xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns/hns_enet.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2014-2015 Hisilicon Limited.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/cpumask.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_vlan.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/irq.h>
15 #include <linux/module.h>
16 #include <linux/phy.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 
20 #include "hnae.h"
21 #include "hns_enet.h"
22 #include "hns_dsaf_mac.h"
23 
24 #define NIC_MAX_Q_PER_VF 16
25 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
26 
27 #define SERVICE_TIMER_HZ (1 * HZ)
28 
29 #define RCB_IRQ_NOT_INITED 0
30 #define RCB_IRQ_INITED 1
31 #define HNS_BUFFER_SIZE_2048 2048
32 
33 #define BD_MAX_SEND_SIZE 8191
34 
35 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
36 			    int send_sz, dma_addr_t dma, int frag_end,
37 			    int buf_num, enum hns_desc_type type, int mtu)
38 {
39 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
40 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
41 	struct iphdr *iphdr;
42 	struct ipv6hdr *ipv6hdr;
43 	struct sk_buff *skb;
44 	__be16 protocol;
45 	u8 bn_pid = 0;
46 	u8 rrcfv = 0;
47 	u8 ip_offset = 0;
48 	u8 tvsvsn = 0;
49 	u16 mss = 0;
50 	u8 l4_len = 0;
51 	u16 paylen = 0;
52 
53 	desc_cb->priv = priv;
54 	desc_cb->length = size;
55 	desc_cb->dma = dma;
56 	desc_cb->type = type;
57 
58 	desc->addr = cpu_to_le64(dma);
59 	desc->tx.send_size = cpu_to_le16((u16)send_sz);
60 
61 	/* config bd buffer end */
62 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
63 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
64 
65 	/* fill port_id in the tx bd for sending management pkts */
66 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
67 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
68 
69 	if (type == DESC_TYPE_SKB) {
70 		skb = (struct sk_buff *)priv;
71 
72 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
73 			skb_reset_mac_len(skb);
74 			protocol = skb->protocol;
75 			ip_offset = ETH_HLEN;
76 
77 			if (protocol == htons(ETH_P_8021Q)) {
78 				ip_offset += VLAN_HLEN;
79 				protocol = vlan_get_protocol(skb);
80 				skb->protocol = protocol;
81 			}
82 
83 			if (skb->protocol == htons(ETH_P_IP)) {
84 				iphdr = ip_hdr(skb);
85 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
86 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
87 
88 				/* check for tcp/udp header */
89 				if (iphdr->protocol == IPPROTO_TCP &&
90 				    skb_is_gso(skb)) {
91 					hnae_set_bit(tvsvsn,
92 						     HNSV2_TXD_TSE_B, 1);
93 					l4_len = tcp_hdrlen(skb);
94 					mss = skb_shinfo(skb)->gso_size;
95 					paylen = skb->len - skb_tcp_all_headers(skb);
96 				}
97 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
98 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
99 				ipv6hdr = ipv6_hdr(skb);
100 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
101 
102 				/* check for tcp/udp header */
103 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
104 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
105 					hnae_set_bit(tvsvsn,
106 						     HNSV2_TXD_TSE_B, 1);
107 					l4_len = tcp_hdrlen(skb);
108 					mss = skb_shinfo(skb)->gso_size;
109 					paylen = skb->len - skb_tcp_all_headers(skb);
110 				}
111 			}
112 			desc->tx.ip_offset = ip_offset;
113 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
114 			desc->tx.mss = cpu_to_le16(mss);
115 			desc->tx.l4_len = l4_len;
116 			desc->tx.paylen = cpu_to_le16(paylen);
117 		}
118 	}
119 
120 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
121 
122 	desc->tx.bn_pid = bn_pid;
123 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
124 
125 	ring_ptr_move_fw(ring, next_to_use);
126 }
127 
128 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
129 			 int size, dma_addr_t dma, int frag_end,
130 			 int buf_num, enum hns_desc_type type, int mtu)
131 {
132 	fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
133 			buf_num, type, mtu);
134 }
135 
136 static const struct acpi_device_id hns_enet_acpi_match[] = {
137 	{ "HISI00C1", 0 },
138 	{ "HISI00C2", 0 },
139 	{ },
140 };
141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
142 
143 static void fill_desc(struct hnae_ring *ring, void *priv,
144 		      int size, dma_addr_t dma, int frag_end,
145 		      int buf_num, enum hns_desc_type type, int mtu)
146 {
147 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
148 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
149 	struct sk_buff *skb;
150 	__be16 protocol;
151 	u32 ip_offset;
152 	u32 asid_bufnum_pid = 0;
153 	u32 flag_ipoffset = 0;
154 
155 	desc_cb->priv = priv;
156 	desc_cb->length = size;
157 	desc_cb->dma = dma;
158 	desc_cb->type = type;
159 
160 	desc->addr = cpu_to_le64(dma);
161 	desc->tx.send_size = cpu_to_le16((u16)size);
162 
163 	/*config bd buffer end */
164 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
165 
166 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
167 
168 	if (type == DESC_TYPE_SKB) {
169 		skb = (struct sk_buff *)priv;
170 
171 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
172 			protocol = skb->protocol;
173 			ip_offset = ETH_HLEN;
174 
175 			/*if it is a SW VLAN check the next protocol*/
176 			if (protocol == htons(ETH_P_8021Q)) {
177 				ip_offset += VLAN_HLEN;
178 				protocol = vlan_get_protocol(skb);
179 				skb->protocol = protocol;
180 			}
181 
182 			if (skb->protocol == htons(ETH_P_IP)) {
183 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
184 				/* check for tcp/udp header */
185 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
186 
187 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
188 				/* ipv6 has not l3 cs, check for L4 header */
189 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
190 			}
191 
192 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
193 		}
194 	}
195 
196 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
197 
198 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
199 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
200 
201 	ring_ptr_move_fw(ring, next_to_use);
202 }
203 
204 static void unfill_desc(struct hnae_ring *ring)
205 {
206 	ring_ptr_move_bw(ring, next_to_use);
207 }
208 
209 static int hns_nic_maybe_stop_tx(
210 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
211 {
212 	struct sk_buff *skb = *out_skb;
213 	struct sk_buff *new_skb = NULL;
214 	int buf_num;
215 
216 	/* no. of segments (plus a header) */
217 	buf_num = skb_shinfo(skb)->nr_frags + 1;
218 
219 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
220 		if (ring_space(ring) < 1)
221 			return -EBUSY;
222 
223 		new_skb = skb_copy(skb, GFP_ATOMIC);
224 		if (!new_skb)
225 			return -ENOMEM;
226 
227 		dev_kfree_skb_any(skb);
228 		*out_skb = new_skb;
229 		buf_num = 1;
230 	} else if (buf_num > ring_space(ring)) {
231 		return -EBUSY;
232 	}
233 
234 	*bnum = buf_num;
235 	return 0;
236 }
237 
238 static int hns_nic_maybe_stop_tso(
239 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
240 {
241 	int i;
242 	int size;
243 	int buf_num;
244 	int frag_num;
245 	struct sk_buff *skb = *out_skb;
246 	struct sk_buff *new_skb = NULL;
247 	skb_frag_t *frag;
248 
249 	size = skb_headlen(skb);
250 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
251 
252 	frag_num = skb_shinfo(skb)->nr_frags;
253 	for (i = 0; i < frag_num; i++) {
254 		frag = &skb_shinfo(skb)->frags[i];
255 		size = skb_frag_size(frag);
256 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
257 	}
258 
259 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
260 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
261 		if (ring_space(ring) < buf_num)
262 			return -EBUSY;
263 		/* manual split the send packet */
264 		new_skb = skb_copy(skb, GFP_ATOMIC);
265 		if (!new_skb)
266 			return -ENOMEM;
267 		dev_kfree_skb_any(skb);
268 		*out_skb = new_skb;
269 
270 	} else if (ring_space(ring) < buf_num) {
271 		return -EBUSY;
272 	}
273 
274 	*bnum = buf_num;
275 	return 0;
276 }
277 
278 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
279 			  int size, dma_addr_t dma, int frag_end,
280 			  int buf_num, enum hns_desc_type type, int mtu)
281 {
282 	int frag_buf_num;
283 	int sizeoflast;
284 	int k;
285 
286 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
287 	sizeoflast = size % BD_MAX_SEND_SIZE;
288 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
289 
290 	/* when the frag size is bigger than hardware, split this frag */
291 	for (k = 0; k < frag_buf_num; k++)
292 		fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
293 				(k == frag_buf_num - 1) ?
294 					sizeoflast : BD_MAX_SEND_SIZE,
295 				dma + BD_MAX_SEND_SIZE * k,
296 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
297 				buf_num,
298 				(type == DESC_TYPE_SKB && !k) ?
299 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
300 				mtu);
301 }
302 
303 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
304 				struct sk_buff *skb,
305 				struct hns_nic_ring_data *ring_data)
306 {
307 	struct hns_nic_priv *priv = netdev_priv(ndev);
308 	struct hnae_ring *ring = ring_data->ring;
309 	struct device *dev = ring_to_dev(ring);
310 	struct netdev_queue *dev_queue;
311 	skb_frag_t *frag;
312 	int buf_num;
313 	int seg_num;
314 	dma_addr_t dma;
315 	int size, next_to_use;
316 	int i;
317 
318 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
319 	case -EBUSY:
320 		ring->stats.tx_busy++;
321 		goto out_net_tx_busy;
322 	case -ENOMEM:
323 		ring->stats.sw_err_cnt++;
324 		netdev_err(ndev, "no memory to xmit!\n");
325 		goto out_err_tx_ok;
326 	default:
327 		break;
328 	}
329 
330 	/* no. of segments (plus a header) */
331 	seg_num = skb_shinfo(skb)->nr_frags + 1;
332 	next_to_use = ring->next_to_use;
333 
334 	/* fill the first part */
335 	size = skb_headlen(skb);
336 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
337 	if (dma_mapping_error(dev, dma)) {
338 		netdev_err(ndev, "TX head DMA map failed\n");
339 		ring->stats.sw_err_cnt++;
340 		goto out_err_tx_ok;
341 	}
342 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
343 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
344 
345 	/* fill the fragments */
346 	for (i = 1; i < seg_num; i++) {
347 		frag = &skb_shinfo(skb)->frags[i - 1];
348 		size = skb_frag_size(frag);
349 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
350 		if (dma_mapping_error(dev, dma)) {
351 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
352 			ring->stats.sw_err_cnt++;
353 			goto out_map_frag_fail;
354 		}
355 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
356 				    seg_num - 1 == i ? 1 : 0, buf_num,
357 				    DESC_TYPE_PAGE, ndev->mtu);
358 	}
359 
360 	/*complete translate all packets*/
361 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
362 	netdev_tx_sent_queue(dev_queue, skb->len);
363 
364 	netif_trans_update(ndev);
365 	ndev->stats.tx_bytes += skb->len;
366 	ndev->stats.tx_packets++;
367 
368 	wmb(); /* commit all data before submit */
369 	assert(skb->queue_mapping < priv->ae_handle->q_num);
370 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
371 
372 	return NETDEV_TX_OK;
373 
374 out_map_frag_fail:
375 
376 	while (ring->next_to_use != next_to_use) {
377 		unfill_desc(ring);
378 		if (ring->next_to_use != next_to_use)
379 			dma_unmap_page(dev,
380 				       ring->desc_cb[ring->next_to_use].dma,
381 				       ring->desc_cb[ring->next_to_use].length,
382 				       DMA_TO_DEVICE);
383 		else
384 			dma_unmap_single(dev,
385 					 ring->desc_cb[next_to_use].dma,
386 					 ring->desc_cb[next_to_use].length,
387 					 DMA_TO_DEVICE);
388 	}
389 
390 out_err_tx_ok:
391 
392 	dev_kfree_skb_any(skb);
393 	return NETDEV_TX_OK;
394 
395 out_net_tx_busy:
396 
397 	netif_stop_subqueue(ndev, skb->queue_mapping);
398 
399 	/* Herbert's original patch had:
400 	 *  smp_mb__after_netif_stop_queue();
401 	 * but since that doesn't exist yet, just open code it.
402 	 */
403 	smp_mb();
404 	return NETDEV_TX_BUSY;
405 }
406 
407 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
408 			       struct hnae_ring *ring, int pull_len,
409 			       struct hnae_desc_cb *desc_cb)
410 {
411 	struct hnae_desc *desc;
412 	u32 truesize;
413 	int size;
414 	int last_offset;
415 	bool twobufs;
416 
417 	twobufs = ((PAGE_SIZE < 8192) &&
418 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
419 
420 	desc = &ring->desc[ring->next_to_clean];
421 	size = le16_to_cpu(desc->rx.size);
422 
423 	if (twobufs) {
424 		truesize = hnae_buf_size(ring);
425 	} else {
426 		truesize = ALIGN(size, L1_CACHE_BYTES);
427 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
428 	}
429 
430 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
431 			size - pull_len, truesize);
432 
433 	 /* avoid re-using remote pages,flag default unreuse */
434 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
435 		return;
436 
437 	if (twobufs) {
438 		/* if we are only owner of page we can reuse it */
439 		if (likely(page_count(desc_cb->priv) == 1)) {
440 			/* flip page offset to other buffer */
441 			desc_cb->page_offset ^= truesize;
442 
443 			desc_cb->reuse_flag = 1;
444 			/* bump ref count on page before it is given*/
445 			get_page(desc_cb->priv);
446 		}
447 		return;
448 	}
449 
450 	/* move offset up to the next cache line */
451 	desc_cb->page_offset += truesize;
452 
453 	if (desc_cb->page_offset <= last_offset) {
454 		desc_cb->reuse_flag = 1;
455 		/* bump ref count on page before it is given*/
456 		get_page(desc_cb->priv);
457 	}
458 }
459 
460 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
461 {
462 	*out_bnum = hnae_get_field(bnum_flag,
463 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
464 }
465 
466 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
467 {
468 	*out_bnum = hnae_get_field(bnum_flag,
469 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
470 }
471 
472 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
473 				struct sk_buff *skb, u32 flag)
474 {
475 	struct net_device *netdev = ring_data->napi.dev;
476 	u32 l3id;
477 	u32 l4id;
478 
479 	/* check if RX checksum offload is enabled */
480 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
481 		return;
482 
483 	/* In hardware, we only support checksum for the following protocols:
484 	 * 1) IPv4,
485 	 * 2) TCP(over IPv4 or IPv6),
486 	 * 3) UDP(over IPv4 or IPv6),
487 	 * 4) SCTP(over IPv4 or IPv6)
488 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
489 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
490 	 *
491 	 * Hardware limitation:
492 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
493 	 * Error" bit (which usually can be used to indicate whether checksum
494 	 * was calculated by the hardware and if there was any error encountered
495 	 * during checksum calculation).
496 	 *
497 	 * Software workaround:
498 	 * We do get info within the RX descriptor about the kind of L3/L4
499 	 * protocol coming in the packet and the error status. These errors
500 	 * might not just be checksum errors but could be related to version,
501 	 * length of IPv4, UDP, TCP etc.
502 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
503 	 * checksum or any other L3/L4 error, we will not (cannot) convey
504 	 * checksum status for such cases to upper stack and will not maintain
505 	 * the RX L3/L4 checksum counters as well.
506 	 */
507 
508 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
509 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
510 
511 	/*  check L3 protocol for which checksum is supported */
512 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
513 		return;
514 
515 	/* check for any(not just checksum)flagged L3 protocol errors */
516 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
517 		return;
518 
519 	/* we do not support checksum of fragmented packets */
520 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
521 		return;
522 
523 	/*  check L4 protocol for which checksum is supported */
524 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
525 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
526 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
527 		return;
528 
529 	/* check for any(not just checksum)flagged L4 protocol errors */
530 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
531 		return;
532 
533 	/* now, this has to be a packet with valid RX checksum */
534 	skb->ip_summed = CHECKSUM_UNNECESSARY;
535 }
536 
537 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
538 			       struct sk_buff **out_skb, int *out_bnum)
539 {
540 	struct hnae_ring *ring = ring_data->ring;
541 	struct net_device *ndev = ring_data->napi.dev;
542 	struct hns_nic_priv *priv = netdev_priv(ndev);
543 	struct sk_buff *skb;
544 	struct hnae_desc *desc;
545 	struct hnae_desc_cb *desc_cb;
546 	unsigned char *va;
547 	int bnum, length, i;
548 	int pull_len;
549 	u32 bnum_flag;
550 
551 	desc = &ring->desc[ring->next_to_clean];
552 	desc_cb = &ring->desc_cb[ring->next_to_clean];
553 
554 	prefetch(desc);
555 
556 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
557 
558 	/* prefetch first cache line of first page */
559 	net_prefetch(va);
560 
561 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
562 					HNS_RX_HEAD_SIZE);
563 	if (unlikely(!skb)) {
564 		ring->stats.sw_err_cnt++;
565 		return -ENOMEM;
566 	}
567 
568 	prefetchw(skb->data);
569 	length = le16_to_cpu(desc->rx.pkt_len);
570 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
571 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
572 	*out_bnum = bnum;
573 
574 	if (length <= HNS_RX_HEAD_SIZE) {
575 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
576 
577 		/* we can reuse buffer as-is, just make sure it is local */
578 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
579 			desc_cb->reuse_flag = 1;
580 		else /* this page cannot be reused so discard it */
581 			put_page(desc_cb->priv);
582 
583 		ring_ptr_move_fw(ring, next_to_clean);
584 
585 		if (unlikely(bnum != 1)) { /* check err*/
586 			*out_bnum = 1;
587 			goto out_bnum_err;
588 		}
589 	} else {
590 		ring->stats.seg_pkt_cnt++;
591 
592 		pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE);
593 		memcpy(__skb_put(skb, pull_len), va,
594 		       ALIGN(pull_len, sizeof(long)));
595 
596 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
597 		ring_ptr_move_fw(ring, next_to_clean);
598 
599 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
600 			*out_bnum = 1;
601 			goto out_bnum_err;
602 		}
603 		for (i = 1; i < bnum; i++) {
604 			desc = &ring->desc[ring->next_to_clean];
605 			desc_cb = &ring->desc_cb[ring->next_to_clean];
606 
607 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
608 			ring_ptr_move_fw(ring, next_to_clean);
609 		}
610 	}
611 
612 	/* check except process, free skb and jump the desc */
613 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
614 out_bnum_err:
615 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
616 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
617 			   bnum, ring->max_desc_num_per_pkt,
618 			   length, (int)MAX_SKB_FRAGS,
619 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
620 		ring->stats.err_bd_num++;
621 		dev_kfree_skb_any(skb);
622 		return -EDOM;
623 	}
624 
625 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
626 
627 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
628 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
629 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
630 		ring->stats.non_vld_descs++;
631 		dev_kfree_skb_any(skb);
632 		return -EINVAL;
633 	}
634 
635 	if (unlikely((!desc->rx.pkt_len) ||
636 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
637 		ring->stats.err_pkt_len++;
638 		dev_kfree_skb_any(skb);
639 		return -EFAULT;
640 	}
641 
642 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
643 		ring->stats.l2_err++;
644 		dev_kfree_skb_any(skb);
645 		return -EFAULT;
646 	}
647 
648 	ring->stats.rx_pkts++;
649 	ring->stats.rx_bytes += skb->len;
650 
651 	/* indicate to upper stack if our hardware has already calculated
652 	 * the RX checksum
653 	 */
654 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
655 
656 	return 0;
657 }
658 
659 static void
660 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
661 {
662 	int i, ret;
663 	struct hnae_desc_cb res_cbs;
664 	struct hnae_desc_cb *desc_cb;
665 	struct hnae_ring *ring = ring_data->ring;
666 	struct net_device *ndev = ring_data->napi.dev;
667 
668 	for (i = 0; i < cleand_count; i++) {
669 		desc_cb = &ring->desc_cb[ring->next_to_use];
670 		if (desc_cb->reuse_flag) {
671 			ring->stats.reuse_pg_cnt++;
672 			hnae_reuse_buffer(ring, ring->next_to_use);
673 		} else {
674 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
675 			if (ret) {
676 				ring->stats.sw_err_cnt++;
677 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
678 				break;
679 			}
680 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
681 		}
682 
683 		ring_ptr_move_fw(ring, next_to_use);
684 	}
685 
686 	wmb(); /* make all data has been write before submit */
687 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
688 }
689 
690 /* return error number for error or number of desc left to take
691  */
692 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
693 			      struct sk_buff *skb)
694 {
695 	struct net_device *ndev = ring_data->napi.dev;
696 
697 	skb->protocol = eth_type_trans(skb, ndev);
698 	napi_gro_receive(&ring_data->napi, skb);
699 }
700 
701 static int hns_desc_unused(struct hnae_ring *ring)
702 {
703 	int ntc = ring->next_to_clean;
704 	int ntu = ring->next_to_use;
705 
706 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
707 }
708 
709 #define HNS_LOWEST_LATENCY_RATE		27	/* 27 MB/s */
710 #define HNS_LOW_LATENCY_RATE			80	/* 80 MB/s */
711 
712 #define HNS_COAL_BDNUM			3
713 
714 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
715 {
716 	bool coal_enable = ring->q->handle->coal_adapt_en;
717 
718 	if (coal_enable &&
719 	    ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
720 		return HNS_COAL_BDNUM;
721 	else
722 		return 0;
723 }
724 
725 static void hns_update_rx_rate(struct hnae_ring *ring)
726 {
727 	bool coal_enable = ring->q->handle->coal_adapt_en;
728 	u32 time_passed_ms;
729 	u64 total_bytes;
730 
731 	if (!coal_enable ||
732 	    time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
733 		return;
734 
735 	/* ring->stats.rx_bytes overflowed */
736 	if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
737 		ring->coal_last_rx_bytes = ring->stats.rx_bytes;
738 		ring->coal_last_jiffies = jiffies;
739 		return;
740 	}
741 
742 	total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
743 	time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
744 	do_div(total_bytes, time_passed_ms);
745 	ring->coal_rx_rate = total_bytes >> 10;
746 
747 	ring->coal_last_rx_bytes = ring->stats.rx_bytes;
748 	ring->coal_last_jiffies = jiffies;
749 }
750 
751 /**
752  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
753  * @new_param: new value
754  * @old_param: old value
755  **/
756 static u32 smooth_alg(u32 new_param, u32 old_param)
757 {
758 	u32 gap = (new_param > old_param) ? new_param - old_param
759 					  : old_param - new_param;
760 
761 	if (gap > 8)
762 		gap >>= 3;
763 
764 	if (new_param > old_param)
765 		return old_param + gap;
766 	else
767 		return old_param - gap;
768 }
769 
770 /**
771  * hns_nic_adpt_coalesce - self adapte coalesce according to rx rate
772  * @ring_data: pointer to hns_nic_ring_data
773  **/
774 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
775 {
776 	struct hnae_ring *ring = ring_data->ring;
777 	struct hnae_handle *handle = ring->q->handle;
778 	u32 new_coal_param, old_coal_param = ring->coal_param;
779 
780 	if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
781 		new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
782 	else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
783 		new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
784 	else
785 		new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
786 
787 	if (new_coal_param == old_coal_param &&
788 	    new_coal_param == handle->coal_param)
789 		return;
790 
791 	new_coal_param = smooth_alg(new_coal_param, old_coal_param);
792 	ring->coal_param = new_coal_param;
793 
794 	/**
795 	 * Because all ring in one port has one coalesce param, when one ring
796 	 * calculate its own coalesce param, it cannot write to hardware at
797 	 * once. There are three conditions as follows:
798 	 *       1. current ring's coalesce param is larger than the hardware.
799 	 *       2. or ring which adapt last time can change again.
800 	 *       3. timeout.
801 	 */
802 	if (new_coal_param == handle->coal_param) {
803 		handle->coal_last_jiffies = jiffies;
804 		handle->coal_ring_idx = ring_data->queue_index;
805 	} else if (new_coal_param > handle->coal_param ||
806 		   handle->coal_ring_idx == ring_data->queue_index ||
807 		   time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
808 		handle->dev->ops->set_coalesce_usecs(handle,
809 					new_coal_param);
810 		handle->dev->ops->set_coalesce_frames(handle,
811 					1, new_coal_param);
812 		handle->coal_param = new_coal_param;
813 		handle->coal_ring_idx = ring_data->queue_index;
814 		handle->coal_last_jiffies = jiffies;
815 	}
816 }
817 
818 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
819 			       int budget, void *v)
820 {
821 	struct hnae_ring *ring = ring_data->ring;
822 	struct sk_buff *skb;
823 	int num, bnum;
824 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
825 	int recv_pkts, recv_bds, clean_count, err;
826 	int unused_count = hns_desc_unused(ring);
827 
828 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
829 	rmb(); /* make sure num taken effect before the other data is touched */
830 
831 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
832 	num -= unused_count;
833 
834 	while (recv_pkts < budget && recv_bds < num) {
835 		/* reuse or realloc buffers */
836 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
837 			hns_nic_alloc_rx_buffers(ring_data,
838 						 clean_count + unused_count);
839 			clean_count = 0;
840 			unused_count = hns_desc_unused(ring);
841 		}
842 
843 		/* poll one pkt */
844 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
845 		if (unlikely(!skb)) /* this fault cannot be repaired */
846 			goto out;
847 
848 		recv_bds += bnum;
849 		clean_count += bnum;
850 		if (unlikely(err)) {  /* do jump the err */
851 			recv_pkts++;
852 			continue;
853 		}
854 
855 		/* do update ip stack process*/
856 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
857 							ring_data, skb);
858 		recv_pkts++;
859 	}
860 
861 out:
862 	/* make all data has been write before submit */
863 	if (clean_count + unused_count > 0)
864 		hns_nic_alloc_rx_buffers(ring_data,
865 					 clean_count + unused_count);
866 
867 	return recv_pkts;
868 }
869 
870 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
871 {
872 	struct hnae_ring *ring = ring_data->ring;
873 	int num;
874 	bool rx_stopped;
875 
876 	hns_update_rx_rate(ring);
877 
878 	/* for hardware bug fixed */
879 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
880 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
881 
882 	if (num <= hns_coal_rx_bdnum(ring)) {
883 		if (ring->q->handle->coal_adapt_en)
884 			hns_nic_adpt_coalesce(ring_data);
885 
886 		rx_stopped = true;
887 	} else {
888 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
889 			ring_data->ring, 1);
890 
891 		rx_stopped = false;
892 	}
893 
894 	return rx_stopped;
895 }
896 
897 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
898 {
899 	struct hnae_ring *ring = ring_data->ring;
900 	int num;
901 
902 	hns_update_rx_rate(ring);
903 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
904 
905 	if (num <= hns_coal_rx_bdnum(ring)) {
906 		if (ring->q->handle->coal_adapt_en)
907 			hns_nic_adpt_coalesce(ring_data);
908 
909 		return true;
910 	}
911 
912 	return false;
913 }
914 
915 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
916 					    int *bytes, int *pkts)
917 {
918 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
919 
920 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
921 	(*bytes) += desc_cb->length;
922 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
923 	hnae_free_buffer_detach(ring, ring->next_to_clean);
924 
925 	ring_ptr_move_fw(ring, next_to_clean);
926 }
927 
928 static int is_valid_clean_head(struct hnae_ring *ring, int h)
929 {
930 	int u = ring->next_to_use;
931 	int c = ring->next_to_clean;
932 
933 	if (unlikely(h > ring->desc_num))
934 		return 0;
935 
936 	assert(u > 0 && u < ring->desc_num);
937 	assert(c > 0 && c < ring->desc_num);
938 	assert(u != c && h != c); /* must be checked before call this func */
939 
940 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
941 }
942 
943 /* reclaim all desc in one budget
944  * return error or number of desc left
945  */
946 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
947 			       int budget, void *v)
948 {
949 	struct hnae_ring *ring = ring_data->ring;
950 	struct net_device *ndev = ring_data->napi.dev;
951 	struct netdev_queue *dev_queue;
952 	struct hns_nic_priv *priv = netdev_priv(ndev);
953 	int head;
954 	int bytes, pkts;
955 
956 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
957 	rmb(); /* make sure head is ready before touch any data */
958 
959 	if (is_ring_empty(ring) || head == ring->next_to_clean)
960 		return 0; /* no data to poll */
961 
962 	if (!is_valid_clean_head(ring, head)) {
963 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
964 			   ring->next_to_use, ring->next_to_clean);
965 		ring->stats.io_err_cnt++;
966 		return -EIO;
967 	}
968 
969 	bytes = 0;
970 	pkts = 0;
971 	while (head != ring->next_to_clean) {
972 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
973 		/* issue prefetch for next Tx descriptor */
974 		prefetch(&ring->desc_cb[ring->next_to_clean]);
975 	}
976 	/* update tx ring statistics. */
977 	ring->stats.tx_pkts += pkts;
978 	ring->stats.tx_bytes += bytes;
979 
980 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
981 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
982 
983 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
984 		netif_carrier_on(ndev);
985 
986 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
987 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
988 		/* Make sure that anybody stopping the queue after this
989 		 * sees the new next_to_clean.
990 		 */
991 		smp_mb();
992 		if (netif_tx_queue_stopped(dev_queue) &&
993 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
994 			netif_tx_wake_queue(dev_queue);
995 			ring->stats.restart_queue++;
996 		}
997 	}
998 	return 0;
999 }
1000 
1001 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1002 {
1003 	struct hnae_ring *ring = ring_data->ring;
1004 	int head;
1005 
1006 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1007 
1008 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1009 
1010 	if (head != ring->next_to_clean) {
1011 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1012 			ring_data->ring, 1);
1013 
1014 		return false;
1015 	} else {
1016 		return true;
1017 	}
1018 }
1019 
1020 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1021 {
1022 	struct hnae_ring *ring = ring_data->ring;
1023 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1024 
1025 	if (head == ring->next_to_clean)
1026 		return true;
1027 	else
1028 		return false;
1029 }
1030 
1031 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1032 {
1033 	struct hnae_ring *ring = ring_data->ring;
1034 	struct net_device *ndev = ring_data->napi.dev;
1035 	struct netdev_queue *dev_queue;
1036 	int head;
1037 	int bytes, pkts;
1038 
1039 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1040 	bytes = 0;
1041 	pkts = 0;
1042 	while (head != ring->next_to_clean)
1043 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1044 
1045 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1046 	netdev_tx_reset_queue(dev_queue);
1047 }
1048 
1049 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1050 {
1051 	int clean_complete = 0;
1052 	struct hns_nic_ring_data *ring_data =
1053 		container_of(napi, struct hns_nic_ring_data, napi);
1054 	struct hnae_ring *ring = ring_data->ring;
1055 
1056 	clean_complete += ring_data->poll_one(
1057 				ring_data, budget - clean_complete,
1058 				ring_data->ex_process);
1059 
1060 	if (clean_complete < budget) {
1061 		if (ring_data->fini_process(ring_data)) {
1062 			napi_complete(napi);
1063 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1064 		} else {
1065 			return budget;
1066 		}
1067 	}
1068 
1069 	return clean_complete;
1070 }
1071 
1072 static irqreturn_t hns_irq_handle(int irq, void *dev)
1073 {
1074 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1075 
1076 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1077 		ring_data->ring, 1);
1078 	napi_schedule(&ring_data->napi);
1079 
1080 	return IRQ_HANDLED;
1081 }
1082 
1083 /**
1084  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1085  *@ndev: net device
1086  */
1087 static void hns_nic_adjust_link(struct net_device *ndev)
1088 {
1089 	struct hns_nic_priv *priv = netdev_priv(ndev);
1090 	struct hnae_handle *h = priv->ae_handle;
1091 	int state = 1;
1092 
1093 	/* If there is no phy, do not need adjust link */
1094 	if (ndev->phydev) {
1095 		/* When phy link down, do nothing */
1096 		if (ndev->phydev->link == 0)
1097 			return;
1098 
1099 		if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1100 						  ndev->phydev->duplex)) {
1101 			/* because Hi161X chip don't support to change gmac
1102 			 * speed and duplex with traffic. Delay 200ms to
1103 			 * make sure there is no more data in chip FIFO.
1104 			 */
1105 			netif_carrier_off(ndev);
1106 			msleep(200);
1107 			h->dev->ops->adjust_link(h, ndev->phydev->speed,
1108 						 ndev->phydev->duplex);
1109 			netif_carrier_on(ndev);
1110 		}
1111 	}
1112 
1113 	state = state && h->dev->ops->get_status(h);
1114 
1115 	if (state != priv->link) {
1116 		if (state) {
1117 			netif_carrier_on(ndev);
1118 			netif_tx_wake_all_queues(ndev);
1119 			netdev_info(ndev, "link up\n");
1120 		} else {
1121 			netif_carrier_off(ndev);
1122 			netdev_info(ndev, "link down\n");
1123 		}
1124 		priv->link = state;
1125 	}
1126 }
1127 
1128 /**
1129  *hns_nic_init_phy - init phy
1130  *@ndev: net device
1131  *@h: ae handle
1132  * Return 0 on success, negative on failure
1133  */
1134 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1135 {
1136 	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1137 	struct phy_device *phy_dev = h->phy_dev;
1138 	int ret;
1139 
1140 	if (!h->phy_dev)
1141 		return 0;
1142 
1143 	ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1144 	linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1145 	linkmode_copy(phy_dev->advertising, phy_dev->supported);
1146 
1147 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1148 		phy_dev->autoneg = false;
1149 
1150 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1151 		phy_dev->dev_flags = 0;
1152 
1153 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1154 					 h->phy_if);
1155 	} else {
1156 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1157 	}
1158 	if (unlikely(ret))
1159 		return -ENODEV;
1160 
1161 	phy_attached_info(phy_dev);
1162 
1163 	return 0;
1164 }
1165 
1166 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1167 {
1168 	struct hns_nic_priv *priv = netdev_priv(netdev);
1169 	struct hnae_handle *h = priv->ae_handle;
1170 
1171 	napi_enable(&priv->ring_data[idx].napi);
1172 
1173 	enable_irq(priv->ring_data[idx].ring->irq);
1174 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1175 
1176 	return 0;
1177 }
1178 
1179 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1180 {
1181 	struct hns_nic_priv *priv = netdev_priv(ndev);
1182 	struct hnae_handle *h = priv->ae_handle;
1183 	struct sockaddr *mac_addr = p;
1184 	int ret;
1185 
1186 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1187 		return -EADDRNOTAVAIL;
1188 
1189 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1190 	if (ret) {
1191 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1192 		return ret;
1193 	}
1194 
1195 	eth_hw_addr_set(ndev, mac_addr->sa_data);
1196 
1197 	return 0;
1198 }
1199 
1200 static void hns_nic_update_stats(struct net_device *netdev)
1201 {
1202 	struct hns_nic_priv *priv = netdev_priv(netdev);
1203 	struct hnae_handle *h = priv->ae_handle;
1204 
1205 	h->dev->ops->update_stats(h, &netdev->stats);
1206 }
1207 
1208 /* set mac addr if it is configed. or leave it to the AE driver */
1209 static void hns_init_mac_addr(struct net_device *ndev)
1210 {
1211 	struct hns_nic_priv *priv = netdev_priv(ndev);
1212 
1213 	if (device_get_ethdev_address(priv->dev, ndev)) {
1214 		eth_hw_addr_random(ndev);
1215 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1216 			 ndev->dev_addr);
1217 	}
1218 }
1219 
1220 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1221 {
1222 	struct hns_nic_priv *priv = netdev_priv(netdev);
1223 	struct hnae_handle *h = priv->ae_handle;
1224 
1225 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1226 	disable_irq(priv->ring_data[idx].ring->irq);
1227 
1228 	napi_disable(&priv->ring_data[idx].napi);
1229 }
1230 
1231 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1232 				      struct hnae_ring *ring, cpumask_t *mask)
1233 {
1234 	int cpu;
1235 
1236 	/* Different irq balance between 16core and 32core.
1237 	 * The cpu mask set by ring index according to the ring flag
1238 	 * which indicate the ring is tx or rx.
1239 	 */
1240 	if (q_num == num_possible_cpus()) {
1241 		if (is_tx_ring(ring))
1242 			cpu = ring_idx;
1243 		else
1244 			cpu = ring_idx - q_num;
1245 	} else {
1246 		if (is_tx_ring(ring))
1247 			cpu = ring_idx * 2;
1248 		else
1249 			cpu = (ring_idx - q_num) * 2 + 1;
1250 	}
1251 
1252 	cpumask_clear(mask);
1253 	cpumask_set_cpu(cpu, mask);
1254 
1255 	return cpu;
1256 }
1257 
1258 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1259 {
1260 	int i;
1261 
1262 	for (i = 0; i < q_num * 2; i++) {
1263 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1264 			irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1265 					      NULL);
1266 			free_irq(priv->ring_data[i].ring->irq,
1267 				 &priv->ring_data[i]);
1268 			priv->ring_data[i].ring->irq_init_flag =
1269 				RCB_IRQ_NOT_INITED;
1270 		}
1271 	}
1272 }
1273 
1274 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1275 {
1276 	struct hnae_handle *h = priv->ae_handle;
1277 	struct hns_nic_ring_data *rd;
1278 	int i;
1279 	int ret;
1280 	int cpu;
1281 
1282 	for (i = 0; i < h->q_num * 2; i++) {
1283 		rd = &priv->ring_data[i];
1284 
1285 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1286 			break;
1287 
1288 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1289 			 "%s-%s%d", priv->netdev->name,
1290 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1291 
1292 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1293 
1294 		irq_set_status_flags(rd->ring->irq, IRQ_NOAUTOEN);
1295 		ret = request_irq(rd->ring->irq,
1296 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1297 		if (ret) {
1298 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1299 				   rd->ring->irq);
1300 			goto out_free_irq;
1301 		}
1302 
1303 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1304 						 rd->ring, &rd->mask);
1305 
1306 		if (cpu_online(cpu))
1307 			irq_set_affinity_hint(rd->ring->irq,
1308 					      &rd->mask);
1309 
1310 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1311 	}
1312 
1313 	return 0;
1314 
1315 out_free_irq:
1316 	hns_nic_free_irq(h->q_num, priv);
1317 	return ret;
1318 }
1319 
1320 static int hns_nic_net_up(struct net_device *ndev)
1321 {
1322 	struct hns_nic_priv *priv = netdev_priv(ndev);
1323 	struct hnae_handle *h = priv->ae_handle;
1324 	int i, j;
1325 	int ret;
1326 
1327 	if (!test_bit(NIC_STATE_DOWN, &priv->state))
1328 		return 0;
1329 
1330 	ret = hns_nic_init_irq(priv);
1331 	if (ret != 0) {
1332 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1333 		return ret;
1334 	}
1335 
1336 	for (i = 0; i < h->q_num * 2; i++) {
1337 		ret = hns_nic_ring_open(ndev, i);
1338 		if (ret)
1339 			goto out_has_some_queues;
1340 	}
1341 
1342 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1343 	if (ret)
1344 		goto out_set_mac_addr_err;
1345 
1346 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1347 	if (ret)
1348 		goto out_start_err;
1349 
1350 	if (ndev->phydev)
1351 		phy_start(ndev->phydev);
1352 
1353 	clear_bit(NIC_STATE_DOWN, &priv->state);
1354 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1355 
1356 	return 0;
1357 
1358 out_start_err:
1359 	netif_stop_queue(ndev);
1360 out_set_mac_addr_err:
1361 out_has_some_queues:
1362 	for (j = i - 1; j >= 0; j--)
1363 		hns_nic_ring_close(ndev, j);
1364 
1365 	hns_nic_free_irq(h->q_num, priv);
1366 	set_bit(NIC_STATE_DOWN, &priv->state);
1367 
1368 	return ret;
1369 }
1370 
1371 static void hns_nic_net_down(struct net_device *ndev)
1372 {
1373 	int i;
1374 	struct hnae_ae_ops *ops;
1375 	struct hns_nic_priv *priv = netdev_priv(ndev);
1376 
1377 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1378 		return;
1379 
1380 	(void)del_timer_sync(&priv->service_timer);
1381 	netif_tx_stop_all_queues(ndev);
1382 	netif_carrier_off(ndev);
1383 	netif_tx_disable(ndev);
1384 	priv->link = 0;
1385 
1386 	if (ndev->phydev)
1387 		phy_stop(ndev->phydev);
1388 
1389 	ops = priv->ae_handle->dev->ops;
1390 
1391 	if (ops->stop)
1392 		ops->stop(priv->ae_handle);
1393 
1394 	netif_tx_stop_all_queues(ndev);
1395 
1396 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1397 		hns_nic_ring_close(ndev, i);
1398 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1399 
1400 		/* clean tx buffers*/
1401 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1402 	}
1403 }
1404 
1405 void hns_nic_net_reset(struct net_device *ndev)
1406 {
1407 	struct hns_nic_priv *priv = netdev_priv(ndev);
1408 	struct hnae_handle *handle = priv->ae_handle;
1409 
1410 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1411 		usleep_range(1000, 2000);
1412 
1413 	(void)hnae_reinit_handle(handle);
1414 
1415 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1416 }
1417 
1418 void hns_nic_net_reinit(struct net_device *netdev)
1419 {
1420 	struct hns_nic_priv *priv = netdev_priv(netdev);
1421 	enum hnae_port_type type = priv->ae_handle->port_type;
1422 
1423 	netif_trans_update(priv->netdev);
1424 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1425 		usleep_range(1000, 2000);
1426 
1427 	hns_nic_net_down(netdev);
1428 
1429 	/* Only do hns_nic_net_reset in debug mode
1430 	 * because of hardware limitation.
1431 	 */
1432 	if (type == HNAE_PORT_DEBUG)
1433 		hns_nic_net_reset(netdev);
1434 
1435 	(void)hns_nic_net_up(netdev);
1436 	clear_bit(NIC_STATE_REINITING, &priv->state);
1437 }
1438 
1439 static int hns_nic_net_open(struct net_device *ndev)
1440 {
1441 	struct hns_nic_priv *priv = netdev_priv(ndev);
1442 	struct hnae_handle *h = priv->ae_handle;
1443 	int ret;
1444 
1445 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1446 		return -EBUSY;
1447 
1448 	priv->link = 0;
1449 	netif_carrier_off(ndev);
1450 
1451 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1452 	if (ret < 0) {
1453 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1454 			   ret);
1455 		return ret;
1456 	}
1457 
1458 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1459 	if (ret < 0) {
1460 		netdev_err(ndev,
1461 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1462 		return ret;
1463 	}
1464 
1465 	ret = hns_nic_net_up(ndev);
1466 	if (ret) {
1467 		netdev_err(ndev,
1468 			   "hns net up fail, ret=%d!\n", ret);
1469 		return ret;
1470 	}
1471 
1472 	return 0;
1473 }
1474 
1475 static int hns_nic_net_stop(struct net_device *ndev)
1476 {
1477 	hns_nic_net_down(ndev);
1478 
1479 	return 0;
1480 }
1481 
1482 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1483 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1484 static void hns_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1485 {
1486 	struct hns_nic_priv *priv = netdev_priv(ndev);
1487 
1488 	if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1489 		ndev->watchdog_timeo *= 2;
1490 		netdev_info(ndev, "watchdog_timo changed to %d.\n",
1491 			    ndev->watchdog_timeo);
1492 	} else {
1493 		ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1494 		hns_tx_timeout_reset(priv);
1495 	}
1496 }
1497 
1498 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1499 				    struct net_device *ndev)
1500 {
1501 	struct hns_nic_priv *priv = netdev_priv(ndev);
1502 
1503 	assert(skb->queue_mapping < priv->ae_handle->q_num);
1504 
1505 	return hns_nic_net_xmit_hw(ndev, skb,
1506 				   &tx_ring_data(priv, skb->queue_mapping));
1507 }
1508 
1509 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1510 				  struct sk_buff *skb)
1511 {
1512 	dev_kfree_skb_any(skb);
1513 }
1514 
1515 #define HNS_LB_TX_RING	0
1516 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1517 {
1518 	struct sk_buff *skb;
1519 	struct ethhdr *ethhdr;
1520 	int frame_len;
1521 
1522 	/* allocate test skb */
1523 	skb = alloc_skb(64, GFP_KERNEL);
1524 	if (!skb)
1525 		return NULL;
1526 
1527 	skb_put(skb, 64);
1528 	skb->dev = ndev;
1529 	memset(skb->data, 0xFF, skb->len);
1530 
1531 	/* must be tcp/ip package */
1532 	ethhdr = (struct ethhdr *)skb->data;
1533 	ethhdr->h_proto = htons(ETH_P_IP);
1534 
1535 	frame_len = skb->len & (~1ul);
1536 	memset(&skb->data[frame_len / 2], 0xAA,
1537 	       frame_len / 2 - 1);
1538 
1539 	skb->queue_mapping = HNS_LB_TX_RING;
1540 
1541 	return skb;
1542 }
1543 
1544 static int hns_enable_serdes_lb(struct net_device *ndev)
1545 {
1546 	struct hns_nic_priv *priv = netdev_priv(ndev);
1547 	struct hnae_handle *h = priv->ae_handle;
1548 	struct hnae_ae_ops *ops = h->dev->ops;
1549 	int speed, duplex;
1550 	int ret;
1551 
1552 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1553 	if (ret)
1554 		return ret;
1555 
1556 	ret = ops->start ? ops->start(h) : 0;
1557 	if (ret)
1558 		return ret;
1559 
1560 	/* link adjust duplex*/
1561 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1562 		speed = 1000;
1563 	else
1564 		speed = 10000;
1565 	duplex = 1;
1566 
1567 	ops->adjust_link(h, speed, duplex);
1568 
1569 	/* wait h/w ready */
1570 	mdelay(300);
1571 
1572 	return 0;
1573 }
1574 
1575 static void hns_disable_serdes_lb(struct net_device *ndev)
1576 {
1577 	struct hns_nic_priv *priv = netdev_priv(ndev);
1578 	struct hnae_handle *h = priv->ae_handle;
1579 	struct hnae_ae_ops *ops = h->dev->ops;
1580 
1581 	ops->stop(h);
1582 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1583 }
1584 
1585 /**
1586  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1587  *function as follows:
1588  *    1. if one rx ring has found the page_offset is not equal 0 between head
1589  *       and tail, it means that the chip fetched the wrong descs for the ring
1590  *       which buffer size is 4096.
1591  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1592  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1593  *       receiving all packages and it will fetch new descriptions.
1594  *    4. recover to the original state.
1595  *
1596  *@ndev: net device
1597  */
1598 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1599 {
1600 	struct hns_nic_priv *priv = netdev_priv(ndev);
1601 	struct hnae_handle *h = priv->ae_handle;
1602 	struct hnae_ae_ops *ops = h->dev->ops;
1603 	struct hns_nic_ring_data *rd;
1604 	struct hnae_ring *ring;
1605 	struct sk_buff *skb;
1606 	u32 *org_indir;
1607 	u32 *cur_indir;
1608 	int indir_size;
1609 	int head, tail;
1610 	int fetch_num;
1611 	int i, j;
1612 	bool found;
1613 	int retry_times;
1614 	int ret = 0;
1615 
1616 	/* alloc indir memory */
1617 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1618 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1619 	if (!org_indir)
1620 		return -ENOMEM;
1621 
1622 	/* store the original indirection */
1623 	ops->get_rss(h, org_indir, NULL, NULL);
1624 
1625 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1626 	if (!cur_indir) {
1627 		ret = -ENOMEM;
1628 		goto cur_indir_alloc_err;
1629 	}
1630 
1631 	/* set loopback */
1632 	if (hns_enable_serdes_lb(ndev)) {
1633 		ret = -EINVAL;
1634 		goto enable_serdes_lb_err;
1635 	}
1636 
1637 	/* foreach every rx ring to clear fetch desc */
1638 	for (i = 0; i < h->q_num; i++) {
1639 		ring = &h->qs[i]->rx_ring;
1640 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1641 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1642 		found = false;
1643 		fetch_num = ring_dist(ring, head, tail);
1644 
1645 		while (head != tail) {
1646 			if (ring->desc_cb[head].page_offset != 0) {
1647 				found = true;
1648 				break;
1649 			}
1650 
1651 			head++;
1652 			if (head == ring->desc_num)
1653 				head = 0;
1654 		}
1655 
1656 		if (found) {
1657 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1658 				cur_indir[j] = i;
1659 			ops->set_rss(h, cur_indir, NULL, 0);
1660 
1661 			for (j = 0; j < fetch_num; j++) {
1662 				/* alloc one skb and init */
1663 				skb = hns_assemble_skb(ndev);
1664 				if (!skb) {
1665 					ret = -ENOMEM;
1666 					goto out;
1667 				}
1668 				rd = &tx_ring_data(priv, skb->queue_mapping);
1669 				hns_nic_net_xmit_hw(ndev, skb, rd);
1670 
1671 				retry_times = 0;
1672 				while (retry_times++ < 10) {
1673 					mdelay(10);
1674 					/* clean rx */
1675 					rd = &rx_ring_data(priv, i);
1676 					if (rd->poll_one(rd, fetch_num,
1677 							 hns_nic_drop_rx_fetch))
1678 						break;
1679 				}
1680 
1681 				retry_times = 0;
1682 				while (retry_times++ < 10) {
1683 					mdelay(10);
1684 					/* clean tx ring 0 send package */
1685 					rd = &tx_ring_data(priv,
1686 							   HNS_LB_TX_RING);
1687 					if (rd->poll_one(rd, fetch_num, NULL))
1688 						break;
1689 				}
1690 			}
1691 		}
1692 	}
1693 
1694 out:
1695 	/* restore everything */
1696 	ops->set_rss(h, org_indir, NULL, 0);
1697 	hns_disable_serdes_lb(ndev);
1698 enable_serdes_lb_err:
1699 	kfree(cur_indir);
1700 cur_indir_alloc_err:
1701 	kfree(org_indir);
1702 
1703 	return ret;
1704 }
1705 
1706 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1707 {
1708 	struct hns_nic_priv *priv = netdev_priv(ndev);
1709 	struct hnae_handle *h = priv->ae_handle;
1710 	bool if_running = netif_running(ndev);
1711 	int ret;
1712 
1713 	/* MTU < 68 is an error and causes problems on some kernels */
1714 	if (new_mtu < 68)
1715 		return -EINVAL;
1716 
1717 	/* MTU no change */
1718 	if (new_mtu == ndev->mtu)
1719 		return 0;
1720 
1721 	if (!h->dev->ops->set_mtu)
1722 		return -ENOTSUPP;
1723 
1724 	if (if_running) {
1725 		(void)hns_nic_net_stop(ndev);
1726 		msleep(100);
1727 	}
1728 
1729 	if (priv->enet_ver != AE_VERSION_1 &&
1730 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1731 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1732 		/* update desc */
1733 		hnae_reinit_all_ring_desc(h);
1734 
1735 		/* clear the package which the chip has fetched */
1736 		ret = hns_nic_clear_all_rx_fetch(ndev);
1737 
1738 		/* the page offset must be consist with desc */
1739 		hnae_reinit_all_ring_page_off(h);
1740 
1741 		if (ret) {
1742 			netdev_err(ndev, "clear the fetched desc fail\n");
1743 			goto out;
1744 		}
1745 	}
1746 
1747 	ret = h->dev->ops->set_mtu(h, new_mtu);
1748 	if (ret) {
1749 		netdev_err(ndev, "set mtu fail, return value %d\n",
1750 			   ret);
1751 		goto out;
1752 	}
1753 
1754 	/* finally, set new mtu to netdevice */
1755 	ndev->mtu = new_mtu;
1756 
1757 out:
1758 	if (if_running) {
1759 		if (hns_nic_net_open(ndev)) {
1760 			netdev_err(ndev, "hns net open fail\n");
1761 			ret = -EINVAL;
1762 		}
1763 	}
1764 
1765 	return ret;
1766 }
1767 
1768 static int hns_nic_set_features(struct net_device *netdev,
1769 				netdev_features_t features)
1770 {
1771 	struct hns_nic_priv *priv = netdev_priv(netdev);
1772 
1773 	switch (priv->enet_ver) {
1774 	case AE_VERSION_1:
1775 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1776 			netdev_info(netdev, "enet v1 do not support tso!\n");
1777 		break;
1778 	default:
1779 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1780 			priv->ops.fill_desc = fill_tso_desc;
1781 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1782 			/* The chip only support 7*4096 */
1783 			netif_set_tso_max_size(netdev, 7 * 4096);
1784 		} else {
1785 			priv->ops.fill_desc = fill_v2_desc;
1786 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1787 		}
1788 		break;
1789 	}
1790 	netdev->features = features;
1791 	return 0;
1792 }
1793 
1794 static netdev_features_t hns_nic_fix_features(
1795 		struct net_device *netdev, netdev_features_t features)
1796 {
1797 	struct hns_nic_priv *priv = netdev_priv(netdev);
1798 
1799 	switch (priv->enet_ver) {
1800 	case AE_VERSION_1:
1801 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1802 				NETIF_F_HW_VLAN_CTAG_FILTER);
1803 		break;
1804 	default:
1805 		break;
1806 	}
1807 	return features;
1808 }
1809 
1810 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1811 {
1812 	struct hns_nic_priv *priv = netdev_priv(netdev);
1813 	struct hnae_handle *h = priv->ae_handle;
1814 
1815 	if (h->dev->ops->add_uc_addr)
1816 		return h->dev->ops->add_uc_addr(h, addr);
1817 
1818 	return 0;
1819 }
1820 
1821 static int hns_nic_uc_unsync(struct net_device *netdev,
1822 			     const unsigned char *addr)
1823 {
1824 	struct hns_nic_priv *priv = netdev_priv(netdev);
1825 	struct hnae_handle *h = priv->ae_handle;
1826 
1827 	if (h->dev->ops->rm_uc_addr)
1828 		return h->dev->ops->rm_uc_addr(h, addr);
1829 
1830 	return 0;
1831 }
1832 
1833 /**
1834  * hns_set_multicast_list - set mutl mac address
1835  * @ndev: net device
1836  *
1837  * return void
1838  */
1839 static void hns_set_multicast_list(struct net_device *ndev)
1840 {
1841 	struct hns_nic_priv *priv = netdev_priv(ndev);
1842 	struct hnae_handle *h = priv->ae_handle;
1843 	struct netdev_hw_addr *ha = NULL;
1844 
1845 	if (!h)	{
1846 		netdev_err(ndev, "hnae handle is null\n");
1847 		return;
1848 	}
1849 
1850 	if (h->dev->ops->clr_mc_addr)
1851 		if (h->dev->ops->clr_mc_addr(h))
1852 			netdev_err(ndev, "clear multicast address fail\n");
1853 
1854 	if (h->dev->ops->set_mc_addr) {
1855 		netdev_for_each_mc_addr(ha, ndev)
1856 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1857 				netdev_err(ndev, "set multicast fail\n");
1858 	}
1859 }
1860 
1861 static void hns_nic_set_rx_mode(struct net_device *ndev)
1862 {
1863 	struct hns_nic_priv *priv = netdev_priv(ndev);
1864 	struct hnae_handle *h = priv->ae_handle;
1865 
1866 	if (h->dev->ops->set_promisc_mode) {
1867 		if (ndev->flags & IFF_PROMISC)
1868 			h->dev->ops->set_promisc_mode(h, 1);
1869 		else
1870 			h->dev->ops->set_promisc_mode(h, 0);
1871 	}
1872 
1873 	hns_set_multicast_list(ndev);
1874 
1875 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1876 		netdev_err(ndev, "sync uc address fail\n");
1877 }
1878 
1879 static void hns_nic_get_stats64(struct net_device *ndev,
1880 				struct rtnl_link_stats64 *stats)
1881 {
1882 	int idx;
1883 	u64 tx_bytes = 0;
1884 	u64 rx_bytes = 0;
1885 	u64 tx_pkts = 0;
1886 	u64 rx_pkts = 0;
1887 	struct hns_nic_priv *priv = netdev_priv(ndev);
1888 	struct hnae_handle *h = priv->ae_handle;
1889 
1890 	for (idx = 0; idx < h->q_num; idx++) {
1891 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1892 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1893 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1894 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1895 	}
1896 
1897 	stats->tx_bytes = tx_bytes;
1898 	stats->tx_packets = tx_pkts;
1899 	stats->rx_bytes = rx_bytes;
1900 	stats->rx_packets = rx_pkts;
1901 
1902 	stats->rx_errors = ndev->stats.rx_errors;
1903 	stats->multicast = ndev->stats.multicast;
1904 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1905 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1906 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1907 
1908 	stats->tx_errors = ndev->stats.tx_errors;
1909 	stats->rx_dropped = ndev->stats.rx_dropped;
1910 	stats->tx_dropped = ndev->stats.tx_dropped;
1911 	stats->collisions = ndev->stats.collisions;
1912 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1913 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1914 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1915 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1916 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1917 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1918 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1919 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1920 	stats->rx_compressed = ndev->stats.rx_compressed;
1921 	stats->tx_compressed = ndev->stats.tx_compressed;
1922 }
1923 
1924 static u16
1925 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1926 		     struct net_device *sb_dev)
1927 {
1928 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1929 	struct hns_nic_priv *priv = netdev_priv(ndev);
1930 
1931 	/* fix hardware broadcast/multicast packets queue loopback */
1932 	if (!AE_IS_VER1(priv->enet_ver) &&
1933 	    is_multicast_ether_addr(eth_hdr->h_dest))
1934 		return 0;
1935 	else
1936 		return netdev_pick_tx(ndev, skb, NULL);
1937 }
1938 
1939 static const struct net_device_ops hns_nic_netdev_ops = {
1940 	.ndo_open = hns_nic_net_open,
1941 	.ndo_stop = hns_nic_net_stop,
1942 	.ndo_start_xmit = hns_nic_net_xmit,
1943 	.ndo_tx_timeout = hns_nic_net_timeout,
1944 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1945 	.ndo_change_mtu = hns_nic_change_mtu,
1946 	.ndo_eth_ioctl = phy_do_ioctl_running,
1947 	.ndo_set_features = hns_nic_set_features,
1948 	.ndo_fix_features = hns_nic_fix_features,
1949 	.ndo_get_stats64 = hns_nic_get_stats64,
1950 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1951 	.ndo_select_queue = hns_nic_select_queue,
1952 };
1953 
1954 static void hns_nic_update_link_status(struct net_device *netdev)
1955 {
1956 	struct hns_nic_priv *priv = netdev_priv(netdev);
1957 
1958 	struct hnae_handle *h = priv->ae_handle;
1959 
1960 	if (h->phy_dev) {
1961 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1962 			return;
1963 
1964 		(void)genphy_read_status(h->phy_dev);
1965 	}
1966 	hns_nic_adjust_link(netdev);
1967 }
1968 
1969 /* for dumping key regs*/
1970 static void hns_nic_dump(struct hns_nic_priv *priv)
1971 {
1972 	struct hnae_handle *h = priv->ae_handle;
1973 	struct hnae_ae_ops *ops = h->dev->ops;
1974 	u32 *data, reg_num, i;
1975 
1976 	if (ops->get_regs_len && ops->get_regs) {
1977 		reg_num = ops->get_regs_len(priv->ae_handle);
1978 		reg_num = (reg_num + 3ul) & ~3ul;
1979 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1980 		if (data) {
1981 			ops->get_regs(priv->ae_handle, data);
1982 			for (i = 0; i < reg_num; i += 4)
1983 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1984 					i, data[i], data[i + 1],
1985 					data[i + 2], data[i + 3]);
1986 			kfree(data);
1987 		}
1988 	}
1989 
1990 	for (i = 0; i < h->q_num; i++) {
1991 		pr_info("tx_queue%d_next_to_clean:%d\n",
1992 			i, h->qs[i]->tx_ring.next_to_clean);
1993 		pr_info("tx_queue%d_next_to_use:%d\n",
1994 			i, h->qs[i]->tx_ring.next_to_use);
1995 		pr_info("rx_queue%d_next_to_clean:%d\n",
1996 			i, h->qs[i]->rx_ring.next_to_clean);
1997 		pr_info("rx_queue%d_next_to_use:%d\n",
1998 			i, h->qs[i]->rx_ring.next_to_use);
1999 	}
2000 }
2001 
2002 /* for resetting subtask */
2003 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2004 {
2005 	enum hnae_port_type type = priv->ae_handle->port_type;
2006 
2007 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2008 		return;
2009 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2010 
2011 	/* If we're already down, removing or resetting, just bail */
2012 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2013 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
2014 	    test_bit(NIC_STATE_RESETTING, &priv->state))
2015 		return;
2016 
2017 	hns_nic_dump(priv);
2018 	netdev_info(priv->netdev, "try to reset %s port!\n",
2019 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2020 
2021 	rtnl_lock();
2022 	/* put off any impending NetWatchDogTimeout */
2023 	netif_trans_update(priv->netdev);
2024 	hns_nic_net_reinit(priv->netdev);
2025 
2026 	rtnl_unlock();
2027 }
2028 
2029 /* for doing service complete*/
2030 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2031 {
2032 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2033 	/* make sure to commit the things */
2034 	smp_mb__before_atomic();
2035 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2036 }
2037 
2038 static void hns_nic_service_task(struct work_struct *work)
2039 {
2040 	struct hns_nic_priv *priv
2041 		= container_of(work, struct hns_nic_priv, service_task);
2042 	struct hnae_handle *h = priv->ae_handle;
2043 
2044 	hns_nic_reset_subtask(priv);
2045 	hns_nic_update_link_status(priv->netdev);
2046 	h->dev->ops->update_led_status(h);
2047 	hns_nic_update_stats(priv->netdev);
2048 
2049 	hns_nic_service_event_complete(priv);
2050 }
2051 
2052 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2053 {
2054 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2055 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2056 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2057 		(void)schedule_work(&priv->service_task);
2058 }
2059 
2060 static void hns_nic_service_timer(struct timer_list *t)
2061 {
2062 	struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2063 
2064 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2065 
2066 	hns_nic_task_schedule(priv);
2067 }
2068 
2069 /**
2070  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2071  * @priv: driver private struct
2072  **/
2073 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2074 {
2075 	/* Do the reset outside of interrupt context */
2076 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2077 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2078 		netdev_warn(priv->netdev,
2079 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2080 			    priv->tx_timeout_count, priv->state);
2081 		priv->tx_timeout_count++;
2082 		hns_nic_task_schedule(priv);
2083 	}
2084 }
2085 
2086 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2087 {
2088 	struct hnae_handle *h = priv->ae_handle;
2089 	struct hns_nic_ring_data *rd;
2090 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2091 	int i;
2092 
2093 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2094 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2095 		return -EINVAL;
2096 	}
2097 
2098 	priv->ring_data = kzalloc(array3_size(h->q_num,
2099 					      sizeof(*priv->ring_data), 2),
2100 				  GFP_KERNEL);
2101 	if (!priv->ring_data)
2102 		return -ENOMEM;
2103 
2104 	for (i = 0; i < h->q_num; i++) {
2105 		rd = &priv->ring_data[i];
2106 		rd->queue_index = i;
2107 		rd->ring = &h->qs[i]->tx_ring;
2108 		rd->poll_one = hns_nic_tx_poll_one;
2109 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2110 			hns_nic_tx_fini_pro_v2;
2111 
2112 		netif_napi_add(priv->netdev, &rd->napi, hns_nic_common_poll);
2113 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2114 	}
2115 	for (i = h->q_num; i < h->q_num * 2; i++) {
2116 		rd = &priv->ring_data[i];
2117 		rd->queue_index = i - h->q_num;
2118 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2119 		rd->poll_one = hns_nic_rx_poll_one;
2120 		rd->ex_process = hns_nic_rx_up_pro;
2121 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2122 			hns_nic_rx_fini_pro_v2;
2123 
2124 		netif_napi_add(priv->netdev, &rd->napi, hns_nic_common_poll);
2125 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2126 	}
2127 
2128 	return 0;
2129 }
2130 
2131 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2132 {
2133 	struct hnae_handle *h = priv->ae_handle;
2134 	int i;
2135 
2136 	for (i = 0; i < h->q_num * 2; i++) {
2137 		netif_napi_del(&priv->ring_data[i].napi);
2138 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2139 			(void)irq_set_affinity_hint(
2140 				priv->ring_data[i].ring->irq,
2141 				NULL);
2142 			free_irq(priv->ring_data[i].ring->irq,
2143 				 &priv->ring_data[i]);
2144 		}
2145 
2146 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2147 	}
2148 	kfree(priv->ring_data);
2149 }
2150 
2151 static void hns_nic_set_priv_ops(struct net_device *netdev)
2152 {
2153 	struct hns_nic_priv *priv = netdev_priv(netdev);
2154 	struct hnae_handle *h = priv->ae_handle;
2155 
2156 	if (AE_IS_VER1(priv->enet_ver)) {
2157 		priv->ops.fill_desc = fill_desc;
2158 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2159 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2160 	} else {
2161 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2162 		if ((netdev->features & NETIF_F_TSO) ||
2163 		    (netdev->features & NETIF_F_TSO6)) {
2164 			priv->ops.fill_desc = fill_tso_desc;
2165 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2166 			/* This chip only support 7*4096 */
2167 			netif_set_tso_max_size(netdev, 7 * 4096);
2168 		} else {
2169 			priv->ops.fill_desc = fill_v2_desc;
2170 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2171 		}
2172 		/* enable tso when init
2173 		 * control tso on/off through TSE bit in bd
2174 		 */
2175 		h->dev->ops->set_tso_stats(h, 1);
2176 	}
2177 }
2178 
2179 static int hns_nic_try_get_ae(struct net_device *ndev)
2180 {
2181 	struct hns_nic_priv *priv = netdev_priv(ndev);
2182 	struct hnae_handle *h;
2183 	int ret;
2184 
2185 	h = hnae_get_handle(&priv->netdev->dev,
2186 			    priv->fwnode, priv->port_id, NULL);
2187 	if (IS_ERR_OR_NULL(h)) {
2188 		ret = -ENODEV;
2189 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2190 		goto out;
2191 	}
2192 	priv->ae_handle = h;
2193 
2194 	ret = hns_nic_init_phy(ndev, h);
2195 	if (ret) {
2196 		dev_err(priv->dev, "probe phy device fail!\n");
2197 		goto out_init_phy;
2198 	}
2199 
2200 	ret = hns_nic_init_ring_data(priv);
2201 	if (ret) {
2202 		ret = -ENOMEM;
2203 		goto out_init_ring_data;
2204 	}
2205 
2206 	hns_nic_set_priv_ops(ndev);
2207 
2208 	ret = register_netdev(ndev);
2209 	if (ret) {
2210 		dev_err(priv->dev, "probe register netdev fail!\n");
2211 		goto out_reg_ndev_fail;
2212 	}
2213 	return 0;
2214 
2215 out_reg_ndev_fail:
2216 	hns_nic_uninit_ring_data(priv);
2217 	priv->ring_data = NULL;
2218 out_init_phy:
2219 out_init_ring_data:
2220 	hnae_put_handle(priv->ae_handle);
2221 	priv->ae_handle = NULL;
2222 out:
2223 	return ret;
2224 }
2225 
2226 static int hns_nic_notifier_action(struct notifier_block *nb,
2227 				   unsigned long action, void *data)
2228 {
2229 	struct hns_nic_priv *priv =
2230 		container_of(nb, struct hns_nic_priv, notifier_block);
2231 
2232 	assert(action == HNAE_AE_REGISTER);
2233 
2234 	if (!hns_nic_try_get_ae(priv->netdev)) {
2235 		hnae_unregister_notifier(&priv->notifier_block);
2236 		priv->notifier_block.notifier_call = NULL;
2237 	}
2238 	return 0;
2239 }
2240 
2241 static int hns_nic_dev_probe(struct platform_device *pdev)
2242 {
2243 	struct device *dev = &pdev->dev;
2244 	struct net_device *ndev;
2245 	struct hns_nic_priv *priv;
2246 	u32 port_id;
2247 	int ret;
2248 
2249 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2250 	if (!ndev)
2251 		return -ENOMEM;
2252 
2253 	platform_set_drvdata(pdev, ndev);
2254 
2255 	priv = netdev_priv(ndev);
2256 	priv->dev = dev;
2257 	priv->netdev = ndev;
2258 
2259 	if (dev_of_node(dev)) {
2260 		struct device_node *ae_node;
2261 
2262 		if (of_device_is_compatible(dev->of_node,
2263 					    "hisilicon,hns-nic-v1"))
2264 			priv->enet_ver = AE_VERSION_1;
2265 		else
2266 			priv->enet_ver = AE_VERSION_2;
2267 
2268 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2269 		if (!ae_node) {
2270 			ret = -ENODEV;
2271 			dev_err(dev, "not find ae-handle\n");
2272 			goto out_read_prop_fail;
2273 		}
2274 		priv->fwnode = &ae_node->fwnode;
2275 	} else if (is_acpi_node(dev->fwnode)) {
2276 		struct fwnode_reference_args args;
2277 
2278 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2279 			priv->enet_ver = AE_VERSION_1;
2280 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2281 			priv->enet_ver = AE_VERSION_2;
2282 		else {
2283 			ret = -ENXIO;
2284 			goto out_read_prop_fail;
2285 		}
2286 
2287 		/* try to find port-idx-in-ae first */
2288 		ret = acpi_node_get_property_reference(dev->fwnode,
2289 						       "ae-handle", 0, &args);
2290 		if (ret) {
2291 			dev_err(dev, "not find ae-handle\n");
2292 			goto out_read_prop_fail;
2293 		}
2294 		if (!is_acpi_device_node(args.fwnode)) {
2295 			ret = -EINVAL;
2296 			goto out_read_prop_fail;
2297 		}
2298 		priv->fwnode = args.fwnode;
2299 	} else {
2300 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2301 		ret = -ENXIO;
2302 		goto out_read_prop_fail;
2303 	}
2304 
2305 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2306 	if (ret) {
2307 		/* only for old code compatible */
2308 		ret = device_property_read_u32(dev, "port-id", &port_id);
2309 		if (ret)
2310 			goto out_read_prop_fail;
2311 		/* for old dts, we need to caculate the port offset */
2312 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2313 			: port_id - HNS_SRV_OFFSET;
2314 	}
2315 	priv->port_id = port_id;
2316 
2317 	hns_init_mac_addr(ndev);
2318 
2319 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2320 	ndev->priv_flags |= IFF_UNICAST_FLT;
2321 	ndev->netdev_ops = &hns_nic_netdev_ops;
2322 	hns_ethtool_set_ops(ndev);
2323 
2324 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2325 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2326 		NETIF_F_GRO;
2327 	ndev->vlan_features |=
2328 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2329 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2330 
2331 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2332 	ndev->min_mtu = MAC_MIN_MTU;
2333 	switch (priv->enet_ver) {
2334 	case AE_VERSION_2:
2335 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2336 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2337 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2338 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2339 		ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2340 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2341 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2342 		break;
2343 	default:
2344 		ndev->max_mtu = MAC_MAX_MTU -
2345 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2346 		break;
2347 	}
2348 
2349 	SET_NETDEV_DEV(ndev, dev);
2350 
2351 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2352 		dev_dbg(dev, "set mask to 64bit\n");
2353 	else
2354 		dev_err(dev, "set mask to 64bit fail!\n");
2355 
2356 	/* carrier off reporting is important to ethtool even BEFORE open */
2357 	netif_carrier_off(ndev);
2358 
2359 	timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2360 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2361 
2362 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2363 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2364 	set_bit(NIC_STATE_DOWN, &priv->state);
2365 
2366 	if (hns_nic_try_get_ae(priv->netdev)) {
2367 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2368 		ret = hnae_register_notifier(&priv->notifier_block);
2369 		if (ret) {
2370 			dev_err(dev, "register notifier fail!\n");
2371 			goto out_notify_fail;
2372 		}
2373 		dev_dbg(dev, "has not handle, register notifier!\n");
2374 	}
2375 
2376 	return 0;
2377 
2378 out_notify_fail:
2379 	(void)cancel_work_sync(&priv->service_task);
2380 out_read_prop_fail:
2381 	/* safe for ACPI FW */
2382 	of_node_put(to_of_node(priv->fwnode));
2383 	free_netdev(ndev);
2384 	return ret;
2385 }
2386 
2387 static int hns_nic_dev_remove(struct platform_device *pdev)
2388 {
2389 	struct net_device *ndev = platform_get_drvdata(pdev);
2390 	struct hns_nic_priv *priv = netdev_priv(ndev);
2391 
2392 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2393 		unregister_netdev(ndev);
2394 
2395 	if (priv->ring_data)
2396 		hns_nic_uninit_ring_data(priv);
2397 	priv->ring_data = NULL;
2398 
2399 	if (ndev->phydev)
2400 		phy_disconnect(ndev->phydev);
2401 
2402 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2403 		hnae_put_handle(priv->ae_handle);
2404 	priv->ae_handle = NULL;
2405 	if (priv->notifier_block.notifier_call)
2406 		hnae_unregister_notifier(&priv->notifier_block);
2407 	priv->notifier_block.notifier_call = NULL;
2408 
2409 	set_bit(NIC_STATE_REMOVING, &priv->state);
2410 	(void)cancel_work_sync(&priv->service_task);
2411 
2412 	/* safe for ACPI FW */
2413 	of_node_put(to_of_node(priv->fwnode));
2414 
2415 	free_netdev(ndev);
2416 	return 0;
2417 }
2418 
2419 static const struct of_device_id hns_enet_of_match[] = {
2420 	{.compatible = "hisilicon,hns-nic-v1",},
2421 	{.compatible = "hisilicon,hns-nic-v2",},
2422 	{},
2423 };
2424 
2425 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2426 
2427 static struct platform_driver hns_nic_dev_driver = {
2428 	.driver = {
2429 		.name = "hns-nic",
2430 		.of_match_table = hns_enet_of_match,
2431 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2432 	},
2433 	.probe = hns_nic_dev_probe,
2434 	.remove = hns_nic_dev_remove,
2435 };
2436 
2437 module_platform_driver(hns_nic_dev_driver);
2438 
2439 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2440 MODULE_AUTHOR("Hisilicon, Inc.");
2441 MODULE_LICENSE("GPL");
2442 MODULE_ALIAS("platform:hns-nic");
2443