1 /* 2 * Copyright (c) 2014-2015 Hisilicon Limited. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/cpumask.h> 12 #include <linux/etherdevice.h> 13 #include <linux/if_vlan.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/module.h> 19 #include <linux/phy.h> 20 #include <linux/platform_device.h> 21 #include <linux/skbuff.h> 22 23 #include "hnae.h" 24 #include "hns_enet.h" 25 #include "hns_dsaf_mac.h" 26 27 #define NIC_MAX_Q_PER_VF 16 28 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 29 30 #define SERVICE_TIMER_HZ (1 * HZ) 31 32 #define RCB_IRQ_NOT_INITED 0 33 #define RCB_IRQ_INITED 1 34 #define HNS_BUFFER_SIZE_2048 2048 35 36 #define BD_MAX_SEND_SIZE 8191 37 #define SKB_TMP_LEN(SKB) \ 38 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) 39 40 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size, 41 int send_sz, dma_addr_t dma, int frag_end, 42 int buf_num, enum hns_desc_type type, int mtu) 43 { 44 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 45 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 46 struct iphdr *iphdr; 47 struct ipv6hdr *ipv6hdr; 48 struct sk_buff *skb; 49 __be16 protocol; 50 u8 bn_pid = 0; 51 u8 rrcfv = 0; 52 u8 ip_offset = 0; 53 u8 tvsvsn = 0; 54 u16 mss = 0; 55 u8 l4_len = 0; 56 u16 paylen = 0; 57 58 desc_cb->priv = priv; 59 desc_cb->length = size; 60 desc_cb->dma = dma; 61 desc_cb->type = type; 62 63 desc->addr = cpu_to_le64(dma); 64 desc->tx.send_size = cpu_to_le16((u16)send_sz); 65 66 /* config bd buffer end */ 67 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 68 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 69 70 /* fill port_id in the tx bd for sending management pkts */ 71 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 72 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 73 74 if (type == DESC_TYPE_SKB) { 75 skb = (struct sk_buff *)priv; 76 77 if (skb->ip_summed == CHECKSUM_PARTIAL) { 78 skb_reset_mac_len(skb); 79 protocol = skb->protocol; 80 ip_offset = ETH_HLEN; 81 82 if (protocol == htons(ETH_P_8021Q)) { 83 ip_offset += VLAN_HLEN; 84 protocol = vlan_get_protocol(skb); 85 skb->protocol = protocol; 86 } 87 88 if (skb->protocol == htons(ETH_P_IP)) { 89 iphdr = ip_hdr(skb); 90 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 91 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 92 93 /* check for tcp/udp header */ 94 if (iphdr->protocol == IPPROTO_TCP && 95 skb_is_gso(skb)) { 96 hnae_set_bit(tvsvsn, 97 HNSV2_TXD_TSE_B, 1); 98 l4_len = tcp_hdrlen(skb); 99 mss = skb_shinfo(skb)->gso_size; 100 paylen = skb->len - SKB_TMP_LEN(skb); 101 } 102 } else if (skb->protocol == htons(ETH_P_IPV6)) { 103 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 104 ipv6hdr = ipv6_hdr(skb); 105 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 106 107 /* check for tcp/udp header */ 108 if (ipv6hdr->nexthdr == IPPROTO_TCP && 109 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 110 hnae_set_bit(tvsvsn, 111 HNSV2_TXD_TSE_B, 1); 112 l4_len = tcp_hdrlen(skb); 113 mss = skb_shinfo(skb)->gso_size; 114 paylen = skb->len - SKB_TMP_LEN(skb); 115 } 116 } 117 desc->tx.ip_offset = ip_offset; 118 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 119 desc->tx.mss = cpu_to_le16(mss); 120 desc->tx.l4_len = l4_len; 121 desc->tx.paylen = cpu_to_le16(paylen); 122 } 123 } 124 125 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 126 127 desc->tx.bn_pid = bn_pid; 128 desc->tx.ra_ri_cs_fe_vld = rrcfv; 129 130 ring_ptr_move_fw(ring, next_to_use); 131 } 132 133 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 134 int size, dma_addr_t dma, int frag_end, 135 int buf_num, enum hns_desc_type type, int mtu) 136 { 137 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end, 138 buf_num, type, mtu); 139 } 140 141 static const struct acpi_device_id hns_enet_acpi_match[] = { 142 { "HISI00C1", 0 }, 143 { "HISI00C2", 0 }, 144 { }, 145 }; 146 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 147 148 static void fill_desc(struct hnae_ring *ring, void *priv, 149 int size, dma_addr_t dma, int frag_end, 150 int buf_num, enum hns_desc_type type, int mtu) 151 { 152 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 153 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 154 struct sk_buff *skb; 155 __be16 protocol; 156 u32 ip_offset; 157 u32 asid_bufnum_pid = 0; 158 u32 flag_ipoffset = 0; 159 160 desc_cb->priv = priv; 161 desc_cb->length = size; 162 desc_cb->dma = dma; 163 desc_cb->type = type; 164 165 desc->addr = cpu_to_le64(dma); 166 desc->tx.send_size = cpu_to_le16((u16)size); 167 168 /*config bd buffer end */ 169 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 170 171 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 172 173 if (type == DESC_TYPE_SKB) { 174 skb = (struct sk_buff *)priv; 175 176 if (skb->ip_summed == CHECKSUM_PARTIAL) { 177 protocol = skb->protocol; 178 ip_offset = ETH_HLEN; 179 180 /*if it is a SW VLAN check the next protocol*/ 181 if (protocol == htons(ETH_P_8021Q)) { 182 ip_offset += VLAN_HLEN; 183 protocol = vlan_get_protocol(skb); 184 skb->protocol = protocol; 185 } 186 187 if (skb->protocol == htons(ETH_P_IP)) { 188 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 189 /* check for tcp/udp header */ 190 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 191 192 } else if (skb->protocol == htons(ETH_P_IPV6)) { 193 /* ipv6 has not l3 cs, check for L4 header */ 194 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 195 } 196 197 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 198 } 199 } 200 201 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 202 203 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 204 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 205 206 ring_ptr_move_fw(ring, next_to_use); 207 } 208 209 static void unfill_desc(struct hnae_ring *ring) 210 { 211 ring_ptr_move_bw(ring, next_to_use); 212 } 213 214 static int hns_nic_maybe_stop_tx( 215 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 216 { 217 struct sk_buff *skb = *out_skb; 218 struct sk_buff *new_skb = NULL; 219 int buf_num; 220 221 /* no. of segments (plus a header) */ 222 buf_num = skb_shinfo(skb)->nr_frags + 1; 223 224 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 225 if (ring_space(ring) < 1) 226 return -EBUSY; 227 228 new_skb = skb_copy(skb, GFP_ATOMIC); 229 if (!new_skb) 230 return -ENOMEM; 231 232 dev_kfree_skb_any(skb); 233 *out_skb = new_skb; 234 buf_num = 1; 235 } else if (buf_num > ring_space(ring)) { 236 return -EBUSY; 237 } 238 239 *bnum = buf_num; 240 return 0; 241 } 242 243 static int hns_nic_maybe_stop_tso( 244 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 245 { 246 int i; 247 int size; 248 int buf_num; 249 int frag_num; 250 struct sk_buff *skb = *out_skb; 251 struct sk_buff *new_skb = NULL; 252 struct skb_frag_struct *frag; 253 254 size = skb_headlen(skb); 255 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 256 257 frag_num = skb_shinfo(skb)->nr_frags; 258 for (i = 0; i < frag_num; i++) { 259 frag = &skb_shinfo(skb)->frags[i]; 260 size = skb_frag_size(frag); 261 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 262 } 263 264 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 265 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 266 if (ring_space(ring) < buf_num) 267 return -EBUSY; 268 /* manual split the send packet */ 269 new_skb = skb_copy(skb, GFP_ATOMIC); 270 if (!new_skb) 271 return -ENOMEM; 272 dev_kfree_skb_any(skb); 273 *out_skb = new_skb; 274 275 } else if (ring_space(ring) < buf_num) { 276 return -EBUSY; 277 } 278 279 *bnum = buf_num; 280 return 0; 281 } 282 283 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 284 int size, dma_addr_t dma, int frag_end, 285 int buf_num, enum hns_desc_type type, int mtu) 286 { 287 int frag_buf_num; 288 int sizeoflast; 289 int k; 290 291 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 292 sizeoflast = size % BD_MAX_SEND_SIZE; 293 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 294 295 /* when the frag size is bigger than hardware, split this frag */ 296 for (k = 0; k < frag_buf_num; k++) 297 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0, 298 (k == frag_buf_num - 1) ? 299 sizeoflast : BD_MAX_SEND_SIZE, 300 dma + BD_MAX_SEND_SIZE * k, 301 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 302 buf_num, 303 (type == DESC_TYPE_SKB && !k) ? 304 DESC_TYPE_SKB : DESC_TYPE_PAGE, 305 mtu); 306 } 307 308 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev, 309 struct sk_buff *skb, 310 struct hns_nic_ring_data *ring_data) 311 { 312 struct hns_nic_priv *priv = netdev_priv(ndev); 313 struct hnae_ring *ring = ring_data->ring; 314 struct device *dev = ring_to_dev(ring); 315 struct netdev_queue *dev_queue; 316 struct skb_frag_struct *frag; 317 int buf_num; 318 int seg_num; 319 dma_addr_t dma; 320 int size, next_to_use; 321 int i; 322 323 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 324 case -EBUSY: 325 ring->stats.tx_busy++; 326 goto out_net_tx_busy; 327 case -ENOMEM: 328 ring->stats.sw_err_cnt++; 329 netdev_err(ndev, "no memory to xmit!\n"); 330 goto out_err_tx_ok; 331 default: 332 break; 333 } 334 335 /* no. of segments (plus a header) */ 336 seg_num = skb_shinfo(skb)->nr_frags + 1; 337 next_to_use = ring->next_to_use; 338 339 /* fill the first part */ 340 size = skb_headlen(skb); 341 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 342 if (dma_mapping_error(dev, dma)) { 343 netdev_err(ndev, "TX head DMA map failed\n"); 344 ring->stats.sw_err_cnt++; 345 goto out_err_tx_ok; 346 } 347 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 348 buf_num, DESC_TYPE_SKB, ndev->mtu); 349 350 /* fill the fragments */ 351 for (i = 1; i < seg_num; i++) { 352 frag = &skb_shinfo(skb)->frags[i - 1]; 353 size = skb_frag_size(frag); 354 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 355 if (dma_mapping_error(dev, dma)) { 356 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 357 ring->stats.sw_err_cnt++; 358 goto out_map_frag_fail; 359 } 360 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 361 seg_num - 1 == i ? 1 : 0, buf_num, 362 DESC_TYPE_PAGE, ndev->mtu); 363 } 364 365 /*complete translate all packets*/ 366 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 367 netdev_tx_sent_queue(dev_queue, skb->len); 368 369 netif_trans_update(ndev); 370 ndev->stats.tx_bytes += skb->len; 371 ndev->stats.tx_packets++; 372 373 wmb(); /* commit all data before submit */ 374 assert(skb->queue_mapping < priv->ae_handle->q_num); 375 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 376 377 return NETDEV_TX_OK; 378 379 out_map_frag_fail: 380 381 while (ring->next_to_use != next_to_use) { 382 unfill_desc(ring); 383 if (ring->next_to_use != next_to_use) 384 dma_unmap_page(dev, 385 ring->desc_cb[ring->next_to_use].dma, 386 ring->desc_cb[ring->next_to_use].length, 387 DMA_TO_DEVICE); 388 else 389 dma_unmap_single(dev, 390 ring->desc_cb[next_to_use].dma, 391 ring->desc_cb[next_to_use].length, 392 DMA_TO_DEVICE); 393 } 394 395 out_err_tx_ok: 396 397 dev_kfree_skb_any(skb); 398 return NETDEV_TX_OK; 399 400 out_net_tx_busy: 401 402 netif_stop_subqueue(ndev, skb->queue_mapping); 403 404 /* Herbert's original patch had: 405 * smp_mb__after_netif_stop_queue(); 406 * but since that doesn't exist yet, just open code it. 407 */ 408 smp_mb(); 409 return NETDEV_TX_BUSY; 410 } 411 412 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 413 struct hnae_ring *ring, int pull_len, 414 struct hnae_desc_cb *desc_cb) 415 { 416 struct hnae_desc *desc; 417 u32 truesize; 418 int size; 419 int last_offset; 420 bool twobufs; 421 422 twobufs = ((PAGE_SIZE < 8192) && 423 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 424 425 desc = &ring->desc[ring->next_to_clean]; 426 size = le16_to_cpu(desc->rx.size); 427 428 if (twobufs) { 429 truesize = hnae_buf_size(ring); 430 } else { 431 truesize = ALIGN(size, L1_CACHE_BYTES); 432 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 433 } 434 435 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 436 size - pull_len, truesize); 437 438 /* avoid re-using remote pages,flag default unreuse */ 439 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 440 return; 441 442 if (twobufs) { 443 /* if we are only owner of page we can reuse it */ 444 if (likely(page_count(desc_cb->priv) == 1)) { 445 /* flip page offset to other buffer */ 446 desc_cb->page_offset ^= truesize; 447 448 desc_cb->reuse_flag = 1; 449 /* bump ref count on page before it is given*/ 450 get_page(desc_cb->priv); 451 } 452 return; 453 } 454 455 /* move offset up to the next cache line */ 456 desc_cb->page_offset += truesize; 457 458 if (desc_cb->page_offset <= last_offset) { 459 desc_cb->reuse_flag = 1; 460 /* bump ref count on page before it is given*/ 461 get_page(desc_cb->priv); 462 } 463 } 464 465 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 466 { 467 *out_bnum = hnae_get_field(bnum_flag, 468 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 469 } 470 471 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 472 { 473 *out_bnum = hnae_get_field(bnum_flag, 474 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 475 } 476 477 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 478 struct sk_buff *skb, u32 flag) 479 { 480 struct net_device *netdev = ring_data->napi.dev; 481 u32 l3id; 482 u32 l4id; 483 484 /* check if RX checksum offload is enabled */ 485 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 486 return; 487 488 /* In hardware, we only support checksum for the following protocols: 489 * 1) IPv4, 490 * 2) TCP(over IPv4 or IPv6), 491 * 3) UDP(over IPv4 or IPv6), 492 * 4) SCTP(over IPv4 or IPv6) 493 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 494 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 495 * 496 * Hardware limitation: 497 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 498 * Error" bit (which usually can be used to indicate whether checksum 499 * was calculated by the hardware and if there was any error encountered 500 * during checksum calculation). 501 * 502 * Software workaround: 503 * We do get info within the RX descriptor about the kind of L3/L4 504 * protocol coming in the packet and the error status. These errors 505 * might not just be checksum errors but could be related to version, 506 * length of IPv4, UDP, TCP etc. 507 * Because there is no-way of knowing if it is a L3/L4 error due to bad 508 * checksum or any other L3/L4 error, we will not (cannot) convey 509 * checksum status for such cases to upper stack and will not maintain 510 * the RX L3/L4 checksum counters as well. 511 */ 512 513 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 514 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 515 516 /* check L3 protocol for which checksum is supported */ 517 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 518 return; 519 520 /* check for any(not just checksum)flagged L3 protocol errors */ 521 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 522 return; 523 524 /* we do not support checksum of fragmented packets */ 525 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 526 return; 527 528 /* check L4 protocol for which checksum is supported */ 529 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 530 (l4id != HNS_RX_FLAG_L4ID_UDP) && 531 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 532 return; 533 534 /* check for any(not just checksum)flagged L4 protocol errors */ 535 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 536 return; 537 538 /* now, this has to be a packet with valid RX checksum */ 539 skb->ip_summed = CHECKSUM_UNNECESSARY; 540 } 541 542 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 543 struct sk_buff **out_skb, int *out_bnum) 544 { 545 struct hnae_ring *ring = ring_data->ring; 546 struct net_device *ndev = ring_data->napi.dev; 547 struct hns_nic_priv *priv = netdev_priv(ndev); 548 struct sk_buff *skb; 549 struct hnae_desc *desc; 550 struct hnae_desc_cb *desc_cb; 551 unsigned char *va; 552 int bnum, length, i; 553 int pull_len; 554 u32 bnum_flag; 555 556 desc = &ring->desc[ring->next_to_clean]; 557 desc_cb = &ring->desc_cb[ring->next_to_clean]; 558 559 prefetch(desc); 560 561 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 562 563 /* prefetch first cache line of first page */ 564 prefetch(va); 565 #if L1_CACHE_BYTES < 128 566 prefetch(va + L1_CACHE_BYTES); 567 #endif 568 569 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 570 HNS_RX_HEAD_SIZE); 571 if (unlikely(!skb)) { 572 netdev_err(ndev, "alloc rx skb fail\n"); 573 ring->stats.sw_err_cnt++; 574 return -ENOMEM; 575 } 576 577 prefetchw(skb->data); 578 length = le16_to_cpu(desc->rx.pkt_len); 579 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 580 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 581 *out_bnum = bnum; 582 583 if (length <= HNS_RX_HEAD_SIZE) { 584 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 585 586 /* we can reuse buffer as-is, just make sure it is local */ 587 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 588 desc_cb->reuse_flag = 1; 589 else /* this page cannot be reused so discard it */ 590 put_page(desc_cb->priv); 591 592 ring_ptr_move_fw(ring, next_to_clean); 593 594 if (unlikely(bnum != 1)) { /* check err*/ 595 *out_bnum = 1; 596 goto out_bnum_err; 597 } 598 } else { 599 ring->stats.seg_pkt_cnt++; 600 601 pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE); 602 memcpy(__skb_put(skb, pull_len), va, 603 ALIGN(pull_len, sizeof(long))); 604 605 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 606 ring_ptr_move_fw(ring, next_to_clean); 607 608 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 609 *out_bnum = 1; 610 goto out_bnum_err; 611 } 612 for (i = 1; i < bnum; i++) { 613 desc = &ring->desc[ring->next_to_clean]; 614 desc_cb = &ring->desc_cb[ring->next_to_clean]; 615 616 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 617 ring_ptr_move_fw(ring, next_to_clean); 618 } 619 } 620 621 /* check except process, free skb and jump the desc */ 622 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 623 out_bnum_err: 624 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 625 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 626 bnum, ring->max_desc_num_per_pkt, 627 length, (int)MAX_SKB_FRAGS, 628 ((u64 *)desc)[0], ((u64 *)desc)[1]); 629 ring->stats.err_bd_num++; 630 dev_kfree_skb_any(skb); 631 return -EDOM; 632 } 633 634 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 635 636 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 637 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 638 ((u64 *)desc)[0], ((u64 *)desc)[1]); 639 ring->stats.non_vld_descs++; 640 dev_kfree_skb_any(skb); 641 return -EINVAL; 642 } 643 644 if (unlikely((!desc->rx.pkt_len) || 645 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 646 ring->stats.err_pkt_len++; 647 dev_kfree_skb_any(skb); 648 return -EFAULT; 649 } 650 651 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 652 ring->stats.l2_err++; 653 dev_kfree_skb_any(skb); 654 return -EFAULT; 655 } 656 657 ring->stats.rx_pkts++; 658 ring->stats.rx_bytes += skb->len; 659 660 /* indicate to upper stack if our hardware has already calculated 661 * the RX checksum 662 */ 663 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 664 665 return 0; 666 } 667 668 static void 669 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 670 { 671 int i, ret; 672 struct hnae_desc_cb res_cbs; 673 struct hnae_desc_cb *desc_cb; 674 struct hnae_ring *ring = ring_data->ring; 675 struct net_device *ndev = ring_data->napi.dev; 676 677 for (i = 0; i < cleand_count; i++) { 678 desc_cb = &ring->desc_cb[ring->next_to_use]; 679 if (desc_cb->reuse_flag) { 680 ring->stats.reuse_pg_cnt++; 681 hnae_reuse_buffer(ring, ring->next_to_use); 682 } else { 683 ret = hnae_reserve_buffer_map(ring, &res_cbs); 684 if (ret) { 685 ring->stats.sw_err_cnt++; 686 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 687 break; 688 } 689 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 690 } 691 692 ring_ptr_move_fw(ring, next_to_use); 693 } 694 695 wmb(); /* make all data has been write before submit */ 696 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 697 } 698 699 /* return error number for error or number of desc left to take 700 */ 701 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 702 struct sk_buff *skb) 703 { 704 struct net_device *ndev = ring_data->napi.dev; 705 706 skb->protocol = eth_type_trans(skb, ndev); 707 (void)napi_gro_receive(&ring_data->napi, skb); 708 } 709 710 static int hns_desc_unused(struct hnae_ring *ring) 711 { 712 int ntc = ring->next_to_clean; 713 int ntu = ring->next_to_use; 714 715 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 716 } 717 718 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */ 719 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */ 720 721 #define HNS_COAL_BDNUM 3 722 723 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring) 724 { 725 bool coal_enable = ring->q->handle->coal_adapt_en; 726 727 if (coal_enable && 728 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE) 729 return HNS_COAL_BDNUM; 730 else 731 return 0; 732 } 733 734 static void hns_update_rx_rate(struct hnae_ring *ring) 735 { 736 bool coal_enable = ring->q->handle->coal_adapt_en; 737 u32 time_passed_ms; 738 u64 total_bytes; 739 740 if (!coal_enable || 741 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4))) 742 return; 743 744 /* ring->stats.rx_bytes overflowed */ 745 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) { 746 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 747 ring->coal_last_jiffies = jiffies; 748 return; 749 } 750 751 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes; 752 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies); 753 do_div(total_bytes, time_passed_ms); 754 ring->coal_rx_rate = total_bytes >> 10; 755 756 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 757 ring->coal_last_jiffies = jiffies; 758 } 759 760 /** 761 * smooth_alg - smoothing algrithm for adjusting coalesce parameter 762 **/ 763 static u32 smooth_alg(u32 new_param, u32 old_param) 764 { 765 u32 gap = (new_param > old_param) ? new_param - old_param 766 : old_param - new_param; 767 768 if (gap > 8) 769 gap >>= 3; 770 771 if (new_param > old_param) 772 return old_param + gap; 773 else 774 return old_param - gap; 775 } 776 777 /** 778 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate 779 * @ring_data: pointer to hns_nic_ring_data 780 **/ 781 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data) 782 { 783 struct hnae_ring *ring = ring_data->ring; 784 struct hnae_handle *handle = ring->q->handle; 785 u32 new_coal_param, old_coal_param = ring->coal_param; 786 787 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE) 788 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM; 789 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE) 790 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM; 791 else 792 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM; 793 794 if (new_coal_param == old_coal_param && 795 new_coal_param == handle->coal_param) 796 return; 797 798 new_coal_param = smooth_alg(new_coal_param, old_coal_param); 799 ring->coal_param = new_coal_param; 800 801 /** 802 * Because all ring in one port has one coalesce param, when one ring 803 * calculate its own coalesce param, it cannot write to hardware at 804 * once. There are three conditions as follows: 805 * 1. current ring's coalesce param is larger than the hardware. 806 * 2. or ring which adapt last time can change again. 807 * 3. timeout. 808 */ 809 if (new_coal_param == handle->coal_param) { 810 handle->coal_last_jiffies = jiffies; 811 handle->coal_ring_idx = ring_data->queue_index; 812 } else if (new_coal_param > handle->coal_param || 813 handle->coal_ring_idx == ring_data->queue_index || 814 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) { 815 handle->dev->ops->set_coalesce_usecs(handle, 816 new_coal_param); 817 handle->dev->ops->set_coalesce_frames(handle, 818 1, new_coal_param); 819 handle->coal_param = new_coal_param; 820 handle->coal_ring_idx = ring_data->queue_index; 821 handle->coal_last_jiffies = jiffies; 822 } 823 } 824 825 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 826 int budget, void *v) 827 { 828 struct hnae_ring *ring = ring_data->ring; 829 struct sk_buff *skb; 830 int num, bnum; 831 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 832 int recv_pkts, recv_bds, clean_count, err; 833 int unused_count = hns_desc_unused(ring); 834 835 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 836 rmb(); /* make sure num taken effect before the other data is touched */ 837 838 recv_pkts = 0, recv_bds = 0, clean_count = 0; 839 num -= unused_count; 840 841 while (recv_pkts < budget && recv_bds < num) { 842 /* reuse or realloc buffers */ 843 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 844 hns_nic_alloc_rx_buffers(ring_data, 845 clean_count + unused_count); 846 clean_count = 0; 847 unused_count = hns_desc_unused(ring); 848 } 849 850 /* poll one pkt */ 851 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 852 if (unlikely(!skb)) /* this fault cannot be repaired */ 853 goto out; 854 855 recv_bds += bnum; 856 clean_count += bnum; 857 if (unlikely(err)) { /* do jump the err */ 858 recv_pkts++; 859 continue; 860 } 861 862 /* do update ip stack process*/ 863 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 864 ring_data, skb); 865 recv_pkts++; 866 } 867 868 out: 869 /* make all data has been write before submit */ 870 if (clean_count + unused_count > 0) 871 hns_nic_alloc_rx_buffers(ring_data, 872 clean_count + unused_count); 873 874 return recv_pkts; 875 } 876 877 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 878 { 879 struct hnae_ring *ring = ring_data->ring; 880 int num = 0; 881 bool rx_stopped; 882 883 hns_update_rx_rate(ring); 884 885 /* for hardware bug fixed */ 886 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 887 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 888 889 if (num <= hns_coal_rx_bdnum(ring)) { 890 if (ring->q->handle->coal_adapt_en) 891 hns_nic_adpt_coalesce(ring_data); 892 893 rx_stopped = true; 894 } else { 895 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 896 ring_data->ring, 1); 897 898 rx_stopped = false; 899 } 900 901 return rx_stopped; 902 } 903 904 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 905 { 906 struct hnae_ring *ring = ring_data->ring; 907 int num; 908 909 hns_update_rx_rate(ring); 910 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 911 912 if (num <= hns_coal_rx_bdnum(ring)) { 913 if (ring->q->handle->coal_adapt_en) 914 hns_nic_adpt_coalesce(ring_data); 915 916 return true; 917 } 918 919 return false; 920 } 921 922 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 923 int *bytes, int *pkts) 924 { 925 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 926 927 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 928 (*bytes) += desc_cb->length; 929 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 930 hnae_free_buffer_detach(ring, ring->next_to_clean); 931 932 ring_ptr_move_fw(ring, next_to_clean); 933 } 934 935 static int is_valid_clean_head(struct hnae_ring *ring, int h) 936 { 937 int u = ring->next_to_use; 938 int c = ring->next_to_clean; 939 940 if (unlikely(h > ring->desc_num)) 941 return 0; 942 943 assert(u > 0 && u < ring->desc_num); 944 assert(c > 0 && c < ring->desc_num); 945 assert(u != c && h != c); /* must be checked before call this func */ 946 947 return u > c ? (h > c && h <= u) : (h > c || h <= u); 948 } 949 950 /* netif_tx_lock will turn down the performance, set only when necessary */ 951 #ifdef CONFIG_NET_POLL_CONTROLLER 952 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock) 953 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock) 954 #else 955 #define NETIF_TX_LOCK(ring) 956 #define NETIF_TX_UNLOCK(ring) 957 #endif 958 959 /* reclaim all desc in one budget 960 * return error or number of desc left 961 */ 962 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 963 int budget, void *v) 964 { 965 struct hnae_ring *ring = ring_data->ring; 966 struct net_device *ndev = ring_data->napi.dev; 967 struct netdev_queue *dev_queue; 968 struct hns_nic_priv *priv = netdev_priv(ndev); 969 int head; 970 int bytes, pkts; 971 972 NETIF_TX_LOCK(ring); 973 974 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 975 rmb(); /* make sure head is ready before touch any data */ 976 977 if (is_ring_empty(ring) || head == ring->next_to_clean) { 978 NETIF_TX_UNLOCK(ring); 979 return 0; /* no data to poll */ 980 } 981 982 if (!is_valid_clean_head(ring, head)) { 983 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 984 ring->next_to_use, ring->next_to_clean); 985 ring->stats.io_err_cnt++; 986 NETIF_TX_UNLOCK(ring); 987 return -EIO; 988 } 989 990 bytes = 0; 991 pkts = 0; 992 while (head != ring->next_to_clean) { 993 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 994 /* issue prefetch for next Tx descriptor */ 995 prefetch(&ring->desc_cb[ring->next_to_clean]); 996 } 997 /* update tx ring statistics. */ 998 ring->stats.tx_pkts += pkts; 999 ring->stats.tx_bytes += bytes; 1000 1001 NETIF_TX_UNLOCK(ring); 1002 1003 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1004 netdev_tx_completed_queue(dev_queue, pkts, bytes); 1005 1006 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 1007 netif_carrier_on(ndev); 1008 1009 if (unlikely(pkts && netif_carrier_ok(ndev) && 1010 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 1011 /* Make sure that anybody stopping the queue after this 1012 * sees the new next_to_clean. 1013 */ 1014 smp_mb(); 1015 if (netif_tx_queue_stopped(dev_queue) && 1016 !test_bit(NIC_STATE_DOWN, &priv->state)) { 1017 netif_tx_wake_queue(dev_queue); 1018 ring->stats.restart_queue++; 1019 } 1020 } 1021 return 0; 1022 } 1023 1024 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 1025 { 1026 struct hnae_ring *ring = ring_data->ring; 1027 int head; 1028 1029 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1030 1031 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1032 1033 if (head != ring->next_to_clean) { 1034 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1035 ring_data->ring, 1); 1036 1037 return false; 1038 } else { 1039 return true; 1040 } 1041 } 1042 1043 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1044 { 1045 struct hnae_ring *ring = ring_data->ring; 1046 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1047 1048 if (head == ring->next_to_clean) 1049 return true; 1050 else 1051 return false; 1052 } 1053 1054 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1055 { 1056 struct hnae_ring *ring = ring_data->ring; 1057 struct net_device *ndev = ring_data->napi.dev; 1058 struct netdev_queue *dev_queue; 1059 int head; 1060 int bytes, pkts; 1061 1062 NETIF_TX_LOCK(ring); 1063 1064 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1065 bytes = 0; 1066 pkts = 0; 1067 while (head != ring->next_to_clean) 1068 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1069 1070 NETIF_TX_UNLOCK(ring); 1071 1072 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1073 netdev_tx_reset_queue(dev_queue); 1074 } 1075 1076 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1077 { 1078 int clean_complete = 0; 1079 struct hns_nic_ring_data *ring_data = 1080 container_of(napi, struct hns_nic_ring_data, napi); 1081 struct hnae_ring *ring = ring_data->ring; 1082 1083 try_again: 1084 clean_complete += ring_data->poll_one( 1085 ring_data, budget - clean_complete, 1086 ring_data->ex_process); 1087 1088 if (clean_complete < budget) { 1089 if (ring_data->fini_process(ring_data)) { 1090 napi_complete(napi); 1091 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1092 } else { 1093 goto try_again; 1094 } 1095 } 1096 1097 return clean_complete; 1098 } 1099 1100 static irqreturn_t hns_irq_handle(int irq, void *dev) 1101 { 1102 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1103 1104 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1105 ring_data->ring, 1); 1106 napi_schedule(&ring_data->napi); 1107 1108 return IRQ_HANDLED; 1109 } 1110 1111 /** 1112 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1113 *@ndev: net device 1114 */ 1115 static void hns_nic_adjust_link(struct net_device *ndev) 1116 { 1117 struct hns_nic_priv *priv = netdev_priv(ndev); 1118 struct hnae_handle *h = priv->ae_handle; 1119 int state = 1; 1120 1121 /* If there is no phy, do not need adjust link */ 1122 if (ndev->phydev) { 1123 /* When phy link down, do nothing */ 1124 if (ndev->phydev->link == 0) 1125 return; 1126 1127 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed, 1128 ndev->phydev->duplex)) { 1129 /* because Hi161X chip don't support to change gmac 1130 * speed and duplex with traffic. Delay 200ms to 1131 * make sure there is no more data in chip FIFO. 1132 */ 1133 netif_carrier_off(ndev); 1134 msleep(200); 1135 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1136 ndev->phydev->duplex); 1137 netif_carrier_on(ndev); 1138 } 1139 } 1140 1141 state = state && h->dev->ops->get_status(h); 1142 1143 if (state != priv->link) { 1144 if (state) { 1145 netif_carrier_on(ndev); 1146 netif_tx_wake_all_queues(ndev); 1147 netdev_info(ndev, "link up\n"); 1148 } else { 1149 netif_carrier_off(ndev); 1150 netdev_info(ndev, "link down\n"); 1151 } 1152 priv->link = state; 1153 } 1154 } 1155 1156 /** 1157 *hns_nic_init_phy - init phy 1158 *@ndev: net device 1159 *@h: ae handle 1160 * Return 0 on success, negative on failure 1161 */ 1162 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1163 { 1164 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, }; 1165 struct phy_device *phy_dev = h->phy_dev; 1166 int ret; 1167 1168 if (!h->phy_dev) 1169 return 0; 1170 1171 ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support); 1172 linkmode_and(phy_dev->supported, phy_dev->supported, supported); 1173 linkmode_copy(phy_dev->advertising, phy_dev->supported); 1174 1175 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1176 phy_dev->autoneg = false; 1177 1178 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1179 phy_dev->dev_flags = 0; 1180 1181 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1182 h->phy_if); 1183 } else { 1184 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1185 } 1186 if (unlikely(ret)) 1187 return -ENODEV; 1188 1189 return 0; 1190 } 1191 1192 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1193 { 1194 struct hns_nic_priv *priv = netdev_priv(netdev); 1195 struct hnae_handle *h = priv->ae_handle; 1196 1197 napi_enable(&priv->ring_data[idx].napi); 1198 1199 enable_irq(priv->ring_data[idx].ring->irq); 1200 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1201 1202 return 0; 1203 } 1204 1205 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1206 { 1207 struct hns_nic_priv *priv = netdev_priv(ndev); 1208 struct hnae_handle *h = priv->ae_handle; 1209 struct sockaddr *mac_addr = p; 1210 int ret; 1211 1212 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1213 return -EADDRNOTAVAIL; 1214 1215 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1216 if (ret) { 1217 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1218 return ret; 1219 } 1220 1221 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); 1222 1223 return 0; 1224 } 1225 1226 static void hns_nic_update_stats(struct net_device *netdev) 1227 { 1228 struct hns_nic_priv *priv = netdev_priv(netdev); 1229 struct hnae_handle *h = priv->ae_handle; 1230 1231 h->dev->ops->update_stats(h, &netdev->stats); 1232 } 1233 1234 /* set mac addr if it is configed. or leave it to the AE driver */ 1235 static void hns_init_mac_addr(struct net_device *ndev) 1236 { 1237 struct hns_nic_priv *priv = netdev_priv(ndev); 1238 1239 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { 1240 eth_hw_addr_random(ndev); 1241 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1242 ndev->dev_addr); 1243 } 1244 } 1245 1246 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1247 { 1248 struct hns_nic_priv *priv = netdev_priv(netdev); 1249 struct hnae_handle *h = priv->ae_handle; 1250 1251 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1252 disable_irq(priv->ring_data[idx].ring->irq); 1253 1254 napi_disable(&priv->ring_data[idx].napi); 1255 } 1256 1257 static int hns_nic_init_affinity_mask(int q_num, int ring_idx, 1258 struct hnae_ring *ring, cpumask_t *mask) 1259 { 1260 int cpu; 1261 1262 /* Diffrent irq banlance between 16core and 32core. 1263 * The cpu mask set by ring index according to the ring flag 1264 * which indicate the ring is tx or rx. 1265 */ 1266 if (q_num == num_possible_cpus()) { 1267 if (is_tx_ring(ring)) 1268 cpu = ring_idx; 1269 else 1270 cpu = ring_idx - q_num; 1271 } else { 1272 if (is_tx_ring(ring)) 1273 cpu = ring_idx * 2; 1274 else 1275 cpu = (ring_idx - q_num) * 2 + 1; 1276 } 1277 1278 cpumask_clear(mask); 1279 cpumask_set_cpu(cpu, mask); 1280 1281 return cpu; 1282 } 1283 1284 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv) 1285 { 1286 int i; 1287 1288 for (i = 0; i < q_num * 2; i++) { 1289 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 1290 irq_set_affinity_hint(priv->ring_data[i].ring->irq, 1291 NULL); 1292 free_irq(priv->ring_data[i].ring->irq, 1293 &priv->ring_data[i]); 1294 priv->ring_data[i].ring->irq_init_flag = 1295 RCB_IRQ_NOT_INITED; 1296 } 1297 } 1298 } 1299 1300 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1301 { 1302 struct hnae_handle *h = priv->ae_handle; 1303 struct hns_nic_ring_data *rd; 1304 int i; 1305 int ret; 1306 int cpu; 1307 1308 for (i = 0; i < h->q_num * 2; i++) { 1309 rd = &priv->ring_data[i]; 1310 1311 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1312 break; 1313 1314 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1315 "%s-%s%d", priv->netdev->name, 1316 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); 1317 1318 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1319 1320 ret = request_irq(rd->ring->irq, 1321 hns_irq_handle, 0, rd->ring->ring_name, rd); 1322 if (ret) { 1323 netdev_err(priv->netdev, "request irq(%d) fail\n", 1324 rd->ring->irq); 1325 goto out_free_irq; 1326 } 1327 disable_irq(rd->ring->irq); 1328 1329 cpu = hns_nic_init_affinity_mask(h->q_num, i, 1330 rd->ring, &rd->mask); 1331 1332 if (cpu_online(cpu)) 1333 irq_set_affinity_hint(rd->ring->irq, 1334 &rd->mask); 1335 1336 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1337 } 1338 1339 return 0; 1340 1341 out_free_irq: 1342 hns_nic_free_irq(h->q_num, priv); 1343 return ret; 1344 } 1345 1346 static int hns_nic_net_up(struct net_device *ndev) 1347 { 1348 struct hns_nic_priv *priv = netdev_priv(ndev); 1349 struct hnae_handle *h = priv->ae_handle; 1350 int i, j; 1351 int ret; 1352 1353 if (!test_bit(NIC_STATE_DOWN, &priv->state)) 1354 return 0; 1355 1356 ret = hns_nic_init_irq(priv); 1357 if (ret != 0) { 1358 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1359 return ret; 1360 } 1361 1362 for (i = 0; i < h->q_num * 2; i++) { 1363 ret = hns_nic_ring_open(ndev, i); 1364 if (ret) 1365 goto out_has_some_queues; 1366 } 1367 1368 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1369 if (ret) 1370 goto out_set_mac_addr_err; 1371 1372 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1373 if (ret) 1374 goto out_start_err; 1375 1376 if (ndev->phydev) 1377 phy_start(ndev->phydev); 1378 1379 clear_bit(NIC_STATE_DOWN, &priv->state); 1380 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1381 1382 return 0; 1383 1384 out_start_err: 1385 netif_stop_queue(ndev); 1386 out_set_mac_addr_err: 1387 out_has_some_queues: 1388 for (j = i - 1; j >= 0; j--) 1389 hns_nic_ring_close(ndev, j); 1390 1391 hns_nic_free_irq(h->q_num, priv); 1392 set_bit(NIC_STATE_DOWN, &priv->state); 1393 1394 return ret; 1395 } 1396 1397 static void hns_nic_net_down(struct net_device *ndev) 1398 { 1399 int i; 1400 struct hnae_ae_ops *ops; 1401 struct hns_nic_priv *priv = netdev_priv(ndev); 1402 1403 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1404 return; 1405 1406 (void)del_timer_sync(&priv->service_timer); 1407 netif_tx_stop_all_queues(ndev); 1408 netif_carrier_off(ndev); 1409 netif_tx_disable(ndev); 1410 priv->link = 0; 1411 1412 if (ndev->phydev) 1413 phy_stop(ndev->phydev); 1414 1415 ops = priv->ae_handle->dev->ops; 1416 1417 if (ops->stop) 1418 ops->stop(priv->ae_handle); 1419 1420 netif_tx_stop_all_queues(ndev); 1421 1422 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1423 hns_nic_ring_close(ndev, i); 1424 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1425 1426 /* clean tx buffers*/ 1427 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1428 } 1429 } 1430 1431 void hns_nic_net_reset(struct net_device *ndev) 1432 { 1433 struct hns_nic_priv *priv = netdev_priv(ndev); 1434 struct hnae_handle *handle = priv->ae_handle; 1435 1436 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1437 usleep_range(1000, 2000); 1438 1439 (void)hnae_reinit_handle(handle); 1440 1441 clear_bit(NIC_STATE_RESETTING, &priv->state); 1442 } 1443 1444 void hns_nic_net_reinit(struct net_device *netdev) 1445 { 1446 struct hns_nic_priv *priv = netdev_priv(netdev); 1447 enum hnae_port_type type = priv->ae_handle->port_type; 1448 1449 netif_trans_update(priv->netdev); 1450 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1451 usleep_range(1000, 2000); 1452 1453 hns_nic_net_down(netdev); 1454 1455 /* Only do hns_nic_net_reset in debug mode 1456 * because of hardware limitation. 1457 */ 1458 if (type == HNAE_PORT_DEBUG) 1459 hns_nic_net_reset(netdev); 1460 1461 (void)hns_nic_net_up(netdev); 1462 clear_bit(NIC_STATE_REINITING, &priv->state); 1463 } 1464 1465 static int hns_nic_net_open(struct net_device *ndev) 1466 { 1467 struct hns_nic_priv *priv = netdev_priv(ndev); 1468 struct hnae_handle *h = priv->ae_handle; 1469 int ret; 1470 1471 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1472 return -EBUSY; 1473 1474 priv->link = 0; 1475 netif_carrier_off(ndev); 1476 1477 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1478 if (ret < 0) { 1479 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1480 ret); 1481 return ret; 1482 } 1483 1484 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1485 if (ret < 0) { 1486 netdev_err(ndev, 1487 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1488 return ret; 1489 } 1490 1491 ret = hns_nic_net_up(ndev); 1492 if (ret) { 1493 netdev_err(ndev, 1494 "hns net up fail, ret=%d!\n", ret); 1495 return ret; 1496 } 1497 1498 return 0; 1499 } 1500 1501 static int hns_nic_net_stop(struct net_device *ndev) 1502 { 1503 hns_nic_net_down(ndev); 1504 1505 return 0; 1506 } 1507 1508 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1509 #define HNS_TX_TIMEO_LIMIT (40 * HZ) 1510 static void hns_nic_net_timeout(struct net_device *ndev) 1511 { 1512 struct hns_nic_priv *priv = netdev_priv(ndev); 1513 1514 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) { 1515 ndev->watchdog_timeo *= 2; 1516 netdev_info(ndev, "watchdog_timo changed to %d.\n", 1517 ndev->watchdog_timeo); 1518 } else { 1519 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 1520 hns_tx_timeout_reset(priv); 1521 } 1522 } 1523 1524 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr, 1525 int cmd) 1526 { 1527 struct phy_device *phy_dev = netdev->phydev; 1528 1529 if (!netif_running(netdev)) 1530 return -EINVAL; 1531 1532 if (!phy_dev) 1533 return -ENOTSUPP; 1534 1535 return phy_mii_ioctl(phy_dev, ifr, cmd); 1536 } 1537 1538 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1539 struct net_device *ndev) 1540 { 1541 struct hns_nic_priv *priv = netdev_priv(ndev); 1542 1543 assert(skb->queue_mapping < ndev->ae_handle->q_num); 1544 1545 return hns_nic_net_xmit_hw(ndev, skb, 1546 &tx_ring_data(priv, skb->queue_mapping)); 1547 } 1548 1549 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, 1550 struct sk_buff *skb) 1551 { 1552 dev_kfree_skb_any(skb); 1553 } 1554 1555 #define HNS_LB_TX_RING 0 1556 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) 1557 { 1558 struct sk_buff *skb; 1559 struct ethhdr *ethhdr; 1560 int frame_len; 1561 1562 /* allocate test skb */ 1563 skb = alloc_skb(64, GFP_KERNEL); 1564 if (!skb) 1565 return NULL; 1566 1567 skb_put(skb, 64); 1568 skb->dev = ndev; 1569 memset(skb->data, 0xFF, skb->len); 1570 1571 /* must be tcp/ip package */ 1572 ethhdr = (struct ethhdr *)skb->data; 1573 ethhdr->h_proto = htons(ETH_P_IP); 1574 1575 frame_len = skb->len & (~1ul); 1576 memset(&skb->data[frame_len / 2], 0xAA, 1577 frame_len / 2 - 1); 1578 1579 skb->queue_mapping = HNS_LB_TX_RING; 1580 1581 return skb; 1582 } 1583 1584 static int hns_enable_serdes_lb(struct net_device *ndev) 1585 { 1586 struct hns_nic_priv *priv = netdev_priv(ndev); 1587 struct hnae_handle *h = priv->ae_handle; 1588 struct hnae_ae_ops *ops = h->dev->ops; 1589 int speed, duplex; 1590 int ret; 1591 1592 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); 1593 if (ret) 1594 return ret; 1595 1596 ret = ops->start ? ops->start(h) : 0; 1597 if (ret) 1598 return ret; 1599 1600 /* link adjust duplex*/ 1601 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1602 speed = 1000; 1603 else 1604 speed = 10000; 1605 duplex = 1; 1606 1607 ops->adjust_link(h, speed, duplex); 1608 1609 /* wait h/w ready */ 1610 mdelay(300); 1611 1612 return 0; 1613 } 1614 1615 static void hns_disable_serdes_lb(struct net_device *ndev) 1616 { 1617 struct hns_nic_priv *priv = netdev_priv(ndev); 1618 struct hnae_handle *h = priv->ae_handle; 1619 struct hnae_ae_ops *ops = h->dev->ops; 1620 1621 ops->stop(h); 1622 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); 1623 } 1624 1625 /** 1626 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The 1627 *function as follows: 1628 * 1. if one rx ring has found the page_offset is not equal 0 between head 1629 * and tail, it means that the chip fetched the wrong descs for the ring 1630 * which buffer size is 4096. 1631 * 2. we set the chip serdes loopback and set rss indirection to the ring. 1632 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring 1633 * recieving all packages and it will fetch new descriptions. 1634 * 4. recover to the original state. 1635 * 1636 *@ndev: net device 1637 */ 1638 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) 1639 { 1640 struct hns_nic_priv *priv = netdev_priv(ndev); 1641 struct hnae_handle *h = priv->ae_handle; 1642 struct hnae_ae_ops *ops = h->dev->ops; 1643 struct hns_nic_ring_data *rd; 1644 struct hnae_ring *ring; 1645 struct sk_buff *skb; 1646 u32 *org_indir; 1647 u32 *cur_indir; 1648 int indir_size; 1649 int head, tail; 1650 int fetch_num; 1651 int i, j; 1652 bool found; 1653 int retry_times; 1654 int ret = 0; 1655 1656 /* alloc indir memory */ 1657 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); 1658 org_indir = kzalloc(indir_size, GFP_KERNEL); 1659 if (!org_indir) 1660 return -ENOMEM; 1661 1662 /* store the orginal indirection */ 1663 ops->get_rss(h, org_indir, NULL, NULL); 1664 1665 cur_indir = kzalloc(indir_size, GFP_KERNEL); 1666 if (!cur_indir) { 1667 ret = -ENOMEM; 1668 goto cur_indir_alloc_err; 1669 } 1670 1671 /* set loopback */ 1672 if (hns_enable_serdes_lb(ndev)) { 1673 ret = -EINVAL; 1674 goto enable_serdes_lb_err; 1675 } 1676 1677 /* foreach every rx ring to clear fetch desc */ 1678 for (i = 0; i < h->q_num; i++) { 1679 ring = &h->qs[i]->rx_ring; 1680 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1681 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); 1682 found = false; 1683 fetch_num = ring_dist(ring, head, tail); 1684 1685 while (head != tail) { 1686 if (ring->desc_cb[head].page_offset != 0) { 1687 found = true; 1688 break; 1689 } 1690 1691 head++; 1692 if (head == ring->desc_num) 1693 head = 0; 1694 } 1695 1696 if (found) { 1697 for (j = 0; j < indir_size / sizeof(*org_indir); j++) 1698 cur_indir[j] = i; 1699 ops->set_rss(h, cur_indir, NULL, 0); 1700 1701 for (j = 0; j < fetch_num; j++) { 1702 /* alloc one skb and init */ 1703 skb = hns_assemble_skb(ndev); 1704 if (!skb) 1705 goto out; 1706 rd = &tx_ring_data(priv, skb->queue_mapping); 1707 hns_nic_net_xmit_hw(ndev, skb, rd); 1708 1709 retry_times = 0; 1710 while (retry_times++ < 10) { 1711 mdelay(10); 1712 /* clean rx */ 1713 rd = &rx_ring_data(priv, i); 1714 if (rd->poll_one(rd, fetch_num, 1715 hns_nic_drop_rx_fetch)) 1716 break; 1717 } 1718 1719 retry_times = 0; 1720 while (retry_times++ < 10) { 1721 mdelay(10); 1722 /* clean tx ring 0 send package */ 1723 rd = &tx_ring_data(priv, 1724 HNS_LB_TX_RING); 1725 if (rd->poll_one(rd, fetch_num, NULL)) 1726 break; 1727 } 1728 } 1729 } 1730 } 1731 1732 out: 1733 /* restore everything */ 1734 ops->set_rss(h, org_indir, NULL, 0); 1735 hns_disable_serdes_lb(ndev); 1736 enable_serdes_lb_err: 1737 kfree(cur_indir); 1738 cur_indir_alloc_err: 1739 kfree(org_indir); 1740 1741 return ret; 1742 } 1743 1744 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1745 { 1746 struct hns_nic_priv *priv = netdev_priv(ndev); 1747 struct hnae_handle *h = priv->ae_handle; 1748 bool if_running = netif_running(ndev); 1749 int ret; 1750 1751 /* MTU < 68 is an error and causes problems on some kernels */ 1752 if (new_mtu < 68) 1753 return -EINVAL; 1754 1755 /* MTU no change */ 1756 if (new_mtu == ndev->mtu) 1757 return 0; 1758 1759 if (!h->dev->ops->set_mtu) 1760 return -ENOTSUPP; 1761 1762 if (if_running) { 1763 (void)hns_nic_net_stop(ndev); 1764 msleep(100); 1765 } 1766 1767 if (priv->enet_ver != AE_VERSION_1 && 1768 ndev->mtu <= BD_SIZE_2048_MAX_MTU && 1769 new_mtu > BD_SIZE_2048_MAX_MTU) { 1770 /* update desc */ 1771 hnae_reinit_all_ring_desc(h); 1772 1773 /* clear the package which the chip has fetched */ 1774 ret = hns_nic_clear_all_rx_fetch(ndev); 1775 1776 /* the page offset must be consist with desc */ 1777 hnae_reinit_all_ring_page_off(h); 1778 1779 if (ret) { 1780 netdev_err(ndev, "clear the fetched desc fail\n"); 1781 goto out; 1782 } 1783 } 1784 1785 ret = h->dev->ops->set_mtu(h, new_mtu); 1786 if (ret) { 1787 netdev_err(ndev, "set mtu fail, return value %d\n", 1788 ret); 1789 goto out; 1790 } 1791 1792 /* finally, set new mtu to netdevice */ 1793 ndev->mtu = new_mtu; 1794 1795 out: 1796 if (if_running) { 1797 if (hns_nic_net_open(ndev)) { 1798 netdev_err(ndev, "hns net open fail\n"); 1799 ret = -EINVAL; 1800 } 1801 } 1802 1803 return ret; 1804 } 1805 1806 static int hns_nic_set_features(struct net_device *netdev, 1807 netdev_features_t features) 1808 { 1809 struct hns_nic_priv *priv = netdev_priv(netdev); 1810 1811 switch (priv->enet_ver) { 1812 case AE_VERSION_1: 1813 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1814 netdev_info(netdev, "enet v1 do not support tso!\n"); 1815 break; 1816 default: 1817 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1818 priv->ops.fill_desc = fill_tso_desc; 1819 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1820 /* The chip only support 7*4096 */ 1821 netif_set_gso_max_size(netdev, 7 * 4096); 1822 } else { 1823 priv->ops.fill_desc = fill_v2_desc; 1824 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1825 } 1826 break; 1827 } 1828 netdev->features = features; 1829 return 0; 1830 } 1831 1832 static netdev_features_t hns_nic_fix_features( 1833 struct net_device *netdev, netdev_features_t features) 1834 { 1835 struct hns_nic_priv *priv = netdev_priv(netdev); 1836 1837 switch (priv->enet_ver) { 1838 case AE_VERSION_1: 1839 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1840 NETIF_F_HW_VLAN_CTAG_FILTER); 1841 break; 1842 default: 1843 break; 1844 } 1845 return features; 1846 } 1847 1848 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1849 { 1850 struct hns_nic_priv *priv = netdev_priv(netdev); 1851 struct hnae_handle *h = priv->ae_handle; 1852 1853 if (h->dev->ops->add_uc_addr) 1854 return h->dev->ops->add_uc_addr(h, addr); 1855 1856 return 0; 1857 } 1858 1859 static int hns_nic_uc_unsync(struct net_device *netdev, 1860 const unsigned char *addr) 1861 { 1862 struct hns_nic_priv *priv = netdev_priv(netdev); 1863 struct hnae_handle *h = priv->ae_handle; 1864 1865 if (h->dev->ops->rm_uc_addr) 1866 return h->dev->ops->rm_uc_addr(h, addr); 1867 1868 return 0; 1869 } 1870 1871 /** 1872 * nic_set_multicast_list - set mutl mac address 1873 * @netdev: net device 1874 * @p: mac address 1875 * 1876 * return void 1877 */ 1878 static void hns_set_multicast_list(struct net_device *ndev) 1879 { 1880 struct hns_nic_priv *priv = netdev_priv(ndev); 1881 struct hnae_handle *h = priv->ae_handle; 1882 struct netdev_hw_addr *ha = NULL; 1883 1884 if (!h) { 1885 netdev_err(ndev, "hnae handle is null\n"); 1886 return; 1887 } 1888 1889 if (h->dev->ops->clr_mc_addr) 1890 if (h->dev->ops->clr_mc_addr(h)) 1891 netdev_err(ndev, "clear multicast address fail\n"); 1892 1893 if (h->dev->ops->set_mc_addr) { 1894 netdev_for_each_mc_addr(ha, ndev) 1895 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1896 netdev_err(ndev, "set multicast fail\n"); 1897 } 1898 } 1899 1900 static void hns_nic_set_rx_mode(struct net_device *ndev) 1901 { 1902 struct hns_nic_priv *priv = netdev_priv(ndev); 1903 struct hnae_handle *h = priv->ae_handle; 1904 1905 if (h->dev->ops->set_promisc_mode) { 1906 if (ndev->flags & IFF_PROMISC) 1907 h->dev->ops->set_promisc_mode(h, 1); 1908 else 1909 h->dev->ops->set_promisc_mode(h, 0); 1910 } 1911 1912 hns_set_multicast_list(ndev); 1913 1914 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1915 netdev_err(ndev, "sync uc address fail\n"); 1916 } 1917 1918 static void hns_nic_get_stats64(struct net_device *ndev, 1919 struct rtnl_link_stats64 *stats) 1920 { 1921 int idx = 0; 1922 u64 tx_bytes = 0; 1923 u64 rx_bytes = 0; 1924 u64 tx_pkts = 0; 1925 u64 rx_pkts = 0; 1926 struct hns_nic_priv *priv = netdev_priv(ndev); 1927 struct hnae_handle *h = priv->ae_handle; 1928 1929 for (idx = 0; idx < h->q_num; idx++) { 1930 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1931 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1932 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1933 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1934 } 1935 1936 stats->tx_bytes = tx_bytes; 1937 stats->tx_packets = tx_pkts; 1938 stats->rx_bytes = rx_bytes; 1939 stats->rx_packets = rx_pkts; 1940 1941 stats->rx_errors = ndev->stats.rx_errors; 1942 stats->multicast = ndev->stats.multicast; 1943 stats->rx_length_errors = ndev->stats.rx_length_errors; 1944 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1945 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1946 1947 stats->tx_errors = ndev->stats.tx_errors; 1948 stats->rx_dropped = ndev->stats.rx_dropped; 1949 stats->tx_dropped = ndev->stats.tx_dropped; 1950 stats->collisions = ndev->stats.collisions; 1951 stats->rx_over_errors = ndev->stats.rx_over_errors; 1952 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1953 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1954 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1955 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1956 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1957 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1958 stats->tx_window_errors = ndev->stats.tx_window_errors; 1959 stats->rx_compressed = ndev->stats.rx_compressed; 1960 stats->tx_compressed = ndev->stats.tx_compressed; 1961 } 1962 1963 static u16 1964 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1965 struct net_device *sb_dev, 1966 select_queue_fallback_t fallback) 1967 { 1968 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1969 struct hns_nic_priv *priv = netdev_priv(ndev); 1970 1971 /* fix hardware broadcast/multicast packets queue loopback */ 1972 if (!AE_IS_VER1(priv->enet_ver) && 1973 is_multicast_ether_addr(eth_hdr->h_dest)) 1974 return 0; 1975 else 1976 return fallback(ndev, skb, NULL); 1977 } 1978 1979 static const struct net_device_ops hns_nic_netdev_ops = { 1980 .ndo_open = hns_nic_net_open, 1981 .ndo_stop = hns_nic_net_stop, 1982 .ndo_start_xmit = hns_nic_net_xmit, 1983 .ndo_tx_timeout = hns_nic_net_timeout, 1984 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1985 .ndo_change_mtu = hns_nic_change_mtu, 1986 .ndo_do_ioctl = hns_nic_do_ioctl, 1987 .ndo_set_features = hns_nic_set_features, 1988 .ndo_fix_features = hns_nic_fix_features, 1989 .ndo_get_stats64 = hns_nic_get_stats64, 1990 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1991 .ndo_select_queue = hns_nic_select_queue, 1992 }; 1993 1994 static void hns_nic_update_link_status(struct net_device *netdev) 1995 { 1996 struct hns_nic_priv *priv = netdev_priv(netdev); 1997 1998 struct hnae_handle *h = priv->ae_handle; 1999 2000 if (h->phy_dev) { 2001 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 2002 return; 2003 2004 (void)genphy_read_status(h->phy_dev); 2005 } 2006 hns_nic_adjust_link(netdev); 2007 } 2008 2009 /* for dumping key regs*/ 2010 static void hns_nic_dump(struct hns_nic_priv *priv) 2011 { 2012 struct hnae_handle *h = priv->ae_handle; 2013 struct hnae_ae_ops *ops = h->dev->ops; 2014 u32 *data, reg_num, i; 2015 2016 if (ops->get_regs_len && ops->get_regs) { 2017 reg_num = ops->get_regs_len(priv->ae_handle); 2018 reg_num = (reg_num + 3ul) & ~3ul; 2019 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 2020 if (data) { 2021 ops->get_regs(priv->ae_handle, data); 2022 for (i = 0; i < reg_num; i += 4) 2023 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 2024 i, data[i], data[i + 1], 2025 data[i + 2], data[i + 3]); 2026 kfree(data); 2027 } 2028 } 2029 2030 for (i = 0; i < h->q_num; i++) { 2031 pr_info("tx_queue%d_next_to_clean:%d\n", 2032 i, h->qs[i]->tx_ring.next_to_clean); 2033 pr_info("tx_queue%d_next_to_use:%d\n", 2034 i, h->qs[i]->tx_ring.next_to_use); 2035 pr_info("rx_queue%d_next_to_clean:%d\n", 2036 i, h->qs[i]->rx_ring.next_to_clean); 2037 pr_info("rx_queue%d_next_to_use:%d\n", 2038 i, h->qs[i]->rx_ring.next_to_use); 2039 } 2040 } 2041 2042 /* for resetting subtask */ 2043 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 2044 { 2045 enum hnae_port_type type = priv->ae_handle->port_type; 2046 2047 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 2048 return; 2049 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2050 2051 /* If we're already down, removing or resetting, just bail */ 2052 if (test_bit(NIC_STATE_DOWN, &priv->state) || 2053 test_bit(NIC_STATE_REMOVING, &priv->state) || 2054 test_bit(NIC_STATE_RESETTING, &priv->state)) 2055 return; 2056 2057 hns_nic_dump(priv); 2058 netdev_info(priv->netdev, "try to reset %s port!\n", 2059 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 2060 2061 rtnl_lock(); 2062 /* put off any impending NetWatchDogTimeout */ 2063 netif_trans_update(priv->netdev); 2064 hns_nic_net_reinit(priv->netdev); 2065 2066 rtnl_unlock(); 2067 } 2068 2069 /* for doing service complete*/ 2070 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 2071 { 2072 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 2073 /* make sure to commit the things */ 2074 smp_mb__before_atomic(); 2075 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2076 } 2077 2078 static void hns_nic_service_task(struct work_struct *work) 2079 { 2080 struct hns_nic_priv *priv 2081 = container_of(work, struct hns_nic_priv, service_task); 2082 struct hnae_handle *h = priv->ae_handle; 2083 2084 hns_nic_reset_subtask(priv); 2085 hns_nic_update_link_status(priv->netdev); 2086 h->dev->ops->update_led_status(h); 2087 hns_nic_update_stats(priv->netdev); 2088 2089 hns_nic_service_event_complete(priv); 2090 } 2091 2092 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 2093 { 2094 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 2095 !test_bit(NIC_STATE_REMOVING, &priv->state) && 2096 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 2097 (void)schedule_work(&priv->service_task); 2098 } 2099 2100 static void hns_nic_service_timer(struct timer_list *t) 2101 { 2102 struct hns_nic_priv *priv = from_timer(priv, t, service_timer); 2103 2104 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 2105 2106 hns_nic_task_schedule(priv); 2107 } 2108 2109 /** 2110 * hns_tx_timeout_reset - initiate reset due to Tx timeout 2111 * @priv: driver private struct 2112 **/ 2113 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 2114 { 2115 /* Do the reset outside of interrupt context */ 2116 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 2117 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2118 netdev_warn(priv->netdev, 2119 "initiating reset due to tx timeout(%llu,0x%lx)\n", 2120 priv->tx_timeout_count, priv->state); 2121 priv->tx_timeout_count++; 2122 hns_nic_task_schedule(priv); 2123 } 2124 } 2125 2126 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 2127 { 2128 struct hnae_handle *h = priv->ae_handle; 2129 struct hns_nic_ring_data *rd; 2130 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 2131 int i; 2132 2133 if (h->q_num > NIC_MAX_Q_PER_VF) { 2134 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 2135 return -EINVAL; 2136 } 2137 2138 priv->ring_data = kzalloc(array3_size(h->q_num, 2139 sizeof(*priv->ring_data), 2), 2140 GFP_KERNEL); 2141 if (!priv->ring_data) 2142 return -ENOMEM; 2143 2144 for (i = 0; i < h->q_num; i++) { 2145 rd = &priv->ring_data[i]; 2146 rd->queue_index = i; 2147 rd->ring = &h->qs[i]->tx_ring; 2148 rd->poll_one = hns_nic_tx_poll_one; 2149 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 2150 hns_nic_tx_fini_pro_v2; 2151 2152 netif_napi_add(priv->netdev, &rd->napi, 2153 hns_nic_common_poll, NAPI_POLL_WEIGHT); 2154 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2155 } 2156 for (i = h->q_num; i < h->q_num * 2; i++) { 2157 rd = &priv->ring_data[i]; 2158 rd->queue_index = i - h->q_num; 2159 rd->ring = &h->qs[i - h->q_num]->rx_ring; 2160 rd->poll_one = hns_nic_rx_poll_one; 2161 rd->ex_process = hns_nic_rx_up_pro; 2162 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 2163 hns_nic_rx_fini_pro_v2; 2164 2165 netif_napi_add(priv->netdev, &rd->napi, 2166 hns_nic_common_poll, NAPI_POLL_WEIGHT); 2167 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2168 } 2169 2170 return 0; 2171 } 2172 2173 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 2174 { 2175 struct hnae_handle *h = priv->ae_handle; 2176 int i; 2177 2178 for (i = 0; i < h->q_num * 2; i++) { 2179 netif_napi_del(&priv->ring_data[i].napi); 2180 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 2181 (void)irq_set_affinity_hint( 2182 priv->ring_data[i].ring->irq, 2183 NULL); 2184 free_irq(priv->ring_data[i].ring->irq, 2185 &priv->ring_data[i]); 2186 } 2187 2188 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2189 } 2190 kfree(priv->ring_data); 2191 } 2192 2193 static void hns_nic_set_priv_ops(struct net_device *netdev) 2194 { 2195 struct hns_nic_priv *priv = netdev_priv(netdev); 2196 struct hnae_handle *h = priv->ae_handle; 2197 2198 if (AE_IS_VER1(priv->enet_ver)) { 2199 priv->ops.fill_desc = fill_desc; 2200 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 2201 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2202 } else { 2203 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 2204 if ((netdev->features & NETIF_F_TSO) || 2205 (netdev->features & NETIF_F_TSO6)) { 2206 priv->ops.fill_desc = fill_tso_desc; 2207 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 2208 /* This chip only support 7*4096 */ 2209 netif_set_gso_max_size(netdev, 7 * 4096); 2210 } else { 2211 priv->ops.fill_desc = fill_v2_desc; 2212 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2213 } 2214 /* enable tso when init 2215 * control tso on/off through TSE bit in bd 2216 */ 2217 h->dev->ops->set_tso_stats(h, 1); 2218 } 2219 } 2220 2221 static int hns_nic_try_get_ae(struct net_device *ndev) 2222 { 2223 struct hns_nic_priv *priv = netdev_priv(ndev); 2224 struct hnae_handle *h; 2225 int ret; 2226 2227 h = hnae_get_handle(&priv->netdev->dev, 2228 priv->fwnode, priv->port_id, NULL); 2229 if (IS_ERR_OR_NULL(h)) { 2230 ret = -ENODEV; 2231 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 2232 goto out; 2233 } 2234 priv->ae_handle = h; 2235 2236 ret = hns_nic_init_phy(ndev, h); 2237 if (ret) { 2238 dev_err(priv->dev, "probe phy device fail!\n"); 2239 goto out_init_phy; 2240 } 2241 2242 ret = hns_nic_init_ring_data(priv); 2243 if (ret) { 2244 ret = -ENOMEM; 2245 goto out_init_ring_data; 2246 } 2247 2248 hns_nic_set_priv_ops(ndev); 2249 2250 ret = register_netdev(ndev); 2251 if (ret) { 2252 dev_err(priv->dev, "probe register netdev fail!\n"); 2253 goto out_reg_ndev_fail; 2254 } 2255 return 0; 2256 2257 out_reg_ndev_fail: 2258 hns_nic_uninit_ring_data(priv); 2259 priv->ring_data = NULL; 2260 out_init_phy: 2261 out_init_ring_data: 2262 hnae_put_handle(priv->ae_handle); 2263 priv->ae_handle = NULL; 2264 out: 2265 return ret; 2266 } 2267 2268 static int hns_nic_notifier_action(struct notifier_block *nb, 2269 unsigned long action, void *data) 2270 { 2271 struct hns_nic_priv *priv = 2272 container_of(nb, struct hns_nic_priv, notifier_block); 2273 2274 assert(action == HNAE_AE_REGISTER); 2275 2276 if (!hns_nic_try_get_ae(priv->netdev)) { 2277 hnae_unregister_notifier(&priv->notifier_block); 2278 priv->notifier_block.notifier_call = NULL; 2279 } 2280 return 0; 2281 } 2282 2283 static int hns_nic_dev_probe(struct platform_device *pdev) 2284 { 2285 struct device *dev = &pdev->dev; 2286 struct net_device *ndev; 2287 struct hns_nic_priv *priv; 2288 u32 port_id; 2289 int ret; 2290 2291 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2292 if (!ndev) 2293 return -ENOMEM; 2294 2295 platform_set_drvdata(pdev, ndev); 2296 2297 priv = netdev_priv(ndev); 2298 priv->dev = dev; 2299 priv->netdev = ndev; 2300 2301 if (dev_of_node(dev)) { 2302 struct device_node *ae_node; 2303 2304 if (of_device_is_compatible(dev->of_node, 2305 "hisilicon,hns-nic-v1")) 2306 priv->enet_ver = AE_VERSION_1; 2307 else 2308 priv->enet_ver = AE_VERSION_2; 2309 2310 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2311 if (!ae_node) { 2312 ret = -ENODEV; 2313 dev_err(dev, "not find ae-handle\n"); 2314 goto out_read_prop_fail; 2315 } 2316 priv->fwnode = &ae_node->fwnode; 2317 } else if (is_acpi_node(dev->fwnode)) { 2318 struct fwnode_reference_args args; 2319 2320 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2321 priv->enet_ver = AE_VERSION_1; 2322 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2323 priv->enet_ver = AE_VERSION_2; 2324 else 2325 return -ENXIO; 2326 2327 /* try to find port-idx-in-ae first */ 2328 ret = acpi_node_get_property_reference(dev->fwnode, 2329 "ae-handle", 0, &args); 2330 if (ret) { 2331 dev_err(dev, "not find ae-handle\n"); 2332 goto out_read_prop_fail; 2333 } 2334 if (!is_acpi_device_node(args.fwnode)) { 2335 ret = -EINVAL; 2336 goto out_read_prop_fail; 2337 } 2338 priv->fwnode = args.fwnode; 2339 } else { 2340 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2341 return -ENXIO; 2342 } 2343 2344 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2345 if (ret) { 2346 /* only for old code compatible */ 2347 ret = device_property_read_u32(dev, "port-id", &port_id); 2348 if (ret) 2349 goto out_read_prop_fail; 2350 /* for old dts, we need to caculate the port offset */ 2351 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2352 : port_id - HNS_SRV_OFFSET; 2353 } 2354 priv->port_id = port_id; 2355 2356 hns_init_mac_addr(ndev); 2357 2358 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2359 ndev->priv_flags |= IFF_UNICAST_FLT; 2360 ndev->netdev_ops = &hns_nic_netdev_ops; 2361 hns_ethtool_set_ops(ndev); 2362 2363 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2364 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2365 NETIF_F_GRO; 2366 ndev->vlan_features |= 2367 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2368 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2369 2370 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2371 ndev->min_mtu = MAC_MIN_MTU; 2372 switch (priv->enet_ver) { 2373 case AE_VERSION_2: 2374 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE; 2375 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2376 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2377 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2378 ndev->max_mtu = MAC_MAX_MTU_V2 - 2379 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2380 break; 2381 default: 2382 ndev->max_mtu = MAC_MAX_MTU - 2383 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2384 break; 2385 } 2386 2387 SET_NETDEV_DEV(ndev, dev); 2388 2389 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2390 dev_dbg(dev, "set mask to 64bit\n"); 2391 else 2392 dev_err(dev, "set mask to 64bit fail!\n"); 2393 2394 /* carrier off reporting is important to ethtool even BEFORE open */ 2395 netif_carrier_off(ndev); 2396 2397 timer_setup(&priv->service_timer, hns_nic_service_timer, 0); 2398 INIT_WORK(&priv->service_task, hns_nic_service_task); 2399 2400 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2401 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2402 set_bit(NIC_STATE_DOWN, &priv->state); 2403 2404 if (hns_nic_try_get_ae(priv->netdev)) { 2405 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2406 ret = hnae_register_notifier(&priv->notifier_block); 2407 if (ret) { 2408 dev_err(dev, "register notifier fail!\n"); 2409 goto out_notify_fail; 2410 } 2411 dev_dbg(dev, "has not handle, register notifier!\n"); 2412 } 2413 2414 return 0; 2415 2416 out_notify_fail: 2417 (void)cancel_work_sync(&priv->service_task); 2418 out_read_prop_fail: 2419 /* safe for ACPI FW */ 2420 of_node_put(to_of_node(priv->fwnode)); 2421 free_netdev(ndev); 2422 return ret; 2423 } 2424 2425 static int hns_nic_dev_remove(struct platform_device *pdev) 2426 { 2427 struct net_device *ndev = platform_get_drvdata(pdev); 2428 struct hns_nic_priv *priv = netdev_priv(ndev); 2429 2430 if (ndev->reg_state != NETREG_UNINITIALIZED) 2431 unregister_netdev(ndev); 2432 2433 if (priv->ring_data) 2434 hns_nic_uninit_ring_data(priv); 2435 priv->ring_data = NULL; 2436 2437 if (ndev->phydev) 2438 phy_disconnect(ndev->phydev); 2439 2440 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2441 hnae_put_handle(priv->ae_handle); 2442 priv->ae_handle = NULL; 2443 if (priv->notifier_block.notifier_call) 2444 hnae_unregister_notifier(&priv->notifier_block); 2445 priv->notifier_block.notifier_call = NULL; 2446 2447 set_bit(NIC_STATE_REMOVING, &priv->state); 2448 (void)cancel_work_sync(&priv->service_task); 2449 2450 /* safe for ACPI FW */ 2451 of_node_put(to_of_node(priv->fwnode)); 2452 2453 free_netdev(ndev); 2454 return 0; 2455 } 2456 2457 static const struct of_device_id hns_enet_of_match[] = { 2458 {.compatible = "hisilicon,hns-nic-v1",}, 2459 {.compatible = "hisilicon,hns-nic-v2",}, 2460 {}, 2461 }; 2462 2463 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2464 2465 static struct platform_driver hns_nic_dev_driver = { 2466 .driver = { 2467 .name = "hns-nic", 2468 .of_match_table = hns_enet_of_match, 2469 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2470 }, 2471 .probe = hns_nic_dev_probe, 2472 .remove = hns_nic_dev_remove, 2473 }; 2474 2475 module_platform_driver(hns_nic_dev_driver); 2476 2477 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2478 MODULE_AUTHOR("Hisilicon, Inc."); 2479 MODULE_LICENSE("GPL"); 2480 MODULE_ALIAS("platform:hns-nic"); 2481