1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22 
23 #include "hnae.h"
24 #include "hns_enet.h"
25 
26 #define NIC_MAX_Q_PER_VF 16
27 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
28 
29 #define SERVICE_TIMER_HZ (1 * HZ)
30 
31 #define NIC_TX_CLEAN_MAX_NUM 256
32 #define NIC_RX_CLEAN_MAX_NUM 64
33 
34 #define RCB_IRQ_NOT_INITED 0
35 #define RCB_IRQ_INITED 1
36 #define HNS_BUFFER_SIZE_2048 2048
37 
38 #define BD_MAX_SEND_SIZE 8191
39 #define SKB_TMP_LEN(SKB) \
40 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
41 
42 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
43 			 int size, dma_addr_t dma, int frag_end,
44 			 int buf_num, enum hns_desc_type type, int mtu)
45 {
46 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
47 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
48 	struct iphdr *iphdr;
49 	struct ipv6hdr *ipv6hdr;
50 	struct sk_buff *skb;
51 	int skb_tmp_len;
52 	__be16 protocol;
53 	u8 bn_pid = 0;
54 	u8 rrcfv = 0;
55 	u8 ip_offset = 0;
56 	u8 tvsvsn = 0;
57 	u16 mss = 0;
58 	u8 l4_len = 0;
59 	u16 paylen = 0;
60 
61 	desc_cb->priv = priv;
62 	desc_cb->length = size;
63 	desc_cb->dma = dma;
64 	desc_cb->type = type;
65 
66 	desc->addr = cpu_to_le64(dma);
67 	desc->tx.send_size = cpu_to_le16((u16)size);
68 
69 	/*config bd buffer end */
70 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72 
73 	if (type == DESC_TYPE_SKB) {
74 		skb = (struct sk_buff *)priv;
75 
76 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
77 			skb_reset_mac_len(skb);
78 			protocol = skb->protocol;
79 			ip_offset = ETH_HLEN;
80 
81 			if (protocol == htons(ETH_P_8021Q)) {
82 				ip_offset += VLAN_HLEN;
83 				protocol = vlan_get_protocol(skb);
84 				skb->protocol = protocol;
85 			}
86 
87 			if (skb->protocol == htons(ETH_P_IP)) {
88 				iphdr = ip_hdr(skb);
89 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
90 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
91 
92 				/* check for tcp/udp header */
93 				if (iphdr->protocol == IPPROTO_TCP) {
94 					hnae_set_bit(tvsvsn,
95 						     HNSV2_TXD_TSE_B, 1);
96 					skb_tmp_len = SKB_TMP_LEN(skb);
97 					l4_len = tcp_hdrlen(skb);
98 					mss = mtu - skb_tmp_len - ETH_FCS_LEN;
99 					paylen = skb->len - skb_tmp_len;
100 				}
101 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
102 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
103 				ipv6hdr = ipv6_hdr(skb);
104 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
105 
106 				/* check for tcp/udp header */
107 				if (ipv6hdr->nexthdr == IPPROTO_TCP) {
108 					hnae_set_bit(tvsvsn,
109 						     HNSV2_TXD_TSE_B, 1);
110 					skb_tmp_len = SKB_TMP_LEN(skb);
111 					l4_len = tcp_hdrlen(skb);
112 					mss = mtu - skb_tmp_len - ETH_FCS_LEN;
113 					paylen = skb->len - skb_tmp_len;
114 				}
115 			}
116 			desc->tx.ip_offset = ip_offset;
117 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
118 			desc->tx.mss = cpu_to_le16(mss);
119 			desc->tx.l4_len = l4_len;
120 			desc->tx.paylen = cpu_to_le16(paylen);
121 		}
122 	}
123 
124 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
125 
126 	desc->tx.bn_pid = bn_pid;
127 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
128 
129 	ring_ptr_move_fw(ring, next_to_use);
130 }
131 
132 static void fill_desc(struct hnae_ring *ring, void *priv,
133 		      int size, dma_addr_t dma, int frag_end,
134 		      int buf_num, enum hns_desc_type type, int mtu)
135 {
136 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
137 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
138 	struct sk_buff *skb;
139 	__be16 protocol;
140 	u32 ip_offset;
141 	u32 asid_bufnum_pid = 0;
142 	u32 flag_ipoffset = 0;
143 
144 	desc_cb->priv = priv;
145 	desc_cb->length = size;
146 	desc_cb->dma = dma;
147 	desc_cb->type = type;
148 
149 	desc->addr = cpu_to_le64(dma);
150 	desc->tx.send_size = cpu_to_le16((u16)size);
151 
152 	/*config bd buffer end */
153 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
154 
155 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
156 
157 	if (type == DESC_TYPE_SKB) {
158 		skb = (struct sk_buff *)priv;
159 
160 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
161 			protocol = skb->protocol;
162 			ip_offset = ETH_HLEN;
163 
164 			/*if it is a SW VLAN check the next protocol*/
165 			if (protocol == htons(ETH_P_8021Q)) {
166 				ip_offset += VLAN_HLEN;
167 				protocol = vlan_get_protocol(skb);
168 				skb->protocol = protocol;
169 			}
170 
171 			if (skb->protocol == htons(ETH_P_IP)) {
172 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
173 				/* check for tcp/udp header */
174 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
175 
176 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
177 				/* ipv6 has not l3 cs, check for L4 header */
178 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
179 			}
180 
181 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
182 		}
183 	}
184 
185 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
186 
187 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
188 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
189 
190 	ring_ptr_move_fw(ring, next_to_use);
191 }
192 
193 static void unfill_desc(struct hnae_ring *ring)
194 {
195 	ring_ptr_move_bw(ring, next_to_use);
196 }
197 
198 static int hns_nic_maybe_stop_tx(
199 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
200 {
201 	struct sk_buff *skb = *out_skb;
202 	struct sk_buff *new_skb = NULL;
203 	int buf_num;
204 
205 	/* no. of segments (plus a header) */
206 	buf_num = skb_shinfo(skb)->nr_frags + 1;
207 
208 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
209 		if (ring_space(ring) < 1)
210 			return -EBUSY;
211 
212 		new_skb = skb_copy(skb, GFP_ATOMIC);
213 		if (!new_skb)
214 			return -ENOMEM;
215 
216 		dev_kfree_skb_any(skb);
217 		*out_skb = new_skb;
218 		buf_num = 1;
219 	} else if (buf_num > ring_space(ring)) {
220 		return -EBUSY;
221 	}
222 
223 	*bnum = buf_num;
224 	return 0;
225 }
226 
227 static int hns_nic_maybe_stop_tso(
228 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
229 {
230 	int i;
231 	int size;
232 	int buf_num;
233 	int frag_num;
234 	struct sk_buff *skb = *out_skb;
235 	struct sk_buff *new_skb = NULL;
236 	struct skb_frag_struct *frag;
237 
238 	size = skb_headlen(skb);
239 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
240 
241 	frag_num = skb_shinfo(skb)->nr_frags;
242 	for (i = 0; i < frag_num; i++) {
243 		frag = &skb_shinfo(skb)->frags[i];
244 		size = skb_frag_size(frag);
245 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
246 	}
247 
248 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
249 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
250 		if (ring_space(ring) < buf_num)
251 			return -EBUSY;
252 		/* manual split the send packet */
253 		new_skb = skb_copy(skb, GFP_ATOMIC);
254 		if (!new_skb)
255 			return -ENOMEM;
256 		dev_kfree_skb_any(skb);
257 		*out_skb = new_skb;
258 
259 	} else if (ring_space(ring) < buf_num) {
260 		return -EBUSY;
261 	}
262 
263 	*bnum = buf_num;
264 	return 0;
265 }
266 
267 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
268 			  int size, dma_addr_t dma, int frag_end,
269 			  int buf_num, enum hns_desc_type type, int mtu)
270 {
271 	int frag_buf_num;
272 	int sizeoflast;
273 	int k;
274 
275 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
276 	sizeoflast = size % BD_MAX_SEND_SIZE;
277 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
278 
279 	/* when the frag size is bigger than hardware, split this frag */
280 	for (k = 0; k < frag_buf_num; k++)
281 		fill_v2_desc(ring, priv,
282 			     (k == frag_buf_num - 1) ?
283 					sizeoflast : BD_MAX_SEND_SIZE,
284 			     dma + BD_MAX_SEND_SIZE * k,
285 			     frag_end && (k == frag_buf_num - 1) ? 1 : 0,
286 			     buf_num,
287 			     (type == DESC_TYPE_SKB && !k) ?
288 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
289 			     mtu);
290 }
291 
292 int hns_nic_net_xmit_hw(struct net_device *ndev,
293 			struct sk_buff *skb,
294 			struct hns_nic_ring_data *ring_data)
295 {
296 	struct hns_nic_priv *priv = netdev_priv(ndev);
297 	struct device *dev = priv->dev;
298 	struct hnae_ring *ring = ring_data->ring;
299 	struct netdev_queue *dev_queue;
300 	struct skb_frag_struct *frag;
301 	int buf_num;
302 	int seg_num;
303 	dma_addr_t dma;
304 	int size, next_to_use;
305 	int i;
306 
307 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
308 	case -EBUSY:
309 		ring->stats.tx_busy++;
310 		goto out_net_tx_busy;
311 	case -ENOMEM:
312 		ring->stats.sw_err_cnt++;
313 		netdev_err(ndev, "no memory to xmit!\n");
314 		goto out_err_tx_ok;
315 	default:
316 		break;
317 	}
318 
319 	/* no. of segments (plus a header) */
320 	seg_num = skb_shinfo(skb)->nr_frags + 1;
321 	next_to_use = ring->next_to_use;
322 
323 	/* fill the first part */
324 	size = skb_headlen(skb);
325 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
326 	if (dma_mapping_error(dev, dma)) {
327 		netdev_err(ndev, "TX head DMA map failed\n");
328 		ring->stats.sw_err_cnt++;
329 		goto out_err_tx_ok;
330 	}
331 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
332 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
333 
334 	/* fill the fragments */
335 	for (i = 1; i < seg_num; i++) {
336 		frag = &skb_shinfo(skb)->frags[i - 1];
337 		size = skb_frag_size(frag);
338 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
339 		if (dma_mapping_error(dev, dma)) {
340 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
341 			ring->stats.sw_err_cnt++;
342 			goto out_map_frag_fail;
343 		}
344 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
345 				    seg_num - 1 == i ? 1 : 0, buf_num,
346 				    DESC_TYPE_PAGE, ndev->mtu);
347 	}
348 
349 	/*complete translate all packets*/
350 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
351 	netdev_tx_sent_queue(dev_queue, skb->len);
352 
353 	wmb(); /* commit all data before submit */
354 	assert(skb->queue_mapping < priv->ae_handle->q_num);
355 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
356 	ring->stats.tx_pkts++;
357 	ring->stats.tx_bytes += skb->len;
358 
359 	return NETDEV_TX_OK;
360 
361 out_map_frag_fail:
362 
363 	while (ring->next_to_use != next_to_use) {
364 		unfill_desc(ring);
365 		if (ring->next_to_use != next_to_use)
366 			dma_unmap_page(dev,
367 				       ring->desc_cb[ring->next_to_use].dma,
368 				       ring->desc_cb[ring->next_to_use].length,
369 				       DMA_TO_DEVICE);
370 		else
371 			dma_unmap_single(dev,
372 					 ring->desc_cb[next_to_use].dma,
373 					 ring->desc_cb[next_to_use].length,
374 					 DMA_TO_DEVICE);
375 	}
376 
377 out_err_tx_ok:
378 
379 	dev_kfree_skb_any(skb);
380 	return NETDEV_TX_OK;
381 
382 out_net_tx_busy:
383 
384 	netif_stop_subqueue(ndev, skb->queue_mapping);
385 
386 	/* Herbert's original patch had:
387 	 *  smp_mb__after_netif_stop_queue();
388 	 * but since that doesn't exist yet, just open code it.
389 	 */
390 	smp_mb();
391 	return NETDEV_TX_BUSY;
392 }
393 
394 /**
395  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
396  * @data: pointer to the start of the headers
397  * @max: total length of section to find headers in
398  *
399  * This function is meant to determine the length of headers that will
400  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
401  * motivation of doing this is to only perform one pull for IPv4 TCP
402  * packets so that we can do basic things like calculating the gso_size
403  * based on the average data per packet.
404  **/
405 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
406 					unsigned int max_size)
407 {
408 	unsigned char *network;
409 	u8 hlen;
410 
411 	/* this should never happen, but better safe than sorry */
412 	if (max_size < ETH_HLEN)
413 		return max_size;
414 
415 	/* initialize network frame pointer */
416 	network = data;
417 
418 	/* set first protocol and move network header forward */
419 	network += ETH_HLEN;
420 
421 	/* handle any vlan tag if present */
422 	if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
423 		== HNS_RX_FLAG_VLAN_PRESENT) {
424 		if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
425 			return max_size;
426 
427 		network += VLAN_HLEN;
428 	}
429 
430 	/* handle L3 protocols */
431 	if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
432 		== HNS_RX_FLAG_L3ID_IPV4) {
433 		if ((typeof(max_size))(network - data) >
434 		    (max_size - sizeof(struct iphdr)))
435 			return max_size;
436 
437 		/* access ihl as a u8 to avoid unaligned access on ia64 */
438 		hlen = (network[0] & 0x0F) << 2;
439 
440 		/* verify hlen meets minimum size requirements */
441 		if (hlen < sizeof(struct iphdr))
442 			return network - data;
443 
444 		/* record next protocol if header is present */
445 	} else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
446 		== HNS_RX_FLAG_L3ID_IPV6) {
447 		if ((typeof(max_size))(network - data) >
448 		    (max_size - sizeof(struct ipv6hdr)))
449 			return max_size;
450 
451 		/* record next protocol */
452 		hlen = sizeof(struct ipv6hdr);
453 	} else {
454 		return network - data;
455 	}
456 
457 	/* relocate pointer to start of L4 header */
458 	network += hlen;
459 
460 	/* finally sort out TCP/UDP */
461 	if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
462 		== HNS_RX_FLAG_L4ID_TCP) {
463 		if ((typeof(max_size))(network - data) >
464 		    (max_size - sizeof(struct tcphdr)))
465 			return max_size;
466 
467 		/* access doff as a u8 to avoid unaligned access on ia64 */
468 		hlen = (network[12] & 0xF0) >> 2;
469 
470 		/* verify hlen meets minimum size requirements */
471 		if (hlen < sizeof(struct tcphdr))
472 			return network - data;
473 
474 		network += hlen;
475 	} else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
476 		== HNS_RX_FLAG_L4ID_UDP) {
477 		if ((typeof(max_size))(network - data) >
478 		    (max_size - sizeof(struct udphdr)))
479 			return max_size;
480 
481 		network += sizeof(struct udphdr);
482 	}
483 
484 	/* If everything has gone correctly network should be the
485 	 * data section of the packet and will be the end of the header.
486 	 * If not then it probably represents the end of the last recognized
487 	 * header.
488 	 */
489 	if ((typeof(max_size))(network - data) < max_size)
490 		return network - data;
491 	else
492 		return max_size;
493 }
494 
495 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
496 			       struct hnae_ring *ring, int pull_len,
497 			       struct hnae_desc_cb *desc_cb)
498 {
499 	struct hnae_desc *desc;
500 	int truesize, size;
501 	int last_offset;
502 	bool twobufs;
503 
504 	twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
505 
506 	desc = &ring->desc[ring->next_to_clean];
507 	size = le16_to_cpu(desc->rx.size);
508 
509 	if (twobufs) {
510 		truesize = hnae_buf_size(ring);
511 	} else {
512 		truesize = ALIGN(size, L1_CACHE_BYTES);
513 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
514 	}
515 
516 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
517 			size - pull_len, truesize - pull_len);
518 
519 	 /* avoid re-using remote pages,flag default unreuse */
520 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
521 		return;
522 
523 	if (twobufs) {
524 		/* if we are only owner of page we can reuse it */
525 		if (likely(page_count(desc_cb->priv) == 1)) {
526 			/* flip page offset to other buffer */
527 			desc_cb->page_offset ^= truesize;
528 
529 			desc_cb->reuse_flag = 1;
530 			/* bump ref count on page before it is given*/
531 			get_page(desc_cb->priv);
532 		}
533 		return;
534 	}
535 
536 	/* move offset up to the next cache line */
537 	desc_cb->page_offset += truesize;
538 
539 	if (desc_cb->page_offset <= last_offset) {
540 		desc_cb->reuse_flag = 1;
541 		/* bump ref count on page before it is given*/
542 		get_page(desc_cb->priv);
543 	}
544 }
545 
546 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
547 {
548 	*out_bnum = hnae_get_field(bnum_flag,
549 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
550 }
551 
552 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
553 {
554 	*out_bnum = hnae_get_field(bnum_flag,
555 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
556 }
557 
558 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
559 			       struct sk_buff **out_skb, int *out_bnum)
560 {
561 	struct hnae_ring *ring = ring_data->ring;
562 	struct net_device *ndev = ring_data->napi.dev;
563 	struct hns_nic_priv *priv = netdev_priv(ndev);
564 	struct sk_buff *skb;
565 	struct hnae_desc *desc;
566 	struct hnae_desc_cb *desc_cb;
567 	unsigned char *va;
568 	int bnum, length, i;
569 	int pull_len;
570 	u32 bnum_flag;
571 
572 	desc = &ring->desc[ring->next_to_clean];
573 	desc_cb = &ring->desc_cb[ring->next_to_clean];
574 
575 	prefetch(desc);
576 
577 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
578 
579 	/* prefetch first cache line of first page */
580 	prefetch(va);
581 #if L1_CACHE_BYTES < 128
582 	prefetch(va + L1_CACHE_BYTES);
583 #endif
584 
585 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
586 					HNS_RX_HEAD_SIZE);
587 	if (unlikely(!skb)) {
588 		netdev_err(ndev, "alloc rx skb fail\n");
589 		ring->stats.sw_err_cnt++;
590 		return -ENOMEM;
591 	}
592 
593 	prefetchw(skb->data);
594 	length = le16_to_cpu(desc->rx.pkt_len);
595 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
596 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
597 	*out_bnum = bnum;
598 
599 	if (length <= HNS_RX_HEAD_SIZE) {
600 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
601 
602 		/* we can reuse buffer as-is, just make sure it is local */
603 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
604 			desc_cb->reuse_flag = 1;
605 		else /* this page cannot be reused so discard it */
606 			put_page(desc_cb->priv);
607 
608 		ring_ptr_move_fw(ring, next_to_clean);
609 
610 		if (unlikely(bnum != 1)) { /* check err*/
611 			*out_bnum = 1;
612 			goto out_bnum_err;
613 		}
614 	} else {
615 		ring->stats.seg_pkt_cnt++;
616 
617 		pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
618 		memcpy(__skb_put(skb, pull_len), va,
619 		       ALIGN(pull_len, sizeof(long)));
620 
621 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
622 		ring_ptr_move_fw(ring, next_to_clean);
623 
624 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
625 			*out_bnum = 1;
626 			goto out_bnum_err;
627 		}
628 		for (i = 1; i < bnum; i++) {
629 			desc = &ring->desc[ring->next_to_clean];
630 			desc_cb = &ring->desc_cb[ring->next_to_clean];
631 
632 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
633 			ring_ptr_move_fw(ring, next_to_clean);
634 		}
635 	}
636 
637 	/* check except process, free skb and jump the desc */
638 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
639 out_bnum_err:
640 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
641 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
642 			   bnum, ring->max_desc_num_per_pkt,
643 			   length, (int)MAX_SKB_FRAGS,
644 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
645 		ring->stats.err_bd_num++;
646 		dev_kfree_skb_any(skb);
647 		return -EDOM;
648 	}
649 
650 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
651 
652 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
653 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
654 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
655 		ring->stats.non_vld_descs++;
656 		dev_kfree_skb_any(skb);
657 		return -EINVAL;
658 	}
659 
660 	if (unlikely((!desc->rx.pkt_len) ||
661 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
662 		ring->stats.err_pkt_len++;
663 		dev_kfree_skb_any(skb);
664 		return -EFAULT;
665 	}
666 
667 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
668 		ring->stats.l2_err++;
669 		dev_kfree_skb_any(skb);
670 		return -EFAULT;
671 	}
672 
673 	ring->stats.rx_pkts++;
674 	ring->stats.rx_bytes += skb->len;
675 
676 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L3E_B) ||
677 		     hnae_get_bit(bnum_flag, HNS_RXD_L4E_B))) {
678 		ring->stats.l3l4_csum_err++;
679 		return 0;
680 	}
681 
682 	skb->ip_summed = CHECKSUM_UNNECESSARY;
683 
684 	return 0;
685 }
686 
687 static void
688 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
689 {
690 	int i, ret;
691 	struct hnae_desc_cb res_cbs;
692 	struct hnae_desc_cb *desc_cb;
693 	struct hnae_ring *ring = ring_data->ring;
694 	struct net_device *ndev = ring_data->napi.dev;
695 
696 	for (i = 0; i < cleand_count; i++) {
697 		desc_cb = &ring->desc_cb[ring->next_to_use];
698 		if (desc_cb->reuse_flag) {
699 			ring->stats.reuse_pg_cnt++;
700 			hnae_reuse_buffer(ring, ring->next_to_use);
701 		} else {
702 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
703 			if (ret) {
704 				ring->stats.sw_err_cnt++;
705 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
706 				break;
707 			}
708 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
709 		}
710 
711 		ring_ptr_move_fw(ring, next_to_use);
712 	}
713 
714 	wmb(); /* make all data has been write before submit */
715 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
716 }
717 
718 /* return error number for error or number of desc left to take
719  */
720 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
721 			      struct sk_buff *skb)
722 {
723 	struct net_device *ndev = ring_data->napi.dev;
724 
725 	skb->protocol = eth_type_trans(skb, ndev);
726 	(void)napi_gro_receive(&ring_data->napi, skb);
727 	ndev->last_rx = jiffies;
728 }
729 
730 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
731 			       int budget, void *v)
732 {
733 	struct hnae_ring *ring = ring_data->ring;
734 	struct sk_buff *skb;
735 	int num, bnum, ex_num;
736 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
737 	int recv_pkts, recv_bds, clean_count, err;
738 
739 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
740 	rmb(); /* make sure num taken effect before the other data is touched */
741 
742 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
743 recv:
744 	while (recv_pkts < budget && recv_bds < num) {
745 		/* reuse or realloc buffers*/
746 		if (clean_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
747 			hns_nic_alloc_rx_buffers(ring_data, clean_count);
748 			clean_count = 0;
749 		}
750 
751 		/* poll one pkg*/
752 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
753 		if (unlikely(!skb)) /* this fault cannot be repaired */
754 			break;
755 
756 		recv_bds += bnum;
757 		clean_count += bnum;
758 		if (unlikely(err)) {  /* do jump the err */
759 			recv_pkts++;
760 			continue;
761 		}
762 
763 		/* do update ip stack process*/
764 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
765 							ring_data, skb);
766 		recv_pkts++;
767 	}
768 
769 	/* make all data has been write before submit */
770 	if (recv_pkts < budget) {
771 		ex_num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
772 
773 		if (ex_num > clean_count) {
774 			num += ex_num - clean_count;
775 			rmb(); /*complete read rx ring bd number*/
776 			goto recv;
777 		}
778 	}
779 
780 	/* make all data has been write before submit */
781 	if (clean_count > 0)
782 		hns_nic_alloc_rx_buffers(ring_data, clean_count);
783 
784 	return recv_pkts;
785 }
786 
787 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
788 {
789 	struct hnae_ring *ring = ring_data->ring;
790 	int num = 0;
791 
792 	/* for hardware bug fixed */
793 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
794 
795 	if (num > 0) {
796 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
797 			ring_data->ring, 1);
798 
799 		napi_schedule(&ring_data->napi);
800 	}
801 }
802 
803 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
804 					    int *bytes, int *pkts)
805 {
806 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
807 
808 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
809 	(*bytes) += desc_cb->length;
810 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
811 	hnae_free_buffer_detach(ring, ring->next_to_clean);
812 
813 	ring_ptr_move_fw(ring, next_to_clean);
814 }
815 
816 static int is_valid_clean_head(struct hnae_ring *ring, int h)
817 {
818 	int u = ring->next_to_use;
819 	int c = ring->next_to_clean;
820 
821 	if (unlikely(h > ring->desc_num))
822 		return 0;
823 
824 	assert(u > 0 && u < ring->desc_num);
825 	assert(c > 0 && c < ring->desc_num);
826 	assert(u != c && h != c); /* must be checked before call this func */
827 
828 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
829 }
830 
831 /* netif_tx_lock will turn down the performance, set only when necessary */
832 #ifdef CONFIG_NET_POLL_CONTROLLER
833 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev)
834 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev)
835 #else
836 #define NETIF_TX_LOCK(ndev)
837 #define NETIF_TX_UNLOCK(ndev)
838 #endif
839 /* reclaim all desc in one budget
840  * return error or number of desc left
841  */
842 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
843 			       int budget, void *v)
844 {
845 	struct hnae_ring *ring = ring_data->ring;
846 	struct net_device *ndev = ring_data->napi.dev;
847 	struct netdev_queue *dev_queue;
848 	struct hns_nic_priv *priv = netdev_priv(ndev);
849 	int head;
850 	int bytes, pkts;
851 
852 	NETIF_TX_LOCK(ndev);
853 
854 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
855 	rmb(); /* make sure head is ready before touch any data */
856 
857 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
858 		NETIF_TX_UNLOCK(ndev);
859 		return 0; /* no data to poll */
860 	}
861 
862 	if (!is_valid_clean_head(ring, head)) {
863 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
864 			   ring->next_to_use, ring->next_to_clean);
865 		ring->stats.io_err_cnt++;
866 		NETIF_TX_UNLOCK(ndev);
867 		return -EIO;
868 	}
869 
870 	bytes = 0;
871 	pkts = 0;
872 	while (head != ring->next_to_clean) {
873 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
874 		/* issue prefetch for next Tx descriptor */
875 		prefetch(&ring->desc_cb[ring->next_to_clean]);
876 	}
877 
878 	NETIF_TX_UNLOCK(ndev);
879 
880 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
881 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
882 
883 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
884 		netif_carrier_on(ndev);
885 
886 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
887 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
888 		/* Make sure that anybody stopping the queue after this
889 		 * sees the new next_to_clean.
890 		 */
891 		smp_mb();
892 		if (netif_tx_queue_stopped(dev_queue) &&
893 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
894 			netif_tx_wake_queue(dev_queue);
895 			ring->stats.restart_queue++;
896 		}
897 	}
898 	return 0;
899 }
900 
901 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
902 {
903 	struct hnae_ring *ring = ring_data->ring;
904 	int head = ring->next_to_clean;
905 
906 	/* for hardware bug fixed */
907 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
908 
909 	if (head != ring->next_to_clean) {
910 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
911 			ring_data->ring, 1);
912 
913 		napi_schedule(&ring_data->napi);
914 	}
915 }
916 
917 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
918 {
919 	struct hnae_ring *ring = ring_data->ring;
920 	struct net_device *ndev = ring_data->napi.dev;
921 	struct netdev_queue *dev_queue;
922 	int head;
923 	int bytes, pkts;
924 
925 	NETIF_TX_LOCK(ndev);
926 
927 	head = ring->next_to_use; /* ntu :soft setted ring position*/
928 	bytes = 0;
929 	pkts = 0;
930 	while (head != ring->next_to_clean)
931 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
932 
933 	NETIF_TX_UNLOCK(ndev);
934 
935 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
936 	netdev_tx_reset_queue(dev_queue);
937 }
938 
939 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
940 {
941 	struct hns_nic_ring_data *ring_data =
942 		container_of(napi, struct hns_nic_ring_data, napi);
943 	int clean_complete = ring_data->poll_one(
944 				ring_data, budget, ring_data->ex_process);
945 
946 	if (clean_complete >= 0 && clean_complete < budget) {
947 		napi_complete(napi);
948 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
949 			ring_data->ring, 0);
950 
951 		ring_data->fini_process(ring_data);
952 		return 0;
953 	}
954 
955 	return clean_complete;
956 }
957 
958 static irqreturn_t hns_irq_handle(int irq, void *dev)
959 {
960 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
961 
962 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
963 		ring_data->ring, 1);
964 	napi_schedule(&ring_data->napi);
965 
966 	return IRQ_HANDLED;
967 }
968 
969 /**
970  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
971  *@ndev: net device
972  */
973 static void hns_nic_adjust_link(struct net_device *ndev)
974 {
975 	struct hns_nic_priv *priv = netdev_priv(ndev);
976 	struct hnae_handle *h = priv->ae_handle;
977 
978 	h->dev->ops->adjust_link(h, ndev->phydev->speed, ndev->phydev->duplex);
979 }
980 
981 /**
982  *hns_nic_init_phy - init phy
983  *@ndev: net device
984  *@h: ae handle
985  * Return 0 on success, negative on failure
986  */
987 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
988 {
989 	struct hns_nic_priv *priv = netdev_priv(ndev);
990 	struct phy_device *phy_dev = NULL;
991 
992 	if (!h->phy_node)
993 		return 0;
994 
995 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
996 		phy_dev = of_phy_connect(ndev, h->phy_node,
997 					 hns_nic_adjust_link, 0, h->phy_if);
998 	else
999 		phy_dev = of_phy_attach(ndev, h->phy_node, 0, h->phy_if);
1000 
1001 	if (unlikely(!phy_dev) || IS_ERR(phy_dev))
1002 		return !phy_dev ? -ENODEV : PTR_ERR(phy_dev);
1003 
1004 	phy_dev->supported &= h->if_support;
1005 	phy_dev->advertising = phy_dev->supported;
1006 
1007 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1008 		phy_dev->autoneg = false;
1009 
1010 	priv->phy = phy_dev;
1011 
1012 	return 0;
1013 }
1014 
1015 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1016 {
1017 	struct hns_nic_priv *priv = netdev_priv(netdev);
1018 	struct hnae_handle *h = priv->ae_handle;
1019 
1020 	napi_enable(&priv->ring_data[idx].napi);
1021 
1022 	enable_irq(priv->ring_data[idx].ring->irq);
1023 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1024 
1025 	return 0;
1026 }
1027 
1028 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1029 {
1030 	struct hns_nic_priv *priv = netdev_priv(ndev);
1031 	struct hnae_handle *h = priv->ae_handle;
1032 	struct sockaddr *mac_addr = p;
1033 	int ret;
1034 
1035 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1036 		return -EADDRNOTAVAIL;
1037 
1038 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1039 	if (ret) {
1040 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1041 		return ret;
1042 	}
1043 
1044 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1045 
1046 	return 0;
1047 }
1048 
1049 void hns_nic_update_stats(struct net_device *netdev)
1050 {
1051 	struct hns_nic_priv *priv = netdev_priv(netdev);
1052 	struct hnae_handle *h = priv->ae_handle;
1053 
1054 	h->dev->ops->update_stats(h, &netdev->stats);
1055 }
1056 
1057 /* set mac addr if it is configed. or leave it to the AE driver */
1058 static void hns_init_mac_addr(struct net_device *ndev)
1059 {
1060 	struct hns_nic_priv *priv = netdev_priv(ndev);
1061 	struct device_node *node = priv->dev->of_node;
1062 	const void *mac_addr_temp;
1063 
1064 	mac_addr_temp = of_get_mac_address(node);
1065 	if (mac_addr_temp && is_valid_ether_addr(mac_addr_temp)) {
1066 		memcpy(ndev->dev_addr, mac_addr_temp, ndev->addr_len);
1067 	} else {
1068 		eth_hw_addr_random(ndev);
1069 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1070 			 ndev->dev_addr);
1071 	}
1072 }
1073 
1074 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1075 {
1076 	struct hns_nic_priv *priv = netdev_priv(netdev);
1077 	struct hnae_handle *h = priv->ae_handle;
1078 
1079 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1080 	disable_irq(priv->ring_data[idx].ring->irq);
1081 
1082 	napi_disable(&priv->ring_data[idx].napi);
1083 }
1084 
1085 static void hns_set_irq_affinity(struct hns_nic_priv *priv)
1086 {
1087 	struct hnae_handle *h = priv->ae_handle;
1088 	struct hns_nic_ring_data *rd;
1089 	int i;
1090 	int cpu;
1091 	cpumask_t mask;
1092 
1093 	/*diffrent irq banlance for 16core and 32core*/
1094 	if (h->q_num == num_possible_cpus()) {
1095 		for (i = 0; i < h->q_num * 2; i++) {
1096 			rd = &priv->ring_data[i];
1097 			if (cpu_online(rd->queue_index)) {
1098 				cpumask_clear(&mask);
1099 				cpu = rd->queue_index;
1100 				cpumask_set_cpu(cpu, &mask);
1101 				(void)irq_set_affinity_hint(rd->ring->irq,
1102 							    &mask);
1103 			}
1104 		}
1105 	} else {
1106 		for (i = 0; i < h->q_num; i++) {
1107 			rd = &priv->ring_data[i];
1108 			if (cpu_online(rd->queue_index * 2)) {
1109 				cpumask_clear(&mask);
1110 				cpu = rd->queue_index * 2;
1111 				cpumask_set_cpu(cpu, &mask);
1112 				(void)irq_set_affinity_hint(rd->ring->irq,
1113 							    &mask);
1114 			}
1115 		}
1116 
1117 		for (i = h->q_num; i < h->q_num * 2; i++) {
1118 			rd = &priv->ring_data[i];
1119 			if (cpu_online(rd->queue_index * 2 + 1)) {
1120 				cpumask_clear(&mask);
1121 				cpu = rd->queue_index * 2 + 1;
1122 				cpumask_set_cpu(cpu, &mask);
1123 				(void)irq_set_affinity_hint(rd->ring->irq,
1124 							    &mask);
1125 			}
1126 		}
1127 	}
1128 }
1129 
1130 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1131 {
1132 	struct hnae_handle *h = priv->ae_handle;
1133 	struct hns_nic_ring_data *rd;
1134 	int i;
1135 	int ret;
1136 
1137 	for (i = 0; i < h->q_num * 2; i++) {
1138 		rd = &priv->ring_data[i];
1139 
1140 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1141 			break;
1142 
1143 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1144 			 "%s-%s%d", priv->netdev->name,
1145 			 (i < h->q_num ? "tx" : "rx"), rd->queue_index);
1146 
1147 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1148 
1149 		ret = request_irq(rd->ring->irq,
1150 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1151 		if (ret) {
1152 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1153 				   rd->ring->irq);
1154 			return ret;
1155 		}
1156 		disable_irq(rd->ring->irq);
1157 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1158 	}
1159 
1160 	/*set cpu affinity*/
1161 	hns_set_irq_affinity(priv);
1162 
1163 	return 0;
1164 }
1165 
1166 static int hns_nic_net_up(struct net_device *ndev)
1167 {
1168 	struct hns_nic_priv *priv = netdev_priv(ndev);
1169 	struct hnae_handle *h = priv->ae_handle;
1170 	int i, j, k;
1171 	int ret;
1172 
1173 	ret = hns_nic_init_irq(priv);
1174 	if (ret != 0) {
1175 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1176 		return ret;
1177 	}
1178 
1179 	for (i = 0; i < h->q_num * 2; i++) {
1180 		ret = hns_nic_ring_open(ndev, i);
1181 		if (ret)
1182 			goto out_has_some_queues;
1183 	}
1184 
1185 	for (k = 0; k < h->q_num; k++)
1186 		h->dev->ops->toggle_queue_status(h->qs[k], 1);
1187 
1188 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1189 	if (ret)
1190 		goto out_set_mac_addr_err;
1191 
1192 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1193 	if (ret)
1194 		goto out_start_err;
1195 
1196 	if (priv->phy)
1197 		phy_start(priv->phy);
1198 
1199 	clear_bit(NIC_STATE_DOWN, &priv->state);
1200 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1201 
1202 	return 0;
1203 
1204 out_start_err:
1205 	netif_stop_queue(ndev);
1206 out_set_mac_addr_err:
1207 	for (k = 0; k < h->q_num; k++)
1208 		h->dev->ops->toggle_queue_status(h->qs[k], 0);
1209 out_has_some_queues:
1210 	for (j = i - 1; j >= 0; j--)
1211 		hns_nic_ring_close(ndev, j);
1212 
1213 	set_bit(NIC_STATE_DOWN, &priv->state);
1214 
1215 	return ret;
1216 }
1217 
1218 static void hns_nic_net_down(struct net_device *ndev)
1219 {
1220 	int i;
1221 	struct hnae_ae_ops *ops;
1222 	struct hns_nic_priv *priv = netdev_priv(ndev);
1223 
1224 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1225 		return;
1226 
1227 	(void)del_timer_sync(&priv->service_timer);
1228 	netif_tx_stop_all_queues(ndev);
1229 	netif_carrier_off(ndev);
1230 	netif_tx_disable(ndev);
1231 	priv->link = 0;
1232 
1233 	if (priv->phy)
1234 		phy_stop(priv->phy);
1235 
1236 	ops = priv->ae_handle->dev->ops;
1237 
1238 	if (ops->stop)
1239 		ops->stop(priv->ae_handle);
1240 
1241 	netif_tx_stop_all_queues(ndev);
1242 
1243 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1244 		hns_nic_ring_close(ndev, i);
1245 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1246 
1247 		/* clean tx buffers*/
1248 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1249 	}
1250 }
1251 
1252 void hns_nic_net_reset(struct net_device *ndev)
1253 {
1254 	struct hns_nic_priv *priv = netdev_priv(ndev);
1255 	struct hnae_handle *handle = priv->ae_handle;
1256 
1257 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1258 		usleep_range(1000, 2000);
1259 
1260 	(void)hnae_reinit_handle(handle);
1261 
1262 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1263 }
1264 
1265 void hns_nic_net_reinit(struct net_device *netdev)
1266 {
1267 	struct hns_nic_priv *priv = netdev_priv(netdev);
1268 
1269 	priv->netdev->trans_start = jiffies;
1270 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1271 		usleep_range(1000, 2000);
1272 
1273 	hns_nic_net_down(netdev);
1274 	hns_nic_net_reset(netdev);
1275 	(void)hns_nic_net_up(netdev);
1276 	clear_bit(NIC_STATE_REINITING, &priv->state);
1277 }
1278 
1279 static int hns_nic_net_open(struct net_device *ndev)
1280 {
1281 	struct hns_nic_priv *priv = netdev_priv(ndev);
1282 	struct hnae_handle *h = priv->ae_handle;
1283 	int ret;
1284 
1285 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1286 		return -EBUSY;
1287 
1288 	priv->link = 0;
1289 	netif_carrier_off(ndev);
1290 
1291 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1292 	if (ret < 0) {
1293 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1294 			   ret);
1295 		return ret;
1296 	}
1297 
1298 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1299 	if (ret < 0) {
1300 		netdev_err(ndev,
1301 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1302 		return ret;
1303 	}
1304 
1305 	ret = hns_nic_net_up(ndev);
1306 	if (ret) {
1307 		netdev_err(ndev,
1308 			   "hns net up fail, ret=%d!\n", ret);
1309 		return ret;
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 static int hns_nic_net_stop(struct net_device *ndev)
1316 {
1317 	hns_nic_net_down(ndev);
1318 
1319 	return 0;
1320 }
1321 
1322 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1323 static void hns_nic_net_timeout(struct net_device *ndev)
1324 {
1325 	struct hns_nic_priv *priv = netdev_priv(ndev);
1326 
1327 	hns_tx_timeout_reset(priv);
1328 }
1329 
1330 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1331 			    int cmd)
1332 {
1333 	struct hns_nic_priv *priv = netdev_priv(netdev);
1334 	struct phy_device *phy_dev = priv->phy;
1335 
1336 	if (!netif_running(netdev))
1337 		return -EINVAL;
1338 
1339 	if (!phy_dev)
1340 		return -ENOTSUPP;
1341 
1342 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1343 }
1344 
1345 /* use only for netconsole to poll with the device without interrupt */
1346 #ifdef CONFIG_NET_POLL_CONTROLLER
1347 void hns_nic_poll_controller(struct net_device *ndev)
1348 {
1349 	struct hns_nic_priv *priv = netdev_priv(ndev);
1350 	unsigned long flags;
1351 	int i;
1352 
1353 	local_irq_save(flags);
1354 	for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1355 		napi_schedule(&priv->ring_data[i].napi);
1356 	local_irq_restore(flags);
1357 }
1358 #endif
1359 
1360 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1361 				    struct net_device *ndev)
1362 {
1363 	struct hns_nic_priv *priv = netdev_priv(ndev);
1364 	int ret;
1365 
1366 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1367 	ret = hns_nic_net_xmit_hw(ndev, skb,
1368 				  &tx_ring_data(priv, skb->queue_mapping));
1369 	if (ret == NETDEV_TX_OK) {
1370 		ndev->trans_start = jiffies;
1371 		ndev->stats.tx_bytes += skb->len;
1372 		ndev->stats.tx_packets++;
1373 	}
1374 	return (netdev_tx_t)ret;
1375 }
1376 
1377 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1378 {
1379 	struct hns_nic_priv *priv = netdev_priv(ndev);
1380 	struct hnae_handle *h = priv->ae_handle;
1381 	int ret;
1382 
1383 	/* MTU < 68 is an error and causes problems on some kernels */
1384 	if (new_mtu < 68)
1385 		return -EINVAL;
1386 
1387 	if (!h->dev->ops->set_mtu)
1388 		return -ENOTSUPP;
1389 
1390 	if (netif_running(ndev)) {
1391 		(void)hns_nic_net_stop(ndev);
1392 		msleep(100);
1393 
1394 		ret = h->dev->ops->set_mtu(h, new_mtu);
1395 		if (ret)
1396 			netdev_err(ndev, "set mtu fail, return value %d\n",
1397 				   ret);
1398 
1399 		if (hns_nic_net_open(ndev))
1400 			netdev_err(ndev, "hns net open fail\n");
1401 	} else {
1402 		ret = h->dev->ops->set_mtu(h, new_mtu);
1403 	}
1404 
1405 	if (!ret)
1406 		ndev->mtu = new_mtu;
1407 
1408 	return ret;
1409 }
1410 
1411 static int hns_nic_set_features(struct net_device *netdev,
1412 				netdev_features_t features)
1413 {
1414 	struct hns_nic_priv *priv = netdev_priv(netdev);
1415 	struct hnae_handle *h = priv->ae_handle;
1416 
1417 	switch (priv->enet_ver) {
1418 	case AE_VERSION_1:
1419 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1420 			netdev_info(netdev, "enet v1 do not support tso!\n");
1421 		break;
1422 	default:
1423 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1424 			priv->ops.fill_desc = fill_tso_desc;
1425 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1426 			/* The chip only support 7*4096 */
1427 			netif_set_gso_max_size(netdev, 7 * 4096);
1428 			h->dev->ops->set_tso_stats(h, 1);
1429 		} else {
1430 			priv->ops.fill_desc = fill_v2_desc;
1431 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1432 			h->dev->ops->set_tso_stats(h, 0);
1433 		}
1434 		break;
1435 	}
1436 	netdev->features = features;
1437 	return 0;
1438 }
1439 
1440 static netdev_features_t hns_nic_fix_features(
1441 		struct net_device *netdev, netdev_features_t features)
1442 {
1443 	struct hns_nic_priv *priv = netdev_priv(netdev);
1444 
1445 	switch (priv->enet_ver) {
1446 	case AE_VERSION_1:
1447 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1448 				NETIF_F_HW_VLAN_CTAG_FILTER);
1449 		break;
1450 	default:
1451 		break;
1452 	}
1453 	return features;
1454 }
1455 
1456 /**
1457  * nic_set_multicast_list - set mutl mac address
1458  * @netdev: net device
1459  * @p: mac address
1460  *
1461  * return void
1462  */
1463 void hns_set_multicast_list(struct net_device *ndev)
1464 {
1465 	struct hns_nic_priv *priv = netdev_priv(ndev);
1466 	struct hnae_handle *h = priv->ae_handle;
1467 	struct netdev_hw_addr *ha = NULL;
1468 
1469 	if (!h)	{
1470 		netdev_err(ndev, "hnae handle is null\n");
1471 		return;
1472 	}
1473 
1474 	if (h->dev->ops->set_mc_addr) {
1475 		netdev_for_each_mc_addr(ha, ndev)
1476 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1477 				netdev_err(ndev, "set multicast fail\n");
1478 	}
1479 }
1480 
1481 void hns_nic_set_rx_mode(struct net_device *ndev)
1482 {
1483 	struct hns_nic_priv *priv = netdev_priv(ndev);
1484 	struct hnae_handle *h = priv->ae_handle;
1485 
1486 	if (h->dev->ops->set_promisc_mode) {
1487 		if (ndev->flags & IFF_PROMISC)
1488 			h->dev->ops->set_promisc_mode(h, 1);
1489 		else
1490 			h->dev->ops->set_promisc_mode(h, 0);
1491 	}
1492 
1493 	hns_set_multicast_list(ndev);
1494 }
1495 
1496 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev,
1497 					      struct rtnl_link_stats64 *stats)
1498 {
1499 	int idx = 0;
1500 	u64 tx_bytes = 0;
1501 	u64 rx_bytes = 0;
1502 	u64 tx_pkts = 0;
1503 	u64 rx_pkts = 0;
1504 	struct hns_nic_priv *priv = netdev_priv(ndev);
1505 	struct hnae_handle *h = priv->ae_handle;
1506 
1507 	for (idx = 0; idx < h->q_num; idx++) {
1508 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1509 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1510 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1511 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1512 	}
1513 
1514 	stats->tx_bytes = tx_bytes;
1515 	stats->tx_packets = tx_pkts;
1516 	stats->rx_bytes = rx_bytes;
1517 	stats->rx_packets = rx_pkts;
1518 
1519 	stats->rx_errors = ndev->stats.rx_errors;
1520 	stats->multicast = ndev->stats.multicast;
1521 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1522 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1523 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1524 
1525 	stats->tx_errors = ndev->stats.tx_errors;
1526 	stats->rx_dropped = ndev->stats.rx_dropped;
1527 	stats->tx_dropped = ndev->stats.tx_dropped;
1528 	stats->collisions = ndev->stats.collisions;
1529 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1530 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1531 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1532 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1533 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1534 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1535 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1536 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1537 	stats->rx_compressed = ndev->stats.rx_compressed;
1538 	stats->tx_compressed = ndev->stats.tx_compressed;
1539 
1540 	return stats;
1541 }
1542 
1543 static const struct net_device_ops hns_nic_netdev_ops = {
1544 	.ndo_open = hns_nic_net_open,
1545 	.ndo_stop = hns_nic_net_stop,
1546 	.ndo_start_xmit = hns_nic_net_xmit,
1547 	.ndo_tx_timeout = hns_nic_net_timeout,
1548 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1549 	.ndo_change_mtu = hns_nic_change_mtu,
1550 	.ndo_do_ioctl = hns_nic_do_ioctl,
1551 	.ndo_set_features = hns_nic_set_features,
1552 	.ndo_fix_features = hns_nic_fix_features,
1553 	.ndo_get_stats64 = hns_nic_get_stats64,
1554 #ifdef CONFIG_NET_POLL_CONTROLLER
1555 	.ndo_poll_controller = hns_nic_poll_controller,
1556 #endif
1557 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1558 };
1559 
1560 static void hns_nic_update_link_status(struct net_device *netdev)
1561 {
1562 	struct hns_nic_priv *priv = netdev_priv(netdev);
1563 
1564 	struct hnae_handle *h = priv->ae_handle;
1565 	int state = 1;
1566 
1567 	if (priv->phy) {
1568 		if (!genphy_update_link(priv->phy))
1569 			state = priv->phy->link;
1570 		else
1571 			state = 0;
1572 	}
1573 	state = state && h->dev->ops->get_status(h);
1574 
1575 	if (state != priv->link) {
1576 		if (state) {
1577 			netif_carrier_on(netdev);
1578 			netif_tx_wake_all_queues(netdev);
1579 			netdev_info(netdev, "link up\n");
1580 		} else {
1581 			netif_carrier_off(netdev);
1582 			netdev_info(netdev, "link down\n");
1583 		}
1584 		priv->link = state;
1585 	}
1586 }
1587 
1588 /* for dumping key regs*/
1589 static void hns_nic_dump(struct hns_nic_priv *priv)
1590 {
1591 	struct hnae_handle *h = priv->ae_handle;
1592 	struct hnae_ae_ops *ops = h->dev->ops;
1593 	u32 *data, reg_num, i;
1594 
1595 	if (ops->get_regs_len && ops->get_regs) {
1596 		reg_num = ops->get_regs_len(priv->ae_handle);
1597 		reg_num = (reg_num + 3ul) & ~3ul;
1598 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1599 		if (data) {
1600 			ops->get_regs(priv->ae_handle, data);
1601 			for (i = 0; i < reg_num; i += 4)
1602 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1603 					i, data[i], data[i + 1],
1604 					data[i + 2], data[i + 3]);
1605 			kfree(data);
1606 		}
1607 	}
1608 
1609 	for (i = 0; i < h->q_num; i++) {
1610 		pr_info("tx_queue%d_next_to_clean:%d\n",
1611 			i, h->qs[i]->tx_ring.next_to_clean);
1612 		pr_info("tx_queue%d_next_to_use:%d\n",
1613 			i, h->qs[i]->tx_ring.next_to_use);
1614 		pr_info("rx_queue%d_next_to_clean:%d\n",
1615 			i, h->qs[i]->rx_ring.next_to_clean);
1616 		pr_info("rx_queue%d_next_to_use:%d\n",
1617 			i, h->qs[i]->rx_ring.next_to_use);
1618 	}
1619 }
1620 
1621 /* for resetting suntask*/
1622 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1623 {
1624 	enum hnae_port_type type = priv->ae_handle->port_type;
1625 
1626 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1627 		return;
1628 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1629 
1630 	/* If we're already down, removing or resetting, just bail */
1631 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1632 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
1633 	    test_bit(NIC_STATE_RESETTING, &priv->state))
1634 		return;
1635 
1636 	hns_nic_dump(priv);
1637 	netdev_info(priv->netdev, "try to reset %s port!\n",
1638 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1639 
1640 	rtnl_lock();
1641 	/* put off any impending NetWatchDogTimeout */
1642 	priv->netdev->trans_start = jiffies;
1643 
1644 	if (type == HNAE_PORT_DEBUG) {
1645 		hns_nic_net_reinit(priv->netdev);
1646 	} else {
1647 		netif_carrier_off(priv->netdev);
1648 		netif_tx_disable(priv->netdev);
1649 	}
1650 	rtnl_unlock();
1651 }
1652 
1653 /* for doing service complete*/
1654 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
1655 {
1656 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
1657 
1658 	smp_mb__before_atomic();
1659 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1660 }
1661 
1662 static void hns_nic_service_task(struct work_struct *work)
1663 {
1664 	struct hns_nic_priv *priv
1665 		= container_of(work, struct hns_nic_priv, service_task);
1666 	struct hnae_handle *h = priv->ae_handle;
1667 
1668 	hns_nic_update_link_status(priv->netdev);
1669 	h->dev->ops->update_led_status(h);
1670 	hns_nic_update_stats(priv->netdev);
1671 
1672 	hns_nic_reset_subtask(priv);
1673 	hns_nic_service_event_complete(priv);
1674 }
1675 
1676 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
1677 {
1678 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
1679 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
1680 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
1681 		(void)schedule_work(&priv->service_task);
1682 }
1683 
1684 static void hns_nic_service_timer(unsigned long data)
1685 {
1686 	struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
1687 
1688 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1689 
1690 	hns_nic_task_schedule(priv);
1691 }
1692 
1693 /**
1694  * hns_tx_timeout_reset - initiate reset due to Tx timeout
1695  * @priv: driver private struct
1696  **/
1697 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
1698 {
1699 	/* Do the reset outside of interrupt context */
1700 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
1701 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1702 		netdev_warn(priv->netdev,
1703 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
1704 			    priv->tx_timeout_count, priv->state);
1705 		priv->tx_timeout_count++;
1706 		hns_nic_task_schedule(priv);
1707 	}
1708 }
1709 
1710 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
1711 {
1712 	struct hnae_handle *h = priv->ae_handle;
1713 	struct hns_nic_ring_data *rd;
1714 	int i;
1715 
1716 	if (h->q_num > NIC_MAX_Q_PER_VF) {
1717 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
1718 		return -EINVAL;
1719 	}
1720 
1721 	priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
1722 				  GFP_KERNEL);
1723 	if (!priv->ring_data)
1724 		return -ENOMEM;
1725 
1726 	for (i = 0; i < h->q_num; i++) {
1727 		rd = &priv->ring_data[i];
1728 		rd->queue_index = i;
1729 		rd->ring = &h->qs[i]->tx_ring;
1730 		rd->poll_one = hns_nic_tx_poll_one;
1731 		rd->fini_process = hns_nic_tx_fini_pro;
1732 
1733 		netif_napi_add(priv->netdev, &rd->napi,
1734 			       hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
1735 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1736 	}
1737 	for (i = h->q_num; i < h->q_num * 2; i++) {
1738 		rd = &priv->ring_data[i];
1739 		rd->queue_index = i - h->q_num;
1740 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
1741 		rd->poll_one = hns_nic_rx_poll_one;
1742 		rd->ex_process = hns_nic_rx_up_pro;
1743 		rd->fini_process = hns_nic_rx_fini_pro;
1744 
1745 		netif_napi_add(priv->netdev, &rd->napi,
1746 			       hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
1747 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1748 	}
1749 
1750 	return 0;
1751 }
1752 
1753 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
1754 {
1755 	struct hnae_handle *h = priv->ae_handle;
1756 	int i;
1757 
1758 	for (i = 0; i < h->q_num * 2; i++) {
1759 		netif_napi_del(&priv->ring_data[i].napi);
1760 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1761 			(void)irq_set_affinity_hint(
1762 				priv->ring_data[i].ring->irq,
1763 				NULL);
1764 			free_irq(priv->ring_data[i].ring->irq,
1765 				 &priv->ring_data[i]);
1766 		}
1767 
1768 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1769 	}
1770 	kfree(priv->ring_data);
1771 }
1772 
1773 static void hns_nic_set_priv_ops(struct net_device *netdev)
1774 {
1775 	struct hns_nic_priv *priv = netdev_priv(netdev);
1776 	struct hnae_handle *h = priv->ae_handle;
1777 
1778 	if (AE_IS_VER1(priv->enet_ver)) {
1779 		priv->ops.fill_desc = fill_desc;
1780 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
1781 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1782 	} else {
1783 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
1784 		if ((netdev->features & NETIF_F_TSO) ||
1785 		    (netdev->features & NETIF_F_TSO6)) {
1786 			priv->ops.fill_desc = fill_tso_desc;
1787 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1788 			/* This chip only support 7*4096 */
1789 			netif_set_gso_max_size(netdev, 7 * 4096);
1790 			h->dev->ops->set_tso_stats(h, 1);
1791 		} else {
1792 			priv->ops.fill_desc = fill_v2_desc;
1793 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1794 		}
1795 	}
1796 }
1797 
1798 static int hns_nic_try_get_ae(struct net_device *ndev)
1799 {
1800 	struct hns_nic_priv *priv = netdev_priv(ndev);
1801 	struct hnae_handle *h;
1802 	int ret;
1803 
1804 	h = hnae_get_handle(&priv->netdev->dev,
1805 			    priv->ae_name, priv->port_id, NULL);
1806 	if (IS_ERR_OR_NULL(h)) {
1807 		ret = PTR_ERR(h);
1808 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
1809 		goto out;
1810 	}
1811 	priv->ae_handle = h;
1812 
1813 	ret = hns_nic_init_phy(ndev, h);
1814 	if (ret) {
1815 		dev_err(priv->dev, "probe phy device fail!\n");
1816 		goto out_init_phy;
1817 	}
1818 
1819 	ret = hns_nic_init_ring_data(priv);
1820 	if (ret) {
1821 		ret = -ENOMEM;
1822 		goto out_init_ring_data;
1823 	}
1824 
1825 	hns_nic_set_priv_ops(ndev);
1826 
1827 	ret = register_netdev(ndev);
1828 	if (ret) {
1829 		dev_err(priv->dev, "probe register netdev fail!\n");
1830 		goto out_reg_ndev_fail;
1831 	}
1832 	return 0;
1833 
1834 out_reg_ndev_fail:
1835 	hns_nic_uninit_ring_data(priv);
1836 	priv->ring_data = NULL;
1837 out_init_phy:
1838 out_init_ring_data:
1839 	hnae_put_handle(priv->ae_handle);
1840 	priv->ae_handle = NULL;
1841 out:
1842 	return ret;
1843 }
1844 
1845 static int hns_nic_notifier_action(struct notifier_block *nb,
1846 				   unsigned long action, void *data)
1847 {
1848 	struct hns_nic_priv *priv =
1849 		container_of(nb, struct hns_nic_priv, notifier_block);
1850 
1851 	assert(action == HNAE_AE_REGISTER);
1852 
1853 	if (!hns_nic_try_get_ae(priv->netdev)) {
1854 		hnae_unregister_notifier(&priv->notifier_block);
1855 		priv->notifier_block.notifier_call = NULL;
1856 	}
1857 	return 0;
1858 }
1859 
1860 static int hns_nic_dev_probe(struct platform_device *pdev)
1861 {
1862 	struct device *dev = &pdev->dev;
1863 	struct net_device *ndev;
1864 	struct hns_nic_priv *priv;
1865 	struct device_node *node = dev->of_node;
1866 	int ret;
1867 
1868 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
1869 	if (!ndev)
1870 		return -ENOMEM;
1871 
1872 	platform_set_drvdata(pdev, ndev);
1873 
1874 	priv = netdev_priv(ndev);
1875 	priv->dev = dev;
1876 	priv->netdev = ndev;
1877 
1878 	if (of_device_is_compatible(node, "hisilicon,hns-nic-v1"))
1879 		priv->enet_ver = AE_VERSION_1;
1880 	else
1881 		priv->enet_ver = AE_VERSION_2;
1882 
1883 	ret = of_property_read_string(node, "ae-name", &priv->ae_name);
1884 	if (ret)
1885 		goto out_read_string_fail;
1886 
1887 	ret = of_property_read_u32(node, "port-id", &priv->port_id);
1888 	if (ret)
1889 		goto out_read_string_fail;
1890 
1891 	hns_init_mac_addr(ndev);
1892 
1893 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1894 	ndev->priv_flags |= IFF_UNICAST_FLT;
1895 	ndev->netdev_ops = &hns_nic_netdev_ops;
1896 	hns_ethtool_set_ops(ndev);
1897 
1898 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1899 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1900 		NETIF_F_GRO;
1901 	ndev->vlan_features |=
1902 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
1903 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
1904 
1905 	switch (priv->enet_ver) {
1906 	case AE_VERSION_2:
1907 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1908 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1909 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1910 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
1911 		break;
1912 	default:
1913 		break;
1914 	}
1915 
1916 	SET_NETDEV_DEV(ndev, dev);
1917 
1918 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
1919 		dev_dbg(dev, "set mask to 64bit\n");
1920 	else
1921 		dev_err(dev, "set mask to 32bit fail!\n");
1922 
1923 	/* carrier off reporting is important to ethtool even BEFORE open */
1924 	netif_carrier_off(ndev);
1925 
1926 	setup_timer(&priv->service_timer, hns_nic_service_timer,
1927 		    (unsigned long)priv);
1928 	INIT_WORK(&priv->service_task, hns_nic_service_task);
1929 
1930 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
1931 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1932 	set_bit(NIC_STATE_DOWN, &priv->state);
1933 
1934 	if (hns_nic_try_get_ae(priv->netdev)) {
1935 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
1936 		ret = hnae_register_notifier(&priv->notifier_block);
1937 		if (ret) {
1938 			dev_err(dev, "register notifier fail!\n");
1939 			goto out_notify_fail;
1940 		}
1941 		dev_dbg(dev, "has not handle, register notifier!\n");
1942 	}
1943 
1944 	return 0;
1945 
1946 out_notify_fail:
1947 	(void)cancel_work_sync(&priv->service_task);
1948 out_read_string_fail:
1949 	free_netdev(ndev);
1950 	return ret;
1951 }
1952 
1953 static int hns_nic_dev_remove(struct platform_device *pdev)
1954 {
1955 	struct net_device *ndev = platform_get_drvdata(pdev);
1956 	struct hns_nic_priv *priv = netdev_priv(ndev);
1957 
1958 	if (ndev->reg_state != NETREG_UNINITIALIZED)
1959 		unregister_netdev(ndev);
1960 
1961 	if (priv->ring_data)
1962 		hns_nic_uninit_ring_data(priv);
1963 	priv->ring_data = NULL;
1964 
1965 	if (priv->phy)
1966 		phy_disconnect(priv->phy);
1967 	priv->phy = NULL;
1968 
1969 	if (!IS_ERR_OR_NULL(priv->ae_handle))
1970 		hnae_put_handle(priv->ae_handle);
1971 	priv->ae_handle = NULL;
1972 	if (priv->notifier_block.notifier_call)
1973 		hnae_unregister_notifier(&priv->notifier_block);
1974 	priv->notifier_block.notifier_call = NULL;
1975 
1976 	set_bit(NIC_STATE_REMOVING, &priv->state);
1977 	(void)cancel_work_sync(&priv->service_task);
1978 
1979 	free_netdev(ndev);
1980 	return 0;
1981 }
1982 
1983 static const struct of_device_id hns_enet_of_match[] = {
1984 	{.compatible = "hisilicon,hns-nic-v1",},
1985 	{.compatible = "hisilicon,hns-nic-v2",},
1986 	{},
1987 };
1988 
1989 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
1990 
1991 static struct platform_driver hns_nic_dev_driver = {
1992 	.driver = {
1993 		.name = "hns-nic",
1994 		.of_match_table = hns_enet_of_match,
1995 	},
1996 	.probe = hns_nic_dev_probe,
1997 	.remove = hns_nic_dev_remove,
1998 };
1999 
2000 module_platform_driver(hns_nic_dev_driver);
2001 
2002 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2003 MODULE_AUTHOR("Hisilicon, Inc.");
2004 MODULE_LICENSE("GPL");
2005 MODULE_ALIAS("platform:hns-nic");
2006