xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns/hns_enet.c (revision c51d39010a1bccc9c1294e2d7c00005aefeb2b5c)
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22 
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26 
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29 
30 #define SERVICE_TIMER_HZ (1 * HZ)
31 
32 #define NIC_TX_CLEAN_MAX_NUM 256
33 #define NIC_RX_CLEAN_MAX_NUM 64
34 
35 #define RCB_IRQ_NOT_INITED 0
36 #define RCB_IRQ_INITED 1
37 #define HNS_BUFFER_SIZE_2048 2048
38 
39 #define BD_MAX_SEND_SIZE 8191
40 #define SKB_TMP_LEN(SKB) \
41 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
42 
43 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
44 			 int size, dma_addr_t dma, int frag_end,
45 			 int buf_num, enum hns_desc_type type, int mtu)
46 {
47 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
48 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
49 	struct iphdr *iphdr;
50 	struct ipv6hdr *ipv6hdr;
51 	struct sk_buff *skb;
52 	__be16 protocol;
53 	u8 bn_pid = 0;
54 	u8 rrcfv = 0;
55 	u8 ip_offset = 0;
56 	u8 tvsvsn = 0;
57 	u16 mss = 0;
58 	u8 l4_len = 0;
59 	u16 paylen = 0;
60 
61 	desc_cb->priv = priv;
62 	desc_cb->length = size;
63 	desc_cb->dma = dma;
64 	desc_cb->type = type;
65 
66 	desc->addr = cpu_to_le64(dma);
67 	desc->tx.send_size = cpu_to_le16((u16)size);
68 
69 	/* config bd buffer end */
70 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72 
73 	/* fill port_id in the tx bd for sending management pkts */
74 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
75 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
76 
77 	if (type == DESC_TYPE_SKB) {
78 		skb = (struct sk_buff *)priv;
79 
80 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
81 			skb_reset_mac_len(skb);
82 			protocol = skb->protocol;
83 			ip_offset = ETH_HLEN;
84 
85 			if (protocol == htons(ETH_P_8021Q)) {
86 				ip_offset += VLAN_HLEN;
87 				protocol = vlan_get_protocol(skb);
88 				skb->protocol = protocol;
89 			}
90 
91 			if (skb->protocol == htons(ETH_P_IP)) {
92 				iphdr = ip_hdr(skb);
93 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
94 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
95 
96 				/* check for tcp/udp header */
97 				if (iphdr->protocol == IPPROTO_TCP &&
98 				    skb_is_gso(skb)) {
99 					hnae_set_bit(tvsvsn,
100 						     HNSV2_TXD_TSE_B, 1);
101 					l4_len = tcp_hdrlen(skb);
102 					mss = skb_shinfo(skb)->gso_size;
103 					paylen = skb->len - SKB_TMP_LEN(skb);
104 				}
105 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
106 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
107 				ipv6hdr = ipv6_hdr(skb);
108 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
109 
110 				/* check for tcp/udp header */
111 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
112 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
113 					hnae_set_bit(tvsvsn,
114 						     HNSV2_TXD_TSE_B, 1);
115 					l4_len = tcp_hdrlen(skb);
116 					mss = skb_shinfo(skb)->gso_size;
117 					paylen = skb->len - SKB_TMP_LEN(skb);
118 				}
119 			}
120 			desc->tx.ip_offset = ip_offset;
121 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
122 			desc->tx.mss = cpu_to_le16(mss);
123 			desc->tx.l4_len = l4_len;
124 			desc->tx.paylen = cpu_to_le16(paylen);
125 		}
126 	}
127 
128 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
129 
130 	desc->tx.bn_pid = bn_pid;
131 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
132 
133 	ring_ptr_move_fw(ring, next_to_use);
134 }
135 
136 static const struct acpi_device_id hns_enet_acpi_match[] = {
137 	{ "HISI00C1", 0 },
138 	{ "HISI00C2", 0 },
139 	{ },
140 };
141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
142 
143 static void fill_desc(struct hnae_ring *ring, void *priv,
144 		      int size, dma_addr_t dma, int frag_end,
145 		      int buf_num, enum hns_desc_type type, int mtu)
146 {
147 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
148 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
149 	struct sk_buff *skb;
150 	__be16 protocol;
151 	u32 ip_offset;
152 	u32 asid_bufnum_pid = 0;
153 	u32 flag_ipoffset = 0;
154 
155 	desc_cb->priv = priv;
156 	desc_cb->length = size;
157 	desc_cb->dma = dma;
158 	desc_cb->type = type;
159 
160 	desc->addr = cpu_to_le64(dma);
161 	desc->tx.send_size = cpu_to_le16((u16)size);
162 
163 	/*config bd buffer end */
164 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
165 
166 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
167 
168 	if (type == DESC_TYPE_SKB) {
169 		skb = (struct sk_buff *)priv;
170 
171 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
172 			protocol = skb->protocol;
173 			ip_offset = ETH_HLEN;
174 
175 			/*if it is a SW VLAN check the next protocol*/
176 			if (protocol == htons(ETH_P_8021Q)) {
177 				ip_offset += VLAN_HLEN;
178 				protocol = vlan_get_protocol(skb);
179 				skb->protocol = protocol;
180 			}
181 
182 			if (skb->protocol == htons(ETH_P_IP)) {
183 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
184 				/* check for tcp/udp header */
185 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
186 
187 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
188 				/* ipv6 has not l3 cs, check for L4 header */
189 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
190 			}
191 
192 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
193 		}
194 	}
195 
196 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
197 
198 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
199 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
200 
201 	ring_ptr_move_fw(ring, next_to_use);
202 }
203 
204 static void unfill_desc(struct hnae_ring *ring)
205 {
206 	ring_ptr_move_bw(ring, next_to_use);
207 }
208 
209 static int hns_nic_maybe_stop_tx(
210 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
211 {
212 	struct sk_buff *skb = *out_skb;
213 	struct sk_buff *new_skb = NULL;
214 	int buf_num;
215 
216 	/* no. of segments (plus a header) */
217 	buf_num = skb_shinfo(skb)->nr_frags + 1;
218 
219 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
220 		if (ring_space(ring) < 1)
221 			return -EBUSY;
222 
223 		new_skb = skb_copy(skb, GFP_ATOMIC);
224 		if (!new_skb)
225 			return -ENOMEM;
226 
227 		dev_kfree_skb_any(skb);
228 		*out_skb = new_skb;
229 		buf_num = 1;
230 	} else if (buf_num > ring_space(ring)) {
231 		return -EBUSY;
232 	}
233 
234 	*bnum = buf_num;
235 	return 0;
236 }
237 
238 static int hns_nic_maybe_stop_tso(
239 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
240 {
241 	int i;
242 	int size;
243 	int buf_num;
244 	int frag_num;
245 	struct sk_buff *skb = *out_skb;
246 	struct sk_buff *new_skb = NULL;
247 	struct skb_frag_struct *frag;
248 
249 	size = skb_headlen(skb);
250 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
251 
252 	frag_num = skb_shinfo(skb)->nr_frags;
253 	for (i = 0; i < frag_num; i++) {
254 		frag = &skb_shinfo(skb)->frags[i];
255 		size = skb_frag_size(frag);
256 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
257 	}
258 
259 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
260 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
261 		if (ring_space(ring) < buf_num)
262 			return -EBUSY;
263 		/* manual split the send packet */
264 		new_skb = skb_copy(skb, GFP_ATOMIC);
265 		if (!new_skb)
266 			return -ENOMEM;
267 		dev_kfree_skb_any(skb);
268 		*out_skb = new_skb;
269 
270 	} else if (ring_space(ring) < buf_num) {
271 		return -EBUSY;
272 	}
273 
274 	*bnum = buf_num;
275 	return 0;
276 }
277 
278 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
279 			  int size, dma_addr_t dma, int frag_end,
280 			  int buf_num, enum hns_desc_type type, int mtu)
281 {
282 	int frag_buf_num;
283 	int sizeoflast;
284 	int k;
285 
286 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
287 	sizeoflast = size % BD_MAX_SEND_SIZE;
288 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
289 
290 	/* when the frag size is bigger than hardware, split this frag */
291 	for (k = 0; k < frag_buf_num; k++)
292 		fill_v2_desc(ring, priv,
293 			     (k == frag_buf_num - 1) ?
294 					sizeoflast : BD_MAX_SEND_SIZE,
295 			     dma + BD_MAX_SEND_SIZE * k,
296 			     frag_end && (k == frag_buf_num - 1) ? 1 : 0,
297 			     buf_num,
298 			     (type == DESC_TYPE_SKB && !k) ?
299 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
300 			     mtu);
301 }
302 
303 int hns_nic_net_xmit_hw(struct net_device *ndev,
304 			struct sk_buff *skb,
305 			struct hns_nic_ring_data *ring_data)
306 {
307 	struct hns_nic_priv *priv = netdev_priv(ndev);
308 	struct device *dev = priv->dev;
309 	struct hnae_ring *ring = ring_data->ring;
310 	struct netdev_queue *dev_queue;
311 	struct skb_frag_struct *frag;
312 	int buf_num;
313 	int seg_num;
314 	dma_addr_t dma;
315 	int size, next_to_use;
316 	int i;
317 
318 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
319 	case -EBUSY:
320 		ring->stats.tx_busy++;
321 		goto out_net_tx_busy;
322 	case -ENOMEM:
323 		ring->stats.sw_err_cnt++;
324 		netdev_err(ndev, "no memory to xmit!\n");
325 		goto out_err_tx_ok;
326 	default:
327 		break;
328 	}
329 
330 	/* no. of segments (plus a header) */
331 	seg_num = skb_shinfo(skb)->nr_frags + 1;
332 	next_to_use = ring->next_to_use;
333 
334 	/* fill the first part */
335 	size = skb_headlen(skb);
336 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
337 	if (dma_mapping_error(dev, dma)) {
338 		netdev_err(ndev, "TX head DMA map failed\n");
339 		ring->stats.sw_err_cnt++;
340 		goto out_err_tx_ok;
341 	}
342 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
343 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
344 
345 	/* fill the fragments */
346 	for (i = 1; i < seg_num; i++) {
347 		frag = &skb_shinfo(skb)->frags[i - 1];
348 		size = skb_frag_size(frag);
349 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
350 		if (dma_mapping_error(dev, dma)) {
351 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
352 			ring->stats.sw_err_cnt++;
353 			goto out_map_frag_fail;
354 		}
355 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
356 				    seg_num - 1 == i ? 1 : 0, buf_num,
357 				    DESC_TYPE_PAGE, ndev->mtu);
358 	}
359 
360 	/*complete translate all packets*/
361 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
362 	netdev_tx_sent_queue(dev_queue, skb->len);
363 
364 	wmb(); /* commit all data before submit */
365 	assert(skb->queue_mapping < priv->ae_handle->q_num);
366 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
367 	ring->stats.tx_pkts++;
368 	ring->stats.tx_bytes += skb->len;
369 
370 	return NETDEV_TX_OK;
371 
372 out_map_frag_fail:
373 
374 	while (ring->next_to_use != next_to_use) {
375 		unfill_desc(ring);
376 		if (ring->next_to_use != next_to_use)
377 			dma_unmap_page(dev,
378 				       ring->desc_cb[ring->next_to_use].dma,
379 				       ring->desc_cb[ring->next_to_use].length,
380 				       DMA_TO_DEVICE);
381 		else
382 			dma_unmap_single(dev,
383 					 ring->desc_cb[next_to_use].dma,
384 					 ring->desc_cb[next_to_use].length,
385 					 DMA_TO_DEVICE);
386 	}
387 
388 out_err_tx_ok:
389 
390 	dev_kfree_skb_any(skb);
391 	return NETDEV_TX_OK;
392 
393 out_net_tx_busy:
394 
395 	netif_stop_subqueue(ndev, skb->queue_mapping);
396 
397 	/* Herbert's original patch had:
398 	 *  smp_mb__after_netif_stop_queue();
399 	 * but since that doesn't exist yet, just open code it.
400 	 */
401 	smp_mb();
402 	return NETDEV_TX_BUSY;
403 }
404 
405 /**
406  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
407  * @data: pointer to the start of the headers
408  * @max: total length of section to find headers in
409  *
410  * This function is meant to determine the length of headers that will
411  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
412  * motivation of doing this is to only perform one pull for IPv4 TCP
413  * packets so that we can do basic things like calculating the gso_size
414  * based on the average data per packet.
415  **/
416 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
417 					unsigned int max_size)
418 {
419 	unsigned char *network;
420 	u8 hlen;
421 
422 	/* this should never happen, but better safe than sorry */
423 	if (max_size < ETH_HLEN)
424 		return max_size;
425 
426 	/* initialize network frame pointer */
427 	network = data;
428 
429 	/* set first protocol and move network header forward */
430 	network += ETH_HLEN;
431 
432 	/* handle any vlan tag if present */
433 	if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
434 		== HNS_RX_FLAG_VLAN_PRESENT) {
435 		if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
436 			return max_size;
437 
438 		network += VLAN_HLEN;
439 	}
440 
441 	/* handle L3 protocols */
442 	if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
443 		== HNS_RX_FLAG_L3ID_IPV4) {
444 		if ((typeof(max_size))(network - data) >
445 		    (max_size - sizeof(struct iphdr)))
446 			return max_size;
447 
448 		/* access ihl as a u8 to avoid unaligned access on ia64 */
449 		hlen = (network[0] & 0x0F) << 2;
450 
451 		/* verify hlen meets minimum size requirements */
452 		if (hlen < sizeof(struct iphdr))
453 			return network - data;
454 
455 		/* record next protocol if header is present */
456 	} else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
457 		== HNS_RX_FLAG_L3ID_IPV6) {
458 		if ((typeof(max_size))(network - data) >
459 		    (max_size - sizeof(struct ipv6hdr)))
460 			return max_size;
461 
462 		/* record next protocol */
463 		hlen = sizeof(struct ipv6hdr);
464 	} else {
465 		return network - data;
466 	}
467 
468 	/* relocate pointer to start of L4 header */
469 	network += hlen;
470 
471 	/* finally sort out TCP/UDP */
472 	if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
473 		== HNS_RX_FLAG_L4ID_TCP) {
474 		if ((typeof(max_size))(network - data) >
475 		    (max_size - sizeof(struct tcphdr)))
476 			return max_size;
477 
478 		/* access doff as a u8 to avoid unaligned access on ia64 */
479 		hlen = (network[12] & 0xF0) >> 2;
480 
481 		/* verify hlen meets minimum size requirements */
482 		if (hlen < sizeof(struct tcphdr))
483 			return network - data;
484 
485 		network += hlen;
486 	} else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
487 		== HNS_RX_FLAG_L4ID_UDP) {
488 		if ((typeof(max_size))(network - data) >
489 		    (max_size - sizeof(struct udphdr)))
490 			return max_size;
491 
492 		network += sizeof(struct udphdr);
493 	}
494 
495 	/* If everything has gone correctly network should be the
496 	 * data section of the packet and will be the end of the header.
497 	 * If not then it probably represents the end of the last recognized
498 	 * header.
499 	 */
500 	if ((typeof(max_size))(network - data) < max_size)
501 		return network - data;
502 	else
503 		return max_size;
504 }
505 
506 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
507 			       struct hnae_ring *ring, int pull_len,
508 			       struct hnae_desc_cb *desc_cb)
509 {
510 	struct hnae_desc *desc;
511 	int truesize, size;
512 	int last_offset;
513 	bool twobufs;
514 
515 	twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
516 
517 	desc = &ring->desc[ring->next_to_clean];
518 	size = le16_to_cpu(desc->rx.size);
519 
520 	if (twobufs) {
521 		truesize = hnae_buf_size(ring);
522 	} else {
523 		truesize = ALIGN(size, L1_CACHE_BYTES);
524 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
525 	}
526 
527 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
528 			size - pull_len, truesize - pull_len);
529 
530 	 /* avoid re-using remote pages,flag default unreuse */
531 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
532 		return;
533 
534 	if (twobufs) {
535 		/* if we are only owner of page we can reuse it */
536 		if (likely(page_count(desc_cb->priv) == 1)) {
537 			/* flip page offset to other buffer */
538 			desc_cb->page_offset ^= truesize;
539 
540 			desc_cb->reuse_flag = 1;
541 			/* bump ref count on page before it is given*/
542 			get_page(desc_cb->priv);
543 		}
544 		return;
545 	}
546 
547 	/* move offset up to the next cache line */
548 	desc_cb->page_offset += truesize;
549 
550 	if (desc_cb->page_offset <= last_offset) {
551 		desc_cb->reuse_flag = 1;
552 		/* bump ref count on page before it is given*/
553 		get_page(desc_cb->priv);
554 	}
555 }
556 
557 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
558 {
559 	*out_bnum = hnae_get_field(bnum_flag,
560 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
561 }
562 
563 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
564 {
565 	*out_bnum = hnae_get_field(bnum_flag,
566 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
567 }
568 
569 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
570 			       struct sk_buff **out_skb, int *out_bnum)
571 {
572 	struct hnae_ring *ring = ring_data->ring;
573 	struct net_device *ndev = ring_data->napi.dev;
574 	struct hns_nic_priv *priv = netdev_priv(ndev);
575 	struct sk_buff *skb;
576 	struct hnae_desc *desc;
577 	struct hnae_desc_cb *desc_cb;
578 	unsigned char *va;
579 	int bnum, length, i;
580 	int pull_len;
581 	u32 bnum_flag;
582 
583 	desc = &ring->desc[ring->next_to_clean];
584 	desc_cb = &ring->desc_cb[ring->next_to_clean];
585 
586 	prefetch(desc);
587 
588 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
589 
590 	/* prefetch first cache line of first page */
591 	prefetch(va);
592 #if L1_CACHE_BYTES < 128
593 	prefetch(va + L1_CACHE_BYTES);
594 #endif
595 
596 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
597 					HNS_RX_HEAD_SIZE);
598 	if (unlikely(!skb)) {
599 		netdev_err(ndev, "alloc rx skb fail\n");
600 		ring->stats.sw_err_cnt++;
601 		return -ENOMEM;
602 	}
603 
604 	prefetchw(skb->data);
605 	length = le16_to_cpu(desc->rx.pkt_len);
606 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
607 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
608 	*out_bnum = bnum;
609 
610 	if (length <= HNS_RX_HEAD_SIZE) {
611 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
612 
613 		/* we can reuse buffer as-is, just make sure it is local */
614 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
615 			desc_cb->reuse_flag = 1;
616 		else /* this page cannot be reused so discard it */
617 			put_page(desc_cb->priv);
618 
619 		ring_ptr_move_fw(ring, next_to_clean);
620 
621 		if (unlikely(bnum != 1)) { /* check err*/
622 			*out_bnum = 1;
623 			goto out_bnum_err;
624 		}
625 	} else {
626 		ring->stats.seg_pkt_cnt++;
627 
628 		pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
629 		memcpy(__skb_put(skb, pull_len), va,
630 		       ALIGN(pull_len, sizeof(long)));
631 
632 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
633 		ring_ptr_move_fw(ring, next_to_clean);
634 
635 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
636 			*out_bnum = 1;
637 			goto out_bnum_err;
638 		}
639 		for (i = 1; i < bnum; i++) {
640 			desc = &ring->desc[ring->next_to_clean];
641 			desc_cb = &ring->desc_cb[ring->next_to_clean];
642 
643 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
644 			ring_ptr_move_fw(ring, next_to_clean);
645 		}
646 	}
647 
648 	/* check except process, free skb and jump the desc */
649 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
650 out_bnum_err:
651 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
652 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
653 			   bnum, ring->max_desc_num_per_pkt,
654 			   length, (int)MAX_SKB_FRAGS,
655 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
656 		ring->stats.err_bd_num++;
657 		dev_kfree_skb_any(skb);
658 		return -EDOM;
659 	}
660 
661 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
662 
663 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
664 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
665 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
666 		ring->stats.non_vld_descs++;
667 		dev_kfree_skb_any(skb);
668 		return -EINVAL;
669 	}
670 
671 	if (unlikely((!desc->rx.pkt_len) ||
672 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
673 		ring->stats.err_pkt_len++;
674 		dev_kfree_skb_any(skb);
675 		return -EFAULT;
676 	}
677 
678 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
679 		ring->stats.l2_err++;
680 		dev_kfree_skb_any(skb);
681 		return -EFAULT;
682 	}
683 
684 	ring->stats.rx_pkts++;
685 	ring->stats.rx_bytes += skb->len;
686 
687 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L3E_B) ||
688 		     hnae_get_bit(bnum_flag, HNS_RXD_L4E_B))) {
689 		ring->stats.l3l4_csum_err++;
690 		return 0;
691 	}
692 
693 	skb->ip_summed = CHECKSUM_UNNECESSARY;
694 
695 	return 0;
696 }
697 
698 static void
699 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
700 {
701 	int i, ret;
702 	struct hnae_desc_cb res_cbs;
703 	struct hnae_desc_cb *desc_cb;
704 	struct hnae_ring *ring = ring_data->ring;
705 	struct net_device *ndev = ring_data->napi.dev;
706 
707 	for (i = 0; i < cleand_count; i++) {
708 		desc_cb = &ring->desc_cb[ring->next_to_use];
709 		if (desc_cb->reuse_flag) {
710 			ring->stats.reuse_pg_cnt++;
711 			hnae_reuse_buffer(ring, ring->next_to_use);
712 		} else {
713 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
714 			if (ret) {
715 				ring->stats.sw_err_cnt++;
716 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
717 				break;
718 			}
719 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
720 		}
721 
722 		ring_ptr_move_fw(ring, next_to_use);
723 	}
724 
725 	wmb(); /* make all data has been write before submit */
726 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
727 }
728 
729 /* return error number for error or number of desc left to take
730  */
731 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
732 			      struct sk_buff *skb)
733 {
734 	struct net_device *ndev = ring_data->napi.dev;
735 
736 	skb->protocol = eth_type_trans(skb, ndev);
737 	(void)napi_gro_receive(&ring_data->napi, skb);
738 	ndev->last_rx = jiffies;
739 }
740 
741 static int hns_desc_unused(struct hnae_ring *ring)
742 {
743 	int ntc = ring->next_to_clean;
744 	int ntu = ring->next_to_use;
745 
746 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
747 }
748 
749 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
750 			       int budget, void *v)
751 {
752 	struct hnae_ring *ring = ring_data->ring;
753 	struct sk_buff *skb;
754 	int num, bnum;
755 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
756 	int recv_pkts, recv_bds, clean_count, err;
757 	int unused_count = hns_desc_unused(ring);
758 
759 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
760 	rmb(); /* make sure num taken effect before the other data is touched */
761 
762 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
763 	num -= unused_count;
764 
765 	while (recv_pkts < budget && recv_bds < num) {
766 		/* reuse or realloc buffers */
767 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
768 			hns_nic_alloc_rx_buffers(ring_data,
769 						 clean_count + unused_count);
770 			clean_count = 0;
771 			unused_count = hns_desc_unused(ring);
772 		}
773 
774 		/* poll one pkt */
775 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
776 		if (unlikely(!skb)) /* this fault cannot be repaired */
777 			goto out;
778 
779 		recv_bds += bnum;
780 		clean_count += bnum;
781 		if (unlikely(err)) {  /* do jump the err */
782 			recv_pkts++;
783 			continue;
784 		}
785 
786 		/* do update ip stack process*/
787 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
788 							ring_data, skb);
789 		recv_pkts++;
790 	}
791 
792 out:
793 	/* make all data has been write before submit */
794 	if (clean_count + unused_count > 0)
795 		hns_nic_alloc_rx_buffers(ring_data,
796 					 clean_count + unused_count);
797 
798 	return recv_pkts;
799 }
800 
801 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
802 {
803 	struct hnae_ring *ring = ring_data->ring;
804 	int num = 0;
805 
806 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
807 
808 	/* for hardware bug fixed */
809 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
810 
811 	if (num > 0) {
812 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
813 			ring_data->ring, 1);
814 
815 		napi_schedule(&ring_data->napi);
816 	}
817 }
818 
819 static void hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
820 {
821 	struct hnae_ring *ring = ring_data->ring;
822 	int num = 0;
823 
824 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
825 
826 	if (num == 0)
827 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
828 			ring, 0);
829 	else
830 		napi_schedule(&ring_data->napi);
831 }
832 
833 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
834 					    int *bytes, int *pkts)
835 {
836 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
837 
838 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
839 	(*bytes) += desc_cb->length;
840 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
841 	hnae_free_buffer_detach(ring, ring->next_to_clean);
842 
843 	ring_ptr_move_fw(ring, next_to_clean);
844 }
845 
846 static int is_valid_clean_head(struct hnae_ring *ring, int h)
847 {
848 	int u = ring->next_to_use;
849 	int c = ring->next_to_clean;
850 
851 	if (unlikely(h > ring->desc_num))
852 		return 0;
853 
854 	assert(u > 0 && u < ring->desc_num);
855 	assert(c > 0 && c < ring->desc_num);
856 	assert(u != c && h != c); /* must be checked before call this func */
857 
858 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
859 }
860 
861 /* netif_tx_lock will turn down the performance, set only when necessary */
862 #ifdef CONFIG_NET_POLL_CONTROLLER
863 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev)
864 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev)
865 #else
866 #define NETIF_TX_LOCK(ndev)
867 #define NETIF_TX_UNLOCK(ndev)
868 #endif
869 /* reclaim all desc in one budget
870  * return error or number of desc left
871  */
872 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
873 			       int budget, void *v)
874 {
875 	struct hnae_ring *ring = ring_data->ring;
876 	struct net_device *ndev = ring_data->napi.dev;
877 	struct netdev_queue *dev_queue;
878 	struct hns_nic_priv *priv = netdev_priv(ndev);
879 	int head;
880 	int bytes, pkts;
881 
882 	NETIF_TX_LOCK(ndev);
883 
884 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
885 	rmb(); /* make sure head is ready before touch any data */
886 
887 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
888 		NETIF_TX_UNLOCK(ndev);
889 		return 0; /* no data to poll */
890 	}
891 
892 	if (!is_valid_clean_head(ring, head)) {
893 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
894 			   ring->next_to_use, ring->next_to_clean);
895 		ring->stats.io_err_cnt++;
896 		NETIF_TX_UNLOCK(ndev);
897 		return -EIO;
898 	}
899 
900 	bytes = 0;
901 	pkts = 0;
902 	while (head != ring->next_to_clean) {
903 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
904 		/* issue prefetch for next Tx descriptor */
905 		prefetch(&ring->desc_cb[ring->next_to_clean]);
906 	}
907 
908 	NETIF_TX_UNLOCK(ndev);
909 
910 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
911 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
912 
913 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
914 		netif_carrier_on(ndev);
915 
916 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
917 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
918 		/* Make sure that anybody stopping the queue after this
919 		 * sees the new next_to_clean.
920 		 */
921 		smp_mb();
922 		if (netif_tx_queue_stopped(dev_queue) &&
923 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
924 			netif_tx_wake_queue(dev_queue);
925 			ring->stats.restart_queue++;
926 		}
927 	}
928 	return 0;
929 }
930 
931 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
932 {
933 	struct hnae_ring *ring = ring_data->ring;
934 	int head;
935 
936 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
937 
938 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
939 
940 	if (head != ring->next_to_clean) {
941 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
942 			ring_data->ring, 1);
943 
944 		napi_schedule(&ring_data->napi);
945 	}
946 }
947 
948 static void hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
949 {
950 	struct hnae_ring *ring = ring_data->ring;
951 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
952 
953 	if (head == ring->next_to_clean)
954 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
955 			ring, 0);
956 	else
957 		napi_schedule(&ring_data->napi);
958 }
959 
960 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
961 {
962 	struct hnae_ring *ring = ring_data->ring;
963 	struct net_device *ndev = ring_data->napi.dev;
964 	struct netdev_queue *dev_queue;
965 	int head;
966 	int bytes, pkts;
967 
968 	NETIF_TX_LOCK(ndev);
969 
970 	head = ring->next_to_use; /* ntu :soft setted ring position*/
971 	bytes = 0;
972 	pkts = 0;
973 	while (head != ring->next_to_clean)
974 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
975 
976 	NETIF_TX_UNLOCK(ndev);
977 
978 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
979 	netdev_tx_reset_queue(dev_queue);
980 }
981 
982 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
983 {
984 	struct hns_nic_ring_data *ring_data =
985 		container_of(napi, struct hns_nic_ring_data, napi);
986 	int clean_complete = ring_data->poll_one(
987 				ring_data, budget, ring_data->ex_process);
988 
989 	if (clean_complete >= 0 && clean_complete < budget) {
990 		napi_complete(napi);
991 		ring_data->fini_process(ring_data);
992 		return 0;
993 	}
994 
995 	return clean_complete;
996 }
997 
998 static irqreturn_t hns_irq_handle(int irq, void *dev)
999 {
1000 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1001 
1002 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1003 		ring_data->ring, 1);
1004 	napi_schedule(&ring_data->napi);
1005 
1006 	return IRQ_HANDLED;
1007 }
1008 
1009 /**
1010  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1011  *@ndev: net device
1012  */
1013 static void hns_nic_adjust_link(struct net_device *ndev)
1014 {
1015 	struct hns_nic_priv *priv = netdev_priv(ndev);
1016 	struct hnae_handle *h = priv->ae_handle;
1017 	int state = 1;
1018 
1019 	if (ndev->phydev) {
1020 		h->dev->ops->adjust_link(h, ndev->phydev->speed,
1021 					 ndev->phydev->duplex);
1022 		state = ndev->phydev->link;
1023 	}
1024 	state = state && h->dev->ops->get_status(h);
1025 
1026 	if (state != priv->link) {
1027 		if (state) {
1028 			netif_carrier_on(ndev);
1029 			netif_tx_wake_all_queues(ndev);
1030 			netdev_info(ndev, "link up\n");
1031 		} else {
1032 			netif_carrier_off(ndev);
1033 			netdev_info(ndev, "link down\n");
1034 		}
1035 		priv->link = state;
1036 	}
1037 }
1038 
1039 /**
1040  *hns_nic_init_phy - init phy
1041  *@ndev: net device
1042  *@h: ae handle
1043  * Return 0 on success, negative on failure
1044  */
1045 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1046 {
1047 	struct phy_device *phy_dev = h->phy_dev;
1048 	int ret;
1049 
1050 	if (!h->phy_dev)
1051 		return 0;
1052 
1053 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1054 		phy_dev->dev_flags = 0;
1055 
1056 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1057 					 h->phy_if);
1058 	} else {
1059 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1060 	}
1061 	if (unlikely(ret))
1062 		return -ENODEV;
1063 
1064 	phy_dev->supported &= h->if_support;
1065 	phy_dev->advertising = phy_dev->supported;
1066 
1067 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1068 		phy_dev->autoneg = false;
1069 
1070 	return 0;
1071 }
1072 
1073 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1074 {
1075 	struct hns_nic_priv *priv = netdev_priv(netdev);
1076 	struct hnae_handle *h = priv->ae_handle;
1077 
1078 	napi_enable(&priv->ring_data[idx].napi);
1079 
1080 	enable_irq(priv->ring_data[idx].ring->irq);
1081 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1082 
1083 	return 0;
1084 }
1085 
1086 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1087 {
1088 	struct hns_nic_priv *priv = netdev_priv(ndev);
1089 	struct hnae_handle *h = priv->ae_handle;
1090 	struct sockaddr *mac_addr = p;
1091 	int ret;
1092 
1093 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1094 		return -EADDRNOTAVAIL;
1095 
1096 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1097 	if (ret) {
1098 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1099 		return ret;
1100 	}
1101 
1102 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1103 
1104 	return 0;
1105 }
1106 
1107 void hns_nic_update_stats(struct net_device *netdev)
1108 {
1109 	struct hns_nic_priv *priv = netdev_priv(netdev);
1110 	struct hnae_handle *h = priv->ae_handle;
1111 
1112 	h->dev->ops->update_stats(h, &netdev->stats);
1113 }
1114 
1115 /* set mac addr if it is configed. or leave it to the AE driver */
1116 static void hns_init_mac_addr(struct net_device *ndev)
1117 {
1118 	struct hns_nic_priv *priv = netdev_priv(ndev);
1119 
1120 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1121 		eth_hw_addr_random(ndev);
1122 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1123 			 ndev->dev_addr);
1124 	}
1125 }
1126 
1127 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1128 {
1129 	struct hns_nic_priv *priv = netdev_priv(netdev);
1130 	struct hnae_handle *h = priv->ae_handle;
1131 
1132 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1133 	disable_irq(priv->ring_data[idx].ring->irq);
1134 
1135 	napi_disable(&priv->ring_data[idx].napi);
1136 }
1137 
1138 static void hns_set_irq_affinity(struct hns_nic_priv *priv)
1139 {
1140 	struct hnae_handle *h = priv->ae_handle;
1141 	struct hns_nic_ring_data *rd;
1142 	int i;
1143 	int cpu;
1144 	cpumask_t mask;
1145 
1146 	/*diffrent irq banlance for 16core and 32core*/
1147 	if (h->q_num == num_possible_cpus()) {
1148 		for (i = 0; i < h->q_num * 2; i++) {
1149 			rd = &priv->ring_data[i];
1150 			if (cpu_online(rd->queue_index)) {
1151 				cpumask_clear(&mask);
1152 				cpu = rd->queue_index;
1153 				cpumask_set_cpu(cpu, &mask);
1154 				(void)irq_set_affinity_hint(rd->ring->irq,
1155 							    &mask);
1156 			}
1157 		}
1158 	} else {
1159 		for (i = 0; i < h->q_num; i++) {
1160 			rd = &priv->ring_data[i];
1161 			if (cpu_online(rd->queue_index * 2)) {
1162 				cpumask_clear(&mask);
1163 				cpu = rd->queue_index * 2;
1164 				cpumask_set_cpu(cpu, &mask);
1165 				(void)irq_set_affinity_hint(rd->ring->irq,
1166 							    &mask);
1167 			}
1168 		}
1169 
1170 		for (i = h->q_num; i < h->q_num * 2; i++) {
1171 			rd = &priv->ring_data[i];
1172 			if (cpu_online(rd->queue_index * 2 + 1)) {
1173 				cpumask_clear(&mask);
1174 				cpu = rd->queue_index * 2 + 1;
1175 				cpumask_set_cpu(cpu, &mask);
1176 				(void)irq_set_affinity_hint(rd->ring->irq,
1177 							    &mask);
1178 			}
1179 		}
1180 	}
1181 }
1182 
1183 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1184 {
1185 	struct hnae_handle *h = priv->ae_handle;
1186 	struct hns_nic_ring_data *rd;
1187 	int i;
1188 	int ret;
1189 
1190 	for (i = 0; i < h->q_num * 2; i++) {
1191 		rd = &priv->ring_data[i];
1192 
1193 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1194 			break;
1195 
1196 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1197 			 "%s-%s%d", priv->netdev->name,
1198 			 (i < h->q_num ? "tx" : "rx"), rd->queue_index);
1199 
1200 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1201 
1202 		ret = request_irq(rd->ring->irq,
1203 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1204 		if (ret) {
1205 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1206 				   rd->ring->irq);
1207 			return ret;
1208 		}
1209 		disable_irq(rd->ring->irq);
1210 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1211 	}
1212 
1213 	/*set cpu affinity*/
1214 	hns_set_irq_affinity(priv);
1215 
1216 	return 0;
1217 }
1218 
1219 static int hns_nic_net_up(struct net_device *ndev)
1220 {
1221 	struct hns_nic_priv *priv = netdev_priv(ndev);
1222 	struct hnae_handle *h = priv->ae_handle;
1223 	int i, j;
1224 	int ret;
1225 
1226 	ret = hns_nic_init_irq(priv);
1227 	if (ret != 0) {
1228 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1229 		return ret;
1230 	}
1231 
1232 	for (i = 0; i < h->q_num * 2; i++) {
1233 		ret = hns_nic_ring_open(ndev, i);
1234 		if (ret)
1235 			goto out_has_some_queues;
1236 	}
1237 
1238 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1239 	if (ret)
1240 		goto out_set_mac_addr_err;
1241 
1242 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1243 	if (ret)
1244 		goto out_start_err;
1245 
1246 	if (ndev->phydev)
1247 		phy_start(ndev->phydev);
1248 
1249 	clear_bit(NIC_STATE_DOWN, &priv->state);
1250 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1251 
1252 	return 0;
1253 
1254 out_start_err:
1255 	netif_stop_queue(ndev);
1256 out_set_mac_addr_err:
1257 out_has_some_queues:
1258 	for (j = i - 1; j >= 0; j--)
1259 		hns_nic_ring_close(ndev, j);
1260 
1261 	set_bit(NIC_STATE_DOWN, &priv->state);
1262 
1263 	return ret;
1264 }
1265 
1266 static void hns_nic_net_down(struct net_device *ndev)
1267 {
1268 	int i;
1269 	struct hnae_ae_ops *ops;
1270 	struct hns_nic_priv *priv = netdev_priv(ndev);
1271 
1272 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1273 		return;
1274 
1275 	(void)del_timer_sync(&priv->service_timer);
1276 	netif_tx_stop_all_queues(ndev);
1277 	netif_carrier_off(ndev);
1278 	netif_tx_disable(ndev);
1279 	priv->link = 0;
1280 
1281 	if (ndev->phydev)
1282 		phy_stop(ndev->phydev);
1283 
1284 	ops = priv->ae_handle->dev->ops;
1285 
1286 	if (ops->stop)
1287 		ops->stop(priv->ae_handle);
1288 
1289 	netif_tx_stop_all_queues(ndev);
1290 
1291 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1292 		hns_nic_ring_close(ndev, i);
1293 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1294 
1295 		/* clean tx buffers*/
1296 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1297 	}
1298 }
1299 
1300 void hns_nic_net_reset(struct net_device *ndev)
1301 {
1302 	struct hns_nic_priv *priv = netdev_priv(ndev);
1303 	struct hnae_handle *handle = priv->ae_handle;
1304 
1305 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1306 		usleep_range(1000, 2000);
1307 
1308 	(void)hnae_reinit_handle(handle);
1309 
1310 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1311 }
1312 
1313 void hns_nic_net_reinit(struct net_device *netdev)
1314 {
1315 	struct hns_nic_priv *priv = netdev_priv(netdev);
1316 
1317 	netif_trans_update(priv->netdev);
1318 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1319 		usleep_range(1000, 2000);
1320 
1321 	hns_nic_net_down(netdev);
1322 	hns_nic_net_reset(netdev);
1323 	(void)hns_nic_net_up(netdev);
1324 	clear_bit(NIC_STATE_REINITING, &priv->state);
1325 }
1326 
1327 static int hns_nic_net_open(struct net_device *ndev)
1328 {
1329 	struct hns_nic_priv *priv = netdev_priv(ndev);
1330 	struct hnae_handle *h = priv->ae_handle;
1331 	int ret;
1332 
1333 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1334 		return -EBUSY;
1335 
1336 	priv->link = 0;
1337 	netif_carrier_off(ndev);
1338 
1339 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1340 	if (ret < 0) {
1341 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1342 			   ret);
1343 		return ret;
1344 	}
1345 
1346 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1347 	if (ret < 0) {
1348 		netdev_err(ndev,
1349 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1350 		return ret;
1351 	}
1352 
1353 	ret = hns_nic_net_up(ndev);
1354 	if (ret) {
1355 		netdev_err(ndev,
1356 			   "hns net up fail, ret=%d!\n", ret);
1357 		return ret;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 static int hns_nic_net_stop(struct net_device *ndev)
1364 {
1365 	hns_nic_net_down(ndev);
1366 
1367 	return 0;
1368 }
1369 
1370 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1371 static void hns_nic_net_timeout(struct net_device *ndev)
1372 {
1373 	struct hns_nic_priv *priv = netdev_priv(ndev);
1374 
1375 	hns_tx_timeout_reset(priv);
1376 }
1377 
1378 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1379 			    int cmd)
1380 {
1381 	struct phy_device *phy_dev = netdev->phydev;
1382 
1383 	if (!netif_running(netdev))
1384 		return -EINVAL;
1385 
1386 	if (!phy_dev)
1387 		return -ENOTSUPP;
1388 
1389 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1390 }
1391 
1392 /* use only for netconsole to poll with the device without interrupt */
1393 #ifdef CONFIG_NET_POLL_CONTROLLER
1394 void hns_nic_poll_controller(struct net_device *ndev)
1395 {
1396 	struct hns_nic_priv *priv = netdev_priv(ndev);
1397 	unsigned long flags;
1398 	int i;
1399 
1400 	local_irq_save(flags);
1401 	for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1402 		napi_schedule(&priv->ring_data[i].napi);
1403 	local_irq_restore(flags);
1404 }
1405 #endif
1406 
1407 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1408 				    struct net_device *ndev)
1409 {
1410 	struct hns_nic_priv *priv = netdev_priv(ndev);
1411 	int ret;
1412 
1413 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1414 	ret = hns_nic_net_xmit_hw(ndev, skb,
1415 				  &tx_ring_data(priv, skb->queue_mapping));
1416 	if (ret == NETDEV_TX_OK) {
1417 		netif_trans_update(ndev);
1418 		ndev->stats.tx_bytes += skb->len;
1419 		ndev->stats.tx_packets++;
1420 	}
1421 	return (netdev_tx_t)ret;
1422 }
1423 
1424 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1425 {
1426 	struct hns_nic_priv *priv = netdev_priv(ndev);
1427 	struct hnae_handle *h = priv->ae_handle;
1428 	int ret;
1429 
1430 	if (!h->dev->ops->set_mtu)
1431 		return -ENOTSUPP;
1432 
1433 	if (netif_running(ndev)) {
1434 		(void)hns_nic_net_stop(ndev);
1435 		msleep(100);
1436 
1437 		ret = h->dev->ops->set_mtu(h, new_mtu);
1438 		if (ret)
1439 			netdev_err(ndev, "set mtu fail, return value %d\n",
1440 				   ret);
1441 
1442 		if (hns_nic_net_open(ndev))
1443 			netdev_err(ndev, "hns net open fail\n");
1444 	} else {
1445 		ret = h->dev->ops->set_mtu(h, new_mtu);
1446 	}
1447 
1448 	if (!ret)
1449 		ndev->mtu = new_mtu;
1450 
1451 	return ret;
1452 }
1453 
1454 static int hns_nic_set_features(struct net_device *netdev,
1455 				netdev_features_t features)
1456 {
1457 	struct hns_nic_priv *priv = netdev_priv(netdev);
1458 
1459 	switch (priv->enet_ver) {
1460 	case AE_VERSION_1:
1461 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1462 			netdev_info(netdev, "enet v1 do not support tso!\n");
1463 		break;
1464 	default:
1465 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1466 			priv->ops.fill_desc = fill_tso_desc;
1467 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1468 			/* The chip only support 7*4096 */
1469 			netif_set_gso_max_size(netdev, 7 * 4096);
1470 		} else {
1471 			priv->ops.fill_desc = fill_v2_desc;
1472 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1473 		}
1474 		break;
1475 	}
1476 	netdev->features = features;
1477 	return 0;
1478 }
1479 
1480 static netdev_features_t hns_nic_fix_features(
1481 		struct net_device *netdev, netdev_features_t features)
1482 {
1483 	struct hns_nic_priv *priv = netdev_priv(netdev);
1484 
1485 	switch (priv->enet_ver) {
1486 	case AE_VERSION_1:
1487 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1488 				NETIF_F_HW_VLAN_CTAG_FILTER);
1489 		break;
1490 	default:
1491 		break;
1492 	}
1493 	return features;
1494 }
1495 
1496 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1497 {
1498 	struct hns_nic_priv *priv = netdev_priv(netdev);
1499 	struct hnae_handle *h = priv->ae_handle;
1500 
1501 	if (h->dev->ops->add_uc_addr)
1502 		return h->dev->ops->add_uc_addr(h, addr);
1503 
1504 	return 0;
1505 }
1506 
1507 static int hns_nic_uc_unsync(struct net_device *netdev,
1508 			     const unsigned char *addr)
1509 {
1510 	struct hns_nic_priv *priv = netdev_priv(netdev);
1511 	struct hnae_handle *h = priv->ae_handle;
1512 
1513 	if (h->dev->ops->rm_uc_addr)
1514 		return h->dev->ops->rm_uc_addr(h, addr);
1515 
1516 	return 0;
1517 }
1518 
1519 /**
1520  * nic_set_multicast_list - set mutl mac address
1521  * @netdev: net device
1522  * @p: mac address
1523  *
1524  * return void
1525  */
1526 void hns_set_multicast_list(struct net_device *ndev)
1527 {
1528 	struct hns_nic_priv *priv = netdev_priv(ndev);
1529 	struct hnae_handle *h = priv->ae_handle;
1530 	struct netdev_hw_addr *ha = NULL;
1531 
1532 	if (!h)	{
1533 		netdev_err(ndev, "hnae handle is null\n");
1534 		return;
1535 	}
1536 
1537 	if (h->dev->ops->clr_mc_addr)
1538 		if (h->dev->ops->clr_mc_addr(h))
1539 			netdev_err(ndev, "clear multicast address fail\n");
1540 
1541 	if (h->dev->ops->set_mc_addr) {
1542 		netdev_for_each_mc_addr(ha, ndev)
1543 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1544 				netdev_err(ndev, "set multicast fail\n");
1545 	}
1546 }
1547 
1548 void hns_nic_set_rx_mode(struct net_device *ndev)
1549 {
1550 	struct hns_nic_priv *priv = netdev_priv(ndev);
1551 	struct hnae_handle *h = priv->ae_handle;
1552 
1553 	if (h->dev->ops->set_promisc_mode) {
1554 		if (ndev->flags & IFF_PROMISC)
1555 			h->dev->ops->set_promisc_mode(h, 1);
1556 		else
1557 			h->dev->ops->set_promisc_mode(h, 0);
1558 	}
1559 
1560 	hns_set_multicast_list(ndev);
1561 
1562 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1563 		netdev_err(ndev, "sync uc address fail\n");
1564 }
1565 
1566 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev,
1567 					      struct rtnl_link_stats64 *stats)
1568 {
1569 	int idx = 0;
1570 	u64 tx_bytes = 0;
1571 	u64 rx_bytes = 0;
1572 	u64 tx_pkts = 0;
1573 	u64 rx_pkts = 0;
1574 	struct hns_nic_priv *priv = netdev_priv(ndev);
1575 	struct hnae_handle *h = priv->ae_handle;
1576 
1577 	for (idx = 0; idx < h->q_num; idx++) {
1578 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1579 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1580 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1581 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1582 	}
1583 
1584 	stats->tx_bytes = tx_bytes;
1585 	stats->tx_packets = tx_pkts;
1586 	stats->rx_bytes = rx_bytes;
1587 	stats->rx_packets = rx_pkts;
1588 
1589 	stats->rx_errors = ndev->stats.rx_errors;
1590 	stats->multicast = ndev->stats.multicast;
1591 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1592 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1593 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1594 
1595 	stats->tx_errors = ndev->stats.tx_errors;
1596 	stats->rx_dropped = ndev->stats.rx_dropped;
1597 	stats->tx_dropped = ndev->stats.tx_dropped;
1598 	stats->collisions = ndev->stats.collisions;
1599 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1600 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1601 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1602 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1603 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1604 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1605 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1606 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1607 	stats->rx_compressed = ndev->stats.rx_compressed;
1608 	stats->tx_compressed = ndev->stats.tx_compressed;
1609 
1610 	return stats;
1611 }
1612 
1613 static u16
1614 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1615 		     void *accel_priv, select_queue_fallback_t fallback)
1616 {
1617 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1618 	struct hns_nic_priv *priv = netdev_priv(ndev);
1619 
1620 	/* fix hardware broadcast/multicast packets queue loopback */
1621 	if (!AE_IS_VER1(priv->enet_ver) &&
1622 	    is_multicast_ether_addr(eth_hdr->h_dest))
1623 		return 0;
1624 	else
1625 		return fallback(ndev, skb);
1626 }
1627 
1628 static const struct net_device_ops hns_nic_netdev_ops = {
1629 	.ndo_open = hns_nic_net_open,
1630 	.ndo_stop = hns_nic_net_stop,
1631 	.ndo_start_xmit = hns_nic_net_xmit,
1632 	.ndo_tx_timeout = hns_nic_net_timeout,
1633 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1634 	.ndo_change_mtu = hns_nic_change_mtu,
1635 	.ndo_do_ioctl = hns_nic_do_ioctl,
1636 	.ndo_set_features = hns_nic_set_features,
1637 	.ndo_fix_features = hns_nic_fix_features,
1638 	.ndo_get_stats64 = hns_nic_get_stats64,
1639 #ifdef CONFIG_NET_POLL_CONTROLLER
1640 	.ndo_poll_controller = hns_nic_poll_controller,
1641 #endif
1642 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1643 	.ndo_select_queue = hns_nic_select_queue,
1644 };
1645 
1646 static void hns_nic_update_link_status(struct net_device *netdev)
1647 {
1648 	struct hns_nic_priv *priv = netdev_priv(netdev);
1649 
1650 	struct hnae_handle *h = priv->ae_handle;
1651 
1652 	if (h->phy_dev) {
1653 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1654 			return;
1655 
1656 		(void)genphy_read_status(h->phy_dev);
1657 	}
1658 	hns_nic_adjust_link(netdev);
1659 }
1660 
1661 /* for dumping key regs*/
1662 static void hns_nic_dump(struct hns_nic_priv *priv)
1663 {
1664 	struct hnae_handle *h = priv->ae_handle;
1665 	struct hnae_ae_ops *ops = h->dev->ops;
1666 	u32 *data, reg_num, i;
1667 
1668 	if (ops->get_regs_len && ops->get_regs) {
1669 		reg_num = ops->get_regs_len(priv->ae_handle);
1670 		reg_num = (reg_num + 3ul) & ~3ul;
1671 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1672 		if (data) {
1673 			ops->get_regs(priv->ae_handle, data);
1674 			for (i = 0; i < reg_num; i += 4)
1675 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1676 					i, data[i], data[i + 1],
1677 					data[i + 2], data[i + 3]);
1678 			kfree(data);
1679 		}
1680 	}
1681 
1682 	for (i = 0; i < h->q_num; i++) {
1683 		pr_info("tx_queue%d_next_to_clean:%d\n",
1684 			i, h->qs[i]->tx_ring.next_to_clean);
1685 		pr_info("tx_queue%d_next_to_use:%d\n",
1686 			i, h->qs[i]->tx_ring.next_to_use);
1687 		pr_info("rx_queue%d_next_to_clean:%d\n",
1688 			i, h->qs[i]->rx_ring.next_to_clean);
1689 		pr_info("rx_queue%d_next_to_use:%d\n",
1690 			i, h->qs[i]->rx_ring.next_to_use);
1691 	}
1692 }
1693 
1694 /* for resetting subtask */
1695 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1696 {
1697 	enum hnae_port_type type = priv->ae_handle->port_type;
1698 
1699 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1700 		return;
1701 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1702 
1703 	/* If we're already down, removing or resetting, just bail */
1704 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1705 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
1706 	    test_bit(NIC_STATE_RESETTING, &priv->state))
1707 		return;
1708 
1709 	hns_nic_dump(priv);
1710 	netdev_info(priv->netdev, "try to reset %s port!\n",
1711 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1712 
1713 	rtnl_lock();
1714 	/* put off any impending NetWatchDogTimeout */
1715 	netif_trans_update(priv->netdev);
1716 
1717 	if (type == HNAE_PORT_DEBUG) {
1718 		hns_nic_net_reinit(priv->netdev);
1719 	} else {
1720 		netif_carrier_off(priv->netdev);
1721 		netif_tx_disable(priv->netdev);
1722 	}
1723 	rtnl_unlock();
1724 }
1725 
1726 /* for doing service complete*/
1727 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
1728 {
1729 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
1730 
1731 	smp_mb__before_atomic();
1732 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1733 }
1734 
1735 static void hns_nic_service_task(struct work_struct *work)
1736 {
1737 	struct hns_nic_priv *priv
1738 		= container_of(work, struct hns_nic_priv, service_task);
1739 	struct hnae_handle *h = priv->ae_handle;
1740 
1741 	hns_nic_update_link_status(priv->netdev);
1742 	h->dev->ops->update_led_status(h);
1743 	hns_nic_update_stats(priv->netdev);
1744 
1745 	hns_nic_reset_subtask(priv);
1746 	hns_nic_service_event_complete(priv);
1747 }
1748 
1749 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
1750 {
1751 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
1752 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
1753 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
1754 		(void)schedule_work(&priv->service_task);
1755 }
1756 
1757 static void hns_nic_service_timer(unsigned long data)
1758 {
1759 	struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
1760 
1761 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1762 
1763 	hns_nic_task_schedule(priv);
1764 }
1765 
1766 /**
1767  * hns_tx_timeout_reset - initiate reset due to Tx timeout
1768  * @priv: driver private struct
1769  **/
1770 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
1771 {
1772 	/* Do the reset outside of interrupt context */
1773 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
1774 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1775 		netdev_warn(priv->netdev,
1776 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
1777 			    priv->tx_timeout_count, priv->state);
1778 		priv->tx_timeout_count++;
1779 		hns_nic_task_schedule(priv);
1780 	}
1781 }
1782 
1783 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
1784 {
1785 	struct hnae_handle *h = priv->ae_handle;
1786 	struct hns_nic_ring_data *rd;
1787 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
1788 	int i;
1789 
1790 	if (h->q_num > NIC_MAX_Q_PER_VF) {
1791 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
1792 		return -EINVAL;
1793 	}
1794 
1795 	priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
1796 				  GFP_KERNEL);
1797 	if (!priv->ring_data)
1798 		return -ENOMEM;
1799 
1800 	for (i = 0; i < h->q_num; i++) {
1801 		rd = &priv->ring_data[i];
1802 		rd->queue_index = i;
1803 		rd->ring = &h->qs[i]->tx_ring;
1804 		rd->poll_one = hns_nic_tx_poll_one;
1805 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
1806 			hns_nic_tx_fini_pro_v2;
1807 
1808 		netif_napi_add(priv->netdev, &rd->napi,
1809 			       hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
1810 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1811 	}
1812 	for (i = h->q_num; i < h->q_num * 2; i++) {
1813 		rd = &priv->ring_data[i];
1814 		rd->queue_index = i - h->q_num;
1815 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
1816 		rd->poll_one = hns_nic_rx_poll_one;
1817 		rd->ex_process = hns_nic_rx_up_pro;
1818 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
1819 			hns_nic_rx_fini_pro_v2;
1820 
1821 		netif_napi_add(priv->netdev, &rd->napi,
1822 			       hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
1823 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
1830 {
1831 	struct hnae_handle *h = priv->ae_handle;
1832 	int i;
1833 
1834 	for (i = 0; i < h->q_num * 2; i++) {
1835 		netif_napi_del(&priv->ring_data[i].napi);
1836 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1837 			(void)irq_set_affinity_hint(
1838 				priv->ring_data[i].ring->irq,
1839 				NULL);
1840 			free_irq(priv->ring_data[i].ring->irq,
1841 				 &priv->ring_data[i]);
1842 		}
1843 
1844 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1845 	}
1846 	kfree(priv->ring_data);
1847 }
1848 
1849 static void hns_nic_set_priv_ops(struct net_device *netdev)
1850 {
1851 	struct hns_nic_priv *priv = netdev_priv(netdev);
1852 	struct hnae_handle *h = priv->ae_handle;
1853 
1854 	if (AE_IS_VER1(priv->enet_ver)) {
1855 		priv->ops.fill_desc = fill_desc;
1856 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
1857 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1858 	} else {
1859 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
1860 		if ((netdev->features & NETIF_F_TSO) ||
1861 		    (netdev->features & NETIF_F_TSO6)) {
1862 			priv->ops.fill_desc = fill_tso_desc;
1863 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1864 			/* This chip only support 7*4096 */
1865 			netif_set_gso_max_size(netdev, 7 * 4096);
1866 		} else {
1867 			priv->ops.fill_desc = fill_v2_desc;
1868 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1869 		}
1870 		/* enable tso when init
1871 		 * control tso on/off through TSE bit in bd
1872 		 */
1873 		h->dev->ops->set_tso_stats(h, 1);
1874 	}
1875 }
1876 
1877 static int hns_nic_try_get_ae(struct net_device *ndev)
1878 {
1879 	struct hns_nic_priv *priv = netdev_priv(ndev);
1880 	struct hnae_handle *h;
1881 	int ret;
1882 
1883 	h = hnae_get_handle(&priv->netdev->dev,
1884 			    priv->fwnode, priv->port_id, NULL);
1885 	if (IS_ERR_OR_NULL(h)) {
1886 		ret = -ENODEV;
1887 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
1888 		goto out;
1889 	}
1890 	priv->ae_handle = h;
1891 
1892 	ret = hns_nic_init_phy(ndev, h);
1893 	if (ret) {
1894 		dev_err(priv->dev, "probe phy device fail!\n");
1895 		goto out_init_phy;
1896 	}
1897 
1898 	ret = hns_nic_init_ring_data(priv);
1899 	if (ret) {
1900 		ret = -ENOMEM;
1901 		goto out_init_ring_data;
1902 	}
1903 
1904 	hns_nic_set_priv_ops(ndev);
1905 
1906 	ret = register_netdev(ndev);
1907 	if (ret) {
1908 		dev_err(priv->dev, "probe register netdev fail!\n");
1909 		goto out_reg_ndev_fail;
1910 	}
1911 	return 0;
1912 
1913 out_reg_ndev_fail:
1914 	hns_nic_uninit_ring_data(priv);
1915 	priv->ring_data = NULL;
1916 out_init_phy:
1917 out_init_ring_data:
1918 	hnae_put_handle(priv->ae_handle);
1919 	priv->ae_handle = NULL;
1920 out:
1921 	return ret;
1922 }
1923 
1924 static int hns_nic_notifier_action(struct notifier_block *nb,
1925 				   unsigned long action, void *data)
1926 {
1927 	struct hns_nic_priv *priv =
1928 		container_of(nb, struct hns_nic_priv, notifier_block);
1929 
1930 	assert(action == HNAE_AE_REGISTER);
1931 
1932 	if (!hns_nic_try_get_ae(priv->netdev)) {
1933 		hnae_unregister_notifier(&priv->notifier_block);
1934 		priv->notifier_block.notifier_call = NULL;
1935 	}
1936 	return 0;
1937 }
1938 
1939 static int hns_nic_dev_probe(struct platform_device *pdev)
1940 {
1941 	struct device *dev = &pdev->dev;
1942 	struct net_device *ndev;
1943 	struct hns_nic_priv *priv;
1944 	u32 port_id;
1945 	int ret;
1946 
1947 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
1948 	if (!ndev)
1949 		return -ENOMEM;
1950 
1951 	platform_set_drvdata(pdev, ndev);
1952 
1953 	priv = netdev_priv(ndev);
1954 	priv->dev = dev;
1955 	priv->netdev = ndev;
1956 
1957 	if (dev_of_node(dev)) {
1958 		struct device_node *ae_node;
1959 
1960 		if (of_device_is_compatible(dev->of_node,
1961 					    "hisilicon,hns-nic-v1"))
1962 			priv->enet_ver = AE_VERSION_1;
1963 		else
1964 			priv->enet_ver = AE_VERSION_2;
1965 
1966 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
1967 		if (IS_ERR_OR_NULL(ae_node)) {
1968 			ret = PTR_ERR(ae_node);
1969 			dev_err(dev, "not find ae-handle\n");
1970 			goto out_read_prop_fail;
1971 		}
1972 		priv->fwnode = &ae_node->fwnode;
1973 	} else if (is_acpi_node(dev->fwnode)) {
1974 		struct acpi_reference_args args;
1975 
1976 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
1977 			priv->enet_ver = AE_VERSION_1;
1978 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
1979 			priv->enet_ver = AE_VERSION_2;
1980 		else
1981 			return -ENXIO;
1982 
1983 		/* try to find port-idx-in-ae first */
1984 		ret = acpi_node_get_property_reference(dev->fwnode,
1985 						       "ae-handle", 0, &args);
1986 		if (ret) {
1987 			dev_err(dev, "not find ae-handle\n");
1988 			goto out_read_prop_fail;
1989 		}
1990 		priv->fwnode = acpi_fwnode_handle(args.adev);
1991 	} else {
1992 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
1993 		return -ENXIO;
1994 	}
1995 
1996 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
1997 	if (ret) {
1998 		/* only for old code compatible */
1999 		ret = device_property_read_u32(dev, "port-id", &port_id);
2000 		if (ret)
2001 			goto out_read_prop_fail;
2002 		/* for old dts, we need to caculate the port offset */
2003 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2004 			: port_id - HNS_SRV_OFFSET;
2005 	}
2006 	priv->port_id = port_id;
2007 
2008 	hns_init_mac_addr(ndev);
2009 
2010 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2011 	ndev->priv_flags |= IFF_UNICAST_FLT;
2012 	ndev->netdev_ops = &hns_nic_netdev_ops;
2013 	hns_ethtool_set_ops(ndev);
2014 
2015 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2016 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2017 		NETIF_F_GRO;
2018 	ndev->vlan_features |=
2019 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2020 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2021 
2022 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2023 	ndev->min_mtu = MAC_MIN_MTU;
2024 	switch (priv->enet_ver) {
2025 	case AE_VERSION_2:
2026 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
2027 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2028 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2029 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2030 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2031 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2032 		break;
2033 	default:
2034 		ndev->max_mtu = MAC_MAX_MTU -
2035 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2036 		break;
2037 	}
2038 
2039 	SET_NETDEV_DEV(ndev, dev);
2040 
2041 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2042 		dev_dbg(dev, "set mask to 64bit\n");
2043 	else
2044 		dev_err(dev, "set mask to 64bit fail!\n");
2045 
2046 	/* carrier off reporting is important to ethtool even BEFORE open */
2047 	netif_carrier_off(ndev);
2048 
2049 	setup_timer(&priv->service_timer, hns_nic_service_timer,
2050 		    (unsigned long)priv);
2051 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2052 
2053 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2054 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2055 	set_bit(NIC_STATE_DOWN, &priv->state);
2056 
2057 	if (hns_nic_try_get_ae(priv->netdev)) {
2058 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2059 		ret = hnae_register_notifier(&priv->notifier_block);
2060 		if (ret) {
2061 			dev_err(dev, "register notifier fail!\n");
2062 			goto out_notify_fail;
2063 		}
2064 		dev_dbg(dev, "has not handle, register notifier!\n");
2065 	}
2066 
2067 	return 0;
2068 
2069 out_notify_fail:
2070 	(void)cancel_work_sync(&priv->service_task);
2071 out_read_prop_fail:
2072 	free_netdev(ndev);
2073 	return ret;
2074 }
2075 
2076 static int hns_nic_dev_remove(struct platform_device *pdev)
2077 {
2078 	struct net_device *ndev = platform_get_drvdata(pdev);
2079 	struct hns_nic_priv *priv = netdev_priv(ndev);
2080 
2081 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2082 		unregister_netdev(ndev);
2083 
2084 	if (priv->ring_data)
2085 		hns_nic_uninit_ring_data(priv);
2086 	priv->ring_data = NULL;
2087 
2088 	if (ndev->phydev)
2089 		phy_disconnect(ndev->phydev);
2090 
2091 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2092 		hnae_put_handle(priv->ae_handle);
2093 	priv->ae_handle = NULL;
2094 	if (priv->notifier_block.notifier_call)
2095 		hnae_unregister_notifier(&priv->notifier_block);
2096 	priv->notifier_block.notifier_call = NULL;
2097 
2098 	set_bit(NIC_STATE_REMOVING, &priv->state);
2099 	(void)cancel_work_sync(&priv->service_task);
2100 
2101 	free_netdev(ndev);
2102 	return 0;
2103 }
2104 
2105 static const struct of_device_id hns_enet_of_match[] = {
2106 	{.compatible = "hisilicon,hns-nic-v1",},
2107 	{.compatible = "hisilicon,hns-nic-v2",},
2108 	{},
2109 };
2110 
2111 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2112 
2113 static struct platform_driver hns_nic_dev_driver = {
2114 	.driver = {
2115 		.name = "hns-nic",
2116 		.of_match_table = hns_enet_of_match,
2117 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2118 	},
2119 	.probe = hns_nic_dev_probe,
2120 	.remove = hns_nic_dev_remove,
2121 };
2122 
2123 module_platform_driver(hns_nic_dev_driver);
2124 
2125 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2126 MODULE_AUTHOR("Hisilicon, Inc.");
2127 MODULE_LICENSE("GPL");
2128 MODULE_ALIAS("platform:hns-nic");
2129