xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns/hns_enet.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22 
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26 
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29 
30 #define SERVICE_TIMER_HZ (1 * HZ)
31 
32 #define RCB_IRQ_NOT_INITED 0
33 #define RCB_IRQ_INITED 1
34 #define HNS_BUFFER_SIZE_2048 2048
35 
36 #define BD_MAX_SEND_SIZE 8191
37 #define SKB_TMP_LEN(SKB) \
38 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
39 
40 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
41 			    int send_sz, dma_addr_t dma, int frag_end,
42 			    int buf_num, enum hns_desc_type type, int mtu)
43 {
44 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
45 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
46 	struct iphdr *iphdr;
47 	struct ipv6hdr *ipv6hdr;
48 	struct sk_buff *skb;
49 	__be16 protocol;
50 	u8 bn_pid = 0;
51 	u8 rrcfv = 0;
52 	u8 ip_offset = 0;
53 	u8 tvsvsn = 0;
54 	u16 mss = 0;
55 	u8 l4_len = 0;
56 	u16 paylen = 0;
57 
58 	desc_cb->priv = priv;
59 	desc_cb->length = size;
60 	desc_cb->dma = dma;
61 	desc_cb->type = type;
62 
63 	desc->addr = cpu_to_le64(dma);
64 	desc->tx.send_size = cpu_to_le16((u16)send_sz);
65 
66 	/* config bd buffer end */
67 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
68 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
69 
70 	/* fill port_id in the tx bd for sending management pkts */
71 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
72 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
73 
74 	if (type == DESC_TYPE_SKB) {
75 		skb = (struct sk_buff *)priv;
76 
77 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
78 			skb_reset_mac_len(skb);
79 			protocol = skb->protocol;
80 			ip_offset = ETH_HLEN;
81 
82 			if (protocol == htons(ETH_P_8021Q)) {
83 				ip_offset += VLAN_HLEN;
84 				protocol = vlan_get_protocol(skb);
85 				skb->protocol = protocol;
86 			}
87 
88 			if (skb->protocol == htons(ETH_P_IP)) {
89 				iphdr = ip_hdr(skb);
90 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
91 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
92 
93 				/* check for tcp/udp header */
94 				if (iphdr->protocol == IPPROTO_TCP &&
95 				    skb_is_gso(skb)) {
96 					hnae_set_bit(tvsvsn,
97 						     HNSV2_TXD_TSE_B, 1);
98 					l4_len = tcp_hdrlen(skb);
99 					mss = skb_shinfo(skb)->gso_size;
100 					paylen = skb->len - SKB_TMP_LEN(skb);
101 				}
102 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
103 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
104 				ipv6hdr = ipv6_hdr(skb);
105 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
106 
107 				/* check for tcp/udp header */
108 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
109 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
110 					hnae_set_bit(tvsvsn,
111 						     HNSV2_TXD_TSE_B, 1);
112 					l4_len = tcp_hdrlen(skb);
113 					mss = skb_shinfo(skb)->gso_size;
114 					paylen = skb->len - SKB_TMP_LEN(skb);
115 				}
116 			}
117 			desc->tx.ip_offset = ip_offset;
118 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
119 			desc->tx.mss = cpu_to_le16(mss);
120 			desc->tx.l4_len = l4_len;
121 			desc->tx.paylen = cpu_to_le16(paylen);
122 		}
123 	}
124 
125 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
126 
127 	desc->tx.bn_pid = bn_pid;
128 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
129 
130 	ring_ptr_move_fw(ring, next_to_use);
131 }
132 
133 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
134 			 int size, dma_addr_t dma, int frag_end,
135 			 int buf_num, enum hns_desc_type type, int mtu)
136 {
137 	fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
138 			buf_num, type, mtu);
139 }
140 
141 static const struct acpi_device_id hns_enet_acpi_match[] = {
142 	{ "HISI00C1", 0 },
143 	{ "HISI00C2", 0 },
144 	{ },
145 };
146 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
147 
148 static void fill_desc(struct hnae_ring *ring, void *priv,
149 		      int size, dma_addr_t dma, int frag_end,
150 		      int buf_num, enum hns_desc_type type, int mtu)
151 {
152 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
153 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
154 	struct sk_buff *skb;
155 	__be16 protocol;
156 	u32 ip_offset;
157 	u32 asid_bufnum_pid = 0;
158 	u32 flag_ipoffset = 0;
159 
160 	desc_cb->priv = priv;
161 	desc_cb->length = size;
162 	desc_cb->dma = dma;
163 	desc_cb->type = type;
164 
165 	desc->addr = cpu_to_le64(dma);
166 	desc->tx.send_size = cpu_to_le16((u16)size);
167 
168 	/*config bd buffer end */
169 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
170 
171 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
172 
173 	if (type == DESC_TYPE_SKB) {
174 		skb = (struct sk_buff *)priv;
175 
176 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
177 			protocol = skb->protocol;
178 			ip_offset = ETH_HLEN;
179 
180 			/*if it is a SW VLAN check the next protocol*/
181 			if (protocol == htons(ETH_P_8021Q)) {
182 				ip_offset += VLAN_HLEN;
183 				protocol = vlan_get_protocol(skb);
184 				skb->protocol = protocol;
185 			}
186 
187 			if (skb->protocol == htons(ETH_P_IP)) {
188 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
189 				/* check for tcp/udp header */
190 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191 
192 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
193 				/* ipv6 has not l3 cs, check for L4 header */
194 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
195 			}
196 
197 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
198 		}
199 	}
200 
201 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
202 
203 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
204 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
205 
206 	ring_ptr_move_fw(ring, next_to_use);
207 }
208 
209 static void unfill_desc(struct hnae_ring *ring)
210 {
211 	ring_ptr_move_bw(ring, next_to_use);
212 }
213 
214 static int hns_nic_maybe_stop_tx(
215 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
216 {
217 	struct sk_buff *skb = *out_skb;
218 	struct sk_buff *new_skb = NULL;
219 	int buf_num;
220 
221 	/* no. of segments (plus a header) */
222 	buf_num = skb_shinfo(skb)->nr_frags + 1;
223 
224 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
225 		if (ring_space(ring) < 1)
226 			return -EBUSY;
227 
228 		new_skb = skb_copy(skb, GFP_ATOMIC);
229 		if (!new_skb)
230 			return -ENOMEM;
231 
232 		dev_kfree_skb_any(skb);
233 		*out_skb = new_skb;
234 		buf_num = 1;
235 	} else if (buf_num > ring_space(ring)) {
236 		return -EBUSY;
237 	}
238 
239 	*bnum = buf_num;
240 	return 0;
241 }
242 
243 static int hns_nic_maybe_stop_tso(
244 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
245 {
246 	int i;
247 	int size;
248 	int buf_num;
249 	int frag_num;
250 	struct sk_buff *skb = *out_skb;
251 	struct sk_buff *new_skb = NULL;
252 	struct skb_frag_struct *frag;
253 
254 	size = skb_headlen(skb);
255 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
256 
257 	frag_num = skb_shinfo(skb)->nr_frags;
258 	for (i = 0; i < frag_num; i++) {
259 		frag = &skb_shinfo(skb)->frags[i];
260 		size = skb_frag_size(frag);
261 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262 	}
263 
264 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
265 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
266 		if (ring_space(ring) < buf_num)
267 			return -EBUSY;
268 		/* manual split the send packet */
269 		new_skb = skb_copy(skb, GFP_ATOMIC);
270 		if (!new_skb)
271 			return -ENOMEM;
272 		dev_kfree_skb_any(skb);
273 		*out_skb = new_skb;
274 
275 	} else if (ring_space(ring) < buf_num) {
276 		return -EBUSY;
277 	}
278 
279 	*bnum = buf_num;
280 	return 0;
281 }
282 
283 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
284 			  int size, dma_addr_t dma, int frag_end,
285 			  int buf_num, enum hns_desc_type type, int mtu)
286 {
287 	int frag_buf_num;
288 	int sizeoflast;
289 	int k;
290 
291 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
292 	sizeoflast = size % BD_MAX_SEND_SIZE;
293 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
294 
295 	/* when the frag size is bigger than hardware, split this frag */
296 	for (k = 0; k < frag_buf_num; k++)
297 		fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
298 				(k == frag_buf_num - 1) ?
299 					sizeoflast : BD_MAX_SEND_SIZE,
300 				dma + BD_MAX_SEND_SIZE * k,
301 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
302 				buf_num,
303 				(type == DESC_TYPE_SKB && !k) ?
304 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
305 				mtu);
306 }
307 
308 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
309 				struct sk_buff *skb,
310 				struct hns_nic_ring_data *ring_data)
311 {
312 	struct hns_nic_priv *priv = netdev_priv(ndev);
313 	struct hnae_ring *ring = ring_data->ring;
314 	struct device *dev = ring_to_dev(ring);
315 	struct netdev_queue *dev_queue;
316 	struct skb_frag_struct *frag;
317 	int buf_num;
318 	int seg_num;
319 	dma_addr_t dma;
320 	int size, next_to_use;
321 	int i;
322 
323 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
324 	case -EBUSY:
325 		ring->stats.tx_busy++;
326 		goto out_net_tx_busy;
327 	case -ENOMEM:
328 		ring->stats.sw_err_cnt++;
329 		netdev_err(ndev, "no memory to xmit!\n");
330 		goto out_err_tx_ok;
331 	default:
332 		break;
333 	}
334 
335 	/* no. of segments (plus a header) */
336 	seg_num = skb_shinfo(skb)->nr_frags + 1;
337 	next_to_use = ring->next_to_use;
338 
339 	/* fill the first part */
340 	size = skb_headlen(skb);
341 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
342 	if (dma_mapping_error(dev, dma)) {
343 		netdev_err(ndev, "TX head DMA map failed\n");
344 		ring->stats.sw_err_cnt++;
345 		goto out_err_tx_ok;
346 	}
347 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
348 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
349 
350 	/* fill the fragments */
351 	for (i = 1; i < seg_num; i++) {
352 		frag = &skb_shinfo(skb)->frags[i - 1];
353 		size = skb_frag_size(frag);
354 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
355 		if (dma_mapping_error(dev, dma)) {
356 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
357 			ring->stats.sw_err_cnt++;
358 			goto out_map_frag_fail;
359 		}
360 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
361 				    seg_num - 1 == i ? 1 : 0, buf_num,
362 				    DESC_TYPE_PAGE, ndev->mtu);
363 	}
364 
365 	/*complete translate all packets*/
366 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
367 	netdev_tx_sent_queue(dev_queue, skb->len);
368 
369 	netif_trans_update(ndev);
370 	ndev->stats.tx_bytes += skb->len;
371 	ndev->stats.tx_packets++;
372 
373 	wmb(); /* commit all data before submit */
374 	assert(skb->queue_mapping < priv->ae_handle->q_num);
375 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
376 
377 	return NETDEV_TX_OK;
378 
379 out_map_frag_fail:
380 
381 	while (ring->next_to_use != next_to_use) {
382 		unfill_desc(ring);
383 		if (ring->next_to_use != next_to_use)
384 			dma_unmap_page(dev,
385 				       ring->desc_cb[ring->next_to_use].dma,
386 				       ring->desc_cb[ring->next_to_use].length,
387 				       DMA_TO_DEVICE);
388 		else
389 			dma_unmap_single(dev,
390 					 ring->desc_cb[next_to_use].dma,
391 					 ring->desc_cb[next_to_use].length,
392 					 DMA_TO_DEVICE);
393 	}
394 
395 out_err_tx_ok:
396 
397 	dev_kfree_skb_any(skb);
398 	return NETDEV_TX_OK;
399 
400 out_net_tx_busy:
401 
402 	netif_stop_subqueue(ndev, skb->queue_mapping);
403 
404 	/* Herbert's original patch had:
405 	 *  smp_mb__after_netif_stop_queue();
406 	 * but since that doesn't exist yet, just open code it.
407 	 */
408 	smp_mb();
409 	return NETDEV_TX_BUSY;
410 }
411 
412 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
413 			       struct hnae_ring *ring, int pull_len,
414 			       struct hnae_desc_cb *desc_cb)
415 {
416 	struct hnae_desc *desc;
417 	u32 truesize;
418 	int size;
419 	int last_offset;
420 	bool twobufs;
421 
422 	twobufs = ((PAGE_SIZE < 8192) &&
423 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
424 
425 	desc = &ring->desc[ring->next_to_clean];
426 	size = le16_to_cpu(desc->rx.size);
427 
428 	if (twobufs) {
429 		truesize = hnae_buf_size(ring);
430 	} else {
431 		truesize = ALIGN(size, L1_CACHE_BYTES);
432 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
433 	}
434 
435 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
436 			size - pull_len, truesize);
437 
438 	 /* avoid re-using remote pages,flag default unreuse */
439 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
440 		return;
441 
442 	if (twobufs) {
443 		/* if we are only owner of page we can reuse it */
444 		if (likely(page_count(desc_cb->priv) == 1)) {
445 			/* flip page offset to other buffer */
446 			desc_cb->page_offset ^= truesize;
447 
448 			desc_cb->reuse_flag = 1;
449 			/* bump ref count on page before it is given*/
450 			get_page(desc_cb->priv);
451 		}
452 		return;
453 	}
454 
455 	/* move offset up to the next cache line */
456 	desc_cb->page_offset += truesize;
457 
458 	if (desc_cb->page_offset <= last_offset) {
459 		desc_cb->reuse_flag = 1;
460 		/* bump ref count on page before it is given*/
461 		get_page(desc_cb->priv);
462 	}
463 }
464 
465 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
466 {
467 	*out_bnum = hnae_get_field(bnum_flag,
468 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
469 }
470 
471 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
472 {
473 	*out_bnum = hnae_get_field(bnum_flag,
474 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
475 }
476 
477 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
478 				struct sk_buff *skb, u32 flag)
479 {
480 	struct net_device *netdev = ring_data->napi.dev;
481 	u32 l3id;
482 	u32 l4id;
483 
484 	/* check if RX checksum offload is enabled */
485 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
486 		return;
487 
488 	/* In hardware, we only support checksum for the following protocols:
489 	 * 1) IPv4,
490 	 * 2) TCP(over IPv4 or IPv6),
491 	 * 3) UDP(over IPv4 or IPv6),
492 	 * 4) SCTP(over IPv4 or IPv6)
493 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
494 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
495 	 *
496 	 * Hardware limitation:
497 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
498 	 * Error" bit (which usually can be used to indicate whether checksum
499 	 * was calculated by the hardware and if there was any error encountered
500 	 * during checksum calculation).
501 	 *
502 	 * Software workaround:
503 	 * We do get info within the RX descriptor about the kind of L3/L4
504 	 * protocol coming in the packet and the error status. These errors
505 	 * might not just be checksum errors but could be related to version,
506 	 * length of IPv4, UDP, TCP etc.
507 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
508 	 * checksum or any other L3/L4 error, we will not (cannot) convey
509 	 * checksum status for such cases to upper stack and will not maintain
510 	 * the RX L3/L4 checksum counters as well.
511 	 */
512 
513 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
514 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
515 
516 	/*  check L3 protocol for which checksum is supported */
517 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
518 		return;
519 
520 	/* check for any(not just checksum)flagged L3 protocol errors */
521 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
522 		return;
523 
524 	/* we do not support checksum of fragmented packets */
525 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
526 		return;
527 
528 	/*  check L4 protocol for which checksum is supported */
529 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
530 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
531 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
532 		return;
533 
534 	/* check for any(not just checksum)flagged L4 protocol errors */
535 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
536 		return;
537 
538 	/* now, this has to be a packet with valid RX checksum */
539 	skb->ip_summed = CHECKSUM_UNNECESSARY;
540 }
541 
542 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
543 			       struct sk_buff **out_skb, int *out_bnum)
544 {
545 	struct hnae_ring *ring = ring_data->ring;
546 	struct net_device *ndev = ring_data->napi.dev;
547 	struct hns_nic_priv *priv = netdev_priv(ndev);
548 	struct sk_buff *skb;
549 	struct hnae_desc *desc;
550 	struct hnae_desc_cb *desc_cb;
551 	unsigned char *va;
552 	int bnum, length, i;
553 	int pull_len;
554 	u32 bnum_flag;
555 
556 	desc = &ring->desc[ring->next_to_clean];
557 	desc_cb = &ring->desc_cb[ring->next_to_clean];
558 
559 	prefetch(desc);
560 
561 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
562 
563 	/* prefetch first cache line of first page */
564 	prefetch(va);
565 #if L1_CACHE_BYTES < 128
566 	prefetch(va + L1_CACHE_BYTES);
567 #endif
568 
569 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
570 					HNS_RX_HEAD_SIZE);
571 	if (unlikely(!skb)) {
572 		netdev_err(ndev, "alloc rx skb fail\n");
573 		ring->stats.sw_err_cnt++;
574 		return -ENOMEM;
575 	}
576 
577 	prefetchw(skb->data);
578 	length = le16_to_cpu(desc->rx.pkt_len);
579 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
580 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
581 	*out_bnum = bnum;
582 
583 	if (length <= HNS_RX_HEAD_SIZE) {
584 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
585 
586 		/* we can reuse buffer as-is, just make sure it is local */
587 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
588 			desc_cb->reuse_flag = 1;
589 		else /* this page cannot be reused so discard it */
590 			put_page(desc_cb->priv);
591 
592 		ring_ptr_move_fw(ring, next_to_clean);
593 
594 		if (unlikely(bnum != 1)) { /* check err*/
595 			*out_bnum = 1;
596 			goto out_bnum_err;
597 		}
598 	} else {
599 		ring->stats.seg_pkt_cnt++;
600 
601 		pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE);
602 		memcpy(__skb_put(skb, pull_len), va,
603 		       ALIGN(pull_len, sizeof(long)));
604 
605 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
606 		ring_ptr_move_fw(ring, next_to_clean);
607 
608 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
609 			*out_bnum = 1;
610 			goto out_bnum_err;
611 		}
612 		for (i = 1; i < bnum; i++) {
613 			desc = &ring->desc[ring->next_to_clean];
614 			desc_cb = &ring->desc_cb[ring->next_to_clean];
615 
616 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
617 			ring_ptr_move_fw(ring, next_to_clean);
618 		}
619 	}
620 
621 	/* check except process, free skb and jump the desc */
622 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
623 out_bnum_err:
624 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
625 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
626 			   bnum, ring->max_desc_num_per_pkt,
627 			   length, (int)MAX_SKB_FRAGS,
628 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
629 		ring->stats.err_bd_num++;
630 		dev_kfree_skb_any(skb);
631 		return -EDOM;
632 	}
633 
634 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
635 
636 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
637 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
638 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
639 		ring->stats.non_vld_descs++;
640 		dev_kfree_skb_any(skb);
641 		return -EINVAL;
642 	}
643 
644 	if (unlikely((!desc->rx.pkt_len) ||
645 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
646 		ring->stats.err_pkt_len++;
647 		dev_kfree_skb_any(skb);
648 		return -EFAULT;
649 	}
650 
651 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
652 		ring->stats.l2_err++;
653 		dev_kfree_skb_any(skb);
654 		return -EFAULT;
655 	}
656 
657 	ring->stats.rx_pkts++;
658 	ring->stats.rx_bytes += skb->len;
659 
660 	/* indicate to upper stack if our hardware has already calculated
661 	 * the RX checksum
662 	 */
663 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
664 
665 	return 0;
666 }
667 
668 static void
669 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
670 {
671 	int i, ret;
672 	struct hnae_desc_cb res_cbs;
673 	struct hnae_desc_cb *desc_cb;
674 	struct hnae_ring *ring = ring_data->ring;
675 	struct net_device *ndev = ring_data->napi.dev;
676 
677 	for (i = 0; i < cleand_count; i++) {
678 		desc_cb = &ring->desc_cb[ring->next_to_use];
679 		if (desc_cb->reuse_flag) {
680 			ring->stats.reuse_pg_cnt++;
681 			hnae_reuse_buffer(ring, ring->next_to_use);
682 		} else {
683 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
684 			if (ret) {
685 				ring->stats.sw_err_cnt++;
686 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
687 				break;
688 			}
689 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
690 		}
691 
692 		ring_ptr_move_fw(ring, next_to_use);
693 	}
694 
695 	wmb(); /* make all data has been write before submit */
696 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
697 }
698 
699 /* return error number for error or number of desc left to take
700  */
701 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
702 			      struct sk_buff *skb)
703 {
704 	struct net_device *ndev = ring_data->napi.dev;
705 
706 	skb->protocol = eth_type_trans(skb, ndev);
707 	(void)napi_gro_receive(&ring_data->napi, skb);
708 }
709 
710 static int hns_desc_unused(struct hnae_ring *ring)
711 {
712 	int ntc = ring->next_to_clean;
713 	int ntu = ring->next_to_use;
714 
715 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
716 }
717 
718 #define HNS_LOWEST_LATENCY_RATE		27	/* 27 MB/s */
719 #define HNS_LOW_LATENCY_RATE			80	/* 80 MB/s */
720 
721 #define HNS_COAL_BDNUM			3
722 
723 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
724 {
725 	bool coal_enable = ring->q->handle->coal_adapt_en;
726 
727 	if (coal_enable &&
728 	    ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
729 		return HNS_COAL_BDNUM;
730 	else
731 		return 0;
732 }
733 
734 static void hns_update_rx_rate(struct hnae_ring *ring)
735 {
736 	bool coal_enable = ring->q->handle->coal_adapt_en;
737 	u32 time_passed_ms;
738 	u64 total_bytes;
739 
740 	if (!coal_enable ||
741 	    time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
742 		return;
743 
744 	/* ring->stats.rx_bytes overflowed */
745 	if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
746 		ring->coal_last_rx_bytes = ring->stats.rx_bytes;
747 		ring->coal_last_jiffies = jiffies;
748 		return;
749 	}
750 
751 	total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
752 	time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
753 	do_div(total_bytes, time_passed_ms);
754 	ring->coal_rx_rate = total_bytes >> 10;
755 
756 	ring->coal_last_rx_bytes = ring->stats.rx_bytes;
757 	ring->coal_last_jiffies = jiffies;
758 }
759 
760 /**
761  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
762  **/
763 static u32 smooth_alg(u32 new_param, u32 old_param)
764 {
765 	u32 gap = (new_param > old_param) ? new_param - old_param
766 					  : old_param - new_param;
767 
768 	if (gap > 8)
769 		gap >>= 3;
770 
771 	if (new_param > old_param)
772 		return old_param + gap;
773 	else
774 		return old_param - gap;
775 }
776 
777 /**
778  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
779  * @ring_data: pointer to hns_nic_ring_data
780  **/
781 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
782 {
783 	struct hnae_ring *ring = ring_data->ring;
784 	struct hnae_handle *handle = ring->q->handle;
785 	u32 new_coal_param, old_coal_param = ring->coal_param;
786 
787 	if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
788 		new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
789 	else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
790 		new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
791 	else
792 		new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
793 
794 	if (new_coal_param == old_coal_param &&
795 	    new_coal_param == handle->coal_param)
796 		return;
797 
798 	new_coal_param = smooth_alg(new_coal_param, old_coal_param);
799 	ring->coal_param = new_coal_param;
800 
801 	/**
802 	 * Because all ring in one port has one coalesce param, when one ring
803 	 * calculate its own coalesce param, it cannot write to hardware at
804 	 * once. There are three conditions as follows:
805 	 *       1. current ring's coalesce param is larger than the hardware.
806 	 *       2. or ring which adapt last time can change again.
807 	 *       3. timeout.
808 	 */
809 	if (new_coal_param == handle->coal_param) {
810 		handle->coal_last_jiffies = jiffies;
811 		handle->coal_ring_idx = ring_data->queue_index;
812 	} else if (new_coal_param > handle->coal_param ||
813 		   handle->coal_ring_idx == ring_data->queue_index ||
814 		   time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
815 		handle->dev->ops->set_coalesce_usecs(handle,
816 					new_coal_param);
817 		handle->dev->ops->set_coalesce_frames(handle,
818 					1, new_coal_param);
819 		handle->coal_param = new_coal_param;
820 		handle->coal_ring_idx = ring_data->queue_index;
821 		handle->coal_last_jiffies = jiffies;
822 	}
823 }
824 
825 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
826 			       int budget, void *v)
827 {
828 	struct hnae_ring *ring = ring_data->ring;
829 	struct sk_buff *skb;
830 	int num, bnum;
831 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
832 	int recv_pkts, recv_bds, clean_count, err;
833 	int unused_count = hns_desc_unused(ring);
834 
835 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
836 	rmb(); /* make sure num taken effect before the other data is touched */
837 
838 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
839 	num -= unused_count;
840 
841 	while (recv_pkts < budget && recv_bds < num) {
842 		/* reuse or realloc buffers */
843 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
844 			hns_nic_alloc_rx_buffers(ring_data,
845 						 clean_count + unused_count);
846 			clean_count = 0;
847 			unused_count = hns_desc_unused(ring);
848 		}
849 
850 		/* poll one pkt */
851 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
852 		if (unlikely(!skb)) /* this fault cannot be repaired */
853 			goto out;
854 
855 		recv_bds += bnum;
856 		clean_count += bnum;
857 		if (unlikely(err)) {  /* do jump the err */
858 			recv_pkts++;
859 			continue;
860 		}
861 
862 		/* do update ip stack process*/
863 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
864 							ring_data, skb);
865 		recv_pkts++;
866 	}
867 
868 out:
869 	/* make all data has been write before submit */
870 	if (clean_count + unused_count > 0)
871 		hns_nic_alloc_rx_buffers(ring_data,
872 					 clean_count + unused_count);
873 
874 	return recv_pkts;
875 }
876 
877 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
878 {
879 	struct hnae_ring *ring = ring_data->ring;
880 	int num = 0;
881 	bool rx_stopped;
882 
883 	hns_update_rx_rate(ring);
884 
885 	/* for hardware bug fixed */
886 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
887 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
888 
889 	if (num <= hns_coal_rx_bdnum(ring)) {
890 		if (ring->q->handle->coal_adapt_en)
891 			hns_nic_adpt_coalesce(ring_data);
892 
893 		rx_stopped = true;
894 	} else {
895 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
896 			ring_data->ring, 1);
897 
898 		rx_stopped = false;
899 	}
900 
901 	return rx_stopped;
902 }
903 
904 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
905 {
906 	struct hnae_ring *ring = ring_data->ring;
907 	int num;
908 
909 	hns_update_rx_rate(ring);
910 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
911 
912 	if (num <= hns_coal_rx_bdnum(ring)) {
913 		if (ring->q->handle->coal_adapt_en)
914 			hns_nic_adpt_coalesce(ring_data);
915 
916 		return true;
917 	}
918 
919 	return false;
920 }
921 
922 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
923 					    int *bytes, int *pkts)
924 {
925 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
926 
927 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
928 	(*bytes) += desc_cb->length;
929 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
930 	hnae_free_buffer_detach(ring, ring->next_to_clean);
931 
932 	ring_ptr_move_fw(ring, next_to_clean);
933 }
934 
935 static int is_valid_clean_head(struct hnae_ring *ring, int h)
936 {
937 	int u = ring->next_to_use;
938 	int c = ring->next_to_clean;
939 
940 	if (unlikely(h > ring->desc_num))
941 		return 0;
942 
943 	assert(u > 0 && u < ring->desc_num);
944 	assert(c > 0 && c < ring->desc_num);
945 	assert(u != c && h != c); /* must be checked before call this func */
946 
947 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
948 }
949 
950 /* netif_tx_lock will turn down the performance, set only when necessary */
951 #ifdef CONFIG_NET_POLL_CONTROLLER
952 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
953 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
954 #else
955 #define NETIF_TX_LOCK(ring)
956 #define NETIF_TX_UNLOCK(ring)
957 #endif
958 
959 /* reclaim all desc in one budget
960  * return error or number of desc left
961  */
962 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
963 			       int budget, void *v)
964 {
965 	struct hnae_ring *ring = ring_data->ring;
966 	struct net_device *ndev = ring_data->napi.dev;
967 	struct netdev_queue *dev_queue;
968 	struct hns_nic_priv *priv = netdev_priv(ndev);
969 	int head;
970 	int bytes, pkts;
971 
972 	NETIF_TX_LOCK(ring);
973 
974 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
975 	rmb(); /* make sure head is ready before touch any data */
976 
977 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
978 		NETIF_TX_UNLOCK(ring);
979 		return 0; /* no data to poll */
980 	}
981 
982 	if (!is_valid_clean_head(ring, head)) {
983 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
984 			   ring->next_to_use, ring->next_to_clean);
985 		ring->stats.io_err_cnt++;
986 		NETIF_TX_UNLOCK(ring);
987 		return -EIO;
988 	}
989 
990 	bytes = 0;
991 	pkts = 0;
992 	while (head != ring->next_to_clean) {
993 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
994 		/* issue prefetch for next Tx descriptor */
995 		prefetch(&ring->desc_cb[ring->next_to_clean]);
996 	}
997 	/* update tx ring statistics. */
998 	ring->stats.tx_pkts += pkts;
999 	ring->stats.tx_bytes += bytes;
1000 
1001 	NETIF_TX_UNLOCK(ring);
1002 
1003 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1004 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
1005 
1006 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1007 		netif_carrier_on(ndev);
1008 
1009 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
1010 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1011 		/* Make sure that anybody stopping the queue after this
1012 		 * sees the new next_to_clean.
1013 		 */
1014 		smp_mb();
1015 		if (netif_tx_queue_stopped(dev_queue) &&
1016 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
1017 			netif_tx_wake_queue(dev_queue);
1018 			ring->stats.restart_queue++;
1019 		}
1020 	}
1021 	return 0;
1022 }
1023 
1024 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1025 {
1026 	struct hnae_ring *ring = ring_data->ring;
1027 	int head;
1028 
1029 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1030 
1031 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1032 
1033 	if (head != ring->next_to_clean) {
1034 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1035 			ring_data->ring, 1);
1036 
1037 		return false;
1038 	} else {
1039 		return true;
1040 	}
1041 }
1042 
1043 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1044 {
1045 	struct hnae_ring *ring = ring_data->ring;
1046 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1047 
1048 	if (head == ring->next_to_clean)
1049 		return true;
1050 	else
1051 		return false;
1052 }
1053 
1054 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1055 {
1056 	struct hnae_ring *ring = ring_data->ring;
1057 	struct net_device *ndev = ring_data->napi.dev;
1058 	struct netdev_queue *dev_queue;
1059 	int head;
1060 	int bytes, pkts;
1061 
1062 	NETIF_TX_LOCK(ring);
1063 
1064 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1065 	bytes = 0;
1066 	pkts = 0;
1067 	while (head != ring->next_to_clean)
1068 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1069 
1070 	NETIF_TX_UNLOCK(ring);
1071 
1072 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1073 	netdev_tx_reset_queue(dev_queue);
1074 }
1075 
1076 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1077 {
1078 	int clean_complete = 0;
1079 	struct hns_nic_ring_data *ring_data =
1080 		container_of(napi, struct hns_nic_ring_data, napi);
1081 	struct hnae_ring *ring = ring_data->ring;
1082 
1083 try_again:
1084 	clean_complete += ring_data->poll_one(
1085 				ring_data, budget - clean_complete,
1086 				ring_data->ex_process);
1087 
1088 	if (clean_complete < budget) {
1089 		if (ring_data->fini_process(ring_data)) {
1090 			napi_complete(napi);
1091 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1092 		} else {
1093 			goto try_again;
1094 		}
1095 	}
1096 
1097 	return clean_complete;
1098 }
1099 
1100 static irqreturn_t hns_irq_handle(int irq, void *dev)
1101 {
1102 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1103 
1104 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1105 		ring_data->ring, 1);
1106 	napi_schedule(&ring_data->napi);
1107 
1108 	return IRQ_HANDLED;
1109 }
1110 
1111 /**
1112  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1113  *@ndev: net device
1114  */
1115 static void hns_nic_adjust_link(struct net_device *ndev)
1116 {
1117 	struct hns_nic_priv *priv = netdev_priv(ndev);
1118 	struct hnae_handle *h = priv->ae_handle;
1119 	int state = 1;
1120 
1121 	/* If there is no phy, do not need adjust link */
1122 	if (ndev->phydev) {
1123 		/* When phy link down, do nothing */
1124 		if (ndev->phydev->link == 0)
1125 			return;
1126 
1127 		if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1128 						  ndev->phydev->duplex)) {
1129 			/* because Hi161X chip don't support to change gmac
1130 			 * speed and duplex with traffic. Delay 200ms to
1131 			 * make sure there is no more data in chip FIFO.
1132 			 */
1133 			netif_carrier_off(ndev);
1134 			msleep(200);
1135 			h->dev->ops->adjust_link(h, ndev->phydev->speed,
1136 						 ndev->phydev->duplex);
1137 			netif_carrier_on(ndev);
1138 		}
1139 	}
1140 
1141 	state = state && h->dev->ops->get_status(h);
1142 
1143 	if (state != priv->link) {
1144 		if (state) {
1145 			netif_carrier_on(ndev);
1146 			netif_tx_wake_all_queues(ndev);
1147 			netdev_info(ndev, "link up\n");
1148 		} else {
1149 			netif_carrier_off(ndev);
1150 			netdev_info(ndev, "link down\n");
1151 		}
1152 		priv->link = state;
1153 	}
1154 }
1155 
1156 /**
1157  *hns_nic_init_phy - init phy
1158  *@ndev: net device
1159  *@h: ae handle
1160  * Return 0 on success, negative on failure
1161  */
1162 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1163 {
1164 	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1165 	struct phy_device *phy_dev = h->phy_dev;
1166 	int ret;
1167 
1168 	if (!h->phy_dev)
1169 		return 0;
1170 
1171 	ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1172 	linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1173 	linkmode_copy(phy_dev->advertising, phy_dev->supported);
1174 
1175 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1176 		phy_dev->autoneg = false;
1177 
1178 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1179 		phy_dev->dev_flags = 0;
1180 
1181 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1182 					 h->phy_if);
1183 	} else {
1184 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1185 	}
1186 	if (unlikely(ret))
1187 		return -ENODEV;
1188 
1189 	return 0;
1190 }
1191 
1192 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1193 {
1194 	struct hns_nic_priv *priv = netdev_priv(netdev);
1195 	struct hnae_handle *h = priv->ae_handle;
1196 
1197 	napi_enable(&priv->ring_data[idx].napi);
1198 
1199 	enable_irq(priv->ring_data[idx].ring->irq);
1200 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1201 
1202 	return 0;
1203 }
1204 
1205 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1206 {
1207 	struct hns_nic_priv *priv = netdev_priv(ndev);
1208 	struct hnae_handle *h = priv->ae_handle;
1209 	struct sockaddr *mac_addr = p;
1210 	int ret;
1211 
1212 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1213 		return -EADDRNOTAVAIL;
1214 
1215 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1216 	if (ret) {
1217 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1218 		return ret;
1219 	}
1220 
1221 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1222 
1223 	return 0;
1224 }
1225 
1226 static void hns_nic_update_stats(struct net_device *netdev)
1227 {
1228 	struct hns_nic_priv *priv = netdev_priv(netdev);
1229 	struct hnae_handle *h = priv->ae_handle;
1230 
1231 	h->dev->ops->update_stats(h, &netdev->stats);
1232 }
1233 
1234 /* set mac addr if it is configed. or leave it to the AE driver */
1235 static void hns_init_mac_addr(struct net_device *ndev)
1236 {
1237 	struct hns_nic_priv *priv = netdev_priv(ndev);
1238 
1239 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1240 		eth_hw_addr_random(ndev);
1241 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1242 			 ndev->dev_addr);
1243 	}
1244 }
1245 
1246 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1247 {
1248 	struct hns_nic_priv *priv = netdev_priv(netdev);
1249 	struct hnae_handle *h = priv->ae_handle;
1250 
1251 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1252 	disable_irq(priv->ring_data[idx].ring->irq);
1253 
1254 	napi_disable(&priv->ring_data[idx].napi);
1255 }
1256 
1257 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1258 				      struct hnae_ring *ring, cpumask_t *mask)
1259 {
1260 	int cpu;
1261 
1262 	/* Diffrent irq banlance between 16core and 32core.
1263 	 * The cpu mask set by ring index according to the ring flag
1264 	 * which indicate the ring is tx or rx.
1265 	 */
1266 	if (q_num == num_possible_cpus()) {
1267 		if (is_tx_ring(ring))
1268 			cpu = ring_idx;
1269 		else
1270 			cpu = ring_idx - q_num;
1271 	} else {
1272 		if (is_tx_ring(ring))
1273 			cpu = ring_idx * 2;
1274 		else
1275 			cpu = (ring_idx - q_num) * 2 + 1;
1276 	}
1277 
1278 	cpumask_clear(mask);
1279 	cpumask_set_cpu(cpu, mask);
1280 
1281 	return cpu;
1282 }
1283 
1284 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1285 {
1286 	int i;
1287 
1288 	for (i = 0; i < q_num * 2; i++) {
1289 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1290 			irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1291 					      NULL);
1292 			free_irq(priv->ring_data[i].ring->irq,
1293 				 &priv->ring_data[i]);
1294 			priv->ring_data[i].ring->irq_init_flag =
1295 				RCB_IRQ_NOT_INITED;
1296 		}
1297 	}
1298 }
1299 
1300 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1301 {
1302 	struct hnae_handle *h = priv->ae_handle;
1303 	struct hns_nic_ring_data *rd;
1304 	int i;
1305 	int ret;
1306 	int cpu;
1307 
1308 	for (i = 0; i < h->q_num * 2; i++) {
1309 		rd = &priv->ring_data[i];
1310 
1311 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1312 			break;
1313 
1314 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1315 			 "%s-%s%d", priv->netdev->name,
1316 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1317 
1318 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1319 
1320 		ret = request_irq(rd->ring->irq,
1321 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1322 		if (ret) {
1323 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1324 				   rd->ring->irq);
1325 			goto out_free_irq;
1326 		}
1327 		disable_irq(rd->ring->irq);
1328 
1329 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1330 						 rd->ring, &rd->mask);
1331 
1332 		if (cpu_online(cpu))
1333 			irq_set_affinity_hint(rd->ring->irq,
1334 					      &rd->mask);
1335 
1336 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1337 	}
1338 
1339 	return 0;
1340 
1341 out_free_irq:
1342 	hns_nic_free_irq(h->q_num, priv);
1343 	return ret;
1344 }
1345 
1346 static int hns_nic_net_up(struct net_device *ndev)
1347 {
1348 	struct hns_nic_priv *priv = netdev_priv(ndev);
1349 	struct hnae_handle *h = priv->ae_handle;
1350 	int i, j;
1351 	int ret;
1352 
1353 	if (!test_bit(NIC_STATE_DOWN, &priv->state))
1354 		return 0;
1355 
1356 	ret = hns_nic_init_irq(priv);
1357 	if (ret != 0) {
1358 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1359 		return ret;
1360 	}
1361 
1362 	for (i = 0; i < h->q_num * 2; i++) {
1363 		ret = hns_nic_ring_open(ndev, i);
1364 		if (ret)
1365 			goto out_has_some_queues;
1366 	}
1367 
1368 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1369 	if (ret)
1370 		goto out_set_mac_addr_err;
1371 
1372 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1373 	if (ret)
1374 		goto out_start_err;
1375 
1376 	if (ndev->phydev)
1377 		phy_start(ndev->phydev);
1378 
1379 	clear_bit(NIC_STATE_DOWN, &priv->state);
1380 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1381 
1382 	return 0;
1383 
1384 out_start_err:
1385 	netif_stop_queue(ndev);
1386 out_set_mac_addr_err:
1387 out_has_some_queues:
1388 	for (j = i - 1; j >= 0; j--)
1389 		hns_nic_ring_close(ndev, j);
1390 
1391 	hns_nic_free_irq(h->q_num, priv);
1392 	set_bit(NIC_STATE_DOWN, &priv->state);
1393 
1394 	return ret;
1395 }
1396 
1397 static void hns_nic_net_down(struct net_device *ndev)
1398 {
1399 	int i;
1400 	struct hnae_ae_ops *ops;
1401 	struct hns_nic_priv *priv = netdev_priv(ndev);
1402 
1403 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1404 		return;
1405 
1406 	(void)del_timer_sync(&priv->service_timer);
1407 	netif_tx_stop_all_queues(ndev);
1408 	netif_carrier_off(ndev);
1409 	netif_tx_disable(ndev);
1410 	priv->link = 0;
1411 
1412 	if (ndev->phydev)
1413 		phy_stop(ndev->phydev);
1414 
1415 	ops = priv->ae_handle->dev->ops;
1416 
1417 	if (ops->stop)
1418 		ops->stop(priv->ae_handle);
1419 
1420 	netif_tx_stop_all_queues(ndev);
1421 
1422 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1423 		hns_nic_ring_close(ndev, i);
1424 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1425 
1426 		/* clean tx buffers*/
1427 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1428 	}
1429 }
1430 
1431 void hns_nic_net_reset(struct net_device *ndev)
1432 {
1433 	struct hns_nic_priv *priv = netdev_priv(ndev);
1434 	struct hnae_handle *handle = priv->ae_handle;
1435 
1436 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1437 		usleep_range(1000, 2000);
1438 
1439 	(void)hnae_reinit_handle(handle);
1440 
1441 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1442 }
1443 
1444 void hns_nic_net_reinit(struct net_device *netdev)
1445 {
1446 	struct hns_nic_priv *priv = netdev_priv(netdev);
1447 	enum hnae_port_type type = priv->ae_handle->port_type;
1448 
1449 	netif_trans_update(priv->netdev);
1450 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1451 		usleep_range(1000, 2000);
1452 
1453 	hns_nic_net_down(netdev);
1454 
1455 	/* Only do hns_nic_net_reset in debug mode
1456 	 * because of hardware limitation.
1457 	 */
1458 	if (type == HNAE_PORT_DEBUG)
1459 		hns_nic_net_reset(netdev);
1460 
1461 	(void)hns_nic_net_up(netdev);
1462 	clear_bit(NIC_STATE_REINITING, &priv->state);
1463 }
1464 
1465 static int hns_nic_net_open(struct net_device *ndev)
1466 {
1467 	struct hns_nic_priv *priv = netdev_priv(ndev);
1468 	struct hnae_handle *h = priv->ae_handle;
1469 	int ret;
1470 
1471 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1472 		return -EBUSY;
1473 
1474 	priv->link = 0;
1475 	netif_carrier_off(ndev);
1476 
1477 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1478 	if (ret < 0) {
1479 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1480 			   ret);
1481 		return ret;
1482 	}
1483 
1484 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1485 	if (ret < 0) {
1486 		netdev_err(ndev,
1487 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1488 		return ret;
1489 	}
1490 
1491 	ret = hns_nic_net_up(ndev);
1492 	if (ret) {
1493 		netdev_err(ndev,
1494 			   "hns net up fail, ret=%d!\n", ret);
1495 		return ret;
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static int hns_nic_net_stop(struct net_device *ndev)
1502 {
1503 	hns_nic_net_down(ndev);
1504 
1505 	return 0;
1506 }
1507 
1508 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1509 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1510 static void hns_nic_net_timeout(struct net_device *ndev)
1511 {
1512 	struct hns_nic_priv *priv = netdev_priv(ndev);
1513 
1514 	if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1515 		ndev->watchdog_timeo *= 2;
1516 		netdev_info(ndev, "watchdog_timo changed to %d.\n",
1517 			    ndev->watchdog_timeo);
1518 	} else {
1519 		ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1520 		hns_tx_timeout_reset(priv);
1521 	}
1522 }
1523 
1524 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1525 			    int cmd)
1526 {
1527 	struct phy_device *phy_dev = netdev->phydev;
1528 
1529 	if (!netif_running(netdev))
1530 		return -EINVAL;
1531 
1532 	if (!phy_dev)
1533 		return -ENOTSUPP;
1534 
1535 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1536 }
1537 
1538 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1539 				    struct net_device *ndev)
1540 {
1541 	struct hns_nic_priv *priv = netdev_priv(ndev);
1542 
1543 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1544 
1545 	return hns_nic_net_xmit_hw(ndev, skb,
1546 				   &tx_ring_data(priv, skb->queue_mapping));
1547 }
1548 
1549 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1550 				  struct sk_buff *skb)
1551 {
1552 	dev_kfree_skb_any(skb);
1553 }
1554 
1555 #define HNS_LB_TX_RING	0
1556 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1557 {
1558 	struct sk_buff *skb;
1559 	struct ethhdr *ethhdr;
1560 	int frame_len;
1561 
1562 	/* allocate test skb */
1563 	skb = alloc_skb(64, GFP_KERNEL);
1564 	if (!skb)
1565 		return NULL;
1566 
1567 	skb_put(skb, 64);
1568 	skb->dev = ndev;
1569 	memset(skb->data, 0xFF, skb->len);
1570 
1571 	/* must be tcp/ip package */
1572 	ethhdr = (struct ethhdr *)skb->data;
1573 	ethhdr->h_proto = htons(ETH_P_IP);
1574 
1575 	frame_len = skb->len & (~1ul);
1576 	memset(&skb->data[frame_len / 2], 0xAA,
1577 	       frame_len / 2 - 1);
1578 
1579 	skb->queue_mapping = HNS_LB_TX_RING;
1580 
1581 	return skb;
1582 }
1583 
1584 static int hns_enable_serdes_lb(struct net_device *ndev)
1585 {
1586 	struct hns_nic_priv *priv = netdev_priv(ndev);
1587 	struct hnae_handle *h = priv->ae_handle;
1588 	struct hnae_ae_ops *ops = h->dev->ops;
1589 	int speed, duplex;
1590 	int ret;
1591 
1592 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1593 	if (ret)
1594 		return ret;
1595 
1596 	ret = ops->start ? ops->start(h) : 0;
1597 	if (ret)
1598 		return ret;
1599 
1600 	/* link adjust duplex*/
1601 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1602 		speed = 1000;
1603 	else
1604 		speed = 10000;
1605 	duplex = 1;
1606 
1607 	ops->adjust_link(h, speed, duplex);
1608 
1609 	/* wait h/w ready */
1610 	mdelay(300);
1611 
1612 	return 0;
1613 }
1614 
1615 static void hns_disable_serdes_lb(struct net_device *ndev)
1616 {
1617 	struct hns_nic_priv *priv = netdev_priv(ndev);
1618 	struct hnae_handle *h = priv->ae_handle;
1619 	struct hnae_ae_ops *ops = h->dev->ops;
1620 
1621 	ops->stop(h);
1622 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1623 }
1624 
1625 /**
1626  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1627  *function as follows:
1628  *    1. if one rx ring has found the page_offset is not equal 0 between head
1629  *       and tail, it means that the chip fetched the wrong descs for the ring
1630  *       which buffer size is 4096.
1631  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1632  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1633  *       recieving all packages and it will fetch new descriptions.
1634  *    4. recover to the original state.
1635  *
1636  *@ndev: net device
1637  */
1638 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1639 {
1640 	struct hns_nic_priv *priv = netdev_priv(ndev);
1641 	struct hnae_handle *h = priv->ae_handle;
1642 	struct hnae_ae_ops *ops = h->dev->ops;
1643 	struct hns_nic_ring_data *rd;
1644 	struct hnae_ring *ring;
1645 	struct sk_buff *skb;
1646 	u32 *org_indir;
1647 	u32 *cur_indir;
1648 	int indir_size;
1649 	int head, tail;
1650 	int fetch_num;
1651 	int i, j;
1652 	bool found;
1653 	int retry_times;
1654 	int ret = 0;
1655 
1656 	/* alloc indir memory */
1657 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1658 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1659 	if (!org_indir)
1660 		return -ENOMEM;
1661 
1662 	/* store the orginal indirection */
1663 	ops->get_rss(h, org_indir, NULL, NULL);
1664 
1665 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1666 	if (!cur_indir) {
1667 		ret = -ENOMEM;
1668 		goto cur_indir_alloc_err;
1669 	}
1670 
1671 	/* set loopback */
1672 	if (hns_enable_serdes_lb(ndev)) {
1673 		ret = -EINVAL;
1674 		goto enable_serdes_lb_err;
1675 	}
1676 
1677 	/* foreach every rx ring to clear fetch desc */
1678 	for (i = 0; i < h->q_num; i++) {
1679 		ring = &h->qs[i]->rx_ring;
1680 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1681 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1682 		found = false;
1683 		fetch_num = ring_dist(ring, head, tail);
1684 
1685 		while (head != tail) {
1686 			if (ring->desc_cb[head].page_offset != 0) {
1687 				found = true;
1688 				break;
1689 			}
1690 
1691 			head++;
1692 			if (head == ring->desc_num)
1693 				head = 0;
1694 		}
1695 
1696 		if (found) {
1697 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1698 				cur_indir[j] = i;
1699 			ops->set_rss(h, cur_indir, NULL, 0);
1700 
1701 			for (j = 0; j < fetch_num; j++) {
1702 				/* alloc one skb and init */
1703 				skb = hns_assemble_skb(ndev);
1704 				if (!skb)
1705 					goto out;
1706 				rd = &tx_ring_data(priv, skb->queue_mapping);
1707 				hns_nic_net_xmit_hw(ndev, skb, rd);
1708 
1709 				retry_times = 0;
1710 				while (retry_times++ < 10) {
1711 					mdelay(10);
1712 					/* clean rx */
1713 					rd = &rx_ring_data(priv, i);
1714 					if (rd->poll_one(rd, fetch_num,
1715 							 hns_nic_drop_rx_fetch))
1716 						break;
1717 				}
1718 
1719 				retry_times = 0;
1720 				while (retry_times++ < 10) {
1721 					mdelay(10);
1722 					/* clean tx ring 0 send package */
1723 					rd = &tx_ring_data(priv,
1724 							   HNS_LB_TX_RING);
1725 					if (rd->poll_one(rd, fetch_num, NULL))
1726 						break;
1727 				}
1728 			}
1729 		}
1730 	}
1731 
1732 out:
1733 	/* restore everything */
1734 	ops->set_rss(h, org_indir, NULL, 0);
1735 	hns_disable_serdes_lb(ndev);
1736 enable_serdes_lb_err:
1737 	kfree(cur_indir);
1738 cur_indir_alloc_err:
1739 	kfree(org_indir);
1740 
1741 	return ret;
1742 }
1743 
1744 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1745 {
1746 	struct hns_nic_priv *priv = netdev_priv(ndev);
1747 	struct hnae_handle *h = priv->ae_handle;
1748 	bool if_running = netif_running(ndev);
1749 	int ret;
1750 
1751 	/* MTU < 68 is an error and causes problems on some kernels */
1752 	if (new_mtu < 68)
1753 		return -EINVAL;
1754 
1755 	/* MTU no change */
1756 	if (new_mtu == ndev->mtu)
1757 		return 0;
1758 
1759 	if (!h->dev->ops->set_mtu)
1760 		return -ENOTSUPP;
1761 
1762 	if (if_running) {
1763 		(void)hns_nic_net_stop(ndev);
1764 		msleep(100);
1765 	}
1766 
1767 	if (priv->enet_ver != AE_VERSION_1 &&
1768 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1769 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1770 		/* update desc */
1771 		hnae_reinit_all_ring_desc(h);
1772 
1773 		/* clear the package which the chip has fetched */
1774 		ret = hns_nic_clear_all_rx_fetch(ndev);
1775 
1776 		/* the page offset must be consist with desc */
1777 		hnae_reinit_all_ring_page_off(h);
1778 
1779 		if (ret) {
1780 			netdev_err(ndev, "clear the fetched desc fail\n");
1781 			goto out;
1782 		}
1783 	}
1784 
1785 	ret = h->dev->ops->set_mtu(h, new_mtu);
1786 	if (ret) {
1787 		netdev_err(ndev, "set mtu fail, return value %d\n",
1788 			   ret);
1789 		goto out;
1790 	}
1791 
1792 	/* finally, set new mtu to netdevice */
1793 	ndev->mtu = new_mtu;
1794 
1795 out:
1796 	if (if_running) {
1797 		if (hns_nic_net_open(ndev)) {
1798 			netdev_err(ndev, "hns net open fail\n");
1799 			ret = -EINVAL;
1800 		}
1801 	}
1802 
1803 	return ret;
1804 }
1805 
1806 static int hns_nic_set_features(struct net_device *netdev,
1807 				netdev_features_t features)
1808 {
1809 	struct hns_nic_priv *priv = netdev_priv(netdev);
1810 
1811 	switch (priv->enet_ver) {
1812 	case AE_VERSION_1:
1813 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1814 			netdev_info(netdev, "enet v1 do not support tso!\n");
1815 		break;
1816 	default:
1817 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1818 			priv->ops.fill_desc = fill_tso_desc;
1819 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1820 			/* The chip only support 7*4096 */
1821 			netif_set_gso_max_size(netdev, 7 * 4096);
1822 		} else {
1823 			priv->ops.fill_desc = fill_v2_desc;
1824 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1825 		}
1826 		break;
1827 	}
1828 	netdev->features = features;
1829 	return 0;
1830 }
1831 
1832 static netdev_features_t hns_nic_fix_features(
1833 		struct net_device *netdev, netdev_features_t features)
1834 {
1835 	struct hns_nic_priv *priv = netdev_priv(netdev);
1836 
1837 	switch (priv->enet_ver) {
1838 	case AE_VERSION_1:
1839 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1840 				NETIF_F_HW_VLAN_CTAG_FILTER);
1841 		break;
1842 	default:
1843 		break;
1844 	}
1845 	return features;
1846 }
1847 
1848 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1849 {
1850 	struct hns_nic_priv *priv = netdev_priv(netdev);
1851 	struct hnae_handle *h = priv->ae_handle;
1852 
1853 	if (h->dev->ops->add_uc_addr)
1854 		return h->dev->ops->add_uc_addr(h, addr);
1855 
1856 	return 0;
1857 }
1858 
1859 static int hns_nic_uc_unsync(struct net_device *netdev,
1860 			     const unsigned char *addr)
1861 {
1862 	struct hns_nic_priv *priv = netdev_priv(netdev);
1863 	struct hnae_handle *h = priv->ae_handle;
1864 
1865 	if (h->dev->ops->rm_uc_addr)
1866 		return h->dev->ops->rm_uc_addr(h, addr);
1867 
1868 	return 0;
1869 }
1870 
1871 /**
1872  * nic_set_multicast_list - set mutl mac address
1873  * @netdev: net device
1874  * @p: mac address
1875  *
1876  * return void
1877  */
1878 static void hns_set_multicast_list(struct net_device *ndev)
1879 {
1880 	struct hns_nic_priv *priv = netdev_priv(ndev);
1881 	struct hnae_handle *h = priv->ae_handle;
1882 	struct netdev_hw_addr *ha = NULL;
1883 
1884 	if (!h)	{
1885 		netdev_err(ndev, "hnae handle is null\n");
1886 		return;
1887 	}
1888 
1889 	if (h->dev->ops->clr_mc_addr)
1890 		if (h->dev->ops->clr_mc_addr(h))
1891 			netdev_err(ndev, "clear multicast address fail\n");
1892 
1893 	if (h->dev->ops->set_mc_addr) {
1894 		netdev_for_each_mc_addr(ha, ndev)
1895 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1896 				netdev_err(ndev, "set multicast fail\n");
1897 	}
1898 }
1899 
1900 static void hns_nic_set_rx_mode(struct net_device *ndev)
1901 {
1902 	struct hns_nic_priv *priv = netdev_priv(ndev);
1903 	struct hnae_handle *h = priv->ae_handle;
1904 
1905 	if (h->dev->ops->set_promisc_mode) {
1906 		if (ndev->flags & IFF_PROMISC)
1907 			h->dev->ops->set_promisc_mode(h, 1);
1908 		else
1909 			h->dev->ops->set_promisc_mode(h, 0);
1910 	}
1911 
1912 	hns_set_multicast_list(ndev);
1913 
1914 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1915 		netdev_err(ndev, "sync uc address fail\n");
1916 }
1917 
1918 static void hns_nic_get_stats64(struct net_device *ndev,
1919 				struct rtnl_link_stats64 *stats)
1920 {
1921 	int idx = 0;
1922 	u64 tx_bytes = 0;
1923 	u64 rx_bytes = 0;
1924 	u64 tx_pkts = 0;
1925 	u64 rx_pkts = 0;
1926 	struct hns_nic_priv *priv = netdev_priv(ndev);
1927 	struct hnae_handle *h = priv->ae_handle;
1928 
1929 	for (idx = 0; idx < h->q_num; idx++) {
1930 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1931 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1932 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1933 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1934 	}
1935 
1936 	stats->tx_bytes = tx_bytes;
1937 	stats->tx_packets = tx_pkts;
1938 	stats->rx_bytes = rx_bytes;
1939 	stats->rx_packets = rx_pkts;
1940 
1941 	stats->rx_errors = ndev->stats.rx_errors;
1942 	stats->multicast = ndev->stats.multicast;
1943 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1944 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1945 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1946 
1947 	stats->tx_errors = ndev->stats.tx_errors;
1948 	stats->rx_dropped = ndev->stats.rx_dropped;
1949 	stats->tx_dropped = ndev->stats.tx_dropped;
1950 	stats->collisions = ndev->stats.collisions;
1951 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1952 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1953 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1954 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1955 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1956 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1957 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1958 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1959 	stats->rx_compressed = ndev->stats.rx_compressed;
1960 	stats->tx_compressed = ndev->stats.tx_compressed;
1961 }
1962 
1963 static u16
1964 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1965 		     struct net_device *sb_dev,
1966 		     select_queue_fallback_t fallback)
1967 {
1968 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1969 	struct hns_nic_priv *priv = netdev_priv(ndev);
1970 
1971 	/* fix hardware broadcast/multicast packets queue loopback */
1972 	if (!AE_IS_VER1(priv->enet_ver) &&
1973 	    is_multicast_ether_addr(eth_hdr->h_dest))
1974 		return 0;
1975 	else
1976 		return fallback(ndev, skb, NULL);
1977 }
1978 
1979 static const struct net_device_ops hns_nic_netdev_ops = {
1980 	.ndo_open = hns_nic_net_open,
1981 	.ndo_stop = hns_nic_net_stop,
1982 	.ndo_start_xmit = hns_nic_net_xmit,
1983 	.ndo_tx_timeout = hns_nic_net_timeout,
1984 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1985 	.ndo_change_mtu = hns_nic_change_mtu,
1986 	.ndo_do_ioctl = hns_nic_do_ioctl,
1987 	.ndo_set_features = hns_nic_set_features,
1988 	.ndo_fix_features = hns_nic_fix_features,
1989 	.ndo_get_stats64 = hns_nic_get_stats64,
1990 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1991 	.ndo_select_queue = hns_nic_select_queue,
1992 };
1993 
1994 static void hns_nic_update_link_status(struct net_device *netdev)
1995 {
1996 	struct hns_nic_priv *priv = netdev_priv(netdev);
1997 
1998 	struct hnae_handle *h = priv->ae_handle;
1999 
2000 	if (h->phy_dev) {
2001 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
2002 			return;
2003 
2004 		(void)genphy_read_status(h->phy_dev);
2005 	}
2006 	hns_nic_adjust_link(netdev);
2007 }
2008 
2009 /* for dumping key regs*/
2010 static void hns_nic_dump(struct hns_nic_priv *priv)
2011 {
2012 	struct hnae_handle *h = priv->ae_handle;
2013 	struct hnae_ae_ops *ops = h->dev->ops;
2014 	u32 *data, reg_num, i;
2015 
2016 	if (ops->get_regs_len && ops->get_regs) {
2017 		reg_num = ops->get_regs_len(priv->ae_handle);
2018 		reg_num = (reg_num + 3ul) & ~3ul;
2019 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
2020 		if (data) {
2021 			ops->get_regs(priv->ae_handle, data);
2022 			for (i = 0; i < reg_num; i += 4)
2023 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2024 					i, data[i], data[i + 1],
2025 					data[i + 2], data[i + 3]);
2026 			kfree(data);
2027 		}
2028 	}
2029 
2030 	for (i = 0; i < h->q_num; i++) {
2031 		pr_info("tx_queue%d_next_to_clean:%d\n",
2032 			i, h->qs[i]->tx_ring.next_to_clean);
2033 		pr_info("tx_queue%d_next_to_use:%d\n",
2034 			i, h->qs[i]->tx_ring.next_to_use);
2035 		pr_info("rx_queue%d_next_to_clean:%d\n",
2036 			i, h->qs[i]->rx_ring.next_to_clean);
2037 		pr_info("rx_queue%d_next_to_use:%d\n",
2038 			i, h->qs[i]->rx_ring.next_to_use);
2039 	}
2040 }
2041 
2042 /* for resetting subtask */
2043 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2044 {
2045 	enum hnae_port_type type = priv->ae_handle->port_type;
2046 
2047 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2048 		return;
2049 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2050 
2051 	/* If we're already down, removing or resetting, just bail */
2052 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2053 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
2054 	    test_bit(NIC_STATE_RESETTING, &priv->state))
2055 		return;
2056 
2057 	hns_nic_dump(priv);
2058 	netdev_info(priv->netdev, "try to reset %s port!\n",
2059 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2060 
2061 	rtnl_lock();
2062 	/* put off any impending NetWatchDogTimeout */
2063 	netif_trans_update(priv->netdev);
2064 	hns_nic_net_reinit(priv->netdev);
2065 
2066 	rtnl_unlock();
2067 }
2068 
2069 /* for doing service complete*/
2070 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2071 {
2072 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2073 	/* make sure to commit the things */
2074 	smp_mb__before_atomic();
2075 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2076 }
2077 
2078 static void hns_nic_service_task(struct work_struct *work)
2079 {
2080 	struct hns_nic_priv *priv
2081 		= container_of(work, struct hns_nic_priv, service_task);
2082 	struct hnae_handle *h = priv->ae_handle;
2083 
2084 	hns_nic_reset_subtask(priv);
2085 	hns_nic_update_link_status(priv->netdev);
2086 	h->dev->ops->update_led_status(h);
2087 	hns_nic_update_stats(priv->netdev);
2088 
2089 	hns_nic_service_event_complete(priv);
2090 }
2091 
2092 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2093 {
2094 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2095 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2096 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2097 		(void)schedule_work(&priv->service_task);
2098 }
2099 
2100 static void hns_nic_service_timer(struct timer_list *t)
2101 {
2102 	struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2103 
2104 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2105 
2106 	hns_nic_task_schedule(priv);
2107 }
2108 
2109 /**
2110  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2111  * @priv: driver private struct
2112  **/
2113 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2114 {
2115 	/* Do the reset outside of interrupt context */
2116 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2117 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2118 		netdev_warn(priv->netdev,
2119 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2120 			    priv->tx_timeout_count, priv->state);
2121 		priv->tx_timeout_count++;
2122 		hns_nic_task_schedule(priv);
2123 	}
2124 }
2125 
2126 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2127 {
2128 	struct hnae_handle *h = priv->ae_handle;
2129 	struct hns_nic_ring_data *rd;
2130 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2131 	int i;
2132 
2133 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2134 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2135 		return -EINVAL;
2136 	}
2137 
2138 	priv->ring_data = kzalloc(array3_size(h->q_num,
2139 					      sizeof(*priv->ring_data), 2),
2140 				  GFP_KERNEL);
2141 	if (!priv->ring_data)
2142 		return -ENOMEM;
2143 
2144 	for (i = 0; i < h->q_num; i++) {
2145 		rd = &priv->ring_data[i];
2146 		rd->queue_index = i;
2147 		rd->ring = &h->qs[i]->tx_ring;
2148 		rd->poll_one = hns_nic_tx_poll_one;
2149 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2150 			hns_nic_tx_fini_pro_v2;
2151 
2152 		netif_napi_add(priv->netdev, &rd->napi,
2153 			       hns_nic_common_poll, NAPI_POLL_WEIGHT);
2154 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2155 	}
2156 	for (i = h->q_num; i < h->q_num * 2; i++) {
2157 		rd = &priv->ring_data[i];
2158 		rd->queue_index = i - h->q_num;
2159 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2160 		rd->poll_one = hns_nic_rx_poll_one;
2161 		rd->ex_process = hns_nic_rx_up_pro;
2162 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2163 			hns_nic_rx_fini_pro_v2;
2164 
2165 		netif_napi_add(priv->netdev, &rd->napi,
2166 			       hns_nic_common_poll, NAPI_POLL_WEIGHT);
2167 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2168 	}
2169 
2170 	return 0;
2171 }
2172 
2173 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2174 {
2175 	struct hnae_handle *h = priv->ae_handle;
2176 	int i;
2177 
2178 	for (i = 0; i < h->q_num * 2; i++) {
2179 		netif_napi_del(&priv->ring_data[i].napi);
2180 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2181 			(void)irq_set_affinity_hint(
2182 				priv->ring_data[i].ring->irq,
2183 				NULL);
2184 			free_irq(priv->ring_data[i].ring->irq,
2185 				 &priv->ring_data[i]);
2186 		}
2187 
2188 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2189 	}
2190 	kfree(priv->ring_data);
2191 }
2192 
2193 static void hns_nic_set_priv_ops(struct net_device *netdev)
2194 {
2195 	struct hns_nic_priv *priv = netdev_priv(netdev);
2196 	struct hnae_handle *h = priv->ae_handle;
2197 
2198 	if (AE_IS_VER1(priv->enet_ver)) {
2199 		priv->ops.fill_desc = fill_desc;
2200 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2201 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2202 	} else {
2203 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2204 		if ((netdev->features & NETIF_F_TSO) ||
2205 		    (netdev->features & NETIF_F_TSO6)) {
2206 			priv->ops.fill_desc = fill_tso_desc;
2207 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2208 			/* This chip only support 7*4096 */
2209 			netif_set_gso_max_size(netdev, 7 * 4096);
2210 		} else {
2211 			priv->ops.fill_desc = fill_v2_desc;
2212 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2213 		}
2214 		/* enable tso when init
2215 		 * control tso on/off through TSE bit in bd
2216 		 */
2217 		h->dev->ops->set_tso_stats(h, 1);
2218 	}
2219 }
2220 
2221 static int hns_nic_try_get_ae(struct net_device *ndev)
2222 {
2223 	struct hns_nic_priv *priv = netdev_priv(ndev);
2224 	struct hnae_handle *h;
2225 	int ret;
2226 
2227 	h = hnae_get_handle(&priv->netdev->dev,
2228 			    priv->fwnode, priv->port_id, NULL);
2229 	if (IS_ERR_OR_NULL(h)) {
2230 		ret = -ENODEV;
2231 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2232 		goto out;
2233 	}
2234 	priv->ae_handle = h;
2235 
2236 	ret = hns_nic_init_phy(ndev, h);
2237 	if (ret) {
2238 		dev_err(priv->dev, "probe phy device fail!\n");
2239 		goto out_init_phy;
2240 	}
2241 
2242 	ret = hns_nic_init_ring_data(priv);
2243 	if (ret) {
2244 		ret = -ENOMEM;
2245 		goto out_init_ring_data;
2246 	}
2247 
2248 	hns_nic_set_priv_ops(ndev);
2249 
2250 	ret = register_netdev(ndev);
2251 	if (ret) {
2252 		dev_err(priv->dev, "probe register netdev fail!\n");
2253 		goto out_reg_ndev_fail;
2254 	}
2255 	return 0;
2256 
2257 out_reg_ndev_fail:
2258 	hns_nic_uninit_ring_data(priv);
2259 	priv->ring_data = NULL;
2260 out_init_phy:
2261 out_init_ring_data:
2262 	hnae_put_handle(priv->ae_handle);
2263 	priv->ae_handle = NULL;
2264 out:
2265 	return ret;
2266 }
2267 
2268 static int hns_nic_notifier_action(struct notifier_block *nb,
2269 				   unsigned long action, void *data)
2270 {
2271 	struct hns_nic_priv *priv =
2272 		container_of(nb, struct hns_nic_priv, notifier_block);
2273 
2274 	assert(action == HNAE_AE_REGISTER);
2275 
2276 	if (!hns_nic_try_get_ae(priv->netdev)) {
2277 		hnae_unregister_notifier(&priv->notifier_block);
2278 		priv->notifier_block.notifier_call = NULL;
2279 	}
2280 	return 0;
2281 }
2282 
2283 static int hns_nic_dev_probe(struct platform_device *pdev)
2284 {
2285 	struct device *dev = &pdev->dev;
2286 	struct net_device *ndev;
2287 	struct hns_nic_priv *priv;
2288 	u32 port_id;
2289 	int ret;
2290 
2291 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2292 	if (!ndev)
2293 		return -ENOMEM;
2294 
2295 	platform_set_drvdata(pdev, ndev);
2296 
2297 	priv = netdev_priv(ndev);
2298 	priv->dev = dev;
2299 	priv->netdev = ndev;
2300 
2301 	if (dev_of_node(dev)) {
2302 		struct device_node *ae_node;
2303 
2304 		if (of_device_is_compatible(dev->of_node,
2305 					    "hisilicon,hns-nic-v1"))
2306 			priv->enet_ver = AE_VERSION_1;
2307 		else
2308 			priv->enet_ver = AE_VERSION_2;
2309 
2310 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2311 		if (!ae_node) {
2312 			ret = -ENODEV;
2313 			dev_err(dev, "not find ae-handle\n");
2314 			goto out_read_prop_fail;
2315 		}
2316 		priv->fwnode = &ae_node->fwnode;
2317 	} else if (is_acpi_node(dev->fwnode)) {
2318 		struct fwnode_reference_args args;
2319 
2320 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2321 			priv->enet_ver = AE_VERSION_1;
2322 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2323 			priv->enet_ver = AE_VERSION_2;
2324 		else
2325 			return -ENXIO;
2326 
2327 		/* try to find port-idx-in-ae first */
2328 		ret = acpi_node_get_property_reference(dev->fwnode,
2329 						       "ae-handle", 0, &args);
2330 		if (ret) {
2331 			dev_err(dev, "not find ae-handle\n");
2332 			goto out_read_prop_fail;
2333 		}
2334 		if (!is_acpi_device_node(args.fwnode)) {
2335 			ret = -EINVAL;
2336 			goto out_read_prop_fail;
2337 		}
2338 		priv->fwnode = args.fwnode;
2339 	} else {
2340 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2341 		return -ENXIO;
2342 	}
2343 
2344 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2345 	if (ret) {
2346 		/* only for old code compatible */
2347 		ret = device_property_read_u32(dev, "port-id", &port_id);
2348 		if (ret)
2349 			goto out_read_prop_fail;
2350 		/* for old dts, we need to caculate the port offset */
2351 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2352 			: port_id - HNS_SRV_OFFSET;
2353 	}
2354 	priv->port_id = port_id;
2355 
2356 	hns_init_mac_addr(ndev);
2357 
2358 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2359 	ndev->priv_flags |= IFF_UNICAST_FLT;
2360 	ndev->netdev_ops = &hns_nic_netdev_ops;
2361 	hns_ethtool_set_ops(ndev);
2362 
2363 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2364 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2365 		NETIF_F_GRO;
2366 	ndev->vlan_features |=
2367 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2368 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2369 
2370 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2371 	ndev->min_mtu = MAC_MIN_MTU;
2372 	switch (priv->enet_ver) {
2373 	case AE_VERSION_2:
2374 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2375 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2376 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2377 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2378 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2379 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2380 		break;
2381 	default:
2382 		ndev->max_mtu = MAC_MAX_MTU -
2383 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2384 		break;
2385 	}
2386 
2387 	SET_NETDEV_DEV(ndev, dev);
2388 
2389 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2390 		dev_dbg(dev, "set mask to 64bit\n");
2391 	else
2392 		dev_err(dev, "set mask to 64bit fail!\n");
2393 
2394 	/* carrier off reporting is important to ethtool even BEFORE open */
2395 	netif_carrier_off(ndev);
2396 
2397 	timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2398 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2399 
2400 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2401 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2402 	set_bit(NIC_STATE_DOWN, &priv->state);
2403 
2404 	if (hns_nic_try_get_ae(priv->netdev)) {
2405 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2406 		ret = hnae_register_notifier(&priv->notifier_block);
2407 		if (ret) {
2408 			dev_err(dev, "register notifier fail!\n");
2409 			goto out_notify_fail;
2410 		}
2411 		dev_dbg(dev, "has not handle, register notifier!\n");
2412 	}
2413 
2414 	return 0;
2415 
2416 out_notify_fail:
2417 	(void)cancel_work_sync(&priv->service_task);
2418 out_read_prop_fail:
2419 	/* safe for ACPI FW */
2420 	of_node_put(to_of_node(priv->fwnode));
2421 	free_netdev(ndev);
2422 	return ret;
2423 }
2424 
2425 static int hns_nic_dev_remove(struct platform_device *pdev)
2426 {
2427 	struct net_device *ndev = platform_get_drvdata(pdev);
2428 	struct hns_nic_priv *priv = netdev_priv(ndev);
2429 
2430 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2431 		unregister_netdev(ndev);
2432 
2433 	if (priv->ring_data)
2434 		hns_nic_uninit_ring_data(priv);
2435 	priv->ring_data = NULL;
2436 
2437 	if (ndev->phydev)
2438 		phy_disconnect(ndev->phydev);
2439 
2440 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2441 		hnae_put_handle(priv->ae_handle);
2442 	priv->ae_handle = NULL;
2443 	if (priv->notifier_block.notifier_call)
2444 		hnae_unregister_notifier(&priv->notifier_block);
2445 	priv->notifier_block.notifier_call = NULL;
2446 
2447 	set_bit(NIC_STATE_REMOVING, &priv->state);
2448 	(void)cancel_work_sync(&priv->service_task);
2449 
2450 	/* safe for ACPI FW */
2451 	of_node_put(to_of_node(priv->fwnode));
2452 
2453 	free_netdev(ndev);
2454 	return 0;
2455 }
2456 
2457 static const struct of_device_id hns_enet_of_match[] = {
2458 	{.compatible = "hisilicon,hns-nic-v1",},
2459 	{.compatible = "hisilicon,hns-nic-v2",},
2460 	{},
2461 };
2462 
2463 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2464 
2465 static struct platform_driver hns_nic_dev_driver = {
2466 	.driver = {
2467 		.name = "hns-nic",
2468 		.of_match_table = hns_enet_of_match,
2469 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2470 	},
2471 	.probe = hns_nic_dev_probe,
2472 	.remove = hns_nic_dev_remove,
2473 };
2474 
2475 module_platform_driver(hns_nic_dev_driver);
2476 
2477 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2478 MODULE_AUTHOR("Hisilicon, Inc.");
2479 MODULE_LICENSE("GPL");
2480 MODULE_ALIAS("platform:hns-nic");
2481