1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2014-2015 Hisilicon Limited. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/cpumask.h> 8 #include <linux/etherdevice.h> 9 #include <linux/if_vlan.h> 10 #include <linux/interrupt.h> 11 #include <linux/io.h> 12 #include <linux/ip.h> 13 #include <linux/ipv6.h> 14 #include <linux/module.h> 15 #include <linux/phy.h> 16 #include <linux/platform_device.h> 17 #include <linux/skbuff.h> 18 19 #include "hnae.h" 20 #include "hns_enet.h" 21 #include "hns_dsaf_mac.h" 22 23 #define NIC_MAX_Q_PER_VF 16 24 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 25 26 #define SERVICE_TIMER_HZ (1 * HZ) 27 28 #define RCB_IRQ_NOT_INITED 0 29 #define RCB_IRQ_INITED 1 30 #define HNS_BUFFER_SIZE_2048 2048 31 32 #define BD_MAX_SEND_SIZE 8191 33 #define SKB_TMP_LEN(SKB) \ 34 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) 35 36 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size, 37 int send_sz, dma_addr_t dma, int frag_end, 38 int buf_num, enum hns_desc_type type, int mtu) 39 { 40 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 41 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 42 struct iphdr *iphdr; 43 struct ipv6hdr *ipv6hdr; 44 struct sk_buff *skb; 45 __be16 protocol; 46 u8 bn_pid = 0; 47 u8 rrcfv = 0; 48 u8 ip_offset = 0; 49 u8 tvsvsn = 0; 50 u16 mss = 0; 51 u8 l4_len = 0; 52 u16 paylen = 0; 53 54 desc_cb->priv = priv; 55 desc_cb->length = size; 56 desc_cb->dma = dma; 57 desc_cb->type = type; 58 59 desc->addr = cpu_to_le64(dma); 60 desc->tx.send_size = cpu_to_le16((u16)send_sz); 61 62 /* config bd buffer end */ 63 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 64 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 65 66 /* fill port_id in the tx bd for sending management pkts */ 67 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 68 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 69 70 if (type == DESC_TYPE_SKB) { 71 skb = (struct sk_buff *)priv; 72 73 if (skb->ip_summed == CHECKSUM_PARTIAL) { 74 skb_reset_mac_len(skb); 75 protocol = skb->protocol; 76 ip_offset = ETH_HLEN; 77 78 if (protocol == htons(ETH_P_8021Q)) { 79 ip_offset += VLAN_HLEN; 80 protocol = vlan_get_protocol(skb); 81 skb->protocol = protocol; 82 } 83 84 if (skb->protocol == htons(ETH_P_IP)) { 85 iphdr = ip_hdr(skb); 86 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 87 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 88 89 /* check for tcp/udp header */ 90 if (iphdr->protocol == IPPROTO_TCP && 91 skb_is_gso(skb)) { 92 hnae_set_bit(tvsvsn, 93 HNSV2_TXD_TSE_B, 1); 94 l4_len = tcp_hdrlen(skb); 95 mss = skb_shinfo(skb)->gso_size; 96 paylen = skb->len - SKB_TMP_LEN(skb); 97 } 98 } else if (skb->protocol == htons(ETH_P_IPV6)) { 99 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 100 ipv6hdr = ipv6_hdr(skb); 101 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 102 103 /* check for tcp/udp header */ 104 if (ipv6hdr->nexthdr == IPPROTO_TCP && 105 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 106 hnae_set_bit(tvsvsn, 107 HNSV2_TXD_TSE_B, 1); 108 l4_len = tcp_hdrlen(skb); 109 mss = skb_shinfo(skb)->gso_size; 110 paylen = skb->len - SKB_TMP_LEN(skb); 111 } 112 } 113 desc->tx.ip_offset = ip_offset; 114 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 115 desc->tx.mss = cpu_to_le16(mss); 116 desc->tx.l4_len = l4_len; 117 desc->tx.paylen = cpu_to_le16(paylen); 118 } 119 } 120 121 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 122 123 desc->tx.bn_pid = bn_pid; 124 desc->tx.ra_ri_cs_fe_vld = rrcfv; 125 126 ring_ptr_move_fw(ring, next_to_use); 127 } 128 129 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 130 int size, dma_addr_t dma, int frag_end, 131 int buf_num, enum hns_desc_type type, int mtu) 132 { 133 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end, 134 buf_num, type, mtu); 135 } 136 137 static const struct acpi_device_id hns_enet_acpi_match[] = { 138 { "HISI00C1", 0 }, 139 { "HISI00C2", 0 }, 140 { }, 141 }; 142 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 143 144 static void fill_desc(struct hnae_ring *ring, void *priv, 145 int size, dma_addr_t dma, int frag_end, 146 int buf_num, enum hns_desc_type type, int mtu) 147 { 148 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 149 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 150 struct sk_buff *skb; 151 __be16 protocol; 152 u32 ip_offset; 153 u32 asid_bufnum_pid = 0; 154 u32 flag_ipoffset = 0; 155 156 desc_cb->priv = priv; 157 desc_cb->length = size; 158 desc_cb->dma = dma; 159 desc_cb->type = type; 160 161 desc->addr = cpu_to_le64(dma); 162 desc->tx.send_size = cpu_to_le16((u16)size); 163 164 /*config bd buffer end */ 165 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 166 167 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 168 169 if (type == DESC_TYPE_SKB) { 170 skb = (struct sk_buff *)priv; 171 172 if (skb->ip_summed == CHECKSUM_PARTIAL) { 173 protocol = skb->protocol; 174 ip_offset = ETH_HLEN; 175 176 /*if it is a SW VLAN check the next protocol*/ 177 if (protocol == htons(ETH_P_8021Q)) { 178 ip_offset += VLAN_HLEN; 179 protocol = vlan_get_protocol(skb); 180 skb->protocol = protocol; 181 } 182 183 if (skb->protocol == htons(ETH_P_IP)) { 184 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 185 /* check for tcp/udp header */ 186 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 187 188 } else if (skb->protocol == htons(ETH_P_IPV6)) { 189 /* ipv6 has not l3 cs, check for L4 header */ 190 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 191 } 192 193 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 194 } 195 } 196 197 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 198 199 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 200 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 201 202 ring_ptr_move_fw(ring, next_to_use); 203 } 204 205 static void unfill_desc(struct hnae_ring *ring) 206 { 207 ring_ptr_move_bw(ring, next_to_use); 208 } 209 210 static int hns_nic_maybe_stop_tx( 211 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 212 { 213 struct sk_buff *skb = *out_skb; 214 struct sk_buff *new_skb = NULL; 215 int buf_num; 216 217 /* no. of segments (plus a header) */ 218 buf_num = skb_shinfo(skb)->nr_frags + 1; 219 220 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 221 if (ring_space(ring) < 1) 222 return -EBUSY; 223 224 new_skb = skb_copy(skb, GFP_ATOMIC); 225 if (!new_skb) 226 return -ENOMEM; 227 228 dev_kfree_skb_any(skb); 229 *out_skb = new_skb; 230 buf_num = 1; 231 } else if (buf_num > ring_space(ring)) { 232 return -EBUSY; 233 } 234 235 *bnum = buf_num; 236 return 0; 237 } 238 239 static int hns_nic_maybe_stop_tso( 240 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 241 { 242 int i; 243 int size; 244 int buf_num; 245 int frag_num; 246 struct sk_buff *skb = *out_skb; 247 struct sk_buff *new_skb = NULL; 248 skb_frag_t *frag; 249 250 size = skb_headlen(skb); 251 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 252 253 frag_num = skb_shinfo(skb)->nr_frags; 254 for (i = 0; i < frag_num; i++) { 255 frag = &skb_shinfo(skb)->frags[i]; 256 size = skb_frag_size(frag); 257 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 258 } 259 260 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 261 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 262 if (ring_space(ring) < buf_num) 263 return -EBUSY; 264 /* manual split the send packet */ 265 new_skb = skb_copy(skb, GFP_ATOMIC); 266 if (!new_skb) 267 return -ENOMEM; 268 dev_kfree_skb_any(skb); 269 *out_skb = new_skb; 270 271 } else if (ring_space(ring) < buf_num) { 272 return -EBUSY; 273 } 274 275 *bnum = buf_num; 276 return 0; 277 } 278 279 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 280 int size, dma_addr_t dma, int frag_end, 281 int buf_num, enum hns_desc_type type, int mtu) 282 { 283 int frag_buf_num; 284 int sizeoflast; 285 int k; 286 287 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 288 sizeoflast = size % BD_MAX_SEND_SIZE; 289 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 290 291 /* when the frag size is bigger than hardware, split this frag */ 292 for (k = 0; k < frag_buf_num; k++) 293 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0, 294 (k == frag_buf_num - 1) ? 295 sizeoflast : BD_MAX_SEND_SIZE, 296 dma + BD_MAX_SEND_SIZE * k, 297 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 298 buf_num, 299 (type == DESC_TYPE_SKB && !k) ? 300 DESC_TYPE_SKB : DESC_TYPE_PAGE, 301 mtu); 302 } 303 304 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev, 305 struct sk_buff *skb, 306 struct hns_nic_ring_data *ring_data) 307 { 308 struct hns_nic_priv *priv = netdev_priv(ndev); 309 struct hnae_ring *ring = ring_data->ring; 310 struct device *dev = ring_to_dev(ring); 311 struct netdev_queue *dev_queue; 312 skb_frag_t *frag; 313 int buf_num; 314 int seg_num; 315 dma_addr_t dma; 316 int size, next_to_use; 317 int i; 318 319 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 320 case -EBUSY: 321 ring->stats.tx_busy++; 322 goto out_net_tx_busy; 323 case -ENOMEM: 324 ring->stats.sw_err_cnt++; 325 netdev_err(ndev, "no memory to xmit!\n"); 326 goto out_err_tx_ok; 327 default: 328 break; 329 } 330 331 /* no. of segments (plus a header) */ 332 seg_num = skb_shinfo(skb)->nr_frags + 1; 333 next_to_use = ring->next_to_use; 334 335 /* fill the first part */ 336 size = skb_headlen(skb); 337 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 338 if (dma_mapping_error(dev, dma)) { 339 netdev_err(ndev, "TX head DMA map failed\n"); 340 ring->stats.sw_err_cnt++; 341 goto out_err_tx_ok; 342 } 343 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 344 buf_num, DESC_TYPE_SKB, ndev->mtu); 345 346 /* fill the fragments */ 347 for (i = 1; i < seg_num; i++) { 348 frag = &skb_shinfo(skb)->frags[i - 1]; 349 size = skb_frag_size(frag); 350 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 351 if (dma_mapping_error(dev, dma)) { 352 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 353 ring->stats.sw_err_cnt++; 354 goto out_map_frag_fail; 355 } 356 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 357 seg_num - 1 == i ? 1 : 0, buf_num, 358 DESC_TYPE_PAGE, ndev->mtu); 359 } 360 361 /*complete translate all packets*/ 362 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 363 netdev_tx_sent_queue(dev_queue, skb->len); 364 365 netif_trans_update(ndev); 366 ndev->stats.tx_bytes += skb->len; 367 ndev->stats.tx_packets++; 368 369 wmb(); /* commit all data before submit */ 370 assert(skb->queue_mapping < priv->ae_handle->q_num); 371 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 372 373 return NETDEV_TX_OK; 374 375 out_map_frag_fail: 376 377 while (ring->next_to_use != next_to_use) { 378 unfill_desc(ring); 379 if (ring->next_to_use != next_to_use) 380 dma_unmap_page(dev, 381 ring->desc_cb[ring->next_to_use].dma, 382 ring->desc_cb[ring->next_to_use].length, 383 DMA_TO_DEVICE); 384 else 385 dma_unmap_single(dev, 386 ring->desc_cb[next_to_use].dma, 387 ring->desc_cb[next_to_use].length, 388 DMA_TO_DEVICE); 389 } 390 391 out_err_tx_ok: 392 393 dev_kfree_skb_any(skb); 394 return NETDEV_TX_OK; 395 396 out_net_tx_busy: 397 398 netif_stop_subqueue(ndev, skb->queue_mapping); 399 400 /* Herbert's original patch had: 401 * smp_mb__after_netif_stop_queue(); 402 * but since that doesn't exist yet, just open code it. 403 */ 404 smp_mb(); 405 return NETDEV_TX_BUSY; 406 } 407 408 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 409 struct hnae_ring *ring, int pull_len, 410 struct hnae_desc_cb *desc_cb) 411 { 412 struct hnae_desc *desc; 413 u32 truesize; 414 int size; 415 int last_offset; 416 bool twobufs; 417 418 twobufs = ((PAGE_SIZE < 8192) && 419 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 420 421 desc = &ring->desc[ring->next_to_clean]; 422 size = le16_to_cpu(desc->rx.size); 423 424 if (twobufs) { 425 truesize = hnae_buf_size(ring); 426 } else { 427 truesize = ALIGN(size, L1_CACHE_BYTES); 428 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 429 } 430 431 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 432 size - pull_len, truesize); 433 434 /* avoid re-using remote pages,flag default unreuse */ 435 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 436 return; 437 438 if (twobufs) { 439 /* if we are only owner of page we can reuse it */ 440 if (likely(page_count(desc_cb->priv) == 1)) { 441 /* flip page offset to other buffer */ 442 desc_cb->page_offset ^= truesize; 443 444 desc_cb->reuse_flag = 1; 445 /* bump ref count on page before it is given*/ 446 get_page(desc_cb->priv); 447 } 448 return; 449 } 450 451 /* move offset up to the next cache line */ 452 desc_cb->page_offset += truesize; 453 454 if (desc_cb->page_offset <= last_offset) { 455 desc_cb->reuse_flag = 1; 456 /* bump ref count on page before it is given*/ 457 get_page(desc_cb->priv); 458 } 459 } 460 461 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 462 { 463 *out_bnum = hnae_get_field(bnum_flag, 464 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 465 } 466 467 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 468 { 469 *out_bnum = hnae_get_field(bnum_flag, 470 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 471 } 472 473 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 474 struct sk_buff *skb, u32 flag) 475 { 476 struct net_device *netdev = ring_data->napi.dev; 477 u32 l3id; 478 u32 l4id; 479 480 /* check if RX checksum offload is enabled */ 481 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 482 return; 483 484 /* In hardware, we only support checksum for the following protocols: 485 * 1) IPv4, 486 * 2) TCP(over IPv4 or IPv6), 487 * 3) UDP(over IPv4 or IPv6), 488 * 4) SCTP(over IPv4 or IPv6) 489 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 490 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 491 * 492 * Hardware limitation: 493 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 494 * Error" bit (which usually can be used to indicate whether checksum 495 * was calculated by the hardware and if there was any error encountered 496 * during checksum calculation). 497 * 498 * Software workaround: 499 * We do get info within the RX descriptor about the kind of L3/L4 500 * protocol coming in the packet and the error status. These errors 501 * might not just be checksum errors but could be related to version, 502 * length of IPv4, UDP, TCP etc. 503 * Because there is no-way of knowing if it is a L3/L4 error due to bad 504 * checksum or any other L3/L4 error, we will not (cannot) convey 505 * checksum status for such cases to upper stack and will not maintain 506 * the RX L3/L4 checksum counters as well. 507 */ 508 509 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 510 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 511 512 /* check L3 protocol for which checksum is supported */ 513 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 514 return; 515 516 /* check for any(not just checksum)flagged L3 protocol errors */ 517 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 518 return; 519 520 /* we do not support checksum of fragmented packets */ 521 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 522 return; 523 524 /* check L4 protocol for which checksum is supported */ 525 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 526 (l4id != HNS_RX_FLAG_L4ID_UDP) && 527 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 528 return; 529 530 /* check for any(not just checksum)flagged L4 protocol errors */ 531 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 532 return; 533 534 /* now, this has to be a packet with valid RX checksum */ 535 skb->ip_summed = CHECKSUM_UNNECESSARY; 536 } 537 538 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 539 struct sk_buff **out_skb, int *out_bnum) 540 { 541 struct hnae_ring *ring = ring_data->ring; 542 struct net_device *ndev = ring_data->napi.dev; 543 struct hns_nic_priv *priv = netdev_priv(ndev); 544 struct sk_buff *skb; 545 struct hnae_desc *desc; 546 struct hnae_desc_cb *desc_cb; 547 unsigned char *va; 548 int bnum, length, i; 549 int pull_len; 550 u32 bnum_flag; 551 552 desc = &ring->desc[ring->next_to_clean]; 553 desc_cb = &ring->desc_cb[ring->next_to_clean]; 554 555 prefetch(desc); 556 557 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 558 559 /* prefetch first cache line of first page */ 560 prefetch(va); 561 #if L1_CACHE_BYTES < 128 562 prefetch(va + L1_CACHE_BYTES); 563 #endif 564 565 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 566 HNS_RX_HEAD_SIZE); 567 if (unlikely(!skb)) { 568 ring->stats.sw_err_cnt++; 569 return -ENOMEM; 570 } 571 572 prefetchw(skb->data); 573 length = le16_to_cpu(desc->rx.pkt_len); 574 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 575 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 576 *out_bnum = bnum; 577 578 if (length <= HNS_RX_HEAD_SIZE) { 579 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 580 581 /* we can reuse buffer as-is, just make sure it is local */ 582 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 583 desc_cb->reuse_flag = 1; 584 else /* this page cannot be reused so discard it */ 585 put_page(desc_cb->priv); 586 587 ring_ptr_move_fw(ring, next_to_clean); 588 589 if (unlikely(bnum != 1)) { /* check err*/ 590 *out_bnum = 1; 591 goto out_bnum_err; 592 } 593 } else { 594 ring->stats.seg_pkt_cnt++; 595 596 pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE); 597 memcpy(__skb_put(skb, pull_len), va, 598 ALIGN(pull_len, sizeof(long))); 599 600 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 601 ring_ptr_move_fw(ring, next_to_clean); 602 603 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 604 *out_bnum = 1; 605 goto out_bnum_err; 606 } 607 for (i = 1; i < bnum; i++) { 608 desc = &ring->desc[ring->next_to_clean]; 609 desc_cb = &ring->desc_cb[ring->next_to_clean]; 610 611 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 612 ring_ptr_move_fw(ring, next_to_clean); 613 } 614 } 615 616 /* check except process, free skb and jump the desc */ 617 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 618 out_bnum_err: 619 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 620 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 621 bnum, ring->max_desc_num_per_pkt, 622 length, (int)MAX_SKB_FRAGS, 623 ((u64 *)desc)[0], ((u64 *)desc)[1]); 624 ring->stats.err_bd_num++; 625 dev_kfree_skb_any(skb); 626 return -EDOM; 627 } 628 629 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 630 631 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 632 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 633 ((u64 *)desc)[0], ((u64 *)desc)[1]); 634 ring->stats.non_vld_descs++; 635 dev_kfree_skb_any(skb); 636 return -EINVAL; 637 } 638 639 if (unlikely((!desc->rx.pkt_len) || 640 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 641 ring->stats.err_pkt_len++; 642 dev_kfree_skb_any(skb); 643 return -EFAULT; 644 } 645 646 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 647 ring->stats.l2_err++; 648 dev_kfree_skb_any(skb); 649 return -EFAULT; 650 } 651 652 ring->stats.rx_pkts++; 653 ring->stats.rx_bytes += skb->len; 654 655 /* indicate to upper stack if our hardware has already calculated 656 * the RX checksum 657 */ 658 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 659 660 return 0; 661 } 662 663 static void 664 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 665 { 666 int i, ret; 667 struct hnae_desc_cb res_cbs; 668 struct hnae_desc_cb *desc_cb; 669 struct hnae_ring *ring = ring_data->ring; 670 struct net_device *ndev = ring_data->napi.dev; 671 672 for (i = 0; i < cleand_count; i++) { 673 desc_cb = &ring->desc_cb[ring->next_to_use]; 674 if (desc_cb->reuse_flag) { 675 ring->stats.reuse_pg_cnt++; 676 hnae_reuse_buffer(ring, ring->next_to_use); 677 } else { 678 ret = hnae_reserve_buffer_map(ring, &res_cbs); 679 if (ret) { 680 ring->stats.sw_err_cnt++; 681 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 682 break; 683 } 684 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 685 } 686 687 ring_ptr_move_fw(ring, next_to_use); 688 } 689 690 wmb(); /* make all data has been write before submit */ 691 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 692 } 693 694 /* return error number for error or number of desc left to take 695 */ 696 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 697 struct sk_buff *skb) 698 { 699 struct net_device *ndev = ring_data->napi.dev; 700 701 skb->protocol = eth_type_trans(skb, ndev); 702 napi_gro_receive(&ring_data->napi, skb); 703 } 704 705 static int hns_desc_unused(struct hnae_ring *ring) 706 { 707 int ntc = ring->next_to_clean; 708 int ntu = ring->next_to_use; 709 710 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 711 } 712 713 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */ 714 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */ 715 716 #define HNS_COAL_BDNUM 3 717 718 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring) 719 { 720 bool coal_enable = ring->q->handle->coal_adapt_en; 721 722 if (coal_enable && 723 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE) 724 return HNS_COAL_BDNUM; 725 else 726 return 0; 727 } 728 729 static void hns_update_rx_rate(struct hnae_ring *ring) 730 { 731 bool coal_enable = ring->q->handle->coal_adapt_en; 732 u32 time_passed_ms; 733 u64 total_bytes; 734 735 if (!coal_enable || 736 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4))) 737 return; 738 739 /* ring->stats.rx_bytes overflowed */ 740 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) { 741 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 742 ring->coal_last_jiffies = jiffies; 743 return; 744 } 745 746 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes; 747 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies); 748 do_div(total_bytes, time_passed_ms); 749 ring->coal_rx_rate = total_bytes >> 10; 750 751 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 752 ring->coal_last_jiffies = jiffies; 753 } 754 755 /** 756 * smooth_alg - smoothing algrithm for adjusting coalesce parameter 757 **/ 758 static u32 smooth_alg(u32 new_param, u32 old_param) 759 { 760 u32 gap = (new_param > old_param) ? new_param - old_param 761 : old_param - new_param; 762 763 if (gap > 8) 764 gap >>= 3; 765 766 if (new_param > old_param) 767 return old_param + gap; 768 else 769 return old_param - gap; 770 } 771 772 /** 773 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate 774 * @ring_data: pointer to hns_nic_ring_data 775 **/ 776 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data) 777 { 778 struct hnae_ring *ring = ring_data->ring; 779 struct hnae_handle *handle = ring->q->handle; 780 u32 new_coal_param, old_coal_param = ring->coal_param; 781 782 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE) 783 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM; 784 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE) 785 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM; 786 else 787 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM; 788 789 if (new_coal_param == old_coal_param && 790 new_coal_param == handle->coal_param) 791 return; 792 793 new_coal_param = smooth_alg(new_coal_param, old_coal_param); 794 ring->coal_param = new_coal_param; 795 796 /** 797 * Because all ring in one port has one coalesce param, when one ring 798 * calculate its own coalesce param, it cannot write to hardware at 799 * once. There are three conditions as follows: 800 * 1. current ring's coalesce param is larger than the hardware. 801 * 2. or ring which adapt last time can change again. 802 * 3. timeout. 803 */ 804 if (new_coal_param == handle->coal_param) { 805 handle->coal_last_jiffies = jiffies; 806 handle->coal_ring_idx = ring_data->queue_index; 807 } else if (new_coal_param > handle->coal_param || 808 handle->coal_ring_idx == ring_data->queue_index || 809 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) { 810 handle->dev->ops->set_coalesce_usecs(handle, 811 new_coal_param); 812 handle->dev->ops->set_coalesce_frames(handle, 813 1, new_coal_param); 814 handle->coal_param = new_coal_param; 815 handle->coal_ring_idx = ring_data->queue_index; 816 handle->coal_last_jiffies = jiffies; 817 } 818 } 819 820 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 821 int budget, void *v) 822 { 823 struct hnae_ring *ring = ring_data->ring; 824 struct sk_buff *skb; 825 int num, bnum; 826 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 827 int recv_pkts, recv_bds, clean_count, err; 828 int unused_count = hns_desc_unused(ring); 829 830 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 831 rmb(); /* make sure num taken effect before the other data is touched */ 832 833 recv_pkts = 0, recv_bds = 0, clean_count = 0; 834 num -= unused_count; 835 836 while (recv_pkts < budget && recv_bds < num) { 837 /* reuse or realloc buffers */ 838 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 839 hns_nic_alloc_rx_buffers(ring_data, 840 clean_count + unused_count); 841 clean_count = 0; 842 unused_count = hns_desc_unused(ring); 843 } 844 845 /* poll one pkt */ 846 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 847 if (unlikely(!skb)) /* this fault cannot be repaired */ 848 goto out; 849 850 recv_bds += bnum; 851 clean_count += bnum; 852 if (unlikely(err)) { /* do jump the err */ 853 recv_pkts++; 854 continue; 855 } 856 857 /* do update ip stack process*/ 858 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 859 ring_data, skb); 860 recv_pkts++; 861 } 862 863 out: 864 /* make all data has been write before submit */ 865 if (clean_count + unused_count > 0) 866 hns_nic_alloc_rx_buffers(ring_data, 867 clean_count + unused_count); 868 869 return recv_pkts; 870 } 871 872 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 873 { 874 struct hnae_ring *ring = ring_data->ring; 875 int num = 0; 876 bool rx_stopped; 877 878 hns_update_rx_rate(ring); 879 880 /* for hardware bug fixed */ 881 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 882 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 883 884 if (num <= hns_coal_rx_bdnum(ring)) { 885 if (ring->q->handle->coal_adapt_en) 886 hns_nic_adpt_coalesce(ring_data); 887 888 rx_stopped = true; 889 } else { 890 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 891 ring_data->ring, 1); 892 893 rx_stopped = false; 894 } 895 896 return rx_stopped; 897 } 898 899 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 900 { 901 struct hnae_ring *ring = ring_data->ring; 902 int num; 903 904 hns_update_rx_rate(ring); 905 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 906 907 if (num <= hns_coal_rx_bdnum(ring)) { 908 if (ring->q->handle->coal_adapt_en) 909 hns_nic_adpt_coalesce(ring_data); 910 911 return true; 912 } 913 914 return false; 915 } 916 917 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 918 int *bytes, int *pkts) 919 { 920 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 921 922 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 923 (*bytes) += desc_cb->length; 924 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 925 hnae_free_buffer_detach(ring, ring->next_to_clean); 926 927 ring_ptr_move_fw(ring, next_to_clean); 928 } 929 930 static int is_valid_clean_head(struct hnae_ring *ring, int h) 931 { 932 int u = ring->next_to_use; 933 int c = ring->next_to_clean; 934 935 if (unlikely(h > ring->desc_num)) 936 return 0; 937 938 assert(u > 0 && u < ring->desc_num); 939 assert(c > 0 && c < ring->desc_num); 940 assert(u != c && h != c); /* must be checked before call this func */ 941 942 return u > c ? (h > c && h <= u) : (h > c || h <= u); 943 } 944 945 /* reclaim all desc in one budget 946 * return error or number of desc left 947 */ 948 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 949 int budget, void *v) 950 { 951 struct hnae_ring *ring = ring_data->ring; 952 struct net_device *ndev = ring_data->napi.dev; 953 struct netdev_queue *dev_queue; 954 struct hns_nic_priv *priv = netdev_priv(ndev); 955 int head; 956 int bytes, pkts; 957 958 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 959 rmb(); /* make sure head is ready before touch any data */ 960 961 if (is_ring_empty(ring) || head == ring->next_to_clean) 962 return 0; /* no data to poll */ 963 964 if (!is_valid_clean_head(ring, head)) { 965 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 966 ring->next_to_use, ring->next_to_clean); 967 ring->stats.io_err_cnt++; 968 return -EIO; 969 } 970 971 bytes = 0; 972 pkts = 0; 973 while (head != ring->next_to_clean) { 974 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 975 /* issue prefetch for next Tx descriptor */ 976 prefetch(&ring->desc_cb[ring->next_to_clean]); 977 } 978 /* update tx ring statistics. */ 979 ring->stats.tx_pkts += pkts; 980 ring->stats.tx_bytes += bytes; 981 982 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 983 netdev_tx_completed_queue(dev_queue, pkts, bytes); 984 985 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 986 netif_carrier_on(ndev); 987 988 if (unlikely(pkts && netif_carrier_ok(ndev) && 989 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 990 /* Make sure that anybody stopping the queue after this 991 * sees the new next_to_clean. 992 */ 993 smp_mb(); 994 if (netif_tx_queue_stopped(dev_queue) && 995 !test_bit(NIC_STATE_DOWN, &priv->state)) { 996 netif_tx_wake_queue(dev_queue); 997 ring->stats.restart_queue++; 998 } 999 } 1000 return 0; 1001 } 1002 1003 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 1004 { 1005 struct hnae_ring *ring = ring_data->ring; 1006 int head; 1007 1008 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1009 1010 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1011 1012 if (head != ring->next_to_clean) { 1013 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1014 ring_data->ring, 1); 1015 1016 return false; 1017 } else { 1018 return true; 1019 } 1020 } 1021 1022 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1023 { 1024 struct hnae_ring *ring = ring_data->ring; 1025 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1026 1027 if (head == ring->next_to_clean) 1028 return true; 1029 else 1030 return false; 1031 } 1032 1033 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1034 { 1035 struct hnae_ring *ring = ring_data->ring; 1036 struct net_device *ndev = ring_data->napi.dev; 1037 struct netdev_queue *dev_queue; 1038 int head; 1039 int bytes, pkts; 1040 1041 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1042 bytes = 0; 1043 pkts = 0; 1044 while (head != ring->next_to_clean) 1045 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1046 1047 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1048 netdev_tx_reset_queue(dev_queue); 1049 } 1050 1051 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1052 { 1053 int clean_complete = 0; 1054 struct hns_nic_ring_data *ring_data = 1055 container_of(napi, struct hns_nic_ring_data, napi); 1056 struct hnae_ring *ring = ring_data->ring; 1057 1058 clean_complete += ring_data->poll_one( 1059 ring_data, budget - clean_complete, 1060 ring_data->ex_process); 1061 1062 if (clean_complete < budget) { 1063 if (ring_data->fini_process(ring_data)) { 1064 napi_complete(napi); 1065 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1066 } else { 1067 return budget; 1068 } 1069 } 1070 1071 return clean_complete; 1072 } 1073 1074 static irqreturn_t hns_irq_handle(int irq, void *dev) 1075 { 1076 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1077 1078 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1079 ring_data->ring, 1); 1080 napi_schedule(&ring_data->napi); 1081 1082 return IRQ_HANDLED; 1083 } 1084 1085 /** 1086 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1087 *@ndev: net device 1088 */ 1089 static void hns_nic_adjust_link(struct net_device *ndev) 1090 { 1091 struct hns_nic_priv *priv = netdev_priv(ndev); 1092 struct hnae_handle *h = priv->ae_handle; 1093 int state = 1; 1094 1095 /* If there is no phy, do not need adjust link */ 1096 if (ndev->phydev) { 1097 /* When phy link down, do nothing */ 1098 if (ndev->phydev->link == 0) 1099 return; 1100 1101 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed, 1102 ndev->phydev->duplex)) { 1103 /* because Hi161X chip don't support to change gmac 1104 * speed and duplex with traffic. Delay 200ms to 1105 * make sure there is no more data in chip FIFO. 1106 */ 1107 netif_carrier_off(ndev); 1108 msleep(200); 1109 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1110 ndev->phydev->duplex); 1111 netif_carrier_on(ndev); 1112 } 1113 } 1114 1115 state = state && h->dev->ops->get_status(h); 1116 1117 if (state != priv->link) { 1118 if (state) { 1119 netif_carrier_on(ndev); 1120 netif_tx_wake_all_queues(ndev); 1121 netdev_info(ndev, "link up\n"); 1122 } else { 1123 netif_carrier_off(ndev); 1124 netdev_info(ndev, "link down\n"); 1125 } 1126 priv->link = state; 1127 } 1128 } 1129 1130 /** 1131 *hns_nic_init_phy - init phy 1132 *@ndev: net device 1133 *@h: ae handle 1134 * Return 0 on success, negative on failure 1135 */ 1136 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1137 { 1138 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, }; 1139 struct phy_device *phy_dev = h->phy_dev; 1140 int ret; 1141 1142 if (!h->phy_dev) 1143 return 0; 1144 1145 ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support); 1146 linkmode_and(phy_dev->supported, phy_dev->supported, supported); 1147 linkmode_copy(phy_dev->advertising, phy_dev->supported); 1148 1149 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1150 phy_dev->autoneg = false; 1151 1152 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1153 phy_dev->dev_flags = 0; 1154 1155 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1156 h->phy_if); 1157 } else { 1158 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1159 } 1160 if (unlikely(ret)) 1161 return -ENODEV; 1162 1163 phy_attached_info(phy_dev); 1164 1165 return 0; 1166 } 1167 1168 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1169 { 1170 struct hns_nic_priv *priv = netdev_priv(netdev); 1171 struct hnae_handle *h = priv->ae_handle; 1172 1173 napi_enable(&priv->ring_data[idx].napi); 1174 1175 enable_irq(priv->ring_data[idx].ring->irq); 1176 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1177 1178 return 0; 1179 } 1180 1181 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1182 { 1183 struct hns_nic_priv *priv = netdev_priv(ndev); 1184 struct hnae_handle *h = priv->ae_handle; 1185 struct sockaddr *mac_addr = p; 1186 int ret; 1187 1188 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1189 return -EADDRNOTAVAIL; 1190 1191 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1192 if (ret) { 1193 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1194 return ret; 1195 } 1196 1197 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); 1198 1199 return 0; 1200 } 1201 1202 static void hns_nic_update_stats(struct net_device *netdev) 1203 { 1204 struct hns_nic_priv *priv = netdev_priv(netdev); 1205 struct hnae_handle *h = priv->ae_handle; 1206 1207 h->dev->ops->update_stats(h, &netdev->stats); 1208 } 1209 1210 /* set mac addr if it is configed. or leave it to the AE driver */ 1211 static void hns_init_mac_addr(struct net_device *ndev) 1212 { 1213 struct hns_nic_priv *priv = netdev_priv(ndev); 1214 1215 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { 1216 eth_hw_addr_random(ndev); 1217 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1218 ndev->dev_addr); 1219 } 1220 } 1221 1222 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1223 { 1224 struct hns_nic_priv *priv = netdev_priv(netdev); 1225 struct hnae_handle *h = priv->ae_handle; 1226 1227 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1228 disable_irq(priv->ring_data[idx].ring->irq); 1229 1230 napi_disable(&priv->ring_data[idx].napi); 1231 } 1232 1233 static int hns_nic_init_affinity_mask(int q_num, int ring_idx, 1234 struct hnae_ring *ring, cpumask_t *mask) 1235 { 1236 int cpu; 1237 1238 /* Diffrent irq banlance between 16core and 32core. 1239 * The cpu mask set by ring index according to the ring flag 1240 * which indicate the ring is tx or rx. 1241 */ 1242 if (q_num == num_possible_cpus()) { 1243 if (is_tx_ring(ring)) 1244 cpu = ring_idx; 1245 else 1246 cpu = ring_idx - q_num; 1247 } else { 1248 if (is_tx_ring(ring)) 1249 cpu = ring_idx * 2; 1250 else 1251 cpu = (ring_idx - q_num) * 2 + 1; 1252 } 1253 1254 cpumask_clear(mask); 1255 cpumask_set_cpu(cpu, mask); 1256 1257 return cpu; 1258 } 1259 1260 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv) 1261 { 1262 int i; 1263 1264 for (i = 0; i < q_num * 2; i++) { 1265 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 1266 irq_set_affinity_hint(priv->ring_data[i].ring->irq, 1267 NULL); 1268 free_irq(priv->ring_data[i].ring->irq, 1269 &priv->ring_data[i]); 1270 priv->ring_data[i].ring->irq_init_flag = 1271 RCB_IRQ_NOT_INITED; 1272 } 1273 } 1274 } 1275 1276 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1277 { 1278 struct hnae_handle *h = priv->ae_handle; 1279 struct hns_nic_ring_data *rd; 1280 int i; 1281 int ret; 1282 int cpu; 1283 1284 for (i = 0; i < h->q_num * 2; i++) { 1285 rd = &priv->ring_data[i]; 1286 1287 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1288 break; 1289 1290 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1291 "%s-%s%d", priv->netdev->name, 1292 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); 1293 1294 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1295 1296 ret = request_irq(rd->ring->irq, 1297 hns_irq_handle, 0, rd->ring->ring_name, rd); 1298 if (ret) { 1299 netdev_err(priv->netdev, "request irq(%d) fail\n", 1300 rd->ring->irq); 1301 goto out_free_irq; 1302 } 1303 disable_irq(rd->ring->irq); 1304 1305 cpu = hns_nic_init_affinity_mask(h->q_num, i, 1306 rd->ring, &rd->mask); 1307 1308 if (cpu_online(cpu)) 1309 irq_set_affinity_hint(rd->ring->irq, 1310 &rd->mask); 1311 1312 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1313 } 1314 1315 return 0; 1316 1317 out_free_irq: 1318 hns_nic_free_irq(h->q_num, priv); 1319 return ret; 1320 } 1321 1322 static int hns_nic_net_up(struct net_device *ndev) 1323 { 1324 struct hns_nic_priv *priv = netdev_priv(ndev); 1325 struct hnae_handle *h = priv->ae_handle; 1326 int i, j; 1327 int ret; 1328 1329 if (!test_bit(NIC_STATE_DOWN, &priv->state)) 1330 return 0; 1331 1332 ret = hns_nic_init_irq(priv); 1333 if (ret != 0) { 1334 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1335 return ret; 1336 } 1337 1338 for (i = 0; i < h->q_num * 2; i++) { 1339 ret = hns_nic_ring_open(ndev, i); 1340 if (ret) 1341 goto out_has_some_queues; 1342 } 1343 1344 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1345 if (ret) 1346 goto out_set_mac_addr_err; 1347 1348 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1349 if (ret) 1350 goto out_start_err; 1351 1352 if (ndev->phydev) 1353 phy_start(ndev->phydev); 1354 1355 clear_bit(NIC_STATE_DOWN, &priv->state); 1356 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1357 1358 return 0; 1359 1360 out_start_err: 1361 netif_stop_queue(ndev); 1362 out_set_mac_addr_err: 1363 out_has_some_queues: 1364 for (j = i - 1; j >= 0; j--) 1365 hns_nic_ring_close(ndev, j); 1366 1367 hns_nic_free_irq(h->q_num, priv); 1368 set_bit(NIC_STATE_DOWN, &priv->state); 1369 1370 return ret; 1371 } 1372 1373 static void hns_nic_net_down(struct net_device *ndev) 1374 { 1375 int i; 1376 struct hnae_ae_ops *ops; 1377 struct hns_nic_priv *priv = netdev_priv(ndev); 1378 1379 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1380 return; 1381 1382 (void)del_timer_sync(&priv->service_timer); 1383 netif_tx_stop_all_queues(ndev); 1384 netif_carrier_off(ndev); 1385 netif_tx_disable(ndev); 1386 priv->link = 0; 1387 1388 if (ndev->phydev) 1389 phy_stop(ndev->phydev); 1390 1391 ops = priv->ae_handle->dev->ops; 1392 1393 if (ops->stop) 1394 ops->stop(priv->ae_handle); 1395 1396 netif_tx_stop_all_queues(ndev); 1397 1398 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1399 hns_nic_ring_close(ndev, i); 1400 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1401 1402 /* clean tx buffers*/ 1403 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1404 } 1405 } 1406 1407 void hns_nic_net_reset(struct net_device *ndev) 1408 { 1409 struct hns_nic_priv *priv = netdev_priv(ndev); 1410 struct hnae_handle *handle = priv->ae_handle; 1411 1412 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1413 usleep_range(1000, 2000); 1414 1415 (void)hnae_reinit_handle(handle); 1416 1417 clear_bit(NIC_STATE_RESETTING, &priv->state); 1418 } 1419 1420 void hns_nic_net_reinit(struct net_device *netdev) 1421 { 1422 struct hns_nic_priv *priv = netdev_priv(netdev); 1423 enum hnae_port_type type = priv->ae_handle->port_type; 1424 1425 netif_trans_update(priv->netdev); 1426 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1427 usleep_range(1000, 2000); 1428 1429 hns_nic_net_down(netdev); 1430 1431 /* Only do hns_nic_net_reset in debug mode 1432 * because of hardware limitation. 1433 */ 1434 if (type == HNAE_PORT_DEBUG) 1435 hns_nic_net_reset(netdev); 1436 1437 (void)hns_nic_net_up(netdev); 1438 clear_bit(NIC_STATE_REINITING, &priv->state); 1439 } 1440 1441 static int hns_nic_net_open(struct net_device *ndev) 1442 { 1443 struct hns_nic_priv *priv = netdev_priv(ndev); 1444 struct hnae_handle *h = priv->ae_handle; 1445 int ret; 1446 1447 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1448 return -EBUSY; 1449 1450 priv->link = 0; 1451 netif_carrier_off(ndev); 1452 1453 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1454 if (ret < 0) { 1455 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1456 ret); 1457 return ret; 1458 } 1459 1460 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1461 if (ret < 0) { 1462 netdev_err(ndev, 1463 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1464 return ret; 1465 } 1466 1467 ret = hns_nic_net_up(ndev); 1468 if (ret) { 1469 netdev_err(ndev, 1470 "hns net up fail, ret=%d!\n", ret); 1471 return ret; 1472 } 1473 1474 return 0; 1475 } 1476 1477 static int hns_nic_net_stop(struct net_device *ndev) 1478 { 1479 hns_nic_net_down(ndev); 1480 1481 return 0; 1482 } 1483 1484 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1485 #define HNS_TX_TIMEO_LIMIT (40 * HZ) 1486 static void hns_nic_net_timeout(struct net_device *ndev, unsigned int txqueue) 1487 { 1488 struct hns_nic_priv *priv = netdev_priv(ndev); 1489 1490 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) { 1491 ndev->watchdog_timeo *= 2; 1492 netdev_info(ndev, "watchdog_timo changed to %d.\n", 1493 ndev->watchdog_timeo); 1494 } else { 1495 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 1496 hns_tx_timeout_reset(priv); 1497 } 1498 } 1499 1500 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1501 struct net_device *ndev) 1502 { 1503 struct hns_nic_priv *priv = netdev_priv(ndev); 1504 1505 assert(skb->queue_mapping < ndev->ae_handle->q_num); 1506 1507 return hns_nic_net_xmit_hw(ndev, skb, 1508 &tx_ring_data(priv, skb->queue_mapping)); 1509 } 1510 1511 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, 1512 struct sk_buff *skb) 1513 { 1514 dev_kfree_skb_any(skb); 1515 } 1516 1517 #define HNS_LB_TX_RING 0 1518 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) 1519 { 1520 struct sk_buff *skb; 1521 struct ethhdr *ethhdr; 1522 int frame_len; 1523 1524 /* allocate test skb */ 1525 skb = alloc_skb(64, GFP_KERNEL); 1526 if (!skb) 1527 return NULL; 1528 1529 skb_put(skb, 64); 1530 skb->dev = ndev; 1531 memset(skb->data, 0xFF, skb->len); 1532 1533 /* must be tcp/ip package */ 1534 ethhdr = (struct ethhdr *)skb->data; 1535 ethhdr->h_proto = htons(ETH_P_IP); 1536 1537 frame_len = skb->len & (~1ul); 1538 memset(&skb->data[frame_len / 2], 0xAA, 1539 frame_len / 2 - 1); 1540 1541 skb->queue_mapping = HNS_LB_TX_RING; 1542 1543 return skb; 1544 } 1545 1546 static int hns_enable_serdes_lb(struct net_device *ndev) 1547 { 1548 struct hns_nic_priv *priv = netdev_priv(ndev); 1549 struct hnae_handle *h = priv->ae_handle; 1550 struct hnae_ae_ops *ops = h->dev->ops; 1551 int speed, duplex; 1552 int ret; 1553 1554 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); 1555 if (ret) 1556 return ret; 1557 1558 ret = ops->start ? ops->start(h) : 0; 1559 if (ret) 1560 return ret; 1561 1562 /* link adjust duplex*/ 1563 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1564 speed = 1000; 1565 else 1566 speed = 10000; 1567 duplex = 1; 1568 1569 ops->adjust_link(h, speed, duplex); 1570 1571 /* wait h/w ready */ 1572 mdelay(300); 1573 1574 return 0; 1575 } 1576 1577 static void hns_disable_serdes_lb(struct net_device *ndev) 1578 { 1579 struct hns_nic_priv *priv = netdev_priv(ndev); 1580 struct hnae_handle *h = priv->ae_handle; 1581 struct hnae_ae_ops *ops = h->dev->ops; 1582 1583 ops->stop(h); 1584 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); 1585 } 1586 1587 /** 1588 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The 1589 *function as follows: 1590 * 1. if one rx ring has found the page_offset is not equal 0 between head 1591 * and tail, it means that the chip fetched the wrong descs for the ring 1592 * which buffer size is 4096. 1593 * 2. we set the chip serdes loopback and set rss indirection to the ring. 1594 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring 1595 * recieving all packages and it will fetch new descriptions. 1596 * 4. recover to the original state. 1597 * 1598 *@ndev: net device 1599 */ 1600 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) 1601 { 1602 struct hns_nic_priv *priv = netdev_priv(ndev); 1603 struct hnae_handle *h = priv->ae_handle; 1604 struct hnae_ae_ops *ops = h->dev->ops; 1605 struct hns_nic_ring_data *rd; 1606 struct hnae_ring *ring; 1607 struct sk_buff *skb; 1608 u32 *org_indir; 1609 u32 *cur_indir; 1610 int indir_size; 1611 int head, tail; 1612 int fetch_num; 1613 int i, j; 1614 bool found; 1615 int retry_times; 1616 int ret = 0; 1617 1618 /* alloc indir memory */ 1619 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); 1620 org_indir = kzalloc(indir_size, GFP_KERNEL); 1621 if (!org_indir) 1622 return -ENOMEM; 1623 1624 /* store the orginal indirection */ 1625 ops->get_rss(h, org_indir, NULL, NULL); 1626 1627 cur_indir = kzalloc(indir_size, GFP_KERNEL); 1628 if (!cur_indir) { 1629 ret = -ENOMEM; 1630 goto cur_indir_alloc_err; 1631 } 1632 1633 /* set loopback */ 1634 if (hns_enable_serdes_lb(ndev)) { 1635 ret = -EINVAL; 1636 goto enable_serdes_lb_err; 1637 } 1638 1639 /* foreach every rx ring to clear fetch desc */ 1640 for (i = 0; i < h->q_num; i++) { 1641 ring = &h->qs[i]->rx_ring; 1642 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1643 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); 1644 found = false; 1645 fetch_num = ring_dist(ring, head, tail); 1646 1647 while (head != tail) { 1648 if (ring->desc_cb[head].page_offset != 0) { 1649 found = true; 1650 break; 1651 } 1652 1653 head++; 1654 if (head == ring->desc_num) 1655 head = 0; 1656 } 1657 1658 if (found) { 1659 for (j = 0; j < indir_size / sizeof(*org_indir); j++) 1660 cur_indir[j] = i; 1661 ops->set_rss(h, cur_indir, NULL, 0); 1662 1663 for (j = 0; j < fetch_num; j++) { 1664 /* alloc one skb and init */ 1665 skb = hns_assemble_skb(ndev); 1666 if (!skb) 1667 goto out; 1668 rd = &tx_ring_data(priv, skb->queue_mapping); 1669 hns_nic_net_xmit_hw(ndev, skb, rd); 1670 1671 retry_times = 0; 1672 while (retry_times++ < 10) { 1673 mdelay(10); 1674 /* clean rx */ 1675 rd = &rx_ring_data(priv, i); 1676 if (rd->poll_one(rd, fetch_num, 1677 hns_nic_drop_rx_fetch)) 1678 break; 1679 } 1680 1681 retry_times = 0; 1682 while (retry_times++ < 10) { 1683 mdelay(10); 1684 /* clean tx ring 0 send package */ 1685 rd = &tx_ring_data(priv, 1686 HNS_LB_TX_RING); 1687 if (rd->poll_one(rd, fetch_num, NULL)) 1688 break; 1689 } 1690 } 1691 } 1692 } 1693 1694 out: 1695 /* restore everything */ 1696 ops->set_rss(h, org_indir, NULL, 0); 1697 hns_disable_serdes_lb(ndev); 1698 enable_serdes_lb_err: 1699 kfree(cur_indir); 1700 cur_indir_alloc_err: 1701 kfree(org_indir); 1702 1703 return ret; 1704 } 1705 1706 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1707 { 1708 struct hns_nic_priv *priv = netdev_priv(ndev); 1709 struct hnae_handle *h = priv->ae_handle; 1710 bool if_running = netif_running(ndev); 1711 int ret; 1712 1713 /* MTU < 68 is an error and causes problems on some kernels */ 1714 if (new_mtu < 68) 1715 return -EINVAL; 1716 1717 /* MTU no change */ 1718 if (new_mtu == ndev->mtu) 1719 return 0; 1720 1721 if (!h->dev->ops->set_mtu) 1722 return -ENOTSUPP; 1723 1724 if (if_running) { 1725 (void)hns_nic_net_stop(ndev); 1726 msleep(100); 1727 } 1728 1729 if (priv->enet_ver != AE_VERSION_1 && 1730 ndev->mtu <= BD_SIZE_2048_MAX_MTU && 1731 new_mtu > BD_SIZE_2048_MAX_MTU) { 1732 /* update desc */ 1733 hnae_reinit_all_ring_desc(h); 1734 1735 /* clear the package which the chip has fetched */ 1736 ret = hns_nic_clear_all_rx_fetch(ndev); 1737 1738 /* the page offset must be consist with desc */ 1739 hnae_reinit_all_ring_page_off(h); 1740 1741 if (ret) { 1742 netdev_err(ndev, "clear the fetched desc fail\n"); 1743 goto out; 1744 } 1745 } 1746 1747 ret = h->dev->ops->set_mtu(h, new_mtu); 1748 if (ret) { 1749 netdev_err(ndev, "set mtu fail, return value %d\n", 1750 ret); 1751 goto out; 1752 } 1753 1754 /* finally, set new mtu to netdevice */ 1755 ndev->mtu = new_mtu; 1756 1757 out: 1758 if (if_running) { 1759 if (hns_nic_net_open(ndev)) { 1760 netdev_err(ndev, "hns net open fail\n"); 1761 ret = -EINVAL; 1762 } 1763 } 1764 1765 return ret; 1766 } 1767 1768 static int hns_nic_set_features(struct net_device *netdev, 1769 netdev_features_t features) 1770 { 1771 struct hns_nic_priv *priv = netdev_priv(netdev); 1772 1773 switch (priv->enet_ver) { 1774 case AE_VERSION_1: 1775 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1776 netdev_info(netdev, "enet v1 do not support tso!\n"); 1777 break; 1778 default: 1779 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1780 priv->ops.fill_desc = fill_tso_desc; 1781 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1782 /* The chip only support 7*4096 */ 1783 netif_set_gso_max_size(netdev, 7 * 4096); 1784 } else { 1785 priv->ops.fill_desc = fill_v2_desc; 1786 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1787 } 1788 break; 1789 } 1790 netdev->features = features; 1791 return 0; 1792 } 1793 1794 static netdev_features_t hns_nic_fix_features( 1795 struct net_device *netdev, netdev_features_t features) 1796 { 1797 struct hns_nic_priv *priv = netdev_priv(netdev); 1798 1799 switch (priv->enet_ver) { 1800 case AE_VERSION_1: 1801 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1802 NETIF_F_HW_VLAN_CTAG_FILTER); 1803 break; 1804 default: 1805 break; 1806 } 1807 return features; 1808 } 1809 1810 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1811 { 1812 struct hns_nic_priv *priv = netdev_priv(netdev); 1813 struct hnae_handle *h = priv->ae_handle; 1814 1815 if (h->dev->ops->add_uc_addr) 1816 return h->dev->ops->add_uc_addr(h, addr); 1817 1818 return 0; 1819 } 1820 1821 static int hns_nic_uc_unsync(struct net_device *netdev, 1822 const unsigned char *addr) 1823 { 1824 struct hns_nic_priv *priv = netdev_priv(netdev); 1825 struct hnae_handle *h = priv->ae_handle; 1826 1827 if (h->dev->ops->rm_uc_addr) 1828 return h->dev->ops->rm_uc_addr(h, addr); 1829 1830 return 0; 1831 } 1832 1833 /** 1834 * nic_set_multicast_list - set mutl mac address 1835 * @netdev: net device 1836 * @p: mac address 1837 * 1838 * return void 1839 */ 1840 static void hns_set_multicast_list(struct net_device *ndev) 1841 { 1842 struct hns_nic_priv *priv = netdev_priv(ndev); 1843 struct hnae_handle *h = priv->ae_handle; 1844 struct netdev_hw_addr *ha = NULL; 1845 1846 if (!h) { 1847 netdev_err(ndev, "hnae handle is null\n"); 1848 return; 1849 } 1850 1851 if (h->dev->ops->clr_mc_addr) 1852 if (h->dev->ops->clr_mc_addr(h)) 1853 netdev_err(ndev, "clear multicast address fail\n"); 1854 1855 if (h->dev->ops->set_mc_addr) { 1856 netdev_for_each_mc_addr(ha, ndev) 1857 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1858 netdev_err(ndev, "set multicast fail\n"); 1859 } 1860 } 1861 1862 static void hns_nic_set_rx_mode(struct net_device *ndev) 1863 { 1864 struct hns_nic_priv *priv = netdev_priv(ndev); 1865 struct hnae_handle *h = priv->ae_handle; 1866 1867 if (h->dev->ops->set_promisc_mode) { 1868 if (ndev->flags & IFF_PROMISC) 1869 h->dev->ops->set_promisc_mode(h, 1); 1870 else 1871 h->dev->ops->set_promisc_mode(h, 0); 1872 } 1873 1874 hns_set_multicast_list(ndev); 1875 1876 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1877 netdev_err(ndev, "sync uc address fail\n"); 1878 } 1879 1880 static void hns_nic_get_stats64(struct net_device *ndev, 1881 struct rtnl_link_stats64 *stats) 1882 { 1883 int idx = 0; 1884 u64 tx_bytes = 0; 1885 u64 rx_bytes = 0; 1886 u64 tx_pkts = 0; 1887 u64 rx_pkts = 0; 1888 struct hns_nic_priv *priv = netdev_priv(ndev); 1889 struct hnae_handle *h = priv->ae_handle; 1890 1891 for (idx = 0; idx < h->q_num; idx++) { 1892 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1893 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1894 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1895 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1896 } 1897 1898 stats->tx_bytes = tx_bytes; 1899 stats->tx_packets = tx_pkts; 1900 stats->rx_bytes = rx_bytes; 1901 stats->rx_packets = rx_pkts; 1902 1903 stats->rx_errors = ndev->stats.rx_errors; 1904 stats->multicast = ndev->stats.multicast; 1905 stats->rx_length_errors = ndev->stats.rx_length_errors; 1906 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1907 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1908 1909 stats->tx_errors = ndev->stats.tx_errors; 1910 stats->rx_dropped = ndev->stats.rx_dropped; 1911 stats->tx_dropped = ndev->stats.tx_dropped; 1912 stats->collisions = ndev->stats.collisions; 1913 stats->rx_over_errors = ndev->stats.rx_over_errors; 1914 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1915 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1916 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1917 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1918 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1919 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1920 stats->tx_window_errors = ndev->stats.tx_window_errors; 1921 stats->rx_compressed = ndev->stats.rx_compressed; 1922 stats->tx_compressed = ndev->stats.tx_compressed; 1923 } 1924 1925 static u16 1926 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1927 struct net_device *sb_dev) 1928 { 1929 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1930 struct hns_nic_priv *priv = netdev_priv(ndev); 1931 1932 /* fix hardware broadcast/multicast packets queue loopback */ 1933 if (!AE_IS_VER1(priv->enet_ver) && 1934 is_multicast_ether_addr(eth_hdr->h_dest)) 1935 return 0; 1936 else 1937 return netdev_pick_tx(ndev, skb, NULL); 1938 } 1939 1940 static const struct net_device_ops hns_nic_netdev_ops = { 1941 .ndo_open = hns_nic_net_open, 1942 .ndo_stop = hns_nic_net_stop, 1943 .ndo_start_xmit = hns_nic_net_xmit, 1944 .ndo_tx_timeout = hns_nic_net_timeout, 1945 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1946 .ndo_change_mtu = hns_nic_change_mtu, 1947 .ndo_do_ioctl = phy_do_ioctl_running, 1948 .ndo_set_features = hns_nic_set_features, 1949 .ndo_fix_features = hns_nic_fix_features, 1950 .ndo_get_stats64 = hns_nic_get_stats64, 1951 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1952 .ndo_select_queue = hns_nic_select_queue, 1953 }; 1954 1955 static void hns_nic_update_link_status(struct net_device *netdev) 1956 { 1957 struct hns_nic_priv *priv = netdev_priv(netdev); 1958 1959 struct hnae_handle *h = priv->ae_handle; 1960 1961 if (h->phy_dev) { 1962 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1963 return; 1964 1965 (void)genphy_read_status(h->phy_dev); 1966 } 1967 hns_nic_adjust_link(netdev); 1968 } 1969 1970 /* for dumping key regs*/ 1971 static void hns_nic_dump(struct hns_nic_priv *priv) 1972 { 1973 struct hnae_handle *h = priv->ae_handle; 1974 struct hnae_ae_ops *ops = h->dev->ops; 1975 u32 *data, reg_num, i; 1976 1977 if (ops->get_regs_len && ops->get_regs) { 1978 reg_num = ops->get_regs_len(priv->ae_handle); 1979 reg_num = (reg_num + 3ul) & ~3ul; 1980 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 1981 if (data) { 1982 ops->get_regs(priv->ae_handle, data); 1983 for (i = 0; i < reg_num; i += 4) 1984 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 1985 i, data[i], data[i + 1], 1986 data[i + 2], data[i + 3]); 1987 kfree(data); 1988 } 1989 } 1990 1991 for (i = 0; i < h->q_num; i++) { 1992 pr_info("tx_queue%d_next_to_clean:%d\n", 1993 i, h->qs[i]->tx_ring.next_to_clean); 1994 pr_info("tx_queue%d_next_to_use:%d\n", 1995 i, h->qs[i]->tx_ring.next_to_use); 1996 pr_info("rx_queue%d_next_to_clean:%d\n", 1997 i, h->qs[i]->rx_ring.next_to_clean); 1998 pr_info("rx_queue%d_next_to_use:%d\n", 1999 i, h->qs[i]->rx_ring.next_to_use); 2000 } 2001 } 2002 2003 /* for resetting subtask */ 2004 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 2005 { 2006 enum hnae_port_type type = priv->ae_handle->port_type; 2007 2008 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 2009 return; 2010 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2011 2012 /* If we're already down, removing or resetting, just bail */ 2013 if (test_bit(NIC_STATE_DOWN, &priv->state) || 2014 test_bit(NIC_STATE_REMOVING, &priv->state) || 2015 test_bit(NIC_STATE_RESETTING, &priv->state)) 2016 return; 2017 2018 hns_nic_dump(priv); 2019 netdev_info(priv->netdev, "try to reset %s port!\n", 2020 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 2021 2022 rtnl_lock(); 2023 /* put off any impending NetWatchDogTimeout */ 2024 netif_trans_update(priv->netdev); 2025 hns_nic_net_reinit(priv->netdev); 2026 2027 rtnl_unlock(); 2028 } 2029 2030 /* for doing service complete*/ 2031 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 2032 { 2033 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 2034 /* make sure to commit the things */ 2035 smp_mb__before_atomic(); 2036 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2037 } 2038 2039 static void hns_nic_service_task(struct work_struct *work) 2040 { 2041 struct hns_nic_priv *priv 2042 = container_of(work, struct hns_nic_priv, service_task); 2043 struct hnae_handle *h = priv->ae_handle; 2044 2045 hns_nic_reset_subtask(priv); 2046 hns_nic_update_link_status(priv->netdev); 2047 h->dev->ops->update_led_status(h); 2048 hns_nic_update_stats(priv->netdev); 2049 2050 hns_nic_service_event_complete(priv); 2051 } 2052 2053 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 2054 { 2055 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 2056 !test_bit(NIC_STATE_REMOVING, &priv->state) && 2057 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 2058 (void)schedule_work(&priv->service_task); 2059 } 2060 2061 static void hns_nic_service_timer(struct timer_list *t) 2062 { 2063 struct hns_nic_priv *priv = from_timer(priv, t, service_timer); 2064 2065 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 2066 2067 hns_nic_task_schedule(priv); 2068 } 2069 2070 /** 2071 * hns_tx_timeout_reset - initiate reset due to Tx timeout 2072 * @priv: driver private struct 2073 **/ 2074 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 2075 { 2076 /* Do the reset outside of interrupt context */ 2077 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 2078 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2079 netdev_warn(priv->netdev, 2080 "initiating reset due to tx timeout(%llu,0x%lx)\n", 2081 priv->tx_timeout_count, priv->state); 2082 priv->tx_timeout_count++; 2083 hns_nic_task_schedule(priv); 2084 } 2085 } 2086 2087 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 2088 { 2089 struct hnae_handle *h = priv->ae_handle; 2090 struct hns_nic_ring_data *rd; 2091 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 2092 int i; 2093 2094 if (h->q_num > NIC_MAX_Q_PER_VF) { 2095 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 2096 return -EINVAL; 2097 } 2098 2099 priv->ring_data = kzalloc(array3_size(h->q_num, 2100 sizeof(*priv->ring_data), 2), 2101 GFP_KERNEL); 2102 if (!priv->ring_data) 2103 return -ENOMEM; 2104 2105 for (i = 0; i < h->q_num; i++) { 2106 rd = &priv->ring_data[i]; 2107 rd->queue_index = i; 2108 rd->ring = &h->qs[i]->tx_ring; 2109 rd->poll_one = hns_nic_tx_poll_one; 2110 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 2111 hns_nic_tx_fini_pro_v2; 2112 2113 netif_napi_add(priv->netdev, &rd->napi, 2114 hns_nic_common_poll, NAPI_POLL_WEIGHT); 2115 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2116 } 2117 for (i = h->q_num; i < h->q_num * 2; i++) { 2118 rd = &priv->ring_data[i]; 2119 rd->queue_index = i - h->q_num; 2120 rd->ring = &h->qs[i - h->q_num]->rx_ring; 2121 rd->poll_one = hns_nic_rx_poll_one; 2122 rd->ex_process = hns_nic_rx_up_pro; 2123 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 2124 hns_nic_rx_fini_pro_v2; 2125 2126 netif_napi_add(priv->netdev, &rd->napi, 2127 hns_nic_common_poll, NAPI_POLL_WEIGHT); 2128 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2129 } 2130 2131 return 0; 2132 } 2133 2134 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 2135 { 2136 struct hnae_handle *h = priv->ae_handle; 2137 int i; 2138 2139 for (i = 0; i < h->q_num * 2; i++) { 2140 netif_napi_del(&priv->ring_data[i].napi); 2141 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 2142 (void)irq_set_affinity_hint( 2143 priv->ring_data[i].ring->irq, 2144 NULL); 2145 free_irq(priv->ring_data[i].ring->irq, 2146 &priv->ring_data[i]); 2147 } 2148 2149 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2150 } 2151 kfree(priv->ring_data); 2152 } 2153 2154 static void hns_nic_set_priv_ops(struct net_device *netdev) 2155 { 2156 struct hns_nic_priv *priv = netdev_priv(netdev); 2157 struct hnae_handle *h = priv->ae_handle; 2158 2159 if (AE_IS_VER1(priv->enet_ver)) { 2160 priv->ops.fill_desc = fill_desc; 2161 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 2162 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2163 } else { 2164 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 2165 if ((netdev->features & NETIF_F_TSO) || 2166 (netdev->features & NETIF_F_TSO6)) { 2167 priv->ops.fill_desc = fill_tso_desc; 2168 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 2169 /* This chip only support 7*4096 */ 2170 netif_set_gso_max_size(netdev, 7 * 4096); 2171 } else { 2172 priv->ops.fill_desc = fill_v2_desc; 2173 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2174 } 2175 /* enable tso when init 2176 * control tso on/off through TSE bit in bd 2177 */ 2178 h->dev->ops->set_tso_stats(h, 1); 2179 } 2180 } 2181 2182 static int hns_nic_try_get_ae(struct net_device *ndev) 2183 { 2184 struct hns_nic_priv *priv = netdev_priv(ndev); 2185 struct hnae_handle *h; 2186 int ret; 2187 2188 h = hnae_get_handle(&priv->netdev->dev, 2189 priv->fwnode, priv->port_id, NULL); 2190 if (IS_ERR_OR_NULL(h)) { 2191 ret = -ENODEV; 2192 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 2193 goto out; 2194 } 2195 priv->ae_handle = h; 2196 2197 ret = hns_nic_init_phy(ndev, h); 2198 if (ret) { 2199 dev_err(priv->dev, "probe phy device fail!\n"); 2200 goto out_init_phy; 2201 } 2202 2203 ret = hns_nic_init_ring_data(priv); 2204 if (ret) { 2205 ret = -ENOMEM; 2206 goto out_init_ring_data; 2207 } 2208 2209 hns_nic_set_priv_ops(ndev); 2210 2211 ret = register_netdev(ndev); 2212 if (ret) { 2213 dev_err(priv->dev, "probe register netdev fail!\n"); 2214 goto out_reg_ndev_fail; 2215 } 2216 return 0; 2217 2218 out_reg_ndev_fail: 2219 hns_nic_uninit_ring_data(priv); 2220 priv->ring_data = NULL; 2221 out_init_phy: 2222 out_init_ring_data: 2223 hnae_put_handle(priv->ae_handle); 2224 priv->ae_handle = NULL; 2225 out: 2226 return ret; 2227 } 2228 2229 static int hns_nic_notifier_action(struct notifier_block *nb, 2230 unsigned long action, void *data) 2231 { 2232 struct hns_nic_priv *priv = 2233 container_of(nb, struct hns_nic_priv, notifier_block); 2234 2235 assert(action == HNAE_AE_REGISTER); 2236 2237 if (!hns_nic_try_get_ae(priv->netdev)) { 2238 hnae_unregister_notifier(&priv->notifier_block); 2239 priv->notifier_block.notifier_call = NULL; 2240 } 2241 return 0; 2242 } 2243 2244 static int hns_nic_dev_probe(struct platform_device *pdev) 2245 { 2246 struct device *dev = &pdev->dev; 2247 struct net_device *ndev; 2248 struct hns_nic_priv *priv; 2249 u32 port_id; 2250 int ret; 2251 2252 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2253 if (!ndev) 2254 return -ENOMEM; 2255 2256 platform_set_drvdata(pdev, ndev); 2257 2258 priv = netdev_priv(ndev); 2259 priv->dev = dev; 2260 priv->netdev = ndev; 2261 2262 if (dev_of_node(dev)) { 2263 struct device_node *ae_node; 2264 2265 if (of_device_is_compatible(dev->of_node, 2266 "hisilicon,hns-nic-v1")) 2267 priv->enet_ver = AE_VERSION_1; 2268 else 2269 priv->enet_ver = AE_VERSION_2; 2270 2271 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2272 if (!ae_node) { 2273 ret = -ENODEV; 2274 dev_err(dev, "not find ae-handle\n"); 2275 goto out_read_prop_fail; 2276 } 2277 priv->fwnode = &ae_node->fwnode; 2278 } else if (is_acpi_node(dev->fwnode)) { 2279 struct fwnode_reference_args args; 2280 2281 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2282 priv->enet_ver = AE_VERSION_1; 2283 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2284 priv->enet_ver = AE_VERSION_2; 2285 else { 2286 ret = -ENXIO; 2287 goto out_read_prop_fail; 2288 } 2289 2290 /* try to find port-idx-in-ae first */ 2291 ret = acpi_node_get_property_reference(dev->fwnode, 2292 "ae-handle", 0, &args); 2293 if (ret) { 2294 dev_err(dev, "not find ae-handle\n"); 2295 goto out_read_prop_fail; 2296 } 2297 if (!is_acpi_device_node(args.fwnode)) { 2298 ret = -EINVAL; 2299 goto out_read_prop_fail; 2300 } 2301 priv->fwnode = args.fwnode; 2302 } else { 2303 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2304 ret = -ENXIO; 2305 goto out_read_prop_fail; 2306 } 2307 2308 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2309 if (ret) { 2310 /* only for old code compatible */ 2311 ret = device_property_read_u32(dev, "port-id", &port_id); 2312 if (ret) 2313 goto out_read_prop_fail; 2314 /* for old dts, we need to caculate the port offset */ 2315 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2316 : port_id - HNS_SRV_OFFSET; 2317 } 2318 priv->port_id = port_id; 2319 2320 hns_init_mac_addr(ndev); 2321 2322 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2323 ndev->priv_flags |= IFF_UNICAST_FLT; 2324 ndev->netdev_ops = &hns_nic_netdev_ops; 2325 hns_ethtool_set_ops(ndev); 2326 2327 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2328 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2329 NETIF_F_GRO; 2330 ndev->vlan_features |= 2331 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2332 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2333 2334 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2335 ndev->min_mtu = MAC_MIN_MTU; 2336 switch (priv->enet_ver) { 2337 case AE_VERSION_2: 2338 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE; 2339 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2340 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2341 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2342 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6; 2343 ndev->max_mtu = MAC_MAX_MTU_V2 - 2344 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2345 break; 2346 default: 2347 ndev->max_mtu = MAC_MAX_MTU - 2348 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2349 break; 2350 } 2351 2352 SET_NETDEV_DEV(ndev, dev); 2353 2354 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2355 dev_dbg(dev, "set mask to 64bit\n"); 2356 else 2357 dev_err(dev, "set mask to 64bit fail!\n"); 2358 2359 /* carrier off reporting is important to ethtool even BEFORE open */ 2360 netif_carrier_off(ndev); 2361 2362 timer_setup(&priv->service_timer, hns_nic_service_timer, 0); 2363 INIT_WORK(&priv->service_task, hns_nic_service_task); 2364 2365 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2366 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2367 set_bit(NIC_STATE_DOWN, &priv->state); 2368 2369 if (hns_nic_try_get_ae(priv->netdev)) { 2370 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2371 ret = hnae_register_notifier(&priv->notifier_block); 2372 if (ret) { 2373 dev_err(dev, "register notifier fail!\n"); 2374 goto out_notify_fail; 2375 } 2376 dev_dbg(dev, "has not handle, register notifier!\n"); 2377 } 2378 2379 return 0; 2380 2381 out_notify_fail: 2382 (void)cancel_work_sync(&priv->service_task); 2383 out_read_prop_fail: 2384 /* safe for ACPI FW */ 2385 of_node_put(to_of_node(priv->fwnode)); 2386 free_netdev(ndev); 2387 return ret; 2388 } 2389 2390 static int hns_nic_dev_remove(struct platform_device *pdev) 2391 { 2392 struct net_device *ndev = platform_get_drvdata(pdev); 2393 struct hns_nic_priv *priv = netdev_priv(ndev); 2394 2395 if (ndev->reg_state != NETREG_UNINITIALIZED) 2396 unregister_netdev(ndev); 2397 2398 if (priv->ring_data) 2399 hns_nic_uninit_ring_data(priv); 2400 priv->ring_data = NULL; 2401 2402 if (ndev->phydev) 2403 phy_disconnect(ndev->phydev); 2404 2405 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2406 hnae_put_handle(priv->ae_handle); 2407 priv->ae_handle = NULL; 2408 if (priv->notifier_block.notifier_call) 2409 hnae_unregister_notifier(&priv->notifier_block); 2410 priv->notifier_block.notifier_call = NULL; 2411 2412 set_bit(NIC_STATE_REMOVING, &priv->state); 2413 (void)cancel_work_sync(&priv->service_task); 2414 2415 /* safe for ACPI FW */ 2416 of_node_put(to_of_node(priv->fwnode)); 2417 2418 free_netdev(ndev); 2419 return 0; 2420 } 2421 2422 static const struct of_device_id hns_enet_of_match[] = { 2423 {.compatible = "hisilicon,hns-nic-v1",}, 2424 {.compatible = "hisilicon,hns-nic-v2",}, 2425 {}, 2426 }; 2427 2428 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2429 2430 static struct platform_driver hns_nic_dev_driver = { 2431 .driver = { 2432 .name = "hns-nic", 2433 .of_match_table = hns_enet_of_match, 2434 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2435 }, 2436 .probe = hns_nic_dev_probe, 2437 .remove = hns_nic_dev_remove, 2438 }; 2439 2440 module_platform_driver(hns_nic_dev_driver); 2441 2442 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2443 MODULE_AUTHOR("Hisilicon, Inc."); 2444 MODULE_LICENSE("GPL"); 2445 MODULE_ALIAS("platform:hns-nic"); 2446