1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22 
23 #include "hnae.h"
24 #include "hns_enet.h"
25 
26 #define NIC_MAX_Q_PER_VF 16
27 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
28 
29 #define SERVICE_TIMER_HZ (1 * HZ)
30 
31 #define NIC_TX_CLEAN_MAX_NUM 256
32 #define NIC_RX_CLEAN_MAX_NUM 64
33 
34 #define RCB_IRQ_NOT_INITED 0
35 #define RCB_IRQ_INITED 1
36 #define HNS_BUFFER_SIZE_2048 2048
37 
38 #define BD_MAX_SEND_SIZE 8191
39 #define SKB_TMP_LEN(SKB) \
40 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
41 
42 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
43 			 int size, dma_addr_t dma, int frag_end,
44 			 int buf_num, enum hns_desc_type type, int mtu)
45 {
46 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
47 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
48 	struct iphdr *iphdr;
49 	struct ipv6hdr *ipv6hdr;
50 	struct sk_buff *skb;
51 	__be16 protocol;
52 	u8 bn_pid = 0;
53 	u8 rrcfv = 0;
54 	u8 ip_offset = 0;
55 	u8 tvsvsn = 0;
56 	u16 mss = 0;
57 	u8 l4_len = 0;
58 	u16 paylen = 0;
59 
60 	desc_cb->priv = priv;
61 	desc_cb->length = size;
62 	desc_cb->dma = dma;
63 	desc_cb->type = type;
64 
65 	desc->addr = cpu_to_le64(dma);
66 	desc->tx.send_size = cpu_to_le16((u16)size);
67 
68 	/* config bd buffer end */
69 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
70 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
71 
72 	/* fill port_id in the tx bd for sending management pkts */
73 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
74 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
75 
76 	if (type == DESC_TYPE_SKB) {
77 		skb = (struct sk_buff *)priv;
78 
79 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
80 			skb_reset_mac_len(skb);
81 			protocol = skb->protocol;
82 			ip_offset = ETH_HLEN;
83 
84 			if (protocol == htons(ETH_P_8021Q)) {
85 				ip_offset += VLAN_HLEN;
86 				protocol = vlan_get_protocol(skb);
87 				skb->protocol = protocol;
88 			}
89 
90 			if (skb->protocol == htons(ETH_P_IP)) {
91 				iphdr = ip_hdr(skb);
92 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
93 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
94 
95 				/* check for tcp/udp header */
96 				if (iphdr->protocol == IPPROTO_TCP &&
97 				    skb_is_gso(skb)) {
98 					hnae_set_bit(tvsvsn,
99 						     HNSV2_TXD_TSE_B, 1);
100 					l4_len = tcp_hdrlen(skb);
101 					mss = skb_shinfo(skb)->gso_size;
102 					paylen = skb->len - SKB_TMP_LEN(skb);
103 				}
104 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
105 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
106 				ipv6hdr = ipv6_hdr(skb);
107 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
108 
109 				/* check for tcp/udp header */
110 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
111 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
112 					hnae_set_bit(tvsvsn,
113 						     HNSV2_TXD_TSE_B, 1);
114 					l4_len = tcp_hdrlen(skb);
115 					mss = skb_shinfo(skb)->gso_size;
116 					paylen = skb->len - SKB_TMP_LEN(skb);
117 				}
118 			}
119 			desc->tx.ip_offset = ip_offset;
120 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
121 			desc->tx.mss = cpu_to_le16(mss);
122 			desc->tx.l4_len = l4_len;
123 			desc->tx.paylen = cpu_to_le16(paylen);
124 		}
125 	}
126 
127 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
128 
129 	desc->tx.bn_pid = bn_pid;
130 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
131 
132 	ring_ptr_move_fw(ring, next_to_use);
133 }
134 
135 static const struct acpi_device_id hns_enet_acpi_match[] = {
136 	{ "HISI00C1", 0 },
137 	{ "HISI00C2", 0 },
138 	{ },
139 };
140 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
141 
142 static void fill_desc(struct hnae_ring *ring, void *priv,
143 		      int size, dma_addr_t dma, int frag_end,
144 		      int buf_num, enum hns_desc_type type, int mtu)
145 {
146 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
147 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
148 	struct sk_buff *skb;
149 	__be16 protocol;
150 	u32 ip_offset;
151 	u32 asid_bufnum_pid = 0;
152 	u32 flag_ipoffset = 0;
153 
154 	desc_cb->priv = priv;
155 	desc_cb->length = size;
156 	desc_cb->dma = dma;
157 	desc_cb->type = type;
158 
159 	desc->addr = cpu_to_le64(dma);
160 	desc->tx.send_size = cpu_to_le16((u16)size);
161 
162 	/*config bd buffer end */
163 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
164 
165 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
166 
167 	if (type == DESC_TYPE_SKB) {
168 		skb = (struct sk_buff *)priv;
169 
170 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
171 			protocol = skb->protocol;
172 			ip_offset = ETH_HLEN;
173 
174 			/*if it is a SW VLAN check the next protocol*/
175 			if (protocol == htons(ETH_P_8021Q)) {
176 				ip_offset += VLAN_HLEN;
177 				protocol = vlan_get_protocol(skb);
178 				skb->protocol = protocol;
179 			}
180 
181 			if (skb->protocol == htons(ETH_P_IP)) {
182 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
183 				/* check for tcp/udp header */
184 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
185 
186 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
187 				/* ipv6 has not l3 cs, check for L4 header */
188 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
189 			}
190 
191 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
192 		}
193 	}
194 
195 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
196 
197 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
198 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
199 
200 	ring_ptr_move_fw(ring, next_to_use);
201 }
202 
203 static void unfill_desc(struct hnae_ring *ring)
204 {
205 	ring_ptr_move_bw(ring, next_to_use);
206 }
207 
208 static int hns_nic_maybe_stop_tx(
209 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
210 {
211 	struct sk_buff *skb = *out_skb;
212 	struct sk_buff *new_skb = NULL;
213 	int buf_num;
214 
215 	/* no. of segments (plus a header) */
216 	buf_num = skb_shinfo(skb)->nr_frags + 1;
217 
218 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
219 		if (ring_space(ring) < 1)
220 			return -EBUSY;
221 
222 		new_skb = skb_copy(skb, GFP_ATOMIC);
223 		if (!new_skb)
224 			return -ENOMEM;
225 
226 		dev_kfree_skb_any(skb);
227 		*out_skb = new_skb;
228 		buf_num = 1;
229 	} else if (buf_num > ring_space(ring)) {
230 		return -EBUSY;
231 	}
232 
233 	*bnum = buf_num;
234 	return 0;
235 }
236 
237 static int hns_nic_maybe_stop_tso(
238 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
239 {
240 	int i;
241 	int size;
242 	int buf_num;
243 	int frag_num;
244 	struct sk_buff *skb = *out_skb;
245 	struct sk_buff *new_skb = NULL;
246 	struct skb_frag_struct *frag;
247 
248 	size = skb_headlen(skb);
249 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
250 
251 	frag_num = skb_shinfo(skb)->nr_frags;
252 	for (i = 0; i < frag_num; i++) {
253 		frag = &skb_shinfo(skb)->frags[i];
254 		size = skb_frag_size(frag);
255 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
256 	}
257 
258 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
259 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
260 		if (ring_space(ring) < buf_num)
261 			return -EBUSY;
262 		/* manual split the send packet */
263 		new_skb = skb_copy(skb, GFP_ATOMIC);
264 		if (!new_skb)
265 			return -ENOMEM;
266 		dev_kfree_skb_any(skb);
267 		*out_skb = new_skb;
268 
269 	} else if (ring_space(ring) < buf_num) {
270 		return -EBUSY;
271 	}
272 
273 	*bnum = buf_num;
274 	return 0;
275 }
276 
277 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
278 			  int size, dma_addr_t dma, int frag_end,
279 			  int buf_num, enum hns_desc_type type, int mtu)
280 {
281 	int frag_buf_num;
282 	int sizeoflast;
283 	int k;
284 
285 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
286 	sizeoflast = size % BD_MAX_SEND_SIZE;
287 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
288 
289 	/* when the frag size is bigger than hardware, split this frag */
290 	for (k = 0; k < frag_buf_num; k++)
291 		fill_v2_desc(ring, priv,
292 			     (k == frag_buf_num - 1) ?
293 					sizeoflast : BD_MAX_SEND_SIZE,
294 			     dma + BD_MAX_SEND_SIZE * k,
295 			     frag_end && (k == frag_buf_num - 1) ? 1 : 0,
296 			     buf_num,
297 			     (type == DESC_TYPE_SKB && !k) ?
298 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
299 			     mtu);
300 }
301 
302 int hns_nic_net_xmit_hw(struct net_device *ndev,
303 			struct sk_buff *skb,
304 			struct hns_nic_ring_data *ring_data)
305 {
306 	struct hns_nic_priv *priv = netdev_priv(ndev);
307 	struct device *dev = priv->dev;
308 	struct hnae_ring *ring = ring_data->ring;
309 	struct netdev_queue *dev_queue;
310 	struct skb_frag_struct *frag;
311 	int buf_num;
312 	int seg_num;
313 	dma_addr_t dma;
314 	int size, next_to_use;
315 	int i;
316 
317 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
318 	case -EBUSY:
319 		ring->stats.tx_busy++;
320 		goto out_net_tx_busy;
321 	case -ENOMEM:
322 		ring->stats.sw_err_cnt++;
323 		netdev_err(ndev, "no memory to xmit!\n");
324 		goto out_err_tx_ok;
325 	default:
326 		break;
327 	}
328 
329 	/* no. of segments (plus a header) */
330 	seg_num = skb_shinfo(skb)->nr_frags + 1;
331 	next_to_use = ring->next_to_use;
332 
333 	/* fill the first part */
334 	size = skb_headlen(skb);
335 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
336 	if (dma_mapping_error(dev, dma)) {
337 		netdev_err(ndev, "TX head DMA map failed\n");
338 		ring->stats.sw_err_cnt++;
339 		goto out_err_tx_ok;
340 	}
341 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
342 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
343 
344 	/* fill the fragments */
345 	for (i = 1; i < seg_num; i++) {
346 		frag = &skb_shinfo(skb)->frags[i - 1];
347 		size = skb_frag_size(frag);
348 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
349 		if (dma_mapping_error(dev, dma)) {
350 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
351 			ring->stats.sw_err_cnt++;
352 			goto out_map_frag_fail;
353 		}
354 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
355 				    seg_num - 1 == i ? 1 : 0, buf_num,
356 				    DESC_TYPE_PAGE, ndev->mtu);
357 	}
358 
359 	/*complete translate all packets*/
360 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
361 	netdev_tx_sent_queue(dev_queue, skb->len);
362 
363 	wmb(); /* commit all data before submit */
364 	assert(skb->queue_mapping < priv->ae_handle->q_num);
365 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
366 	ring->stats.tx_pkts++;
367 	ring->stats.tx_bytes += skb->len;
368 
369 	return NETDEV_TX_OK;
370 
371 out_map_frag_fail:
372 
373 	while (ring->next_to_use != next_to_use) {
374 		unfill_desc(ring);
375 		if (ring->next_to_use != next_to_use)
376 			dma_unmap_page(dev,
377 				       ring->desc_cb[ring->next_to_use].dma,
378 				       ring->desc_cb[ring->next_to_use].length,
379 				       DMA_TO_DEVICE);
380 		else
381 			dma_unmap_single(dev,
382 					 ring->desc_cb[next_to_use].dma,
383 					 ring->desc_cb[next_to_use].length,
384 					 DMA_TO_DEVICE);
385 	}
386 
387 out_err_tx_ok:
388 
389 	dev_kfree_skb_any(skb);
390 	return NETDEV_TX_OK;
391 
392 out_net_tx_busy:
393 
394 	netif_stop_subqueue(ndev, skb->queue_mapping);
395 
396 	/* Herbert's original patch had:
397 	 *  smp_mb__after_netif_stop_queue();
398 	 * but since that doesn't exist yet, just open code it.
399 	 */
400 	smp_mb();
401 	return NETDEV_TX_BUSY;
402 }
403 
404 /**
405  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
406  * @data: pointer to the start of the headers
407  * @max: total length of section to find headers in
408  *
409  * This function is meant to determine the length of headers that will
410  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
411  * motivation of doing this is to only perform one pull for IPv4 TCP
412  * packets so that we can do basic things like calculating the gso_size
413  * based on the average data per packet.
414  **/
415 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
416 					unsigned int max_size)
417 {
418 	unsigned char *network;
419 	u8 hlen;
420 
421 	/* this should never happen, but better safe than sorry */
422 	if (max_size < ETH_HLEN)
423 		return max_size;
424 
425 	/* initialize network frame pointer */
426 	network = data;
427 
428 	/* set first protocol and move network header forward */
429 	network += ETH_HLEN;
430 
431 	/* handle any vlan tag if present */
432 	if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
433 		== HNS_RX_FLAG_VLAN_PRESENT) {
434 		if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
435 			return max_size;
436 
437 		network += VLAN_HLEN;
438 	}
439 
440 	/* handle L3 protocols */
441 	if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
442 		== HNS_RX_FLAG_L3ID_IPV4) {
443 		if ((typeof(max_size))(network - data) >
444 		    (max_size - sizeof(struct iphdr)))
445 			return max_size;
446 
447 		/* access ihl as a u8 to avoid unaligned access on ia64 */
448 		hlen = (network[0] & 0x0F) << 2;
449 
450 		/* verify hlen meets minimum size requirements */
451 		if (hlen < sizeof(struct iphdr))
452 			return network - data;
453 
454 		/* record next protocol if header is present */
455 	} else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
456 		== HNS_RX_FLAG_L3ID_IPV6) {
457 		if ((typeof(max_size))(network - data) >
458 		    (max_size - sizeof(struct ipv6hdr)))
459 			return max_size;
460 
461 		/* record next protocol */
462 		hlen = sizeof(struct ipv6hdr);
463 	} else {
464 		return network - data;
465 	}
466 
467 	/* relocate pointer to start of L4 header */
468 	network += hlen;
469 
470 	/* finally sort out TCP/UDP */
471 	if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
472 		== HNS_RX_FLAG_L4ID_TCP) {
473 		if ((typeof(max_size))(network - data) >
474 		    (max_size - sizeof(struct tcphdr)))
475 			return max_size;
476 
477 		/* access doff as a u8 to avoid unaligned access on ia64 */
478 		hlen = (network[12] & 0xF0) >> 2;
479 
480 		/* verify hlen meets minimum size requirements */
481 		if (hlen < sizeof(struct tcphdr))
482 			return network - data;
483 
484 		network += hlen;
485 	} else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
486 		== HNS_RX_FLAG_L4ID_UDP) {
487 		if ((typeof(max_size))(network - data) >
488 		    (max_size - sizeof(struct udphdr)))
489 			return max_size;
490 
491 		network += sizeof(struct udphdr);
492 	}
493 
494 	/* If everything has gone correctly network should be the
495 	 * data section of the packet and will be the end of the header.
496 	 * If not then it probably represents the end of the last recognized
497 	 * header.
498 	 */
499 	if ((typeof(max_size))(network - data) < max_size)
500 		return network - data;
501 	else
502 		return max_size;
503 }
504 
505 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
506 			       struct hnae_ring *ring, int pull_len,
507 			       struct hnae_desc_cb *desc_cb)
508 {
509 	struct hnae_desc *desc;
510 	int truesize, size;
511 	int last_offset;
512 	bool twobufs;
513 
514 	twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
515 
516 	desc = &ring->desc[ring->next_to_clean];
517 	size = le16_to_cpu(desc->rx.size);
518 
519 	if (twobufs) {
520 		truesize = hnae_buf_size(ring);
521 	} else {
522 		truesize = ALIGN(size, L1_CACHE_BYTES);
523 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
524 	}
525 
526 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
527 			size - pull_len, truesize - pull_len);
528 
529 	 /* avoid re-using remote pages,flag default unreuse */
530 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
531 		return;
532 
533 	if (twobufs) {
534 		/* if we are only owner of page we can reuse it */
535 		if (likely(page_count(desc_cb->priv) == 1)) {
536 			/* flip page offset to other buffer */
537 			desc_cb->page_offset ^= truesize;
538 
539 			desc_cb->reuse_flag = 1;
540 			/* bump ref count on page before it is given*/
541 			get_page(desc_cb->priv);
542 		}
543 		return;
544 	}
545 
546 	/* move offset up to the next cache line */
547 	desc_cb->page_offset += truesize;
548 
549 	if (desc_cb->page_offset <= last_offset) {
550 		desc_cb->reuse_flag = 1;
551 		/* bump ref count on page before it is given*/
552 		get_page(desc_cb->priv);
553 	}
554 }
555 
556 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
557 {
558 	*out_bnum = hnae_get_field(bnum_flag,
559 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
560 }
561 
562 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
563 {
564 	*out_bnum = hnae_get_field(bnum_flag,
565 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
566 }
567 
568 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
569 			       struct sk_buff **out_skb, int *out_bnum)
570 {
571 	struct hnae_ring *ring = ring_data->ring;
572 	struct net_device *ndev = ring_data->napi.dev;
573 	struct hns_nic_priv *priv = netdev_priv(ndev);
574 	struct sk_buff *skb;
575 	struct hnae_desc *desc;
576 	struct hnae_desc_cb *desc_cb;
577 	unsigned char *va;
578 	int bnum, length, i;
579 	int pull_len;
580 	u32 bnum_flag;
581 
582 	desc = &ring->desc[ring->next_to_clean];
583 	desc_cb = &ring->desc_cb[ring->next_to_clean];
584 
585 	prefetch(desc);
586 
587 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
588 
589 	/* prefetch first cache line of first page */
590 	prefetch(va);
591 #if L1_CACHE_BYTES < 128
592 	prefetch(va + L1_CACHE_BYTES);
593 #endif
594 
595 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
596 					HNS_RX_HEAD_SIZE);
597 	if (unlikely(!skb)) {
598 		netdev_err(ndev, "alloc rx skb fail\n");
599 		ring->stats.sw_err_cnt++;
600 		return -ENOMEM;
601 	}
602 
603 	prefetchw(skb->data);
604 	length = le16_to_cpu(desc->rx.pkt_len);
605 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
606 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
607 	*out_bnum = bnum;
608 
609 	if (length <= HNS_RX_HEAD_SIZE) {
610 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
611 
612 		/* we can reuse buffer as-is, just make sure it is local */
613 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
614 			desc_cb->reuse_flag = 1;
615 		else /* this page cannot be reused so discard it */
616 			put_page(desc_cb->priv);
617 
618 		ring_ptr_move_fw(ring, next_to_clean);
619 
620 		if (unlikely(bnum != 1)) { /* check err*/
621 			*out_bnum = 1;
622 			goto out_bnum_err;
623 		}
624 	} else {
625 		ring->stats.seg_pkt_cnt++;
626 
627 		pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
628 		memcpy(__skb_put(skb, pull_len), va,
629 		       ALIGN(pull_len, sizeof(long)));
630 
631 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
632 		ring_ptr_move_fw(ring, next_to_clean);
633 
634 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
635 			*out_bnum = 1;
636 			goto out_bnum_err;
637 		}
638 		for (i = 1; i < bnum; i++) {
639 			desc = &ring->desc[ring->next_to_clean];
640 			desc_cb = &ring->desc_cb[ring->next_to_clean];
641 
642 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
643 			ring_ptr_move_fw(ring, next_to_clean);
644 		}
645 	}
646 
647 	/* check except process, free skb and jump the desc */
648 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
649 out_bnum_err:
650 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
651 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
652 			   bnum, ring->max_desc_num_per_pkt,
653 			   length, (int)MAX_SKB_FRAGS,
654 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
655 		ring->stats.err_bd_num++;
656 		dev_kfree_skb_any(skb);
657 		return -EDOM;
658 	}
659 
660 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
661 
662 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
663 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
664 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
665 		ring->stats.non_vld_descs++;
666 		dev_kfree_skb_any(skb);
667 		return -EINVAL;
668 	}
669 
670 	if (unlikely((!desc->rx.pkt_len) ||
671 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
672 		ring->stats.err_pkt_len++;
673 		dev_kfree_skb_any(skb);
674 		return -EFAULT;
675 	}
676 
677 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
678 		ring->stats.l2_err++;
679 		dev_kfree_skb_any(skb);
680 		return -EFAULT;
681 	}
682 
683 	ring->stats.rx_pkts++;
684 	ring->stats.rx_bytes += skb->len;
685 
686 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L3E_B) ||
687 		     hnae_get_bit(bnum_flag, HNS_RXD_L4E_B))) {
688 		ring->stats.l3l4_csum_err++;
689 		return 0;
690 	}
691 
692 	skb->ip_summed = CHECKSUM_UNNECESSARY;
693 
694 	return 0;
695 }
696 
697 static void
698 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
699 {
700 	int i, ret;
701 	struct hnae_desc_cb res_cbs;
702 	struct hnae_desc_cb *desc_cb;
703 	struct hnae_ring *ring = ring_data->ring;
704 	struct net_device *ndev = ring_data->napi.dev;
705 
706 	for (i = 0; i < cleand_count; i++) {
707 		desc_cb = &ring->desc_cb[ring->next_to_use];
708 		if (desc_cb->reuse_flag) {
709 			ring->stats.reuse_pg_cnt++;
710 			hnae_reuse_buffer(ring, ring->next_to_use);
711 		} else {
712 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
713 			if (ret) {
714 				ring->stats.sw_err_cnt++;
715 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
716 				break;
717 			}
718 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
719 		}
720 
721 		ring_ptr_move_fw(ring, next_to_use);
722 	}
723 
724 	wmb(); /* make all data has been write before submit */
725 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
726 }
727 
728 /* return error number for error or number of desc left to take
729  */
730 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
731 			      struct sk_buff *skb)
732 {
733 	struct net_device *ndev = ring_data->napi.dev;
734 
735 	skb->protocol = eth_type_trans(skb, ndev);
736 	(void)napi_gro_receive(&ring_data->napi, skb);
737 	ndev->last_rx = jiffies;
738 }
739 
740 static int hns_desc_unused(struct hnae_ring *ring)
741 {
742 	int ntc = ring->next_to_clean;
743 	int ntu = ring->next_to_use;
744 
745 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
746 }
747 
748 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
749 			       int budget, void *v)
750 {
751 	struct hnae_ring *ring = ring_data->ring;
752 	struct sk_buff *skb;
753 	int num, bnum;
754 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
755 	int recv_pkts, recv_bds, clean_count, err;
756 	int unused_count = hns_desc_unused(ring);
757 
758 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
759 	rmb(); /* make sure num taken effect before the other data is touched */
760 
761 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
762 	num -= unused_count;
763 
764 	while (recv_pkts < budget && recv_bds < num) {
765 		/* reuse or realloc buffers */
766 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
767 			hns_nic_alloc_rx_buffers(ring_data,
768 						 clean_count + unused_count);
769 			clean_count = 0;
770 			unused_count = hns_desc_unused(ring);
771 		}
772 
773 		/* poll one pkt */
774 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
775 		if (unlikely(!skb)) /* this fault cannot be repaired */
776 			goto out;
777 
778 		recv_bds += bnum;
779 		clean_count += bnum;
780 		if (unlikely(err)) {  /* do jump the err */
781 			recv_pkts++;
782 			continue;
783 		}
784 
785 		/* do update ip stack process*/
786 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
787 							ring_data, skb);
788 		recv_pkts++;
789 	}
790 
791 out:
792 	/* make all data has been write before submit */
793 	if (clean_count + unused_count > 0)
794 		hns_nic_alloc_rx_buffers(ring_data,
795 					 clean_count + unused_count);
796 
797 	return recv_pkts;
798 }
799 
800 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
801 {
802 	struct hnae_ring *ring = ring_data->ring;
803 	int num = 0;
804 
805 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
806 
807 	/* for hardware bug fixed */
808 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
809 
810 	if (num > 0) {
811 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
812 			ring_data->ring, 1);
813 
814 		napi_schedule(&ring_data->napi);
815 	}
816 }
817 
818 static void hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
819 {
820 	struct hnae_ring *ring = ring_data->ring;
821 	int num = 0;
822 
823 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
824 
825 	if (num == 0)
826 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
827 			ring, 0);
828 	else
829 		napi_schedule(&ring_data->napi);
830 }
831 
832 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
833 					    int *bytes, int *pkts)
834 {
835 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
836 
837 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
838 	(*bytes) += desc_cb->length;
839 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
840 	hnae_free_buffer_detach(ring, ring->next_to_clean);
841 
842 	ring_ptr_move_fw(ring, next_to_clean);
843 }
844 
845 static int is_valid_clean_head(struct hnae_ring *ring, int h)
846 {
847 	int u = ring->next_to_use;
848 	int c = ring->next_to_clean;
849 
850 	if (unlikely(h > ring->desc_num))
851 		return 0;
852 
853 	assert(u > 0 && u < ring->desc_num);
854 	assert(c > 0 && c < ring->desc_num);
855 	assert(u != c && h != c); /* must be checked before call this func */
856 
857 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
858 }
859 
860 /* netif_tx_lock will turn down the performance, set only when necessary */
861 #ifdef CONFIG_NET_POLL_CONTROLLER
862 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev)
863 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev)
864 #else
865 #define NETIF_TX_LOCK(ndev)
866 #define NETIF_TX_UNLOCK(ndev)
867 #endif
868 /* reclaim all desc in one budget
869  * return error or number of desc left
870  */
871 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
872 			       int budget, void *v)
873 {
874 	struct hnae_ring *ring = ring_data->ring;
875 	struct net_device *ndev = ring_data->napi.dev;
876 	struct netdev_queue *dev_queue;
877 	struct hns_nic_priv *priv = netdev_priv(ndev);
878 	int head;
879 	int bytes, pkts;
880 
881 	NETIF_TX_LOCK(ndev);
882 
883 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
884 	rmb(); /* make sure head is ready before touch any data */
885 
886 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
887 		NETIF_TX_UNLOCK(ndev);
888 		return 0; /* no data to poll */
889 	}
890 
891 	if (!is_valid_clean_head(ring, head)) {
892 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
893 			   ring->next_to_use, ring->next_to_clean);
894 		ring->stats.io_err_cnt++;
895 		NETIF_TX_UNLOCK(ndev);
896 		return -EIO;
897 	}
898 
899 	bytes = 0;
900 	pkts = 0;
901 	while (head != ring->next_to_clean) {
902 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
903 		/* issue prefetch for next Tx descriptor */
904 		prefetch(&ring->desc_cb[ring->next_to_clean]);
905 	}
906 
907 	NETIF_TX_UNLOCK(ndev);
908 
909 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
910 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
911 
912 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
913 		netif_carrier_on(ndev);
914 
915 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
916 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
917 		/* Make sure that anybody stopping the queue after this
918 		 * sees the new next_to_clean.
919 		 */
920 		smp_mb();
921 		if (netif_tx_queue_stopped(dev_queue) &&
922 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
923 			netif_tx_wake_queue(dev_queue);
924 			ring->stats.restart_queue++;
925 		}
926 	}
927 	return 0;
928 }
929 
930 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
931 {
932 	struct hnae_ring *ring = ring_data->ring;
933 	int head;
934 
935 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
936 
937 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
938 
939 	if (head != ring->next_to_clean) {
940 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
941 			ring_data->ring, 1);
942 
943 		napi_schedule(&ring_data->napi);
944 	}
945 }
946 
947 static void hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
948 {
949 	struct hnae_ring *ring = ring_data->ring;
950 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
951 
952 	if (head == ring->next_to_clean)
953 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
954 			ring, 0);
955 	else
956 		napi_schedule(&ring_data->napi);
957 }
958 
959 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
960 {
961 	struct hnae_ring *ring = ring_data->ring;
962 	struct net_device *ndev = ring_data->napi.dev;
963 	struct netdev_queue *dev_queue;
964 	int head;
965 	int bytes, pkts;
966 
967 	NETIF_TX_LOCK(ndev);
968 
969 	head = ring->next_to_use; /* ntu :soft setted ring position*/
970 	bytes = 0;
971 	pkts = 0;
972 	while (head != ring->next_to_clean)
973 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
974 
975 	NETIF_TX_UNLOCK(ndev);
976 
977 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
978 	netdev_tx_reset_queue(dev_queue);
979 }
980 
981 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
982 {
983 	struct hns_nic_ring_data *ring_data =
984 		container_of(napi, struct hns_nic_ring_data, napi);
985 	int clean_complete = ring_data->poll_one(
986 				ring_data, budget, ring_data->ex_process);
987 
988 	if (clean_complete >= 0 && clean_complete < budget) {
989 		napi_complete(napi);
990 		ring_data->fini_process(ring_data);
991 		return 0;
992 	}
993 
994 	return clean_complete;
995 }
996 
997 static irqreturn_t hns_irq_handle(int irq, void *dev)
998 {
999 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1000 
1001 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1002 		ring_data->ring, 1);
1003 	napi_schedule(&ring_data->napi);
1004 
1005 	return IRQ_HANDLED;
1006 }
1007 
1008 /**
1009  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1010  *@ndev: net device
1011  */
1012 static void hns_nic_adjust_link(struct net_device *ndev)
1013 {
1014 	struct hns_nic_priv *priv = netdev_priv(ndev);
1015 	struct hnae_handle *h = priv->ae_handle;
1016 	int state = 1;
1017 
1018 	if (ndev->phydev) {
1019 		h->dev->ops->adjust_link(h, ndev->phydev->speed,
1020 					 ndev->phydev->duplex);
1021 		state = ndev->phydev->link;
1022 	}
1023 	state = state && h->dev->ops->get_status(h);
1024 
1025 	if (state != priv->link) {
1026 		if (state) {
1027 			netif_carrier_on(ndev);
1028 			netif_tx_wake_all_queues(ndev);
1029 			netdev_info(ndev, "link up\n");
1030 		} else {
1031 			netif_carrier_off(ndev);
1032 			netdev_info(ndev, "link down\n");
1033 		}
1034 		priv->link = state;
1035 	}
1036 }
1037 
1038 /**
1039  *hns_nic_init_phy - init phy
1040  *@ndev: net device
1041  *@h: ae handle
1042  * Return 0 on success, negative on failure
1043  */
1044 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1045 {
1046 	struct phy_device *phy_dev = h->phy_dev;
1047 	int ret;
1048 
1049 	if (!h->phy_dev)
1050 		return 0;
1051 
1052 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1053 		phy_dev->dev_flags = 0;
1054 
1055 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1056 					 h->phy_if);
1057 	} else {
1058 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1059 	}
1060 	if (unlikely(ret))
1061 		return -ENODEV;
1062 
1063 	phy_dev->supported &= h->if_support;
1064 	phy_dev->advertising = phy_dev->supported;
1065 
1066 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1067 		phy_dev->autoneg = false;
1068 
1069 	return 0;
1070 }
1071 
1072 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1073 {
1074 	struct hns_nic_priv *priv = netdev_priv(netdev);
1075 	struct hnae_handle *h = priv->ae_handle;
1076 
1077 	napi_enable(&priv->ring_data[idx].napi);
1078 
1079 	enable_irq(priv->ring_data[idx].ring->irq);
1080 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1081 
1082 	return 0;
1083 }
1084 
1085 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1086 {
1087 	struct hns_nic_priv *priv = netdev_priv(ndev);
1088 	struct hnae_handle *h = priv->ae_handle;
1089 	struct sockaddr *mac_addr = p;
1090 	int ret;
1091 
1092 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1093 		return -EADDRNOTAVAIL;
1094 
1095 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1096 	if (ret) {
1097 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1098 		return ret;
1099 	}
1100 
1101 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1102 
1103 	return 0;
1104 }
1105 
1106 void hns_nic_update_stats(struct net_device *netdev)
1107 {
1108 	struct hns_nic_priv *priv = netdev_priv(netdev);
1109 	struct hnae_handle *h = priv->ae_handle;
1110 
1111 	h->dev->ops->update_stats(h, &netdev->stats);
1112 }
1113 
1114 /* set mac addr if it is configed. or leave it to the AE driver */
1115 static void hns_init_mac_addr(struct net_device *ndev)
1116 {
1117 	struct hns_nic_priv *priv = netdev_priv(ndev);
1118 
1119 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1120 		eth_hw_addr_random(ndev);
1121 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1122 			 ndev->dev_addr);
1123 	}
1124 }
1125 
1126 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1127 {
1128 	struct hns_nic_priv *priv = netdev_priv(netdev);
1129 	struct hnae_handle *h = priv->ae_handle;
1130 
1131 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1132 	disable_irq(priv->ring_data[idx].ring->irq);
1133 
1134 	napi_disable(&priv->ring_data[idx].napi);
1135 }
1136 
1137 static void hns_set_irq_affinity(struct hns_nic_priv *priv)
1138 {
1139 	struct hnae_handle *h = priv->ae_handle;
1140 	struct hns_nic_ring_data *rd;
1141 	int i;
1142 	int cpu;
1143 	cpumask_t mask;
1144 
1145 	/*diffrent irq banlance for 16core and 32core*/
1146 	if (h->q_num == num_possible_cpus()) {
1147 		for (i = 0; i < h->q_num * 2; i++) {
1148 			rd = &priv->ring_data[i];
1149 			if (cpu_online(rd->queue_index)) {
1150 				cpumask_clear(&mask);
1151 				cpu = rd->queue_index;
1152 				cpumask_set_cpu(cpu, &mask);
1153 				(void)irq_set_affinity_hint(rd->ring->irq,
1154 							    &mask);
1155 			}
1156 		}
1157 	} else {
1158 		for (i = 0; i < h->q_num; i++) {
1159 			rd = &priv->ring_data[i];
1160 			if (cpu_online(rd->queue_index * 2)) {
1161 				cpumask_clear(&mask);
1162 				cpu = rd->queue_index * 2;
1163 				cpumask_set_cpu(cpu, &mask);
1164 				(void)irq_set_affinity_hint(rd->ring->irq,
1165 							    &mask);
1166 			}
1167 		}
1168 
1169 		for (i = h->q_num; i < h->q_num * 2; i++) {
1170 			rd = &priv->ring_data[i];
1171 			if (cpu_online(rd->queue_index * 2 + 1)) {
1172 				cpumask_clear(&mask);
1173 				cpu = rd->queue_index * 2 + 1;
1174 				cpumask_set_cpu(cpu, &mask);
1175 				(void)irq_set_affinity_hint(rd->ring->irq,
1176 							    &mask);
1177 			}
1178 		}
1179 	}
1180 }
1181 
1182 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1183 {
1184 	struct hnae_handle *h = priv->ae_handle;
1185 	struct hns_nic_ring_data *rd;
1186 	int i;
1187 	int ret;
1188 
1189 	for (i = 0; i < h->q_num * 2; i++) {
1190 		rd = &priv->ring_data[i];
1191 
1192 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1193 			break;
1194 
1195 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1196 			 "%s-%s%d", priv->netdev->name,
1197 			 (i < h->q_num ? "tx" : "rx"), rd->queue_index);
1198 
1199 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1200 
1201 		ret = request_irq(rd->ring->irq,
1202 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1203 		if (ret) {
1204 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1205 				   rd->ring->irq);
1206 			return ret;
1207 		}
1208 		disable_irq(rd->ring->irq);
1209 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1210 	}
1211 
1212 	/*set cpu affinity*/
1213 	hns_set_irq_affinity(priv);
1214 
1215 	return 0;
1216 }
1217 
1218 static int hns_nic_net_up(struct net_device *ndev)
1219 {
1220 	struct hns_nic_priv *priv = netdev_priv(ndev);
1221 	struct hnae_handle *h = priv->ae_handle;
1222 	int i, j;
1223 	int ret;
1224 
1225 	ret = hns_nic_init_irq(priv);
1226 	if (ret != 0) {
1227 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1228 		return ret;
1229 	}
1230 
1231 	for (i = 0; i < h->q_num * 2; i++) {
1232 		ret = hns_nic_ring_open(ndev, i);
1233 		if (ret)
1234 			goto out_has_some_queues;
1235 	}
1236 
1237 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1238 	if (ret)
1239 		goto out_set_mac_addr_err;
1240 
1241 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1242 	if (ret)
1243 		goto out_start_err;
1244 
1245 	if (ndev->phydev)
1246 		phy_start(ndev->phydev);
1247 
1248 	clear_bit(NIC_STATE_DOWN, &priv->state);
1249 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1250 
1251 	return 0;
1252 
1253 out_start_err:
1254 	netif_stop_queue(ndev);
1255 out_set_mac_addr_err:
1256 out_has_some_queues:
1257 	for (j = i - 1; j >= 0; j--)
1258 		hns_nic_ring_close(ndev, j);
1259 
1260 	set_bit(NIC_STATE_DOWN, &priv->state);
1261 
1262 	return ret;
1263 }
1264 
1265 static void hns_nic_net_down(struct net_device *ndev)
1266 {
1267 	int i;
1268 	struct hnae_ae_ops *ops;
1269 	struct hns_nic_priv *priv = netdev_priv(ndev);
1270 
1271 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1272 		return;
1273 
1274 	(void)del_timer_sync(&priv->service_timer);
1275 	netif_tx_stop_all_queues(ndev);
1276 	netif_carrier_off(ndev);
1277 	netif_tx_disable(ndev);
1278 	priv->link = 0;
1279 
1280 	if (ndev->phydev)
1281 		phy_stop(ndev->phydev);
1282 
1283 	ops = priv->ae_handle->dev->ops;
1284 
1285 	if (ops->stop)
1286 		ops->stop(priv->ae_handle);
1287 
1288 	netif_tx_stop_all_queues(ndev);
1289 
1290 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1291 		hns_nic_ring_close(ndev, i);
1292 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1293 
1294 		/* clean tx buffers*/
1295 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1296 	}
1297 }
1298 
1299 void hns_nic_net_reset(struct net_device *ndev)
1300 {
1301 	struct hns_nic_priv *priv = netdev_priv(ndev);
1302 	struct hnae_handle *handle = priv->ae_handle;
1303 
1304 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1305 		usleep_range(1000, 2000);
1306 
1307 	(void)hnae_reinit_handle(handle);
1308 
1309 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1310 }
1311 
1312 void hns_nic_net_reinit(struct net_device *netdev)
1313 {
1314 	struct hns_nic_priv *priv = netdev_priv(netdev);
1315 
1316 	netif_trans_update(priv->netdev);
1317 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1318 		usleep_range(1000, 2000);
1319 
1320 	hns_nic_net_down(netdev);
1321 	hns_nic_net_reset(netdev);
1322 	(void)hns_nic_net_up(netdev);
1323 	clear_bit(NIC_STATE_REINITING, &priv->state);
1324 }
1325 
1326 static int hns_nic_net_open(struct net_device *ndev)
1327 {
1328 	struct hns_nic_priv *priv = netdev_priv(ndev);
1329 	struct hnae_handle *h = priv->ae_handle;
1330 	int ret;
1331 
1332 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1333 		return -EBUSY;
1334 
1335 	priv->link = 0;
1336 	netif_carrier_off(ndev);
1337 
1338 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1339 	if (ret < 0) {
1340 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1341 			   ret);
1342 		return ret;
1343 	}
1344 
1345 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1346 	if (ret < 0) {
1347 		netdev_err(ndev,
1348 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1349 		return ret;
1350 	}
1351 
1352 	ret = hns_nic_net_up(ndev);
1353 	if (ret) {
1354 		netdev_err(ndev,
1355 			   "hns net up fail, ret=%d!\n", ret);
1356 		return ret;
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 static int hns_nic_net_stop(struct net_device *ndev)
1363 {
1364 	hns_nic_net_down(ndev);
1365 
1366 	return 0;
1367 }
1368 
1369 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1370 static void hns_nic_net_timeout(struct net_device *ndev)
1371 {
1372 	struct hns_nic_priv *priv = netdev_priv(ndev);
1373 
1374 	hns_tx_timeout_reset(priv);
1375 }
1376 
1377 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1378 			    int cmd)
1379 {
1380 	struct phy_device *phy_dev = netdev->phydev;
1381 
1382 	if (!netif_running(netdev))
1383 		return -EINVAL;
1384 
1385 	if (!phy_dev)
1386 		return -ENOTSUPP;
1387 
1388 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1389 }
1390 
1391 /* use only for netconsole to poll with the device without interrupt */
1392 #ifdef CONFIG_NET_POLL_CONTROLLER
1393 void hns_nic_poll_controller(struct net_device *ndev)
1394 {
1395 	struct hns_nic_priv *priv = netdev_priv(ndev);
1396 	unsigned long flags;
1397 	int i;
1398 
1399 	local_irq_save(flags);
1400 	for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1401 		napi_schedule(&priv->ring_data[i].napi);
1402 	local_irq_restore(flags);
1403 }
1404 #endif
1405 
1406 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1407 				    struct net_device *ndev)
1408 {
1409 	struct hns_nic_priv *priv = netdev_priv(ndev);
1410 	int ret;
1411 
1412 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1413 	ret = hns_nic_net_xmit_hw(ndev, skb,
1414 				  &tx_ring_data(priv, skb->queue_mapping));
1415 	if (ret == NETDEV_TX_OK) {
1416 		netif_trans_update(ndev);
1417 		ndev->stats.tx_bytes += skb->len;
1418 		ndev->stats.tx_packets++;
1419 	}
1420 	return (netdev_tx_t)ret;
1421 }
1422 
1423 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1424 {
1425 	struct hns_nic_priv *priv = netdev_priv(ndev);
1426 	struct hnae_handle *h = priv->ae_handle;
1427 	int ret;
1428 
1429 	/* MTU < 68 is an error and causes problems on some kernels */
1430 	if (new_mtu < 68)
1431 		return -EINVAL;
1432 
1433 	if (!h->dev->ops->set_mtu)
1434 		return -ENOTSUPP;
1435 
1436 	if (netif_running(ndev)) {
1437 		(void)hns_nic_net_stop(ndev);
1438 		msleep(100);
1439 
1440 		ret = h->dev->ops->set_mtu(h, new_mtu);
1441 		if (ret)
1442 			netdev_err(ndev, "set mtu fail, return value %d\n",
1443 				   ret);
1444 
1445 		if (hns_nic_net_open(ndev))
1446 			netdev_err(ndev, "hns net open fail\n");
1447 	} else {
1448 		ret = h->dev->ops->set_mtu(h, new_mtu);
1449 	}
1450 
1451 	if (!ret)
1452 		ndev->mtu = new_mtu;
1453 
1454 	return ret;
1455 }
1456 
1457 static int hns_nic_set_features(struct net_device *netdev,
1458 				netdev_features_t features)
1459 {
1460 	struct hns_nic_priv *priv = netdev_priv(netdev);
1461 
1462 	switch (priv->enet_ver) {
1463 	case AE_VERSION_1:
1464 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1465 			netdev_info(netdev, "enet v1 do not support tso!\n");
1466 		break;
1467 	default:
1468 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1469 			priv->ops.fill_desc = fill_tso_desc;
1470 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1471 			/* The chip only support 7*4096 */
1472 			netif_set_gso_max_size(netdev, 7 * 4096);
1473 		} else {
1474 			priv->ops.fill_desc = fill_v2_desc;
1475 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1476 		}
1477 		break;
1478 	}
1479 	netdev->features = features;
1480 	return 0;
1481 }
1482 
1483 static netdev_features_t hns_nic_fix_features(
1484 		struct net_device *netdev, netdev_features_t features)
1485 {
1486 	struct hns_nic_priv *priv = netdev_priv(netdev);
1487 
1488 	switch (priv->enet_ver) {
1489 	case AE_VERSION_1:
1490 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1491 				NETIF_F_HW_VLAN_CTAG_FILTER);
1492 		break;
1493 	default:
1494 		break;
1495 	}
1496 	return features;
1497 }
1498 
1499 /**
1500  * nic_set_multicast_list - set mutl mac address
1501  * @netdev: net device
1502  * @p: mac address
1503  *
1504  * return void
1505  */
1506 void hns_set_multicast_list(struct net_device *ndev)
1507 {
1508 	struct hns_nic_priv *priv = netdev_priv(ndev);
1509 	struct hnae_handle *h = priv->ae_handle;
1510 	struct netdev_hw_addr *ha = NULL;
1511 
1512 	if (!h)	{
1513 		netdev_err(ndev, "hnae handle is null\n");
1514 		return;
1515 	}
1516 
1517 	if (h->dev->ops->set_mc_addr) {
1518 		netdev_for_each_mc_addr(ha, ndev)
1519 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1520 				netdev_err(ndev, "set multicast fail\n");
1521 	}
1522 }
1523 
1524 void hns_nic_set_rx_mode(struct net_device *ndev)
1525 {
1526 	struct hns_nic_priv *priv = netdev_priv(ndev);
1527 	struct hnae_handle *h = priv->ae_handle;
1528 
1529 	if (h->dev->ops->set_promisc_mode) {
1530 		if (ndev->flags & IFF_PROMISC)
1531 			h->dev->ops->set_promisc_mode(h, 1);
1532 		else
1533 			h->dev->ops->set_promisc_mode(h, 0);
1534 	}
1535 
1536 	hns_set_multicast_list(ndev);
1537 }
1538 
1539 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev,
1540 					      struct rtnl_link_stats64 *stats)
1541 {
1542 	int idx = 0;
1543 	u64 tx_bytes = 0;
1544 	u64 rx_bytes = 0;
1545 	u64 tx_pkts = 0;
1546 	u64 rx_pkts = 0;
1547 	struct hns_nic_priv *priv = netdev_priv(ndev);
1548 	struct hnae_handle *h = priv->ae_handle;
1549 
1550 	for (idx = 0; idx < h->q_num; idx++) {
1551 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1552 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1553 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1554 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1555 	}
1556 
1557 	stats->tx_bytes = tx_bytes;
1558 	stats->tx_packets = tx_pkts;
1559 	stats->rx_bytes = rx_bytes;
1560 	stats->rx_packets = rx_pkts;
1561 
1562 	stats->rx_errors = ndev->stats.rx_errors;
1563 	stats->multicast = ndev->stats.multicast;
1564 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1565 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1566 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1567 
1568 	stats->tx_errors = ndev->stats.tx_errors;
1569 	stats->rx_dropped = ndev->stats.rx_dropped;
1570 	stats->tx_dropped = ndev->stats.tx_dropped;
1571 	stats->collisions = ndev->stats.collisions;
1572 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1573 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1574 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1575 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1576 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1577 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1578 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1579 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1580 	stats->rx_compressed = ndev->stats.rx_compressed;
1581 	stats->tx_compressed = ndev->stats.tx_compressed;
1582 
1583 	return stats;
1584 }
1585 
1586 static u16
1587 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1588 		     void *accel_priv, select_queue_fallback_t fallback)
1589 {
1590 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1591 	struct hns_nic_priv *priv = netdev_priv(ndev);
1592 
1593 	/* fix hardware broadcast/multicast packets queue loopback */
1594 	if (!AE_IS_VER1(priv->enet_ver) &&
1595 	    is_multicast_ether_addr(eth_hdr->h_dest))
1596 		return 0;
1597 	else
1598 		return fallback(ndev, skb);
1599 }
1600 
1601 static const struct net_device_ops hns_nic_netdev_ops = {
1602 	.ndo_open = hns_nic_net_open,
1603 	.ndo_stop = hns_nic_net_stop,
1604 	.ndo_start_xmit = hns_nic_net_xmit,
1605 	.ndo_tx_timeout = hns_nic_net_timeout,
1606 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1607 	.ndo_change_mtu = hns_nic_change_mtu,
1608 	.ndo_do_ioctl = hns_nic_do_ioctl,
1609 	.ndo_set_features = hns_nic_set_features,
1610 	.ndo_fix_features = hns_nic_fix_features,
1611 	.ndo_get_stats64 = hns_nic_get_stats64,
1612 #ifdef CONFIG_NET_POLL_CONTROLLER
1613 	.ndo_poll_controller = hns_nic_poll_controller,
1614 #endif
1615 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1616 	.ndo_select_queue = hns_nic_select_queue,
1617 };
1618 
1619 static void hns_nic_update_link_status(struct net_device *netdev)
1620 {
1621 	struct hns_nic_priv *priv = netdev_priv(netdev);
1622 
1623 	struct hnae_handle *h = priv->ae_handle;
1624 
1625 	if (h->phy_dev) {
1626 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1627 			return;
1628 
1629 		(void)genphy_read_status(h->phy_dev);
1630 	}
1631 	hns_nic_adjust_link(netdev);
1632 }
1633 
1634 /* for dumping key regs*/
1635 static void hns_nic_dump(struct hns_nic_priv *priv)
1636 {
1637 	struct hnae_handle *h = priv->ae_handle;
1638 	struct hnae_ae_ops *ops = h->dev->ops;
1639 	u32 *data, reg_num, i;
1640 
1641 	if (ops->get_regs_len && ops->get_regs) {
1642 		reg_num = ops->get_regs_len(priv->ae_handle);
1643 		reg_num = (reg_num + 3ul) & ~3ul;
1644 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1645 		if (data) {
1646 			ops->get_regs(priv->ae_handle, data);
1647 			for (i = 0; i < reg_num; i += 4)
1648 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1649 					i, data[i], data[i + 1],
1650 					data[i + 2], data[i + 3]);
1651 			kfree(data);
1652 		}
1653 	}
1654 
1655 	for (i = 0; i < h->q_num; i++) {
1656 		pr_info("tx_queue%d_next_to_clean:%d\n",
1657 			i, h->qs[i]->tx_ring.next_to_clean);
1658 		pr_info("tx_queue%d_next_to_use:%d\n",
1659 			i, h->qs[i]->tx_ring.next_to_use);
1660 		pr_info("rx_queue%d_next_to_clean:%d\n",
1661 			i, h->qs[i]->rx_ring.next_to_clean);
1662 		pr_info("rx_queue%d_next_to_use:%d\n",
1663 			i, h->qs[i]->rx_ring.next_to_use);
1664 	}
1665 }
1666 
1667 /* for resetting subtask */
1668 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1669 {
1670 	enum hnae_port_type type = priv->ae_handle->port_type;
1671 
1672 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1673 		return;
1674 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1675 
1676 	/* If we're already down, removing or resetting, just bail */
1677 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1678 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
1679 	    test_bit(NIC_STATE_RESETTING, &priv->state))
1680 		return;
1681 
1682 	hns_nic_dump(priv);
1683 	netdev_info(priv->netdev, "try to reset %s port!\n",
1684 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1685 
1686 	rtnl_lock();
1687 	/* put off any impending NetWatchDogTimeout */
1688 	netif_trans_update(priv->netdev);
1689 
1690 	if (type == HNAE_PORT_DEBUG) {
1691 		hns_nic_net_reinit(priv->netdev);
1692 	} else {
1693 		netif_carrier_off(priv->netdev);
1694 		netif_tx_disable(priv->netdev);
1695 	}
1696 	rtnl_unlock();
1697 }
1698 
1699 /* for doing service complete*/
1700 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
1701 {
1702 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
1703 
1704 	smp_mb__before_atomic();
1705 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1706 }
1707 
1708 static void hns_nic_service_task(struct work_struct *work)
1709 {
1710 	struct hns_nic_priv *priv
1711 		= container_of(work, struct hns_nic_priv, service_task);
1712 	struct hnae_handle *h = priv->ae_handle;
1713 
1714 	hns_nic_update_link_status(priv->netdev);
1715 	h->dev->ops->update_led_status(h);
1716 	hns_nic_update_stats(priv->netdev);
1717 
1718 	hns_nic_reset_subtask(priv);
1719 	hns_nic_service_event_complete(priv);
1720 }
1721 
1722 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
1723 {
1724 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
1725 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
1726 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
1727 		(void)schedule_work(&priv->service_task);
1728 }
1729 
1730 static void hns_nic_service_timer(unsigned long data)
1731 {
1732 	struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
1733 
1734 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1735 
1736 	hns_nic_task_schedule(priv);
1737 }
1738 
1739 /**
1740  * hns_tx_timeout_reset - initiate reset due to Tx timeout
1741  * @priv: driver private struct
1742  **/
1743 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
1744 {
1745 	/* Do the reset outside of interrupt context */
1746 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
1747 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1748 		netdev_warn(priv->netdev,
1749 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
1750 			    priv->tx_timeout_count, priv->state);
1751 		priv->tx_timeout_count++;
1752 		hns_nic_task_schedule(priv);
1753 	}
1754 }
1755 
1756 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
1757 {
1758 	struct hnae_handle *h = priv->ae_handle;
1759 	struct hns_nic_ring_data *rd;
1760 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
1761 	int i;
1762 
1763 	if (h->q_num > NIC_MAX_Q_PER_VF) {
1764 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
1765 		return -EINVAL;
1766 	}
1767 
1768 	priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
1769 				  GFP_KERNEL);
1770 	if (!priv->ring_data)
1771 		return -ENOMEM;
1772 
1773 	for (i = 0; i < h->q_num; i++) {
1774 		rd = &priv->ring_data[i];
1775 		rd->queue_index = i;
1776 		rd->ring = &h->qs[i]->tx_ring;
1777 		rd->poll_one = hns_nic_tx_poll_one;
1778 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
1779 			hns_nic_tx_fini_pro_v2;
1780 
1781 		netif_napi_add(priv->netdev, &rd->napi,
1782 			       hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
1783 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1784 	}
1785 	for (i = h->q_num; i < h->q_num * 2; i++) {
1786 		rd = &priv->ring_data[i];
1787 		rd->queue_index = i - h->q_num;
1788 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
1789 		rd->poll_one = hns_nic_rx_poll_one;
1790 		rd->ex_process = hns_nic_rx_up_pro;
1791 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
1792 			hns_nic_rx_fini_pro_v2;
1793 
1794 		netif_napi_add(priv->netdev, &rd->napi,
1795 			       hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
1796 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1797 	}
1798 
1799 	return 0;
1800 }
1801 
1802 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
1803 {
1804 	struct hnae_handle *h = priv->ae_handle;
1805 	int i;
1806 
1807 	for (i = 0; i < h->q_num * 2; i++) {
1808 		netif_napi_del(&priv->ring_data[i].napi);
1809 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1810 			(void)irq_set_affinity_hint(
1811 				priv->ring_data[i].ring->irq,
1812 				NULL);
1813 			free_irq(priv->ring_data[i].ring->irq,
1814 				 &priv->ring_data[i]);
1815 		}
1816 
1817 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1818 	}
1819 	kfree(priv->ring_data);
1820 }
1821 
1822 static void hns_nic_set_priv_ops(struct net_device *netdev)
1823 {
1824 	struct hns_nic_priv *priv = netdev_priv(netdev);
1825 	struct hnae_handle *h = priv->ae_handle;
1826 
1827 	if (AE_IS_VER1(priv->enet_ver)) {
1828 		priv->ops.fill_desc = fill_desc;
1829 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
1830 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1831 	} else {
1832 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
1833 		if ((netdev->features & NETIF_F_TSO) ||
1834 		    (netdev->features & NETIF_F_TSO6)) {
1835 			priv->ops.fill_desc = fill_tso_desc;
1836 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1837 			/* This chip only support 7*4096 */
1838 			netif_set_gso_max_size(netdev, 7 * 4096);
1839 		} else {
1840 			priv->ops.fill_desc = fill_v2_desc;
1841 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1842 		}
1843 		/* enable tso when init
1844 		 * control tso on/off through TSE bit in bd
1845 		 */
1846 		h->dev->ops->set_tso_stats(h, 1);
1847 	}
1848 }
1849 
1850 static int hns_nic_try_get_ae(struct net_device *ndev)
1851 {
1852 	struct hns_nic_priv *priv = netdev_priv(ndev);
1853 	struct hnae_handle *h;
1854 	int ret;
1855 
1856 	h = hnae_get_handle(&priv->netdev->dev,
1857 			    priv->fwnode, priv->port_id, NULL);
1858 	if (IS_ERR_OR_NULL(h)) {
1859 		ret = -ENODEV;
1860 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
1861 		goto out;
1862 	}
1863 	priv->ae_handle = h;
1864 
1865 	ret = hns_nic_init_phy(ndev, h);
1866 	if (ret) {
1867 		dev_err(priv->dev, "probe phy device fail!\n");
1868 		goto out_init_phy;
1869 	}
1870 
1871 	ret = hns_nic_init_ring_data(priv);
1872 	if (ret) {
1873 		ret = -ENOMEM;
1874 		goto out_init_ring_data;
1875 	}
1876 
1877 	hns_nic_set_priv_ops(ndev);
1878 
1879 	ret = register_netdev(ndev);
1880 	if (ret) {
1881 		dev_err(priv->dev, "probe register netdev fail!\n");
1882 		goto out_reg_ndev_fail;
1883 	}
1884 	return 0;
1885 
1886 out_reg_ndev_fail:
1887 	hns_nic_uninit_ring_data(priv);
1888 	priv->ring_data = NULL;
1889 out_init_phy:
1890 out_init_ring_data:
1891 	hnae_put_handle(priv->ae_handle);
1892 	priv->ae_handle = NULL;
1893 out:
1894 	return ret;
1895 }
1896 
1897 static int hns_nic_notifier_action(struct notifier_block *nb,
1898 				   unsigned long action, void *data)
1899 {
1900 	struct hns_nic_priv *priv =
1901 		container_of(nb, struct hns_nic_priv, notifier_block);
1902 
1903 	assert(action == HNAE_AE_REGISTER);
1904 
1905 	if (!hns_nic_try_get_ae(priv->netdev)) {
1906 		hnae_unregister_notifier(&priv->notifier_block);
1907 		priv->notifier_block.notifier_call = NULL;
1908 	}
1909 	return 0;
1910 }
1911 
1912 static int hns_nic_dev_probe(struct platform_device *pdev)
1913 {
1914 	struct device *dev = &pdev->dev;
1915 	struct net_device *ndev;
1916 	struct hns_nic_priv *priv;
1917 	u32 port_id;
1918 	int ret;
1919 
1920 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
1921 	if (!ndev)
1922 		return -ENOMEM;
1923 
1924 	platform_set_drvdata(pdev, ndev);
1925 
1926 	priv = netdev_priv(ndev);
1927 	priv->dev = dev;
1928 	priv->netdev = ndev;
1929 
1930 	if (dev_of_node(dev)) {
1931 		struct device_node *ae_node;
1932 
1933 		if (of_device_is_compatible(dev->of_node,
1934 					    "hisilicon,hns-nic-v1"))
1935 			priv->enet_ver = AE_VERSION_1;
1936 		else
1937 			priv->enet_ver = AE_VERSION_2;
1938 
1939 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
1940 		if (IS_ERR_OR_NULL(ae_node)) {
1941 			ret = PTR_ERR(ae_node);
1942 			dev_err(dev, "not find ae-handle\n");
1943 			goto out_read_prop_fail;
1944 		}
1945 		priv->fwnode = &ae_node->fwnode;
1946 	} else if (is_acpi_node(dev->fwnode)) {
1947 		struct acpi_reference_args args;
1948 
1949 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
1950 			priv->enet_ver = AE_VERSION_1;
1951 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
1952 			priv->enet_ver = AE_VERSION_2;
1953 		else
1954 			return -ENXIO;
1955 
1956 		/* try to find port-idx-in-ae first */
1957 		ret = acpi_node_get_property_reference(dev->fwnode,
1958 						       "ae-handle", 0, &args);
1959 		if (ret) {
1960 			dev_err(dev, "not find ae-handle\n");
1961 			goto out_read_prop_fail;
1962 		}
1963 		priv->fwnode = acpi_fwnode_handle(args.adev);
1964 	} else {
1965 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
1966 		return -ENXIO;
1967 	}
1968 
1969 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
1970 	if (ret) {
1971 		/* only for old code compatible */
1972 		ret = device_property_read_u32(dev, "port-id", &port_id);
1973 		if (ret)
1974 			goto out_read_prop_fail;
1975 		/* for old dts, we need to caculate the port offset */
1976 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
1977 			: port_id - HNS_SRV_OFFSET;
1978 	}
1979 	priv->port_id = port_id;
1980 
1981 	hns_init_mac_addr(ndev);
1982 
1983 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1984 	ndev->priv_flags |= IFF_UNICAST_FLT;
1985 	ndev->netdev_ops = &hns_nic_netdev_ops;
1986 	hns_ethtool_set_ops(ndev);
1987 
1988 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1989 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1990 		NETIF_F_GRO;
1991 	ndev->vlan_features |=
1992 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
1993 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
1994 
1995 	switch (priv->enet_ver) {
1996 	case AE_VERSION_2:
1997 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1998 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1999 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2000 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2001 		break;
2002 	default:
2003 		break;
2004 	}
2005 
2006 	SET_NETDEV_DEV(ndev, dev);
2007 
2008 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2009 		dev_dbg(dev, "set mask to 64bit\n");
2010 	else
2011 		dev_err(dev, "set mask to 64bit fail!\n");
2012 
2013 	/* carrier off reporting is important to ethtool even BEFORE open */
2014 	netif_carrier_off(ndev);
2015 
2016 	setup_timer(&priv->service_timer, hns_nic_service_timer,
2017 		    (unsigned long)priv);
2018 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2019 
2020 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2021 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2022 	set_bit(NIC_STATE_DOWN, &priv->state);
2023 
2024 	if (hns_nic_try_get_ae(priv->netdev)) {
2025 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2026 		ret = hnae_register_notifier(&priv->notifier_block);
2027 		if (ret) {
2028 			dev_err(dev, "register notifier fail!\n");
2029 			goto out_notify_fail;
2030 		}
2031 		dev_dbg(dev, "has not handle, register notifier!\n");
2032 	}
2033 
2034 	return 0;
2035 
2036 out_notify_fail:
2037 	(void)cancel_work_sync(&priv->service_task);
2038 out_read_prop_fail:
2039 	free_netdev(ndev);
2040 	return ret;
2041 }
2042 
2043 static int hns_nic_dev_remove(struct platform_device *pdev)
2044 {
2045 	struct net_device *ndev = platform_get_drvdata(pdev);
2046 	struct hns_nic_priv *priv = netdev_priv(ndev);
2047 
2048 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2049 		unregister_netdev(ndev);
2050 
2051 	if (priv->ring_data)
2052 		hns_nic_uninit_ring_data(priv);
2053 	priv->ring_data = NULL;
2054 
2055 	if (ndev->phydev)
2056 		phy_disconnect(ndev->phydev);
2057 
2058 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2059 		hnae_put_handle(priv->ae_handle);
2060 	priv->ae_handle = NULL;
2061 	if (priv->notifier_block.notifier_call)
2062 		hnae_unregister_notifier(&priv->notifier_block);
2063 	priv->notifier_block.notifier_call = NULL;
2064 
2065 	set_bit(NIC_STATE_REMOVING, &priv->state);
2066 	(void)cancel_work_sync(&priv->service_task);
2067 
2068 	free_netdev(ndev);
2069 	return 0;
2070 }
2071 
2072 static const struct of_device_id hns_enet_of_match[] = {
2073 	{.compatible = "hisilicon,hns-nic-v1",},
2074 	{.compatible = "hisilicon,hns-nic-v2",},
2075 	{},
2076 };
2077 
2078 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2079 
2080 static struct platform_driver hns_nic_dev_driver = {
2081 	.driver = {
2082 		.name = "hns-nic",
2083 		.of_match_table = hns_enet_of_match,
2084 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2085 	},
2086 	.probe = hns_nic_dev_probe,
2087 	.remove = hns_nic_dev_remove,
2088 };
2089 
2090 module_platform_driver(hns_nic_dev_driver);
2091 
2092 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2093 MODULE_AUTHOR("Hisilicon, Inc.");
2094 MODULE_LICENSE("GPL");
2095 MODULE_ALIAS("platform:hns-nic");
2096