1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22 
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26 
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29 
30 #define SERVICE_TIMER_HZ (1 * HZ)
31 
32 #define NIC_TX_CLEAN_MAX_NUM 256
33 #define NIC_RX_CLEAN_MAX_NUM 64
34 
35 #define RCB_IRQ_NOT_INITED 0
36 #define RCB_IRQ_INITED 1
37 #define HNS_BUFFER_SIZE_2048 2048
38 
39 #define BD_MAX_SEND_SIZE 8191
40 #define SKB_TMP_LEN(SKB) \
41 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
42 
43 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
44 			    int send_sz, dma_addr_t dma, int frag_end,
45 			    int buf_num, enum hns_desc_type type, int mtu)
46 {
47 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
48 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
49 	struct iphdr *iphdr;
50 	struct ipv6hdr *ipv6hdr;
51 	struct sk_buff *skb;
52 	__be16 protocol;
53 	u8 bn_pid = 0;
54 	u8 rrcfv = 0;
55 	u8 ip_offset = 0;
56 	u8 tvsvsn = 0;
57 	u16 mss = 0;
58 	u8 l4_len = 0;
59 	u16 paylen = 0;
60 
61 	desc_cb->priv = priv;
62 	desc_cb->length = size;
63 	desc_cb->dma = dma;
64 	desc_cb->type = type;
65 
66 	desc->addr = cpu_to_le64(dma);
67 	desc->tx.send_size = cpu_to_le16((u16)send_sz);
68 
69 	/* config bd buffer end */
70 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72 
73 	/* fill port_id in the tx bd for sending management pkts */
74 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
75 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
76 
77 	if (type == DESC_TYPE_SKB) {
78 		skb = (struct sk_buff *)priv;
79 
80 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
81 			skb_reset_mac_len(skb);
82 			protocol = skb->protocol;
83 			ip_offset = ETH_HLEN;
84 
85 			if (protocol == htons(ETH_P_8021Q)) {
86 				ip_offset += VLAN_HLEN;
87 				protocol = vlan_get_protocol(skb);
88 				skb->protocol = protocol;
89 			}
90 
91 			if (skb->protocol == htons(ETH_P_IP)) {
92 				iphdr = ip_hdr(skb);
93 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
94 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
95 
96 				/* check for tcp/udp header */
97 				if (iphdr->protocol == IPPROTO_TCP &&
98 				    skb_is_gso(skb)) {
99 					hnae_set_bit(tvsvsn,
100 						     HNSV2_TXD_TSE_B, 1);
101 					l4_len = tcp_hdrlen(skb);
102 					mss = skb_shinfo(skb)->gso_size;
103 					paylen = skb->len - SKB_TMP_LEN(skb);
104 				}
105 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
106 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
107 				ipv6hdr = ipv6_hdr(skb);
108 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
109 
110 				/* check for tcp/udp header */
111 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
112 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
113 					hnae_set_bit(tvsvsn,
114 						     HNSV2_TXD_TSE_B, 1);
115 					l4_len = tcp_hdrlen(skb);
116 					mss = skb_shinfo(skb)->gso_size;
117 					paylen = skb->len - SKB_TMP_LEN(skb);
118 				}
119 			}
120 			desc->tx.ip_offset = ip_offset;
121 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
122 			desc->tx.mss = cpu_to_le16(mss);
123 			desc->tx.l4_len = l4_len;
124 			desc->tx.paylen = cpu_to_le16(paylen);
125 		}
126 	}
127 
128 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
129 
130 	desc->tx.bn_pid = bn_pid;
131 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
132 
133 	ring_ptr_move_fw(ring, next_to_use);
134 }
135 
136 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
137 			 int size, dma_addr_t dma, int frag_end,
138 			 int buf_num, enum hns_desc_type type, int mtu)
139 {
140 	fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
141 			buf_num, type, mtu);
142 }
143 
144 static const struct acpi_device_id hns_enet_acpi_match[] = {
145 	{ "HISI00C1", 0 },
146 	{ "HISI00C2", 0 },
147 	{ },
148 };
149 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
150 
151 static void fill_desc(struct hnae_ring *ring, void *priv,
152 		      int size, dma_addr_t dma, int frag_end,
153 		      int buf_num, enum hns_desc_type type, int mtu)
154 {
155 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
156 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
157 	struct sk_buff *skb;
158 	__be16 protocol;
159 	u32 ip_offset;
160 	u32 asid_bufnum_pid = 0;
161 	u32 flag_ipoffset = 0;
162 
163 	desc_cb->priv = priv;
164 	desc_cb->length = size;
165 	desc_cb->dma = dma;
166 	desc_cb->type = type;
167 
168 	desc->addr = cpu_to_le64(dma);
169 	desc->tx.send_size = cpu_to_le16((u16)size);
170 
171 	/*config bd buffer end */
172 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
173 
174 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
175 
176 	if (type == DESC_TYPE_SKB) {
177 		skb = (struct sk_buff *)priv;
178 
179 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
180 			protocol = skb->protocol;
181 			ip_offset = ETH_HLEN;
182 
183 			/*if it is a SW VLAN check the next protocol*/
184 			if (protocol == htons(ETH_P_8021Q)) {
185 				ip_offset += VLAN_HLEN;
186 				protocol = vlan_get_protocol(skb);
187 				skb->protocol = protocol;
188 			}
189 
190 			if (skb->protocol == htons(ETH_P_IP)) {
191 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
192 				/* check for tcp/udp header */
193 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
194 
195 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
196 				/* ipv6 has not l3 cs, check for L4 header */
197 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
198 			}
199 
200 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
201 		}
202 	}
203 
204 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
205 
206 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
207 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
208 
209 	ring_ptr_move_fw(ring, next_to_use);
210 }
211 
212 static void unfill_desc(struct hnae_ring *ring)
213 {
214 	ring_ptr_move_bw(ring, next_to_use);
215 }
216 
217 static int hns_nic_maybe_stop_tx(
218 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
219 {
220 	struct sk_buff *skb = *out_skb;
221 	struct sk_buff *new_skb = NULL;
222 	int buf_num;
223 
224 	/* no. of segments (plus a header) */
225 	buf_num = skb_shinfo(skb)->nr_frags + 1;
226 
227 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
228 		if (ring_space(ring) < 1)
229 			return -EBUSY;
230 
231 		new_skb = skb_copy(skb, GFP_ATOMIC);
232 		if (!new_skb)
233 			return -ENOMEM;
234 
235 		dev_kfree_skb_any(skb);
236 		*out_skb = new_skb;
237 		buf_num = 1;
238 	} else if (buf_num > ring_space(ring)) {
239 		return -EBUSY;
240 	}
241 
242 	*bnum = buf_num;
243 	return 0;
244 }
245 
246 static int hns_nic_maybe_stop_tso(
247 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
248 {
249 	int i;
250 	int size;
251 	int buf_num;
252 	int frag_num;
253 	struct sk_buff *skb = *out_skb;
254 	struct sk_buff *new_skb = NULL;
255 	struct skb_frag_struct *frag;
256 
257 	size = skb_headlen(skb);
258 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
259 
260 	frag_num = skb_shinfo(skb)->nr_frags;
261 	for (i = 0; i < frag_num; i++) {
262 		frag = &skb_shinfo(skb)->frags[i];
263 		size = skb_frag_size(frag);
264 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
265 	}
266 
267 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
268 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
269 		if (ring_space(ring) < buf_num)
270 			return -EBUSY;
271 		/* manual split the send packet */
272 		new_skb = skb_copy(skb, GFP_ATOMIC);
273 		if (!new_skb)
274 			return -ENOMEM;
275 		dev_kfree_skb_any(skb);
276 		*out_skb = new_skb;
277 
278 	} else if (ring_space(ring) < buf_num) {
279 		return -EBUSY;
280 	}
281 
282 	*bnum = buf_num;
283 	return 0;
284 }
285 
286 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
287 			  int size, dma_addr_t dma, int frag_end,
288 			  int buf_num, enum hns_desc_type type, int mtu)
289 {
290 	int frag_buf_num;
291 	int sizeoflast;
292 	int k;
293 
294 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
295 	sizeoflast = size % BD_MAX_SEND_SIZE;
296 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
297 
298 	/* when the frag size is bigger than hardware, split this frag */
299 	for (k = 0; k < frag_buf_num; k++)
300 		fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
301 				(k == frag_buf_num - 1) ?
302 					sizeoflast : BD_MAX_SEND_SIZE,
303 				dma + BD_MAX_SEND_SIZE * k,
304 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
305 				buf_num,
306 				(type == DESC_TYPE_SKB && !k) ?
307 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
308 				mtu);
309 }
310 
311 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
312 				struct sk_buff *skb,
313 				struct hns_nic_ring_data *ring_data)
314 {
315 	struct hns_nic_priv *priv = netdev_priv(ndev);
316 	struct hnae_ring *ring = ring_data->ring;
317 	struct device *dev = ring_to_dev(ring);
318 	struct netdev_queue *dev_queue;
319 	struct skb_frag_struct *frag;
320 	int buf_num;
321 	int seg_num;
322 	dma_addr_t dma;
323 	int size, next_to_use;
324 	int i;
325 
326 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
327 	case -EBUSY:
328 		ring->stats.tx_busy++;
329 		goto out_net_tx_busy;
330 	case -ENOMEM:
331 		ring->stats.sw_err_cnt++;
332 		netdev_err(ndev, "no memory to xmit!\n");
333 		goto out_err_tx_ok;
334 	default:
335 		break;
336 	}
337 
338 	/* no. of segments (plus a header) */
339 	seg_num = skb_shinfo(skb)->nr_frags + 1;
340 	next_to_use = ring->next_to_use;
341 
342 	/* fill the first part */
343 	size = skb_headlen(skb);
344 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
345 	if (dma_mapping_error(dev, dma)) {
346 		netdev_err(ndev, "TX head DMA map failed\n");
347 		ring->stats.sw_err_cnt++;
348 		goto out_err_tx_ok;
349 	}
350 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
351 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
352 
353 	/* fill the fragments */
354 	for (i = 1; i < seg_num; i++) {
355 		frag = &skb_shinfo(skb)->frags[i - 1];
356 		size = skb_frag_size(frag);
357 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
358 		if (dma_mapping_error(dev, dma)) {
359 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
360 			ring->stats.sw_err_cnt++;
361 			goto out_map_frag_fail;
362 		}
363 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
364 				    seg_num - 1 == i ? 1 : 0, buf_num,
365 				    DESC_TYPE_PAGE, ndev->mtu);
366 	}
367 
368 	/*complete translate all packets*/
369 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
370 	netdev_tx_sent_queue(dev_queue, skb->len);
371 
372 	netif_trans_update(ndev);
373 	ndev->stats.tx_bytes += skb->len;
374 	ndev->stats.tx_packets++;
375 
376 	wmb(); /* commit all data before submit */
377 	assert(skb->queue_mapping < priv->ae_handle->q_num);
378 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
379 	ring->stats.tx_pkts++;
380 	ring->stats.tx_bytes += skb->len;
381 
382 	return NETDEV_TX_OK;
383 
384 out_map_frag_fail:
385 
386 	while (ring->next_to_use != next_to_use) {
387 		unfill_desc(ring);
388 		if (ring->next_to_use != next_to_use)
389 			dma_unmap_page(dev,
390 				       ring->desc_cb[ring->next_to_use].dma,
391 				       ring->desc_cb[ring->next_to_use].length,
392 				       DMA_TO_DEVICE);
393 		else
394 			dma_unmap_single(dev,
395 					 ring->desc_cb[next_to_use].dma,
396 					 ring->desc_cb[next_to_use].length,
397 					 DMA_TO_DEVICE);
398 	}
399 
400 out_err_tx_ok:
401 
402 	dev_kfree_skb_any(skb);
403 	return NETDEV_TX_OK;
404 
405 out_net_tx_busy:
406 
407 	netif_stop_subqueue(ndev, skb->queue_mapping);
408 
409 	/* Herbert's original patch had:
410 	 *  smp_mb__after_netif_stop_queue();
411 	 * but since that doesn't exist yet, just open code it.
412 	 */
413 	smp_mb();
414 	return NETDEV_TX_BUSY;
415 }
416 
417 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
418 			       struct hnae_ring *ring, int pull_len,
419 			       struct hnae_desc_cb *desc_cb)
420 {
421 	struct hnae_desc *desc;
422 	u32 truesize;
423 	int size;
424 	int last_offset;
425 	bool twobufs;
426 
427 	twobufs = ((PAGE_SIZE < 8192) &&
428 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
429 
430 	desc = &ring->desc[ring->next_to_clean];
431 	size = le16_to_cpu(desc->rx.size);
432 
433 	if (twobufs) {
434 		truesize = hnae_buf_size(ring);
435 	} else {
436 		truesize = ALIGN(size, L1_CACHE_BYTES);
437 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
438 	}
439 
440 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
441 			size - pull_len, truesize);
442 
443 	 /* avoid re-using remote pages,flag default unreuse */
444 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
445 		return;
446 
447 	if (twobufs) {
448 		/* if we are only owner of page we can reuse it */
449 		if (likely(page_count(desc_cb->priv) == 1)) {
450 			/* flip page offset to other buffer */
451 			desc_cb->page_offset ^= truesize;
452 
453 			desc_cb->reuse_flag = 1;
454 			/* bump ref count on page before it is given*/
455 			get_page(desc_cb->priv);
456 		}
457 		return;
458 	}
459 
460 	/* move offset up to the next cache line */
461 	desc_cb->page_offset += truesize;
462 
463 	if (desc_cb->page_offset <= last_offset) {
464 		desc_cb->reuse_flag = 1;
465 		/* bump ref count on page before it is given*/
466 		get_page(desc_cb->priv);
467 	}
468 }
469 
470 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
471 {
472 	*out_bnum = hnae_get_field(bnum_flag,
473 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
474 }
475 
476 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
477 {
478 	*out_bnum = hnae_get_field(bnum_flag,
479 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
480 }
481 
482 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
483 				struct sk_buff *skb, u32 flag)
484 {
485 	struct net_device *netdev = ring_data->napi.dev;
486 	u32 l3id;
487 	u32 l4id;
488 
489 	/* check if RX checksum offload is enabled */
490 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
491 		return;
492 
493 	/* In hardware, we only support checksum for the following protocols:
494 	 * 1) IPv4,
495 	 * 2) TCP(over IPv4 or IPv6),
496 	 * 3) UDP(over IPv4 or IPv6),
497 	 * 4) SCTP(over IPv4 or IPv6)
498 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
499 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
500 	 *
501 	 * Hardware limitation:
502 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
503 	 * Error" bit (which usually can be used to indicate whether checksum
504 	 * was calculated by the hardware and if there was any error encountered
505 	 * during checksum calculation).
506 	 *
507 	 * Software workaround:
508 	 * We do get info within the RX descriptor about the kind of L3/L4
509 	 * protocol coming in the packet and the error status. These errors
510 	 * might not just be checksum errors but could be related to version,
511 	 * length of IPv4, UDP, TCP etc.
512 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
513 	 * checksum or any other L3/L4 error, we will not (cannot) convey
514 	 * checksum status for such cases to upper stack and will not maintain
515 	 * the RX L3/L4 checksum counters as well.
516 	 */
517 
518 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
519 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
520 
521 	/*  check L3 protocol for which checksum is supported */
522 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
523 		return;
524 
525 	/* check for any(not just checksum)flagged L3 protocol errors */
526 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
527 		return;
528 
529 	/* we do not support checksum of fragmented packets */
530 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
531 		return;
532 
533 	/*  check L4 protocol for which checksum is supported */
534 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
535 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
536 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
537 		return;
538 
539 	/* check for any(not just checksum)flagged L4 protocol errors */
540 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
541 		return;
542 
543 	/* now, this has to be a packet with valid RX checksum */
544 	skb->ip_summed = CHECKSUM_UNNECESSARY;
545 }
546 
547 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
548 			       struct sk_buff **out_skb, int *out_bnum)
549 {
550 	struct hnae_ring *ring = ring_data->ring;
551 	struct net_device *ndev = ring_data->napi.dev;
552 	struct hns_nic_priv *priv = netdev_priv(ndev);
553 	struct sk_buff *skb;
554 	struct hnae_desc *desc;
555 	struct hnae_desc_cb *desc_cb;
556 	unsigned char *va;
557 	int bnum, length, i;
558 	int pull_len;
559 	u32 bnum_flag;
560 
561 	desc = &ring->desc[ring->next_to_clean];
562 	desc_cb = &ring->desc_cb[ring->next_to_clean];
563 
564 	prefetch(desc);
565 
566 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
567 
568 	/* prefetch first cache line of first page */
569 	prefetch(va);
570 #if L1_CACHE_BYTES < 128
571 	prefetch(va + L1_CACHE_BYTES);
572 #endif
573 
574 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
575 					HNS_RX_HEAD_SIZE);
576 	if (unlikely(!skb)) {
577 		netdev_err(ndev, "alloc rx skb fail\n");
578 		ring->stats.sw_err_cnt++;
579 		return -ENOMEM;
580 	}
581 
582 	prefetchw(skb->data);
583 	length = le16_to_cpu(desc->rx.pkt_len);
584 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
585 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
586 	*out_bnum = bnum;
587 
588 	if (length <= HNS_RX_HEAD_SIZE) {
589 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
590 
591 		/* we can reuse buffer as-is, just make sure it is local */
592 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
593 			desc_cb->reuse_flag = 1;
594 		else /* this page cannot be reused so discard it */
595 			put_page(desc_cb->priv);
596 
597 		ring_ptr_move_fw(ring, next_to_clean);
598 
599 		if (unlikely(bnum != 1)) { /* check err*/
600 			*out_bnum = 1;
601 			goto out_bnum_err;
602 		}
603 	} else {
604 		ring->stats.seg_pkt_cnt++;
605 
606 		pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE);
607 		memcpy(__skb_put(skb, pull_len), va,
608 		       ALIGN(pull_len, sizeof(long)));
609 
610 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
611 		ring_ptr_move_fw(ring, next_to_clean);
612 
613 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
614 			*out_bnum = 1;
615 			goto out_bnum_err;
616 		}
617 		for (i = 1; i < bnum; i++) {
618 			desc = &ring->desc[ring->next_to_clean];
619 			desc_cb = &ring->desc_cb[ring->next_to_clean];
620 
621 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
622 			ring_ptr_move_fw(ring, next_to_clean);
623 		}
624 	}
625 
626 	/* check except process, free skb and jump the desc */
627 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
628 out_bnum_err:
629 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
630 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
631 			   bnum, ring->max_desc_num_per_pkt,
632 			   length, (int)MAX_SKB_FRAGS,
633 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
634 		ring->stats.err_bd_num++;
635 		dev_kfree_skb_any(skb);
636 		return -EDOM;
637 	}
638 
639 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
640 
641 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
642 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
643 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
644 		ring->stats.non_vld_descs++;
645 		dev_kfree_skb_any(skb);
646 		return -EINVAL;
647 	}
648 
649 	if (unlikely((!desc->rx.pkt_len) ||
650 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
651 		ring->stats.err_pkt_len++;
652 		dev_kfree_skb_any(skb);
653 		return -EFAULT;
654 	}
655 
656 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
657 		ring->stats.l2_err++;
658 		dev_kfree_skb_any(skb);
659 		return -EFAULT;
660 	}
661 
662 	ring->stats.rx_pkts++;
663 	ring->stats.rx_bytes += skb->len;
664 
665 	/* indicate to upper stack if our hardware has already calculated
666 	 * the RX checksum
667 	 */
668 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
669 
670 	return 0;
671 }
672 
673 static void
674 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
675 {
676 	int i, ret;
677 	struct hnae_desc_cb res_cbs;
678 	struct hnae_desc_cb *desc_cb;
679 	struct hnae_ring *ring = ring_data->ring;
680 	struct net_device *ndev = ring_data->napi.dev;
681 
682 	for (i = 0; i < cleand_count; i++) {
683 		desc_cb = &ring->desc_cb[ring->next_to_use];
684 		if (desc_cb->reuse_flag) {
685 			ring->stats.reuse_pg_cnt++;
686 			hnae_reuse_buffer(ring, ring->next_to_use);
687 		} else {
688 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
689 			if (ret) {
690 				ring->stats.sw_err_cnt++;
691 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
692 				break;
693 			}
694 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
695 		}
696 
697 		ring_ptr_move_fw(ring, next_to_use);
698 	}
699 
700 	wmb(); /* make all data has been write before submit */
701 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
702 }
703 
704 /* return error number for error or number of desc left to take
705  */
706 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
707 			      struct sk_buff *skb)
708 {
709 	struct net_device *ndev = ring_data->napi.dev;
710 
711 	skb->protocol = eth_type_trans(skb, ndev);
712 	(void)napi_gro_receive(&ring_data->napi, skb);
713 }
714 
715 static int hns_desc_unused(struct hnae_ring *ring)
716 {
717 	int ntc = ring->next_to_clean;
718 	int ntu = ring->next_to_use;
719 
720 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
721 }
722 
723 #define HNS_LOWEST_LATENCY_RATE		27	/* 27 MB/s */
724 #define HNS_LOW_LATENCY_RATE			80	/* 80 MB/s */
725 
726 #define HNS_COAL_BDNUM			3
727 
728 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
729 {
730 	bool coal_enable = ring->q->handle->coal_adapt_en;
731 
732 	if (coal_enable &&
733 	    ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
734 		return HNS_COAL_BDNUM;
735 	else
736 		return 0;
737 }
738 
739 static void hns_update_rx_rate(struct hnae_ring *ring)
740 {
741 	bool coal_enable = ring->q->handle->coal_adapt_en;
742 	u32 time_passed_ms;
743 	u64 total_bytes;
744 
745 	if (!coal_enable ||
746 	    time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
747 		return;
748 
749 	/* ring->stats.rx_bytes overflowed */
750 	if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
751 		ring->coal_last_rx_bytes = ring->stats.rx_bytes;
752 		ring->coal_last_jiffies = jiffies;
753 		return;
754 	}
755 
756 	total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
757 	time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
758 	do_div(total_bytes, time_passed_ms);
759 	ring->coal_rx_rate = total_bytes >> 10;
760 
761 	ring->coal_last_rx_bytes = ring->stats.rx_bytes;
762 	ring->coal_last_jiffies = jiffies;
763 }
764 
765 /**
766  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
767  **/
768 static u32 smooth_alg(u32 new_param, u32 old_param)
769 {
770 	u32 gap = (new_param > old_param) ? new_param - old_param
771 					  : old_param - new_param;
772 
773 	if (gap > 8)
774 		gap >>= 3;
775 
776 	if (new_param > old_param)
777 		return old_param + gap;
778 	else
779 		return old_param - gap;
780 }
781 
782 /**
783  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
784  * @ring_data: pointer to hns_nic_ring_data
785  **/
786 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
787 {
788 	struct hnae_ring *ring = ring_data->ring;
789 	struct hnae_handle *handle = ring->q->handle;
790 	u32 new_coal_param, old_coal_param = ring->coal_param;
791 
792 	if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
793 		new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
794 	else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
795 		new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
796 	else
797 		new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
798 
799 	if (new_coal_param == old_coal_param &&
800 	    new_coal_param == handle->coal_param)
801 		return;
802 
803 	new_coal_param = smooth_alg(new_coal_param, old_coal_param);
804 	ring->coal_param = new_coal_param;
805 
806 	/**
807 	 * Because all ring in one port has one coalesce param, when one ring
808 	 * calculate its own coalesce param, it cannot write to hardware at
809 	 * once. There are three conditions as follows:
810 	 *       1. current ring's coalesce param is larger than the hardware.
811 	 *       2. or ring which adapt last time can change again.
812 	 *       3. timeout.
813 	 */
814 	if (new_coal_param == handle->coal_param) {
815 		handle->coal_last_jiffies = jiffies;
816 		handle->coal_ring_idx = ring_data->queue_index;
817 	} else if (new_coal_param > handle->coal_param ||
818 		   handle->coal_ring_idx == ring_data->queue_index ||
819 		   time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
820 		handle->dev->ops->set_coalesce_usecs(handle,
821 					new_coal_param);
822 		handle->dev->ops->set_coalesce_frames(handle,
823 					1, new_coal_param);
824 		handle->coal_param = new_coal_param;
825 		handle->coal_ring_idx = ring_data->queue_index;
826 		handle->coal_last_jiffies = jiffies;
827 	}
828 }
829 
830 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
831 			       int budget, void *v)
832 {
833 	struct hnae_ring *ring = ring_data->ring;
834 	struct sk_buff *skb;
835 	int num, bnum;
836 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
837 	int recv_pkts, recv_bds, clean_count, err;
838 	int unused_count = hns_desc_unused(ring);
839 
840 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
841 	rmb(); /* make sure num taken effect before the other data is touched */
842 
843 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
844 	num -= unused_count;
845 
846 	while (recv_pkts < budget && recv_bds < num) {
847 		/* reuse or realloc buffers */
848 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
849 			hns_nic_alloc_rx_buffers(ring_data,
850 						 clean_count + unused_count);
851 			clean_count = 0;
852 			unused_count = hns_desc_unused(ring);
853 		}
854 
855 		/* poll one pkt */
856 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
857 		if (unlikely(!skb)) /* this fault cannot be repaired */
858 			goto out;
859 
860 		recv_bds += bnum;
861 		clean_count += bnum;
862 		if (unlikely(err)) {  /* do jump the err */
863 			recv_pkts++;
864 			continue;
865 		}
866 
867 		/* do update ip stack process*/
868 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
869 							ring_data, skb);
870 		recv_pkts++;
871 	}
872 
873 out:
874 	/* make all data has been write before submit */
875 	if (clean_count + unused_count > 0)
876 		hns_nic_alloc_rx_buffers(ring_data,
877 					 clean_count + unused_count);
878 
879 	return recv_pkts;
880 }
881 
882 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
883 {
884 	struct hnae_ring *ring = ring_data->ring;
885 	int num = 0;
886 	bool rx_stopped;
887 
888 	hns_update_rx_rate(ring);
889 
890 	/* for hardware bug fixed */
891 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
892 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
893 
894 	if (num <= hns_coal_rx_bdnum(ring)) {
895 		if (ring->q->handle->coal_adapt_en)
896 			hns_nic_adpt_coalesce(ring_data);
897 
898 		rx_stopped = true;
899 	} else {
900 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
901 			ring_data->ring, 1);
902 
903 		rx_stopped = false;
904 	}
905 
906 	return rx_stopped;
907 }
908 
909 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
910 {
911 	struct hnae_ring *ring = ring_data->ring;
912 	int num;
913 
914 	hns_update_rx_rate(ring);
915 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
916 
917 	if (num <= hns_coal_rx_bdnum(ring)) {
918 		if (ring->q->handle->coal_adapt_en)
919 			hns_nic_adpt_coalesce(ring_data);
920 
921 		return true;
922 	}
923 
924 	return false;
925 }
926 
927 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
928 					    int *bytes, int *pkts)
929 {
930 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
931 
932 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
933 	(*bytes) += desc_cb->length;
934 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
935 	hnae_free_buffer_detach(ring, ring->next_to_clean);
936 
937 	ring_ptr_move_fw(ring, next_to_clean);
938 }
939 
940 static int is_valid_clean_head(struct hnae_ring *ring, int h)
941 {
942 	int u = ring->next_to_use;
943 	int c = ring->next_to_clean;
944 
945 	if (unlikely(h > ring->desc_num))
946 		return 0;
947 
948 	assert(u > 0 && u < ring->desc_num);
949 	assert(c > 0 && c < ring->desc_num);
950 	assert(u != c && h != c); /* must be checked before call this func */
951 
952 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
953 }
954 
955 /* netif_tx_lock will turn down the performance, set only when necessary */
956 #ifdef CONFIG_NET_POLL_CONTROLLER
957 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
958 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
959 #else
960 #define NETIF_TX_LOCK(ring)
961 #define NETIF_TX_UNLOCK(ring)
962 #endif
963 
964 /* reclaim all desc in one budget
965  * return error or number of desc left
966  */
967 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
968 			       int budget, void *v)
969 {
970 	struct hnae_ring *ring = ring_data->ring;
971 	struct net_device *ndev = ring_data->napi.dev;
972 	struct netdev_queue *dev_queue;
973 	struct hns_nic_priv *priv = netdev_priv(ndev);
974 	int head;
975 	int bytes, pkts;
976 
977 	NETIF_TX_LOCK(ring);
978 
979 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
980 	rmb(); /* make sure head is ready before touch any data */
981 
982 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
983 		NETIF_TX_UNLOCK(ring);
984 		return 0; /* no data to poll */
985 	}
986 
987 	if (!is_valid_clean_head(ring, head)) {
988 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
989 			   ring->next_to_use, ring->next_to_clean);
990 		ring->stats.io_err_cnt++;
991 		NETIF_TX_UNLOCK(ring);
992 		return -EIO;
993 	}
994 
995 	bytes = 0;
996 	pkts = 0;
997 	while (head != ring->next_to_clean) {
998 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
999 		/* issue prefetch for next Tx descriptor */
1000 		prefetch(&ring->desc_cb[ring->next_to_clean]);
1001 	}
1002 
1003 	NETIF_TX_UNLOCK(ring);
1004 
1005 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1006 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
1007 
1008 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1009 		netif_carrier_on(ndev);
1010 
1011 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
1012 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1013 		/* Make sure that anybody stopping the queue after this
1014 		 * sees the new next_to_clean.
1015 		 */
1016 		smp_mb();
1017 		if (netif_tx_queue_stopped(dev_queue) &&
1018 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
1019 			netif_tx_wake_queue(dev_queue);
1020 			ring->stats.restart_queue++;
1021 		}
1022 	}
1023 	return 0;
1024 }
1025 
1026 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1027 {
1028 	struct hnae_ring *ring = ring_data->ring;
1029 	int head;
1030 
1031 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1032 
1033 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1034 
1035 	if (head != ring->next_to_clean) {
1036 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1037 			ring_data->ring, 1);
1038 
1039 		return false;
1040 	} else {
1041 		return true;
1042 	}
1043 }
1044 
1045 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1046 {
1047 	struct hnae_ring *ring = ring_data->ring;
1048 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1049 
1050 	if (head == ring->next_to_clean)
1051 		return true;
1052 	else
1053 		return false;
1054 }
1055 
1056 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1057 {
1058 	struct hnae_ring *ring = ring_data->ring;
1059 	struct net_device *ndev = ring_data->napi.dev;
1060 	struct netdev_queue *dev_queue;
1061 	int head;
1062 	int bytes, pkts;
1063 
1064 	NETIF_TX_LOCK(ring);
1065 
1066 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1067 	bytes = 0;
1068 	pkts = 0;
1069 	while (head != ring->next_to_clean)
1070 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1071 
1072 	NETIF_TX_UNLOCK(ring);
1073 
1074 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1075 	netdev_tx_reset_queue(dev_queue);
1076 }
1077 
1078 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1079 {
1080 	int clean_complete = 0;
1081 	struct hns_nic_ring_data *ring_data =
1082 		container_of(napi, struct hns_nic_ring_data, napi);
1083 	struct hnae_ring *ring = ring_data->ring;
1084 
1085 try_again:
1086 	clean_complete += ring_data->poll_one(
1087 				ring_data, budget - clean_complete,
1088 				ring_data->ex_process);
1089 
1090 	if (clean_complete < budget) {
1091 		if (ring_data->fini_process(ring_data)) {
1092 			napi_complete(napi);
1093 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1094 		} else {
1095 			goto try_again;
1096 		}
1097 	}
1098 
1099 	return clean_complete;
1100 }
1101 
1102 static irqreturn_t hns_irq_handle(int irq, void *dev)
1103 {
1104 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1105 
1106 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1107 		ring_data->ring, 1);
1108 	napi_schedule(&ring_data->napi);
1109 
1110 	return IRQ_HANDLED;
1111 }
1112 
1113 /**
1114  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1115  *@ndev: net device
1116  */
1117 static void hns_nic_adjust_link(struct net_device *ndev)
1118 {
1119 	struct hns_nic_priv *priv = netdev_priv(ndev);
1120 	struct hnae_handle *h = priv->ae_handle;
1121 	int state = 1;
1122 
1123 	/* If there is no phy, do not need adjust link */
1124 	if (ndev->phydev) {
1125 		/* When phy link down, do nothing */
1126 		if (ndev->phydev->link == 0)
1127 			return;
1128 
1129 		if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1130 						  ndev->phydev->duplex)) {
1131 			/* because Hi161X chip don't support to change gmac
1132 			 * speed and duplex with traffic. Delay 200ms to
1133 			 * make sure there is no more data in chip FIFO.
1134 			 */
1135 			netif_carrier_off(ndev);
1136 			msleep(200);
1137 			h->dev->ops->adjust_link(h, ndev->phydev->speed,
1138 						 ndev->phydev->duplex);
1139 			netif_carrier_on(ndev);
1140 		}
1141 	}
1142 
1143 	state = state && h->dev->ops->get_status(h);
1144 
1145 	if (state != priv->link) {
1146 		if (state) {
1147 			netif_carrier_on(ndev);
1148 			netif_tx_wake_all_queues(ndev);
1149 			netdev_info(ndev, "link up\n");
1150 		} else {
1151 			netif_carrier_off(ndev);
1152 			netdev_info(ndev, "link down\n");
1153 		}
1154 		priv->link = state;
1155 	}
1156 }
1157 
1158 /**
1159  *hns_nic_init_phy - init phy
1160  *@ndev: net device
1161  *@h: ae handle
1162  * Return 0 on success, negative on failure
1163  */
1164 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1165 {
1166 	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1167 	struct phy_device *phy_dev = h->phy_dev;
1168 	int ret;
1169 
1170 	if (!h->phy_dev)
1171 		return 0;
1172 
1173 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1174 		phy_dev->dev_flags = 0;
1175 
1176 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1177 					 h->phy_if);
1178 	} else {
1179 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1180 	}
1181 	if (unlikely(ret))
1182 		return -ENODEV;
1183 
1184 	ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1185 	linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1186 	linkmode_copy(phy_dev->advertising, phy_dev->supported);
1187 
1188 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1189 		phy_dev->autoneg = false;
1190 
1191 	if (h->phy_if == PHY_INTERFACE_MODE_SGMII)
1192 		phy_stop(phy_dev);
1193 
1194 	return 0;
1195 }
1196 
1197 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1198 {
1199 	struct hns_nic_priv *priv = netdev_priv(netdev);
1200 	struct hnae_handle *h = priv->ae_handle;
1201 
1202 	napi_enable(&priv->ring_data[idx].napi);
1203 
1204 	enable_irq(priv->ring_data[idx].ring->irq);
1205 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1206 
1207 	return 0;
1208 }
1209 
1210 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1211 {
1212 	struct hns_nic_priv *priv = netdev_priv(ndev);
1213 	struct hnae_handle *h = priv->ae_handle;
1214 	struct sockaddr *mac_addr = p;
1215 	int ret;
1216 
1217 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1218 		return -EADDRNOTAVAIL;
1219 
1220 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1221 	if (ret) {
1222 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1223 		return ret;
1224 	}
1225 
1226 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1227 
1228 	return 0;
1229 }
1230 
1231 static void hns_nic_update_stats(struct net_device *netdev)
1232 {
1233 	struct hns_nic_priv *priv = netdev_priv(netdev);
1234 	struct hnae_handle *h = priv->ae_handle;
1235 
1236 	h->dev->ops->update_stats(h, &netdev->stats);
1237 }
1238 
1239 /* set mac addr if it is configed. or leave it to the AE driver */
1240 static void hns_init_mac_addr(struct net_device *ndev)
1241 {
1242 	struct hns_nic_priv *priv = netdev_priv(ndev);
1243 
1244 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1245 		eth_hw_addr_random(ndev);
1246 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1247 			 ndev->dev_addr);
1248 	}
1249 }
1250 
1251 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1252 {
1253 	struct hns_nic_priv *priv = netdev_priv(netdev);
1254 	struct hnae_handle *h = priv->ae_handle;
1255 
1256 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1257 	disable_irq(priv->ring_data[idx].ring->irq);
1258 
1259 	napi_disable(&priv->ring_data[idx].napi);
1260 }
1261 
1262 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1263 				      struct hnae_ring *ring, cpumask_t *mask)
1264 {
1265 	int cpu;
1266 
1267 	/* Diffrent irq banlance between 16core and 32core.
1268 	 * The cpu mask set by ring index according to the ring flag
1269 	 * which indicate the ring is tx or rx.
1270 	 */
1271 	if (q_num == num_possible_cpus()) {
1272 		if (is_tx_ring(ring))
1273 			cpu = ring_idx;
1274 		else
1275 			cpu = ring_idx - q_num;
1276 	} else {
1277 		if (is_tx_ring(ring))
1278 			cpu = ring_idx * 2;
1279 		else
1280 			cpu = (ring_idx - q_num) * 2 + 1;
1281 	}
1282 
1283 	cpumask_clear(mask);
1284 	cpumask_set_cpu(cpu, mask);
1285 
1286 	return cpu;
1287 }
1288 
1289 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1290 {
1291 	int i;
1292 
1293 	for (i = 0; i < q_num * 2; i++) {
1294 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1295 			irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1296 					      NULL);
1297 			free_irq(priv->ring_data[i].ring->irq,
1298 				 &priv->ring_data[i]);
1299 			priv->ring_data[i].ring->irq_init_flag =
1300 				RCB_IRQ_NOT_INITED;
1301 		}
1302 	}
1303 }
1304 
1305 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1306 {
1307 	struct hnae_handle *h = priv->ae_handle;
1308 	struct hns_nic_ring_data *rd;
1309 	int i;
1310 	int ret;
1311 	int cpu;
1312 
1313 	for (i = 0; i < h->q_num * 2; i++) {
1314 		rd = &priv->ring_data[i];
1315 
1316 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1317 			break;
1318 
1319 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1320 			 "%s-%s%d", priv->netdev->name,
1321 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1322 
1323 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1324 
1325 		ret = request_irq(rd->ring->irq,
1326 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1327 		if (ret) {
1328 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1329 				   rd->ring->irq);
1330 			goto out_free_irq;
1331 		}
1332 		disable_irq(rd->ring->irq);
1333 
1334 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1335 						 rd->ring, &rd->mask);
1336 
1337 		if (cpu_online(cpu))
1338 			irq_set_affinity_hint(rd->ring->irq,
1339 					      &rd->mask);
1340 
1341 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1342 	}
1343 
1344 	return 0;
1345 
1346 out_free_irq:
1347 	hns_nic_free_irq(h->q_num, priv);
1348 	return ret;
1349 }
1350 
1351 static int hns_nic_net_up(struct net_device *ndev)
1352 {
1353 	struct hns_nic_priv *priv = netdev_priv(ndev);
1354 	struct hnae_handle *h = priv->ae_handle;
1355 	int i, j;
1356 	int ret;
1357 
1358 	if (!test_bit(NIC_STATE_DOWN, &priv->state))
1359 		return 0;
1360 
1361 	ret = hns_nic_init_irq(priv);
1362 	if (ret != 0) {
1363 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1364 		return ret;
1365 	}
1366 
1367 	for (i = 0; i < h->q_num * 2; i++) {
1368 		ret = hns_nic_ring_open(ndev, i);
1369 		if (ret)
1370 			goto out_has_some_queues;
1371 	}
1372 
1373 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1374 	if (ret)
1375 		goto out_set_mac_addr_err;
1376 
1377 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1378 	if (ret)
1379 		goto out_start_err;
1380 
1381 	if (ndev->phydev)
1382 		phy_start(ndev->phydev);
1383 
1384 	clear_bit(NIC_STATE_DOWN, &priv->state);
1385 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1386 
1387 	return 0;
1388 
1389 out_start_err:
1390 	netif_stop_queue(ndev);
1391 out_set_mac_addr_err:
1392 out_has_some_queues:
1393 	for (j = i - 1; j >= 0; j--)
1394 		hns_nic_ring_close(ndev, j);
1395 
1396 	hns_nic_free_irq(h->q_num, priv);
1397 	set_bit(NIC_STATE_DOWN, &priv->state);
1398 
1399 	return ret;
1400 }
1401 
1402 static void hns_nic_net_down(struct net_device *ndev)
1403 {
1404 	int i;
1405 	struct hnae_ae_ops *ops;
1406 	struct hns_nic_priv *priv = netdev_priv(ndev);
1407 
1408 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1409 		return;
1410 
1411 	(void)del_timer_sync(&priv->service_timer);
1412 	netif_tx_stop_all_queues(ndev);
1413 	netif_carrier_off(ndev);
1414 	netif_tx_disable(ndev);
1415 	priv->link = 0;
1416 
1417 	if (ndev->phydev)
1418 		phy_stop(ndev->phydev);
1419 
1420 	ops = priv->ae_handle->dev->ops;
1421 
1422 	if (ops->stop)
1423 		ops->stop(priv->ae_handle);
1424 
1425 	netif_tx_stop_all_queues(ndev);
1426 
1427 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1428 		hns_nic_ring_close(ndev, i);
1429 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1430 
1431 		/* clean tx buffers*/
1432 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1433 	}
1434 }
1435 
1436 void hns_nic_net_reset(struct net_device *ndev)
1437 {
1438 	struct hns_nic_priv *priv = netdev_priv(ndev);
1439 	struct hnae_handle *handle = priv->ae_handle;
1440 
1441 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1442 		usleep_range(1000, 2000);
1443 
1444 	(void)hnae_reinit_handle(handle);
1445 
1446 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1447 }
1448 
1449 void hns_nic_net_reinit(struct net_device *netdev)
1450 {
1451 	struct hns_nic_priv *priv = netdev_priv(netdev);
1452 	enum hnae_port_type type = priv->ae_handle->port_type;
1453 
1454 	netif_trans_update(priv->netdev);
1455 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1456 		usleep_range(1000, 2000);
1457 
1458 	hns_nic_net_down(netdev);
1459 
1460 	/* Only do hns_nic_net_reset in debug mode
1461 	 * because of hardware limitation.
1462 	 */
1463 	if (type == HNAE_PORT_DEBUG)
1464 		hns_nic_net_reset(netdev);
1465 
1466 	(void)hns_nic_net_up(netdev);
1467 	clear_bit(NIC_STATE_REINITING, &priv->state);
1468 }
1469 
1470 static int hns_nic_net_open(struct net_device *ndev)
1471 {
1472 	struct hns_nic_priv *priv = netdev_priv(ndev);
1473 	struct hnae_handle *h = priv->ae_handle;
1474 	int ret;
1475 
1476 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1477 		return -EBUSY;
1478 
1479 	priv->link = 0;
1480 	netif_carrier_off(ndev);
1481 
1482 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1483 	if (ret < 0) {
1484 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1485 			   ret);
1486 		return ret;
1487 	}
1488 
1489 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1490 	if (ret < 0) {
1491 		netdev_err(ndev,
1492 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1493 		return ret;
1494 	}
1495 
1496 	ret = hns_nic_net_up(ndev);
1497 	if (ret) {
1498 		netdev_err(ndev,
1499 			   "hns net up fail, ret=%d!\n", ret);
1500 		return ret;
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 static int hns_nic_net_stop(struct net_device *ndev)
1507 {
1508 	hns_nic_net_down(ndev);
1509 
1510 	return 0;
1511 }
1512 
1513 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1514 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1515 static void hns_nic_net_timeout(struct net_device *ndev)
1516 {
1517 	struct hns_nic_priv *priv = netdev_priv(ndev);
1518 
1519 	if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1520 		ndev->watchdog_timeo *= 2;
1521 		netdev_info(ndev, "watchdog_timo changed to %d.\n",
1522 			    ndev->watchdog_timeo);
1523 	} else {
1524 		ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1525 		hns_tx_timeout_reset(priv);
1526 	}
1527 }
1528 
1529 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1530 			    int cmd)
1531 {
1532 	struct phy_device *phy_dev = netdev->phydev;
1533 
1534 	if (!netif_running(netdev))
1535 		return -EINVAL;
1536 
1537 	if (!phy_dev)
1538 		return -ENOTSUPP;
1539 
1540 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1541 }
1542 
1543 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1544 				    struct net_device *ndev)
1545 {
1546 	struct hns_nic_priv *priv = netdev_priv(ndev);
1547 
1548 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1549 
1550 	return hns_nic_net_xmit_hw(ndev, skb,
1551 				   &tx_ring_data(priv, skb->queue_mapping));
1552 }
1553 
1554 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1555 				  struct sk_buff *skb)
1556 {
1557 	dev_kfree_skb_any(skb);
1558 }
1559 
1560 #define HNS_LB_TX_RING	0
1561 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1562 {
1563 	struct sk_buff *skb;
1564 	struct ethhdr *ethhdr;
1565 	int frame_len;
1566 
1567 	/* allocate test skb */
1568 	skb = alloc_skb(64, GFP_KERNEL);
1569 	if (!skb)
1570 		return NULL;
1571 
1572 	skb_put(skb, 64);
1573 	skb->dev = ndev;
1574 	memset(skb->data, 0xFF, skb->len);
1575 
1576 	/* must be tcp/ip package */
1577 	ethhdr = (struct ethhdr *)skb->data;
1578 	ethhdr->h_proto = htons(ETH_P_IP);
1579 
1580 	frame_len = skb->len & (~1ul);
1581 	memset(&skb->data[frame_len / 2], 0xAA,
1582 	       frame_len / 2 - 1);
1583 
1584 	skb->queue_mapping = HNS_LB_TX_RING;
1585 
1586 	return skb;
1587 }
1588 
1589 static int hns_enable_serdes_lb(struct net_device *ndev)
1590 {
1591 	struct hns_nic_priv *priv = netdev_priv(ndev);
1592 	struct hnae_handle *h = priv->ae_handle;
1593 	struct hnae_ae_ops *ops = h->dev->ops;
1594 	int speed, duplex;
1595 	int ret;
1596 
1597 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1598 	if (ret)
1599 		return ret;
1600 
1601 	ret = ops->start ? ops->start(h) : 0;
1602 	if (ret)
1603 		return ret;
1604 
1605 	/* link adjust duplex*/
1606 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1607 		speed = 1000;
1608 	else
1609 		speed = 10000;
1610 	duplex = 1;
1611 
1612 	ops->adjust_link(h, speed, duplex);
1613 
1614 	/* wait h/w ready */
1615 	mdelay(300);
1616 
1617 	return 0;
1618 }
1619 
1620 static void hns_disable_serdes_lb(struct net_device *ndev)
1621 {
1622 	struct hns_nic_priv *priv = netdev_priv(ndev);
1623 	struct hnae_handle *h = priv->ae_handle;
1624 	struct hnae_ae_ops *ops = h->dev->ops;
1625 
1626 	ops->stop(h);
1627 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1628 }
1629 
1630 /**
1631  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1632  *function as follows:
1633  *    1. if one rx ring has found the page_offset is not equal 0 between head
1634  *       and tail, it means that the chip fetched the wrong descs for the ring
1635  *       which buffer size is 4096.
1636  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1637  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1638  *       recieving all packages and it will fetch new descriptions.
1639  *    4. recover to the original state.
1640  *
1641  *@ndev: net device
1642  */
1643 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1644 {
1645 	struct hns_nic_priv *priv = netdev_priv(ndev);
1646 	struct hnae_handle *h = priv->ae_handle;
1647 	struct hnae_ae_ops *ops = h->dev->ops;
1648 	struct hns_nic_ring_data *rd;
1649 	struct hnae_ring *ring;
1650 	struct sk_buff *skb;
1651 	u32 *org_indir;
1652 	u32 *cur_indir;
1653 	int indir_size;
1654 	int head, tail;
1655 	int fetch_num;
1656 	int i, j;
1657 	bool found;
1658 	int retry_times;
1659 	int ret = 0;
1660 
1661 	/* alloc indir memory */
1662 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1663 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1664 	if (!org_indir)
1665 		return -ENOMEM;
1666 
1667 	/* store the orginal indirection */
1668 	ops->get_rss(h, org_indir, NULL, NULL);
1669 
1670 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1671 	if (!cur_indir) {
1672 		ret = -ENOMEM;
1673 		goto cur_indir_alloc_err;
1674 	}
1675 
1676 	/* set loopback */
1677 	if (hns_enable_serdes_lb(ndev)) {
1678 		ret = -EINVAL;
1679 		goto enable_serdes_lb_err;
1680 	}
1681 
1682 	/* foreach every rx ring to clear fetch desc */
1683 	for (i = 0; i < h->q_num; i++) {
1684 		ring = &h->qs[i]->rx_ring;
1685 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1686 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1687 		found = false;
1688 		fetch_num = ring_dist(ring, head, tail);
1689 
1690 		while (head != tail) {
1691 			if (ring->desc_cb[head].page_offset != 0) {
1692 				found = true;
1693 				break;
1694 			}
1695 
1696 			head++;
1697 			if (head == ring->desc_num)
1698 				head = 0;
1699 		}
1700 
1701 		if (found) {
1702 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1703 				cur_indir[j] = i;
1704 			ops->set_rss(h, cur_indir, NULL, 0);
1705 
1706 			for (j = 0; j < fetch_num; j++) {
1707 				/* alloc one skb and init */
1708 				skb = hns_assemble_skb(ndev);
1709 				if (!skb)
1710 					goto out;
1711 				rd = &tx_ring_data(priv, skb->queue_mapping);
1712 				hns_nic_net_xmit_hw(ndev, skb, rd);
1713 
1714 				retry_times = 0;
1715 				while (retry_times++ < 10) {
1716 					mdelay(10);
1717 					/* clean rx */
1718 					rd = &rx_ring_data(priv, i);
1719 					if (rd->poll_one(rd, fetch_num,
1720 							 hns_nic_drop_rx_fetch))
1721 						break;
1722 				}
1723 
1724 				retry_times = 0;
1725 				while (retry_times++ < 10) {
1726 					mdelay(10);
1727 					/* clean tx ring 0 send package */
1728 					rd = &tx_ring_data(priv,
1729 							   HNS_LB_TX_RING);
1730 					if (rd->poll_one(rd, fetch_num, NULL))
1731 						break;
1732 				}
1733 			}
1734 		}
1735 	}
1736 
1737 out:
1738 	/* restore everything */
1739 	ops->set_rss(h, org_indir, NULL, 0);
1740 	hns_disable_serdes_lb(ndev);
1741 enable_serdes_lb_err:
1742 	kfree(cur_indir);
1743 cur_indir_alloc_err:
1744 	kfree(org_indir);
1745 
1746 	return ret;
1747 }
1748 
1749 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1750 {
1751 	struct hns_nic_priv *priv = netdev_priv(ndev);
1752 	struct hnae_handle *h = priv->ae_handle;
1753 	bool if_running = netif_running(ndev);
1754 	int ret;
1755 
1756 	/* MTU < 68 is an error and causes problems on some kernels */
1757 	if (new_mtu < 68)
1758 		return -EINVAL;
1759 
1760 	/* MTU no change */
1761 	if (new_mtu == ndev->mtu)
1762 		return 0;
1763 
1764 	if (!h->dev->ops->set_mtu)
1765 		return -ENOTSUPP;
1766 
1767 	if (if_running) {
1768 		(void)hns_nic_net_stop(ndev);
1769 		msleep(100);
1770 	}
1771 
1772 	if (priv->enet_ver != AE_VERSION_1 &&
1773 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1774 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1775 		/* update desc */
1776 		hnae_reinit_all_ring_desc(h);
1777 
1778 		/* clear the package which the chip has fetched */
1779 		ret = hns_nic_clear_all_rx_fetch(ndev);
1780 
1781 		/* the page offset must be consist with desc */
1782 		hnae_reinit_all_ring_page_off(h);
1783 
1784 		if (ret) {
1785 			netdev_err(ndev, "clear the fetched desc fail\n");
1786 			goto out;
1787 		}
1788 	}
1789 
1790 	ret = h->dev->ops->set_mtu(h, new_mtu);
1791 	if (ret) {
1792 		netdev_err(ndev, "set mtu fail, return value %d\n",
1793 			   ret);
1794 		goto out;
1795 	}
1796 
1797 	/* finally, set new mtu to netdevice */
1798 	ndev->mtu = new_mtu;
1799 
1800 out:
1801 	if (if_running) {
1802 		if (hns_nic_net_open(ndev)) {
1803 			netdev_err(ndev, "hns net open fail\n");
1804 			ret = -EINVAL;
1805 		}
1806 	}
1807 
1808 	return ret;
1809 }
1810 
1811 static int hns_nic_set_features(struct net_device *netdev,
1812 				netdev_features_t features)
1813 {
1814 	struct hns_nic_priv *priv = netdev_priv(netdev);
1815 
1816 	switch (priv->enet_ver) {
1817 	case AE_VERSION_1:
1818 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1819 			netdev_info(netdev, "enet v1 do not support tso!\n");
1820 		break;
1821 	default:
1822 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1823 			priv->ops.fill_desc = fill_tso_desc;
1824 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1825 			/* The chip only support 7*4096 */
1826 			netif_set_gso_max_size(netdev, 7 * 4096);
1827 		} else {
1828 			priv->ops.fill_desc = fill_v2_desc;
1829 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1830 		}
1831 		break;
1832 	}
1833 	netdev->features = features;
1834 	return 0;
1835 }
1836 
1837 static netdev_features_t hns_nic_fix_features(
1838 		struct net_device *netdev, netdev_features_t features)
1839 {
1840 	struct hns_nic_priv *priv = netdev_priv(netdev);
1841 
1842 	switch (priv->enet_ver) {
1843 	case AE_VERSION_1:
1844 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1845 				NETIF_F_HW_VLAN_CTAG_FILTER);
1846 		break;
1847 	default:
1848 		break;
1849 	}
1850 	return features;
1851 }
1852 
1853 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1854 {
1855 	struct hns_nic_priv *priv = netdev_priv(netdev);
1856 	struct hnae_handle *h = priv->ae_handle;
1857 
1858 	if (h->dev->ops->add_uc_addr)
1859 		return h->dev->ops->add_uc_addr(h, addr);
1860 
1861 	return 0;
1862 }
1863 
1864 static int hns_nic_uc_unsync(struct net_device *netdev,
1865 			     const unsigned char *addr)
1866 {
1867 	struct hns_nic_priv *priv = netdev_priv(netdev);
1868 	struct hnae_handle *h = priv->ae_handle;
1869 
1870 	if (h->dev->ops->rm_uc_addr)
1871 		return h->dev->ops->rm_uc_addr(h, addr);
1872 
1873 	return 0;
1874 }
1875 
1876 /**
1877  * nic_set_multicast_list - set mutl mac address
1878  * @netdev: net device
1879  * @p: mac address
1880  *
1881  * return void
1882  */
1883 static void hns_set_multicast_list(struct net_device *ndev)
1884 {
1885 	struct hns_nic_priv *priv = netdev_priv(ndev);
1886 	struct hnae_handle *h = priv->ae_handle;
1887 	struct netdev_hw_addr *ha = NULL;
1888 
1889 	if (!h)	{
1890 		netdev_err(ndev, "hnae handle is null\n");
1891 		return;
1892 	}
1893 
1894 	if (h->dev->ops->clr_mc_addr)
1895 		if (h->dev->ops->clr_mc_addr(h))
1896 			netdev_err(ndev, "clear multicast address fail\n");
1897 
1898 	if (h->dev->ops->set_mc_addr) {
1899 		netdev_for_each_mc_addr(ha, ndev)
1900 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1901 				netdev_err(ndev, "set multicast fail\n");
1902 	}
1903 }
1904 
1905 static void hns_nic_set_rx_mode(struct net_device *ndev)
1906 {
1907 	struct hns_nic_priv *priv = netdev_priv(ndev);
1908 	struct hnae_handle *h = priv->ae_handle;
1909 
1910 	if (h->dev->ops->set_promisc_mode) {
1911 		if (ndev->flags & IFF_PROMISC)
1912 			h->dev->ops->set_promisc_mode(h, 1);
1913 		else
1914 			h->dev->ops->set_promisc_mode(h, 0);
1915 	}
1916 
1917 	hns_set_multicast_list(ndev);
1918 
1919 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1920 		netdev_err(ndev, "sync uc address fail\n");
1921 }
1922 
1923 static void hns_nic_get_stats64(struct net_device *ndev,
1924 				struct rtnl_link_stats64 *stats)
1925 {
1926 	int idx = 0;
1927 	u64 tx_bytes = 0;
1928 	u64 rx_bytes = 0;
1929 	u64 tx_pkts = 0;
1930 	u64 rx_pkts = 0;
1931 	struct hns_nic_priv *priv = netdev_priv(ndev);
1932 	struct hnae_handle *h = priv->ae_handle;
1933 
1934 	for (idx = 0; idx < h->q_num; idx++) {
1935 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1936 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1937 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1938 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1939 	}
1940 
1941 	stats->tx_bytes = tx_bytes;
1942 	stats->tx_packets = tx_pkts;
1943 	stats->rx_bytes = rx_bytes;
1944 	stats->rx_packets = rx_pkts;
1945 
1946 	stats->rx_errors = ndev->stats.rx_errors;
1947 	stats->multicast = ndev->stats.multicast;
1948 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1949 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1950 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1951 
1952 	stats->tx_errors = ndev->stats.tx_errors;
1953 	stats->rx_dropped = ndev->stats.rx_dropped;
1954 	stats->tx_dropped = ndev->stats.tx_dropped;
1955 	stats->collisions = ndev->stats.collisions;
1956 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1957 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1958 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1959 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1960 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1961 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1962 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1963 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1964 	stats->rx_compressed = ndev->stats.rx_compressed;
1965 	stats->tx_compressed = ndev->stats.tx_compressed;
1966 }
1967 
1968 static u16
1969 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1970 		     struct net_device *sb_dev,
1971 		     select_queue_fallback_t fallback)
1972 {
1973 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1974 	struct hns_nic_priv *priv = netdev_priv(ndev);
1975 
1976 	/* fix hardware broadcast/multicast packets queue loopback */
1977 	if (!AE_IS_VER1(priv->enet_ver) &&
1978 	    is_multicast_ether_addr(eth_hdr->h_dest))
1979 		return 0;
1980 	else
1981 		return fallback(ndev, skb, NULL);
1982 }
1983 
1984 static const struct net_device_ops hns_nic_netdev_ops = {
1985 	.ndo_open = hns_nic_net_open,
1986 	.ndo_stop = hns_nic_net_stop,
1987 	.ndo_start_xmit = hns_nic_net_xmit,
1988 	.ndo_tx_timeout = hns_nic_net_timeout,
1989 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1990 	.ndo_change_mtu = hns_nic_change_mtu,
1991 	.ndo_do_ioctl = hns_nic_do_ioctl,
1992 	.ndo_set_features = hns_nic_set_features,
1993 	.ndo_fix_features = hns_nic_fix_features,
1994 	.ndo_get_stats64 = hns_nic_get_stats64,
1995 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1996 	.ndo_select_queue = hns_nic_select_queue,
1997 };
1998 
1999 static void hns_nic_update_link_status(struct net_device *netdev)
2000 {
2001 	struct hns_nic_priv *priv = netdev_priv(netdev);
2002 
2003 	struct hnae_handle *h = priv->ae_handle;
2004 
2005 	if (h->phy_dev) {
2006 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
2007 			return;
2008 
2009 		(void)genphy_read_status(h->phy_dev);
2010 	}
2011 	hns_nic_adjust_link(netdev);
2012 }
2013 
2014 /* for dumping key regs*/
2015 static void hns_nic_dump(struct hns_nic_priv *priv)
2016 {
2017 	struct hnae_handle *h = priv->ae_handle;
2018 	struct hnae_ae_ops *ops = h->dev->ops;
2019 	u32 *data, reg_num, i;
2020 
2021 	if (ops->get_regs_len && ops->get_regs) {
2022 		reg_num = ops->get_regs_len(priv->ae_handle);
2023 		reg_num = (reg_num + 3ul) & ~3ul;
2024 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
2025 		if (data) {
2026 			ops->get_regs(priv->ae_handle, data);
2027 			for (i = 0; i < reg_num; i += 4)
2028 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2029 					i, data[i], data[i + 1],
2030 					data[i + 2], data[i + 3]);
2031 			kfree(data);
2032 		}
2033 	}
2034 
2035 	for (i = 0; i < h->q_num; i++) {
2036 		pr_info("tx_queue%d_next_to_clean:%d\n",
2037 			i, h->qs[i]->tx_ring.next_to_clean);
2038 		pr_info("tx_queue%d_next_to_use:%d\n",
2039 			i, h->qs[i]->tx_ring.next_to_use);
2040 		pr_info("rx_queue%d_next_to_clean:%d\n",
2041 			i, h->qs[i]->rx_ring.next_to_clean);
2042 		pr_info("rx_queue%d_next_to_use:%d\n",
2043 			i, h->qs[i]->rx_ring.next_to_use);
2044 	}
2045 }
2046 
2047 /* for resetting subtask */
2048 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2049 {
2050 	enum hnae_port_type type = priv->ae_handle->port_type;
2051 
2052 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2053 		return;
2054 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2055 
2056 	/* If we're already down, removing or resetting, just bail */
2057 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2058 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
2059 	    test_bit(NIC_STATE_RESETTING, &priv->state))
2060 		return;
2061 
2062 	hns_nic_dump(priv);
2063 	netdev_info(priv->netdev, "try to reset %s port!\n",
2064 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2065 
2066 	rtnl_lock();
2067 	/* put off any impending NetWatchDogTimeout */
2068 	netif_trans_update(priv->netdev);
2069 	hns_nic_net_reinit(priv->netdev);
2070 
2071 	rtnl_unlock();
2072 }
2073 
2074 /* for doing service complete*/
2075 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2076 {
2077 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2078 	/* make sure to commit the things */
2079 	smp_mb__before_atomic();
2080 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2081 }
2082 
2083 static void hns_nic_service_task(struct work_struct *work)
2084 {
2085 	struct hns_nic_priv *priv
2086 		= container_of(work, struct hns_nic_priv, service_task);
2087 	struct hnae_handle *h = priv->ae_handle;
2088 
2089 	hns_nic_reset_subtask(priv);
2090 	hns_nic_update_link_status(priv->netdev);
2091 	h->dev->ops->update_led_status(h);
2092 	hns_nic_update_stats(priv->netdev);
2093 
2094 	hns_nic_service_event_complete(priv);
2095 }
2096 
2097 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2098 {
2099 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2100 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2101 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2102 		(void)schedule_work(&priv->service_task);
2103 }
2104 
2105 static void hns_nic_service_timer(struct timer_list *t)
2106 {
2107 	struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2108 
2109 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2110 
2111 	hns_nic_task_schedule(priv);
2112 }
2113 
2114 /**
2115  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2116  * @priv: driver private struct
2117  **/
2118 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2119 {
2120 	/* Do the reset outside of interrupt context */
2121 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2122 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2123 		netdev_warn(priv->netdev,
2124 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2125 			    priv->tx_timeout_count, priv->state);
2126 		priv->tx_timeout_count++;
2127 		hns_nic_task_schedule(priv);
2128 	}
2129 }
2130 
2131 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2132 {
2133 	struct hnae_handle *h = priv->ae_handle;
2134 	struct hns_nic_ring_data *rd;
2135 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2136 	int i;
2137 
2138 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2139 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2140 		return -EINVAL;
2141 	}
2142 
2143 	priv->ring_data = kzalloc(array3_size(h->q_num,
2144 					      sizeof(*priv->ring_data), 2),
2145 				  GFP_KERNEL);
2146 	if (!priv->ring_data)
2147 		return -ENOMEM;
2148 
2149 	for (i = 0; i < h->q_num; i++) {
2150 		rd = &priv->ring_data[i];
2151 		rd->queue_index = i;
2152 		rd->ring = &h->qs[i]->tx_ring;
2153 		rd->poll_one = hns_nic_tx_poll_one;
2154 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2155 			hns_nic_tx_fini_pro_v2;
2156 
2157 		netif_napi_add(priv->netdev, &rd->napi,
2158 			       hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
2159 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2160 	}
2161 	for (i = h->q_num; i < h->q_num * 2; i++) {
2162 		rd = &priv->ring_data[i];
2163 		rd->queue_index = i - h->q_num;
2164 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2165 		rd->poll_one = hns_nic_rx_poll_one;
2166 		rd->ex_process = hns_nic_rx_up_pro;
2167 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2168 			hns_nic_rx_fini_pro_v2;
2169 
2170 		netif_napi_add(priv->netdev, &rd->napi,
2171 			       hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
2172 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2173 	}
2174 
2175 	return 0;
2176 }
2177 
2178 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2179 {
2180 	struct hnae_handle *h = priv->ae_handle;
2181 	int i;
2182 
2183 	for (i = 0; i < h->q_num * 2; i++) {
2184 		netif_napi_del(&priv->ring_data[i].napi);
2185 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2186 			(void)irq_set_affinity_hint(
2187 				priv->ring_data[i].ring->irq,
2188 				NULL);
2189 			free_irq(priv->ring_data[i].ring->irq,
2190 				 &priv->ring_data[i]);
2191 		}
2192 
2193 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2194 	}
2195 	kfree(priv->ring_data);
2196 }
2197 
2198 static void hns_nic_set_priv_ops(struct net_device *netdev)
2199 {
2200 	struct hns_nic_priv *priv = netdev_priv(netdev);
2201 	struct hnae_handle *h = priv->ae_handle;
2202 
2203 	if (AE_IS_VER1(priv->enet_ver)) {
2204 		priv->ops.fill_desc = fill_desc;
2205 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2206 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2207 	} else {
2208 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2209 		if ((netdev->features & NETIF_F_TSO) ||
2210 		    (netdev->features & NETIF_F_TSO6)) {
2211 			priv->ops.fill_desc = fill_tso_desc;
2212 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2213 			/* This chip only support 7*4096 */
2214 			netif_set_gso_max_size(netdev, 7 * 4096);
2215 		} else {
2216 			priv->ops.fill_desc = fill_v2_desc;
2217 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2218 		}
2219 		/* enable tso when init
2220 		 * control tso on/off through TSE bit in bd
2221 		 */
2222 		h->dev->ops->set_tso_stats(h, 1);
2223 	}
2224 }
2225 
2226 static int hns_nic_try_get_ae(struct net_device *ndev)
2227 {
2228 	struct hns_nic_priv *priv = netdev_priv(ndev);
2229 	struct hnae_handle *h;
2230 	int ret;
2231 
2232 	h = hnae_get_handle(&priv->netdev->dev,
2233 			    priv->fwnode, priv->port_id, NULL);
2234 	if (IS_ERR_OR_NULL(h)) {
2235 		ret = -ENODEV;
2236 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2237 		goto out;
2238 	}
2239 	priv->ae_handle = h;
2240 
2241 	ret = hns_nic_init_phy(ndev, h);
2242 	if (ret) {
2243 		dev_err(priv->dev, "probe phy device fail!\n");
2244 		goto out_init_phy;
2245 	}
2246 
2247 	ret = hns_nic_init_ring_data(priv);
2248 	if (ret) {
2249 		ret = -ENOMEM;
2250 		goto out_init_ring_data;
2251 	}
2252 
2253 	hns_nic_set_priv_ops(ndev);
2254 
2255 	ret = register_netdev(ndev);
2256 	if (ret) {
2257 		dev_err(priv->dev, "probe register netdev fail!\n");
2258 		goto out_reg_ndev_fail;
2259 	}
2260 	return 0;
2261 
2262 out_reg_ndev_fail:
2263 	hns_nic_uninit_ring_data(priv);
2264 	priv->ring_data = NULL;
2265 out_init_phy:
2266 out_init_ring_data:
2267 	hnae_put_handle(priv->ae_handle);
2268 	priv->ae_handle = NULL;
2269 out:
2270 	return ret;
2271 }
2272 
2273 static int hns_nic_notifier_action(struct notifier_block *nb,
2274 				   unsigned long action, void *data)
2275 {
2276 	struct hns_nic_priv *priv =
2277 		container_of(nb, struct hns_nic_priv, notifier_block);
2278 
2279 	assert(action == HNAE_AE_REGISTER);
2280 
2281 	if (!hns_nic_try_get_ae(priv->netdev)) {
2282 		hnae_unregister_notifier(&priv->notifier_block);
2283 		priv->notifier_block.notifier_call = NULL;
2284 	}
2285 	return 0;
2286 }
2287 
2288 static int hns_nic_dev_probe(struct platform_device *pdev)
2289 {
2290 	struct device *dev = &pdev->dev;
2291 	struct net_device *ndev;
2292 	struct hns_nic_priv *priv;
2293 	u32 port_id;
2294 	int ret;
2295 
2296 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2297 	if (!ndev)
2298 		return -ENOMEM;
2299 
2300 	platform_set_drvdata(pdev, ndev);
2301 
2302 	priv = netdev_priv(ndev);
2303 	priv->dev = dev;
2304 	priv->netdev = ndev;
2305 
2306 	if (dev_of_node(dev)) {
2307 		struct device_node *ae_node;
2308 
2309 		if (of_device_is_compatible(dev->of_node,
2310 					    "hisilicon,hns-nic-v1"))
2311 			priv->enet_ver = AE_VERSION_1;
2312 		else
2313 			priv->enet_ver = AE_VERSION_2;
2314 
2315 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2316 		if (!ae_node) {
2317 			ret = -ENODEV;
2318 			dev_err(dev, "not find ae-handle\n");
2319 			goto out_read_prop_fail;
2320 		}
2321 		priv->fwnode = &ae_node->fwnode;
2322 	} else if (is_acpi_node(dev->fwnode)) {
2323 		struct fwnode_reference_args args;
2324 
2325 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2326 			priv->enet_ver = AE_VERSION_1;
2327 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2328 			priv->enet_ver = AE_VERSION_2;
2329 		else
2330 			return -ENXIO;
2331 
2332 		/* try to find port-idx-in-ae first */
2333 		ret = acpi_node_get_property_reference(dev->fwnode,
2334 						       "ae-handle", 0, &args);
2335 		if (ret) {
2336 			dev_err(dev, "not find ae-handle\n");
2337 			goto out_read_prop_fail;
2338 		}
2339 		if (!is_acpi_device_node(args.fwnode)) {
2340 			ret = -EINVAL;
2341 			goto out_read_prop_fail;
2342 		}
2343 		priv->fwnode = args.fwnode;
2344 	} else {
2345 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2346 		return -ENXIO;
2347 	}
2348 
2349 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2350 	if (ret) {
2351 		/* only for old code compatible */
2352 		ret = device_property_read_u32(dev, "port-id", &port_id);
2353 		if (ret)
2354 			goto out_read_prop_fail;
2355 		/* for old dts, we need to caculate the port offset */
2356 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2357 			: port_id - HNS_SRV_OFFSET;
2358 	}
2359 	priv->port_id = port_id;
2360 
2361 	hns_init_mac_addr(ndev);
2362 
2363 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2364 	ndev->priv_flags |= IFF_UNICAST_FLT;
2365 	ndev->netdev_ops = &hns_nic_netdev_ops;
2366 	hns_ethtool_set_ops(ndev);
2367 
2368 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2369 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2370 		NETIF_F_GRO;
2371 	ndev->vlan_features |=
2372 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2373 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2374 
2375 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2376 	ndev->min_mtu = MAC_MIN_MTU;
2377 	switch (priv->enet_ver) {
2378 	case AE_VERSION_2:
2379 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2380 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2381 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2382 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2383 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2384 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2385 		break;
2386 	default:
2387 		ndev->max_mtu = MAC_MAX_MTU -
2388 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2389 		break;
2390 	}
2391 
2392 	SET_NETDEV_DEV(ndev, dev);
2393 
2394 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2395 		dev_dbg(dev, "set mask to 64bit\n");
2396 	else
2397 		dev_err(dev, "set mask to 64bit fail!\n");
2398 
2399 	/* carrier off reporting is important to ethtool even BEFORE open */
2400 	netif_carrier_off(ndev);
2401 
2402 	timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2403 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2404 
2405 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2406 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2407 	set_bit(NIC_STATE_DOWN, &priv->state);
2408 
2409 	if (hns_nic_try_get_ae(priv->netdev)) {
2410 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2411 		ret = hnae_register_notifier(&priv->notifier_block);
2412 		if (ret) {
2413 			dev_err(dev, "register notifier fail!\n");
2414 			goto out_notify_fail;
2415 		}
2416 		dev_dbg(dev, "has not handle, register notifier!\n");
2417 	}
2418 
2419 	return 0;
2420 
2421 out_notify_fail:
2422 	(void)cancel_work_sync(&priv->service_task);
2423 out_read_prop_fail:
2424 	free_netdev(ndev);
2425 	return ret;
2426 }
2427 
2428 static int hns_nic_dev_remove(struct platform_device *pdev)
2429 {
2430 	struct net_device *ndev = platform_get_drvdata(pdev);
2431 	struct hns_nic_priv *priv = netdev_priv(ndev);
2432 
2433 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2434 		unregister_netdev(ndev);
2435 
2436 	if (priv->ring_data)
2437 		hns_nic_uninit_ring_data(priv);
2438 	priv->ring_data = NULL;
2439 
2440 	if (ndev->phydev)
2441 		phy_disconnect(ndev->phydev);
2442 
2443 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2444 		hnae_put_handle(priv->ae_handle);
2445 	priv->ae_handle = NULL;
2446 	if (priv->notifier_block.notifier_call)
2447 		hnae_unregister_notifier(&priv->notifier_block);
2448 	priv->notifier_block.notifier_call = NULL;
2449 
2450 	set_bit(NIC_STATE_REMOVING, &priv->state);
2451 	(void)cancel_work_sync(&priv->service_task);
2452 
2453 	free_netdev(ndev);
2454 	return 0;
2455 }
2456 
2457 static const struct of_device_id hns_enet_of_match[] = {
2458 	{.compatible = "hisilicon,hns-nic-v1",},
2459 	{.compatible = "hisilicon,hns-nic-v2",},
2460 	{},
2461 };
2462 
2463 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2464 
2465 static struct platform_driver hns_nic_dev_driver = {
2466 	.driver = {
2467 		.name = "hns-nic",
2468 		.of_match_table = hns_enet_of_match,
2469 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2470 	},
2471 	.probe = hns_nic_dev_probe,
2472 	.remove = hns_nic_dev_remove,
2473 };
2474 
2475 module_platform_driver(hns_nic_dev_driver);
2476 
2477 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2478 MODULE_AUTHOR("Hisilicon, Inc.");
2479 MODULE_LICENSE("GPL");
2480 MODULE_ALIAS("platform:hns-nic");
2481