1 /* 2 * Copyright (c) 2014-2015 Hisilicon Limited. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/cpumask.h> 12 #include <linux/etherdevice.h> 13 #include <linux/if_vlan.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/module.h> 19 #include <linux/phy.h> 20 #include <linux/platform_device.h> 21 #include <linux/skbuff.h> 22 23 #include "hnae.h" 24 #include "hns_enet.h" 25 #include "hns_dsaf_mac.h" 26 27 #define NIC_MAX_Q_PER_VF 16 28 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 29 30 #define SERVICE_TIMER_HZ (1 * HZ) 31 32 #define NIC_TX_CLEAN_MAX_NUM 256 33 #define NIC_RX_CLEAN_MAX_NUM 64 34 35 #define RCB_IRQ_NOT_INITED 0 36 #define RCB_IRQ_INITED 1 37 #define HNS_BUFFER_SIZE_2048 2048 38 39 #define BD_MAX_SEND_SIZE 8191 40 #define SKB_TMP_LEN(SKB) \ 41 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) 42 43 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size, 44 int send_sz, dma_addr_t dma, int frag_end, 45 int buf_num, enum hns_desc_type type, int mtu) 46 { 47 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 48 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 49 struct iphdr *iphdr; 50 struct ipv6hdr *ipv6hdr; 51 struct sk_buff *skb; 52 __be16 protocol; 53 u8 bn_pid = 0; 54 u8 rrcfv = 0; 55 u8 ip_offset = 0; 56 u8 tvsvsn = 0; 57 u16 mss = 0; 58 u8 l4_len = 0; 59 u16 paylen = 0; 60 61 desc_cb->priv = priv; 62 desc_cb->length = size; 63 desc_cb->dma = dma; 64 desc_cb->type = type; 65 66 desc->addr = cpu_to_le64(dma); 67 desc->tx.send_size = cpu_to_le16((u16)send_sz); 68 69 /* config bd buffer end */ 70 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 71 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 72 73 /* fill port_id in the tx bd for sending management pkts */ 74 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 75 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 76 77 if (type == DESC_TYPE_SKB) { 78 skb = (struct sk_buff *)priv; 79 80 if (skb->ip_summed == CHECKSUM_PARTIAL) { 81 skb_reset_mac_len(skb); 82 protocol = skb->protocol; 83 ip_offset = ETH_HLEN; 84 85 if (protocol == htons(ETH_P_8021Q)) { 86 ip_offset += VLAN_HLEN; 87 protocol = vlan_get_protocol(skb); 88 skb->protocol = protocol; 89 } 90 91 if (skb->protocol == htons(ETH_P_IP)) { 92 iphdr = ip_hdr(skb); 93 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 94 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 95 96 /* check for tcp/udp header */ 97 if (iphdr->protocol == IPPROTO_TCP && 98 skb_is_gso(skb)) { 99 hnae_set_bit(tvsvsn, 100 HNSV2_TXD_TSE_B, 1); 101 l4_len = tcp_hdrlen(skb); 102 mss = skb_shinfo(skb)->gso_size; 103 paylen = skb->len - SKB_TMP_LEN(skb); 104 } 105 } else if (skb->protocol == htons(ETH_P_IPV6)) { 106 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 107 ipv6hdr = ipv6_hdr(skb); 108 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 109 110 /* check for tcp/udp header */ 111 if (ipv6hdr->nexthdr == IPPROTO_TCP && 112 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 113 hnae_set_bit(tvsvsn, 114 HNSV2_TXD_TSE_B, 1); 115 l4_len = tcp_hdrlen(skb); 116 mss = skb_shinfo(skb)->gso_size; 117 paylen = skb->len - SKB_TMP_LEN(skb); 118 } 119 } 120 desc->tx.ip_offset = ip_offset; 121 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 122 desc->tx.mss = cpu_to_le16(mss); 123 desc->tx.l4_len = l4_len; 124 desc->tx.paylen = cpu_to_le16(paylen); 125 } 126 } 127 128 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 129 130 desc->tx.bn_pid = bn_pid; 131 desc->tx.ra_ri_cs_fe_vld = rrcfv; 132 133 ring_ptr_move_fw(ring, next_to_use); 134 } 135 136 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 137 int size, dma_addr_t dma, int frag_end, 138 int buf_num, enum hns_desc_type type, int mtu) 139 { 140 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end, 141 buf_num, type, mtu); 142 } 143 144 static const struct acpi_device_id hns_enet_acpi_match[] = { 145 { "HISI00C1", 0 }, 146 { "HISI00C2", 0 }, 147 { }, 148 }; 149 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 150 151 static void fill_desc(struct hnae_ring *ring, void *priv, 152 int size, dma_addr_t dma, int frag_end, 153 int buf_num, enum hns_desc_type type, int mtu) 154 { 155 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 156 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 157 struct sk_buff *skb; 158 __be16 protocol; 159 u32 ip_offset; 160 u32 asid_bufnum_pid = 0; 161 u32 flag_ipoffset = 0; 162 163 desc_cb->priv = priv; 164 desc_cb->length = size; 165 desc_cb->dma = dma; 166 desc_cb->type = type; 167 168 desc->addr = cpu_to_le64(dma); 169 desc->tx.send_size = cpu_to_le16((u16)size); 170 171 /*config bd buffer end */ 172 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 173 174 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 175 176 if (type == DESC_TYPE_SKB) { 177 skb = (struct sk_buff *)priv; 178 179 if (skb->ip_summed == CHECKSUM_PARTIAL) { 180 protocol = skb->protocol; 181 ip_offset = ETH_HLEN; 182 183 /*if it is a SW VLAN check the next protocol*/ 184 if (protocol == htons(ETH_P_8021Q)) { 185 ip_offset += VLAN_HLEN; 186 protocol = vlan_get_protocol(skb); 187 skb->protocol = protocol; 188 } 189 190 if (skb->protocol == htons(ETH_P_IP)) { 191 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 192 /* check for tcp/udp header */ 193 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 194 195 } else if (skb->protocol == htons(ETH_P_IPV6)) { 196 /* ipv6 has not l3 cs, check for L4 header */ 197 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 198 } 199 200 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 201 } 202 } 203 204 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 205 206 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 207 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 208 209 ring_ptr_move_fw(ring, next_to_use); 210 } 211 212 static void unfill_desc(struct hnae_ring *ring) 213 { 214 ring_ptr_move_bw(ring, next_to_use); 215 } 216 217 static int hns_nic_maybe_stop_tx( 218 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 219 { 220 struct sk_buff *skb = *out_skb; 221 struct sk_buff *new_skb = NULL; 222 int buf_num; 223 224 /* no. of segments (plus a header) */ 225 buf_num = skb_shinfo(skb)->nr_frags + 1; 226 227 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 228 if (ring_space(ring) < 1) 229 return -EBUSY; 230 231 new_skb = skb_copy(skb, GFP_ATOMIC); 232 if (!new_skb) 233 return -ENOMEM; 234 235 dev_kfree_skb_any(skb); 236 *out_skb = new_skb; 237 buf_num = 1; 238 } else if (buf_num > ring_space(ring)) { 239 return -EBUSY; 240 } 241 242 *bnum = buf_num; 243 return 0; 244 } 245 246 static int hns_nic_maybe_stop_tso( 247 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 248 { 249 int i; 250 int size; 251 int buf_num; 252 int frag_num; 253 struct sk_buff *skb = *out_skb; 254 struct sk_buff *new_skb = NULL; 255 struct skb_frag_struct *frag; 256 257 size = skb_headlen(skb); 258 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 259 260 frag_num = skb_shinfo(skb)->nr_frags; 261 for (i = 0; i < frag_num; i++) { 262 frag = &skb_shinfo(skb)->frags[i]; 263 size = skb_frag_size(frag); 264 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 265 } 266 267 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 268 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 269 if (ring_space(ring) < buf_num) 270 return -EBUSY; 271 /* manual split the send packet */ 272 new_skb = skb_copy(skb, GFP_ATOMIC); 273 if (!new_skb) 274 return -ENOMEM; 275 dev_kfree_skb_any(skb); 276 *out_skb = new_skb; 277 278 } else if (ring_space(ring) < buf_num) { 279 return -EBUSY; 280 } 281 282 *bnum = buf_num; 283 return 0; 284 } 285 286 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 287 int size, dma_addr_t dma, int frag_end, 288 int buf_num, enum hns_desc_type type, int mtu) 289 { 290 int frag_buf_num; 291 int sizeoflast; 292 int k; 293 294 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 295 sizeoflast = size % BD_MAX_SEND_SIZE; 296 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 297 298 /* when the frag size is bigger than hardware, split this frag */ 299 for (k = 0; k < frag_buf_num; k++) 300 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0, 301 (k == frag_buf_num - 1) ? 302 sizeoflast : BD_MAX_SEND_SIZE, 303 dma + BD_MAX_SEND_SIZE * k, 304 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 305 buf_num, 306 (type == DESC_TYPE_SKB && !k) ? 307 DESC_TYPE_SKB : DESC_TYPE_PAGE, 308 mtu); 309 } 310 311 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev, 312 struct sk_buff *skb, 313 struct hns_nic_ring_data *ring_data) 314 { 315 struct hns_nic_priv *priv = netdev_priv(ndev); 316 struct hnae_ring *ring = ring_data->ring; 317 struct device *dev = ring_to_dev(ring); 318 struct netdev_queue *dev_queue; 319 struct skb_frag_struct *frag; 320 int buf_num; 321 int seg_num; 322 dma_addr_t dma; 323 int size, next_to_use; 324 int i; 325 326 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 327 case -EBUSY: 328 ring->stats.tx_busy++; 329 goto out_net_tx_busy; 330 case -ENOMEM: 331 ring->stats.sw_err_cnt++; 332 netdev_err(ndev, "no memory to xmit!\n"); 333 goto out_err_tx_ok; 334 default: 335 break; 336 } 337 338 /* no. of segments (plus a header) */ 339 seg_num = skb_shinfo(skb)->nr_frags + 1; 340 next_to_use = ring->next_to_use; 341 342 /* fill the first part */ 343 size = skb_headlen(skb); 344 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 345 if (dma_mapping_error(dev, dma)) { 346 netdev_err(ndev, "TX head DMA map failed\n"); 347 ring->stats.sw_err_cnt++; 348 goto out_err_tx_ok; 349 } 350 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 351 buf_num, DESC_TYPE_SKB, ndev->mtu); 352 353 /* fill the fragments */ 354 for (i = 1; i < seg_num; i++) { 355 frag = &skb_shinfo(skb)->frags[i - 1]; 356 size = skb_frag_size(frag); 357 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 358 if (dma_mapping_error(dev, dma)) { 359 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 360 ring->stats.sw_err_cnt++; 361 goto out_map_frag_fail; 362 } 363 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 364 seg_num - 1 == i ? 1 : 0, buf_num, 365 DESC_TYPE_PAGE, ndev->mtu); 366 } 367 368 /*complete translate all packets*/ 369 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 370 netdev_tx_sent_queue(dev_queue, skb->len); 371 372 netif_trans_update(ndev); 373 ndev->stats.tx_bytes += skb->len; 374 ndev->stats.tx_packets++; 375 376 wmb(); /* commit all data before submit */ 377 assert(skb->queue_mapping < priv->ae_handle->q_num); 378 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 379 ring->stats.tx_pkts++; 380 ring->stats.tx_bytes += skb->len; 381 382 return NETDEV_TX_OK; 383 384 out_map_frag_fail: 385 386 while (ring->next_to_use != next_to_use) { 387 unfill_desc(ring); 388 if (ring->next_to_use != next_to_use) 389 dma_unmap_page(dev, 390 ring->desc_cb[ring->next_to_use].dma, 391 ring->desc_cb[ring->next_to_use].length, 392 DMA_TO_DEVICE); 393 else 394 dma_unmap_single(dev, 395 ring->desc_cb[next_to_use].dma, 396 ring->desc_cb[next_to_use].length, 397 DMA_TO_DEVICE); 398 } 399 400 out_err_tx_ok: 401 402 dev_kfree_skb_any(skb); 403 return NETDEV_TX_OK; 404 405 out_net_tx_busy: 406 407 netif_stop_subqueue(ndev, skb->queue_mapping); 408 409 /* Herbert's original patch had: 410 * smp_mb__after_netif_stop_queue(); 411 * but since that doesn't exist yet, just open code it. 412 */ 413 smp_mb(); 414 return NETDEV_TX_BUSY; 415 } 416 417 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 418 struct hnae_ring *ring, int pull_len, 419 struct hnae_desc_cb *desc_cb) 420 { 421 struct hnae_desc *desc; 422 u32 truesize; 423 int size; 424 int last_offset; 425 bool twobufs; 426 427 twobufs = ((PAGE_SIZE < 8192) && 428 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 429 430 desc = &ring->desc[ring->next_to_clean]; 431 size = le16_to_cpu(desc->rx.size); 432 433 if (twobufs) { 434 truesize = hnae_buf_size(ring); 435 } else { 436 truesize = ALIGN(size, L1_CACHE_BYTES); 437 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 438 } 439 440 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 441 size - pull_len, truesize); 442 443 /* avoid re-using remote pages,flag default unreuse */ 444 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 445 return; 446 447 if (twobufs) { 448 /* if we are only owner of page we can reuse it */ 449 if (likely(page_count(desc_cb->priv) == 1)) { 450 /* flip page offset to other buffer */ 451 desc_cb->page_offset ^= truesize; 452 453 desc_cb->reuse_flag = 1; 454 /* bump ref count on page before it is given*/ 455 get_page(desc_cb->priv); 456 } 457 return; 458 } 459 460 /* move offset up to the next cache line */ 461 desc_cb->page_offset += truesize; 462 463 if (desc_cb->page_offset <= last_offset) { 464 desc_cb->reuse_flag = 1; 465 /* bump ref count on page before it is given*/ 466 get_page(desc_cb->priv); 467 } 468 } 469 470 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 471 { 472 *out_bnum = hnae_get_field(bnum_flag, 473 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 474 } 475 476 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 477 { 478 *out_bnum = hnae_get_field(bnum_flag, 479 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 480 } 481 482 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 483 struct sk_buff *skb, u32 flag) 484 { 485 struct net_device *netdev = ring_data->napi.dev; 486 u32 l3id; 487 u32 l4id; 488 489 /* check if RX checksum offload is enabled */ 490 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 491 return; 492 493 /* In hardware, we only support checksum for the following protocols: 494 * 1) IPv4, 495 * 2) TCP(over IPv4 or IPv6), 496 * 3) UDP(over IPv4 or IPv6), 497 * 4) SCTP(over IPv4 or IPv6) 498 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 499 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 500 * 501 * Hardware limitation: 502 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 503 * Error" bit (which usually can be used to indicate whether checksum 504 * was calculated by the hardware and if there was any error encountered 505 * during checksum calculation). 506 * 507 * Software workaround: 508 * We do get info within the RX descriptor about the kind of L3/L4 509 * protocol coming in the packet and the error status. These errors 510 * might not just be checksum errors but could be related to version, 511 * length of IPv4, UDP, TCP etc. 512 * Because there is no-way of knowing if it is a L3/L4 error due to bad 513 * checksum or any other L3/L4 error, we will not (cannot) convey 514 * checksum status for such cases to upper stack and will not maintain 515 * the RX L3/L4 checksum counters as well. 516 */ 517 518 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 519 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 520 521 /* check L3 protocol for which checksum is supported */ 522 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 523 return; 524 525 /* check for any(not just checksum)flagged L3 protocol errors */ 526 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 527 return; 528 529 /* we do not support checksum of fragmented packets */ 530 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 531 return; 532 533 /* check L4 protocol for which checksum is supported */ 534 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 535 (l4id != HNS_RX_FLAG_L4ID_UDP) && 536 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 537 return; 538 539 /* check for any(not just checksum)flagged L4 protocol errors */ 540 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 541 return; 542 543 /* now, this has to be a packet with valid RX checksum */ 544 skb->ip_summed = CHECKSUM_UNNECESSARY; 545 } 546 547 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 548 struct sk_buff **out_skb, int *out_bnum) 549 { 550 struct hnae_ring *ring = ring_data->ring; 551 struct net_device *ndev = ring_data->napi.dev; 552 struct hns_nic_priv *priv = netdev_priv(ndev); 553 struct sk_buff *skb; 554 struct hnae_desc *desc; 555 struct hnae_desc_cb *desc_cb; 556 unsigned char *va; 557 int bnum, length, i; 558 int pull_len; 559 u32 bnum_flag; 560 561 desc = &ring->desc[ring->next_to_clean]; 562 desc_cb = &ring->desc_cb[ring->next_to_clean]; 563 564 prefetch(desc); 565 566 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 567 568 /* prefetch first cache line of first page */ 569 prefetch(va); 570 #if L1_CACHE_BYTES < 128 571 prefetch(va + L1_CACHE_BYTES); 572 #endif 573 574 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 575 HNS_RX_HEAD_SIZE); 576 if (unlikely(!skb)) { 577 netdev_err(ndev, "alloc rx skb fail\n"); 578 ring->stats.sw_err_cnt++; 579 return -ENOMEM; 580 } 581 582 prefetchw(skb->data); 583 length = le16_to_cpu(desc->rx.pkt_len); 584 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 585 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 586 *out_bnum = bnum; 587 588 if (length <= HNS_RX_HEAD_SIZE) { 589 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 590 591 /* we can reuse buffer as-is, just make sure it is local */ 592 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 593 desc_cb->reuse_flag = 1; 594 else /* this page cannot be reused so discard it */ 595 put_page(desc_cb->priv); 596 597 ring_ptr_move_fw(ring, next_to_clean); 598 599 if (unlikely(bnum != 1)) { /* check err*/ 600 *out_bnum = 1; 601 goto out_bnum_err; 602 } 603 } else { 604 ring->stats.seg_pkt_cnt++; 605 606 pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE); 607 memcpy(__skb_put(skb, pull_len), va, 608 ALIGN(pull_len, sizeof(long))); 609 610 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 611 ring_ptr_move_fw(ring, next_to_clean); 612 613 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 614 *out_bnum = 1; 615 goto out_bnum_err; 616 } 617 for (i = 1; i < bnum; i++) { 618 desc = &ring->desc[ring->next_to_clean]; 619 desc_cb = &ring->desc_cb[ring->next_to_clean]; 620 621 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 622 ring_ptr_move_fw(ring, next_to_clean); 623 } 624 } 625 626 /* check except process, free skb and jump the desc */ 627 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 628 out_bnum_err: 629 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 630 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 631 bnum, ring->max_desc_num_per_pkt, 632 length, (int)MAX_SKB_FRAGS, 633 ((u64 *)desc)[0], ((u64 *)desc)[1]); 634 ring->stats.err_bd_num++; 635 dev_kfree_skb_any(skb); 636 return -EDOM; 637 } 638 639 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 640 641 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 642 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 643 ((u64 *)desc)[0], ((u64 *)desc)[1]); 644 ring->stats.non_vld_descs++; 645 dev_kfree_skb_any(skb); 646 return -EINVAL; 647 } 648 649 if (unlikely((!desc->rx.pkt_len) || 650 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 651 ring->stats.err_pkt_len++; 652 dev_kfree_skb_any(skb); 653 return -EFAULT; 654 } 655 656 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 657 ring->stats.l2_err++; 658 dev_kfree_skb_any(skb); 659 return -EFAULT; 660 } 661 662 ring->stats.rx_pkts++; 663 ring->stats.rx_bytes += skb->len; 664 665 /* indicate to upper stack if our hardware has already calculated 666 * the RX checksum 667 */ 668 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 669 670 return 0; 671 } 672 673 static void 674 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 675 { 676 int i, ret; 677 struct hnae_desc_cb res_cbs; 678 struct hnae_desc_cb *desc_cb; 679 struct hnae_ring *ring = ring_data->ring; 680 struct net_device *ndev = ring_data->napi.dev; 681 682 for (i = 0; i < cleand_count; i++) { 683 desc_cb = &ring->desc_cb[ring->next_to_use]; 684 if (desc_cb->reuse_flag) { 685 ring->stats.reuse_pg_cnt++; 686 hnae_reuse_buffer(ring, ring->next_to_use); 687 } else { 688 ret = hnae_reserve_buffer_map(ring, &res_cbs); 689 if (ret) { 690 ring->stats.sw_err_cnt++; 691 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 692 break; 693 } 694 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 695 } 696 697 ring_ptr_move_fw(ring, next_to_use); 698 } 699 700 wmb(); /* make all data has been write before submit */ 701 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 702 } 703 704 /* return error number for error or number of desc left to take 705 */ 706 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 707 struct sk_buff *skb) 708 { 709 struct net_device *ndev = ring_data->napi.dev; 710 711 skb->protocol = eth_type_trans(skb, ndev); 712 (void)napi_gro_receive(&ring_data->napi, skb); 713 } 714 715 static int hns_desc_unused(struct hnae_ring *ring) 716 { 717 int ntc = ring->next_to_clean; 718 int ntu = ring->next_to_use; 719 720 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 721 } 722 723 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */ 724 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */ 725 726 #define HNS_COAL_BDNUM 3 727 728 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring) 729 { 730 bool coal_enable = ring->q->handle->coal_adapt_en; 731 732 if (coal_enable && 733 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE) 734 return HNS_COAL_BDNUM; 735 else 736 return 0; 737 } 738 739 static void hns_update_rx_rate(struct hnae_ring *ring) 740 { 741 bool coal_enable = ring->q->handle->coal_adapt_en; 742 u32 time_passed_ms; 743 u64 total_bytes; 744 745 if (!coal_enable || 746 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4))) 747 return; 748 749 /* ring->stats.rx_bytes overflowed */ 750 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) { 751 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 752 ring->coal_last_jiffies = jiffies; 753 return; 754 } 755 756 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes; 757 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies); 758 do_div(total_bytes, time_passed_ms); 759 ring->coal_rx_rate = total_bytes >> 10; 760 761 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 762 ring->coal_last_jiffies = jiffies; 763 } 764 765 /** 766 * smooth_alg - smoothing algrithm for adjusting coalesce parameter 767 **/ 768 static u32 smooth_alg(u32 new_param, u32 old_param) 769 { 770 u32 gap = (new_param > old_param) ? new_param - old_param 771 : old_param - new_param; 772 773 if (gap > 8) 774 gap >>= 3; 775 776 if (new_param > old_param) 777 return old_param + gap; 778 else 779 return old_param - gap; 780 } 781 782 /** 783 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate 784 * @ring_data: pointer to hns_nic_ring_data 785 **/ 786 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data) 787 { 788 struct hnae_ring *ring = ring_data->ring; 789 struct hnae_handle *handle = ring->q->handle; 790 u32 new_coal_param, old_coal_param = ring->coal_param; 791 792 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE) 793 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM; 794 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE) 795 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM; 796 else 797 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM; 798 799 if (new_coal_param == old_coal_param && 800 new_coal_param == handle->coal_param) 801 return; 802 803 new_coal_param = smooth_alg(new_coal_param, old_coal_param); 804 ring->coal_param = new_coal_param; 805 806 /** 807 * Because all ring in one port has one coalesce param, when one ring 808 * calculate its own coalesce param, it cannot write to hardware at 809 * once. There are three conditions as follows: 810 * 1. current ring's coalesce param is larger than the hardware. 811 * 2. or ring which adapt last time can change again. 812 * 3. timeout. 813 */ 814 if (new_coal_param == handle->coal_param) { 815 handle->coal_last_jiffies = jiffies; 816 handle->coal_ring_idx = ring_data->queue_index; 817 } else if (new_coal_param > handle->coal_param || 818 handle->coal_ring_idx == ring_data->queue_index || 819 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) { 820 handle->dev->ops->set_coalesce_usecs(handle, 821 new_coal_param); 822 handle->dev->ops->set_coalesce_frames(handle, 823 1, new_coal_param); 824 handle->coal_param = new_coal_param; 825 handle->coal_ring_idx = ring_data->queue_index; 826 handle->coal_last_jiffies = jiffies; 827 } 828 } 829 830 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 831 int budget, void *v) 832 { 833 struct hnae_ring *ring = ring_data->ring; 834 struct sk_buff *skb; 835 int num, bnum; 836 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 837 int recv_pkts, recv_bds, clean_count, err; 838 int unused_count = hns_desc_unused(ring); 839 840 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 841 rmb(); /* make sure num taken effect before the other data is touched */ 842 843 recv_pkts = 0, recv_bds = 0, clean_count = 0; 844 num -= unused_count; 845 846 while (recv_pkts < budget && recv_bds < num) { 847 /* reuse or realloc buffers */ 848 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 849 hns_nic_alloc_rx_buffers(ring_data, 850 clean_count + unused_count); 851 clean_count = 0; 852 unused_count = hns_desc_unused(ring); 853 } 854 855 /* poll one pkt */ 856 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 857 if (unlikely(!skb)) /* this fault cannot be repaired */ 858 goto out; 859 860 recv_bds += bnum; 861 clean_count += bnum; 862 if (unlikely(err)) { /* do jump the err */ 863 recv_pkts++; 864 continue; 865 } 866 867 /* do update ip stack process*/ 868 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 869 ring_data, skb); 870 recv_pkts++; 871 } 872 873 out: 874 /* make all data has been write before submit */ 875 if (clean_count + unused_count > 0) 876 hns_nic_alloc_rx_buffers(ring_data, 877 clean_count + unused_count); 878 879 return recv_pkts; 880 } 881 882 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 883 { 884 struct hnae_ring *ring = ring_data->ring; 885 int num = 0; 886 bool rx_stopped; 887 888 hns_update_rx_rate(ring); 889 890 /* for hardware bug fixed */ 891 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 892 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 893 894 if (num <= hns_coal_rx_bdnum(ring)) { 895 if (ring->q->handle->coal_adapt_en) 896 hns_nic_adpt_coalesce(ring_data); 897 898 rx_stopped = true; 899 } else { 900 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 901 ring_data->ring, 1); 902 903 rx_stopped = false; 904 } 905 906 return rx_stopped; 907 } 908 909 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 910 { 911 struct hnae_ring *ring = ring_data->ring; 912 int num; 913 914 hns_update_rx_rate(ring); 915 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 916 917 if (num <= hns_coal_rx_bdnum(ring)) { 918 if (ring->q->handle->coal_adapt_en) 919 hns_nic_adpt_coalesce(ring_data); 920 921 return true; 922 } 923 924 return false; 925 } 926 927 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 928 int *bytes, int *pkts) 929 { 930 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 931 932 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 933 (*bytes) += desc_cb->length; 934 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 935 hnae_free_buffer_detach(ring, ring->next_to_clean); 936 937 ring_ptr_move_fw(ring, next_to_clean); 938 } 939 940 static int is_valid_clean_head(struct hnae_ring *ring, int h) 941 { 942 int u = ring->next_to_use; 943 int c = ring->next_to_clean; 944 945 if (unlikely(h > ring->desc_num)) 946 return 0; 947 948 assert(u > 0 && u < ring->desc_num); 949 assert(c > 0 && c < ring->desc_num); 950 assert(u != c && h != c); /* must be checked before call this func */ 951 952 return u > c ? (h > c && h <= u) : (h > c || h <= u); 953 } 954 955 /* netif_tx_lock will turn down the performance, set only when necessary */ 956 #ifdef CONFIG_NET_POLL_CONTROLLER 957 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock) 958 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock) 959 #else 960 #define NETIF_TX_LOCK(ring) 961 #define NETIF_TX_UNLOCK(ring) 962 #endif 963 964 /* reclaim all desc in one budget 965 * return error or number of desc left 966 */ 967 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 968 int budget, void *v) 969 { 970 struct hnae_ring *ring = ring_data->ring; 971 struct net_device *ndev = ring_data->napi.dev; 972 struct netdev_queue *dev_queue; 973 struct hns_nic_priv *priv = netdev_priv(ndev); 974 int head; 975 int bytes, pkts; 976 977 NETIF_TX_LOCK(ring); 978 979 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 980 rmb(); /* make sure head is ready before touch any data */ 981 982 if (is_ring_empty(ring) || head == ring->next_to_clean) { 983 NETIF_TX_UNLOCK(ring); 984 return 0; /* no data to poll */ 985 } 986 987 if (!is_valid_clean_head(ring, head)) { 988 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 989 ring->next_to_use, ring->next_to_clean); 990 ring->stats.io_err_cnt++; 991 NETIF_TX_UNLOCK(ring); 992 return -EIO; 993 } 994 995 bytes = 0; 996 pkts = 0; 997 while (head != ring->next_to_clean) { 998 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 999 /* issue prefetch for next Tx descriptor */ 1000 prefetch(&ring->desc_cb[ring->next_to_clean]); 1001 } 1002 1003 NETIF_TX_UNLOCK(ring); 1004 1005 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1006 netdev_tx_completed_queue(dev_queue, pkts, bytes); 1007 1008 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 1009 netif_carrier_on(ndev); 1010 1011 if (unlikely(pkts && netif_carrier_ok(ndev) && 1012 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 1013 /* Make sure that anybody stopping the queue after this 1014 * sees the new next_to_clean. 1015 */ 1016 smp_mb(); 1017 if (netif_tx_queue_stopped(dev_queue) && 1018 !test_bit(NIC_STATE_DOWN, &priv->state)) { 1019 netif_tx_wake_queue(dev_queue); 1020 ring->stats.restart_queue++; 1021 } 1022 } 1023 return 0; 1024 } 1025 1026 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 1027 { 1028 struct hnae_ring *ring = ring_data->ring; 1029 int head; 1030 1031 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1032 1033 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1034 1035 if (head != ring->next_to_clean) { 1036 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1037 ring_data->ring, 1); 1038 1039 return false; 1040 } else { 1041 return true; 1042 } 1043 } 1044 1045 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1046 { 1047 struct hnae_ring *ring = ring_data->ring; 1048 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1049 1050 if (head == ring->next_to_clean) 1051 return true; 1052 else 1053 return false; 1054 } 1055 1056 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1057 { 1058 struct hnae_ring *ring = ring_data->ring; 1059 struct net_device *ndev = ring_data->napi.dev; 1060 struct netdev_queue *dev_queue; 1061 int head; 1062 int bytes, pkts; 1063 1064 NETIF_TX_LOCK(ring); 1065 1066 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1067 bytes = 0; 1068 pkts = 0; 1069 while (head != ring->next_to_clean) 1070 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1071 1072 NETIF_TX_UNLOCK(ring); 1073 1074 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1075 netdev_tx_reset_queue(dev_queue); 1076 } 1077 1078 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1079 { 1080 int clean_complete = 0; 1081 struct hns_nic_ring_data *ring_data = 1082 container_of(napi, struct hns_nic_ring_data, napi); 1083 struct hnae_ring *ring = ring_data->ring; 1084 1085 try_again: 1086 clean_complete += ring_data->poll_one( 1087 ring_data, budget - clean_complete, 1088 ring_data->ex_process); 1089 1090 if (clean_complete < budget) { 1091 if (ring_data->fini_process(ring_data)) { 1092 napi_complete(napi); 1093 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1094 } else { 1095 goto try_again; 1096 } 1097 } 1098 1099 return clean_complete; 1100 } 1101 1102 static irqreturn_t hns_irq_handle(int irq, void *dev) 1103 { 1104 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1105 1106 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1107 ring_data->ring, 1); 1108 napi_schedule(&ring_data->napi); 1109 1110 return IRQ_HANDLED; 1111 } 1112 1113 /** 1114 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1115 *@ndev: net device 1116 */ 1117 static void hns_nic_adjust_link(struct net_device *ndev) 1118 { 1119 struct hns_nic_priv *priv = netdev_priv(ndev); 1120 struct hnae_handle *h = priv->ae_handle; 1121 int state = 1; 1122 1123 /* If there is no phy, do not need adjust link */ 1124 if (ndev->phydev) { 1125 /* When phy link down, do nothing */ 1126 if (ndev->phydev->link == 0) 1127 return; 1128 1129 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed, 1130 ndev->phydev->duplex)) { 1131 /* because Hi161X chip don't support to change gmac 1132 * speed and duplex with traffic. Delay 200ms to 1133 * make sure there is no more data in chip FIFO. 1134 */ 1135 netif_carrier_off(ndev); 1136 msleep(200); 1137 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1138 ndev->phydev->duplex); 1139 netif_carrier_on(ndev); 1140 } 1141 } 1142 1143 state = state && h->dev->ops->get_status(h); 1144 1145 if (state != priv->link) { 1146 if (state) { 1147 netif_carrier_on(ndev); 1148 netif_tx_wake_all_queues(ndev); 1149 netdev_info(ndev, "link up\n"); 1150 } else { 1151 netif_carrier_off(ndev); 1152 netdev_info(ndev, "link down\n"); 1153 } 1154 priv->link = state; 1155 } 1156 } 1157 1158 /** 1159 *hns_nic_init_phy - init phy 1160 *@ndev: net device 1161 *@h: ae handle 1162 * Return 0 on success, negative on failure 1163 */ 1164 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1165 { 1166 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, }; 1167 struct phy_device *phy_dev = h->phy_dev; 1168 int ret; 1169 1170 if (!h->phy_dev) 1171 return 0; 1172 1173 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1174 phy_dev->dev_flags = 0; 1175 1176 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1177 h->phy_if); 1178 } else { 1179 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1180 } 1181 if (unlikely(ret)) 1182 return -ENODEV; 1183 1184 ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support); 1185 linkmode_and(phy_dev->supported, phy_dev->supported, supported); 1186 linkmode_copy(phy_dev->advertising, phy_dev->supported); 1187 1188 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1189 phy_dev->autoneg = false; 1190 1191 if (h->phy_if == PHY_INTERFACE_MODE_SGMII) 1192 phy_stop(phy_dev); 1193 1194 return 0; 1195 } 1196 1197 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1198 { 1199 struct hns_nic_priv *priv = netdev_priv(netdev); 1200 struct hnae_handle *h = priv->ae_handle; 1201 1202 napi_enable(&priv->ring_data[idx].napi); 1203 1204 enable_irq(priv->ring_data[idx].ring->irq); 1205 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1206 1207 return 0; 1208 } 1209 1210 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1211 { 1212 struct hns_nic_priv *priv = netdev_priv(ndev); 1213 struct hnae_handle *h = priv->ae_handle; 1214 struct sockaddr *mac_addr = p; 1215 int ret; 1216 1217 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1218 return -EADDRNOTAVAIL; 1219 1220 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1221 if (ret) { 1222 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1223 return ret; 1224 } 1225 1226 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); 1227 1228 return 0; 1229 } 1230 1231 static void hns_nic_update_stats(struct net_device *netdev) 1232 { 1233 struct hns_nic_priv *priv = netdev_priv(netdev); 1234 struct hnae_handle *h = priv->ae_handle; 1235 1236 h->dev->ops->update_stats(h, &netdev->stats); 1237 } 1238 1239 /* set mac addr if it is configed. or leave it to the AE driver */ 1240 static void hns_init_mac_addr(struct net_device *ndev) 1241 { 1242 struct hns_nic_priv *priv = netdev_priv(ndev); 1243 1244 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { 1245 eth_hw_addr_random(ndev); 1246 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1247 ndev->dev_addr); 1248 } 1249 } 1250 1251 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1252 { 1253 struct hns_nic_priv *priv = netdev_priv(netdev); 1254 struct hnae_handle *h = priv->ae_handle; 1255 1256 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1257 disable_irq(priv->ring_data[idx].ring->irq); 1258 1259 napi_disable(&priv->ring_data[idx].napi); 1260 } 1261 1262 static int hns_nic_init_affinity_mask(int q_num, int ring_idx, 1263 struct hnae_ring *ring, cpumask_t *mask) 1264 { 1265 int cpu; 1266 1267 /* Diffrent irq banlance between 16core and 32core. 1268 * The cpu mask set by ring index according to the ring flag 1269 * which indicate the ring is tx or rx. 1270 */ 1271 if (q_num == num_possible_cpus()) { 1272 if (is_tx_ring(ring)) 1273 cpu = ring_idx; 1274 else 1275 cpu = ring_idx - q_num; 1276 } else { 1277 if (is_tx_ring(ring)) 1278 cpu = ring_idx * 2; 1279 else 1280 cpu = (ring_idx - q_num) * 2 + 1; 1281 } 1282 1283 cpumask_clear(mask); 1284 cpumask_set_cpu(cpu, mask); 1285 1286 return cpu; 1287 } 1288 1289 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv) 1290 { 1291 int i; 1292 1293 for (i = 0; i < q_num * 2; i++) { 1294 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 1295 irq_set_affinity_hint(priv->ring_data[i].ring->irq, 1296 NULL); 1297 free_irq(priv->ring_data[i].ring->irq, 1298 &priv->ring_data[i]); 1299 priv->ring_data[i].ring->irq_init_flag = 1300 RCB_IRQ_NOT_INITED; 1301 } 1302 } 1303 } 1304 1305 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1306 { 1307 struct hnae_handle *h = priv->ae_handle; 1308 struct hns_nic_ring_data *rd; 1309 int i; 1310 int ret; 1311 int cpu; 1312 1313 for (i = 0; i < h->q_num * 2; i++) { 1314 rd = &priv->ring_data[i]; 1315 1316 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1317 break; 1318 1319 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1320 "%s-%s%d", priv->netdev->name, 1321 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); 1322 1323 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1324 1325 ret = request_irq(rd->ring->irq, 1326 hns_irq_handle, 0, rd->ring->ring_name, rd); 1327 if (ret) { 1328 netdev_err(priv->netdev, "request irq(%d) fail\n", 1329 rd->ring->irq); 1330 goto out_free_irq; 1331 } 1332 disable_irq(rd->ring->irq); 1333 1334 cpu = hns_nic_init_affinity_mask(h->q_num, i, 1335 rd->ring, &rd->mask); 1336 1337 if (cpu_online(cpu)) 1338 irq_set_affinity_hint(rd->ring->irq, 1339 &rd->mask); 1340 1341 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1342 } 1343 1344 return 0; 1345 1346 out_free_irq: 1347 hns_nic_free_irq(h->q_num, priv); 1348 return ret; 1349 } 1350 1351 static int hns_nic_net_up(struct net_device *ndev) 1352 { 1353 struct hns_nic_priv *priv = netdev_priv(ndev); 1354 struct hnae_handle *h = priv->ae_handle; 1355 int i, j; 1356 int ret; 1357 1358 if (!test_bit(NIC_STATE_DOWN, &priv->state)) 1359 return 0; 1360 1361 ret = hns_nic_init_irq(priv); 1362 if (ret != 0) { 1363 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1364 return ret; 1365 } 1366 1367 for (i = 0; i < h->q_num * 2; i++) { 1368 ret = hns_nic_ring_open(ndev, i); 1369 if (ret) 1370 goto out_has_some_queues; 1371 } 1372 1373 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1374 if (ret) 1375 goto out_set_mac_addr_err; 1376 1377 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1378 if (ret) 1379 goto out_start_err; 1380 1381 if (ndev->phydev) 1382 phy_start(ndev->phydev); 1383 1384 clear_bit(NIC_STATE_DOWN, &priv->state); 1385 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1386 1387 return 0; 1388 1389 out_start_err: 1390 netif_stop_queue(ndev); 1391 out_set_mac_addr_err: 1392 out_has_some_queues: 1393 for (j = i - 1; j >= 0; j--) 1394 hns_nic_ring_close(ndev, j); 1395 1396 hns_nic_free_irq(h->q_num, priv); 1397 set_bit(NIC_STATE_DOWN, &priv->state); 1398 1399 return ret; 1400 } 1401 1402 static void hns_nic_net_down(struct net_device *ndev) 1403 { 1404 int i; 1405 struct hnae_ae_ops *ops; 1406 struct hns_nic_priv *priv = netdev_priv(ndev); 1407 1408 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1409 return; 1410 1411 (void)del_timer_sync(&priv->service_timer); 1412 netif_tx_stop_all_queues(ndev); 1413 netif_carrier_off(ndev); 1414 netif_tx_disable(ndev); 1415 priv->link = 0; 1416 1417 if (ndev->phydev) 1418 phy_stop(ndev->phydev); 1419 1420 ops = priv->ae_handle->dev->ops; 1421 1422 if (ops->stop) 1423 ops->stop(priv->ae_handle); 1424 1425 netif_tx_stop_all_queues(ndev); 1426 1427 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1428 hns_nic_ring_close(ndev, i); 1429 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1430 1431 /* clean tx buffers*/ 1432 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1433 } 1434 } 1435 1436 void hns_nic_net_reset(struct net_device *ndev) 1437 { 1438 struct hns_nic_priv *priv = netdev_priv(ndev); 1439 struct hnae_handle *handle = priv->ae_handle; 1440 1441 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1442 usleep_range(1000, 2000); 1443 1444 (void)hnae_reinit_handle(handle); 1445 1446 clear_bit(NIC_STATE_RESETTING, &priv->state); 1447 } 1448 1449 void hns_nic_net_reinit(struct net_device *netdev) 1450 { 1451 struct hns_nic_priv *priv = netdev_priv(netdev); 1452 enum hnae_port_type type = priv->ae_handle->port_type; 1453 1454 netif_trans_update(priv->netdev); 1455 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1456 usleep_range(1000, 2000); 1457 1458 hns_nic_net_down(netdev); 1459 1460 /* Only do hns_nic_net_reset in debug mode 1461 * because of hardware limitation. 1462 */ 1463 if (type == HNAE_PORT_DEBUG) 1464 hns_nic_net_reset(netdev); 1465 1466 (void)hns_nic_net_up(netdev); 1467 clear_bit(NIC_STATE_REINITING, &priv->state); 1468 } 1469 1470 static int hns_nic_net_open(struct net_device *ndev) 1471 { 1472 struct hns_nic_priv *priv = netdev_priv(ndev); 1473 struct hnae_handle *h = priv->ae_handle; 1474 int ret; 1475 1476 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1477 return -EBUSY; 1478 1479 priv->link = 0; 1480 netif_carrier_off(ndev); 1481 1482 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1483 if (ret < 0) { 1484 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1485 ret); 1486 return ret; 1487 } 1488 1489 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1490 if (ret < 0) { 1491 netdev_err(ndev, 1492 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1493 return ret; 1494 } 1495 1496 ret = hns_nic_net_up(ndev); 1497 if (ret) { 1498 netdev_err(ndev, 1499 "hns net up fail, ret=%d!\n", ret); 1500 return ret; 1501 } 1502 1503 return 0; 1504 } 1505 1506 static int hns_nic_net_stop(struct net_device *ndev) 1507 { 1508 hns_nic_net_down(ndev); 1509 1510 return 0; 1511 } 1512 1513 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1514 #define HNS_TX_TIMEO_LIMIT (40 * HZ) 1515 static void hns_nic_net_timeout(struct net_device *ndev) 1516 { 1517 struct hns_nic_priv *priv = netdev_priv(ndev); 1518 1519 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) { 1520 ndev->watchdog_timeo *= 2; 1521 netdev_info(ndev, "watchdog_timo changed to %d.\n", 1522 ndev->watchdog_timeo); 1523 } else { 1524 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 1525 hns_tx_timeout_reset(priv); 1526 } 1527 } 1528 1529 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr, 1530 int cmd) 1531 { 1532 struct phy_device *phy_dev = netdev->phydev; 1533 1534 if (!netif_running(netdev)) 1535 return -EINVAL; 1536 1537 if (!phy_dev) 1538 return -ENOTSUPP; 1539 1540 return phy_mii_ioctl(phy_dev, ifr, cmd); 1541 } 1542 1543 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1544 struct net_device *ndev) 1545 { 1546 struct hns_nic_priv *priv = netdev_priv(ndev); 1547 1548 assert(skb->queue_mapping < ndev->ae_handle->q_num); 1549 1550 return hns_nic_net_xmit_hw(ndev, skb, 1551 &tx_ring_data(priv, skb->queue_mapping)); 1552 } 1553 1554 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, 1555 struct sk_buff *skb) 1556 { 1557 dev_kfree_skb_any(skb); 1558 } 1559 1560 #define HNS_LB_TX_RING 0 1561 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) 1562 { 1563 struct sk_buff *skb; 1564 struct ethhdr *ethhdr; 1565 int frame_len; 1566 1567 /* allocate test skb */ 1568 skb = alloc_skb(64, GFP_KERNEL); 1569 if (!skb) 1570 return NULL; 1571 1572 skb_put(skb, 64); 1573 skb->dev = ndev; 1574 memset(skb->data, 0xFF, skb->len); 1575 1576 /* must be tcp/ip package */ 1577 ethhdr = (struct ethhdr *)skb->data; 1578 ethhdr->h_proto = htons(ETH_P_IP); 1579 1580 frame_len = skb->len & (~1ul); 1581 memset(&skb->data[frame_len / 2], 0xAA, 1582 frame_len / 2 - 1); 1583 1584 skb->queue_mapping = HNS_LB_TX_RING; 1585 1586 return skb; 1587 } 1588 1589 static int hns_enable_serdes_lb(struct net_device *ndev) 1590 { 1591 struct hns_nic_priv *priv = netdev_priv(ndev); 1592 struct hnae_handle *h = priv->ae_handle; 1593 struct hnae_ae_ops *ops = h->dev->ops; 1594 int speed, duplex; 1595 int ret; 1596 1597 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); 1598 if (ret) 1599 return ret; 1600 1601 ret = ops->start ? ops->start(h) : 0; 1602 if (ret) 1603 return ret; 1604 1605 /* link adjust duplex*/ 1606 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1607 speed = 1000; 1608 else 1609 speed = 10000; 1610 duplex = 1; 1611 1612 ops->adjust_link(h, speed, duplex); 1613 1614 /* wait h/w ready */ 1615 mdelay(300); 1616 1617 return 0; 1618 } 1619 1620 static void hns_disable_serdes_lb(struct net_device *ndev) 1621 { 1622 struct hns_nic_priv *priv = netdev_priv(ndev); 1623 struct hnae_handle *h = priv->ae_handle; 1624 struct hnae_ae_ops *ops = h->dev->ops; 1625 1626 ops->stop(h); 1627 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); 1628 } 1629 1630 /** 1631 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The 1632 *function as follows: 1633 * 1. if one rx ring has found the page_offset is not equal 0 between head 1634 * and tail, it means that the chip fetched the wrong descs for the ring 1635 * which buffer size is 4096. 1636 * 2. we set the chip serdes loopback and set rss indirection to the ring. 1637 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring 1638 * recieving all packages and it will fetch new descriptions. 1639 * 4. recover to the original state. 1640 * 1641 *@ndev: net device 1642 */ 1643 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) 1644 { 1645 struct hns_nic_priv *priv = netdev_priv(ndev); 1646 struct hnae_handle *h = priv->ae_handle; 1647 struct hnae_ae_ops *ops = h->dev->ops; 1648 struct hns_nic_ring_data *rd; 1649 struct hnae_ring *ring; 1650 struct sk_buff *skb; 1651 u32 *org_indir; 1652 u32 *cur_indir; 1653 int indir_size; 1654 int head, tail; 1655 int fetch_num; 1656 int i, j; 1657 bool found; 1658 int retry_times; 1659 int ret = 0; 1660 1661 /* alloc indir memory */ 1662 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); 1663 org_indir = kzalloc(indir_size, GFP_KERNEL); 1664 if (!org_indir) 1665 return -ENOMEM; 1666 1667 /* store the orginal indirection */ 1668 ops->get_rss(h, org_indir, NULL, NULL); 1669 1670 cur_indir = kzalloc(indir_size, GFP_KERNEL); 1671 if (!cur_indir) { 1672 ret = -ENOMEM; 1673 goto cur_indir_alloc_err; 1674 } 1675 1676 /* set loopback */ 1677 if (hns_enable_serdes_lb(ndev)) { 1678 ret = -EINVAL; 1679 goto enable_serdes_lb_err; 1680 } 1681 1682 /* foreach every rx ring to clear fetch desc */ 1683 for (i = 0; i < h->q_num; i++) { 1684 ring = &h->qs[i]->rx_ring; 1685 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1686 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); 1687 found = false; 1688 fetch_num = ring_dist(ring, head, tail); 1689 1690 while (head != tail) { 1691 if (ring->desc_cb[head].page_offset != 0) { 1692 found = true; 1693 break; 1694 } 1695 1696 head++; 1697 if (head == ring->desc_num) 1698 head = 0; 1699 } 1700 1701 if (found) { 1702 for (j = 0; j < indir_size / sizeof(*org_indir); j++) 1703 cur_indir[j] = i; 1704 ops->set_rss(h, cur_indir, NULL, 0); 1705 1706 for (j = 0; j < fetch_num; j++) { 1707 /* alloc one skb and init */ 1708 skb = hns_assemble_skb(ndev); 1709 if (!skb) 1710 goto out; 1711 rd = &tx_ring_data(priv, skb->queue_mapping); 1712 hns_nic_net_xmit_hw(ndev, skb, rd); 1713 1714 retry_times = 0; 1715 while (retry_times++ < 10) { 1716 mdelay(10); 1717 /* clean rx */ 1718 rd = &rx_ring_data(priv, i); 1719 if (rd->poll_one(rd, fetch_num, 1720 hns_nic_drop_rx_fetch)) 1721 break; 1722 } 1723 1724 retry_times = 0; 1725 while (retry_times++ < 10) { 1726 mdelay(10); 1727 /* clean tx ring 0 send package */ 1728 rd = &tx_ring_data(priv, 1729 HNS_LB_TX_RING); 1730 if (rd->poll_one(rd, fetch_num, NULL)) 1731 break; 1732 } 1733 } 1734 } 1735 } 1736 1737 out: 1738 /* restore everything */ 1739 ops->set_rss(h, org_indir, NULL, 0); 1740 hns_disable_serdes_lb(ndev); 1741 enable_serdes_lb_err: 1742 kfree(cur_indir); 1743 cur_indir_alloc_err: 1744 kfree(org_indir); 1745 1746 return ret; 1747 } 1748 1749 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1750 { 1751 struct hns_nic_priv *priv = netdev_priv(ndev); 1752 struct hnae_handle *h = priv->ae_handle; 1753 bool if_running = netif_running(ndev); 1754 int ret; 1755 1756 /* MTU < 68 is an error and causes problems on some kernels */ 1757 if (new_mtu < 68) 1758 return -EINVAL; 1759 1760 /* MTU no change */ 1761 if (new_mtu == ndev->mtu) 1762 return 0; 1763 1764 if (!h->dev->ops->set_mtu) 1765 return -ENOTSUPP; 1766 1767 if (if_running) { 1768 (void)hns_nic_net_stop(ndev); 1769 msleep(100); 1770 } 1771 1772 if (priv->enet_ver != AE_VERSION_1 && 1773 ndev->mtu <= BD_SIZE_2048_MAX_MTU && 1774 new_mtu > BD_SIZE_2048_MAX_MTU) { 1775 /* update desc */ 1776 hnae_reinit_all_ring_desc(h); 1777 1778 /* clear the package which the chip has fetched */ 1779 ret = hns_nic_clear_all_rx_fetch(ndev); 1780 1781 /* the page offset must be consist with desc */ 1782 hnae_reinit_all_ring_page_off(h); 1783 1784 if (ret) { 1785 netdev_err(ndev, "clear the fetched desc fail\n"); 1786 goto out; 1787 } 1788 } 1789 1790 ret = h->dev->ops->set_mtu(h, new_mtu); 1791 if (ret) { 1792 netdev_err(ndev, "set mtu fail, return value %d\n", 1793 ret); 1794 goto out; 1795 } 1796 1797 /* finally, set new mtu to netdevice */ 1798 ndev->mtu = new_mtu; 1799 1800 out: 1801 if (if_running) { 1802 if (hns_nic_net_open(ndev)) { 1803 netdev_err(ndev, "hns net open fail\n"); 1804 ret = -EINVAL; 1805 } 1806 } 1807 1808 return ret; 1809 } 1810 1811 static int hns_nic_set_features(struct net_device *netdev, 1812 netdev_features_t features) 1813 { 1814 struct hns_nic_priv *priv = netdev_priv(netdev); 1815 1816 switch (priv->enet_ver) { 1817 case AE_VERSION_1: 1818 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1819 netdev_info(netdev, "enet v1 do not support tso!\n"); 1820 break; 1821 default: 1822 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1823 priv->ops.fill_desc = fill_tso_desc; 1824 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1825 /* The chip only support 7*4096 */ 1826 netif_set_gso_max_size(netdev, 7 * 4096); 1827 } else { 1828 priv->ops.fill_desc = fill_v2_desc; 1829 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1830 } 1831 break; 1832 } 1833 netdev->features = features; 1834 return 0; 1835 } 1836 1837 static netdev_features_t hns_nic_fix_features( 1838 struct net_device *netdev, netdev_features_t features) 1839 { 1840 struct hns_nic_priv *priv = netdev_priv(netdev); 1841 1842 switch (priv->enet_ver) { 1843 case AE_VERSION_1: 1844 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1845 NETIF_F_HW_VLAN_CTAG_FILTER); 1846 break; 1847 default: 1848 break; 1849 } 1850 return features; 1851 } 1852 1853 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1854 { 1855 struct hns_nic_priv *priv = netdev_priv(netdev); 1856 struct hnae_handle *h = priv->ae_handle; 1857 1858 if (h->dev->ops->add_uc_addr) 1859 return h->dev->ops->add_uc_addr(h, addr); 1860 1861 return 0; 1862 } 1863 1864 static int hns_nic_uc_unsync(struct net_device *netdev, 1865 const unsigned char *addr) 1866 { 1867 struct hns_nic_priv *priv = netdev_priv(netdev); 1868 struct hnae_handle *h = priv->ae_handle; 1869 1870 if (h->dev->ops->rm_uc_addr) 1871 return h->dev->ops->rm_uc_addr(h, addr); 1872 1873 return 0; 1874 } 1875 1876 /** 1877 * nic_set_multicast_list - set mutl mac address 1878 * @netdev: net device 1879 * @p: mac address 1880 * 1881 * return void 1882 */ 1883 static void hns_set_multicast_list(struct net_device *ndev) 1884 { 1885 struct hns_nic_priv *priv = netdev_priv(ndev); 1886 struct hnae_handle *h = priv->ae_handle; 1887 struct netdev_hw_addr *ha = NULL; 1888 1889 if (!h) { 1890 netdev_err(ndev, "hnae handle is null\n"); 1891 return; 1892 } 1893 1894 if (h->dev->ops->clr_mc_addr) 1895 if (h->dev->ops->clr_mc_addr(h)) 1896 netdev_err(ndev, "clear multicast address fail\n"); 1897 1898 if (h->dev->ops->set_mc_addr) { 1899 netdev_for_each_mc_addr(ha, ndev) 1900 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1901 netdev_err(ndev, "set multicast fail\n"); 1902 } 1903 } 1904 1905 static void hns_nic_set_rx_mode(struct net_device *ndev) 1906 { 1907 struct hns_nic_priv *priv = netdev_priv(ndev); 1908 struct hnae_handle *h = priv->ae_handle; 1909 1910 if (h->dev->ops->set_promisc_mode) { 1911 if (ndev->flags & IFF_PROMISC) 1912 h->dev->ops->set_promisc_mode(h, 1); 1913 else 1914 h->dev->ops->set_promisc_mode(h, 0); 1915 } 1916 1917 hns_set_multicast_list(ndev); 1918 1919 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1920 netdev_err(ndev, "sync uc address fail\n"); 1921 } 1922 1923 static void hns_nic_get_stats64(struct net_device *ndev, 1924 struct rtnl_link_stats64 *stats) 1925 { 1926 int idx = 0; 1927 u64 tx_bytes = 0; 1928 u64 rx_bytes = 0; 1929 u64 tx_pkts = 0; 1930 u64 rx_pkts = 0; 1931 struct hns_nic_priv *priv = netdev_priv(ndev); 1932 struct hnae_handle *h = priv->ae_handle; 1933 1934 for (idx = 0; idx < h->q_num; idx++) { 1935 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1936 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1937 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1938 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1939 } 1940 1941 stats->tx_bytes = tx_bytes; 1942 stats->tx_packets = tx_pkts; 1943 stats->rx_bytes = rx_bytes; 1944 stats->rx_packets = rx_pkts; 1945 1946 stats->rx_errors = ndev->stats.rx_errors; 1947 stats->multicast = ndev->stats.multicast; 1948 stats->rx_length_errors = ndev->stats.rx_length_errors; 1949 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1950 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1951 1952 stats->tx_errors = ndev->stats.tx_errors; 1953 stats->rx_dropped = ndev->stats.rx_dropped; 1954 stats->tx_dropped = ndev->stats.tx_dropped; 1955 stats->collisions = ndev->stats.collisions; 1956 stats->rx_over_errors = ndev->stats.rx_over_errors; 1957 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1958 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1959 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1960 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1961 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1962 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1963 stats->tx_window_errors = ndev->stats.tx_window_errors; 1964 stats->rx_compressed = ndev->stats.rx_compressed; 1965 stats->tx_compressed = ndev->stats.tx_compressed; 1966 } 1967 1968 static u16 1969 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1970 struct net_device *sb_dev, 1971 select_queue_fallback_t fallback) 1972 { 1973 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1974 struct hns_nic_priv *priv = netdev_priv(ndev); 1975 1976 /* fix hardware broadcast/multicast packets queue loopback */ 1977 if (!AE_IS_VER1(priv->enet_ver) && 1978 is_multicast_ether_addr(eth_hdr->h_dest)) 1979 return 0; 1980 else 1981 return fallback(ndev, skb, NULL); 1982 } 1983 1984 static const struct net_device_ops hns_nic_netdev_ops = { 1985 .ndo_open = hns_nic_net_open, 1986 .ndo_stop = hns_nic_net_stop, 1987 .ndo_start_xmit = hns_nic_net_xmit, 1988 .ndo_tx_timeout = hns_nic_net_timeout, 1989 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1990 .ndo_change_mtu = hns_nic_change_mtu, 1991 .ndo_do_ioctl = hns_nic_do_ioctl, 1992 .ndo_set_features = hns_nic_set_features, 1993 .ndo_fix_features = hns_nic_fix_features, 1994 .ndo_get_stats64 = hns_nic_get_stats64, 1995 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1996 .ndo_select_queue = hns_nic_select_queue, 1997 }; 1998 1999 static void hns_nic_update_link_status(struct net_device *netdev) 2000 { 2001 struct hns_nic_priv *priv = netdev_priv(netdev); 2002 2003 struct hnae_handle *h = priv->ae_handle; 2004 2005 if (h->phy_dev) { 2006 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 2007 return; 2008 2009 (void)genphy_read_status(h->phy_dev); 2010 } 2011 hns_nic_adjust_link(netdev); 2012 } 2013 2014 /* for dumping key regs*/ 2015 static void hns_nic_dump(struct hns_nic_priv *priv) 2016 { 2017 struct hnae_handle *h = priv->ae_handle; 2018 struct hnae_ae_ops *ops = h->dev->ops; 2019 u32 *data, reg_num, i; 2020 2021 if (ops->get_regs_len && ops->get_regs) { 2022 reg_num = ops->get_regs_len(priv->ae_handle); 2023 reg_num = (reg_num + 3ul) & ~3ul; 2024 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 2025 if (data) { 2026 ops->get_regs(priv->ae_handle, data); 2027 for (i = 0; i < reg_num; i += 4) 2028 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 2029 i, data[i], data[i + 1], 2030 data[i + 2], data[i + 3]); 2031 kfree(data); 2032 } 2033 } 2034 2035 for (i = 0; i < h->q_num; i++) { 2036 pr_info("tx_queue%d_next_to_clean:%d\n", 2037 i, h->qs[i]->tx_ring.next_to_clean); 2038 pr_info("tx_queue%d_next_to_use:%d\n", 2039 i, h->qs[i]->tx_ring.next_to_use); 2040 pr_info("rx_queue%d_next_to_clean:%d\n", 2041 i, h->qs[i]->rx_ring.next_to_clean); 2042 pr_info("rx_queue%d_next_to_use:%d\n", 2043 i, h->qs[i]->rx_ring.next_to_use); 2044 } 2045 } 2046 2047 /* for resetting subtask */ 2048 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 2049 { 2050 enum hnae_port_type type = priv->ae_handle->port_type; 2051 2052 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 2053 return; 2054 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2055 2056 /* If we're already down, removing or resetting, just bail */ 2057 if (test_bit(NIC_STATE_DOWN, &priv->state) || 2058 test_bit(NIC_STATE_REMOVING, &priv->state) || 2059 test_bit(NIC_STATE_RESETTING, &priv->state)) 2060 return; 2061 2062 hns_nic_dump(priv); 2063 netdev_info(priv->netdev, "try to reset %s port!\n", 2064 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 2065 2066 rtnl_lock(); 2067 /* put off any impending NetWatchDogTimeout */ 2068 netif_trans_update(priv->netdev); 2069 hns_nic_net_reinit(priv->netdev); 2070 2071 rtnl_unlock(); 2072 } 2073 2074 /* for doing service complete*/ 2075 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 2076 { 2077 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 2078 /* make sure to commit the things */ 2079 smp_mb__before_atomic(); 2080 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2081 } 2082 2083 static void hns_nic_service_task(struct work_struct *work) 2084 { 2085 struct hns_nic_priv *priv 2086 = container_of(work, struct hns_nic_priv, service_task); 2087 struct hnae_handle *h = priv->ae_handle; 2088 2089 hns_nic_reset_subtask(priv); 2090 hns_nic_update_link_status(priv->netdev); 2091 h->dev->ops->update_led_status(h); 2092 hns_nic_update_stats(priv->netdev); 2093 2094 hns_nic_service_event_complete(priv); 2095 } 2096 2097 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 2098 { 2099 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 2100 !test_bit(NIC_STATE_REMOVING, &priv->state) && 2101 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 2102 (void)schedule_work(&priv->service_task); 2103 } 2104 2105 static void hns_nic_service_timer(struct timer_list *t) 2106 { 2107 struct hns_nic_priv *priv = from_timer(priv, t, service_timer); 2108 2109 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 2110 2111 hns_nic_task_schedule(priv); 2112 } 2113 2114 /** 2115 * hns_tx_timeout_reset - initiate reset due to Tx timeout 2116 * @priv: driver private struct 2117 **/ 2118 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 2119 { 2120 /* Do the reset outside of interrupt context */ 2121 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 2122 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2123 netdev_warn(priv->netdev, 2124 "initiating reset due to tx timeout(%llu,0x%lx)\n", 2125 priv->tx_timeout_count, priv->state); 2126 priv->tx_timeout_count++; 2127 hns_nic_task_schedule(priv); 2128 } 2129 } 2130 2131 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 2132 { 2133 struct hnae_handle *h = priv->ae_handle; 2134 struct hns_nic_ring_data *rd; 2135 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 2136 int i; 2137 2138 if (h->q_num > NIC_MAX_Q_PER_VF) { 2139 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 2140 return -EINVAL; 2141 } 2142 2143 priv->ring_data = kzalloc(array3_size(h->q_num, 2144 sizeof(*priv->ring_data), 2), 2145 GFP_KERNEL); 2146 if (!priv->ring_data) 2147 return -ENOMEM; 2148 2149 for (i = 0; i < h->q_num; i++) { 2150 rd = &priv->ring_data[i]; 2151 rd->queue_index = i; 2152 rd->ring = &h->qs[i]->tx_ring; 2153 rd->poll_one = hns_nic_tx_poll_one; 2154 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 2155 hns_nic_tx_fini_pro_v2; 2156 2157 netif_napi_add(priv->netdev, &rd->napi, 2158 hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM); 2159 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2160 } 2161 for (i = h->q_num; i < h->q_num * 2; i++) { 2162 rd = &priv->ring_data[i]; 2163 rd->queue_index = i - h->q_num; 2164 rd->ring = &h->qs[i - h->q_num]->rx_ring; 2165 rd->poll_one = hns_nic_rx_poll_one; 2166 rd->ex_process = hns_nic_rx_up_pro; 2167 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 2168 hns_nic_rx_fini_pro_v2; 2169 2170 netif_napi_add(priv->netdev, &rd->napi, 2171 hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM); 2172 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2173 } 2174 2175 return 0; 2176 } 2177 2178 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 2179 { 2180 struct hnae_handle *h = priv->ae_handle; 2181 int i; 2182 2183 for (i = 0; i < h->q_num * 2; i++) { 2184 netif_napi_del(&priv->ring_data[i].napi); 2185 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 2186 (void)irq_set_affinity_hint( 2187 priv->ring_data[i].ring->irq, 2188 NULL); 2189 free_irq(priv->ring_data[i].ring->irq, 2190 &priv->ring_data[i]); 2191 } 2192 2193 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2194 } 2195 kfree(priv->ring_data); 2196 } 2197 2198 static void hns_nic_set_priv_ops(struct net_device *netdev) 2199 { 2200 struct hns_nic_priv *priv = netdev_priv(netdev); 2201 struct hnae_handle *h = priv->ae_handle; 2202 2203 if (AE_IS_VER1(priv->enet_ver)) { 2204 priv->ops.fill_desc = fill_desc; 2205 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 2206 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2207 } else { 2208 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 2209 if ((netdev->features & NETIF_F_TSO) || 2210 (netdev->features & NETIF_F_TSO6)) { 2211 priv->ops.fill_desc = fill_tso_desc; 2212 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 2213 /* This chip only support 7*4096 */ 2214 netif_set_gso_max_size(netdev, 7 * 4096); 2215 } else { 2216 priv->ops.fill_desc = fill_v2_desc; 2217 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2218 } 2219 /* enable tso when init 2220 * control tso on/off through TSE bit in bd 2221 */ 2222 h->dev->ops->set_tso_stats(h, 1); 2223 } 2224 } 2225 2226 static int hns_nic_try_get_ae(struct net_device *ndev) 2227 { 2228 struct hns_nic_priv *priv = netdev_priv(ndev); 2229 struct hnae_handle *h; 2230 int ret; 2231 2232 h = hnae_get_handle(&priv->netdev->dev, 2233 priv->fwnode, priv->port_id, NULL); 2234 if (IS_ERR_OR_NULL(h)) { 2235 ret = -ENODEV; 2236 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 2237 goto out; 2238 } 2239 priv->ae_handle = h; 2240 2241 ret = hns_nic_init_phy(ndev, h); 2242 if (ret) { 2243 dev_err(priv->dev, "probe phy device fail!\n"); 2244 goto out_init_phy; 2245 } 2246 2247 ret = hns_nic_init_ring_data(priv); 2248 if (ret) { 2249 ret = -ENOMEM; 2250 goto out_init_ring_data; 2251 } 2252 2253 hns_nic_set_priv_ops(ndev); 2254 2255 ret = register_netdev(ndev); 2256 if (ret) { 2257 dev_err(priv->dev, "probe register netdev fail!\n"); 2258 goto out_reg_ndev_fail; 2259 } 2260 return 0; 2261 2262 out_reg_ndev_fail: 2263 hns_nic_uninit_ring_data(priv); 2264 priv->ring_data = NULL; 2265 out_init_phy: 2266 out_init_ring_data: 2267 hnae_put_handle(priv->ae_handle); 2268 priv->ae_handle = NULL; 2269 out: 2270 return ret; 2271 } 2272 2273 static int hns_nic_notifier_action(struct notifier_block *nb, 2274 unsigned long action, void *data) 2275 { 2276 struct hns_nic_priv *priv = 2277 container_of(nb, struct hns_nic_priv, notifier_block); 2278 2279 assert(action == HNAE_AE_REGISTER); 2280 2281 if (!hns_nic_try_get_ae(priv->netdev)) { 2282 hnae_unregister_notifier(&priv->notifier_block); 2283 priv->notifier_block.notifier_call = NULL; 2284 } 2285 return 0; 2286 } 2287 2288 static int hns_nic_dev_probe(struct platform_device *pdev) 2289 { 2290 struct device *dev = &pdev->dev; 2291 struct net_device *ndev; 2292 struct hns_nic_priv *priv; 2293 u32 port_id; 2294 int ret; 2295 2296 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2297 if (!ndev) 2298 return -ENOMEM; 2299 2300 platform_set_drvdata(pdev, ndev); 2301 2302 priv = netdev_priv(ndev); 2303 priv->dev = dev; 2304 priv->netdev = ndev; 2305 2306 if (dev_of_node(dev)) { 2307 struct device_node *ae_node; 2308 2309 if (of_device_is_compatible(dev->of_node, 2310 "hisilicon,hns-nic-v1")) 2311 priv->enet_ver = AE_VERSION_1; 2312 else 2313 priv->enet_ver = AE_VERSION_2; 2314 2315 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2316 if (!ae_node) { 2317 ret = -ENODEV; 2318 dev_err(dev, "not find ae-handle\n"); 2319 goto out_read_prop_fail; 2320 } 2321 priv->fwnode = &ae_node->fwnode; 2322 } else if (is_acpi_node(dev->fwnode)) { 2323 struct fwnode_reference_args args; 2324 2325 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2326 priv->enet_ver = AE_VERSION_1; 2327 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2328 priv->enet_ver = AE_VERSION_2; 2329 else 2330 return -ENXIO; 2331 2332 /* try to find port-idx-in-ae first */ 2333 ret = acpi_node_get_property_reference(dev->fwnode, 2334 "ae-handle", 0, &args); 2335 if (ret) { 2336 dev_err(dev, "not find ae-handle\n"); 2337 goto out_read_prop_fail; 2338 } 2339 if (!is_acpi_device_node(args.fwnode)) { 2340 ret = -EINVAL; 2341 goto out_read_prop_fail; 2342 } 2343 priv->fwnode = args.fwnode; 2344 } else { 2345 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2346 return -ENXIO; 2347 } 2348 2349 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2350 if (ret) { 2351 /* only for old code compatible */ 2352 ret = device_property_read_u32(dev, "port-id", &port_id); 2353 if (ret) 2354 goto out_read_prop_fail; 2355 /* for old dts, we need to caculate the port offset */ 2356 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2357 : port_id - HNS_SRV_OFFSET; 2358 } 2359 priv->port_id = port_id; 2360 2361 hns_init_mac_addr(ndev); 2362 2363 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2364 ndev->priv_flags |= IFF_UNICAST_FLT; 2365 ndev->netdev_ops = &hns_nic_netdev_ops; 2366 hns_ethtool_set_ops(ndev); 2367 2368 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2369 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2370 NETIF_F_GRO; 2371 ndev->vlan_features |= 2372 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2373 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2374 2375 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2376 ndev->min_mtu = MAC_MIN_MTU; 2377 switch (priv->enet_ver) { 2378 case AE_VERSION_2: 2379 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE; 2380 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2381 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2382 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2383 ndev->max_mtu = MAC_MAX_MTU_V2 - 2384 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2385 break; 2386 default: 2387 ndev->max_mtu = MAC_MAX_MTU - 2388 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2389 break; 2390 } 2391 2392 SET_NETDEV_DEV(ndev, dev); 2393 2394 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2395 dev_dbg(dev, "set mask to 64bit\n"); 2396 else 2397 dev_err(dev, "set mask to 64bit fail!\n"); 2398 2399 /* carrier off reporting is important to ethtool even BEFORE open */ 2400 netif_carrier_off(ndev); 2401 2402 timer_setup(&priv->service_timer, hns_nic_service_timer, 0); 2403 INIT_WORK(&priv->service_task, hns_nic_service_task); 2404 2405 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2406 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2407 set_bit(NIC_STATE_DOWN, &priv->state); 2408 2409 if (hns_nic_try_get_ae(priv->netdev)) { 2410 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2411 ret = hnae_register_notifier(&priv->notifier_block); 2412 if (ret) { 2413 dev_err(dev, "register notifier fail!\n"); 2414 goto out_notify_fail; 2415 } 2416 dev_dbg(dev, "has not handle, register notifier!\n"); 2417 } 2418 2419 return 0; 2420 2421 out_notify_fail: 2422 (void)cancel_work_sync(&priv->service_task); 2423 out_read_prop_fail: 2424 free_netdev(ndev); 2425 return ret; 2426 } 2427 2428 static int hns_nic_dev_remove(struct platform_device *pdev) 2429 { 2430 struct net_device *ndev = platform_get_drvdata(pdev); 2431 struct hns_nic_priv *priv = netdev_priv(ndev); 2432 2433 if (ndev->reg_state != NETREG_UNINITIALIZED) 2434 unregister_netdev(ndev); 2435 2436 if (priv->ring_data) 2437 hns_nic_uninit_ring_data(priv); 2438 priv->ring_data = NULL; 2439 2440 if (ndev->phydev) 2441 phy_disconnect(ndev->phydev); 2442 2443 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2444 hnae_put_handle(priv->ae_handle); 2445 priv->ae_handle = NULL; 2446 if (priv->notifier_block.notifier_call) 2447 hnae_unregister_notifier(&priv->notifier_block); 2448 priv->notifier_block.notifier_call = NULL; 2449 2450 set_bit(NIC_STATE_REMOVING, &priv->state); 2451 (void)cancel_work_sync(&priv->service_task); 2452 2453 free_netdev(ndev); 2454 return 0; 2455 } 2456 2457 static const struct of_device_id hns_enet_of_match[] = { 2458 {.compatible = "hisilicon,hns-nic-v1",}, 2459 {.compatible = "hisilicon,hns-nic-v2",}, 2460 {}, 2461 }; 2462 2463 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2464 2465 static struct platform_driver hns_nic_dev_driver = { 2466 .driver = { 2467 .name = "hns-nic", 2468 .of_match_table = hns_enet_of_match, 2469 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2470 }, 2471 .probe = hns_nic_dev_probe, 2472 .remove = hns_nic_dev_remove, 2473 }; 2474 2475 module_platform_driver(hns_nic_dev_driver); 2476 2477 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2478 MODULE_AUTHOR("Hisilicon, Inc."); 2479 MODULE_LICENSE("GPL"); 2480 MODULE_ALIAS("platform:hns-nic"); 2481