1 /* 2 * Copyright (c) 2014-2015 Hisilicon Limited. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/cpumask.h> 12 #include <linux/etherdevice.h> 13 #include <linux/if_vlan.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/module.h> 19 #include <linux/phy.h> 20 #include <linux/platform_device.h> 21 #include <linux/skbuff.h> 22 23 #include "hnae.h" 24 #include "hns_enet.h" 25 #include "hns_dsaf_mac.h" 26 27 #define NIC_MAX_Q_PER_VF 16 28 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 29 30 #define SERVICE_TIMER_HZ (1 * HZ) 31 32 #define NIC_TX_CLEAN_MAX_NUM 256 33 #define NIC_RX_CLEAN_MAX_NUM 64 34 35 #define RCB_IRQ_NOT_INITED 0 36 #define RCB_IRQ_INITED 1 37 #define HNS_BUFFER_SIZE_2048 2048 38 39 #define BD_MAX_SEND_SIZE 8191 40 #define SKB_TMP_LEN(SKB) \ 41 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) 42 43 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 44 int size, dma_addr_t dma, int frag_end, 45 int buf_num, enum hns_desc_type type, int mtu) 46 { 47 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 48 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 49 struct iphdr *iphdr; 50 struct ipv6hdr *ipv6hdr; 51 struct sk_buff *skb; 52 __be16 protocol; 53 u8 bn_pid = 0; 54 u8 rrcfv = 0; 55 u8 ip_offset = 0; 56 u8 tvsvsn = 0; 57 u16 mss = 0; 58 u8 l4_len = 0; 59 u16 paylen = 0; 60 61 desc_cb->priv = priv; 62 desc_cb->length = size; 63 desc_cb->dma = dma; 64 desc_cb->type = type; 65 66 desc->addr = cpu_to_le64(dma); 67 desc->tx.send_size = cpu_to_le16((u16)size); 68 69 /* config bd buffer end */ 70 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 71 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 72 73 /* fill port_id in the tx bd for sending management pkts */ 74 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 75 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 76 77 if (type == DESC_TYPE_SKB) { 78 skb = (struct sk_buff *)priv; 79 80 if (skb->ip_summed == CHECKSUM_PARTIAL) { 81 skb_reset_mac_len(skb); 82 protocol = skb->protocol; 83 ip_offset = ETH_HLEN; 84 85 if (protocol == htons(ETH_P_8021Q)) { 86 ip_offset += VLAN_HLEN; 87 protocol = vlan_get_protocol(skb); 88 skb->protocol = protocol; 89 } 90 91 if (skb->protocol == htons(ETH_P_IP)) { 92 iphdr = ip_hdr(skb); 93 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 94 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 95 96 /* check for tcp/udp header */ 97 if (iphdr->protocol == IPPROTO_TCP && 98 skb_is_gso(skb)) { 99 hnae_set_bit(tvsvsn, 100 HNSV2_TXD_TSE_B, 1); 101 l4_len = tcp_hdrlen(skb); 102 mss = skb_shinfo(skb)->gso_size; 103 paylen = skb->len - SKB_TMP_LEN(skb); 104 } 105 } else if (skb->protocol == htons(ETH_P_IPV6)) { 106 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 107 ipv6hdr = ipv6_hdr(skb); 108 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 109 110 /* check for tcp/udp header */ 111 if (ipv6hdr->nexthdr == IPPROTO_TCP && 112 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 113 hnae_set_bit(tvsvsn, 114 HNSV2_TXD_TSE_B, 1); 115 l4_len = tcp_hdrlen(skb); 116 mss = skb_shinfo(skb)->gso_size; 117 paylen = skb->len - SKB_TMP_LEN(skb); 118 } 119 } 120 desc->tx.ip_offset = ip_offset; 121 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 122 desc->tx.mss = cpu_to_le16(mss); 123 desc->tx.l4_len = l4_len; 124 desc->tx.paylen = cpu_to_le16(paylen); 125 } 126 } 127 128 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 129 130 desc->tx.bn_pid = bn_pid; 131 desc->tx.ra_ri_cs_fe_vld = rrcfv; 132 133 ring_ptr_move_fw(ring, next_to_use); 134 } 135 136 static const struct acpi_device_id hns_enet_acpi_match[] = { 137 { "HISI00C1", 0 }, 138 { "HISI00C2", 0 }, 139 { }, 140 }; 141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 142 143 static void fill_desc(struct hnae_ring *ring, void *priv, 144 int size, dma_addr_t dma, int frag_end, 145 int buf_num, enum hns_desc_type type, int mtu) 146 { 147 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 148 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 149 struct sk_buff *skb; 150 __be16 protocol; 151 u32 ip_offset; 152 u32 asid_bufnum_pid = 0; 153 u32 flag_ipoffset = 0; 154 155 desc_cb->priv = priv; 156 desc_cb->length = size; 157 desc_cb->dma = dma; 158 desc_cb->type = type; 159 160 desc->addr = cpu_to_le64(dma); 161 desc->tx.send_size = cpu_to_le16((u16)size); 162 163 /*config bd buffer end */ 164 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 165 166 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 167 168 if (type == DESC_TYPE_SKB) { 169 skb = (struct sk_buff *)priv; 170 171 if (skb->ip_summed == CHECKSUM_PARTIAL) { 172 protocol = skb->protocol; 173 ip_offset = ETH_HLEN; 174 175 /*if it is a SW VLAN check the next protocol*/ 176 if (protocol == htons(ETH_P_8021Q)) { 177 ip_offset += VLAN_HLEN; 178 protocol = vlan_get_protocol(skb); 179 skb->protocol = protocol; 180 } 181 182 if (skb->protocol == htons(ETH_P_IP)) { 183 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 184 /* check for tcp/udp header */ 185 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 186 187 } else if (skb->protocol == htons(ETH_P_IPV6)) { 188 /* ipv6 has not l3 cs, check for L4 header */ 189 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 190 } 191 192 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 193 } 194 } 195 196 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 197 198 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 199 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 200 201 ring_ptr_move_fw(ring, next_to_use); 202 } 203 204 static void unfill_desc(struct hnae_ring *ring) 205 { 206 ring_ptr_move_bw(ring, next_to_use); 207 } 208 209 static int hns_nic_maybe_stop_tx( 210 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 211 { 212 struct sk_buff *skb = *out_skb; 213 struct sk_buff *new_skb = NULL; 214 int buf_num; 215 216 /* no. of segments (plus a header) */ 217 buf_num = skb_shinfo(skb)->nr_frags + 1; 218 219 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 220 if (ring_space(ring) < 1) 221 return -EBUSY; 222 223 new_skb = skb_copy(skb, GFP_ATOMIC); 224 if (!new_skb) 225 return -ENOMEM; 226 227 dev_kfree_skb_any(skb); 228 *out_skb = new_skb; 229 buf_num = 1; 230 } else if (buf_num > ring_space(ring)) { 231 return -EBUSY; 232 } 233 234 *bnum = buf_num; 235 return 0; 236 } 237 238 static int hns_nic_maybe_stop_tso( 239 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 240 { 241 int i; 242 int size; 243 int buf_num; 244 int frag_num; 245 struct sk_buff *skb = *out_skb; 246 struct sk_buff *new_skb = NULL; 247 struct skb_frag_struct *frag; 248 249 size = skb_headlen(skb); 250 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 251 252 frag_num = skb_shinfo(skb)->nr_frags; 253 for (i = 0; i < frag_num; i++) { 254 frag = &skb_shinfo(skb)->frags[i]; 255 size = skb_frag_size(frag); 256 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 257 } 258 259 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 260 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 261 if (ring_space(ring) < buf_num) 262 return -EBUSY; 263 /* manual split the send packet */ 264 new_skb = skb_copy(skb, GFP_ATOMIC); 265 if (!new_skb) 266 return -ENOMEM; 267 dev_kfree_skb_any(skb); 268 *out_skb = new_skb; 269 270 } else if (ring_space(ring) < buf_num) { 271 return -EBUSY; 272 } 273 274 *bnum = buf_num; 275 return 0; 276 } 277 278 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 279 int size, dma_addr_t dma, int frag_end, 280 int buf_num, enum hns_desc_type type, int mtu) 281 { 282 int frag_buf_num; 283 int sizeoflast; 284 int k; 285 286 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 287 sizeoflast = size % BD_MAX_SEND_SIZE; 288 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 289 290 /* when the frag size is bigger than hardware, split this frag */ 291 for (k = 0; k < frag_buf_num; k++) 292 fill_v2_desc(ring, priv, 293 (k == frag_buf_num - 1) ? 294 sizeoflast : BD_MAX_SEND_SIZE, 295 dma + BD_MAX_SEND_SIZE * k, 296 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 297 buf_num, 298 (type == DESC_TYPE_SKB && !k) ? 299 DESC_TYPE_SKB : DESC_TYPE_PAGE, 300 mtu); 301 } 302 303 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev, 304 struct sk_buff *skb, 305 struct hns_nic_ring_data *ring_data) 306 { 307 struct hns_nic_priv *priv = netdev_priv(ndev); 308 struct hnae_ring *ring = ring_data->ring; 309 struct device *dev = ring_to_dev(ring); 310 struct netdev_queue *dev_queue; 311 struct skb_frag_struct *frag; 312 int buf_num; 313 int seg_num; 314 dma_addr_t dma; 315 int size, next_to_use; 316 int i; 317 318 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 319 case -EBUSY: 320 ring->stats.tx_busy++; 321 goto out_net_tx_busy; 322 case -ENOMEM: 323 ring->stats.sw_err_cnt++; 324 netdev_err(ndev, "no memory to xmit!\n"); 325 goto out_err_tx_ok; 326 default: 327 break; 328 } 329 330 /* no. of segments (plus a header) */ 331 seg_num = skb_shinfo(skb)->nr_frags + 1; 332 next_to_use = ring->next_to_use; 333 334 /* fill the first part */ 335 size = skb_headlen(skb); 336 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 337 if (dma_mapping_error(dev, dma)) { 338 netdev_err(ndev, "TX head DMA map failed\n"); 339 ring->stats.sw_err_cnt++; 340 goto out_err_tx_ok; 341 } 342 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 343 buf_num, DESC_TYPE_SKB, ndev->mtu); 344 345 /* fill the fragments */ 346 for (i = 1; i < seg_num; i++) { 347 frag = &skb_shinfo(skb)->frags[i - 1]; 348 size = skb_frag_size(frag); 349 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 350 if (dma_mapping_error(dev, dma)) { 351 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 352 ring->stats.sw_err_cnt++; 353 goto out_map_frag_fail; 354 } 355 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 356 seg_num - 1 == i ? 1 : 0, buf_num, 357 DESC_TYPE_PAGE, ndev->mtu); 358 } 359 360 /*complete translate all packets*/ 361 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 362 netdev_tx_sent_queue(dev_queue, skb->len); 363 364 netif_trans_update(ndev); 365 ndev->stats.tx_bytes += skb->len; 366 ndev->stats.tx_packets++; 367 368 wmb(); /* commit all data before submit */ 369 assert(skb->queue_mapping < priv->ae_handle->q_num); 370 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 371 ring->stats.tx_pkts++; 372 ring->stats.tx_bytes += skb->len; 373 374 return NETDEV_TX_OK; 375 376 out_map_frag_fail: 377 378 while (ring->next_to_use != next_to_use) { 379 unfill_desc(ring); 380 if (ring->next_to_use != next_to_use) 381 dma_unmap_page(dev, 382 ring->desc_cb[ring->next_to_use].dma, 383 ring->desc_cb[ring->next_to_use].length, 384 DMA_TO_DEVICE); 385 else 386 dma_unmap_single(dev, 387 ring->desc_cb[next_to_use].dma, 388 ring->desc_cb[next_to_use].length, 389 DMA_TO_DEVICE); 390 } 391 392 out_err_tx_ok: 393 394 dev_kfree_skb_any(skb); 395 return NETDEV_TX_OK; 396 397 out_net_tx_busy: 398 399 netif_stop_subqueue(ndev, skb->queue_mapping); 400 401 /* Herbert's original patch had: 402 * smp_mb__after_netif_stop_queue(); 403 * but since that doesn't exist yet, just open code it. 404 */ 405 smp_mb(); 406 return NETDEV_TX_BUSY; 407 } 408 409 /** 410 * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE 411 * @data: pointer to the start of the headers 412 * @max: total length of section to find headers in 413 * 414 * This function is meant to determine the length of headers that will 415 * be recognized by hardware for LRO, GRO, and RSC offloads. The main 416 * motivation of doing this is to only perform one pull for IPv4 TCP 417 * packets so that we can do basic things like calculating the gso_size 418 * based on the average data per packet. 419 **/ 420 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag, 421 unsigned int max_size) 422 { 423 unsigned char *network; 424 u8 hlen; 425 426 /* this should never happen, but better safe than sorry */ 427 if (max_size < ETH_HLEN) 428 return max_size; 429 430 /* initialize network frame pointer */ 431 network = data; 432 433 /* set first protocol and move network header forward */ 434 network += ETH_HLEN; 435 436 /* handle any vlan tag if present */ 437 if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S) 438 == HNS_RX_FLAG_VLAN_PRESENT) { 439 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN)) 440 return max_size; 441 442 network += VLAN_HLEN; 443 } 444 445 /* handle L3 protocols */ 446 if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S) 447 == HNS_RX_FLAG_L3ID_IPV4) { 448 if ((typeof(max_size))(network - data) > 449 (max_size - sizeof(struct iphdr))) 450 return max_size; 451 452 /* access ihl as a u8 to avoid unaligned access on ia64 */ 453 hlen = (network[0] & 0x0F) << 2; 454 455 /* verify hlen meets minimum size requirements */ 456 if (hlen < sizeof(struct iphdr)) 457 return network - data; 458 459 /* record next protocol if header is present */ 460 } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S) 461 == HNS_RX_FLAG_L3ID_IPV6) { 462 if ((typeof(max_size))(network - data) > 463 (max_size - sizeof(struct ipv6hdr))) 464 return max_size; 465 466 /* record next protocol */ 467 hlen = sizeof(struct ipv6hdr); 468 } else { 469 return network - data; 470 } 471 472 /* relocate pointer to start of L4 header */ 473 network += hlen; 474 475 /* finally sort out TCP/UDP */ 476 if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S) 477 == HNS_RX_FLAG_L4ID_TCP) { 478 if ((typeof(max_size))(network - data) > 479 (max_size - sizeof(struct tcphdr))) 480 return max_size; 481 482 /* access doff as a u8 to avoid unaligned access on ia64 */ 483 hlen = (network[12] & 0xF0) >> 2; 484 485 /* verify hlen meets minimum size requirements */ 486 if (hlen < sizeof(struct tcphdr)) 487 return network - data; 488 489 network += hlen; 490 } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S) 491 == HNS_RX_FLAG_L4ID_UDP) { 492 if ((typeof(max_size))(network - data) > 493 (max_size - sizeof(struct udphdr))) 494 return max_size; 495 496 network += sizeof(struct udphdr); 497 } 498 499 /* If everything has gone correctly network should be the 500 * data section of the packet and will be the end of the header. 501 * If not then it probably represents the end of the last recognized 502 * header. 503 */ 504 if ((typeof(max_size))(network - data) < max_size) 505 return network - data; 506 else 507 return max_size; 508 } 509 510 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 511 struct hnae_ring *ring, int pull_len, 512 struct hnae_desc_cb *desc_cb) 513 { 514 struct hnae_desc *desc; 515 int truesize, size; 516 int last_offset; 517 bool twobufs; 518 519 twobufs = ((PAGE_SIZE < 8192) && 520 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 521 522 desc = &ring->desc[ring->next_to_clean]; 523 size = le16_to_cpu(desc->rx.size); 524 525 if (twobufs) { 526 truesize = hnae_buf_size(ring); 527 } else { 528 truesize = ALIGN(size, L1_CACHE_BYTES); 529 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 530 } 531 532 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 533 size - pull_len, truesize - pull_len); 534 535 /* avoid re-using remote pages,flag default unreuse */ 536 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 537 return; 538 539 if (twobufs) { 540 /* if we are only owner of page we can reuse it */ 541 if (likely(page_count(desc_cb->priv) == 1)) { 542 /* flip page offset to other buffer */ 543 desc_cb->page_offset ^= truesize; 544 545 desc_cb->reuse_flag = 1; 546 /* bump ref count on page before it is given*/ 547 get_page(desc_cb->priv); 548 } 549 return; 550 } 551 552 /* move offset up to the next cache line */ 553 desc_cb->page_offset += truesize; 554 555 if (desc_cb->page_offset <= last_offset) { 556 desc_cb->reuse_flag = 1; 557 /* bump ref count on page before it is given*/ 558 get_page(desc_cb->priv); 559 } 560 } 561 562 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 563 { 564 *out_bnum = hnae_get_field(bnum_flag, 565 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 566 } 567 568 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 569 { 570 *out_bnum = hnae_get_field(bnum_flag, 571 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 572 } 573 574 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 575 struct sk_buff *skb, u32 flag) 576 { 577 struct net_device *netdev = ring_data->napi.dev; 578 u32 l3id; 579 u32 l4id; 580 581 /* check if RX checksum offload is enabled */ 582 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 583 return; 584 585 /* In hardware, we only support checksum for the following protocols: 586 * 1) IPv4, 587 * 2) TCP(over IPv4 or IPv6), 588 * 3) UDP(over IPv4 or IPv6), 589 * 4) SCTP(over IPv4 or IPv6) 590 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 591 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 592 * 593 * Hardware limitation: 594 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 595 * Error" bit (which usually can be used to indicate whether checksum 596 * was calculated by the hardware and if there was any error encountered 597 * during checksum calculation). 598 * 599 * Software workaround: 600 * We do get info within the RX descriptor about the kind of L3/L4 601 * protocol coming in the packet and the error status. These errors 602 * might not just be checksum errors but could be related to version, 603 * length of IPv4, UDP, TCP etc. 604 * Because there is no-way of knowing if it is a L3/L4 error due to bad 605 * checksum or any other L3/L4 error, we will not (cannot) convey 606 * checksum status for such cases to upper stack and will not maintain 607 * the RX L3/L4 checksum counters as well. 608 */ 609 610 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 611 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 612 613 /* check L3 protocol for which checksum is supported */ 614 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 615 return; 616 617 /* check for any(not just checksum)flagged L3 protocol errors */ 618 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 619 return; 620 621 /* we do not support checksum of fragmented packets */ 622 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 623 return; 624 625 /* check L4 protocol for which checksum is supported */ 626 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 627 (l4id != HNS_RX_FLAG_L4ID_UDP) && 628 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 629 return; 630 631 /* check for any(not just checksum)flagged L4 protocol errors */ 632 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 633 return; 634 635 /* now, this has to be a packet with valid RX checksum */ 636 skb->ip_summed = CHECKSUM_UNNECESSARY; 637 } 638 639 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 640 struct sk_buff **out_skb, int *out_bnum) 641 { 642 struct hnae_ring *ring = ring_data->ring; 643 struct net_device *ndev = ring_data->napi.dev; 644 struct hns_nic_priv *priv = netdev_priv(ndev); 645 struct sk_buff *skb; 646 struct hnae_desc *desc; 647 struct hnae_desc_cb *desc_cb; 648 unsigned char *va; 649 int bnum, length, i; 650 int pull_len; 651 u32 bnum_flag; 652 653 desc = &ring->desc[ring->next_to_clean]; 654 desc_cb = &ring->desc_cb[ring->next_to_clean]; 655 656 prefetch(desc); 657 658 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 659 660 /* prefetch first cache line of first page */ 661 prefetch(va); 662 #if L1_CACHE_BYTES < 128 663 prefetch(va + L1_CACHE_BYTES); 664 #endif 665 666 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 667 HNS_RX_HEAD_SIZE); 668 if (unlikely(!skb)) { 669 netdev_err(ndev, "alloc rx skb fail\n"); 670 ring->stats.sw_err_cnt++; 671 return -ENOMEM; 672 } 673 674 prefetchw(skb->data); 675 length = le16_to_cpu(desc->rx.pkt_len); 676 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 677 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 678 *out_bnum = bnum; 679 680 if (length <= HNS_RX_HEAD_SIZE) { 681 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 682 683 /* we can reuse buffer as-is, just make sure it is local */ 684 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 685 desc_cb->reuse_flag = 1; 686 else /* this page cannot be reused so discard it */ 687 put_page(desc_cb->priv); 688 689 ring_ptr_move_fw(ring, next_to_clean); 690 691 if (unlikely(bnum != 1)) { /* check err*/ 692 *out_bnum = 1; 693 goto out_bnum_err; 694 } 695 } else { 696 ring->stats.seg_pkt_cnt++; 697 698 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE); 699 memcpy(__skb_put(skb, pull_len), va, 700 ALIGN(pull_len, sizeof(long))); 701 702 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 703 ring_ptr_move_fw(ring, next_to_clean); 704 705 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 706 *out_bnum = 1; 707 goto out_bnum_err; 708 } 709 for (i = 1; i < bnum; i++) { 710 desc = &ring->desc[ring->next_to_clean]; 711 desc_cb = &ring->desc_cb[ring->next_to_clean]; 712 713 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 714 ring_ptr_move_fw(ring, next_to_clean); 715 } 716 } 717 718 /* check except process, free skb and jump the desc */ 719 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 720 out_bnum_err: 721 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 722 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 723 bnum, ring->max_desc_num_per_pkt, 724 length, (int)MAX_SKB_FRAGS, 725 ((u64 *)desc)[0], ((u64 *)desc)[1]); 726 ring->stats.err_bd_num++; 727 dev_kfree_skb_any(skb); 728 return -EDOM; 729 } 730 731 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 732 733 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 734 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 735 ((u64 *)desc)[0], ((u64 *)desc)[1]); 736 ring->stats.non_vld_descs++; 737 dev_kfree_skb_any(skb); 738 return -EINVAL; 739 } 740 741 if (unlikely((!desc->rx.pkt_len) || 742 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 743 ring->stats.err_pkt_len++; 744 dev_kfree_skb_any(skb); 745 return -EFAULT; 746 } 747 748 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 749 ring->stats.l2_err++; 750 dev_kfree_skb_any(skb); 751 return -EFAULT; 752 } 753 754 ring->stats.rx_pkts++; 755 ring->stats.rx_bytes += skb->len; 756 757 /* indicate to upper stack if our hardware has already calculated 758 * the RX checksum 759 */ 760 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 761 762 return 0; 763 } 764 765 static void 766 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 767 { 768 int i, ret; 769 struct hnae_desc_cb res_cbs; 770 struct hnae_desc_cb *desc_cb; 771 struct hnae_ring *ring = ring_data->ring; 772 struct net_device *ndev = ring_data->napi.dev; 773 774 for (i = 0; i < cleand_count; i++) { 775 desc_cb = &ring->desc_cb[ring->next_to_use]; 776 if (desc_cb->reuse_flag) { 777 ring->stats.reuse_pg_cnt++; 778 hnae_reuse_buffer(ring, ring->next_to_use); 779 } else { 780 ret = hnae_reserve_buffer_map(ring, &res_cbs); 781 if (ret) { 782 ring->stats.sw_err_cnt++; 783 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 784 break; 785 } 786 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 787 } 788 789 ring_ptr_move_fw(ring, next_to_use); 790 } 791 792 wmb(); /* make all data has been write before submit */ 793 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 794 } 795 796 /* return error number for error or number of desc left to take 797 */ 798 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 799 struct sk_buff *skb) 800 { 801 struct net_device *ndev = ring_data->napi.dev; 802 803 skb->protocol = eth_type_trans(skb, ndev); 804 (void)napi_gro_receive(&ring_data->napi, skb); 805 } 806 807 static int hns_desc_unused(struct hnae_ring *ring) 808 { 809 int ntc = ring->next_to_clean; 810 int ntu = ring->next_to_use; 811 812 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 813 } 814 815 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */ 816 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */ 817 818 #define HNS_COAL_BDNUM 3 819 820 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring) 821 { 822 bool coal_enable = ring->q->handle->coal_adapt_en; 823 824 if (coal_enable && 825 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE) 826 return HNS_COAL_BDNUM; 827 else 828 return 0; 829 } 830 831 static void hns_update_rx_rate(struct hnae_ring *ring) 832 { 833 bool coal_enable = ring->q->handle->coal_adapt_en; 834 u32 time_passed_ms; 835 u64 total_bytes; 836 837 if (!coal_enable || 838 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4))) 839 return; 840 841 /* ring->stats.rx_bytes overflowed */ 842 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) { 843 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 844 ring->coal_last_jiffies = jiffies; 845 return; 846 } 847 848 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes; 849 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies); 850 do_div(total_bytes, time_passed_ms); 851 ring->coal_rx_rate = total_bytes >> 10; 852 853 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 854 ring->coal_last_jiffies = jiffies; 855 } 856 857 /** 858 * smooth_alg - smoothing algrithm for adjusting coalesce parameter 859 **/ 860 static u32 smooth_alg(u32 new_param, u32 old_param) 861 { 862 u32 gap = (new_param > old_param) ? new_param - old_param 863 : old_param - new_param; 864 865 if (gap > 8) 866 gap >>= 3; 867 868 if (new_param > old_param) 869 return old_param + gap; 870 else 871 return old_param - gap; 872 } 873 874 /** 875 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate 876 * @ring_data: pointer to hns_nic_ring_data 877 **/ 878 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data) 879 { 880 struct hnae_ring *ring = ring_data->ring; 881 struct hnae_handle *handle = ring->q->handle; 882 u32 new_coal_param, old_coal_param = ring->coal_param; 883 884 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE) 885 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM; 886 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE) 887 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM; 888 else 889 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM; 890 891 if (new_coal_param == old_coal_param && 892 new_coal_param == handle->coal_param) 893 return; 894 895 new_coal_param = smooth_alg(new_coal_param, old_coal_param); 896 ring->coal_param = new_coal_param; 897 898 /** 899 * Because all ring in one port has one coalesce param, when one ring 900 * calculate its own coalesce param, it cannot write to hardware at 901 * once. There are three conditions as follows: 902 * 1. current ring's coalesce param is larger than the hardware. 903 * 2. or ring which adapt last time can change again. 904 * 3. timeout. 905 */ 906 if (new_coal_param == handle->coal_param) { 907 handle->coal_last_jiffies = jiffies; 908 handle->coal_ring_idx = ring_data->queue_index; 909 } else if (new_coal_param > handle->coal_param || 910 handle->coal_ring_idx == ring_data->queue_index || 911 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) { 912 handle->dev->ops->set_coalesce_usecs(handle, 913 new_coal_param); 914 handle->dev->ops->set_coalesce_frames(handle, 915 1, new_coal_param); 916 handle->coal_param = new_coal_param; 917 handle->coal_ring_idx = ring_data->queue_index; 918 handle->coal_last_jiffies = jiffies; 919 } 920 } 921 922 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 923 int budget, void *v) 924 { 925 struct hnae_ring *ring = ring_data->ring; 926 struct sk_buff *skb; 927 int num, bnum; 928 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 929 int recv_pkts, recv_bds, clean_count, err; 930 int unused_count = hns_desc_unused(ring); 931 932 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 933 rmb(); /* make sure num taken effect before the other data is touched */ 934 935 recv_pkts = 0, recv_bds = 0, clean_count = 0; 936 num -= unused_count; 937 938 while (recv_pkts < budget && recv_bds < num) { 939 /* reuse or realloc buffers */ 940 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 941 hns_nic_alloc_rx_buffers(ring_data, 942 clean_count + unused_count); 943 clean_count = 0; 944 unused_count = hns_desc_unused(ring); 945 } 946 947 /* poll one pkt */ 948 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 949 if (unlikely(!skb)) /* this fault cannot be repaired */ 950 goto out; 951 952 recv_bds += bnum; 953 clean_count += bnum; 954 if (unlikely(err)) { /* do jump the err */ 955 recv_pkts++; 956 continue; 957 } 958 959 /* do update ip stack process*/ 960 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 961 ring_data, skb); 962 recv_pkts++; 963 } 964 965 out: 966 /* make all data has been write before submit */ 967 if (clean_count + unused_count > 0) 968 hns_nic_alloc_rx_buffers(ring_data, 969 clean_count + unused_count); 970 971 return recv_pkts; 972 } 973 974 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 975 { 976 struct hnae_ring *ring = ring_data->ring; 977 int num = 0; 978 bool rx_stopped; 979 980 hns_update_rx_rate(ring); 981 982 /* for hardware bug fixed */ 983 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 984 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 985 986 if (num <= hns_coal_rx_bdnum(ring)) { 987 if (ring->q->handle->coal_adapt_en) 988 hns_nic_adpt_coalesce(ring_data); 989 990 rx_stopped = true; 991 } else { 992 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 993 ring_data->ring, 1); 994 995 rx_stopped = false; 996 } 997 998 return rx_stopped; 999 } 1000 1001 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1002 { 1003 struct hnae_ring *ring = ring_data->ring; 1004 int num; 1005 1006 hns_update_rx_rate(ring); 1007 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 1008 1009 if (num <= hns_coal_rx_bdnum(ring)) { 1010 if (ring->q->handle->coal_adapt_en) 1011 hns_nic_adpt_coalesce(ring_data); 1012 1013 return true; 1014 } 1015 1016 return false; 1017 } 1018 1019 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 1020 int *bytes, int *pkts) 1021 { 1022 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 1023 1024 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 1025 (*bytes) += desc_cb->length; 1026 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 1027 hnae_free_buffer_detach(ring, ring->next_to_clean); 1028 1029 ring_ptr_move_fw(ring, next_to_clean); 1030 } 1031 1032 static int is_valid_clean_head(struct hnae_ring *ring, int h) 1033 { 1034 int u = ring->next_to_use; 1035 int c = ring->next_to_clean; 1036 1037 if (unlikely(h > ring->desc_num)) 1038 return 0; 1039 1040 assert(u > 0 && u < ring->desc_num); 1041 assert(c > 0 && c < ring->desc_num); 1042 assert(u != c && h != c); /* must be checked before call this func */ 1043 1044 return u > c ? (h > c && h <= u) : (h > c || h <= u); 1045 } 1046 1047 /* netif_tx_lock will turn down the performance, set only when necessary */ 1048 #ifdef CONFIG_NET_POLL_CONTROLLER 1049 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock) 1050 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock) 1051 #else 1052 #define NETIF_TX_LOCK(ring) 1053 #define NETIF_TX_UNLOCK(ring) 1054 #endif 1055 1056 /* reclaim all desc in one budget 1057 * return error or number of desc left 1058 */ 1059 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 1060 int budget, void *v) 1061 { 1062 struct hnae_ring *ring = ring_data->ring; 1063 struct net_device *ndev = ring_data->napi.dev; 1064 struct netdev_queue *dev_queue; 1065 struct hns_nic_priv *priv = netdev_priv(ndev); 1066 int head; 1067 int bytes, pkts; 1068 1069 NETIF_TX_LOCK(ring); 1070 1071 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1072 rmb(); /* make sure head is ready before touch any data */ 1073 1074 if (is_ring_empty(ring) || head == ring->next_to_clean) { 1075 NETIF_TX_UNLOCK(ring); 1076 return 0; /* no data to poll */ 1077 } 1078 1079 if (!is_valid_clean_head(ring, head)) { 1080 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 1081 ring->next_to_use, ring->next_to_clean); 1082 ring->stats.io_err_cnt++; 1083 NETIF_TX_UNLOCK(ring); 1084 return -EIO; 1085 } 1086 1087 bytes = 0; 1088 pkts = 0; 1089 while (head != ring->next_to_clean) { 1090 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1091 /* issue prefetch for next Tx descriptor */ 1092 prefetch(&ring->desc_cb[ring->next_to_clean]); 1093 } 1094 1095 NETIF_TX_UNLOCK(ring); 1096 1097 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1098 netdev_tx_completed_queue(dev_queue, pkts, bytes); 1099 1100 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 1101 netif_carrier_on(ndev); 1102 1103 if (unlikely(pkts && netif_carrier_ok(ndev) && 1104 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 1105 /* Make sure that anybody stopping the queue after this 1106 * sees the new next_to_clean. 1107 */ 1108 smp_mb(); 1109 if (netif_tx_queue_stopped(dev_queue) && 1110 !test_bit(NIC_STATE_DOWN, &priv->state)) { 1111 netif_tx_wake_queue(dev_queue); 1112 ring->stats.restart_queue++; 1113 } 1114 } 1115 return 0; 1116 } 1117 1118 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 1119 { 1120 struct hnae_ring *ring = ring_data->ring; 1121 int head; 1122 1123 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1124 1125 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1126 1127 if (head != ring->next_to_clean) { 1128 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1129 ring_data->ring, 1); 1130 1131 return false; 1132 } else { 1133 return true; 1134 } 1135 } 1136 1137 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1138 { 1139 struct hnae_ring *ring = ring_data->ring; 1140 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1141 1142 if (head == ring->next_to_clean) 1143 return true; 1144 else 1145 return false; 1146 } 1147 1148 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1149 { 1150 struct hnae_ring *ring = ring_data->ring; 1151 struct net_device *ndev = ring_data->napi.dev; 1152 struct netdev_queue *dev_queue; 1153 int head; 1154 int bytes, pkts; 1155 1156 NETIF_TX_LOCK(ring); 1157 1158 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1159 bytes = 0; 1160 pkts = 0; 1161 while (head != ring->next_to_clean) 1162 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1163 1164 NETIF_TX_UNLOCK(ring); 1165 1166 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1167 netdev_tx_reset_queue(dev_queue); 1168 } 1169 1170 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1171 { 1172 int clean_complete = 0; 1173 struct hns_nic_ring_data *ring_data = 1174 container_of(napi, struct hns_nic_ring_data, napi); 1175 struct hnae_ring *ring = ring_data->ring; 1176 1177 try_again: 1178 clean_complete += ring_data->poll_one( 1179 ring_data, budget - clean_complete, 1180 ring_data->ex_process); 1181 1182 if (clean_complete < budget) { 1183 if (ring_data->fini_process(ring_data)) { 1184 napi_complete(napi); 1185 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1186 } else { 1187 goto try_again; 1188 } 1189 } 1190 1191 return clean_complete; 1192 } 1193 1194 static irqreturn_t hns_irq_handle(int irq, void *dev) 1195 { 1196 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1197 1198 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1199 ring_data->ring, 1); 1200 napi_schedule(&ring_data->napi); 1201 1202 return IRQ_HANDLED; 1203 } 1204 1205 /** 1206 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1207 *@ndev: net device 1208 */ 1209 static void hns_nic_adjust_link(struct net_device *ndev) 1210 { 1211 struct hns_nic_priv *priv = netdev_priv(ndev); 1212 struct hnae_handle *h = priv->ae_handle; 1213 int state = 1; 1214 1215 if (ndev->phydev) { 1216 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1217 ndev->phydev->duplex); 1218 state = ndev->phydev->link; 1219 } 1220 state = state && h->dev->ops->get_status(h); 1221 1222 if (state != priv->link) { 1223 if (state) { 1224 netif_carrier_on(ndev); 1225 netif_tx_wake_all_queues(ndev); 1226 netdev_info(ndev, "link up\n"); 1227 } else { 1228 netif_carrier_off(ndev); 1229 netdev_info(ndev, "link down\n"); 1230 } 1231 priv->link = state; 1232 } 1233 } 1234 1235 /** 1236 *hns_nic_init_phy - init phy 1237 *@ndev: net device 1238 *@h: ae handle 1239 * Return 0 on success, negative on failure 1240 */ 1241 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1242 { 1243 struct phy_device *phy_dev = h->phy_dev; 1244 int ret; 1245 1246 if (!h->phy_dev) 1247 return 0; 1248 1249 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1250 phy_dev->dev_flags = 0; 1251 1252 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1253 h->phy_if); 1254 } else { 1255 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1256 } 1257 if (unlikely(ret)) 1258 return -ENODEV; 1259 1260 phy_dev->supported &= h->if_support; 1261 phy_dev->advertising = phy_dev->supported; 1262 1263 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1264 phy_dev->autoneg = false; 1265 1266 return 0; 1267 } 1268 1269 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1270 { 1271 struct hns_nic_priv *priv = netdev_priv(netdev); 1272 struct hnae_handle *h = priv->ae_handle; 1273 1274 napi_enable(&priv->ring_data[idx].napi); 1275 1276 enable_irq(priv->ring_data[idx].ring->irq); 1277 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1278 1279 return 0; 1280 } 1281 1282 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1283 { 1284 struct hns_nic_priv *priv = netdev_priv(ndev); 1285 struct hnae_handle *h = priv->ae_handle; 1286 struct sockaddr *mac_addr = p; 1287 int ret; 1288 1289 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1290 return -EADDRNOTAVAIL; 1291 1292 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1293 if (ret) { 1294 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1295 return ret; 1296 } 1297 1298 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); 1299 1300 return 0; 1301 } 1302 1303 void hns_nic_update_stats(struct net_device *netdev) 1304 { 1305 struct hns_nic_priv *priv = netdev_priv(netdev); 1306 struct hnae_handle *h = priv->ae_handle; 1307 1308 h->dev->ops->update_stats(h, &netdev->stats); 1309 } 1310 1311 /* set mac addr if it is configed. or leave it to the AE driver */ 1312 static void hns_init_mac_addr(struct net_device *ndev) 1313 { 1314 struct hns_nic_priv *priv = netdev_priv(ndev); 1315 1316 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { 1317 eth_hw_addr_random(ndev); 1318 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1319 ndev->dev_addr); 1320 } 1321 } 1322 1323 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1324 { 1325 struct hns_nic_priv *priv = netdev_priv(netdev); 1326 struct hnae_handle *h = priv->ae_handle; 1327 1328 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1329 disable_irq(priv->ring_data[idx].ring->irq); 1330 1331 napi_disable(&priv->ring_data[idx].napi); 1332 } 1333 1334 static int hns_nic_init_affinity_mask(int q_num, int ring_idx, 1335 struct hnae_ring *ring, cpumask_t *mask) 1336 { 1337 int cpu; 1338 1339 /* Diffrent irq banlance between 16core and 32core. 1340 * The cpu mask set by ring index according to the ring flag 1341 * which indicate the ring is tx or rx. 1342 */ 1343 if (q_num == num_possible_cpus()) { 1344 if (is_tx_ring(ring)) 1345 cpu = ring_idx; 1346 else 1347 cpu = ring_idx - q_num; 1348 } else { 1349 if (is_tx_ring(ring)) 1350 cpu = ring_idx * 2; 1351 else 1352 cpu = (ring_idx - q_num) * 2 + 1; 1353 } 1354 1355 cpumask_clear(mask); 1356 cpumask_set_cpu(cpu, mask); 1357 1358 return cpu; 1359 } 1360 1361 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1362 { 1363 struct hnae_handle *h = priv->ae_handle; 1364 struct hns_nic_ring_data *rd; 1365 int i; 1366 int ret; 1367 int cpu; 1368 1369 for (i = 0; i < h->q_num * 2; i++) { 1370 rd = &priv->ring_data[i]; 1371 1372 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1373 break; 1374 1375 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1376 "%s-%s%d", priv->netdev->name, 1377 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); 1378 1379 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1380 1381 ret = request_irq(rd->ring->irq, 1382 hns_irq_handle, 0, rd->ring->ring_name, rd); 1383 if (ret) { 1384 netdev_err(priv->netdev, "request irq(%d) fail\n", 1385 rd->ring->irq); 1386 return ret; 1387 } 1388 disable_irq(rd->ring->irq); 1389 1390 cpu = hns_nic_init_affinity_mask(h->q_num, i, 1391 rd->ring, &rd->mask); 1392 1393 if (cpu_online(cpu)) 1394 irq_set_affinity_hint(rd->ring->irq, 1395 &rd->mask); 1396 1397 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1398 } 1399 1400 return 0; 1401 } 1402 1403 static int hns_nic_net_up(struct net_device *ndev) 1404 { 1405 struct hns_nic_priv *priv = netdev_priv(ndev); 1406 struct hnae_handle *h = priv->ae_handle; 1407 int i, j; 1408 int ret; 1409 1410 ret = hns_nic_init_irq(priv); 1411 if (ret != 0) { 1412 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1413 return ret; 1414 } 1415 1416 for (i = 0; i < h->q_num * 2; i++) { 1417 ret = hns_nic_ring_open(ndev, i); 1418 if (ret) 1419 goto out_has_some_queues; 1420 } 1421 1422 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1423 if (ret) 1424 goto out_set_mac_addr_err; 1425 1426 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1427 if (ret) 1428 goto out_start_err; 1429 1430 if (ndev->phydev) 1431 phy_start(ndev->phydev); 1432 1433 clear_bit(NIC_STATE_DOWN, &priv->state); 1434 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1435 1436 return 0; 1437 1438 out_start_err: 1439 netif_stop_queue(ndev); 1440 out_set_mac_addr_err: 1441 out_has_some_queues: 1442 for (j = i - 1; j >= 0; j--) 1443 hns_nic_ring_close(ndev, j); 1444 1445 set_bit(NIC_STATE_DOWN, &priv->state); 1446 1447 return ret; 1448 } 1449 1450 static void hns_nic_net_down(struct net_device *ndev) 1451 { 1452 int i; 1453 struct hnae_ae_ops *ops; 1454 struct hns_nic_priv *priv = netdev_priv(ndev); 1455 1456 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1457 return; 1458 1459 (void)del_timer_sync(&priv->service_timer); 1460 netif_tx_stop_all_queues(ndev); 1461 netif_carrier_off(ndev); 1462 netif_tx_disable(ndev); 1463 priv->link = 0; 1464 1465 if (ndev->phydev) 1466 phy_stop(ndev->phydev); 1467 1468 ops = priv->ae_handle->dev->ops; 1469 1470 if (ops->stop) 1471 ops->stop(priv->ae_handle); 1472 1473 netif_tx_stop_all_queues(ndev); 1474 1475 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1476 hns_nic_ring_close(ndev, i); 1477 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1478 1479 /* clean tx buffers*/ 1480 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1481 } 1482 } 1483 1484 void hns_nic_net_reset(struct net_device *ndev) 1485 { 1486 struct hns_nic_priv *priv = netdev_priv(ndev); 1487 struct hnae_handle *handle = priv->ae_handle; 1488 1489 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1490 usleep_range(1000, 2000); 1491 1492 (void)hnae_reinit_handle(handle); 1493 1494 clear_bit(NIC_STATE_RESETTING, &priv->state); 1495 } 1496 1497 void hns_nic_net_reinit(struct net_device *netdev) 1498 { 1499 struct hns_nic_priv *priv = netdev_priv(netdev); 1500 enum hnae_port_type type = priv->ae_handle->port_type; 1501 1502 netif_trans_update(priv->netdev); 1503 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1504 usleep_range(1000, 2000); 1505 1506 hns_nic_net_down(netdev); 1507 1508 /* Only do hns_nic_net_reset in debug mode 1509 * because of hardware limitation. 1510 */ 1511 if (type == HNAE_PORT_DEBUG) 1512 hns_nic_net_reset(netdev); 1513 1514 (void)hns_nic_net_up(netdev); 1515 clear_bit(NIC_STATE_REINITING, &priv->state); 1516 } 1517 1518 static int hns_nic_net_open(struct net_device *ndev) 1519 { 1520 struct hns_nic_priv *priv = netdev_priv(ndev); 1521 struct hnae_handle *h = priv->ae_handle; 1522 int ret; 1523 1524 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1525 return -EBUSY; 1526 1527 priv->link = 0; 1528 netif_carrier_off(ndev); 1529 1530 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1531 if (ret < 0) { 1532 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1533 ret); 1534 return ret; 1535 } 1536 1537 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1538 if (ret < 0) { 1539 netdev_err(ndev, 1540 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1541 return ret; 1542 } 1543 1544 ret = hns_nic_net_up(ndev); 1545 if (ret) { 1546 netdev_err(ndev, 1547 "hns net up fail, ret=%d!\n", ret); 1548 return ret; 1549 } 1550 1551 return 0; 1552 } 1553 1554 static int hns_nic_net_stop(struct net_device *ndev) 1555 { 1556 hns_nic_net_down(ndev); 1557 1558 return 0; 1559 } 1560 1561 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1562 static void hns_nic_net_timeout(struct net_device *ndev) 1563 { 1564 struct hns_nic_priv *priv = netdev_priv(ndev); 1565 1566 hns_tx_timeout_reset(priv); 1567 } 1568 1569 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr, 1570 int cmd) 1571 { 1572 struct phy_device *phy_dev = netdev->phydev; 1573 1574 if (!netif_running(netdev)) 1575 return -EINVAL; 1576 1577 if (!phy_dev) 1578 return -ENOTSUPP; 1579 1580 return phy_mii_ioctl(phy_dev, ifr, cmd); 1581 } 1582 1583 /* use only for netconsole to poll with the device without interrupt */ 1584 #ifdef CONFIG_NET_POLL_CONTROLLER 1585 void hns_nic_poll_controller(struct net_device *ndev) 1586 { 1587 struct hns_nic_priv *priv = netdev_priv(ndev); 1588 unsigned long flags; 1589 int i; 1590 1591 local_irq_save(flags); 1592 for (i = 0; i < priv->ae_handle->q_num * 2; i++) 1593 napi_schedule(&priv->ring_data[i].napi); 1594 local_irq_restore(flags); 1595 } 1596 #endif 1597 1598 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1599 struct net_device *ndev) 1600 { 1601 struct hns_nic_priv *priv = netdev_priv(ndev); 1602 1603 assert(skb->queue_mapping < ndev->ae_handle->q_num); 1604 1605 return hns_nic_net_xmit_hw(ndev, skb, 1606 &tx_ring_data(priv, skb->queue_mapping)); 1607 } 1608 1609 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, 1610 struct sk_buff *skb) 1611 { 1612 dev_kfree_skb_any(skb); 1613 } 1614 1615 #define HNS_LB_TX_RING 0 1616 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) 1617 { 1618 struct sk_buff *skb; 1619 struct ethhdr *ethhdr; 1620 int frame_len; 1621 1622 /* allocate test skb */ 1623 skb = alloc_skb(64, GFP_KERNEL); 1624 if (!skb) 1625 return NULL; 1626 1627 skb_put(skb, 64); 1628 skb->dev = ndev; 1629 memset(skb->data, 0xFF, skb->len); 1630 1631 /* must be tcp/ip package */ 1632 ethhdr = (struct ethhdr *)skb->data; 1633 ethhdr->h_proto = htons(ETH_P_IP); 1634 1635 frame_len = skb->len & (~1ul); 1636 memset(&skb->data[frame_len / 2], 0xAA, 1637 frame_len / 2 - 1); 1638 1639 skb->queue_mapping = HNS_LB_TX_RING; 1640 1641 return skb; 1642 } 1643 1644 static int hns_enable_serdes_lb(struct net_device *ndev) 1645 { 1646 struct hns_nic_priv *priv = netdev_priv(ndev); 1647 struct hnae_handle *h = priv->ae_handle; 1648 struct hnae_ae_ops *ops = h->dev->ops; 1649 int speed, duplex; 1650 int ret; 1651 1652 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); 1653 if (ret) 1654 return ret; 1655 1656 ret = ops->start ? ops->start(h) : 0; 1657 if (ret) 1658 return ret; 1659 1660 /* link adjust duplex*/ 1661 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1662 speed = 1000; 1663 else 1664 speed = 10000; 1665 duplex = 1; 1666 1667 ops->adjust_link(h, speed, duplex); 1668 1669 /* wait h/w ready */ 1670 mdelay(300); 1671 1672 return 0; 1673 } 1674 1675 static void hns_disable_serdes_lb(struct net_device *ndev) 1676 { 1677 struct hns_nic_priv *priv = netdev_priv(ndev); 1678 struct hnae_handle *h = priv->ae_handle; 1679 struct hnae_ae_ops *ops = h->dev->ops; 1680 1681 ops->stop(h); 1682 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); 1683 } 1684 1685 /** 1686 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The 1687 *function as follows: 1688 * 1. if one rx ring has found the page_offset is not equal 0 between head 1689 * and tail, it means that the chip fetched the wrong descs for the ring 1690 * which buffer size is 4096. 1691 * 2. we set the chip serdes loopback and set rss indirection to the ring. 1692 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring 1693 * recieving all packages and it will fetch new descriptions. 1694 * 4. recover to the original state. 1695 * 1696 *@ndev: net device 1697 */ 1698 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) 1699 { 1700 struct hns_nic_priv *priv = netdev_priv(ndev); 1701 struct hnae_handle *h = priv->ae_handle; 1702 struct hnae_ae_ops *ops = h->dev->ops; 1703 struct hns_nic_ring_data *rd; 1704 struct hnae_ring *ring; 1705 struct sk_buff *skb; 1706 u32 *org_indir; 1707 u32 *cur_indir; 1708 int indir_size; 1709 int head, tail; 1710 int fetch_num; 1711 int i, j; 1712 bool found; 1713 int retry_times; 1714 int ret = 0; 1715 1716 /* alloc indir memory */ 1717 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); 1718 org_indir = kzalloc(indir_size, GFP_KERNEL); 1719 if (!org_indir) 1720 return -ENOMEM; 1721 1722 /* store the orginal indirection */ 1723 ops->get_rss(h, org_indir, NULL, NULL); 1724 1725 cur_indir = kzalloc(indir_size, GFP_KERNEL); 1726 if (!cur_indir) { 1727 ret = -ENOMEM; 1728 goto cur_indir_alloc_err; 1729 } 1730 1731 /* set loopback */ 1732 if (hns_enable_serdes_lb(ndev)) { 1733 ret = -EINVAL; 1734 goto enable_serdes_lb_err; 1735 } 1736 1737 /* foreach every rx ring to clear fetch desc */ 1738 for (i = 0; i < h->q_num; i++) { 1739 ring = &h->qs[i]->rx_ring; 1740 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1741 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); 1742 found = false; 1743 fetch_num = ring_dist(ring, head, tail); 1744 1745 while (head != tail) { 1746 if (ring->desc_cb[head].page_offset != 0) { 1747 found = true; 1748 break; 1749 } 1750 1751 head++; 1752 if (head == ring->desc_num) 1753 head = 0; 1754 } 1755 1756 if (found) { 1757 for (j = 0; j < indir_size / sizeof(*org_indir); j++) 1758 cur_indir[j] = i; 1759 ops->set_rss(h, cur_indir, NULL, 0); 1760 1761 for (j = 0; j < fetch_num; j++) { 1762 /* alloc one skb and init */ 1763 skb = hns_assemble_skb(ndev); 1764 if (!skb) 1765 goto out; 1766 rd = &tx_ring_data(priv, skb->queue_mapping); 1767 hns_nic_net_xmit_hw(ndev, skb, rd); 1768 1769 retry_times = 0; 1770 while (retry_times++ < 10) { 1771 mdelay(10); 1772 /* clean rx */ 1773 rd = &rx_ring_data(priv, i); 1774 if (rd->poll_one(rd, fetch_num, 1775 hns_nic_drop_rx_fetch)) 1776 break; 1777 } 1778 1779 retry_times = 0; 1780 while (retry_times++ < 10) { 1781 mdelay(10); 1782 /* clean tx ring 0 send package */ 1783 rd = &tx_ring_data(priv, 1784 HNS_LB_TX_RING); 1785 if (rd->poll_one(rd, fetch_num, NULL)) 1786 break; 1787 } 1788 } 1789 } 1790 } 1791 1792 out: 1793 /* restore everything */ 1794 ops->set_rss(h, org_indir, NULL, 0); 1795 hns_disable_serdes_lb(ndev); 1796 enable_serdes_lb_err: 1797 kfree(cur_indir); 1798 cur_indir_alloc_err: 1799 kfree(org_indir); 1800 1801 return ret; 1802 } 1803 1804 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1805 { 1806 struct hns_nic_priv *priv = netdev_priv(ndev); 1807 struct hnae_handle *h = priv->ae_handle; 1808 bool if_running = netif_running(ndev); 1809 int ret; 1810 1811 /* MTU < 68 is an error and causes problems on some kernels */ 1812 if (new_mtu < 68) 1813 return -EINVAL; 1814 1815 /* MTU no change */ 1816 if (new_mtu == ndev->mtu) 1817 return 0; 1818 1819 if (!h->dev->ops->set_mtu) 1820 return -ENOTSUPP; 1821 1822 if (if_running) { 1823 (void)hns_nic_net_stop(ndev); 1824 msleep(100); 1825 } 1826 1827 if (priv->enet_ver != AE_VERSION_1 && 1828 ndev->mtu <= BD_SIZE_2048_MAX_MTU && 1829 new_mtu > BD_SIZE_2048_MAX_MTU) { 1830 /* update desc */ 1831 hnae_reinit_all_ring_desc(h); 1832 1833 /* clear the package which the chip has fetched */ 1834 ret = hns_nic_clear_all_rx_fetch(ndev); 1835 1836 /* the page offset must be consist with desc */ 1837 hnae_reinit_all_ring_page_off(h); 1838 1839 if (ret) { 1840 netdev_err(ndev, "clear the fetched desc fail\n"); 1841 goto out; 1842 } 1843 } 1844 1845 ret = h->dev->ops->set_mtu(h, new_mtu); 1846 if (ret) { 1847 netdev_err(ndev, "set mtu fail, return value %d\n", 1848 ret); 1849 goto out; 1850 } 1851 1852 /* finally, set new mtu to netdevice */ 1853 ndev->mtu = new_mtu; 1854 1855 out: 1856 if (if_running) { 1857 if (hns_nic_net_open(ndev)) { 1858 netdev_err(ndev, "hns net open fail\n"); 1859 ret = -EINVAL; 1860 } 1861 } 1862 1863 return ret; 1864 } 1865 1866 static int hns_nic_set_features(struct net_device *netdev, 1867 netdev_features_t features) 1868 { 1869 struct hns_nic_priv *priv = netdev_priv(netdev); 1870 1871 switch (priv->enet_ver) { 1872 case AE_VERSION_1: 1873 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1874 netdev_info(netdev, "enet v1 do not support tso!\n"); 1875 break; 1876 default: 1877 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1878 priv->ops.fill_desc = fill_tso_desc; 1879 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1880 /* The chip only support 7*4096 */ 1881 netif_set_gso_max_size(netdev, 7 * 4096); 1882 } else { 1883 priv->ops.fill_desc = fill_v2_desc; 1884 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1885 } 1886 break; 1887 } 1888 netdev->features = features; 1889 return 0; 1890 } 1891 1892 static netdev_features_t hns_nic_fix_features( 1893 struct net_device *netdev, netdev_features_t features) 1894 { 1895 struct hns_nic_priv *priv = netdev_priv(netdev); 1896 1897 switch (priv->enet_ver) { 1898 case AE_VERSION_1: 1899 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1900 NETIF_F_HW_VLAN_CTAG_FILTER); 1901 break; 1902 default: 1903 break; 1904 } 1905 return features; 1906 } 1907 1908 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1909 { 1910 struct hns_nic_priv *priv = netdev_priv(netdev); 1911 struct hnae_handle *h = priv->ae_handle; 1912 1913 if (h->dev->ops->add_uc_addr) 1914 return h->dev->ops->add_uc_addr(h, addr); 1915 1916 return 0; 1917 } 1918 1919 static int hns_nic_uc_unsync(struct net_device *netdev, 1920 const unsigned char *addr) 1921 { 1922 struct hns_nic_priv *priv = netdev_priv(netdev); 1923 struct hnae_handle *h = priv->ae_handle; 1924 1925 if (h->dev->ops->rm_uc_addr) 1926 return h->dev->ops->rm_uc_addr(h, addr); 1927 1928 return 0; 1929 } 1930 1931 /** 1932 * nic_set_multicast_list - set mutl mac address 1933 * @netdev: net device 1934 * @p: mac address 1935 * 1936 * return void 1937 */ 1938 void hns_set_multicast_list(struct net_device *ndev) 1939 { 1940 struct hns_nic_priv *priv = netdev_priv(ndev); 1941 struct hnae_handle *h = priv->ae_handle; 1942 struct netdev_hw_addr *ha = NULL; 1943 1944 if (!h) { 1945 netdev_err(ndev, "hnae handle is null\n"); 1946 return; 1947 } 1948 1949 if (h->dev->ops->clr_mc_addr) 1950 if (h->dev->ops->clr_mc_addr(h)) 1951 netdev_err(ndev, "clear multicast address fail\n"); 1952 1953 if (h->dev->ops->set_mc_addr) { 1954 netdev_for_each_mc_addr(ha, ndev) 1955 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1956 netdev_err(ndev, "set multicast fail\n"); 1957 } 1958 } 1959 1960 void hns_nic_set_rx_mode(struct net_device *ndev) 1961 { 1962 struct hns_nic_priv *priv = netdev_priv(ndev); 1963 struct hnae_handle *h = priv->ae_handle; 1964 1965 if (h->dev->ops->set_promisc_mode) { 1966 if (ndev->flags & IFF_PROMISC) 1967 h->dev->ops->set_promisc_mode(h, 1); 1968 else 1969 h->dev->ops->set_promisc_mode(h, 0); 1970 } 1971 1972 hns_set_multicast_list(ndev); 1973 1974 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1975 netdev_err(ndev, "sync uc address fail\n"); 1976 } 1977 1978 static void hns_nic_get_stats64(struct net_device *ndev, 1979 struct rtnl_link_stats64 *stats) 1980 { 1981 int idx = 0; 1982 u64 tx_bytes = 0; 1983 u64 rx_bytes = 0; 1984 u64 tx_pkts = 0; 1985 u64 rx_pkts = 0; 1986 struct hns_nic_priv *priv = netdev_priv(ndev); 1987 struct hnae_handle *h = priv->ae_handle; 1988 1989 for (idx = 0; idx < h->q_num; idx++) { 1990 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1991 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1992 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1993 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1994 } 1995 1996 stats->tx_bytes = tx_bytes; 1997 stats->tx_packets = tx_pkts; 1998 stats->rx_bytes = rx_bytes; 1999 stats->rx_packets = rx_pkts; 2000 2001 stats->rx_errors = ndev->stats.rx_errors; 2002 stats->multicast = ndev->stats.multicast; 2003 stats->rx_length_errors = ndev->stats.rx_length_errors; 2004 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 2005 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 2006 2007 stats->tx_errors = ndev->stats.tx_errors; 2008 stats->rx_dropped = ndev->stats.rx_dropped; 2009 stats->tx_dropped = ndev->stats.tx_dropped; 2010 stats->collisions = ndev->stats.collisions; 2011 stats->rx_over_errors = ndev->stats.rx_over_errors; 2012 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 2013 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 2014 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 2015 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 2016 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 2017 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 2018 stats->tx_window_errors = ndev->stats.tx_window_errors; 2019 stats->rx_compressed = ndev->stats.rx_compressed; 2020 stats->tx_compressed = ndev->stats.tx_compressed; 2021 } 2022 2023 static u16 2024 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 2025 void *accel_priv, select_queue_fallback_t fallback) 2026 { 2027 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 2028 struct hns_nic_priv *priv = netdev_priv(ndev); 2029 2030 /* fix hardware broadcast/multicast packets queue loopback */ 2031 if (!AE_IS_VER1(priv->enet_ver) && 2032 is_multicast_ether_addr(eth_hdr->h_dest)) 2033 return 0; 2034 else 2035 return fallback(ndev, skb); 2036 } 2037 2038 static const struct net_device_ops hns_nic_netdev_ops = { 2039 .ndo_open = hns_nic_net_open, 2040 .ndo_stop = hns_nic_net_stop, 2041 .ndo_start_xmit = hns_nic_net_xmit, 2042 .ndo_tx_timeout = hns_nic_net_timeout, 2043 .ndo_set_mac_address = hns_nic_net_set_mac_address, 2044 .ndo_change_mtu = hns_nic_change_mtu, 2045 .ndo_do_ioctl = hns_nic_do_ioctl, 2046 .ndo_set_features = hns_nic_set_features, 2047 .ndo_fix_features = hns_nic_fix_features, 2048 .ndo_get_stats64 = hns_nic_get_stats64, 2049 #ifdef CONFIG_NET_POLL_CONTROLLER 2050 .ndo_poll_controller = hns_nic_poll_controller, 2051 #endif 2052 .ndo_set_rx_mode = hns_nic_set_rx_mode, 2053 .ndo_select_queue = hns_nic_select_queue, 2054 }; 2055 2056 static void hns_nic_update_link_status(struct net_device *netdev) 2057 { 2058 struct hns_nic_priv *priv = netdev_priv(netdev); 2059 2060 struct hnae_handle *h = priv->ae_handle; 2061 2062 if (h->phy_dev) { 2063 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 2064 return; 2065 2066 (void)genphy_read_status(h->phy_dev); 2067 } 2068 hns_nic_adjust_link(netdev); 2069 } 2070 2071 /* for dumping key regs*/ 2072 static void hns_nic_dump(struct hns_nic_priv *priv) 2073 { 2074 struct hnae_handle *h = priv->ae_handle; 2075 struct hnae_ae_ops *ops = h->dev->ops; 2076 u32 *data, reg_num, i; 2077 2078 if (ops->get_regs_len && ops->get_regs) { 2079 reg_num = ops->get_regs_len(priv->ae_handle); 2080 reg_num = (reg_num + 3ul) & ~3ul; 2081 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 2082 if (data) { 2083 ops->get_regs(priv->ae_handle, data); 2084 for (i = 0; i < reg_num; i += 4) 2085 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 2086 i, data[i], data[i + 1], 2087 data[i + 2], data[i + 3]); 2088 kfree(data); 2089 } 2090 } 2091 2092 for (i = 0; i < h->q_num; i++) { 2093 pr_info("tx_queue%d_next_to_clean:%d\n", 2094 i, h->qs[i]->tx_ring.next_to_clean); 2095 pr_info("tx_queue%d_next_to_use:%d\n", 2096 i, h->qs[i]->tx_ring.next_to_use); 2097 pr_info("rx_queue%d_next_to_clean:%d\n", 2098 i, h->qs[i]->rx_ring.next_to_clean); 2099 pr_info("rx_queue%d_next_to_use:%d\n", 2100 i, h->qs[i]->rx_ring.next_to_use); 2101 } 2102 } 2103 2104 /* for resetting subtask */ 2105 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 2106 { 2107 enum hnae_port_type type = priv->ae_handle->port_type; 2108 2109 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 2110 return; 2111 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2112 2113 /* If we're already down, removing or resetting, just bail */ 2114 if (test_bit(NIC_STATE_DOWN, &priv->state) || 2115 test_bit(NIC_STATE_REMOVING, &priv->state) || 2116 test_bit(NIC_STATE_RESETTING, &priv->state)) 2117 return; 2118 2119 hns_nic_dump(priv); 2120 netdev_info(priv->netdev, "try to reset %s port!\n", 2121 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 2122 2123 rtnl_lock(); 2124 /* put off any impending NetWatchDogTimeout */ 2125 netif_trans_update(priv->netdev); 2126 hns_nic_net_reinit(priv->netdev); 2127 2128 rtnl_unlock(); 2129 } 2130 2131 /* for doing service complete*/ 2132 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 2133 { 2134 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 2135 /* make sure to commit the things */ 2136 smp_mb__before_atomic(); 2137 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2138 } 2139 2140 static void hns_nic_service_task(struct work_struct *work) 2141 { 2142 struct hns_nic_priv *priv 2143 = container_of(work, struct hns_nic_priv, service_task); 2144 struct hnae_handle *h = priv->ae_handle; 2145 2146 hns_nic_update_link_status(priv->netdev); 2147 h->dev->ops->update_led_status(h); 2148 hns_nic_update_stats(priv->netdev); 2149 2150 hns_nic_reset_subtask(priv); 2151 hns_nic_service_event_complete(priv); 2152 } 2153 2154 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 2155 { 2156 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 2157 !test_bit(NIC_STATE_REMOVING, &priv->state) && 2158 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 2159 (void)schedule_work(&priv->service_task); 2160 } 2161 2162 static void hns_nic_service_timer(struct timer_list *t) 2163 { 2164 struct hns_nic_priv *priv = from_timer(priv, t, service_timer); 2165 2166 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 2167 2168 hns_nic_task_schedule(priv); 2169 } 2170 2171 /** 2172 * hns_tx_timeout_reset - initiate reset due to Tx timeout 2173 * @priv: driver private struct 2174 **/ 2175 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 2176 { 2177 /* Do the reset outside of interrupt context */ 2178 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 2179 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2180 netdev_warn(priv->netdev, 2181 "initiating reset due to tx timeout(%llu,0x%lx)\n", 2182 priv->tx_timeout_count, priv->state); 2183 priv->tx_timeout_count++; 2184 hns_nic_task_schedule(priv); 2185 } 2186 } 2187 2188 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 2189 { 2190 struct hnae_handle *h = priv->ae_handle; 2191 struct hns_nic_ring_data *rd; 2192 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 2193 int i; 2194 2195 if (h->q_num > NIC_MAX_Q_PER_VF) { 2196 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 2197 return -EINVAL; 2198 } 2199 2200 priv->ring_data = kzalloc(array3_size(h->q_num, 2201 sizeof(*priv->ring_data), 2), 2202 GFP_KERNEL); 2203 if (!priv->ring_data) 2204 return -ENOMEM; 2205 2206 for (i = 0; i < h->q_num; i++) { 2207 rd = &priv->ring_data[i]; 2208 rd->queue_index = i; 2209 rd->ring = &h->qs[i]->tx_ring; 2210 rd->poll_one = hns_nic_tx_poll_one; 2211 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 2212 hns_nic_tx_fini_pro_v2; 2213 2214 netif_napi_add(priv->netdev, &rd->napi, 2215 hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM); 2216 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2217 } 2218 for (i = h->q_num; i < h->q_num * 2; i++) { 2219 rd = &priv->ring_data[i]; 2220 rd->queue_index = i - h->q_num; 2221 rd->ring = &h->qs[i - h->q_num]->rx_ring; 2222 rd->poll_one = hns_nic_rx_poll_one; 2223 rd->ex_process = hns_nic_rx_up_pro; 2224 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 2225 hns_nic_rx_fini_pro_v2; 2226 2227 netif_napi_add(priv->netdev, &rd->napi, 2228 hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM); 2229 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2230 } 2231 2232 return 0; 2233 } 2234 2235 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 2236 { 2237 struct hnae_handle *h = priv->ae_handle; 2238 int i; 2239 2240 for (i = 0; i < h->q_num * 2; i++) { 2241 netif_napi_del(&priv->ring_data[i].napi); 2242 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 2243 (void)irq_set_affinity_hint( 2244 priv->ring_data[i].ring->irq, 2245 NULL); 2246 free_irq(priv->ring_data[i].ring->irq, 2247 &priv->ring_data[i]); 2248 } 2249 2250 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2251 } 2252 kfree(priv->ring_data); 2253 } 2254 2255 static void hns_nic_set_priv_ops(struct net_device *netdev) 2256 { 2257 struct hns_nic_priv *priv = netdev_priv(netdev); 2258 struct hnae_handle *h = priv->ae_handle; 2259 2260 if (AE_IS_VER1(priv->enet_ver)) { 2261 priv->ops.fill_desc = fill_desc; 2262 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 2263 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2264 } else { 2265 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 2266 if ((netdev->features & NETIF_F_TSO) || 2267 (netdev->features & NETIF_F_TSO6)) { 2268 priv->ops.fill_desc = fill_tso_desc; 2269 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 2270 /* This chip only support 7*4096 */ 2271 netif_set_gso_max_size(netdev, 7 * 4096); 2272 } else { 2273 priv->ops.fill_desc = fill_v2_desc; 2274 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2275 } 2276 /* enable tso when init 2277 * control tso on/off through TSE bit in bd 2278 */ 2279 h->dev->ops->set_tso_stats(h, 1); 2280 } 2281 } 2282 2283 static int hns_nic_try_get_ae(struct net_device *ndev) 2284 { 2285 struct hns_nic_priv *priv = netdev_priv(ndev); 2286 struct hnae_handle *h; 2287 int ret; 2288 2289 h = hnae_get_handle(&priv->netdev->dev, 2290 priv->fwnode, priv->port_id, NULL); 2291 if (IS_ERR_OR_NULL(h)) { 2292 ret = -ENODEV; 2293 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 2294 goto out; 2295 } 2296 priv->ae_handle = h; 2297 2298 ret = hns_nic_init_phy(ndev, h); 2299 if (ret) { 2300 dev_err(priv->dev, "probe phy device fail!\n"); 2301 goto out_init_phy; 2302 } 2303 2304 ret = hns_nic_init_ring_data(priv); 2305 if (ret) { 2306 ret = -ENOMEM; 2307 goto out_init_ring_data; 2308 } 2309 2310 hns_nic_set_priv_ops(ndev); 2311 2312 ret = register_netdev(ndev); 2313 if (ret) { 2314 dev_err(priv->dev, "probe register netdev fail!\n"); 2315 goto out_reg_ndev_fail; 2316 } 2317 return 0; 2318 2319 out_reg_ndev_fail: 2320 hns_nic_uninit_ring_data(priv); 2321 priv->ring_data = NULL; 2322 out_init_phy: 2323 out_init_ring_data: 2324 hnae_put_handle(priv->ae_handle); 2325 priv->ae_handle = NULL; 2326 out: 2327 return ret; 2328 } 2329 2330 static int hns_nic_notifier_action(struct notifier_block *nb, 2331 unsigned long action, void *data) 2332 { 2333 struct hns_nic_priv *priv = 2334 container_of(nb, struct hns_nic_priv, notifier_block); 2335 2336 assert(action == HNAE_AE_REGISTER); 2337 2338 if (!hns_nic_try_get_ae(priv->netdev)) { 2339 hnae_unregister_notifier(&priv->notifier_block); 2340 priv->notifier_block.notifier_call = NULL; 2341 } 2342 return 0; 2343 } 2344 2345 static int hns_nic_dev_probe(struct platform_device *pdev) 2346 { 2347 struct device *dev = &pdev->dev; 2348 struct net_device *ndev; 2349 struct hns_nic_priv *priv; 2350 u32 port_id; 2351 int ret; 2352 2353 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2354 if (!ndev) 2355 return -ENOMEM; 2356 2357 platform_set_drvdata(pdev, ndev); 2358 2359 priv = netdev_priv(ndev); 2360 priv->dev = dev; 2361 priv->netdev = ndev; 2362 2363 if (dev_of_node(dev)) { 2364 struct device_node *ae_node; 2365 2366 if (of_device_is_compatible(dev->of_node, 2367 "hisilicon,hns-nic-v1")) 2368 priv->enet_ver = AE_VERSION_1; 2369 else 2370 priv->enet_ver = AE_VERSION_2; 2371 2372 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2373 if (!ae_node) { 2374 ret = -ENODEV; 2375 dev_err(dev, "not find ae-handle\n"); 2376 goto out_read_prop_fail; 2377 } 2378 priv->fwnode = &ae_node->fwnode; 2379 } else if (is_acpi_node(dev->fwnode)) { 2380 struct acpi_reference_args args; 2381 2382 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2383 priv->enet_ver = AE_VERSION_1; 2384 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2385 priv->enet_ver = AE_VERSION_2; 2386 else 2387 return -ENXIO; 2388 2389 /* try to find port-idx-in-ae first */ 2390 ret = acpi_node_get_property_reference(dev->fwnode, 2391 "ae-handle", 0, &args); 2392 if (ret) { 2393 dev_err(dev, "not find ae-handle\n"); 2394 goto out_read_prop_fail; 2395 } 2396 priv->fwnode = acpi_fwnode_handle(args.adev); 2397 } else { 2398 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2399 return -ENXIO; 2400 } 2401 2402 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2403 if (ret) { 2404 /* only for old code compatible */ 2405 ret = device_property_read_u32(dev, "port-id", &port_id); 2406 if (ret) 2407 goto out_read_prop_fail; 2408 /* for old dts, we need to caculate the port offset */ 2409 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2410 : port_id - HNS_SRV_OFFSET; 2411 } 2412 priv->port_id = port_id; 2413 2414 hns_init_mac_addr(ndev); 2415 2416 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2417 ndev->priv_flags |= IFF_UNICAST_FLT; 2418 ndev->netdev_ops = &hns_nic_netdev_ops; 2419 hns_ethtool_set_ops(ndev); 2420 2421 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2422 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2423 NETIF_F_GRO; 2424 ndev->vlan_features |= 2425 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2426 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2427 2428 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2429 ndev->min_mtu = MAC_MIN_MTU; 2430 switch (priv->enet_ver) { 2431 case AE_VERSION_2: 2432 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6; 2433 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2434 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2435 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2436 ndev->max_mtu = MAC_MAX_MTU_V2 - 2437 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2438 break; 2439 default: 2440 ndev->max_mtu = MAC_MAX_MTU - 2441 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2442 break; 2443 } 2444 2445 SET_NETDEV_DEV(ndev, dev); 2446 2447 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2448 dev_dbg(dev, "set mask to 64bit\n"); 2449 else 2450 dev_err(dev, "set mask to 64bit fail!\n"); 2451 2452 /* carrier off reporting is important to ethtool even BEFORE open */ 2453 netif_carrier_off(ndev); 2454 2455 timer_setup(&priv->service_timer, hns_nic_service_timer, 0); 2456 INIT_WORK(&priv->service_task, hns_nic_service_task); 2457 2458 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2459 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2460 set_bit(NIC_STATE_DOWN, &priv->state); 2461 2462 if (hns_nic_try_get_ae(priv->netdev)) { 2463 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2464 ret = hnae_register_notifier(&priv->notifier_block); 2465 if (ret) { 2466 dev_err(dev, "register notifier fail!\n"); 2467 goto out_notify_fail; 2468 } 2469 dev_dbg(dev, "has not handle, register notifier!\n"); 2470 } 2471 2472 return 0; 2473 2474 out_notify_fail: 2475 (void)cancel_work_sync(&priv->service_task); 2476 out_read_prop_fail: 2477 free_netdev(ndev); 2478 return ret; 2479 } 2480 2481 static int hns_nic_dev_remove(struct platform_device *pdev) 2482 { 2483 struct net_device *ndev = platform_get_drvdata(pdev); 2484 struct hns_nic_priv *priv = netdev_priv(ndev); 2485 2486 if (ndev->reg_state != NETREG_UNINITIALIZED) 2487 unregister_netdev(ndev); 2488 2489 if (priv->ring_data) 2490 hns_nic_uninit_ring_data(priv); 2491 priv->ring_data = NULL; 2492 2493 if (ndev->phydev) 2494 phy_disconnect(ndev->phydev); 2495 2496 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2497 hnae_put_handle(priv->ae_handle); 2498 priv->ae_handle = NULL; 2499 if (priv->notifier_block.notifier_call) 2500 hnae_unregister_notifier(&priv->notifier_block); 2501 priv->notifier_block.notifier_call = NULL; 2502 2503 set_bit(NIC_STATE_REMOVING, &priv->state); 2504 (void)cancel_work_sync(&priv->service_task); 2505 2506 free_netdev(ndev); 2507 return 0; 2508 } 2509 2510 static const struct of_device_id hns_enet_of_match[] = { 2511 {.compatible = "hisilicon,hns-nic-v1",}, 2512 {.compatible = "hisilicon,hns-nic-v2",}, 2513 {}, 2514 }; 2515 2516 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2517 2518 static struct platform_driver hns_nic_dev_driver = { 2519 .driver = { 2520 .name = "hns-nic", 2521 .of_match_table = hns_enet_of_match, 2522 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2523 }, 2524 .probe = hns_nic_dev_probe, 2525 .remove = hns_nic_dev_remove, 2526 }; 2527 2528 module_platform_driver(hns_nic_dev_driver); 2529 2530 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2531 MODULE_AUTHOR("Hisilicon, Inc."); 2532 MODULE_LICENSE("GPL"); 2533 MODULE_ALIAS("platform:hns-nic"); 2534