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2094 	int i;
2095 
2096 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2097 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2098 		return -EINVAL;
2099 	}
2100 
2101 	priv->ring_data = kzalloc(array3_size(h->q_num,
2102 					      sizeof(*priv->ring_data), 2),
2103 				  GFP_KERNEL);
2104 	if (!priv->ring_data)
2105 		return -ENOMEM;
2106 
2107 	for (i = 0; i < h->q_num; i++) {
2108 		rd = &priv->ring_data[i];
2109 		rd->queue_index = i;
2110 		rd->ring = &h->qs[i]->tx_ring;
2111 		rd->poll_one = hns_nic_tx_poll_one;
2112 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2113 			hns_nic_tx_fini_pro_v2;
2114 
2115 		netif_napi_add(priv->netdev, &rd->napi,
2116 			       hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
2117 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2118 	}
2119 	for (i = h->q_num; i < h->q_num * 2; i++) {
2120 		rd = &priv->ring_data[i];
2121 		rd->queue_index = i - h->q_num;
2122 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2123 		rd->poll_one = hns_nic_rx_poll_one;
2124 		rd->ex_process = hns_nic_rx_up_pro;
2125 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2126 			hns_nic_rx_fini_pro_v2;
2127 
2128 		netif_napi_add(priv->netdev, &rd->napi,
2129 			       hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
2130 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2137 {
2138 	struct hnae_handle *h = priv->ae_handle;
2139 	int i;
2140 
2141 	for (i = 0; i < h->q_num * 2; i++) {
2142 		netif_napi_del(&priv->ring_data[i].napi);
2143 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2144 			(void)irq_set_affinity_hint(
2145 				priv->ring_data[i].ring->irq,
2146 				NULL);
2147 			free_irq(priv->ring_data[i].ring->irq,
2148 				 &priv->ring_data[i]);
2149 		}
2150 
2151 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2152 	}
2153 	kfree(priv->ring_data);
2154 }
2155 
2156 static void hns_nic_set_priv_ops(struct net_device *netdev)
2157 {
2158 	struct hns_nic_priv *priv = netdev_priv(netdev);
2159 	struct hnae_handle *h = priv->ae_handle;
2160 
2161 	if (AE_IS_VER1(priv->enet_ver)) {
2162 		priv->ops.fill_desc = fill_desc;
2163 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2164 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2165 	} else {
2166 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2167 		if ((netdev->features & NETIF_F_TSO) ||
2168 		    (netdev->features & NETIF_F_TSO6)) {
2169 			priv->ops.fill_desc = fill_tso_desc;
2170 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2171 			/* This chip only support 7*4096 */
2172 			netif_set_gso_max_size(netdev, 7 * 4096);
2173 		} else {
2174 			priv->ops.fill_desc = fill_v2_desc;
2175 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2176 		}
2177 		/* enable tso when init
2178 		 * control tso on/off through TSE bit in bd
2179 		 */
2180 		h->dev->ops->set_tso_stats(h, 1);
2181 	}
2182 }
2183 
2184 static int hns_nic_try_get_ae(struct net_device *ndev)
2185 {
2186 	struct hns_nic_priv *priv = netdev_priv(ndev);
2187 	struct hnae_handle *h;
2188 	int ret;
2189 
2190 	h = hnae_get_handle(&priv->netdev->dev,
2191 			    priv->fwnode, priv->port_id, NULL);
2192 	if (IS_ERR_OR_NULL(h)) {
2193 		ret = -ENODEV;
2194 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2195 		goto out;
2196 	}
2197 	priv->ae_handle = h;
2198 
2199 	ret = hns_nic_init_phy(ndev, h);
2200 	if (ret) {
2201 		dev_err(priv->dev, "probe phy device fail!\n");
2202 		goto out_init_phy;
2203 	}
2204 
2205 	ret = hns_nic_init_ring_data(priv);
2206 	if (ret) {
2207 		ret = -ENOMEM;
2208 		goto out_init_ring_data;
2209 	}
2210 
2211 	hns_nic_set_priv_ops(ndev);
2212 
2213 	ret = register_netdev(ndev);
2214 	if (ret) {
2215 		dev_err(priv->dev, "probe register netdev fail!\n");
2216 		goto out_reg_ndev_fail;
2217 	}
2218 	return 0;
2219 
2220 out_reg_ndev_fail:
2221 	hns_nic_uninit_ring_data(priv);
2222 	priv->ring_data = NULL;
2223 out_init_phy:
2224 out_init_ring_data:
2225 	hnae_put_handle(priv->ae_handle);
2226 	priv->ae_handle = NULL;
2227 out:
2228 	return ret;
2229 }
2230 
2231 static int hns_nic_notifier_action(struct notifier_block *nb,
2232 				   unsigned long action, void *data)
2233 {
2234 	struct hns_nic_priv *priv =
2235 		container_of(nb, struct hns_nic_priv, notifier_block);
2236 
2237 	assert(action == HNAE_AE_REGISTER);
2238 
2239 	if (!hns_nic_try_get_ae(priv->netdev)) {
2240 		hnae_unregister_notifier(&priv->notifier_block);
2241 		priv->notifier_block.notifier_call = NULL;
2242 	}
2243 	return 0;
2244 }
2245 
2246 static int hns_nic_dev_probe(struct platform_device *pdev)
2247 {
2248 	struct device *dev = &pdev->dev;
2249 	struct net_device *ndev;
2250 	struct hns_nic_priv *priv;
2251 	u32 port_id;
2252 	int ret;
2253 
2254 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2255 	if (!ndev)
2256 		return -ENOMEM;
2257 
2258 	platform_set_drvdata(pdev, ndev);
2259 
2260 	priv = netdev_priv(ndev);
2261 	priv->dev = dev;
2262 	priv->netdev = ndev;
2263 
2264 	if (dev_of_node(dev)) {
2265 		struct device_node *ae_node;
2266 
2267 		if (of_device_is_compatible(dev->of_node,
2268 					    "hisilicon,hns-nic-v1"))
2269 			priv->enet_ver = AE_VERSION_1;
2270 		else
2271 			priv->enet_ver = AE_VERSION_2;
2272 
2273 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2274 		if (!ae_node) {
2275 			ret = -ENODEV;
2276 			dev_err(dev, "not find ae-handle\n");
2277 			goto out_read_prop_fail;
2278 		}
2279 		priv->fwnode = &ae_node->fwnode;
2280 	} else if (is_acpi_node(dev->fwnode)) {
2281 		struct fwnode_reference_args args;
2282 
2283 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2284 			priv->enet_ver = AE_VERSION_1;
2285 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2286 			priv->enet_ver = AE_VERSION_2;
2287 		else
2288 			return -ENXIO;
2289 
2290 		/* try to find port-idx-in-ae first */
2291 		ret = acpi_node_get_property_reference(dev->fwnode,
2292 						       "ae-handle", 0, &args);
2293 		if (ret) {
2294 			dev_err(dev, "not find ae-handle\n");
2295 			goto out_read_prop_fail;
2296 		}
2297 		if (!is_acpi_device_node(args.fwnode)) {
2298 			ret = -EINVAL;
2299 			goto out_read_prop_fail;
2300 		}
2301 		priv->fwnode = args.fwnode;
2302 	} else {
2303 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2304 		return -ENXIO;
2305 	}
2306 
2307 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2308 	if (ret) {
2309 		/* only for old code compatible */
2310 		ret = device_property_read_u32(dev, "port-id", &port_id);
2311 		if (ret)
2312 			goto out_read_prop_fail;
2313 		/* for old dts, we need to caculate the port offset */
2314 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2315 			: port_id - HNS_SRV_OFFSET;
2316 	}
2317 	priv->port_id = port_id;
2318 
2319 	hns_init_mac_addr(ndev);
2320 
2321 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2322 	ndev->priv_flags |= IFF_UNICAST_FLT;
2323 	ndev->netdev_ops = &hns_nic_netdev_ops;
2324 	hns_ethtool_set_ops(ndev);
2325 
2326 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2327 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2328 		NETIF_F_GRO;
2329 	ndev->vlan_features |=
2330 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2331 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2332 
2333 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2334 	ndev->min_mtu = MAC_MIN_MTU;
2335 	switch (priv->enet_ver) {
2336 	case AE_VERSION_2:
2337 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
2338 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2339 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2340 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2341 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2342 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2343 		break;
2344 	default:
2345 		ndev->max_mtu = MAC_MAX_MTU -
2346 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2347 		break;
2348 	}
2349 
2350 	SET_NETDEV_DEV(ndev, dev);
2351 
2352 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2353 		dev_dbg(dev, "set mask to 64bit\n");
2354 	else
2355 		dev_err(dev, "set mask to 64bit fail!\n");
2356 
2357 	/* carrier off reporting is important to ethtool even BEFORE open */
2358 	netif_carrier_off(ndev);
2359 
2360 	timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2361 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2362 
2363 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2364 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2365 	set_bit(NIC_STATE_DOWN, &priv->state);
2366 
2367 	if (hns_nic_try_get_ae(priv->netdev)) {
2368 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2369 		ret = hnae_register_notifier(&priv->notifier_block);
2370 		if (ret) {
2371 			dev_err(dev, "register notifier fail!\n");
2372 			goto out_notify_fail;
2373 		}
2374 		dev_dbg(dev, "has not handle, register notifier!\n");
2375 	}
2376 
2377 	return 0;
2378 
2379 out_notify_fail:
2380 	(void)cancel_work_sync(&priv->service_task);
2381 out_read_prop_fail:
2382 	free_netdev(ndev);
2383 	return ret;
2384 }
2385 
2386 static int hns_nic_dev_remove(struct platform_device *pdev)
2387 {
2388 	struct net_device *ndev = platform_get_drvdata(pdev);
2389 	struct hns_nic_priv *priv = netdev_priv(ndev);
2390 
2391 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2392 		unregister_netdev(ndev);
2393 
2394 	if (priv->ring_data)
2395 		hns_nic_uninit_ring_data(priv);
2396 	priv->ring_data = NULL;
2397 
2398 	if (ndev->phydev)
2399 		phy_disconnect(ndev->phydev);
2400 
2401 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2402 		hnae_put_handle(priv->ae_handle);
2403 	priv->ae_handle = NULL;
2404 	if (priv->notifier_block.notifier_call)
2405 		hnae_unregister_notifier(&priv->notifier_block);
2406 	priv->notifier_block.notifier_call = NULL;
2407 
2408 	set_bit(NIC_STATE_REMOVING, &priv->state);
2409 	(void)cancel_work_sync(&priv->service_task);
2410 
2411 	free_netdev(ndev);
2412 	return 0;
2413 }
2414 
2415 static const struct of_device_id hns_enet_of_match[] = {
2416 	{.compatible = "hisilicon,hns-nic-v1",},
2417 	{.compatible = "hisilicon,hns-nic-v2",},
2418 	{},
2419 };
2420 
2421 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2422 
2423 static struct platform_driver hns_nic_dev_driver = {
2424 	.driver = {
2425 		.name = "hns-nic",
2426 		.of_match_table = hns_enet_of_match,
2427 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2428 	},
2429 	.probe = hns_nic_dev_probe,
2430 	.remove = hns_nic_dev_remove,
2431 };
2432 
2433 module_platform_driver(hns_nic_dev_driver);
2434 
2435 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2436 MODULE_AUTHOR("Hisilicon, Inc.");
2437 MODULE_LICENSE("GPL");
2438 MODULE_ALIAS("platform:hns-nic");
2439