1 /* 2 * Copyright (c) 2014-2015 Hisilicon Limited. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/cpumask.h> 12 #include <linux/etherdevice.h> 13 #include <linux/if_vlan.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/module.h> 19 #include <linux/phy.h> 20 #include <linux/platform_device.h> 21 #include <linux/skbuff.h> 22 23 #include "hnae.h" 24 #include "hns_enet.h" 25 #include "hns_dsaf_mac.h" 26 27 #define NIC_MAX_Q_PER_VF 16 28 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 29 30 #define SERVICE_TIMER_HZ (1 * HZ) 31 32 #define NIC_TX_CLEAN_MAX_NUM 256 33 #define NIC_RX_CLEAN_MAX_NUM 64 34 35 #define RCB_IRQ_NOT_INITED 0 36 #define RCB_IRQ_INITED 1 37 #define HNS_BUFFER_SIZE_2048 2048 38 39 #define BD_MAX_SEND_SIZE 8191 40 #define SKB_TMP_LEN(SKB) \ 41 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) 42 43 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 44 int size, dma_addr_t dma, int frag_end, 45 int buf_num, enum hns_desc_type type, int mtu) 46 { 47 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 48 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 49 struct iphdr *iphdr; 50 struct ipv6hdr *ipv6hdr; 51 struct sk_buff *skb; 52 __be16 protocol; 53 u8 bn_pid = 0; 54 u8 rrcfv = 0; 55 u8 ip_offset = 0; 56 u8 tvsvsn = 0; 57 u16 mss = 0; 58 u8 l4_len = 0; 59 u16 paylen = 0; 60 61 desc_cb->priv = priv; 62 desc_cb->length = size; 63 desc_cb->dma = dma; 64 desc_cb->type = type; 65 66 desc->addr = cpu_to_le64(dma); 67 desc->tx.send_size = cpu_to_le16((u16)size); 68 69 /* config bd buffer end */ 70 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 71 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 72 73 /* fill port_id in the tx bd for sending management pkts */ 74 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 75 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 76 77 if (type == DESC_TYPE_SKB) { 78 skb = (struct sk_buff *)priv; 79 80 if (skb->ip_summed == CHECKSUM_PARTIAL) { 81 skb_reset_mac_len(skb); 82 protocol = skb->protocol; 83 ip_offset = ETH_HLEN; 84 85 if (protocol == htons(ETH_P_8021Q)) { 86 ip_offset += VLAN_HLEN; 87 protocol = vlan_get_protocol(skb); 88 skb->protocol = protocol; 89 } 90 91 if (skb->protocol == htons(ETH_P_IP)) { 92 iphdr = ip_hdr(skb); 93 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 94 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 95 96 /* check for tcp/udp header */ 97 if (iphdr->protocol == IPPROTO_TCP && 98 skb_is_gso(skb)) { 99 hnae_set_bit(tvsvsn, 100 HNSV2_TXD_TSE_B, 1); 101 l4_len = tcp_hdrlen(skb); 102 mss = skb_shinfo(skb)->gso_size; 103 paylen = skb->len - SKB_TMP_LEN(skb); 104 } 105 } else if (skb->protocol == htons(ETH_P_IPV6)) { 106 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 107 ipv6hdr = ipv6_hdr(skb); 108 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 109 110 /* check for tcp/udp header */ 111 if (ipv6hdr->nexthdr == IPPROTO_TCP && 112 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 113 hnae_set_bit(tvsvsn, 114 HNSV2_TXD_TSE_B, 1); 115 l4_len = tcp_hdrlen(skb); 116 mss = skb_shinfo(skb)->gso_size; 117 paylen = skb->len - SKB_TMP_LEN(skb); 118 } 119 } 120 desc->tx.ip_offset = ip_offset; 121 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 122 desc->tx.mss = cpu_to_le16(mss); 123 desc->tx.l4_len = l4_len; 124 desc->tx.paylen = cpu_to_le16(paylen); 125 } 126 } 127 128 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 129 130 desc->tx.bn_pid = bn_pid; 131 desc->tx.ra_ri_cs_fe_vld = rrcfv; 132 133 ring_ptr_move_fw(ring, next_to_use); 134 } 135 136 static const struct acpi_device_id hns_enet_acpi_match[] = { 137 { "HISI00C1", 0 }, 138 { "HISI00C2", 0 }, 139 { }, 140 }; 141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 142 143 static void fill_desc(struct hnae_ring *ring, void *priv, 144 int size, dma_addr_t dma, int frag_end, 145 int buf_num, enum hns_desc_type type, int mtu) 146 { 147 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 148 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 149 struct sk_buff *skb; 150 __be16 protocol; 151 u32 ip_offset; 152 u32 asid_bufnum_pid = 0; 153 u32 flag_ipoffset = 0; 154 155 desc_cb->priv = priv; 156 desc_cb->length = size; 157 desc_cb->dma = dma; 158 desc_cb->type = type; 159 160 desc->addr = cpu_to_le64(dma); 161 desc->tx.send_size = cpu_to_le16((u16)size); 162 163 /*config bd buffer end */ 164 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 165 166 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 167 168 if (type == DESC_TYPE_SKB) { 169 skb = (struct sk_buff *)priv; 170 171 if (skb->ip_summed == CHECKSUM_PARTIAL) { 172 protocol = skb->protocol; 173 ip_offset = ETH_HLEN; 174 175 /*if it is a SW VLAN check the next protocol*/ 176 if (protocol == htons(ETH_P_8021Q)) { 177 ip_offset += VLAN_HLEN; 178 protocol = vlan_get_protocol(skb); 179 skb->protocol = protocol; 180 } 181 182 if (skb->protocol == htons(ETH_P_IP)) { 183 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 184 /* check for tcp/udp header */ 185 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 186 187 } else if (skb->protocol == htons(ETH_P_IPV6)) { 188 /* ipv6 has not l3 cs, check for L4 header */ 189 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 190 } 191 192 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 193 } 194 } 195 196 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 197 198 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 199 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 200 201 ring_ptr_move_fw(ring, next_to_use); 202 } 203 204 static void unfill_desc(struct hnae_ring *ring) 205 { 206 ring_ptr_move_bw(ring, next_to_use); 207 } 208 209 static int hns_nic_maybe_stop_tx( 210 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 211 { 212 struct sk_buff *skb = *out_skb; 213 struct sk_buff *new_skb = NULL; 214 int buf_num; 215 216 /* no. of segments (plus a header) */ 217 buf_num = skb_shinfo(skb)->nr_frags + 1; 218 219 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 220 if (ring_space(ring) < 1) 221 return -EBUSY; 222 223 new_skb = skb_copy(skb, GFP_ATOMIC); 224 if (!new_skb) 225 return -ENOMEM; 226 227 dev_kfree_skb_any(skb); 228 *out_skb = new_skb; 229 buf_num = 1; 230 } else if (buf_num > ring_space(ring)) { 231 return -EBUSY; 232 } 233 234 *bnum = buf_num; 235 return 0; 236 } 237 238 static int hns_nic_maybe_stop_tso( 239 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 240 { 241 int i; 242 int size; 243 int buf_num; 244 int frag_num; 245 struct sk_buff *skb = *out_skb; 246 struct sk_buff *new_skb = NULL; 247 struct skb_frag_struct *frag; 248 249 size = skb_headlen(skb); 250 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 251 252 frag_num = skb_shinfo(skb)->nr_frags; 253 for (i = 0; i < frag_num; i++) { 254 frag = &skb_shinfo(skb)->frags[i]; 255 size = skb_frag_size(frag); 256 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 257 } 258 259 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 260 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 261 if (ring_space(ring) < buf_num) 262 return -EBUSY; 263 /* manual split the send packet */ 264 new_skb = skb_copy(skb, GFP_ATOMIC); 265 if (!new_skb) 266 return -ENOMEM; 267 dev_kfree_skb_any(skb); 268 *out_skb = new_skb; 269 270 } else if (ring_space(ring) < buf_num) { 271 return -EBUSY; 272 } 273 274 *bnum = buf_num; 275 return 0; 276 } 277 278 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 279 int size, dma_addr_t dma, int frag_end, 280 int buf_num, enum hns_desc_type type, int mtu) 281 { 282 int frag_buf_num; 283 int sizeoflast; 284 int k; 285 286 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 287 sizeoflast = size % BD_MAX_SEND_SIZE; 288 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 289 290 /* when the frag size is bigger than hardware, split this frag */ 291 for (k = 0; k < frag_buf_num; k++) 292 fill_v2_desc(ring, priv, 293 (k == frag_buf_num - 1) ? 294 sizeoflast : BD_MAX_SEND_SIZE, 295 dma + BD_MAX_SEND_SIZE * k, 296 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 297 buf_num, 298 (type == DESC_TYPE_SKB && !k) ? 299 DESC_TYPE_SKB : DESC_TYPE_PAGE, 300 mtu); 301 } 302 303 int hns_nic_net_xmit_hw(struct net_device *ndev, 304 struct sk_buff *skb, 305 struct hns_nic_ring_data *ring_data) 306 { 307 struct hns_nic_priv *priv = netdev_priv(ndev); 308 struct device *dev = priv->dev; 309 struct hnae_ring *ring = ring_data->ring; 310 struct netdev_queue *dev_queue; 311 struct skb_frag_struct *frag; 312 int buf_num; 313 int seg_num; 314 dma_addr_t dma; 315 int size, next_to_use; 316 int i; 317 318 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 319 case -EBUSY: 320 ring->stats.tx_busy++; 321 goto out_net_tx_busy; 322 case -ENOMEM: 323 ring->stats.sw_err_cnt++; 324 netdev_err(ndev, "no memory to xmit!\n"); 325 goto out_err_tx_ok; 326 default: 327 break; 328 } 329 330 /* no. of segments (plus a header) */ 331 seg_num = skb_shinfo(skb)->nr_frags + 1; 332 next_to_use = ring->next_to_use; 333 334 /* fill the first part */ 335 size = skb_headlen(skb); 336 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 337 if (dma_mapping_error(dev, dma)) { 338 netdev_err(ndev, "TX head DMA map failed\n"); 339 ring->stats.sw_err_cnt++; 340 goto out_err_tx_ok; 341 } 342 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 343 buf_num, DESC_TYPE_SKB, ndev->mtu); 344 345 /* fill the fragments */ 346 for (i = 1; i < seg_num; i++) { 347 frag = &skb_shinfo(skb)->frags[i - 1]; 348 size = skb_frag_size(frag); 349 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 350 if (dma_mapping_error(dev, dma)) { 351 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 352 ring->stats.sw_err_cnt++; 353 goto out_map_frag_fail; 354 } 355 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 356 seg_num - 1 == i ? 1 : 0, buf_num, 357 DESC_TYPE_PAGE, ndev->mtu); 358 } 359 360 /*complete translate all packets*/ 361 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 362 netdev_tx_sent_queue(dev_queue, skb->len); 363 364 wmb(); /* commit all data before submit */ 365 assert(skb->queue_mapping < priv->ae_handle->q_num); 366 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 367 ring->stats.tx_pkts++; 368 ring->stats.tx_bytes += skb->len; 369 370 return NETDEV_TX_OK; 371 372 out_map_frag_fail: 373 374 while (ring->next_to_use != next_to_use) { 375 unfill_desc(ring); 376 if (ring->next_to_use != next_to_use) 377 dma_unmap_page(dev, 378 ring->desc_cb[ring->next_to_use].dma, 379 ring->desc_cb[ring->next_to_use].length, 380 DMA_TO_DEVICE); 381 else 382 dma_unmap_single(dev, 383 ring->desc_cb[next_to_use].dma, 384 ring->desc_cb[next_to_use].length, 385 DMA_TO_DEVICE); 386 } 387 388 out_err_tx_ok: 389 390 dev_kfree_skb_any(skb); 391 return NETDEV_TX_OK; 392 393 out_net_tx_busy: 394 395 netif_stop_subqueue(ndev, skb->queue_mapping); 396 397 /* Herbert's original patch had: 398 * smp_mb__after_netif_stop_queue(); 399 * but since that doesn't exist yet, just open code it. 400 */ 401 smp_mb(); 402 return NETDEV_TX_BUSY; 403 } 404 405 /** 406 * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE 407 * @data: pointer to the start of the headers 408 * @max: total length of section to find headers in 409 * 410 * This function is meant to determine the length of headers that will 411 * be recognized by hardware for LRO, GRO, and RSC offloads. The main 412 * motivation of doing this is to only perform one pull for IPv4 TCP 413 * packets so that we can do basic things like calculating the gso_size 414 * based on the average data per packet. 415 **/ 416 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag, 417 unsigned int max_size) 418 { 419 unsigned char *network; 420 u8 hlen; 421 422 /* this should never happen, but better safe than sorry */ 423 if (max_size < ETH_HLEN) 424 return max_size; 425 426 /* initialize network frame pointer */ 427 network = data; 428 429 /* set first protocol and move network header forward */ 430 network += ETH_HLEN; 431 432 /* handle any vlan tag if present */ 433 if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S) 434 == HNS_RX_FLAG_VLAN_PRESENT) { 435 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN)) 436 return max_size; 437 438 network += VLAN_HLEN; 439 } 440 441 /* handle L3 protocols */ 442 if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S) 443 == HNS_RX_FLAG_L3ID_IPV4) { 444 if ((typeof(max_size))(network - data) > 445 (max_size - sizeof(struct iphdr))) 446 return max_size; 447 448 /* access ihl as a u8 to avoid unaligned access on ia64 */ 449 hlen = (network[0] & 0x0F) << 2; 450 451 /* verify hlen meets minimum size requirements */ 452 if (hlen < sizeof(struct iphdr)) 453 return network - data; 454 455 /* record next protocol if header is present */ 456 } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S) 457 == HNS_RX_FLAG_L3ID_IPV6) { 458 if ((typeof(max_size))(network - data) > 459 (max_size - sizeof(struct ipv6hdr))) 460 return max_size; 461 462 /* record next protocol */ 463 hlen = sizeof(struct ipv6hdr); 464 } else { 465 return network - data; 466 } 467 468 /* relocate pointer to start of L4 header */ 469 network += hlen; 470 471 /* finally sort out TCP/UDP */ 472 if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S) 473 == HNS_RX_FLAG_L4ID_TCP) { 474 if ((typeof(max_size))(network - data) > 475 (max_size - sizeof(struct tcphdr))) 476 return max_size; 477 478 /* access doff as a u8 to avoid unaligned access on ia64 */ 479 hlen = (network[12] & 0xF0) >> 2; 480 481 /* verify hlen meets minimum size requirements */ 482 if (hlen < sizeof(struct tcphdr)) 483 return network - data; 484 485 network += hlen; 486 } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S) 487 == HNS_RX_FLAG_L4ID_UDP) { 488 if ((typeof(max_size))(network - data) > 489 (max_size - sizeof(struct udphdr))) 490 return max_size; 491 492 network += sizeof(struct udphdr); 493 } 494 495 /* If everything has gone correctly network should be the 496 * data section of the packet and will be the end of the header. 497 * If not then it probably represents the end of the last recognized 498 * header. 499 */ 500 if ((typeof(max_size))(network - data) < max_size) 501 return network - data; 502 else 503 return max_size; 504 } 505 506 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 507 struct hnae_ring *ring, int pull_len, 508 struct hnae_desc_cb *desc_cb) 509 { 510 struct hnae_desc *desc; 511 int truesize, size; 512 int last_offset; 513 bool twobufs; 514 515 twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 516 517 desc = &ring->desc[ring->next_to_clean]; 518 size = le16_to_cpu(desc->rx.size); 519 520 if (twobufs) { 521 truesize = hnae_buf_size(ring); 522 } else { 523 truesize = ALIGN(size, L1_CACHE_BYTES); 524 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 525 } 526 527 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 528 size - pull_len, truesize - pull_len); 529 530 /* avoid re-using remote pages,flag default unreuse */ 531 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 532 return; 533 534 if (twobufs) { 535 /* if we are only owner of page we can reuse it */ 536 if (likely(page_count(desc_cb->priv) == 1)) { 537 /* flip page offset to other buffer */ 538 desc_cb->page_offset ^= truesize; 539 540 desc_cb->reuse_flag = 1; 541 /* bump ref count on page before it is given*/ 542 get_page(desc_cb->priv); 543 } 544 return; 545 } 546 547 /* move offset up to the next cache line */ 548 desc_cb->page_offset += truesize; 549 550 if (desc_cb->page_offset <= last_offset) { 551 desc_cb->reuse_flag = 1; 552 /* bump ref count on page before it is given*/ 553 get_page(desc_cb->priv); 554 } 555 } 556 557 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 558 { 559 *out_bnum = hnae_get_field(bnum_flag, 560 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 561 } 562 563 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 564 { 565 *out_bnum = hnae_get_field(bnum_flag, 566 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 567 } 568 569 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 570 struct sk_buff **out_skb, int *out_bnum) 571 { 572 struct hnae_ring *ring = ring_data->ring; 573 struct net_device *ndev = ring_data->napi.dev; 574 struct hns_nic_priv *priv = netdev_priv(ndev); 575 struct sk_buff *skb; 576 struct hnae_desc *desc; 577 struct hnae_desc_cb *desc_cb; 578 unsigned char *va; 579 int bnum, length, i; 580 int pull_len; 581 u32 bnum_flag; 582 583 desc = &ring->desc[ring->next_to_clean]; 584 desc_cb = &ring->desc_cb[ring->next_to_clean]; 585 586 prefetch(desc); 587 588 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 589 590 /* prefetch first cache line of first page */ 591 prefetch(va); 592 #if L1_CACHE_BYTES < 128 593 prefetch(va + L1_CACHE_BYTES); 594 #endif 595 596 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 597 HNS_RX_HEAD_SIZE); 598 if (unlikely(!skb)) { 599 netdev_err(ndev, "alloc rx skb fail\n"); 600 ring->stats.sw_err_cnt++; 601 return -ENOMEM; 602 } 603 604 prefetchw(skb->data); 605 length = le16_to_cpu(desc->rx.pkt_len); 606 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 607 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 608 *out_bnum = bnum; 609 610 if (length <= HNS_RX_HEAD_SIZE) { 611 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 612 613 /* we can reuse buffer as-is, just make sure it is local */ 614 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 615 desc_cb->reuse_flag = 1; 616 else /* this page cannot be reused so discard it */ 617 put_page(desc_cb->priv); 618 619 ring_ptr_move_fw(ring, next_to_clean); 620 621 if (unlikely(bnum != 1)) { /* check err*/ 622 *out_bnum = 1; 623 goto out_bnum_err; 624 } 625 } else { 626 ring->stats.seg_pkt_cnt++; 627 628 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE); 629 memcpy(__skb_put(skb, pull_len), va, 630 ALIGN(pull_len, sizeof(long))); 631 632 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 633 ring_ptr_move_fw(ring, next_to_clean); 634 635 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 636 *out_bnum = 1; 637 goto out_bnum_err; 638 } 639 for (i = 1; i < bnum; i++) { 640 desc = &ring->desc[ring->next_to_clean]; 641 desc_cb = &ring->desc_cb[ring->next_to_clean]; 642 643 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 644 ring_ptr_move_fw(ring, next_to_clean); 645 } 646 } 647 648 /* check except process, free skb and jump the desc */ 649 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 650 out_bnum_err: 651 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 652 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 653 bnum, ring->max_desc_num_per_pkt, 654 length, (int)MAX_SKB_FRAGS, 655 ((u64 *)desc)[0], ((u64 *)desc)[1]); 656 ring->stats.err_bd_num++; 657 dev_kfree_skb_any(skb); 658 return -EDOM; 659 } 660 661 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 662 663 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 664 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 665 ((u64 *)desc)[0], ((u64 *)desc)[1]); 666 ring->stats.non_vld_descs++; 667 dev_kfree_skb_any(skb); 668 return -EINVAL; 669 } 670 671 if (unlikely((!desc->rx.pkt_len) || 672 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 673 ring->stats.err_pkt_len++; 674 dev_kfree_skb_any(skb); 675 return -EFAULT; 676 } 677 678 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 679 ring->stats.l2_err++; 680 dev_kfree_skb_any(skb); 681 return -EFAULT; 682 } 683 684 ring->stats.rx_pkts++; 685 ring->stats.rx_bytes += skb->len; 686 687 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L3E_B) || 688 hnae_get_bit(bnum_flag, HNS_RXD_L4E_B))) { 689 ring->stats.l3l4_csum_err++; 690 return 0; 691 } 692 693 skb->ip_summed = CHECKSUM_UNNECESSARY; 694 695 return 0; 696 } 697 698 static void 699 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 700 { 701 int i, ret; 702 struct hnae_desc_cb res_cbs; 703 struct hnae_desc_cb *desc_cb; 704 struct hnae_ring *ring = ring_data->ring; 705 struct net_device *ndev = ring_data->napi.dev; 706 707 for (i = 0; i < cleand_count; i++) { 708 desc_cb = &ring->desc_cb[ring->next_to_use]; 709 if (desc_cb->reuse_flag) { 710 ring->stats.reuse_pg_cnt++; 711 hnae_reuse_buffer(ring, ring->next_to_use); 712 } else { 713 ret = hnae_reserve_buffer_map(ring, &res_cbs); 714 if (ret) { 715 ring->stats.sw_err_cnt++; 716 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 717 break; 718 } 719 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 720 } 721 722 ring_ptr_move_fw(ring, next_to_use); 723 } 724 725 wmb(); /* make all data has been write before submit */ 726 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 727 } 728 729 /* return error number for error or number of desc left to take 730 */ 731 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 732 struct sk_buff *skb) 733 { 734 struct net_device *ndev = ring_data->napi.dev; 735 736 skb->protocol = eth_type_trans(skb, ndev); 737 (void)napi_gro_receive(&ring_data->napi, skb); 738 ndev->last_rx = jiffies; 739 } 740 741 static int hns_desc_unused(struct hnae_ring *ring) 742 { 743 int ntc = ring->next_to_clean; 744 int ntu = ring->next_to_use; 745 746 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 747 } 748 749 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 750 int budget, void *v) 751 { 752 struct hnae_ring *ring = ring_data->ring; 753 struct sk_buff *skb; 754 int num, bnum; 755 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 756 int recv_pkts, recv_bds, clean_count, err; 757 int unused_count = hns_desc_unused(ring); 758 759 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 760 rmb(); /* make sure num taken effect before the other data is touched */ 761 762 recv_pkts = 0, recv_bds = 0, clean_count = 0; 763 num -= unused_count; 764 765 while (recv_pkts < budget && recv_bds < num) { 766 /* reuse or realloc buffers */ 767 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 768 hns_nic_alloc_rx_buffers(ring_data, 769 clean_count + unused_count); 770 clean_count = 0; 771 unused_count = hns_desc_unused(ring); 772 } 773 774 /* poll one pkt */ 775 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 776 if (unlikely(!skb)) /* this fault cannot be repaired */ 777 goto out; 778 779 recv_bds += bnum; 780 clean_count += bnum; 781 if (unlikely(err)) { /* do jump the err */ 782 recv_pkts++; 783 continue; 784 } 785 786 /* do update ip stack process*/ 787 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 788 ring_data, skb); 789 recv_pkts++; 790 } 791 792 out: 793 /* make all data has been write before submit */ 794 if (clean_count + unused_count > 0) 795 hns_nic_alloc_rx_buffers(ring_data, 796 clean_count + unused_count); 797 798 return recv_pkts; 799 } 800 801 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 802 { 803 struct hnae_ring *ring = ring_data->ring; 804 int num = 0; 805 806 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 807 808 /* for hardware bug fixed */ 809 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 810 811 if (num > 0) { 812 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 813 ring_data->ring, 1); 814 815 napi_schedule(&ring_data->napi); 816 } 817 } 818 819 static void hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 820 { 821 struct hnae_ring *ring = ring_data->ring; 822 int num = 0; 823 824 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 825 826 if (num == 0) 827 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 828 ring, 0); 829 else 830 napi_schedule(&ring_data->napi); 831 } 832 833 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 834 int *bytes, int *pkts) 835 { 836 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 837 838 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 839 (*bytes) += desc_cb->length; 840 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 841 hnae_free_buffer_detach(ring, ring->next_to_clean); 842 843 ring_ptr_move_fw(ring, next_to_clean); 844 } 845 846 static int is_valid_clean_head(struct hnae_ring *ring, int h) 847 { 848 int u = ring->next_to_use; 849 int c = ring->next_to_clean; 850 851 if (unlikely(h > ring->desc_num)) 852 return 0; 853 854 assert(u > 0 && u < ring->desc_num); 855 assert(c > 0 && c < ring->desc_num); 856 assert(u != c && h != c); /* must be checked before call this func */ 857 858 return u > c ? (h > c && h <= u) : (h > c || h <= u); 859 } 860 861 /* netif_tx_lock will turn down the performance, set only when necessary */ 862 #ifdef CONFIG_NET_POLL_CONTROLLER 863 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev) 864 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev) 865 #else 866 #define NETIF_TX_LOCK(ndev) 867 #define NETIF_TX_UNLOCK(ndev) 868 #endif 869 /* reclaim all desc in one budget 870 * return error or number of desc left 871 */ 872 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 873 int budget, void *v) 874 { 875 struct hnae_ring *ring = ring_data->ring; 876 struct net_device *ndev = ring_data->napi.dev; 877 struct netdev_queue *dev_queue; 878 struct hns_nic_priv *priv = netdev_priv(ndev); 879 int head; 880 int bytes, pkts; 881 882 NETIF_TX_LOCK(ndev); 883 884 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 885 rmb(); /* make sure head is ready before touch any data */ 886 887 if (is_ring_empty(ring) || head == ring->next_to_clean) { 888 NETIF_TX_UNLOCK(ndev); 889 return 0; /* no data to poll */ 890 } 891 892 if (!is_valid_clean_head(ring, head)) { 893 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 894 ring->next_to_use, ring->next_to_clean); 895 ring->stats.io_err_cnt++; 896 NETIF_TX_UNLOCK(ndev); 897 return -EIO; 898 } 899 900 bytes = 0; 901 pkts = 0; 902 while (head != ring->next_to_clean) { 903 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 904 /* issue prefetch for next Tx descriptor */ 905 prefetch(&ring->desc_cb[ring->next_to_clean]); 906 } 907 908 NETIF_TX_UNLOCK(ndev); 909 910 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 911 netdev_tx_completed_queue(dev_queue, pkts, bytes); 912 913 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 914 netif_carrier_on(ndev); 915 916 if (unlikely(pkts && netif_carrier_ok(ndev) && 917 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 918 /* Make sure that anybody stopping the queue after this 919 * sees the new next_to_clean. 920 */ 921 smp_mb(); 922 if (netif_tx_queue_stopped(dev_queue) && 923 !test_bit(NIC_STATE_DOWN, &priv->state)) { 924 netif_tx_wake_queue(dev_queue); 925 ring->stats.restart_queue++; 926 } 927 } 928 return 0; 929 } 930 931 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 932 { 933 struct hnae_ring *ring = ring_data->ring; 934 int head; 935 936 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 937 938 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 939 940 if (head != ring->next_to_clean) { 941 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 942 ring_data->ring, 1); 943 944 napi_schedule(&ring_data->napi); 945 } 946 } 947 948 static void hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 949 { 950 struct hnae_ring *ring = ring_data->ring; 951 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 952 953 if (head == ring->next_to_clean) 954 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 955 ring, 0); 956 else 957 napi_schedule(&ring_data->napi); 958 } 959 960 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 961 { 962 struct hnae_ring *ring = ring_data->ring; 963 struct net_device *ndev = ring_data->napi.dev; 964 struct netdev_queue *dev_queue; 965 int head; 966 int bytes, pkts; 967 968 NETIF_TX_LOCK(ndev); 969 970 head = ring->next_to_use; /* ntu :soft setted ring position*/ 971 bytes = 0; 972 pkts = 0; 973 while (head != ring->next_to_clean) 974 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 975 976 NETIF_TX_UNLOCK(ndev); 977 978 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 979 netdev_tx_reset_queue(dev_queue); 980 } 981 982 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 983 { 984 struct hns_nic_ring_data *ring_data = 985 container_of(napi, struct hns_nic_ring_data, napi); 986 int clean_complete = ring_data->poll_one( 987 ring_data, budget, ring_data->ex_process); 988 989 if (clean_complete >= 0 && clean_complete < budget) { 990 napi_complete(napi); 991 ring_data->fini_process(ring_data); 992 return 0; 993 } 994 995 return clean_complete; 996 } 997 998 static irqreturn_t hns_irq_handle(int irq, void *dev) 999 { 1000 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1001 1002 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1003 ring_data->ring, 1); 1004 napi_schedule(&ring_data->napi); 1005 1006 return IRQ_HANDLED; 1007 } 1008 1009 /** 1010 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1011 *@ndev: net device 1012 */ 1013 static void hns_nic_adjust_link(struct net_device *ndev) 1014 { 1015 struct hns_nic_priv *priv = netdev_priv(ndev); 1016 struct hnae_handle *h = priv->ae_handle; 1017 int state = 1; 1018 1019 if (ndev->phydev) { 1020 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1021 ndev->phydev->duplex); 1022 state = ndev->phydev->link; 1023 } 1024 state = state && h->dev->ops->get_status(h); 1025 1026 if (state != priv->link) { 1027 if (state) { 1028 netif_carrier_on(ndev); 1029 netif_tx_wake_all_queues(ndev); 1030 netdev_info(ndev, "link up\n"); 1031 } else { 1032 netif_carrier_off(ndev); 1033 netdev_info(ndev, "link down\n"); 1034 } 1035 priv->link = state; 1036 } 1037 } 1038 1039 /** 1040 *hns_nic_init_phy - init phy 1041 *@ndev: net device 1042 *@h: ae handle 1043 * Return 0 on success, negative on failure 1044 */ 1045 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1046 { 1047 struct phy_device *phy_dev = h->phy_dev; 1048 int ret; 1049 1050 if (!h->phy_dev) 1051 return 0; 1052 1053 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1054 phy_dev->dev_flags = 0; 1055 1056 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1057 h->phy_if); 1058 } else { 1059 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1060 } 1061 if (unlikely(ret)) 1062 return -ENODEV; 1063 1064 phy_dev->supported &= h->if_support; 1065 phy_dev->advertising = phy_dev->supported; 1066 1067 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1068 phy_dev->autoneg = false; 1069 1070 return 0; 1071 } 1072 1073 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1074 { 1075 struct hns_nic_priv *priv = netdev_priv(netdev); 1076 struct hnae_handle *h = priv->ae_handle; 1077 1078 napi_enable(&priv->ring_data[idx].napi); 1079 1080 enable_irq(priv->ring_data[idx].ring->irq); 1081 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1082 1083 return 0; 1084 } 1085 1086 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1087 { 1088 struct hns_nic_priv *priv = netdev_priv(ndev); 1089 struct hnae_handle *h = priv->ae_handle; 1090 struct sockaddr *mac_addr = p; 1091 int ret; 1092 1093 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1094 return -EADDRNOTAVAIL; 1095 1096 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1097 if (ret) { 1098 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1099 return ret; 1100 } 1101 1102 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); 1103 1104 return 0; 1105 } 1106 1107 void hns_nic_update_stats(struct net_device *netdev) 1108 { 1109 struct hns_nic_priv *priv = netdev_priv(netdev); 1110 struct hnae_handle *h = priv->ae_handle; 1111 1112 h->dev->ops->update_stats(h, &netdev->stats); 1113 } 1114 1115 /* set mac addr if it is configed. or leave it to the AE driver */ 1116 static void hns_init_mac_addr(struct net_device *ndev) 1117 { 1118 struct hns_nic_priv *priv = netdev_priv(ndev); 1119 1120 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { 1121 eth_hw_addr_random(ndev); 1122 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1123 ndev->dev_addr); 1124 } 1125 } 1126 1127 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1128 { 1129 struct hns_nic_priv *priv = netdev_priv(netdev); 1130 struct hnae_handle *h = priv->ae_handle; 1131 1132 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1133 disable_irq(priv->ring_data[idx].ring->irq); 1134 1135 napi_disable(&priv->ring_data[idx].napi); 1136 } 1137 1138 static void hns_set_irq_affinity(struct hns_nic_priv *priv) 1139 { 1140 struct hnae_handle *h = priv->ae_handle; 1141 struct hns_nic_ring_data *rd; 1142 int i; 1143 int cpu; 1144 cpumask_t mask; 1145 1146 /*diffrent irq banlance for 16core and 32core*/ 1147 if (h->q_num == num_possible_cpus()) { 1148 for (i = 0; i < h->q_num * 2; i++) { 1149 rd = &priv->ring_data[i]; 1150 if (cpu_online(rd->queue_index)) { 1151 cpumask_clear(&mask); 1152 cpu = rd->queue_index; 1153 cpumask_set_cpu(cpu, &mask); 1154 (void)irq_set_affinity_hint(rd->ring->irq, 1155 &mask); 1156 } 1157 } 1158 } else { 1159 for (i = 0; i < h->q_num; i++) { 1160 rd = &priv->ring_data[i]; 1161 if (cpu_online(rd->queue_index * 2)) { 1162 cpumask_clear(&mask); 1163 cpu = rd->queue_index * 2; 1164 cpumask_set_cpu(cpu, &mask); 1165 (void)irq_set_affinity_hint(rd->ring->irq, 1166 &mask); 1167 } 1168 } 1169 1170 for (i = h->q_num; i < h->q_num * 2; i++) { 1171 rd = &priv->ring_data[i]; 1172 if (cpu_online(rd->queue_index * 2 + 1)) { 1173 cpumask_clear(&mask); 1174 cpu = rd->queue_index * 2 + 1; 1175 cpumask_set_cpu(cpu, &mask); 1176 (void)irq_set_affinity_hint(rd->ring->irq, 1177 &mask); 1178 } 1179 } 1180 } 1181 } 1182 1183 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1184 { 1185 struct hnae_handle *h = priv->ae_handle; 1186 struct hns_nic_ring_data *rd; 1187 int i; 1188 int ret; 1189 1190 for (i = 0; i < h->q_num * 2; i++) { 1191 rd = &priv->ring_data[i]; 1192 1193 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1194 break; 1195 1196 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1197 "%s-%s%d", priv->netdev->name, 1198 (i < h->q_num ? "tx" : "rx"), rd->queue_index); 1199 1200 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1201 1202 ret = request_irq(rd->ring->irq, 1203 hns_irq_handle, 0, rd->ring->ring_name, rd); 1204 if (ret) { 1205 netdev_err(priv->netdev, "request irq(%d) fail\n", 1206 rd->ring->irq); 1207 return ret; 1208 } 1209 disable_irq(rd->ring->irq); 1210 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1211 } 1212 1213 /*set cpu affinity*/ 1214 hns_set_irq_affinity(priv); 1215 1216 return 0; 1217 } 1218 1219 static int hns_nic_net_up(struct net_device *ndev) 1220 { 1221 struct hns_nic_priv *priv = netdev_priv(ndev); 1222 struct hnae_handle *h = priv->ae_handle; 1223 int i, j; 1224 int ret; 1225 1226 ret = hns_nic_init_irq(priv); 1227 if (ret != 0) { 1228 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1229 return ret; 1230 } 1231 1232 for (i = 0; i < h->q_num * 2; i++) { 1233 ret = hns_nic_ring_open(ndev, i); 1234 if (ret) 1235 goto out_has_some_queues; 1236 } 1237 1238 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1239 if (ret) 1240 goto out_set_mac_addr_err; 1241 1242 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1243 if (ret) 1244 goto out_start_err; 1245 1246 if (ndev->phydev) 1247 phy_start(ndev->phydev); 1248 1249 clear_bit(NIC_STATE_DOWN, &priv->state); 1250 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1251 1252 return 0; 1253 1254 out_start_err: 1255 netif_stop_queue(ndev); 1256 out_set_mac_addr_err: 1257 out_has_some_queues: 1258 for (j = i - 1; j >= 0; j--) 1259 hns_nic_ring_close(ndev, j); 1260 1261 set_bit(NIC_STATE_DOWN, &priv->state); 1262 1263 return ret; 1264 } 1265 1266 static void hns_nic_net_down(struct net_device *ndev) 1267 { 1268 int i; 1269 struct hnae_ae_ops *ops; 1270 struct hns_nic_priv *priv = netdev_priv(ndev); 1271 1272 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1273 return; 1274 1275 (void)del_timer_sync(&priv->service_timer); 1276 netif_tx_stop_all_queues(ndev); 1277 netif_carrier_off(ndev); 1278 netif_tx_disable(ndev); 1279 priv->link = 0; 1280 1281 if (ndev->phydev) 1282 phy_stop(ndev->phydev); 1283 1284 ops = priv->ae_handle->dev->ops; 1285 1286 if (ops->stop) 1287 ops->stop(priv->ae_handle); 1288 1289 netif_tx_stop_all_queues(ndev); 1290 1291 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1292 hns_nic_ring_close(ndev, i); 1293 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1294 1295 /* clean tx buffers*/ 1296 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1297 } 1298 } 1299 1300 void hns_nic_net_reset(struct net_device *ndev) 1301 { 1302 struct hns_nic_priv *priv = netdev_priv(ndev); 1303 struct hnae_handle *handle = priv->ae_handle; 1304 1305 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1306 usleep_range(1000, 2000); 1307 1308 (void)hnae_reinit_handle(handle); 1309 1310 clear_bit(NIC_STATE_RESETTING, &priv->state); 1311 } 1312 1313 void hns_nic_net_reinit(struct net_device *netdev) 1314 { 1315 struct hns_nic_priv *priv = netdev_priv(netdev); 1316 1317 netif_trans_update(priv->netdev); 1318 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1319 usleep_range(1000, 2000); 1320 1321 hns_nic_net_down(netdev); 1322 hns_nic_net_reset(netdev); 1323 (void)hns_nic_net_up(netdev); 1324 clear_bit(NIC_STATE_REINITING, &priv->state); 1325 } 1326 1327 static int hns_nic_net_open(struct net_device *ndev) 1328 { 1329 struct hns_nic_priv *priv = netdev_priv(ndev); 1330 struct hnae_handle *h = priv->ae_handle; 1331 int ret; 1332 1333 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1334 return -EBUSY; 1335 1336 priv->link = 0; 1337 netif_carrier_off(ndev); 1338 1339 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1340 if (ret < 0) { 1341 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1342 ret); 1343 return ret; 1344 } 1345 1346 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1347 if (ret < 0) { 1348 netdev_err(ndev, 1349 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1350 return ret; 1351 } 1352 1353 ret = hns_nic_net_up(ndev); 1354 if (ret) { 1355 netdev_err(ndev, 1356 "hns net up fail, ret=%d!\n", ret); 1357 return ret; 1358 } 1359 1360 return 0; 1361 } 1362 1363 static int hns_nic_net_stop(struct net_device *ndev) 1364 { 1365 hns_nic_net_down(ndev); 1366 1367 return 0; 1368 } 1369 1370 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1371 static void hns_nic_net_timeout(struct net_device *ndev) 1372 { 1373 struct hns_nic_priv *priv = netdev_priv(ndev); 1374 1375 hns_tx_timeout_reset(priv); 1376 } 1377 1378 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr, 1379 int cmd) 1380 { 1381 struct phy_device *phy_dev = netdev->phydev; 1382 1383 if (!netif_running(netdev)) 1384 return -EINVAL; 1385 1386 if (!phy_dev) 1387 return -ENOTSUPP; 1388 1389 return phy_mii_ioctl(phy_dev, ifr, cmd); 1390 } 1391 1392 /* use only for netconsole to poll with the device without interrupt */ 1393 #ifdef CONFIG_NET_POLL_CONTROLLER 1394 void hns_nic_poll_controller(struct net_device *ndev) 1395 { 1396 struct hns_nic_priv *priv = netdev_priv(ndev); 1397 unsigned long flags; 1398 int i; 1399 1400 local_irq_save(flags); 1401 for (i = 0; i < priv->ae_handle->q_num * 2; i++) 1402 napi_schedule(&priv->ring_data[i].napi); 1403 local_irq_restore(flags); 1404 } 1405 #endif 1406 1407 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1408 struct net_device *ndev) 1409 { 1410 struct hns_nic_priv *priv = netdev_priv(ndev); 1411 int ret; 1412 1413 assert(skb->queue_mapping < ndev->ae_handle->q_num); 1414 ret = hns_nic_net_xmit_hw(ndev, skb, 1415 &tx_ring_data(priv, skb->queue_mapping)); 1416 if (ret == NETDEV_TX_OK) { 1417 netif_trans_update(ndev); 1418 ndev->stats.tx_bytes += skb->len; 1419 ndev->stats.tx_packets++; 1420 } 1421 return (netdev_tx_t)ret; 1422 } 1423 1424 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1425 { 1426 struct hns_nic_priv *priv = netdev_priv(ndev); 1427 struct hnae_handle *h = priv->ae_handle; 1428 int ret; 1429 1430 if (!h->dev->ops->set_mtu) 1431 return -ENOTSUPP; 1432 1433 if (netif_running(ndev)) { 1434 (void)hns_nic_net_stop(ndev); 1435 msleep(100); 1436 1437 ret = h->dev->ops->set_mtu(h, new_mtu); 1438 if (ret) 1439 netdev_err(ndev, "set mtu fail, return value %d\n", 1440 ret); 1441 1442 if (hns_nic_net_open(ndev)) 1443 netdev_err(ndev, "hns net open fail\n"); 1444 } else { 1445 ret = h->dev->ops->set_mtu(h, new_mtu); 1446 } 1447 1448 if (!ret) 1449 ndev->mtu = new_mtu; 1450 1451 return ret; 1452 } 1453 1454 static int hns_nic_set_features(struct net_device *netdev, 1455 netdev_features_t features) 1456 { 1457 struct hns_nic_priv *priv = netdev_priv(netdev); 1458 1459 switch (priv->enet_ver) { 1460 case AE_VERSION_1: 1461 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1462 netdev_info(netdev, "enet v1 do not support tso!\n"); 1463 break; 1464 default: 1465 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1466 priv->ops.fill_desc = fill_tso_desc; 1467 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1468 /* The chip only support 7*4096 */ 1469 netif_set_gso_max_size(netdev, 7 * 4096); 1470 } else { 1471 priv->ops.fill_desc = fill_v2_desc; 1472 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1473 } 1474 break; 1475 } 1476 netdev->features = features; 1477 return 0; 1478 } 1479 1480 static netdev_features_t hns_nic_fix_features( 1481 struct net_device *netdev, netdev_features_t features) 1482 { 1483 struct hns_nic_priv *priv = netdev_priv(netdev); 1484 1485 switch (priv->enet_ver) { 1486 case AE_VERSION_1: 1487 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1488 NETIF_F_HW_VLAN_CTAG_FILTER); 1489 break; 1490 default: 1491 break; 1492 } 1493 return features; 1494 } 1495 1496 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1497 { 1498 struct hns_nic_priv *priv = netdev_priv(netdev); 1499 struct hnae_handle *h = priv->ae_handle; 1500 1501 if (h->dev->ops->add_uc_addr) 1502 return h->dev->ops->add_uc_addr(h, addr); 1503 1504 return 0; 1505 } 1506 1507 static int hns_nic_uc_unsync(struct net_device *netdev, 1508 const unsigned char *addr) 1509 { 1510 struct hns_nic_priv *priv = netdev_priv(netdev); 1511 struct hnae_handle *h = priv->ae_handle; 1512 1513 if (h->dev->ops->rm_uc_addr) 1514 return h->dev->ops->rm_uc_addr(h, addr); 1515 1516 return 0; 1517 } 1518 1519 /** 1520 * nic_set_multicast_list - set mutl mac address 1521 * @netdev: net device 1522 * @p: mac address 1523 * 1524 * return void 1525 */ 1526 void hns_set_multicast_list(struct net_device *ndev) 1527 { 1528 struct hns_nic_priv *priv = netdev_priv(ndev); 1529 struct hnae_handle *h = priv->ae_handle; 1530 struct netdev_hw_addr *ha = NULL; 1531 1532 if (!h) { 1533 netdev_err(ndev, "hnae handle is null\n"); 1534 return; 1535 } 1536 1537 if (h->dev->ops->clr_mc_addr) 1538 if (h->dev->ops->clr_mc_addr(h)) 1539 netdev_err(ndev, "clear multicast address fail\n"); 1540 1541 if (h->dev->ops->set_mc_addr) { 1542 netdev_for_each_mc_addr(ha, ndev) 1543 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1544 netdev_err(ndev, "set multicast fail\n"); 1545 } 1546 } 1547 1548 void hns_nic_set_rx_mode(struct net_device *ndev) 1549 { 1550 struct hns_nic_priv *priv = netdev_priv(ndev); 1551 struct hnae_handle *h = priv->ae_handle; 1552 1553 if (h->dev->ops->set_promisc_mode) { 1554 if (ndev->flags & IFF_PROMISC) 1555 h->dev->ops->set_promisc_mode(h, 1); 1556 else 1557 h->dev->ops->set_promisc_mode(h, 0); 1558 } 1559 1560 hns_set_multicast_list(ndev); 1561 1562 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1563 netdev_err(ndev, "sync uc address fail\n"); 1564 } 1565 1566 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev, 1567 struct rtnl_link_stats64 *stats) 1568 { 1569 int idx = 0; 1570 u64 tx_bytes = 0; 1571 u64 rx_bytes = 0; 1572 u64 tx_pkts = 0; 1573 u64 rx_pkts = 0; 1574 struct hns_nic_priv *priv = netdev_priv(ndev); 1575 struct hnae_handle *h = priv->ae_handle; 1576 1577 for (idx = 0; idx < h->q_num; idx++) { 1578 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1579 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1580 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1581 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1582 } 1583 1584 stats->tx_bytes = tx_bytes; 1585 stats->tx_packets = tx_pkts; 1586 stats->rx_bytes = rx_bytes; 1587 stats->rx_packets = rx_pkts; 1588 1589 stats->rx_errors = ndev->stats.rx_errors; 1590 stats->multicast = ndev->stats.multicast; 1591 stats->rx_length_errors = ndev->stats.rx_length_errors; 1592 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1593 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1594 1595 stats->tx_errors = ndev->stats.tx_errors; 1596 stats->rx_dropped = ndev->stats.rx_dropped; 1597 stats->tx_dropped = ndev->stats.tx_dropped; 1598 stats->collisions = ndev->stats.collisions; 1599 stats->rx_over_errors = ndev->stats.rx_over_errors; 1600 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1601 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1602 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1603 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1604 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1605 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1606 stats->tx_window_errors = ndev->stats.tx_window_errors; 1607 stats->rx_compressed = ndev->stats.rx_compressed; 1608 stats->tx_compressed = ndev->stats.tx_compressed; 1609 1610 return stats; 1611 } 1612 1613 static u16 1614 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1615 void *accel_priv, select_queue_fallback_t fallback) 1616 { 1617 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1618 struct hns_nic_priv *priv = netdev_priv(ndev); 1619 1620 /* fix hardware broadcast/multicast packets queue loopback */ 1621 if (!AE_IS_VER1(priv->enet_ver) && 1622 is_multicast_ether_addr(eth_hdr->h_dest)) 1623 return 0; 1624 else 1625 return fallback(ndev, skb); 1626 } 1627 1628 static const struct net_device_ops hns_nic_netdev_ops = { 1629 .ndo_open = hns_nic_net_open, 1630 .ndo_stop = hns_nic_net_stop, 1631 .ndo_start_xmit = hns_nic_net_xmit, 1632 .ndo_tx_timeout = hns_nic_net_timeout, 1633 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1634 .ndo_change_mtu = hns_nic_change_mtu, 1635 .ndo_do_ioctl = hns_nic_do_ioctl, 1636 .ndo_set_features = hns_nic_set_features, 1637 .ndo_fix_features = hns_nic_fix_features, 1638 .ndo_get_stats64 = hns_nic_get_stats64, 1639 #ifdef CONFIG_NET_POLL_CONTROLLER 1640 .ndo_poll_controller = hns_nic_poll_controller, 1641 #endif 1642 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1643 .ndo_select_queue = hns_nic_select_queue, 1644 }; 1645 1646 static void hns_nic_update_link_status(struct net_device *netdev) 1647 { 1648 struct hns_nic_priv *priv = netdev_priv(netdev); 1649 1650 struct hnae_handle *h = priv->ae_handle; 1651 1652 if (h->phy_dev) { 1653 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1654 return; 1655 1656 (void)genphy_read_status(h->phy_dev); 1657 } 1658 hns_nic_adjust_link(netdev); 1659 } 1660 1661 /* for dumping key regs*/ 1662 static void hns_nic_dump(struct hns_nic_priv *priv) 1663 { 1664 struct hnae_handle *h = priv->ae_handle; 1665 struct hnae_ae_ops *ops = h->dev->ops; 1666 u32 *data, reg_num, i; 1667 1668 if (ops->get_regs_len && ops->get_regs) { 1669 reg_num = ops->get_regs_len(priv->ae_handle); 1670 reg_num = (reg_num + 3ul) & ~3ul; 1671 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 1672 if (data) { 1673 ops->get_regs(priv->ae_handle, data); 1674 for (i = 0; i < reg_num; i += 4) 1675 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 1676 i, data[i], data[i + 1], 1677 data[i + 2], data[i + 3]); 1678 kfree(data); 1679 } 1680 } 1681 1682 for (i = 0; i < h->q_num; i++) { 1683 pr_info("tx_queue%d_next_to_clean:%d\n", 1684 i, h->qs[i]->tx_ring.next_to_clean); 1685 pr_info("tx_queue%d_next_to_use:%d\n", 1686 i, h->qs[i]->tx_ring.next_to_use); 1687 pr_info("rx_queue%d_next_to_clean:%d\n", 1688 i, h->qs[i]->rx_ring.next_to_clean); 1689 pr_info("rx_queue%d_next_to_use:%d\n", 1690 i, h->qs[i]->rx_ring.next_to_use); 1691 } 1692 } 1693 1694 /* for resetting subtask */ 1695 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 1696 { 1697 enum hnae_port_type type = priv->ae_handle->port_type; 1698 1699 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 1700 return; 1701 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 1702 1703 /* If we're already down, removing or resetting, just bail */ 1704 if (test_bit(NIC_STATE_DOWN, &priv->state) || 1705 test_bit(NIC_STATE_REMOVING, &priv->state) || 1706 test_bit(NIC_STATE_RESETTING, &priv->state)) 1707 return; 1708 1709 hns_nic_dump(priv); 1710 netdev_info(priv->netdev, "try to reset %s port!\n", 1711 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 1712 1713 rtnl_lock(); 1714 /* put off any impending NetWatchDogTimeout */ 1715 netif_trans_update(priv->netdev); 1716 1717 if (type == HNAE_PORT_DEBUG) { 1718 hns_nic_net_reinit(priv->netdev); 1719 } else { 1720 netif_carrier_off(priv->netdev); 1721 netif_tx_disable(priv->netdev); 1722 } 1723 rtnl_unlock(); 1724 } 1725 1726 /* for doing service complete*/ 1727 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 1728 { 1729 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 1730 1731 smp_mb__before_atomic(); 1732 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 1733 } 1734 1735 static void hns_nic_service_task(struct work_struct *work) 1736 { 1737 struct hns_nic_priv *priv 1738 = container_of(work, struct hns_nic_priv, service_task); 1739 struct hnae_handle *h = priv->ae_handle; 1740 1741 hns_nic_update_link_status(priv->netdev); 1742 h->dev->ops->update_led_status(h); 1743 hns_nic_update_stats(priv->netdev); 1744 1745 hns_nic_reset_subtask(priv); 1746 hns_nic_service_event_complete(priv); 1747 } 1748 1749 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 1750 { 1751 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 1752 !test_bit(NIC_STATE_REMOVING, &priv->state) && 1753 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 1754 (void)schedule_work(&priv->service_task); 1755 } 1756 1757 static void hns_nic_service_timer(unsigned long data) 1758 { 1759 struct hns_nic_priv *priv = (struct hns_nic_priv *)data; 1760 1761 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1762 1763 hns_nic_task_schedule(priv); 1764 } 1765 1766 /** 1767 * hns_tx_timeout_reset - initiate reset due to Tx timeout 1768 * @priv: driver private struct 1769 **/ 1770 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 1771 { 1772 /* Do the reset outside of interrupt context */ 1773 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 1774 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 1775 netdev_warn(priv->netdev, 1776 "initiating reset due to tx timeout(%llu,0x%lx)\n", 1777 priv->tx_timeout_count, priv->state); 1778 priv->tx_timeout_count++; 1779 hns_nic_task_schedule(priv); 1780 } 1781 } 1782 1783 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 1784 { 1785 struct hnae_handle *h = priv->ae_handle; 1786 struct hns_nic_ring_data *rd; 1787 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 1788 int i; 1789 1790 if (h->q_num > NIC_MAX_Q_PER_VF) { 1791 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 1792 return -EINVAL; 1793 } 1794 1795 priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2, 1796 GFP_KERNEL); 1797 if (!priv->ring_data) 1798 return -ENOMEM; 1799 1800 for (i = 0; i < h->q_num; i++) { 1801 rd = &priv->ring_data[i]; 1802 rd->queue_index = i; 1803 rd->ring = &h->qs[i]->tx_ring; 1804 rd->poll_one = hns_nic_tx_poll_one; 1805 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 1806 hns_nic_tx_fini_pro_v2; 1807 1808 netif_napi_add(priv->netdev, &rd->napi, 1809 hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM); 1810 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 1811 } 1812 for (i = h->q_num; i < h->q_num * 2; i++) { 1813 rd = &priv->ring_data[i]; 1814 rd->queue_index = i - h->q_num; 1815 rd->ring = &h->qs[i - h->q_num]->rx_ring; 1816 rd->poll_one = hns_nic_rx_poll_one; 1817 rd->ex_process = hns_nic_rx_up_pro; 1818 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 1819 hns_nic_rx_fini_pro_v2; 1820 1821 netif_napi_add(priv->netdev, &rd->napi, 1822 hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM); 1823 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 1824 } 1825 1826 return 0; 1827 } 1828 1829 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 1830 { 1831 struct hnae_handle *h = priv->ae_handle; 1832 int i; 1833 1834 for (i = 0; i < h->q_num * 2; i++) { 1835 netif_napi_del(&priv->ring_data[i].napi); 1836 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 1837 (void)irq_set_affinity_hint( 1838 priv->ring_data[i].ring->irq, 1839 NULL); 1840 free_irq(priv->ring_data[i].ring->irq, 1841 &priv->ring_data[i]); 1842 } 1843 1844 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 1845 } 1846 kfree(priv->ring_data); 1847 } 1848 1849 static void hns_nic_set_priv_ops(struct net_device *netdev) 1850 { 1851 struct hns_nic_priv *priv = netdev_priv(netdev); 1852 struct hnae_handle *h = priv->ae_handle; 1853 1854 if (AE_IS_VER1(priv->enet_ver)) { 1855 priv->ops.fill_desc = fill_desc; 1856 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 1857 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1858 } else { 1859 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 1860 if ((netdev->features & NETIF_F_TSO) || 1861 (netdev->features & NETIF_F_TSO6)) { 1862 priv->ops.fill_desc = fill_tso_desc; 1863 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1864 /* This chip only support 7*4096 */ 1865 netif_set_gso_max_size(netdev, 7 * 4096); 1866 } else { 1867 priv->ops.fill_desc = fill_v2_desc; 1868 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1869 } 1870 /* enable tso when init 1871 * control tso on/off through TSE bit in bd 1872 */ 1873 h->dev->ops->set_tso_stats(h, 1); 1874 } 1875 } 1876 1877 static int hns_nic_try_get_ae(struct net_device *ndev) 1878 { 1879 struct hns_nic_priv *priv = netdev_priv(ndev); 1880 struct hnae_handle *h; 1881 int ret; 1882 1883 h = hnae_get_handle(&priv->netdev->dev, 1884 priv->fwnode, priv->port_id, NULL); 1885 if (IS_ERR_OR_NULL(h)) { 1886 ret = -ENODEV; 1887 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 1888 goto out; 1889 } 1890 priv->ae_handle = h; 1891 1892 ret = hns_nic_init_phy(ndev, h); 1893 if (ret) { 1894 dev_err(priv->dev, "probe phy device fail!\n"); 1895 goto out_init_phy; 1896 } 1897 1898 ret = hns_nic_init_ring_data(priv); 1899 if (ret) { 1900 ret = -ENOMEM; 1901 goto out_init_ring_data; 1902 } 1903 1904 hns_nic_set_priv_ops(ndev); 1905 1906 ret = register_netdev(ndev); 1907 if (ret) { 1908 dev_err(priv->dev, "probe register netdev fail!\n"); 1909 goto out_reg_ndev_fail; 1910 } 1911 return 0; 1912 1913 out_reg_ndev_fail: 1914 hns_nic_uninit_ring_data(priv); 1915 priv->ring_data = NULL; 1916 out_init_phy: 1917 out_init_ring_data: 1918 hnae_put_handle(priv->ae_handle); 1919 priv->ae_handle = NULL; 1920 out: 1921 return ret; 1922 } 1923 1924 static int hns_nic_notifier_action(struct notifier_block *nb, 1925 unsigned long action, void *data) 1926 { 1927 struct hns_nic_priv *priv = 1928 container_of(nb, struct hns_nic_priv, notifier_block); 1929 1930 assert(action == HNAE_AE_REGISTER); 1931 1932 if (!hns_nic_try_get_ae(priv->netdev)) { 1933 hnae_unregister_notifier(&priv->notifier_block); 1934 priv->notifier_block.notifier_call = NULL; 1935 } 1936 return 0; 1937 } 1938 1939 static int hns_nic_dev_probe(struct platform_device *pdev) 1940 { 1941 struct device *dev = &pdev->dev; 1942 struct net_device *ndev; 1943 struct hns_nic_priv *priv; 1944 u32 port_id; 1945 int ret; 1946 1947 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 1948 if (!ndev) 1949 return -ENOMEM; 1950 1951 platform_set_drvdata(pdev, ndev); 1952 1953 priv = netdev_priv(ndev); 1954 priv->dev = dev; 1955 priv->netdev = ndev; 1956 1957 if (dev_of_node(dev)) { 1958 struct device_node *ae_node; 1959 1960 if (of_device_is_compatible(dev->of_node, 1961 "hisilicon,hns-nic-v1")) 1962 priv->enet_ver = AE_VERSION_1; 1963 else 1964 priv->enet_ver = AE_VERSION_2; 1965 1966 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 1967 if (IS_ERR_OR_NULL(ae_node)) { 1968 ret = PTR_ERR(ae_node); 1969 dev_err(dev, "not find ae-handle\n"); 1970 goto out_read_prop_fail; 1971 } 1972 priv->fwnode = &ae_node->fwnode; 1973 } else if (is_acpi_node(dev->fwnode)) { 1974 struct acpi_reference_args args; 1975 1976 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 1977 priv->enet_ver = AE_VERSION_1; 1978 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 1979 priv->enet_ver = AE_VERSION_2; 1980 else 1981 return -ENXIO; 1982 1983 /* try to find port-idx-in-ae first */ 1984 ret = acpi_node_get_property_reference(dev->fwnode, 1985 "ae-handle", 0, &args); 1986 if (ret) { 1987 dev_err(dev, "not find ae-handle\n"); 1988 goto out_read_prop_fail; 1989 } 1990 priv->fwnode = acpi_fwnode_handle(args.adev); 1991 } else { 1992 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 1993 return -ENXIO; 1994 } 1995 1996 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 1997 if (ret) { 1998 /* only for old code compatible */ 1999 ret = device_property_read_u32(dev, "port-id", &port_id); 2000 if (ret) 2001 goto out_read_prop_fail; 2002 /* for old dts, we need to caculate the port offset */ 2003 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2004 : port_id - HNS_SRV_OFFSET; 2005 } 2006 priv->port_id = port_id; 2007 2008 hns_init_mac_addr(ndev); 2009 2010 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2011 ndev->priv_flags |= IFF_UNICAST_FLT; 2012 ndev->netdev_ops = &hns_nic_netdev_ops; 2013 hns_ethtool_set_ops(ndev); 2014 2015 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2016 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2017 NETIF_F_GRO; 2018 ndev->vlan_features |= 2019 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2020 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2021 2022 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2023 ndev->min_mtu = MAC_MIN_MTU; 2024 switch (priv->enet_ver) { 2025 case AE_VERSION_2: 2026 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6; 2027 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2028 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2029 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2030 ndev->max_mtu = MAC_MAX_MTU_V2 - 2031 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2032 break; 2033 default: 2034 ndev->max_mtu = MAC_MAX_MTU - 2035 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2036 break; 2037 } 2038 2039 SET_NETDEV_DEV(ndev, dev); 2040 2041 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2042 dev_dbg(dev, "set mask to 64bit\n"); 2043 else 2044 dev_err(dev, "set mask to 64bit fail!\n"); 2045 2046 /* carrier off reporting is important to ethtool even BEFORE open */ 2047 netif_carrier_off(ndev); 2048 2049 setup_timer(&priv->service_timer, hns_nic_service_timer, 2050 (unsigned long)priv); 2051 INIT_WORK(&priv->service_task, hns_nic_service_task); 2052 2053 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2054 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2055 set_bit(NIC_STATE_DOWN, &priv->state); 2056 2057 if (hns_nic_try_get_ae(priv->netdev)) { 2058 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2059 ret = hnae_register_notifier(&priv->notifier_block); 2060 if (ret) { 2061 dev_err(dev, "register notifier fail!\n"); 2062 goto out_notify_fail; 2063 } 2064 dev_dbg(dev, "has not handle, register notifier!\n"); 2065 } 2066 2067 return 0; 2068 2069 out_notify_fail: 2070 (void)cancel_work_sync(&priv->service_task); 2071 out_read_prop_fail: 2072 free_netdev(ndev); 2073 return ret; 2074 } 2075 2076 static int hns_nic_dev_remove(struct platform_device *pdev) 2077 { 2078 struct net_device *ndev = platform_get_drvdata(pdev); 2079 struct hns_nic_priv *priv = netdev_priv(ndev); 2080 2081 if (ndev->reg_state != NETREG_UNINITIALIZED) 2082 unregister_netdev(ndev); 2083 2084 if (priv->ring_data) 2085 hns_nic_uninit_ring_data(priv); 2086 priv->ring_data = NULL; 2087 2088 if (ndev->phydev) 2089 phy_disconnect(ndev->phydev); 2090 2091 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2092 hnae_put_handle(priv->ae_handle); 2093 priv->ae_handle = NULL; 2094 if (priv->notifier_block.notifier_call) 2095 hnae_unregister_notifier(&priv->notifier_block); 2096 priv->notifier_block.notifier_call = NULL; 2097 2098 set_bit(NIC_STATE_REMOVING, &priv->state); 2099 (void)cancel_work_sync(&priv->service_task); 2100 2101 free_netdev(ndev); 2102 return 0; 2103 } 2104 2105 static const struct of_device_id hns_enet_of_match[] = { 2106 {.compatible = "hisilicon,hns-nic-v1",}, 2107 {.compatible = "hisilicon,hns-nic-v2",}, 2108 {}, 2109 }; 2110 2111 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2112 2113 static struct platform_driver hns_nic_dev_driver = { 2114 .driver = { 2115 .name = "hns-nic", 2116 .of_match_table = hns_enet_of_match, 2117 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2118 }, 2119 .probe = hns_nic_dev_probe, 2120 .remove = hns_nic_dev_remove, 2121 }; 2122 2123 module_platform_driver(hns_nic_dev_driver); 2124 2125 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2126 MODULE_AUTHOR("Hisilicon, Inc."); 2127 MODULE_LICENSE("GPL"); 2128 MODULE_ALIAS("platform:hns-nic"); 2129