1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2014-2015 Hisilicon Limited. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/cpumask.h> 8 #include <linux/etherdevice.h> 9 #include <linux/if_vlan.h> 10 #include <linux/interrupt.h> 11 #include <linux/io.h> 12 #include <linux/ip.h> 13 #include <linux/ipv6.h> 14 #include <linux/irq.h> 15 #include <linux/module.h> 16 #include <linux/phy.h> 17 #include <linux/platform_device.h> 18 #include <linux/skbuff.h> 19 20 #include "hnae.h" 21 #include "hns_enet.h" 22 #include "hns_dsaf_mac.h" 23 24 #define NIC_MAX_Q_PER_VF 16 25 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 26 27 #define SERVICE_TIMER_HZ (1 * HZ) 28 29 #define RCB_IRQ_NOT_INITED 0 30 #define RCB_IRQ_INITED 1 31 #define HNS_BUFFER_SIZE_2048 2048 32 33 #define BD_MAX_SEND_SIZE 8191 34 #define SKB_TMP_LEN(SKB) \ 35 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) 36 37 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size, 38 int send_sz, dma_addr_t dma, int frag_end, 39 int buf_num, enum hns_desc_type type, int mtu) 40 { 41 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 42 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 43 struct iphdr *iphdr; 44 struct ipv6hdr *ipv6hdr; 45 struct sk_buff *skb; 46 __be16 protocol; 47 u8 bn_pid = 0; 48 u8 rrcfv = 0; 49 u8 ip_offset = 0; 50 u8 tvsvsn = 0; 51 u16 mss = 0; 52 u8 l4_len = 0; 53 u16 paylen = 0; 54 55 desc_cb->priv = priv; 56 desc_cb->length = size; 57 desc_cb->dma = dma; 58 desc_cb->type = type; 59 60 desc->addr = cpu_to_le64(dma); 61 desc->tx.send_size = cpu_to_le16((u16)send_sz); 62 63 /* config bd buffer end */ 64 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 65 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 66 67 /* fill port_id in the tx bd for sending management pkts */ 68 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 69 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 70 71 if (type == DESC_TYPE_SKB) { 72 skb = (struct sk_buff *)priv; 73 74 if (skb->ip_summed == CHECKSUM_PARTIAL) { 75 skb_reset_mac_len(skb); 76 protocol = skb->protocol; 77 ip_offset = ETH_HLEN; 78 79 if (protocol == htons(ETH_P_8021Q)) { 80 ip_offset += VLAN_HLEN; 81 protocol = vlan_get_protocol(skb); 82 skb->protocol = protocol; 83 } 84 85 if (skb->protocol == htons(ETH_P_IP)) { 86 iphdr = ip_hdr(skb); 87 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 88 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 89 90 /* check for tcp/udp header */ 91 if (iphdr->protocol == IPPROTO_TCP && 92 skb_is_gso(skb)) { 93 hnae_set_bit(tvsvsn, 94 HNSV2_TXD_TSE_B, 1); 95 l4_len = tcp_hdrlen(skb); 96 mss = skb_shinfo(skb)->gso_size; 97 paylen = skb->len - SKB_TMP_LEN(skb); 98 } 99 } else if (skb->protocol == htons(ETH_P_IPV6)) { 100 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 101 ipv6hdr = ipv6_hdr(skb); 102 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 103 104 /* check for tcp/udp header */ 105 if (ipv6hdr->nexthdr == IPPROTO_TCP && 106 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 107 hnae_set_bit(tvsvsn, 108 HNSV2_TXD_TSE_B, 1); 109 l4_len = tcp_hdrlen(skb); 110 mss = skb_shinfo(skb)->gso_size; 111 paylen = skb->len - SKB_TMP_LEN(skb); 112 } 113 } 114 desc->tx.ip_offset = ip_offset; 115 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 116 desc->tx.mss = cpu_to_le16(mss); 117 desc->tx.l4_len = l4_len; 118 desc->tx.paylen = cpu_to_le16(paylen); 119 } 120 } 121 122 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 123 124 desc->tx.bn_pid = bn_pid; 125 desc->tx.ra_ri_cs_fe_vld = rrcfv; 126 127 ring_ptr_move_fw(ring, next_to_use); 128 } 129 130 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 131 int size, dma_addr_t dma, int frag_end, 132 int buf_num, enum hns_desc_type type, int mtu) 133 { 134 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end, 135 buf_num, type, mtu); 136 } 137 138 static const struct acpi_device_id hns_enet_acpi_match[] = { 139 { "HISI00C1", 0 }, 140 { "HISI00C2", 0 }, 141 { }, 142 }; 143 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 144 145 static void fill_desc(struct hnae_ring *ring, void *priv, 146 int size, dma_addr_t dma, int frag_end, 147 int buf_num, enum hns_desc_type type, int mtu) 148 { 149 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 150 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 151 struct sk_buff *skb; 152 __be16 protocol; 153 u32 ip_offset; 154 u32 asid_bufnum_pid = 0; 155 u32 flag_ipoffset = 0; 156 157 desc_cb->priv = priv; 158 desc_cb->length = size; 159 desc_cb->dma = dma; 160 desc_cb->type = type; 161 162 desc->addr = cpu_to_le64(dma); 163 desc->tx.send_size = cpu_to_le16((u16)size); 164 165 /*config bd buffer end */ 166 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 167 168 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 169 170 if (type == DESC_TYPE_SKB) { 171 skb = (struct sk_buff *)priv; 172 173 if (skb->ip_summed == CHECKSUM_PARTIAL) { 174 protocol = skb->protocol; 175 ip_offset = ETH_HLEN; 176 177 /*if it is a SW VLAN check the next protocol*/ 178 if (protocol == htons(ETH_P_8021Q)) { 179 ip_offset += VLAN_HLEN; 180 protocol = vlan_get_protocol(skb); 181 skb->protocol = protocol; 182 } 183 184 if (skb->protocol == htons(ETH_P_IP)) { 185 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 186 /* check for tcp/udp header */ 187 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 188 189 } else if (skb->protocol == htons(ETH_P_IPV6)) { 190 /* ipv6 has not l3 cs, check for L4 header */ 191 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 192 } 193 194 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 195 } 196 } 197 198 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 199 200 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 201 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 202 203 ring_ptr_move_fw(ring, next_to_use); 204 } 205 206 static void unfill_desc(struct hnae_ring *ring) 207 { 208 ring_ptr_move_bw(ring, next_to_use); 209 } 210 211 static int hns_nic_maybe_stop_tx( 212 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 213 { 214 struct sk_buff *skb = *out_skb; 215 struct sk_buff *new_skb = NULL; 216 int buf_num; 217 218 /* no. of segments (plus a header) */ 219 buf_num = skb_shinfo(skb)->nr_frags + 1; 220 221 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 222 if (ring_space(ring) < 1) 223 return -EBUSY; 224 225 new_skb = skb_copy(skb, GFP_ATOMIC); 226 if (!new_skb) 227 return -ENOMEM; 228 229 dev_kfree_skb_any(skb); 230 *out_skb = new_skb; 231 buf_num = 1; 232 } else if (buf_num > ring_space(ring)) { 233 return -EBUSY; 234 } 235 236 *bnum = buf_num; 237 return 0; 238 } 239 240 static int hns_nic_maybe_stop_tso( 241 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 242 { 243 int i; 244 int size; 245 int buf_num; 246 int frag_num; 247 struct sk_buff *skb = *out_skb; 248 struct sk_buff *new_skb = NULL; 249 skb_frag_t *frag; 250 251 size = skb_headlen(skb); 252 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 253 254 frag_num = skb_shinfo(skb)->nr_frags; 255 for (i = 0; i < frag_num; i++) { 256 frag = &skb_shinfo(skb)->frags[i]; 257 size = skb_frag_size(frag); 258 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 259 } 260 261 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 262 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 263 if (ring_space(ring) < buf_num) 264 return -EBUSY; 265 /* manual split the send packet */ 266 new_skb = skb_copy(skb, GFP_ATOMIC); 267 if (!new_skb) 268 return -ENOMEM; 269 dev_kfree_skb_any(skb); 270 *out_skb = new_skb; 271 272 } else if (ring_space(ring) < buf_num) { 273 return -EBUSY; 274 } 275 276 *bnum = buf_num; 277 return 0; 278 } 279 280 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 281 int size, dma_addr_t dma, int frag_end, 282 int buf_num, enum hns_desc_type type, int mtu) 283 { 284 int frag_buf_num; 285 int sizeoflast; 286 int k; 287 288 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 289 sizeoflast = size % BD_MAX_SEND_SIZE; 290 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 291 292 /* when the frag size is bigger than hardware, split this frag */ 293 for (k = 0; k < frag_buf_num; k++) 294 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0, 295 (k == frag_buf_num - 1) ? 296 sizeoflast : BD_MAX_SEND_SIZE, 297 dma + BD_MAX_SEND_SIZE * k, 298 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 299 buf_num, 300 (type == DESC_TYPE_SKB && !k) ? 301 DESC_TYPE_SKB : DESC_TYPE_PAGE, 302 mtu); 303 } 304 305 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev, 306 struct sk_buff *skb, 307 struct hns_nic_ring_data *ring_data) 308 { 309 struct hns_nic_priv *priv = netdev_priv(ndev); 310 struct hnae_ring *ring = ring_data->ring; 311 struct device *dev = ring_to_dev(ring); 312 struct netdev_queue *dev_queue; 313 skb_frag_t *frag; 314 int buf_num; 315 int seg_num; 316 dma_addr_t dma; 317 int size, next_to_use; 318 int i; 319 320 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 321 case -EBUSY: 322 ring->stats.tx_busy++; 323 goto out_net_tx_busy; 324 case -ENOMEM: 325 ring->stats.sw_err_cnt++; 326 netdev_err(ndev, "no memory to xmit!\n"); 327 goto out_err_tx_ok; 328 default: 329 break; 330 } 331 332 /* no. of segments (plus a header) */ 333 seg_num = skb_shinfo(skb)->nr_frags + 1; 334 next_to_use = ring->next_to_use; 335 336 /* fill the first part */ 337 size = skb_headlen(skb); 338 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 339 if (dma_mapping_error(dev, dma)) { 340 netdev_err(ndev, "TX head DMA map failed\n"); 341 ring->stats.sw_err_cnt++; 342 goto out_err_tx_ok; 343 } 344 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 345 buf_num, DESC_TYPE_SKB, ndev->mtu); 346 347 /* fill the fragments */ 348 for (i = 1; i < seg_num; i++) { 349 frag = &skb_shinfo(skb)->frags[i - 1]; 350 size = skb_frag_size(frag); 351 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 352 if (dma_mapping_error(dev, dma)) { 353 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 354 ring->stats.sw_err_cnt++; 355 goto out_map_frag_fail; 356 } 357 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 358 seg_num - 1 == i ? 1 : 0, buf_num, 359 DESC_TYPE_PAGE, ndev->mtu); 360 } 361 362 /*complete translate all packets*/ 363 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 364 netdev_tx_sent_queue(dev_queue, skb->len); 365 366 netif_trans_update(ndev); 367 ndev->stats.tx_bytes += skb->len; 368 ndev->stats.tx_packets++; 369 370 wmb(); /* commit all data before submit */ 371 assert(skb->queue_mapping < priv->ae_handle->q_num); 372 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 373 374 return NETDEV_TX_OK; 375 376 out_map_frag_fail: 377 378 while (ring->next_to_use != next_to_use) { 379 unfill_desc(ring); 380 if (ring->next_to_use != next_to_use) 381 dma_unmap_page(dev, 382 ring->desc_cb[ring->next_to_use].dma, 383 ring->desc_cb[ring->next_to_use].length, 384 DMA_TO_DEVICE); 385 else 386 dma_unmap_single(dev, 387 ring->desc_cb[next_to_use].dma, 388 ring->desc_cb[next_to_use].length, 389 DMA_TO_DEVICE); 390 } 391 392 out_err_tx_ok: 393 394 dev_kfree_skb_any(skb); 395 return NETDEV_TX_OK; 396 397 out_net_tx_busy: 398 399 netif_stop_subqueue(ndev, skb->queue_mapping); 400 401 /* Herbert's original patch had: 402 * smp_mb__after_netif_stop_queue(); 403 * but since that doesn't exist yet, just open code it. 404 */ 405 smp_mb(); 406 return NETDEV_TX_BUSY; 407 } 408 409 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 410 struct hnae_ring *ring, int pull_len, 411 struct hnae_desc_cb *desc_cb) 412 { 413 struct hnae_desc *desc; 414 u32 truesize; 415 int size; 416 int last_offset; 417 bool twobufs; 418 419 twobufs = ((PAGE_SIZE < 8192) && 420 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 421 422 desc = &ring->desc[ring->next_to_clean]; 423 size = le16_to_cpu(desc->rx.size); 424 425 if (twobufs) { 426 truesize = hnae_buf_size(ring); 427 } else { 428 truesize = ALIGN(size, L1_CACHE_BYTES); 429 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 430 } 431 432 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 433 size - pull_len, truesize); 434 435 /* avoid re-using remote pages,flag default unreuse */ 436 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 437 return; 438 439 if (twobufs) { 440 /* if we are only owner of page we can reuse it */ 441 if (likely(page_count(desc_cb->priv) == 1)) { 442 /* flip page offset to other buffer */ 443 desc_cb->page_offset ^= truesize; 444 445 desc_cb->reuse_flag = 1; 446 /* bump ref count on page before it is given*/ 447 get_page(desc_cb->priv); 448 } 449 return; 450 } 451 452 /* move offset up to the next cache line */ 453 desc_cb->page_offset += truesize; 454 455 if (desc_cb->page_offset <= last_offset) { 456 desc_cb->reuse_flag = 1; 457 /* bump ref count on page before it is given*/ 458 get_page(desc_cb->priv); 459 } 460 } 461 462 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 463 { 464 *out_bnum = hnae_get_field(bnum_flag, 465 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 466 } 467 468 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 469 { 470 *out_bnum = hnae_get_field(bnum_flag, 471 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 472 } 473 474 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 475 struct sk_buff *skb, u32 flag) 476 { 477 struct net_device *netdev = ring_data->napi.dev; 478 u32 l3id; 479 u32 l4id; 480 481 /* check if RX checksum offload is enabled */ 482 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 483 return; 484 485 /* In hardware, we only support checksum for the following protocols: 486 * 1) IPv4, 487 * 2) TCP(over IPv4 or IPv6), 488 * 3) UDP(over IPv4 or IPv6), 489 * 4) SCTP(over IPv4 or IPv6) 490 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 491 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 492 * 493 * Hardware limitation: 494 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 495 * Error" bit (which usually can be used to indicate whether checksum 496 * was calculated by the hardware and if there was any error encountered 497 * during checksum calculation). 498 * 499 * Software workaround: 500 * We do get info within the RX descriptor about the kind of L3/L4 501 * protocol coming in the packet and the error status. These errors 502 * might not just be checksum errors but could be related to version, 503 * length of IPv4, UDP, TCP etc. 504 * Because there is no-way of knowing if it is a L3/L4 error due to bad 505 * checksum or any other L3/L4 error, we will not (cannot) convey 506 * checksum status for such cases to upper stack and will not maintain 507 * the RX L3/L4 checksum counters as well. 508 */ 509 510 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 511 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 512 513 /* check L3 protocol for which checksum is supported */ 514 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 515 return; 516 517 /* check for any(not just checksum)flagged L3 protocol errors */ 518 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 519 return; 520 521 /* we do not support checksum of fragmented packets */ 522 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 523 return; 524 525 /* check L4 protocol for which checksum is supported */ 526 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 527 (l4id != HNS_RX_FLAG_L4ID_UDP) && 528 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 529 return; 530 531 /* check for any(not just checksum)flagged L4 protocol errors */ 532 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 533 return; 534 535 /* now, this has to be a packet with valid RX checksum */ 536 skb->ip_summed = CHECKSUM_UNNECESSARY; 537 } 538 539 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 540 struct sk_buff **out_skb, int *out_bnum) 541 { 542 struct hnae_ring *ring = ring_data->ring; 543 struct net_device *ndev = ring_data->napi.dev; 544 struct hns_nic_priv *priv = netdev_priv(ndev); 545 struct sk_buff *skb; 546 struct hnae_desc *desc; 547 struct hnae_desc_cb *desc_cb; 548 unsigned char *va; 549 int bnum, length, i; 550 int pull_len; 551 u32 bnum_flag; 552 553 desc = &ring->desc[ring->next_to_clean]; 554 desc_cb = &ring->desc_cb[ring->next_to_clean]; 555 556 prefetch(desc); 557 558 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 559 560 /* prefetch first cache line of first page */ 561 net_prefetch(va); 562 563 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 564 HNS_RX_HEAD_SIZE); 565 if (unlikely(!skb)) { 566 ring->stats.sw_err_cnt++; 567 return -ENOMEM; 568 } 569 570 prefetchw(skb->data); 571 length = le16_to_cpu(desc->rx.pkt_len); 572 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 573 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 574 *out_bnum = bnum; 575 576 if (length <= HNS_RX_HEAD_SIZE) { 577 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 578 579 /* we can reuse buffer as-is, just make sure it is local */ 580 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 581 desc_cb->reuse_flag = 1; 582 else /* this page cannot be reused so discard it */ 583 put_page(desc_cb->priv); 584 585 ring_ptr_move_fw(ring, next_to_clean); 586 587 if (unlikely(bnum != 1)) { /* check err*/ 588 *out_bnum = 1; 589 goto out_bnum_err; 590 } 591 } else { 592 ring->stats.seg_pkt_cnt++; 593 594 pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE); 595 memcpy(__skb_put(skb, pull_len), va, 596 ALIGN(pull_len, sizeof(long))); 597 598 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 599 ring_ptr_move_fw(ring, next_to_clean); 600 601 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 602 *out_bnum = 1; 603 goto out_bnum_err; 604 } 605 for (i = 1; i < bnum; i++) { 606 desc = &ring->desc[ring->next_to_clean]; 607 desc_cb = &ring->desc_cb[ring->next_to_clean]; 608 609 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 610 ring_ptr_move_fw(ring, next_to_clean); 611 } 612 } 613 614 /* check except process, free skb and jump the desc */ 615 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 616 out_bnum_err: 617 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 618 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 619 bnum, ring->max_desc_num_per_pkt, 620 length, (int)MAX_SKB_FRAGS, 621 ((u64 *)desc)[0], ((u64 *)desc)[1]); 622 ring->stats.err_bd_num++; 623 dev_kfree_skb_any(skb); 624 return -EDOM; 625 } 626 627 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 628 629 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 630 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 631 ((u64 *)desc)[0], ((u64 *)desc)[1]); 632 ring->stats.non_vld_descs++; 633 dev_kfree_skb_any(skb); 634 return -EINVAL; 635 } 636 637 if (unlikely((!desc->rx.pkt_len) || 638 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 639 ring->stats.err_pkt_len++; 640 dev_kfree_skb_any(skb); 641 return -EFAULT; 642 } 643 644 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 645 ring->stats.l2_err++; 646 dev_kfree_skb_any(skb); 647 return -EFAULT; 648 } 649 650 ring->stats.rx_pkts++; 651 ring->stats.rx_bytes += skb->len; 652 653 /* indicate to upper stack if our hardware has already calculated 654 * the RX checksum 655 */ 656 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 657 658 return 0; 659 } 660 661 static void 662 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 663 { 664 int i, ret; 665 struct hnae_desc_cb res_cbs; 666 struct hnae_desc_cb *desc_cb; 667 struct hnae_ring *ring = ring_data->ring; 668 struct net_device *ndev = ring_data->napi.dev; 669 670 for (i = 0; i < cleand_count; i++) { 671 desc_cb = &ring->desc_cb[ring->next_to_use]; 672 if (desc_cb->reuse_flag) { 673 ring->stats.reuse_pg_cnt++; 674 hnae_reuse_buffer(ring, ring->next_to_use); 675 } else { 676 ret = hnae_reserve_buffer_map(ring, &res_cbs); 677 if (ret) { 678 ring->stats.sw_err_cnt++; 679 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 680 break; 681 } 682 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 683 } 684 685 ring_ptr_move_fw(ring, next_to_use); 686 } 687 688 wmb(); /* make all data has been write before submit */ 689 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 690 } 691 692 /* return error number for error or number of desc left to take 693 */ 694 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 695 struct sk_buff *skb) 696 { 697 struct net_device *ndev = ring_data->napi.dev; 698 699 skb->protocol = eth_type_trans(skb, ndev); 700 napi_gro_receive(&ring_data->napi, skb); 701 } 702 703 static int hns_desc_unused(struct hnae_ring *ring) 704 { 705 int ntc = ring->next_to_clean; 706 int ntu = ring->next_to_use; 707 708 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 709 } 710 711 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */ 712 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */ 713 714 #define HNS_COAL_BDNUM 3 715 716 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring) 717 { 718 bool coal_enable = ring->q->handle->coal_adapt_en; 719 720 if (coal_enable && 721 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE) 722 return HNS_COAL_BDNUM; 723 else 724 return 0; 725 } 726 727 static void hns_update_rx_rate(struct hnae_ring *ring) 728 { 729 bool coal_enable = ring->q->handle->coal_adapt_en; 730 u32 time_passed_ms; 731 u64 total_bytes; 732 733 if (!coal_enable || 734 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4))) 735 return; 736 737 /* ring->stats.rx_bytes overflowed */ 738 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) { 739 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 740 ring->coal_last_jiffies = jiffies; 741 return; 742 } 743 744 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes; 745 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies); 746 do_div(total_bytes, time_passed_ms); 747 ring->coal_rx_rate = total_bytes >> 10; 748 749 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 750 ring->coal_last_jiffies = jiffies; 751 } 752 753 /** 754 * smooth_alg - smoothing algrithm for adjusting coalesce parameter 755 * @new_param: new value 756 * @old_param: old value 757 **/ 758 static u32 smooth_alg(u32 new_param, u32 old_param) 759 { 760 u32 gap = (new_param > old_param) ? new_param - old_param 761 : old_param - new_param; 762 763 if (gap > 8) 764 gap >>= 3; 765 766 if (new_param > old_param) 767 return old_param + gap; 768 else 769 return old_param - gap; 770 } 771 772 /** 773 * hns_nic_adpt_coalesce - self adapte coalesce according to rx rate 774 * @ring_data: pointer to hns_nic_ring_data 775 **/ 776 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data) 777 { 778 struct hnae_ring *ring = ring_data->ring; 779 struct hnae_handle *handle = ring->q->handle; 780 u32 new_coal_param, old_coal_param = ring->coal_param; 781 782 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE) 783 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM; 784 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE) 785 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM; 786 else 787 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM; 788 789 if (new_coal_param == old_coal_param && 790 new_coal_param == handle->coal_param) 791 return; 792 793 new_coal_param = smooth_alg(new_coal_param, old_coal_param); 794 ring->coal_param = new_coal_param; 795 796 /** 797 * Because all ring in one port has one coalesce param, when one ring 798 * calculate its own coalesce param, it cannot write to hardware at 799 * once. There are three conditions as follows: 800 * 1. current ring's coalesce param is larger than the hardware. 801 * 2. or ring which adapt last time can change again. 802 * 3. timeout. 803 */ 804 if (new_coal_param == handle->coal_param) { 805 handle->coal_last_jiffies = jiffies; 806 handle->coal_ring_idx = ring_data->queue_index; 807 } else if (new_coal_param > handle->coal_param || 808 handle->coal_ring_idx == ring_data->queue_index || 809 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) { 810 handle->dev->ops->set_coalesce_usecs(handle, 811 new_coal_param); 812 handle->dev->ops->set_coalesce_frames(handle, 813 1, new_coal_param); 814 handle->coal_param = new_coal_param; 815 handle->coal_ring_idx = ring_data->queue_index; 816 handle->coal_last_jiffies = jiffies; 817 } 818 } 819 820 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 821 int budget, void *v) 822 { 823 struct hnae_ring *ring = ring_data->ring; 824 struct sk_buff *skb; 825 int num, bnum; 826 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 827 int recv_pkts, recv_bds, clean_count, err; 828 int unused_count = hns_desc_unused(ring); 829 830 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 831 rmb(); /* make sure num taken effect before the other data is touched */ 832 833 recv_pkts = 0, recv_bds = 0, clean_count = 0; 834 num -= unused_count; 835 836 while (recv_pkts < budget && recv_bds < num) { 837 /* reuse or realloc buffers */ 838 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 839 hns_nic_alloc_rx_buffers(ring_data, 840 clean_count + unused_count); 841 clean_count = 0; 842 unused_count = hns_desc_unused(ring); 843 } 844 845 /* poll one pkt */ 846 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 847 if (unlikely(!skb)) /* this fault cannot be repaired */ 848 goto out; 849 850 recv_bds += bnum; 851 clean_count += bnum; 852 if (unlikely(err)) { /* do jump the err */ 853 recv_pkts++; 854 continue; 855 } 856 857 /* do update ip stack process*/ 858 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 859 ring_data, skb); 860 recv_pkts++; 861 } 862 863 out: 864 /* make all data has been write before submit */ 865 if (clean_count + unused_count > 0) 866 hns_nic_alloc_rx_buffers(ring_data, 867 clean_count + unused_count); 868 869 return recv_pkts; 870 } 871 872 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 873 { 874 struct hnae_ring *ring = ring_data->ring; 875 int num; 876 bool rx_stopped; 877 878 hns_update_rx_rate(ring); 879 880 /* for hardware bug fixed */ 881 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 882 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 883 884 if (num <= hns_coal_rx_bdnum(ring)) { 885 if (ring->q->handle->coal_adapt_en) 886 hns_nic_adpt_coalesce(ring_data); 887 888 rx_stopped = true; 889 } else { 890 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 891 ring_data->ring, 1); 892 893 rx_stopped = false; 894 } 895 896 return rx_stopped; 897 } 898 899 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 900 { 901 struct hnae_ring *ring = ring_data->ring; 902 int num; 903 904 hns_update_rx_rate(ring); 905 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 906 907 if (num <= hns_coal_rx_bdnum(ring)) { 908 if (ring->q->handle->coal_adapt_en) 909 hns_nic_adpt_coalesce(ring_data); 910 911 return true; 912 } 913 914 return false; 915 } 916 917 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 918 int *bytes, int *pkts) 919 { 920 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 921 922 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 923 (*bytes) += desc_cb->length; 924 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 925 hnae_free_buffer_detach(ring, ring->next_to_clean); 926 927 ring_ptr_move_fw(ring, next_to_clean); 928 } 929 930 static int is_valid_clean_head(struct hnae_ring *ring, int h) 931 { 932 int u = ring->next_to_use; 933 int c = ring->next_to_clean; 934 935 if (unlikely(h > ring->desc_num)) 936 return 0; 937 938 assert(u > 0 && u < ring->desc_num); 939 assert(c > 0 && c < ring->desc_num); 940 assert(u != c && h != c); /* must be checked before call this func */ 941 942 return u > c ? (h > c && h <= u) : (h > c || h <= u); 943 } 944 945 /* reclaim all desc in one budget 946 * return error or number of desc left 947 */ 948 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 949 int budget, void *v) 950 { 951 struct hnae_ring *ring = ring_data->ring; 952 struct net_device *ndev = ring_data->napi.dev; 953 struct netdev_queue *dev_queue; 954 struct hns_nic_priv *priv = netdev_priv(ndev); 955 int head; 956 int bytes, pkts; 957 958 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 959 rmb(); /* make sure head is ready before touch any data */ 960 961 if (is_ring_empty(ring) || head == ring->next_to_clean) 962 return 0; /* no data to poll */ 963 964 if (!is_valid_clean_head(ring, head)) { 965 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 966 ring->next_to_use, ring->next_to_clean); 967 ring->stats.io_err_cnt++; 968 return -EIO; 969 } 970 971 bytes = 0; 972 pkts = 0; 973 while (head != ring->next_to_clean) { 974 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 975 /* issue prefetch for next Tx descriptor */ 976 prefetch(&ring->desc_cb[ring->next_to_clean]); 977 } 978 /* update tx ring statistics. */ 979 ring->stats.tx_pkts += pkts; 980 ring->stats.tx_bytes += bytes; 981 982 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 983 netdev_tx_completed_queue(dev_queue, pkts, bytes); 984 985 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 986 netif_carrier_on(ndev); 987 988 if (unlikely(pkts && netif_carrier_ok(ndev) && 989 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 990 /* Make sure that anybody stopping the queue after this 991 * sees the new next_to_clean. 992 */ 993 smp_mb(); 994 if (netif_tx_queue_stopped(dev_queue) && 995 !test_bit(NIC_STATE_DOWN, &priv->state)) { 996 netif_tx_wake_queue(dev_queue); 997 ring->stats.restart_queue++; 998 } 999 } 1000 return 0; 1001 } 1002 1003 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 1004 { 1005 struct hnae_ring *ring = ring_data->ring; 1006 int head; 1007 1008 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1009 1010 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1011 1012 if (head != ring->next_to_clean) { 1013 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1014 ring_data->ring, 1); 1015 1016 return false; 1017 } else { 1018 return true; 1019 } 1020 } 1021 1022 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1023 { 1024 struct hnae_ring *ring = ring_data->ring; 1025 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1026 1027 if (head == ring->next_to_clean) 1028 return true; 1029 else 1030 return false; 1031 } 1032 1033 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1034 { 1035 struct hnae_ring *ring = ring_data->ring; 1036 struct net_device *ndev = ring_data->napi.dev; 1037 struct netdev_queue *dev_queue; 1038 int head; 1039 int bytes, pkts; 1040 1041 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1042 bytes = 0; 1043 pkts = 0; 1044 while (head != ring->next_to_clean) 1045 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1046 1047 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1048 netdev_tx_reset_queue(dev_queue); 1049 } 1050 1051 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1052 { 1053 int clean_complete = 0; 1054 struct hns_nic_ring_data *ring_data = 1055 container_of(napi, struct hns_nic_ring_data, napi); 1056 struct hnae_ring *ring = ring_data->ring; 1057 1058 clean_complete += ring_data->poll_one( 1059 ring_data, budget - clean_complete, 1060 ring_data->ex_process); 1061 1062 if (clean_complete < budget) { 1063 if (ring_data->fini_process(ring_data)) { 1064 napi_complete(napi); 1065 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1066 } else { 1067 return budget; 1068 } 1069 } 1070 1071 return clean_complete; 1072 } 1073 1074 static irqreturn_t hns_irq_handle(int irq, void *dev) 1075 { 1076 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1077 1078 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1079 ring_data->ring, 1); 1080 napi_schedule(&ring_data->napi); 1081 1082 return IRQ_HANDLED; 1083 } 1084 1085 /** 1086 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1087 *@ndev: net device 1088 */ 1089 static void hns_nic_adjust_link(struct net_device *ndev) 1090 { 1091 struct hns_nic_priv *priv = netdev_priv(ndev); 1092 struct hnae_handle *h = priv->ae_handle; 1093 int state = 1; 1094 1095 /* If there is no phy, do not need adjust link */ 1096 if (ndev->phydev) { 1097 /* When phy link down, do nothing */ 1098 if (ndev->phydev->link == 0) 1099 return; 1100 1101 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed, 1102 ndev->phydev->duplex)) { 1103 /* because Hi161X chip don't support to change gmac 1104 * speed and duplex with traffic. Delay 200ms to 1105 * make sure there is no more data in chip FIFO. 1106 */ 1107 netif_carrier_off(ndev); 1108 msleep(200); 1109 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1110 ndev->phydev->duplex); 1111 netif_carrier_on(ndev); 1112 } 1113 } 1114 1115 state = state && h->dev->ops->get_status(h); 1116 1117 if (state != priv->link) { 1118 if (state) { 1119 netif_carrier_on(ndev); 1120 netif_tx_wake_all_queues(ndev); 1121 netdev_info(ndev, "link up\n"); 1122 } else { 1123 netif_carrier_off(ndev); 1124 netdev_info(ndev, "link down\n"); 1125 } 1126 priv->link = state; 1127 } 1128 } 1129 1130 /** 1131 *hns_nic_init_phy - init phy 1132 *@ndev: net device 1133 *@h: ae handle 1134 * Return 0 on success, negative on failure 1135 */ 1136 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1137 { 1138 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, }; 1139 struct phy_device *phy_dev = h->phy_dev; 1140 int ret; 1141 1142 if (!h->phy_dev) 1143 return 0; 1144 1145 ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support); 1146 linkmode_and(phy_dev->supported, phy_dev->supported, supported); 1147 linkmode_copy(phy_dev->advertising, phy_dev->supported); 1148 1149 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1150 phy_dev->autoneg = false; 1151 1152 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1153 phy_dev->dev_flags = 0; 1154 1155 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1156 h->phy_if); 1157 } else { 1158 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1159 } 1160 if (unlikely(ret)) 1161 return -ENODEV; 1162 1163 phy_attached_info(phy_dev); 1164 1165 return 0; 1166 } 1167 1168 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1169 { 1170 struct hns_nic_priv *priv = netdev_priv(netdev); 1171 struct hnae_handle *h = priv->ae_handle; 1172 1173 napi_enable(&priv->ring_data[idx].napi); 1174 1175 enable_irq(priv->ring_data[idx].ring->irq); 1176 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1177 1178 return 0; 1179 } 1180 1181 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1182 { 1183 struct hns_nic_priv *priv = netdev_priv(ndev); 1184 struct hnae_handle *h = priv->ae_handle; 1185 struct sockaddr *mac_addr = p; 1186 int ret; 1187 1188 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1189 return -EADDRNOTAVAIL; 1190 1191 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1192 if (ret) { 1193 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1194 return ret; 1195 } 1196 1197 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); 1198 1199 return 0; 1200 } 1201 1202 static void hns_nic_update_stats(struct net_device *netdev) 1203 { 1204 struct hns_nic_priv *priv = netdev_priv(netdev); 1205 struct hnae_handle *h = priv->ae_handle; 1206 1207 h->dev->ops->update_stats(h, &netdev->stats); 1208 } 1209 1210 /* set mac addr if it is configed. or leave it to the AE driver */ 1211 static void hns_init_mac_addr(struct net_device *ndev) 1212 { 1213 struct hns_nic_priv *priv = netdev_priv(ndev); 1214 1215 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { 1216 eth_hw_addr_random(ndev); 1217 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1218 ndev->dev_addr); 1219 } 1220 } 1221 1222 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1223 { 1224 struct hns_nic_priv *priv = netdev_priv(netdev); 1225 struct hnae_handle *h = priv->ae_handle; 1226 1227 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1228 disable_irq(priv->ring_data[idx].ring->irq); 1229 1230 napi_disable(&priv->ring_data[idx].napi); 1231 } 1232 1233 static int hns_nic_init_affinity_mask(int q_num, int ring_idx, 1234 struct hnae_ring *ring, cpumask_t *mask) 1235 { 1236 int cpu; 1237 1238 /* Different irq balance between 16core and 32core. 1239 * The cpu mask set by ring index according to the ring flag 1240 * which indicate the ring is tx or rx. 1241 */ 1242 if (q_num == num_possible_cpus()) { 1243 if (is_tx_ring(ring)) 1244 cpu = ring_idx; 1245 else 1246 cpu = ring_idx - q_num; 1247 } else { 1248 if (is_tx_ring(ring)) 1249 cpu = ring_idx * 2; 1250 else 1251 cpu = (ring_idx - q_num) * 2 + 1; 1252 } 1253 1254 cpumask_clear(mask); 1255 cpumask_set_cpu(cpu, mask); 1256 1257 return cpu; 1258 } 1259 1260 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv) 1261 { 1262 int i; 1263 1264 for (i = 0; i < q_num * 2; i++) { 1265 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 1266 irq_set_affinity_hint(priv->ring_data[i].ring->irq, 1267 NULL); 1268 free_irq(priv->ring_data[i].ring->irq, 1269 &priv->ring_data[i]); 1270 priv->ring_data[i].ring->irq_init_flag = 1271 RCB_IRQ_NOT_INITED; 1272 } 1273 } 1274 } 1275 1276 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1277 { 1278 struct hnae_handle *h = priv->ae_handle; 1279 struct hns_nic_ring_data *rd; 1280 int i; 1281 int ret; 1282 int cpu; 1283 1284 for (i = 0; i < h->q_num * 2; i++) { 1285 rd = &priv->ring_data[i]; 1286 1287 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1288 break; 1289 1290 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1291 "%s-%s%d", priv->netdev->name, 1292 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); 1293 1294 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1295 1296 irq_set_status_flags(rd->ring->irq, IRQ_NOAUTOEN); 1297 ret = request_irq(rd->ring->irq, 1298 hns_irq_handle, 0, rd->ring->ring_name, rd); 1299 if (ret) { 1300 netdev_err(priv->netdev, "request irq(%d) fail\n", 1301 rd->ring->irq); 1302 goto out_free_irq; 1303 } 1304 1305 cpu = hns_nic_init_affinity_mask(h->q_num, i, 1306 rd->ring, &rd->mask); 1307 1308 if (cpu_online(cpu)) 1309 irq_set_affinity_hint(rd->ring->irq, 1310 &rd->mask); 1311 1312 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1313 } 1314 1315 return 0; 1316 1317 out_free_irq: 1318 hns_nic_free_irq(h->q_num, priv); 1319 return ret; 1320 } 1321 1322 static int hns_nic_net_up(struct net_device *ndev) 1323 { 1324 struct hns_nic_priv *priv = netdev_priv(ndev); 1325 struct hnae_handle *h = priv->ae_handle; 1326 int i, j; 1327 int ret; 1328 1329 if (!test_bit(NIC_STATE_DOWN, &priv->state)) 1330 return 0; 1331 1332 ret = hns_nic_init_irq(priv); 1333 if (ret != 0) { 1334 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1335 return ret; 1336 } 1337 1338 for (i = 0; i < h->q_num * 2; i++) { 1339 ret = hns_nic_ring_open(ndev, i); 1340 if (ret) 1341 goto out_has_some_queues; 1342 } 1343 1344 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1345 if (ret) 1346 goto out_set_mac_addr_err; 1347 1348 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1349 if (ret) 1350 goto out_start_err; 1351 1352 if (ndev->phydev) 1353 phy_start(ndev->phydev); 1354 1355 clear_bit(NIC_STATE_DOWN, &priv->state); 1356 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1357 1358 return 0; 1359 1360 out_start_err: 1361 netif_stop_queue(ndev); 1362 out_set_mac_addr_err: 1363 out_has_some_queues: 1364 for (j = i - 1; j >= 0; j--) 1365 hns_nic_ring_close(ndev, j); 1366 1367 hns_nic_free_irq(h->q_num, priv); 1368 set_bit(NIC_STATE_DOWN, &priv->state); 1369 1370 return ret; 1371 } 1372 1373 static void hns_nic_net_down(struct net_device *ndev) 1374 { 1375 int i; 1376 struct hnae_ae_ops *ops; 1377 struct hns_nic_priv *priv = netdev_priv(ndev); 1378 1379 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1380 return; 1381 1382 (void)del_timer_sync(&priv->service_timer); 1383 netif_tx_stop_all_queues(ndev); 1384 netif_carrier_off(ndev); 1385 netif_tx_disable(ndev); 1386 priv->link = 0; 1387 1388 if (ndev->phydev) 1389 phy_stop(ndev->phydev); 1390 1391 ops = priv->ae_handle->dev->ops; 1392 1393 if (ops->stop) 1394 ops->stop(priv->ae_handle); 1395 1396 netif_tx_stop_all_queues(ndev); 1397 1398 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1399 hns_nic_ring_close(ndev, i); 1400 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1401 1402 /* clean tx buffers*/ 1403 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1404 } 1405 } 1406 1407 void hns_nic_net_reset(struct net_device *ndev) 1408 { 1409 struct hns_nic_priv *priv = netdev_priv(ndev); 1410 struct hnae_handle *handle = priv->ae_handle; 1411 1412 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1413 usleep_range(1000, 2000); 1414 1415 (void)hnae_reinit_handle(handle); 1416 1417 clear_bit(NIC_STATE_RESETTING, &priv->state); 1418 } 1419 1420 void hns_nic_net_reinit(struct net_device *netdev) 1421 { 1422 struct hns_nic_priv *priv = netdev_priv(netdev); 1423 enum hnae_port_type type = priv->ae_handle->port_type; 1424 1425 netif_trans_update(priv->netdev); 1426 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1427 usleep_range(1000, 2000); 1428 1429 hns_nic_net_down(netdev); 1430 1431 /* Only do hns_nic_net_reset in debug mode 1432 * because of hardware limitation. 1433 */ 1434 if (type == HNAE_PORT_DEBUG) 1435 hns_nic_net_reset(netdev); 1436 1437 (void)hns_nic_net_up(netdev); 1438 clear_bit(NIC_STATE_REINITING, &priv->state); 1439 } 1440 1441 static int hns_nic_net_open(struct net_device *ndev) 1442 { 1443 struct hns_nic_priv *priv = netdev_priv(ndev); 1444 struct hnae_handle *h = priv->ae_handle; 1445 int ret; 1446 1447 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1448 return -EBUSY; 1449 1450 priv->link = 0; 1451 netif_carrier_off(ndev); 1452 1453 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1454 if (ret < 0) { 1455 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1456 ret); 1457 return ret; 1458 } 1459 1460 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1461 if (ret < 0) { 1462 netdev_err(ndev, 1463 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1464 return ret; 1465 } 1466 1467 ret = hns_nic_net_up(ndev); 1468 if (ret) { 1469 netdev_err(ndev, 1470 "hns net up fail, ret=%d!\n", ret); 1471 return ret; 1472 } 1473 1474 return 0; 1475 } 1476 1477 static int hns_nic_net_stop(struct net_device *ndev) 1478 { 1479 hns_nic_net_down(ndev); 1480 1481 return 0; 1482 } 1483 1484 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1485 #define HNS_TX_TIMEO_LIMIT (40 * HZ) 1486 static void hns_nic_net_timeout(struct net_device *ndev, unsigned int txqueue) 1487 { 1488 struct hns_nic_priv *priv = netdev_priv(ndev); 1489 1490 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) { 1491 ndev->watchdog_timeo *= 2; 1492 netdev_info(ndev, "watchdog_timo changed to %d.\n", 1493 ndev->watchdog_timeo); 1494 } else { 1495 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 1496 hns_tx_timeout_reset(priv); 1497 } 1498 } 1499 1500 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1501 struct net_device *ndev) 1502 { 1503 struct hns_nic_priv *priv = netdev_priv(ndev); 1504 1505 assert(skb->queue_mapping < priv->ae_handle->q_num); 1506 1507 return hns_nic_net_xmit_hw(ndev, skb, 1508 &tx_ring_data(priv, skb->queue_mapping)); 1509 } 1510 1511 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, 1512 struct sk_buff *skb) 1513 { 1514 dev_kfree_skb_any(skb); 1515 } 1516 1517 #define HNS_LB_TX_RING 0 1518 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) 1519 { 1520 struct sk_buff *skb; 1521 struct ethhdr *ethhdr; 1522 int frame_len; 1523 1524 /* allocate test skb */ 1525 skb = alloc_skb(64, GFP_KERNEL); 1526 if (!skb) 1527 return NULL; 1528 1529 skb_put(skb, 64); 1530 skb->dev = ndev; 1531 memset(skb->data, 0xFF, skb->len); 1532 1533 /* must be tcp/ip package */ 1534 ethhdr = (struct ethhdr *)skb->data; 1535 ethhdr->h_proto = htons(ETH_P_IP); 1536 1537 frame_len = skb->len & (~1ul); 1538 memset(&skb->data[frame_len / 2], 0xAA, 1539 frame_len / 2 - 1); 1540 1541 skb->queue_mapping = HNS_LB_TX_RING; 1542 1543 return skb; 1544 } 1545 1546 static int hns_enable_serdes_lb(struct net_device *ndev) 1547 { 1548 struct hns_nic_priv *priv = netdev_priv(ndev); 1549 struct hnae_handle *h = priv->ae_handle; 1550 struct hnae_ae_ops *ops = h->dev->ops; 1551 int speed, duplex; 1552 int ret; 1553 1554 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); 1555 if (ret) 1556 return ret; 1557 1558 ret = ops->start ? ops->start(h) : 0; 1559 if (ret) 1560 return ret; 1561 1562 /* link adjust duplex*/ 1563 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1564 speed = 1000; 1565 else 1566 speed = 10000; 1567 duplex = 1; 1568 1569 ops->adjust_link(h, speed, duplex); 1570 1571 /* wait h/w ready */ 1572 mdelay(300); 1573 1574 return 0; 1575 } 1576 1577 static void hns_disable_serdes_lb(struct net_device *ndev) 1578 { 1579 struct hns_nic_priv *priv = netdev_priv(ndev); 1580 struct hnae_handle *h = priv->ae_handle; 1581 struct hnae_ae_ops *ops = h->dev->ops; 1582 1583 ops->stop(h); 1584 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); 1585 } 1586 1587 /** 1588 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The 1589 *function as follows: 1590 * 1. if one rx ring has found the page_offset is not equal 0 between head 1591 * and tail, it means that the chip fetched the wrong descs for the ring 1592 * which buffer size is 4096. 1593 * 2. we set the chip serdes loopback and set rss indirection to the ring. 1594 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring 1595 * receiving all packages and it will fetch new descriptions. 1596 * 4. recover to the original state. 1597 * 1598 *@ndev: net device 1599 */ 1600 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) 1601 { 1602 struct hns_nic_priv *priv = netdev_priv(ndev); 1603 struct hnae_handle *h = priv->ae_handle; 1604 struct hnae_ae_ops *ops = h->dev->ops; 1605 struct hns_nic_ring_data *rd; 1606 struct hnae_ring *ring; 1607 struct sk_buff *skb; 1608 u32 *org_indir; 1609 u32 *cur_indir; 1610 int indir_size; 1611 int head, tail; 1612 int fetch_num; 1613 int i, j; 1614 bool found; 1615 int retry_times; 1616 int ret = 0; 1617 1618 /* alloc indir memory */ 1619 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); 1620 org_indir = kzalloc(indir_size, GFP_KERNEL); 1621 if (!org_indir) 1622 return -ENOMEM; 1623 1624 /* store the original indirection */ 1625 ops->get_rss(h, org_indir, NULL, NULL); 1626 1627 cur_indir = kzalloc(indir_size, GFP_KERNEL); 1628 if (!cur_indir) { 1629 ret = -ENOMEM; 1630 goto cur_indir_alloc_err; 1631 } 1632 1633 /* set loopback */ 1634 if (hns_enable_serdes_lb(ndev)) { 1635 ret = -EINVAL; 1636 goto enable_serdes_lb_err; 1637 } 1638 1639 /* foreach every rx ring to clear fetch desc */ 1640 for (i = 0; i < h->q_num; i++) { 1641 ring = &h->qs[i]->rx_ring; 1642 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1643 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); 1644 found = false; 1645 fetch_num = ring_dist(ring, head, tail); 1646 1647 while (head != tail) { 1648 if (ring->desc_cb[head].page_offset != 0) { 1649 found = true; 1650 break; 1651 } 1652 1653 head++; 1654 if (head == ring->desc_num) 1655 head = 0; 1656 } 1657 1658 if (found) { 1659 for (j = 0; j < indir_size / sizeof(*org_indir); j++) 1660 cur_indir[j] = i; 1661 ops->set_rss(h, cur_indir, NULL, 0); 1662 1663 for (j = 0; j < fetch_num; j++) { 1664 /* alloc one skb and init */ 1665 skb = hns_assemble_skb(ndev); 1666 if (!skb) { 1667 ret = -ENOMEM; 1668 goto out; 1669 } 1670 rd = &tx_ring_data(priv, skb->queue_mapping); 1671 hns_nic_net_xmit_hw(ndev, skb, rd); 1672 1673 retry_times = 0; 1674 while (retry_times++ < 10) { 1675 mdelay(10); 1676 /* clean rx */ 1677 rd = &rx_ring_data(priv, i); 1678 if (rd->poll_one(rd, fetch_num, 1679 hns_nic_drop_rx_fetch)) 1680 break; 1681 } 1682 1683 retry_times = 0; 1684 while (retry_times++ < 10) { 1685 mdelay(10); 1686 /* clean tx ring 0 send package */ 1687 rd = &tx_ring_data(priv, 1688 HNS_LB_TX_RING); 1689 if (rd->poll_one(rd, fetch_num, NULL)) 1690 break; 1691 } 1692 } 1693 } 1694 } 1695 1696 out: 1697 /* restore everything */ 1698 ops->set_rss(h, org_indir, NULL, 0); 1699 hns_disable_serdes_lb(ndev); 1700 enable_serdes_lb_err: 1701 kfree(cur_indir); 1702 cur_indir_alloc_err: 1703 kfree(org_indir); 1704 1705 return ret; 1706 } 1707 1708 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1709 { 1710 struct hns_nic_priv *priv = netdev_priv(ndev); 1711 struct hnae_handle *h = priv->ae_handle; 1712 bool if_running = netif_running(ndev); 1713 int ret; 1714 1715 /* MTU < 68 is an error and causes problems on some kernels */ 1716 if (new_mtu < 68) 1717 return -EINVAL; 1718 1719 /* MTU no change */ 1720 if (new_mtu == ndev->mtu) 1721 return 0; 1722 1723 if (!h->dev->ops->set_mtu) 1724 return -ENOTSUPP; 1725 1726 if (if_running) { 1727 (void)hns_nic_net_stop(ndev); 1728 msleep(100); 1729 } 1730 1731 if (priv->enet_ver != AE_VERSION_1 && 1732 ndev->mtu <= BD_SIZE_2048_MAX_MTU && 1733 new_mtu > BD_SIZE_2048_MAX_MTU) { 1734 /* update desc */ 1735 hnae_reinit_all_ring_desc(h); 1736 1737 /* clear the package which the chip has fetched */ 1738 ret = hns_nic_clear_all_rx_fetch(ndev); 1739 1740 /* the page offset must be consist with desc */ 1741 hnae_reinit_all_ring_page_off(h); 1742 1743 if (ret) { 1744 netdev_err(ndev, "clear the fetched desc fail\n"); 1745 goto out; 1746 } 1747 } 1748 1749 ret = h->dev->ops->set_mtu(h, new_mtu); 1750 if (ret) { 1751 netdev_err(ndev, "set mtu fail, return value %d\n", 1752 ret); 1753 goto out; 1754 } 1755 1756 /* finally, set new mtu to netdevice */ 1757 ndev->mtu = new_mtu; 1758 1759 out: 1760 if (if_running) { 1761 if (hns_nic_net_open(ndev)) { 1762 netdev_err(ndev, "hns net open fail\n"); 1763 ret = -EINVAL; 1764 } 1765 } 1766 1767 return ret; 1768 } 1769 1770 static int hns_nic_set_features(struct net_device *netdev, 1771 netdev_features_t features) 1772 { 1773 struct hns_nic_priv *priv = netdev_priv(netdev); 1774 1775 switch (priv->enet_ver) { 1776 case AE_VERSION_1: 1777 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1778 netdev_info(netdev, "enet v1 do not support tso!\n"); 1779 break; 1780 default: 1781 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1782 priv->ops.fill_desc = fill_tso_desc; 1783 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1784 /* The chip only support 7*4096 */ 1785 netif_set_gso_max_size(netdev, 7 * 4096); 1786 } else { 1787 priv->ops.fill_desc = fill_v2_desc; 1788 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1789 } 1790 break; 1791 } 1792 netdev->features = features; 1793 return 0; 1794 } 1795 1796 static netdev_features_t hns_nic_fix_features( 1797 struct net_device *netdev, netdev_features_t features) 1798 { 1799 struct hns_nic_priv *priv = netdev_priv(netdev); 1800 1801 switch (priv->enet_ver) { 1802 case AE_VERSION_1: 1803 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1804 NETIF_F_HW_VLAN_CTAG_FILTER); 1805 break; 1806 default: 1807 break; 1808 } 1809 return features; 1810 } 1811 1812 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1813 { 1814 struct hns_nic_priv *priv = netdev_priv(netdev); 1815 struct hnae_handle *h = priv->ae_handle; 1816 1817 if (h->dev->ops->add_uc_addr) 1818 return h->dev->ops->add_uc_addr(h, addr); 1819 1820 return 0; 1821 } 1822 1823 static int hns_nic_uc_unsync(struct net_device *netdev, 1824 const unsigned char *addr) 1825 { 1826 struct hns_nic_priv *priv = netdev_priv(netdev); 1827 struct hnae_handle *h = priv->ae_handle; 1828 1829 if (h->dev->ops->rm_uc_addr) 1830 return h->dev->ops->rm_uc_addr(h, addr); 1831 1832 return 0; 1833 } 1834 1835 /** 1836 * hns_set_multicast_list - set mutl mac address 1837 * @ndev: net device 1838 * 1839 * return void 1840 */ 1841 static void hns_set_multicast_list(struct net_device *ndev) 1842 { 1843 struct hns_nic_priv *priv = netdev_priv(ndev); 1844 struct hnae_handle *h = priv->ae_handle; 1845 struct netdev_hw_addr *ha = NULL; 1846 1847 if (!h) { 1848 netdev_err(ndev, "hnae handle is null\n"); 1849 return; 1850 } 1851 1852 if (h->dev->ops->clr_mc_addr) 1853 if (h->dev->ops->clr_mc_addr(h)) 1854 netdev_err(ndev, "clear multicast address fail\n"); 1855 1856 if (h->dev->ops->set_mc_addr) { 1857 netdev_for_each_mc_addr(ha, ndev) 1858 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1859 netdev_err(ndev, "set multicast fail\n"); 1860 } 1861 } 1862 1863 static void hns_nic_set_rx_mode(struct net_device *ndev) 1864 { 1865 struct hns_nic_priv *priv = netdev_priv(ndev); 1866 struct hnae_handle *h = priv->ae_handle; 1867 1868 if (h->dev->ops->set_promisc_mode) { 1869 if (ndev->flags & IFF_PROMISC) 1870 h->dev->ops->set_promisc_mode(h, 1); 1871 else 1872 h->dev->ops->set_promisc_mode(h, 0); 1873 } 1874 1875 hns_set_multicast_list(ndev); 1876 1877 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1878 netdev_err(ndev, "sync uc address fail\n"); 1879 } 1880 1881 static void hns_nic_get_stats64(struct net_device *ndev, 1882 struct rtnl_link_stats64 *stats) 1883 { 1884 int idx; 1885 u64 tx_bytes = 0; 1886 u64 rx_bytes = 0; 1887 u64 tx_pkts = 0; 1888 u64 rx_pkts = 0; 1889 struct hns_nic_priv *priv = netdev_priv(ndev); 1890 struct hnae_handle *h = priv->ae_handle; 1891 1892 for (idx = 0; idx < h->q_num; idx++) { 1893 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1894 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1895 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1896 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1897 } 1898 1899 stats->tx_bytes = tx_bytes; 1900 stats->tx_packets = tx_pkts; 1901 stats->rx_bytes = rx_bytes; 1902 stats->rx_packets = rx_pkts; 1903 1904 stats->rx_errors = ndev->stats.rx_errors; 1905 stats->multicast = ndev->stats.multicast; 1906 stats->rx_length_errors = ndev->stats.rx_length_errors; 1907 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1908 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1909 1910 stats->tx_errors = ndev->stats.tx_errors; 1911 stats->rx_dropped = ndev->stats.rx_dropped; 1912 stats->tx_dropped = ndev->stats.tx_dropped; 1913 stats->collisions = ndev->stats.collisions; 1914 stats->rx_over_errors = ndev->stats.rx_over_errors; 1915 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1916 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1917 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1918 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1919 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1920 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1921 stats->tx_window_errors = ndev->stats.tx_window_errors; 1922 stats->rx_compressed = ndev->stats.rx_compressed; 1923 stats->tx_compressed = ndev->stats.tx_compressed; 1924 } 1925 1926 static u16 1927 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1928 struct net_device *sb_dev) 1929 { 1930 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1931 struct hns_nic_priv *priv = netdev_priv(ndev); 1932 1933 /* fix hardware broadcast/multicast packets queue loopback */ 1934 if (!AE_IS_VER1(priv->enet_ver) && 1935 is_multicast_ether_addr(eth_hdr->h_dest)) 1936 return 0; 1937 else 1938 return netdev_pick_tx(ndev, skb, NULL); 1939 } 1940 1941 static const struct net_device_ops hns_nic_netdev_ops = { 1942 .ndo_open = hns_nic_net_open, 1943 .ndo_stop = hns_nic_net_stop, 1944 .ndo_start_xmit = hns_nic_net_xmit, 1945 .ndo_tx_timeout = hns_nic_net_timeout, 1946 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1947 .ndo_change_mtu = hns_nic_change_mtu, 1948 .ndo_do_ioctl = phy_do_ioctl_running, 1949 .ndo_set_features = hns_nic_set_features, 1950 .ndo_fix_features = hns_nic_fix_features, 1951 .ndo_get_stats64 = hns_nic_get_stats64, 1952 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1953 .ndo_select_queue = hns_nic_select_queue, 1954 }; 1955 1956 static void hns_nic_update_link_status(struct net_device *netdev) 1957 { 1958 struct hns_nic_priv *priv = netdev_priv(netdev); 1959 1960 struct hnae_handle *h = priv->ae_handle; 1961 1962 if (h->phy_dev) { 1963 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1964 return; 1965 1966 (void)genphy_read_status(h->phy_dev); 1967 } 1968 hns_nic_adjust_link(netdev); 1969 } 1970 1971 /* for dumping key regs*/ 1972 static void hns_nic_dump(struct hns_nic_priv *priv) 1973 { 1974 struct hnae_handle *h = priv->ae_handle; 1975 struct hnae_ae_ops *ops = h->dev->ops; 1976 u32 *data, reg_num, i; 1977 1978 if (ops->get_regs_len && ops->get_regs) { 1979 reg_num = ops->get_regs_len(priv->ae_handle); 1980 reg_num = (reg_num + 3ul) & ~3ul; 1981 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 1982 if (data) { 1983 ops->get_regs(priv->ae_handle, data); 1984 for (i = 0; i < reg_num; i += 4) 1985 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 1986 i, data[i], data[i + 1], 1987 data[i + 2], data[i + 3]); 1988 kfree(data); 1989 } 1990 } 1991 1992 for (i = 0; i < h->q_num; i++) { 1993 pr_info("tx_queue%d_next_to_clean:%d\n", 1994 i, h->qs[i]->tx_ring.next_to_clean); 1995 pr_info("tx_queue%d_next_to_use:%d\n", 1996 i, h->qs[i]->tx_ring.next_to_use); 1997 pr_info("rx_queue%d_next_to_clean:%d\n", 1998 i, h->qs[i]->rx_ring.next_to_clean); 1999 pr_info("rx_queue%d_next_to_use:%d\n", 2000 i, h->qs[i]->rx_ring.next_to_use); 2001 } 2002 } 2003 2004 /* for resetting subtask */ 2005 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 2006 { 2007 enum hnae_port_type type = priv->ae_handle->port_type; 2008 2009 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 2010 return; 2011 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2012 2013 /* If we're already down, removing or resetting, just bail */ 2014 if (test_bit(NIC_STATE_DOWN, &priv->state) || 2015 test_bit(NIC_STATE_REMOVING, &priv->state) || 2016 test_bit(NIC_STATE_RESETTING, &priv->state)) 2017 return; 2018 2019 hns_nic_dump(priv); 2020 netdev_info(priv->netdev, "try to reset %s port!\n", 2021 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 2022 2023 rtnl_lock(); 2024 /* put off any impending NetWatchDogTimeout */ 2025 netif_trans_update(priv->netdev); 2026 hns_nic_net_reinit(priv->netdev); 2027 2028 rtnl_unlock(); 2029 } 2030 2031 /* for doing service complete*/ 2032 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 2033 { 2034 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 2035 /* make sure to commit the things */ 2036 smp_mb__before_atomic(); 2037 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2038 } 2039 2040 static void hns_nic_service_task(struct work_struct *work) 2041 { 2042 struct hns_nic_priv *priv 2043 = container_of(work, struct hns_nic_priv, service_task); 2044 struct hnae_handle *h = priv->ae_handle; 2045 2046 hns_nic_reset_subtask(priv); 2047 hns_nic_update_link_status(priv->netdev); 2048 h->dev->ops->update_led_status(h); 2049 hns_nic_update_stats(priv->netdev); 2050 2051 hns_nic_service_event_complete(priv); 2052 } 2053 2054 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 2055 { 2056 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 2057 !test_bit(NIC_STATE_REMOVING, &priv->state) && 2058 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 2059 (void)schedule_work(&priv->service_task); 2060 } 2061 2062 static void hns_nic_service_timer(struct timer_list *t) 2063 { 2064 struct hns_nic_priv *priv = from_timer(priv, t, service_timer); 2065 2066 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 2067 2068 hns_nic_task_schedule(priv); 2069 } 2070 2071 /** 2072 * hns_tx_timeout_reset - initiate reset due to Tx timeout 2073 * @priv: driver private struct 2074 **/ 2075 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 2076 { 2077 /* Do the reset outside of interrupt context */ 2078 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 2079 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2080 netdev_warn(priv->netdev, 2081 "initiating reset due to tx timeout(%llu,0x%lx)\n", 2082 priv->tx_timeout_count, priv->state); 2083 priv->tx_timeout_count++; 2084 hns_nic_task_schedule(priv); 2085 } 2086 } 2087 2088 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 2089 { 2090 struct hnae_handle *h = priv->ae_handle; 2091 struct hns_nic_ring_data *rd; 2092 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 2093 int i; 2094 2095 if (h->q_num > NIC_MAX_Q_PER_VF) { 2096 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 2097 return -EINVAL; 2098 } 2099 2100 priv->ring_data = kzalloc(array3_size(h->q_num, 2101 sizeof(*priv->ring_data), 2), 2102 GFP_KERNEL); 2103 if (!priv->ring_data) 2104 return -ENOMEM; 2105 2106 for (i = 0; i < h->q_num; i++) { 2107 rd = &priv->ring_data[i]; 2108 rd->queue_index = i; 2109 rd->ring = &h->qs[i]->tx_ring; 2110 rd->poll_one = hns_nic_tx_poll_one; 2111 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 2112 hns_nic_tx_fini_pro_v2; 2113 2114 netif_napi_add(priv->netdev, &rd->napi, 2115 hns_nic_common_poll, NAPI_POLL_WEIGHT); 2116 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2117 } 2118 for (i = h->q_num; i < h->q_num * 2; i++) { 2119 rd = &priv->ring_data[i]; 2120 rd->queue_index = i - h->q_num; 2121 rd->ring = &h->qs[i - h->q_num]->rx_ring; 2122 rd->poll_one = hns_nic_rx_poll_one; 2123 rd->ex_process = hns_nic_rx_up_pro; 2124 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 2125 hns_nic_rx_fini_pro_v2; 2126 2127 netif_napi_add(priv->netdev, &rd->napi, 2128 hns_nic_common_poll, NAPI_POLL_WEIGHT); 2129 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2130 } 2131 2132 return 0; 2133 } 2134 2135 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 2136 { 2137 struct hnae_handle *h = priv->ae_handle; 2138 int i; 2139 2140 for (i = 0; i < h->q_num * 2; i++) { 2141 netif_napi_del(&priv->ring_data[i].napi); 2142 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 2143 (void)irq_set_affinity_hint( 2144 priv->ring_data[i].ring->irq, 2145 NULL); 2146 free_irq(priv->ring_data[i].ring->irq, 2147 &priv->ring_data[i]); 2148 } 2149 2150 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2151 } 2152 kfree(priv->ring_data); 2153 } 2154 2155 static void hns_nic_set_priv_ops(struct net_device *netdev) 2156 { 2157 struct hns_nic_priv *priv = netdev_priv(netdev); 2158 struct hnae_handle *h = priv->ae_handle; 2159 2160 if (AE_IS_VER1(priv->enet_ver)) { 2161 priv->ops.fill_desc = fill_desc; 2162 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 2163 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2164 } else { 2165 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 2166 if ((netdev->features & NETIF_F_TSO) || 2167 (netdev->features & NETIF_F_TSO6)) { 2168 priv->ops.fill_desc = fill_tso_desc; 2169 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 2170 /* This chip only support 7*4096 */ 2171 netif_set_gso_max_size(netdev, 7 * 4096); 2172 } else { 2173 priv->ops.fill_desc = fill_v2_desc; 2174 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2175 } 2176 /* enable tso when init 2177 * control tso on/off through TSE bit in bd 2178 */ 2179 h->dev->ops->set_tso_stats(h, 1); 2180 } 2181 } 2182 2183 static int hns_nic_try_get_ae(struct net_device *ndev) 2184 { 2185 struct hns_nic_priv *priv = netdev_priv(ndev); 2186 struct hnae_handle *h; 2187 int ret; 2188 2189 h = hnae_get_handle(&priv->netdev->dev, 2190 priv->fwnode, priv->port_id, NULL); 2191 if (IS_ERR_OR_NULL(h)) { 2192 ret = -ENODEV; 2193 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 2194 goto out; 2195 } 2196 priv->ae_handle = h; 2197 2198 ret = hns_nic_init_phy(ndev, h); 2199 if (ret) { 2200 dev_err(priv->dev, "probe phy device fail!\n"); 2201 goto out_init_phy; 2202 } 2203 2204 ret = hns_nic_init_ring_data(priv); 2205 if (ret) { 2206 ret = -ENOMEM; 2207 goto out_init_ring_data; 2208 } 2209 2210 hns_nic_set_priv_ops(ndev); 2211 2212 ret = register_netdev(ndev); 2213 if (ret) { 2214 dev_err(priv->dev, "probe register netdev fail!\n"); 2215 goto out_reg_ndev_fail; 2216 } 2217 return 0; 2218 2219 out_reg_ndev_fail: 2220 hns_nic_uninit_ring_data(priv); 2221 priv->ring_data = NULL; 2222 out_init_phy: 2223 out_init_ring_data: 2224 hnae_put_handle(priv->ae_handle); 2225 priv->ae_handle = NULL; 2226 out: 2227 return ret; 2228 } 2229 2230 static int hns_nic_notifier_action(struct notifier_block *nb, 2231 unsigned long action, void *data) 2232 { 2233 struct hns_nic_priv *priv = 2234 container_of(nb, struct hns_nic_priv, notifier_block); 2235 2236 assert(action == HNAE_AE_REGISTER); 2237 2238 if (!hns_nic_try_get_ae(priv->netdev)) { 2239 hnae_unregister_notifier(&priv->notifier_block); 2240 priv->notifier_block.notifier_call = NULL; 2241 } 2242 return 0; 2243 } 2244 2245 static int hns_nic_dev_probe(struct platform_device *pdev) 2246 { 2247 struct device *dev = &pdev->dev; 2248 struct net_device *ndev; 2249 struct hns_nic_priv *priv; 2250 u32 port_id; 2251 int ret; 2252 2253 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2254 if (!ndev) 2255 return -ENOMEM; 2256 2257 platform_set_drvdata(pdev, ndev); 2258 2259 priv = netdev_priv(ndev); 2260 priv->dev = dev; 2261 priv->netdev = ndev; 2262 2263 if (dev_of_node(dev)) { 2264 struct device_node *ae_node; 2265 2266 if (of_device_is_compatible(dev->of_node, 2267 "hisilicon,hns-nic-v1")) 2268 priv->enet_ver = AE_VERSION_1; 2269 else 2270 priv->enet_ver = AE_VERSION_2; 2271 2272 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2273 if (!ae_node) { 2274 ret = -ENODEV; 2275 dev_err(dev, "not find ae-handle\n"); 2276 goto out_read_prop_fail; 2277 } 2278 priv->fwnode = &ae_node->fwnode; 2279 } else if (is_acpi_node(dev->fwnode)) { 2280 struct fwnode_reference_args args; 2281 2282 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2283 priv->enet_ver = AE_VERSION_1; 2284 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2285 priv->enet_ver = AE_VERSION_2; 2286 else { 2287 ret = -ENXIO; 2288 goto out_read_prop_fail; 2289 } 2290 2291 /* try to find port-idx-in-ae first */ 2292 ret = acpi_node_get_property_reference(dev->fwnode, 2293 "ae-handle", 0, &args); 2294 if (ret) { 2295 dev_err(dev, "not find ae-handle\n"); 2296 goto out_read_prop_fail; 2297 } 2298 if (!is_acpi_device_node(args.fwnode)) { 2299 ret = -EINVAL; 2300 goto out_read_prop_fail; 2301 } 2302 priv->fwnode = args.fwnode; 2303 } else { 2304 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2305 ret = -ENXIO; 2306 goto out_read_prop_fail; 2307 } 2308 2309 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2310 if (ret) { 2311 /* only for old code compatible */ 2312 ret = device_property_read_u32(dev, "port-id", &port_id); 2313 if (ret) 2314 goto out_read_prop_fail; 2315 /* for old dts, we need to caculate the port offset */ 2316 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2317 : port_id - HNS_SRV_OFFSET; 2318 } 2319 priv->port_id = port_id; 2320 2321 hns_init_mac_addr(ndev); 2322 2323 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2324 ndev->priv_flags |= IFF_UNICAST_FLT; 2325 ndev->netdev_ops = &hns_nic_netdev_ops; 2326 hns_ethtool_set_ops(ndev); 2327 2328 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2329 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2330 NETIF_F_GRO; 2331 ndev->vlan_features |= 2332 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2333 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2334 2335 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2336 ndev->min_mtu = MAC_MIN_MTU; 2337 switch (priv->enet_ver) { 2338 case AE_VERSION_2: 2339 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE; 2340 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2341 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2342 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2343 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6; 2344 ndev->max_mtu = MAC_MAX_MTU_V2 - 2345 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2346 break; 2347 default: 2348 ndev->max_mtu = MAC_MAX_MTU - 2349 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2350 break; 2351 } 2352 2353 SET_NETDEV_DEV(ndev, dev); 2354 2355 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2356 dev_dbg(dev, "set mask to 64bit\n"); 2357 else 2358 dev_err(dev, "set mask to 64bit fail!\n"); 2359 2360 /* carrier off reporting is important to ethtool even BEFORE open */ 2361 netif_carrier_off(ndev); 2362 2363 timer_setup(&priv->service_timer, hns_nic_service_timer, 0); 2364 INIT_WORK(&priv->service_task, hns_nic_service_task); 2365 2366 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2367 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2368 set_bit(NIC_STATE_DOWN, &priv->state); 2369 2370 if (hns_nic_try_get_ae(priv->netdev)) { 2371 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2372 ret = hnae_register_notifier(&priv->notifier_block); 2373 if (ret) { 2374 dev_err(dev, "register notifier fail!\n"); 2375 goto out_notify_fail; 2376 } 2377 dev_dbg(dev, "has not handle, register notifier!\n"); 2378 } 2379 2380 return 0; 2381 2382 out_notify_fail: 2383 (void)cancel_work_sync(&priv->service_task); 2384 out_read_prop_fail: 2385 /* safe for ACPI FW */ 2386 of_node_put(to_of_node(priv->fwnode)); 2387 free_netdev(ndev); 2388 return ret; 2389 } 2390 2391 static int hns_nic_dev_remove(struct platform_device *pdev) 2392 { 2393 struct net_device *ndev = platform_get_drvdata(pdev); 2394 struct hns_nic_priv *priv = netdev_priv(ndev); 2395 2396 if (ndev->reg_state != NETREG_UNINITIALIZED) 2397 unregister_netdev(ndev); 2398 2399 if (priv->ring_data) 2400 hns_nic_uninit_ring_data(priv); 2401 priv->ring_data = NULL; 2402 2403 if (ndev->phydev) 2404 phy_disconnect(ndev->phydev); 2405 2406 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2407 hnae_put_handle(priv->ae_handle); 2408 priv->ae_handle = NULL; 2409 if (priv->notifier_block.notifier_call) 2410 hnae_unregister_notifier(&priv->notifier_block); 2411 priv->notifier_block.notifier_call = NULL; 2412 2413 set_bit(NIC_STATE_REMOVING, &priv->state); 2414 (void)cancel_work_sync(&priv->service_task); 2415 2416 /* safe for ACPI FW */ 2417 of_node_put(to_of_node(priv->fwnode)); 2418 2419 free_netdev(ndev); 2420 return 0; 2421 } 2422 2423 static const struct of_device_id hns_enet_of_match[] = { 2424 {.compatible = "hisilicon,hns-nic-v1",}, 2425 {.compatible = "hisilicon,hns-nic-v2",}, 2426 {}, 2427 }; 2428 2429 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2430 2431 static struct platform_driver hns_nic_dev_driver = { 2432 .driver = { 2433 .name = "hns-nic", 2434 .of_match_table = hns_enet_of_match, 2435 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2436 }, 2437 .probe = hns_nic_dev_probe, 2438 .remove = hns_nic_dev_remove, 2439 }; 2440 2441 module_platform_driver(hns_nic_dev_driver); 2442 2443 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2444 MODULE_AUTHOR("Hisilicon, Inc."); 2445 MODULE_LICENSE("GPL"); 2446 MODULE_ALIAS("platform:hns-nic"); 2447