1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22 
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26 
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29 
30 #define SERVICE_TIMER_HZ (1 * HZ)
31 
32 #define NIC_TX_CLEAN_MAX_NUM 256
33 #define NIC_RX_CLEAN_MAX_NUM 64
34 
35 #define RCB_IRQ_NOT_INITED 0
36 #define RCB_IRQ_INITED 1
37 #define HNS_BUFFER_SIZE_2048 2048
38 
39 #define BD_MAX_SEND_SIZE 8191
40 #define SKB_TMP_LEN(SKB) \
41 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
42 
43 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
44 			 int size, dma_addr_t dma, int frag_end,
45 			 int buf_num, enum hns_desc_type type, int mtu)
46 {
47 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
48 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
49 	struct iphdr *iphdr;
50 	struct ipv6hdr *ipv6hdr;
51 	struct sk_buff *skb;
52 	__be16 protocol;
53 	u8 bn_pid = 0;
54 	u8 rrcfv = 0;
55 	u8 ip_offset = 0;
56 	u8 tvsvsn = 0;
57 	u16 mss = 0;
58 	u8 l4_len = 0;
59 	u16 paylen = 0;
60 
61 	desc_cb->priv = priv;
62 	desc_cb->length = size;
63 	desc_cb->dma = dma;
64 	desc_cb->type = type;
65 
66 	desc->addr = cpu_to_le64(dma);
67 	desc->tx.send_size = cpu_to_le16((u16)size);
68 
69 	/* config bd buffer end */
70 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72 
73 	/* fill port_id in the tx bd for sending management pkts */
74 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
75 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
76 
77 	if (type == DESC_TYPE_SKB) {
78 		skb = (struct sk_buff *)priv;
79 
80 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
81 			skb_reset_mac_len(skb);
82 			protocol = skb->protocol;
83 			ip_offset = ETH_HLEN;
84 
85 			if (protocol == htons(ETH_P_8021Q)) {
86 				ip_offset += VLAN_HLEN;
87 				protocol = vlan_get_protocol(skb);
88 				skb->protocol = protocol;
89 			}
90 
91 			if (skb->protocol == htons(ETH_P_IP)) {
92 				iphdr = ip_hdr(skb);
93 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
94 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
95 
96 				/* check for tcp/udp header */
97 				if (iphdr->protocol == IPPROTO_TCP &&
98 				    skb_is_gso(skb)) {
99 					hnae_set_bit(tvsvsn,
100 						     HNSV2_TXD_TSE_B, 1);
101 					l4_len = tcp_hdrlen(skb);
102 					mss = skb_shinfo(skb)->gso_size;
103 					paylen = skb->len - SKB_TMP_LEN(skb);
104 				}
105 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
106 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
107 				ipv6hdr = ipv6_hdr(skb);
108 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
109 
110 				/* check for tcp/udp header */
111 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
112 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
113 					hnae_set_bit(tvsvsn,
114 						     HNSV2_TXD_TSE_B, 1);
115 					l4_len = tcp_hdrlen(skb);
116 					mss = skb_shinfo(skb)->gso_size;
117 					paylen = skb->len - SKB_TMP_LEN(skb);
118 				}
119 			}
120 			desc->tx.ip_offset = ip_offset;
121 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
122 			desc->tx.mss = cpu_to_le16(mss);
123 			desc->tx.l4_len = l4_len;
124 			desc->tx.paylen = cpu_to_le16(paylen);
125 		}
126 	}
127 
128 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
129 
130 	desc->tx.bn_pid = bn_pid;
131 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
132 
133 	ring_ptr_move_fw(ring, next_to_use);
134 }
135 
136 static const struct acpi_device_id hns_enet_acpi_match[] = {
137 	{ "HISI00C1", 0 },
138 	{ "HISI00C2", 0 },
139 	{ },
140 };
141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
142 
143 static void fill_desc(struct hnae_ring *ring, void *priv,
144 		      int size, dma_addr_t dma, int frag_end,
145 		      int buf_num, enum hns_desc_type type, int mtu)
146 {
147 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
148 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
149 	struct sk_buff *skb;
150 	__be16 protocol;
151 	u32 ip_offset;
152 	u32 asid_bufnum_pid = 0;
153 	u32 flag_ipoffset = 0;
154 
155 	desc_cb->priv = priv;
156 	desc_cb->length = size;
157 	desc_cb->dma = dma;
158 	desc_cb->type = type;
159 
160 	desc->addr = cpu_to_le64(dma);
161 	desc->tx.send_size = cpu_to_le16((u16)size);
162 
163 	/*config bd buffer end */
164 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
165 
166 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
167 
168 	if (type == DESC_TYPE_SKB) {
169 		skb = (struct sk_buff *)priv;
170 
171 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
172 			protocol = skb->protocol;
173 			ip_offset = ETH_HLEN;
174 
175 			/*if it is a SW VLAN check the next protocol*/
176 			if (protocol == htons(ETH_P_8021Q)) {
177 				ip_offset += VLAN_HLEN;
178 				protocol = vlan_get_protocol(skb);
179 				skb->protocol = protocol;
180 			}
181 
182 			if (skb->protocol == htons(ETH_P_IP)) {
183 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
184 				/* check for tcp/udp header */
185 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
186 
187 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
188 				/* ipv6 has not l3 cs, check for L4 header */
189 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
190 			}
191 
192 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
193 		}
194 	}
195 
196 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
197 
198 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
199 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
200 
201 	ring_ptr_move_fw(ring, next_to_use);
202 }
203 
204 static void unfill_desc(struct hnae_ring *ring)
205 {
206 	ring_ptr_move_bw(ring, next_to_use);
207 }
208 
209 static int hns_nic_maybe_stop_tx(
210 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
211 {
212 	struct sk_buff *skb = *out_skb;
213 	struct sk_buff *new_skb = NULL;
214 	int buf_num;
215 
216 	/* no. of segments (plus a header) */
217 	buf_num = skb_shinfo(skb)->nr_frags + 1;
218 
219 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
220 		if (ring_space(ring) < 1)
221 			return -EBUSY;
222 
223 		new_skb = skb_copy(skb, GFP_ATOMIC);
224 		if (!new_skb)
225 			return -ENOMEM;
226 
227 		dev_kfree_skb_any(skb);
228 		*out_skb = new_skb;
229 		buf_num = 1;
230 	} else if (buf_num > ring_space(ring)) {
231 		return -EBUSY;
232 	}
233 
234 	*bnum = buf_num;
235 	return 0;
236 }
237 
238 static int hns_nic_maybe_stop_tso(
239 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
240 {
241 	int i;
242 	int size;
243 	int buf_num;
244 	int frag_num;
245 	struct sk_buff *skb = *out_skb;
246 	struct sk_buff *new_skb = NULL;
247 	struct skb_frag_struct *frag;
248 
249 	size = skb_headlen(skb);
250 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
251 
252 	frag_num = skb_shinfo(skb)->nr_frags;
253 	for (i = 0; i < frag_num; i++) {
254 		frag = &skb_shinfo(skb)->frags[i];
255 		size = skb_frag_size(frag);
256 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
257 	}
258 
259 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
260 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
261 		if (ring_space(ring) < buf_num)
262 			return -EBUSY;
263 		/* manual split the send packet */
264 		new_skb = skb_copy(skb, GFP_ATOMIC);
265 		if (!new_skb)
266 			return -ENOMEM;
267 		dev_kfree_skb_any(skb);
268 		*out_skb = new_skb;
269 
270 	} else if (ring_space(ring) < buf_num) {
271 		return -EBUSY;
272 	}
273 
274 	*bnum = buf_num;
275 	return 0;
276 }
277 
278 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
279 			  int size, dma_addr_t dma, int frag_end,
280 			  int buf_num, enum hns_desc_type type, int mtu)
281 {
282 	int frag_buf_num;
283 	int sizeoflast;
284 	int k;
285 
286 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
287 	sizeoflast = size % BD_MAX_SEND_SIZE;
288 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
289 
290 	/* when the frag size is bigger than hardware, split this frag */
291 	for (k = 0; k < frag_buf_num; k++)
292 		fill_v2_desc(ring, priv,
293 			     (k == frag_buf_num - 1) ?
294 					sizeoflast : BD_MAX_SEND_SIZE,
295 			     dma + BD_MAX_SEND_SIZE * k,
296 			     frag_end && (k == frag_buf_num - 1) ? 1 : 0,
297 			     buf_num,
298 			     (type == DESC_TYPE_SKB && !k) ?
299 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
300 			     mtu);
301 }
302 
303 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
304 				struct sk_buff *skb,
305 				struct hns_nic_ring_data *ring_data)
306 {
307 	struct hns_nic_priv *priv = netdev_priv(ndev);
308 	struct hnae_ring *ring = ring_data->ring;
309 	struct device *dev = ring_to_dev(ring);
310 	struct netdev_queue *dev_queue;
311 	struct skb_frag_struct *frag;
312 	int buf_num;
313 	int seg_num;
314 	dma_addr_t dma;
315 	int size, next_to_use;
316 	int i;
317 
318 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
319 	case -EBUSY:
320 		ring->stats.tx_busy++;
321 		goto out_net_tx_busy;
322 	case -ENOMEM:
323 		ring->stats.sw_err_cnt++;
324 		netdev_err(ndev, "no memory to xmit!\n");
325 		goto out_err_tx_ok;
326 	default:
327 		break;
328 	}
329 
330 	/* no. of segments (plus a header) */
331 	seg_num = skb_shinfo(skb)->nr_frags + 1;
332 	next_to_use = ring->next_to_use;
333 
334 	/* fill the first part */
335 	size = skb_headlen(skb);
336 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
337 	if (dma_mapping_error(dev, dma)) {
338 		netdev_err(ndev, "TX head DMA map failed\n");
339 		ring->stats.sw_err_cnt++;
340 		goto out_err_tx_ok;
341 	}
342 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
343 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
344 
345 	/* fill the fragments */
346 	for (i = 1; i < seg_num; i++) {
347 		frag = &skb_shinfo(skb)->frags[i - 1];
348 		size = skb_frag_size(frag);
349 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
350 		if (dma_mapping_error(dev, dma)) {
351 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
352 			ring->stats.sw_err_cnt++;
353 			goto out_map_frag_fail;
354 		}
355 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
356 				    seg_num - 1 == i ? 1 : 0, buf_num,
357 				    DESC_TYPE_PAGE, ndev->mtu);
358 	}
359 
360 	/*complete translate all packets*/
361 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
362 	netdev_tx_sent_queue(dev_queue, skb->len);
363 
364 	netif_trans_update(ndev);
365 	ndev->stats.tx_bytes += skb->len;
366 	ndev->stats.tx_packets++;
367 
368 	wmb(); /* commit all data before submit */
369 	assert(skb->queue_mapping < priv->ae_handle->q_num);
370 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
371 	ring->stats.tx_pkts++;
372 	ring->stats.tx_bytes += skb->len;
373 
374 	return NETDEV_TX_OK;
375 
376 out_map_frag_fail:
377 
378 	while (ring->next_to_use != next_to_use) {
379 		unfill_desc(ring);
380 		if (ring->next_to_use != next_to_use)
381 			dma_unmap_page(dev,
382 				       ring->desc_cb[ring->next_to_use].dma,
383 				       ring->desc_cb[ring->next_to_use].length,
384 				       DMA_TO_DEVICE);
385 		else
386 			dma_unmap_single(dev,
387 					 ring->desc_cb[next_to_use].dma,
388 					 ring->desc_cb[next_to_use].length,
389 					 DMA_TO_DEVICE);
390 	}
391 
392 out_err_tx_ok:
393 
394 	dev_kfree_skb_any(skb);
395 	return NETDEV_TX_OK;
396 
397 out_net_tx_busy:
398 
399 	netif_stop_subqueue(ndev, skb->queue_mapping);
400 
401 	/* Herbert's original patch had:
402 	 *  smp_mb__after_netif_stop_queue();
403 	 * but since that doesn't exist yet, just open code it.
404 	 */
405 	smp_mb();
406 	return NETDEV_TX_BUSY;
407 }
408 
409 /**
410  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
411  * @data: pointer to the start of the headers
412  * @max: total length of section to find headers in
413  *
414  * This function is meant to determine the length of headers that will
415  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
416  * motivation of doing this is to only perform one pull for IPv4 TCP
417  * packets so that we can do basic things like calculating the gso_size
418  * based on the average data per packet.
419  **/
420 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
421 					unsigned int max_size)
422 {
423 	unsigned char *network;
424 	u8 hlen;
425 
426 	/* this should never happen, but better safe than sorry */
427 	if (max_size < ETH_HLEN)
428 		return max_size;
429 
430 	/* initialize network frame pointer */
431 	network = data;
432 
433 	/* set first protocol and move network header forward */
434 	network += ETH_HLEN;
435 
436 	/* handle any vlan tag if present */
437 	if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
438 		== HNS_RX_FLAG_VLAN_PRESENT) {
439 		if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
440 			return max_size;
441 
442 		network += VLAN_HLEN;
443 	}
444 
445 	/* handle L3 protocols */
446 	if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
447 		== HNS_RX_FLAG_L3ID_IPV4) {
448 		if ((typeof(max_size))(network - data) >
449 		    (max_size - sizeof(struct iphdr)))
450 			return max_size;
451 
452 		/* access ihl as a u8 to avoid unaligned access on ia64 */
453 		hlen = (network[0] & 0x0F) << 2;
454 
455 		/* verify hlen meets minimum size requirements */
456 		if (hlen < sizeof(struct iphdr))
457 			return network - data;
458 
459 		/* record next protocol if header is present */
460 	} else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
461 		== HNS_RX_FLAG_L3ID_IPV6) {
462 		if ((typeof(max_size))(network - data) >
463 		    (max_size - sizeof(struct ipv6hdr)))
464 			return max_size;
465 
466 		/* record next protocol */
467 		hlen = sizeof(struct ipv6hdr);
468 	} else {
469 		return network - data;
470 	}
471 
472 	/* relocate pointer to start of L4 header */
473 	network += hlen;
474 
475 	/* finally sort out TCP/UDP */
476 	if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
477 		== HNS_RX_FLAG_L4ID_TCP) {
478 		if ((typeof(max_size))(network - data) >
479 		    (max_size - sizeof(struct tcphdr)))
480 			return max_size;
481 
482 		/* access doff as a u8 to avoid unaligned access on ia64 */
483 		hlen = (network[12] & 0xF0) >> 2;
484 
485 		/* verify hlen meets minimum size requirements */
486 		if (hlen < sizeof(struct tcphdr))
487 			return network - data;
488 
489 		network += hlen;
490 	} else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
491 		== HNS_RX_FLAG_L4ID_UDP) {
492 		if ((typeof(max_size))(network - data) >
493 		    (max_size - sizeof(struct udphdr)))
494 			return max_size;
495 
496 		network += sizeof(struct udphdr);
497 	}
498 
499 	/* If everything has gone correctly network should be the
500 	 * data section of the packet and will be the end of the header.
501 	 * If not then it probably represents the end of the last recognized
502 	 * header.
503 	 */
504 	if ((typeof(max_size))(network - data) < max_size)
505 		return network - data;
506 	else
507 		return max_size;
508 }
509 
510 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
511 			       struct hnae_ring *ring, int pull_len,
512 			       struct hnae_desc_cb *desc_cb)
513 {
514 	struct hnae_desc *desc;
515 	int truesize, size;
516 	int last_offset;
517 	bool twobufs;
518 
519 	twobufs = ((PAGE_SIZE < 8192) &&
520 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
521 
522 	desc = &ring->desc[ring->next_to_clean];
523 	size = le16_to_cpu(desc->rx.size);
524 
525 	if (twobufs) {
526 		truesize = hnae_buf_size(ring);
527 	} else {
528 		truesize = ALIGN(size, L1_CACHE_BYTES);
529 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
530 	}
531 
532 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
533 			size - pull_len, truesize - pull_len);
534 
535 	 /* avoid re-using remote pages,flag default unreuse */
536 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
537 		return;
538 
539 	if (twobufs) {
540 		/* if we are only owner of page we can reuse it */
541 		if (likely(page_count(desc_cb->priv) == 1)) {
542 			/* flip page offset to other buffer */
543 			desc_cb->page_offset ^= truesize;
544 
545 			desc_cb->reuse_flag = 1;
546 			/* bump ref count on page before it is given*/
547 			get_page(desc_cb->priv);
548 		}
549 		return;
550 	}
551 
552 	/* move offset up to the next cache line */
553 	desc_cb->page_offset += truesize;
554 
555 	if (desc_cb->page_offset <= last_offset) {
556 		desc_cb->reuse_flag = 1;
557 		/* bump ref count on page before it is given*/
558 		get_page(desc_cb->priv);
559 	}
560 }
561 
562 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
563 {
564 	*out_bnum = hnae_get_field(bnum_flag,
565 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
566 }
567 
568 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
569 {
570 	*out_bnum = hnae_get_field(bnum_flag,
571 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
572 }
573 
574 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
575 				struct sk_buff *skb, u32 flag)
576 {
577 	struct net_device *netdev = ring_data->napi.dev;
578 	u32 l3id;
579 	u32 l4id;
580 
581 	/* check if RX checksum offload is enabled */
582 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
583 		return;
584 
585 	/* In hardware, we only support checksum for the following protocols:
586 	 * 1) IPv4,
587 	 * 2) TCP(over IPv4 or IPv6),
588 	 * 3) UDP(over IPv4 or IPv6),
589 	 * 4) SCTP(over IPv4 or IPv6)
590 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
591 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
592 	 *
593 	 * Hardware limitation:
594 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
595 	 * Error" bit (which usually can be used to indicate whether checksum
596 	 * was calculated by the hardware and if there was any error encountered
597 	 * during checksum calculation).
598 	 *
599 	 * Software workaround:
600 	 * We do get info within the RX descriptor about the kind of L3/L4
601 	 * protocol coming in the packet and the error status. These errors
602 	 * might not just be checksum errors but could be related to version,
603 	 * length of IPv4, UDP, TCP etc.
604 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
605 	 * checksum or any other L3/L4 error, we will not (cannot) convey
606 	 * checksum status for such cases to upper stack and will not maintain
607 	 * the RX L3/L4 checksum counters as well.
608 	 */
609 
610 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
611 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
612 
613 	/*  check L3 protocol for which checksum is supported */
614 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
615 		return;
616 
617 	/* check for any(not just checksum)flagged L3 protocol errors */
618 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
619 		return;
620 
621 	/* we do not support checksum of fragmented packets */
622 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
623 		return;
624 
625 	/*  check L4 protocol for which checksum is supported */
626 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
627 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
628 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
629 		return;
630 
631 	/* check for any(not just checksum)flagged L4 protocol errors */
632 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
633 		return;
634 
635 	/* now, this has to be a packet with valid RX checksum */
636 	skb->ip_summed = CHECKSUM_UNNECESSARY;
637 }
638 
639 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
640 			       struct sk_buff **out_skb, int *out_bnum)
641 {
642 	struct hnae_ring *ring = ring_data->ring;
643 	struct net_device *ndev = ring_data->napi.dev;
644 	struct hns_nic_priv *priv = netdev_priv(ndev);
645 	struct sk_buff *skb;
646 	struct hnae_desc *desc;
647 	struct hnae_desc_cb *desc_cb;
648 	unsigned char *va;
649 	int bnum, length, i;
650 	int pull_len;
651 	u32 bnum_flag;
652 
653 	desc = &ring->desc[ring->next_to_clean];
654 	desc_cb = &ring->desc_cb[ring->next_to_clean];
655 
656 	prefetch(desc);
657 
658 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
659 
660 	/* prefetch first cache line of first page */
661 	prefetch(va);
662 #if L1_CACHE_BYTES < 128
663 	prefetch(va + L1_CACHE_BYTES);
664 #endif
665 
666 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
667 					HNS_RX_HEAD_SIZE);
668 	if (unlikely(!skb)) {
669 		netdev_err(ndev, "alloc rx skb fail\n");
670 		ring->stats.sw_err_cnt++;
671 		return -ENOMEM;
672 	}
673 
674 	prefetchw(skb->data);
675 	length = le16_to_cpu(desc->rx.pkt_len);
676 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
677 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
678 	*out_bnum = bnum;
679 
680 	if (length <= HNS_RX_HEAD_SIZE) {
681 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
682 
683 		/* we can reuse buffer as-is, just make sure it is local */
684 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
685 			desc_cb->reuse_flag = 1;
686 		else /* this page cannot be reused so discard it */
687 			put_page(desc_cb->priv);
688 
689 		ring_ptr_move_fw(ring, next_to_clean);
690 
691 		if (unlikely(bnum != 1)) { /* check err*/
692 			*out_bnum = 1;
693 			goto out_bnum_err;
694 		}
695 	} else {
696 		ring->stats.seg_pkt_cnt++;
697 
698 		pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
699 		memcpy(__skb_put(skb, pull_len), va,
700 		       ALIGN(pull_len, sizeof(long)));
701 
702 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
703 		ring_ptr_move_fw(ring, next_to_clean);
704 
705 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
706 			*out_bnum = 1;
707 			goto out_bnum_err;
708 		}
709 		for (i = 1; i < bnum; i++) {
710 			desc = &ring->desc[ring->next_to_clean];
711 			desc_cb = &ring->desc_cb[ring->next_to_clean];
712 
713 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
714 			ring_ptr_move_fw(ring, next_to_clean);
715 		}
716 	}
717 
718 	/* check except process, free skb and jump the desc */
719 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
720 out_bnum_err:
721 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
722 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
723 			   bnum, ring->max_desc_num_per_pkt,
724 			   length, (int)MAX_SKB_FRAGS,
725 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
726 		ring->stats.err_bd_num++;
727 		dev_kfree_skb_any(skb);
728 		return -EDOM;
729 	}
730 
731 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
732 
733 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
734 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
735 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
736 		ring->stats.non_vld_descs++;
737 		dev_kfree_skb_any(skb);
738 		return -EINVAL;
739 	}
740 
741 	if (unlikely((!desc->rx.pkt_len) ||
742 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
743 		ring->stats.err_pkt_len++;
744 		dev_kfree_skb_any(skb);
745 		return -EFAULT;
746 	}
747 
748 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
749 		ring->stats.l2_err++;
750 		dev_kfree_skb_any(skb);
751 		return -EFAULT;
752 	}
753 
754 	ring->stats.rx_pkts++;
755 	ring->stats.rx_bytes += skb->len;
756 
757 	/* indicate to upper stack if our hardware has already calculated
758 	 * the RX checksum
759 	 */
760 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
761 
762 	return 0;
763 }
764 
765 static void
766 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
767 {
768 	int i, ret;
769 	struct hnae_desc_cb res_cbs;
770 	struct hnae_desc_cb *desc_cb;
771 	struct hnae_ring *ring = ring_data->ring;
772 	struct net_device *ndev = ring_data->napi.dev;
773 
774 	for (i = 0; i < cleand_count; i++) {
775 		desc_cb = &ring->desc_cb[ring->next_to_use];
776 		if (desc_cb->reuse_flag) {
777 			ring->stats.reuse_pg_cnt++;
778 			hnae_reuse_buffer(ring, ring->next_to_use);
779 		} else {
780 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
781 			if (ret) {
782 				ring->stats.sw_err_cnt++;
783 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
784 				break;
785 			}
786 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
787 		}
788 
789 		ring_ptr_move_fw(ring, next_to_use);
790 	}
791 
792 	wmb(); /* make all data has been write before submit */
793 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
794 }
795 
796 /* return error number for error or number of desc left to take
797  */
798 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
799 			      struct sk_buff *skb)
800 {
801 	struct net_device *ndev = ring_data->napi.dev;
802 
803 	skb->protocol = eth_type_trans(skb, ndev);
804 	(void)napi_gro_receive(&ring_data->napi, skb);
805 }
806 
807 static int hns_desc_unused(struct hnae_ring *ring)
808 {
809 	int ntc = ring->next_to_clean;
810 	int ntu = ring->next_to_use;
811 
812 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
813 }
814 
815 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
816 			       int budget, void *v)
817 {
818 	struct hnae_ring *ring = ring_data->ring;
819 	struct sk_buff *skb;
820 	int num, bnum;
821 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
822 	int recv_pkts, recv_bds, clean_count, err;
823 	int unused_count = hns_desc_unused(ring);
824 
825 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
826 	rmb(); /* make sure num taken effect before the other data is touched */
827 
828 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
829 	num -= unused_count;
830 
831 	while (recv_pkts < budget && recv_bds < num) {
832 		/* reuse or realloc buffers */
833 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
834 			hns_nic_alloc_rx_buffers(ring_data,
835 						 clean_count + unused_count);
836 			clean_count = 0;
837 			unused_count = hns_desc_unused(ring);
838 		}
839 
840 		/* poll one pkt */
841 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
842 		if (unlikely(!skb)) /* this fault cannot be repaired */
843 			goto out;
844 
845 		recv_bds += bnum;
846 		clean_count += bnum;
847 		if (unlikely(err)) {  /* do jump the err */
848 			recv_pkts++;
849 			continue;
850 		}
851 
852 		/* do update ip stack process*/
853 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
854 							ring_data, skb);
855 		recv_pkts++;
856 	}
857 
858 out:
859 	/* make all data has been write before submit */
860 	if (clean_count + unused_count > 0)
861 		hns_nic_alloc_rx_buffers(ring_data,
862 					 clean_count + unused_count);
863 
864 	return recv_pkts;
865 }
866 
867 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
868 {
869 	struct hnae_ring *ring = ring_data->ring;
870 	int num = 0;
871 
872 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
873 
874 	/* for hardware bug fixed */
875 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
876 
877 	if (num > 0) {
878 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
879 			ring_data->ring, 1);
880 
881 		return false;
882 	} else {
883 		return true;
884 	}
885 }
886 
887 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
888 {
889 	struct hnae_ring *ring = ring_data->ring;
890 	int num;
891 
892 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
893 
894 	if (!num)
895 		return true;
896 	else
897 		return false;
898 }
899 
900 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
901 					    int *bytes, int *pkts)
902 {
903 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
904 
905 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
906 	(*bytes) += desc_cb->length;
907 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
908 	hnae_free_buffer_detach(ring, ring->next_to_clean);
909 
910 	ring_ptr_move_fw(ring, next_to_clean);
911 }
912 
913 static int is_valid_clean_head(struct hnae_ring *ring, int h)
914 {
915 	int u = ring->next_to_use;
916 	int c = ring->next_to_clean;
917 
918 	if (unlikely(h > ring->desc_num))
919 		return 0;
920 
921 	assert(u > 0 && u < ring->desc_num);
922 	assert(c > 0 && c < ring->desc_num);
923 	assert(u != c && h != c); /* must be checked before call this func */
924 
925 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
926 }
927 
928 /* netif_tx_lock will turn down the performance, set only when necessary */
929 #ifdef CONFIG_NET_POLL_CONTROLLER
930 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
931 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
932 #else
933 #define NETIF_TX_LOCK(ring)
934 #define NETIF_TX_UNLOCK(ring)
935 #endif
936 
937 /* reclaim all desc in one budget
938  * return error or number of desc left
939  */
940 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
941 			       int budget, void *v)
942 {
943 	struct hnae_ring *ring = ring_data->ring;
944 	struct net_device *ndev = ring_data->napi.dev;
945 	struct netdev_queue *dev_queue;
946 	struct hns_nic_priv *priv = netdev_priv(ndev);
947 	int head;
948 	int bytes, pkts;
949 
950 	NETIF_TX_LOCK(ring);
951 
952 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
953 	rmb(); /* make sure head is ready before touch any data */
954 
955 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
956 		NETIF_TX_UNLOCK(ring);
957 		return 0; /* no data to poll */
958 	}
959 
960 	if (!is_valid_clean_head(ring, head)) {
961 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
962 			   ring->next_to_use, ring->next_to_clean);
963 		ring->stats.io_err_cnt++;
964 		NETIF_TX_UNLOCK(ring);
965 		return -EIO;
966 	}
967 
968 	bytes = 0;
969 	pkts = 0;
970 	while (head != ring->next_to_clean) {
971 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
972 		/* issue prefetch for next Tx descriptor */
973 		prefetch(&ring->desc_cb[ring->next_to_clean]);
974 	}
975 
976 	NETIF_TX_UNLOCK(ring);
977 
978 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
979 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
980 
981 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
982 		netif_carrier_on(ndev);
983 
984 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
985 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
986 		/* Make sure that anybody stopping the queue after this
987 		 * sees the new next_to_clean.
988 		 */
989 		smp_mb();
990 		if (netif_tx_queue_stopped(dev_queue) &&
991 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
992 			netif_tx_wake_queue(dev_queue);
993 			ring->stats.restart_queue++;
994 		}
995 	}
996 	return 0;
997 }
998 
999 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1000 {
1001 	struct hnae_ring *ring = ring_data->ring;
1002 	int head;
1003 
1004 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1005 
1006 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1007 
1008 	if (head != ring->next_to_clean) {
1009 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1010 			ring_data->ring, 1);
1011 
1012 		return false;
1013 	} else {
1014 		return true;
1015 	}
1016 }
1017 
1018 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1019 {
1020 	struct hnae_ring *ring = ring_data->ring;
1021 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1022 
1023 	if (head == ring->next_to_clean)
1024 		return true;
1025 	else
1026 		return false;
1027 }
1028 
1029 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1030 {
1031 	struct hnae_ring *ring = ring_data->ring;
1032 	struct net_device *ndev = ring_data->napi.dev;
1033 	struct netdev_queue *dev_queue;
1034 	int head;
1035 	int bytes, pkts;
1036 
1037 	NETIF_TX_LOCK(ring);
1038 
1039 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1040 	bytes = 0;
1041 	pkts = 0;
1042 	while (head != ring->next_to_clean)
1043 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1044 
1045 	NETIF_TX_UNLOCK(ring);
1046 
1047 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1048 	netdev_tx_reset_queue(dev_queue);
1049 }
1050 
1051 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1052 {
1053 	int clean_complete = 0;
1054 	struct hns_nic_ring_data *ring_data =
1055 		container_of(napi, struct hns_nic_ring_data, napi);
1056 	struct hnae_ring *ring = ring_data->ring;
1057 
1058 try_again:
1059 	clean_complete += ring_data->poll_one(
1060 				ring_data, budget - clean_complete,
1061 				ring_data->ex_process);
1062 
1063 	if (clean_complete < budget) {
1064 		if (ring_data->fini_process(ring_data)) {
1065 			napi_complete(napi);
1066 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1067 		} else {
1068 			goto try_again;
1069 		}
1070 	}
1071 
1072 	return clean_complete;
1073 }
1074 
1075 static irqreturn_t hns_irq_handle(int irq, void *dev)
1076 {
1077 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1078 
1079 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1080 		ring_data->ring, 1);
1081 	napi_schedule(&ring_data->napi);
1082 
1083 	return IRQ_HANDLED;
1084 }
1085 
1086 /**
1087  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1088  *@ndev: net device
1089  */
1090 static void hns_nic_adjust_link(struct net_device *ndev)
1091 {
1092 	struct hns_nic_priv *priv = netdev_priv(ndev);
1093 	struct hnae_handle *h = priv->ae_handle;
1094 	int state = 1;
1095 
1096 	if (ndev->phydev) {
1097 		h->dev->ops->adjust_link(h, ndev->phydev->speed,
1098 					 ndev->phydev->duplex);
1099 		state = ndev->phydev->link;
1100 	}
1101 	state = state && h->dev->ops->get_status(h);
1102 
1103 	if (state != priv->link) {
1104 		if (state) {
1105 			netif_carrier_on(ndev);
1106 			netif_tx_wake_all_queues(ndev);
1107 			netdev_info(ndev, "link up\n");
1108 		} else {
1109 			netif_carrier_off(ndev);
1110 			netdev_info(ndev, "link down\n");
1111 		}
1112 		priv->link = state;
1113 	}
1114 }
1115 
1116 /**
1117  *hns_nic_init_phy - init phy
1118  *@ndev: net device
1119  *@h: ae handle
1120  * Return 0 on success, negative on failure
1121  */
1122 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1123 {
1124 	struct phy_device *phy_dev = h->phy_dev;
1125 	int ret;
1126 
1127 	if (!h->phy_dev)
1128 		return 0;
1129 
1130 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1131 		phy_dev->dev_flags = 0;
1132 
1133 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1134 					 h->phy_if);
1135 	} else {
1136 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1137 	}
1138 	if (unlikely(ret))
1139 		return -ENODEV;
1140 
1141 	phy_dev->supported &= h->if_support;
1142 	phy_dev->advertising = phy_dev->supported;
1143 
1144 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1145 		phy_dev->autoneg = false;
1146 
1147 	return 0;
1148 }
1149 
1150 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1151 {
1152 	struct hns_nic_priv *priv = netdev_priv(netdev);
1153 	struct hnae_handle *h = priv->ae_handle;
1154 
1155 	napi_enable(&priv->ring_data[idx].napi);
1156 
1157 	enable_irq(priv->ring_data[idx].ring->irq);
1158 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1159 
1160 	return 0;
1161 }
1162 
1163 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1164 {
1165 	struct hns_nic_priv *priv = netdev_priv(ndev);
1166 	struct hnae_handle *h = priv->ae_handle;
1167 	struct sockaddr *mac_addr = p;
1168 	int ret;
1169 
1170 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1171 		return -EADDRNOTAVAIL;
1172 
1173 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1174 	if (ret) {
1175 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1176 		return ret;
1177 	}
1178 
1179 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1180 
1181 	return 0;
1182 }
1183 
1184 void hns_nic_update_stats(struct net_device *netdev)
1185 {
1186 	struct hns_nic_priv *priv = netdev_priv(netdev);
1187 	struct hnae_handle *h = priv->ae_handle;
1188 
1189 	h->dev->ops->update_stats(h, &netdev->stats);
1190 }
1191 
1192 /* set mac addr if it is configed. or leave it to the AE driver */
1193 static void hns_init_mac_addr(struct net_device *ndev)
1194 {
1195 	struct hns_nic_priv *priv = netdev_priv(ndev);
1196 
1197 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1198 		eth_hw_addr_random(ndev);
1199 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1200 			 ndev->dev_addr);
1201 	}
1202 }
1203 
1204 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1205 {
1206 	struct hns_nic_priv *priv = netdev_priv(netdev);
1207 	struct hnae_handle *h = priv->ae_handle;
1208 
1209 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1210 	disable_irq(priv->ring_data[idx].ring->irq);
1211 
1212 	napi_disable(&priv->ring_data[idx].napi);
1213 }
1214 
1215 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1216 				      struct hnae_ring *ring, cpumask_t *mask)
1217 {
1218 	int cpu;
1219 
1220 	/* Diffrent irq banlance between 16core and 32core.
1221 	 * The cpu mask set by ring index according to the ring flag
1222 	 * which indicate the ring is tx or rx.
1223 	 */
1224 	if (q_num == num_possible_cpus()) {
1225 		if (is_tx_ring(ring))
1226 			cpu = ring_idx;
1227 		else
1228 			cpu = ring_idx - q_num;
1229 	} else {
1230 		if (is_tx_ring(ring))
1231 			cpu = ring_idx * 2;
1232 		else
1233 			cpu = (ring_idx - q_num) * 2 + 1;
1234 	}
1235 
1236 	cpumask_clear(mask);
1237 	cpumask_set_cpu(cpu, mask);
1238 
1239 	return cpu;
1240 }
1241 
1242 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1243 {
1244 	struct hnae_handle *h = priv->ae_handle;
1245 	struct hns_nic_ring_data *rd;
1246 	int i;
1247 	int ret;
1248 	int cpu;
1249 
1250 	for (i = 0; i < h->q_num * 2; i++) {
1251 		rd = &priv->ring_data[i];
1252 
1253 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1254 			break;
1255 
1256 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1257 			 "%s-%s%d", priv->netdev->name,
1258 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1259 
1260 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1261 
1262 		ret = request_irq(rd->ring->irq,
1263 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1264 		if (ret) {
1265 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1266 				   rd->ring->irq);
1267 			return ret;
1268 		}
1269 		disable_irq(rd->ring->irq);
1270 
1271 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1272 						 rd->ring, &rd->mask);
1273 
1274 		if (cpu_online(cpu))
1275 			irq_set_affinity_hint(rd->ring->irq,
1276 					      &rd->mask);
1277 
1278 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1279 	}
1280 
1281 	return 0;
1282 }
1283 
1284 static int hns_nic_net_up(struct net_device *ndev)
1285 {
1286 	struct hns_nic_priv *priv = netdev_priv(ndev);
1287 	struct hnae_handle *h = priv->ae_handle;
1288 	int i, j;
1289 	int ret;
1290 
1291 	ret = hns_nic_init_irq(priv);
1292 	if (ret != 0) {
1293 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1294 		return ret;
1295 	}
1296 
1297 	for (i = 0; i < h->q_num * 2; i++) {
1298 		ret = hns_nic_ring_open(ndev, i);
1299 		if (ret)
1300 			goto out_has_some_queues;
1301 	}
1302 
1303 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1304 	if (ret)
1305 		goto out_set_mac_addr_err;
1306 
1307 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1308 	if (ret)
1309 		goto out_start_err;
1310 
1311 	if (ndev->phydev)
1312 		phy_start(ndev->phydev);
1313 
1314 	clear_bit(NIC_STATE_DOWN, &priv->state);
1315 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1316 
1317 	return 0;
1318 
1319 out_start_err:
1320 	netif_stop_queue(ndev);
1321 out_set_mac_addr_err:
1322 out_has_some_queues:
1323 	for (j = i - 1; j >= 0; j--)
1324 		hns_nic_ring_close(ndev, j);
1325 
1326 	set_bit(NIC_STATE_DOWN, &priv->state);
1327 
1328 	return ret;
1329 }
1330 
1331 static void hns_nic_net_down(struct net_device *ndev)
1332 {
1333 	int i;
1334 	struct hnae_ae_ops *ops;
1335 	struct hns_nic_priv *priv = netdev_priv(ndev);
1336 
1337 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1338 		return;
1339 
1340 	(void)del_timer_sync(&priv->service_timer);
1341 	netif_tx_stop_all_queues(ndev);
1342 	netif_carrier_off(ndev);
1343 	netif_tx_disable(ndev);
1344 	priv->link = 0;
1345 
1346 	if (ndev->phydev)
1347 		phy_stop(ndev->phydev);
1348 
1349 	ops = priv->ae_handle->dev->ops;
1350 
1351 	if (ops->stop)
1352 		ops->stop(priv->ae_handle);
1353 
1354 	netif_tx_stop_all_queues(ndev);
1355 
1356 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1357 		hns_nic_ring_close(ndev, i);
1358 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1359 
1360 		/* clean tx buffers*/
1361 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1362 	}
1363 }
1364 
1365 void hns_nic_net_reset(struct net_device *ndev)
1366 {
1367 	struct hns_nic_priv *priv = netdev_priv(ndev);
1368 	struct hnae_handle *handle = priv->ae_handle;
1369 
1370 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1371 		usleep_range(1000, 2000);
1372 
1373 	(void)hnae_reinit_handle(handle);
1374 
1375 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1376 }
1377 
1378 void hns_nic_net_reinit(struct net_device *netdev)
1379 {
1380 	struct hns_nic_priv *priv = netdev_priv(netdev);
1381 	enum hnae_port_type type = priv->ae_handle->port_type;
1382 
1383 	netif_trans_update(priv->netdev);
1384 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1385 		usleep_range(1000, 2000);
1386 
1387 	hns_nic_net_down(netdev);
1388 
1389 	/* Only do hns_nic_net_reset in debug mode
1390 	 * because of hardware limitation.
1391 	 */
1392 	if (type == HNAE_PORT_DEBUG)
1393 		hns_nic_net_reset(netdev);
1394 
1395 	(void)hns_nic_net_up(netdev);
1396 	clear_bit(NIC_STATE_REINITING, &priv->state);
1397 }
1398 
1399 static int hns_nic_net_open(struct net_device *ndev)
1400 {
1401 	struct hns_nic_priv *priv = netdev_priv(ndev);
1402 	struct hnae_handle *h = priv->ae_handle;
1403 	int ret;
1404 
1405 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1406 		return -EBUSY;
1407 
1408 	priv->link = 0;
1409 	netif_carrier_off(ndev);
1410 
1411 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1412 	if (ret < 0) {
1413 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1414 			   ret);
1415 		return ret;
1416 	}
1417 
1418 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1419 	if (ret < 0) {
1420 		netdev_err(ndev,
1421 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1422 		return ret;
1423 	}
1424 
1425 	ret = hns_nic_net_up(ndev);
1426 	if (ret) {
1427 		netdev_err(ndev,
1428 			   "hns net up fail, ret=%d!\n", ret);
1429 		return ret;
1430 	}
1431 
1432 	return 0;
1433 }
1434 
1435 static int hns_nic_net_stop(struct net_device *ndev)
1436 {
1437 	hns_nic_net_down(ndev);
1438 
1439 	return 0;
1440 }
1441 
1442 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1443 static void hns_nic_net_timeout(struct net_device *ndev)
1444 {
1445 	struct hns_nic_priv *priv = netdev_priv(ndev);
1446 
1447 	hns_tx_timeout_reset(priv);
1448 }
1449 
1450 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1451 			    int cmd)
1452 {
1453 	struct phy_device *phy_dev = netdev->phydev;
1454 
1455 	if (!netif_running(netdev))
1456 		return -EINVAL;
1457 
1458 	if (!phy_dev)
1459 		return -ENOTSUPP;
1460 
1461 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1462 }
1463 
1464 /* use only for netconsole to poll with the device without interrupt */
1465 #ifdef CONFIG_NET_POLL_CONTROLLER
1466 void hns_nic_poll_controller(struct net_device *ndev)
1467 {
1468 	struct hns_nic_priv *priv = netdev_priv(ndev);
1469 	unsigned long flags;
1470 	int i;
1471 
1472 	local_irq_save(flags);
1473 	for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1474 		napi_schedule(&priv->ring_data[i].napi);
1475 	local_irq_restore(flags);
1476 }
1477 #endif
1478 
1479 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1480 				    struct net_device *ndev)
1481 {
1482 	struct hns_nic_priv *priv = netdev_priv(ndev);
1483 
1484 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1485 
1486 	return hns_nic_net_xmit_hw(ndev, skb,
1487 				   &tx_ring_data(priv, skb->queue_mapping));
1488 }
1489 
1490 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1491 				  struct sk_buff *skb)
1492 {
1493 	dev_kfree_skb_any(skb);
1494 }
1495 
1496 #define HNS_LB_TX_RING	0
1497 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1498 {
1499 	struct sk_buff *skb;
1500 	struct ethhdr *ethhdr;
1501 	int frame_len;
1502 
1503 	/* allocate test skb */
1504 	skb = alloc_skb(64, GFP_KERNEL);
1505 	if (!skb)
1506 		return NULL;
1507 
1508 	skb_put(skb, 64);
1509 	skb->dev = ndev;
1510 	memset(skb->data, 0xFF, skb->len);
1511 
1512 	/* must be tcp/ip package */
1513 	ethhdr = (struct ethhdr *)skb->data;
1514 	ethhdr->h_proto = htons(ETH_P_IP);
1515 
1516 	frame_len = skb->len & (~1ul);
1517 	memset(&skb->data[frame_len / 2], 0xAA,
1518 	       frame_len / 2 - 1);
1519 
1520 	skb->queue_mapping = HNS_LB_TX_RING;
1521 
1522 	return skb;
1523 }
1524 
1525 static int hns_enable_serdes_lb(struct net_device *ndev)
1526 {
1527 	struct hns_nic_priv *priv = netdev_priv(ndev);
1528 	struct hnae_handle *h = priv->ae_handle;
1529 	struct hnae_ae_ops *ops = h->dev->ops;
1530 	int speed, duplex;
1531 	int ret;
1532 
1533 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1534 	if (ret)
1535 		return ret;
1536 
1537 	ret = ops->start ? ops->start(h) : 0;
1538 	if (ret)
1539 		return ret;
1540 
1541 	/* link adjust duplex*/
1542 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1543 		speed = 1000;
1544 	else
1545 		speed = 10000;
1546 	duplex = 1;
1547 
1548 	ops->adjust_link(h, speed, duplex);
1549 
1550 	/* wait h/w ready */
1551 	mdelay(300);
1552 
1553 	return 0;
1554 }
1555 
1556 static void hns_disable_serdes_lb(struct net_device *ndev)
1557 {
1558 	struct hns_nic_priv *priv = netdev_priv(ndev);
1559 	struct hnae_handle *h = priv->ae_handle;
1560 	struct hnae_ae_ops *ops = h->dev->ops;
1561 
1562 	ops->stop(h);
1563 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1564 }
1565 
1566 /**
1567  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1568  *function as follows:
1569  *    1. if one rx ring has found the page_offset is not equal 0 between head
1570  *       and tail, it means that the chip fetched the wrong descs for the ring
1571  *       which buffer size is 4096.
1572  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1573  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1574  *       recieving all packages and it will fetch new descriptions.
1575  *    4. recover to the original state.
1576  *
1577  *@ndev: net device
1578  */
1579 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1580 {
1581 	struct hns_nic_priv *priv = netdev_priv(ndev);
1582 	struct hnae_handle *h = priv->ae_handle;
1583 	struct hnae_ae_ops *ops = h->dev->ops;
1584 	struct hns_nic_ring_data *rd;
1585 	struct hnae_ring *ring;
1586 	struct sk_buff *skb;
1587 	u32 *org_indir;
1588 	u32 *cur_indir;
1589 	int indir_size;
1590 	int head, tail;
1591 	int fetch_num;
1592 	int i, j;
1593 	bool found;
1594 	int retry_times;
1595 	int ret = 0;
1596 
1597 	/* alloc indir memory */
1598 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1599 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1600 	if (!org_indir)
1601 		return -ENOMEM;
1602 
1603 	/* store the orginal indirection */
1604 	ops->get_rss(h, org_indir, NULL, NULL);
1605 
1606 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1607 	if (!cur_indir) {
1608 		ret = -ENOMEM;
1609 		goto cur_indir_alloc_err;
1610 	}
1611 
1612 	/* set loopback */
1613 	if (hns_enable_serdes_lb(ndev)) {
1614 		ret = -EINVAL;
1615 		goto enable_serdes_lb_err;
1616 	}
1617 
1618 	/* foreach every rx ring to clear fetch desc */
1619 	for (i = 0; i < h->q_num; i++) {
1620 		ring = &h->qs[i]->rx_ring;
1621 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1622 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1623 		found = false;
1624 		fetch_num = ring_dist(ring, head, tail);
1625 
1626 		while (head != tail) {
1627 			if (ring->desc_cb[head].page_offset != 0) {
1628 				found = true;
1629 				break;
1630 			}
1631 
1632 			head++;
1633 			if (head == ring->desc_num)
1634 				head = 0;
1635 		}
1636 
1637 		if (found) {
1638 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1639 				cur_indir[j] = i;
1640 			ops->set_rss(h, cur_indir, NULL, 0);
1641 
1642 			for (j = 0; j < fetch_num; j++) {
1643 				/* alloc one skb and init */
1644 				skb = hns_assemble_skb(ndev);
1645 				if (!skb)
1646 					goto out;
1647 				rd = &tx_ring_data(priv, skb->queue_mapping);
1648 				hns_nic_net_xmit_hw(ndev, skb, rd);
1649 
1650 				retry_times = 0;
1651 				while (retry_times++ < 10) {
1652 					mdelay(10);
1653 					/* clean rx */
1654 					rd = &rx_ring_data(priv, i);
1655 					if (rd->poll_one(rd, fetch_num,
1656 							 hns_nic_drop_rx_fetch))
1657 						break;
1658 				}
1659 
1660 				retry_times = 0;
1661 				while (retry_times++ < 10) {
1662 					mdelay(10);
1663 					/* clean tx ring 0 send package */
1664 					rd = &tx_ring_data(priv,
1665 							   HNS_LB_TX_RING);
1666 					if (rd->poll_one(rd, fetch_num, NULL))
1667 						break;
1668 				}
1669 			}
1670 		}
1671 	}
1672 
1673 out:
1674 	/* restore everything */
1675 	ops->set_rss(h, org_indir, NULL, 0);
1676 	hns_disable_serdes_lb(ndev);
1677 enable_serdes_lb_err:
1678 	kfree(cur_indir);
1679 cur_indir_alloc_err:
1680 	kfree(org_indir);
1681 
1682 	return ret;
1683 }
1684 
1685 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1686 {
1687 	struct hns_nic_priv *priv = netdev_priv(ndev);
1688 	struct hnae_handle *h = priv->ae_handle;
1689 	bool if_running = netif_running(ndev);
1690 	int ret;
1691 
1692 	/* MTU < 68 is an error and causes problems on some kernels */
1693 	if (new_mtu < 68)
1694 		return -EINVAL;
1695 
1696 	/* MTU no change */
1697 	if (new_mtu == ndev->mtu)
1698 		return 0;
1699 
1700 	if (!h->dev->ops->set_mtu)
1701 		return -ENOTSUPP;
1702 
1703 	if (if_running) {
1704 		(void)hns_nic_net_stop(ndev);
1705 		msleep(100);
1706 	}
1707 
1708 	if (priv->enet_ver != AE_VERSION_1 &&
1709 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1710 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1711 		/* update desc */
1712 		hnae_reinit_all_ring_desc(h);
1713 
1714 		/* clear the package which the chip has fetched */
1715 		ret = hns_nic_clear_all_rx_fetch(ndev);
1716 
1717 		/* the page offset must be consist with desc */
1718 		hnae_reinit_all_ring_page_off(h);
1719 
1720 		if (ret) {
1721 			netdev_err(ndev, "clear the fetched desc fail\n");
1722 			goto out;
1723 		}
1724 	}
1725 
1726 	ret = h->dev->ops->set_mtu(h, new_mtu);
1727 	if (ret) {
1728 		netdev_err(ndev, "set mtu fail, return value %d\n",
1729 			   ret);
1730 		goto out;
1731 	}
1732 
1733 	/* finally, set new mtu to netdevice */
1734 	ndev->mtu = new_mtu;
1735 
1736 out:
1737 	if (if_running) {
1738 		if (hns_nic_net_open(ndev)) {
1739 			netdev_err(ndev, "hns net open fail\n");
1740 			ret = -EINVAL;
1741 		}
1742 	}
1743 
1744 	return ret;
1745 }
1746 
1747 static int hns_nic_set_features(struct net_device *netdev,
1748 				netdev_features_t features)
1749 {
1750 	struct hns_nic_priv *priv = netdev_priv(netdev);
1751 
1752 	switch (priv->enet_ver) {
1753 	case AE_VERSION_1:
1754 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1755 			netdev_info(netdev, "enet v1 do not support tso!\n");
1756 		break;
1757 	default:
1758 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1759 			priv->ops.fill_desc = fill_tso_desc;
1760 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1761 			/* The chip only support 7*4096 */
1762 			netif_set_gso_max_size(netdev, 7 * 4096);
1763 		} else {
1764 			priv->ops.fill_desc = fill_v2_desc;
1765 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1766 		}
1767 		break;
1768 	}
1769 	netdev->features = features;
1770 	return 0;
1771 }
1772 
1773 static netdev_features_t hns_nic_fix_features(
1774 		struct net_device *netdev, netdev_features_t features)
1775 {
1776 	struct hns_nic_priv *priv = netdev_priv(netdev);
1777 
1778 	switch (priv->enet_ver) {
1779 	case AE_VERSION_1:
1780 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1781 				NETIF_F_HW_VLAN_CTAG_FILTER);
1782 		break;
1783 	default:
1784 		break;
1785 	}
1786 	return features;
1787 }
1788 
1789 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1790 {
1791 	struct hns_nic_priv *priv = netdev_priv(netdev);
1792 	struct hnae_handle *h = priv->ae_handle;
1793 
1794 	if (h->dev->ops->add_uc_addr)
1795 		return h->dev->ops->add_uc_addr(h, addr);
1796 
1797 	return 0;
1798 }
1799 
1800 static int hns_nic_uc_unsync(struct net_device *netdev,
1801 			     const unsigned char *addr)
1802 {
1803 	struct hns_nic_priv *priv = netdev_priv(netdev);
1804 	struct hnae_handle *h = priv->ae_handle;
1805 
1806 	if (h->dev->ops->rm_uc_addr)
1807 		return h->dev->ops->rm_uc_addr(h, addr);
1808 
1809 	return 0;
1810 }
1811 
1812 /**
1813  * nic_set_multicast_list - set mutl mac address
1814  * @netdev: net device
1815  * @p: mac address
1816  *
1817  * return void
1818  */
1819 void hns_set_multicast_list(struct net_device *ndev)
1820 {
1821 	struct hns_nic_priv *priv = netdev_priv(ndev);
1822 	struct hnae_handle *h = priv->ae_handle;
1823 	struct netdev_hw_addr *ha = NULL;
1824 
1825 	if (!h)	{
1826 		netdev_err(ndev, "hnae handle is null\n");
1827 		return;
1828 	}
1829 
1830 	if (h->dev->ops->clr_mc_addr)
1831 		if (h->dev->ops->clr_mc_addr(h))
1832 			netdev_err(ndev, "clear multicast address fail\n");
1833 
1834 	if (h->dev->ops->set_mc_addr) {
1835 		netdev_for_each_mc_addr(ha, ndev)
1836 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1837 				netdev_err(ndev, "set multicast fail\n");
1838 	}
1839 }
1840 
1841 void hns_nic_set_rx_mode(struct net_device *ndev)
1842 {
1843 	struct hns_nic_priv *priv = netdev_priv(ndev);
1844 	struct hnae_handle *h = priv->ae_handle;
1845 
1846 	if (h->dev->ops->set_promisc_mode) {
1847 		if (ndev->flags & IFF_PROMISC)
1848 			h->dev->ops->set_promisc_mode(h, 1);
1849 		else
1850 			h->dev->ops->set_promisc_mode(h, 0);
1851 	}
1852 
1853 	hns_set_multicast_list(ndev);
1854 
1855 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1856 		netdev_err(ndev, "sync uc address fail\n");
1857 }
1858 
1859 static void hns_nic_get_stats64(struct net_device *ndev,
1860 				struct rtnl_link_stats64 *stats)
1861 {
1862 	int idx = 0;
1863 	u64 tx_bytes = 0;
1864 	u64 rx_bytes = 0;
1865 	u64 tx_pkts = 0;
1866 	u64 rx_pkts = 0;
1867 	struct hns_nic_priv *priv = netdev_priv(ndev);
1868 	struct hnae_handle *h = priv->ae_handle;
1869 
1870 	for (idx = 0; idx < h->q_num; idx++) {
1871 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1872 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1873 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1874 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1875 	}
1876 
1877 	stats->tx_bytes = tx_bytes;
1878 	stats->tx_packets = tx_pkts;
1879 	stats->rx_bytes = rx_bytes;
1880 	stats->rx_packets = rx_pkts;
1881 
1882 	stats->rx_errors = ndev->stats.rx_errors;
1883 	stats->multicast = ndev->stats.multicast;
1884 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1885 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1886 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1887 
1888 	stats->tx_errors = ndev->stats.tx_errors;
1889 	stats->rx_dropped = ndev->stats.rx_dropped;
1890 	stats->tx_dropped = ndev->stats.tx_dropped;
1891 	stats->collisions = ndev->stats.collisions;
1892 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1893 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1894 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1895 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1896 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1897 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1898 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1899 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1900 	stats->rx_compressed = ndev->stats.rx_compressed;
1901 	stats->tx_compressed = ndev->stats.tx_compressed;
1902 }
1903 
1904 static u16
1905 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1906 		     void *accel_priv, select_queue_fallback_t fallback)
1907 {
1908 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1909 	struct hns_nic_priv *priv = netdev_priv(ndev);
1910 
1911 	/* fix hardware broadcast/multicast packets queue loopback */
1912 	if (!AE_IS_VER1(priv->enet_ver) &&
1913 	    is_multicast_ether_addr(eth_hdr->h_dest))
1914 		return 0;
1915 	else
1916 		return fallback(ndev, skb);
1917 }
1918 
1919 static const struct net_device_ops hns_nic_netdev_ops = {
1920 	.ndo_open = hns_nic_net_open,
1921 	.ndo_stop = hns_nic_net_stop,
1922 	.ndo_start_xmit = hns_nic_net_xmit,
1923 	.ndo_tx_timeout = hns_nic_net_timeout,
1924 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1925 	.ndo_change_mtu = hns_nic_change_mtu,
1926 	.ndo_do_ioctl = hns_nic_do_ioctl,
1927 	.ndo_set_features = hns_nic_set_features,
1928 	.ndo_fix_features = hns_nic_fix_features,
1929 	.ndo_get_stats64 = hns_nic_get_stats64,
1930 #ifdef CONFIG_NET_POLL_CONTROLLER
1931 	.ndo_poll_controller = hns_nic_poll_controller,
1932 #endif
1933 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1934 	.ndo_select_queue = hns_nic_select_queue,
1935 };
1936 
1937 static void hns_nic_update_link_status(struct net_device *netdev)
1938 {
1939 	struct hns_nic_priv *priv = netdev_priv(netdev);
1940 
1941 	struct hnae_handle *h = priv->ae_handle;
1942 
1943 	if (h->phy_dev) {
1944 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1945 			return;
1946 
1947 		(void)genphy_read_status(h->phy_dev);
1948 	}
1949 	hns_nic_adjust_link(netdev);
1950 }
1951 
1952 /* for dumping key regs*/
1953 static void hns_nic_dump(struct hns_nic_priv *priv)
1954 {
1955 	struct hnae_handle *h = priv->ae_handle;
1956 	struct hnae_ae_ops *ops = h->dev->ops;
1957 	u32 *data, reg_num, i;
1958 
1959 	if (ops->get_regs_len && ops->get_regs) {
1960 		reg_num = ops->get_regs_len(priv->ae_handle);
1961 		reg_num = (reg_num + 3ul) & ~3ul;
1962 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1963 		if (data) {
1964 			ops->get_regs(priv->ae_handle, data);
1965 			for (i = 0; i < reg_num; i += 4)
1966 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1967 					i, data[i], data[i + 1],
1968 					data[i + 2], data[i + 3]);
1969 			kfree(data);
1970 		}
1971 	}
1972 
1973 	for (i = 0; i < h->q_num; i++) {
1974 		pr_info("tx_queue%d_next_to_clean:%d\n",
1975 			i, h->qs[i]->tx_ring.next_to_clean);
1976 		pr_info("tx_queue%d_next_to_use:%d\n",
1977 			i, h->qs[i]->tx_ring.next_to_use);
1978 		pr_info("rx_queue%d_next_to_clean:%d\n",
1979 			i, h->qs[i]->rx_ring.next_to_clean);
1980 		pr_info("rx_queue%d_next_to_use:%d\n",
1981 			i, h->qs[i]->rx_ring.next_to_use);
1982 	}
1983 }
1984 
1985 /* for resetting subtask */
1986 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1987 {
1988 	enum hnae_port_type type = priv->ae_handle->port_type;
1989 
1990 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1991 		return;
1992 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1993 
1994 	/* If we're already down, removing or resetting, just bail */
1995 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1996 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
1997 	    test_bit(NIC_STATE_RESETTING, &priv->state))
1998 		return;
1999 
2000 	hns_nic_dump(priv);
2001 	netdev_info(priv->netdev, "try to reset %s port!\n",
2002 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2003 
2004 	rtnl_lock();
2005 	/* put off any impending NetWatchDogTimeout */
2006 	netif_trans_update(priv->netdev);
2007 	hns_nic_net_reinit(priv->netdev);
2008 
2009 	rtnl_unlock();
2010 }
2011 
2012 /* for doing service complete*/
2013 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2014 {
2015 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2016 	/* make sure to commit the things */
2017 	smp_mb__before_atomic();
2018 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2019 }
2020 
2021 static void hns_nic_service_task(struct work_struct *work)
2022 {
2023 	struct hns_nic_priv *priv
2024 		= container_of(work, struct hns_nic_priv, service_task);
2025 	struct hnae_handle *h = priv->ae_handle;
2026 
2027 	hns_nic_update_link_status(priv->netdev);
2028 	h->dev->ops->update_led_status(h);
2029 	hns_nic_update_stats(priv->netdev);
2030 
2031 	hns_nic_reset_subtask(priv);
2032 	hns_nic_service_event_complete(priv);
2033 }
2034 
2035 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2036 {
2037 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2038 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2039 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2040 		(void)schedule_work(&priv->service_task);
2041 }
2042 
2043 static void hns_nic_service_timer(unsigned long data)
2044 {
2045 	struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
2046 
2047 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2048 
2049 	hns_nic_task_schedule(priv);
2050 }
2051 
2052 /**
2053  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2054  * @priv: driver private struct
2055  **/
2056 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2057 {
2058 	/* Do the reset outside of interrupt context */
2059 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2060 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2061 		netdev_warn(priv->netdev,
2062 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2063 			    priv->tx_timeout_count, priv->state);
2064 		priv->tx_timeout_count++;
2065 		hns_nic_task_schedule(priv);
2066 	}
2067 }
2068 
2069 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2070 {
2071 	struct hnae_handle *h = priv->ae_handle;
2072 	struct hns_nic_ring_data *rd;
2073 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2074 	int i;
2075 
2076 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2077 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2078 		return -EINVAL;
2079 	}
2080 
2081 	priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
2082 				  GFP_KERNEL);
2083 	if (!priv->ring_data)
2084 		return -ENOMEM;
2085 
2086 	for (i = 0; i < h->q_num; i++) {
2087 		rd = &priv->ring_data[i];
2088 		rd->queue_index = i;
2089 		rd->ring = &h->qs[i]->tx_ring;
2090 		rd->poll_one = hns_nic_tx_poll_one;
2091 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2092 			hns_nic_tx_fini_pro_v2;
2093 
2094 		netif_napi_add(priv->netdev, &rd->napi,
2095 			       hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
2096 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2097 	}
2098 	for (i = h->q_num; i < h->q_num * 2; i++) {
2099 		rd = &priv->ring_data[i];
2100 		rd->queue_index = i - h->q_num;
2101 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2102 		rd->poll_one = hns_nic_rx_poll_one;
2103 		rd->ex_process = hns_nic_rx_up_pro;
2104 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2105 			hns_nic_rx_fini_pro_v2;
2106 
2107 		netif_napi_add(priv->netdev, &rd->napi,
2108 			       hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
2109 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2110 	}
2111 
2112 	return 0;
2113 }
2114 
2115 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2116 {
2117 	struct hnae_handle *h = priv->ae_handle;
2118 	int i;
2119 
2120 	for (i = 0; i < h->q_num * 2; i++) {
2121 		netif_napi_del(&priv->ring_data[i].napi);
2122 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2123 			(void)irq_set_affinity_hint(
2124 				priv->ring_data[i].ring->irq,
2125 				NULL);
2126 			free_irq(priv->ring_data[i].ring->irq,
2127 				 &priv->ring_data[i]);
2128 		}
2129 
2130 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2131 	}
2132 	kfree(priv->ring_data);
2133 }
2134 
2135 static void hns_nic_set_priv_ops(struct net_device *netdev)
2136 {
2137 	struct hns_nic_priv *priv = netdev_priv(netdev);
2138 	struct hnae_handle *h = priv->ae_handle;
2139 
2140 	if (AE_IS_VER1(priv->enet_ver)) {
2141 		priv->ops.fill_desc = fill_desc;
2142 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2143 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2144 	} else {
2145 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2146 		if ((netdev->features & NETIF_F_TSO) ||
2147 		    (netdev->features & NETIF_F_TSO6)) {
2148 			priv->ops.fill_desc = fill_tso_desc;
2149 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2150 			/* This chip only support 7*4096 */
2151 			netif_set_gso_max_size(netdev, 7 * 4096);
2152 		} else {
2153 			priv->ops.fill_desc = fill_v2_desc;
2154 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2155 		}
2156 		/* enable tso when init
2157 		 * control tso on/off through TSE bit in bd
2158 		 */
2159 		h->dev->ops->set_tso_stats(h, 1);
2160 	}
2161 }
2162 
2163 static int hns_nic_try_get_ae(struct net_device *ndev)
2164 {
2165 	struct hns_nic_priv *priv = netdev_priv(ndev);
2166 	struct hnae_handle *h;
2167 	int ret;
2168 
2169 	h = hnae_get_handle(&priv->netdev->dev,
2170 			    priv->fwnode, priv->port_id, NULL);
2171 	if (IS_ERR_OR_NULL(h)) {
2172 		ret = -ENODEV;
2173 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2174 		goto out;
2175 	}
2176 	priv->ae_handle = h;
2177 
2178 	ret = hns_nic_init_phy(ndev, h);
2179 	if (ret) {
2180 		dev_err(priv->dev, "probe phy device fail!\n");
2181 		goto out_init_phy;
2182 	}
2183 
2184 	ret = hns_nic_init_ring_data(priv);
2185 	if (ret) {
2186 		ret = -ENOMEM;
2187 		goto out_init_ring_data;
2188 	}
2189 
2190 	hns_nic_set_priv_ops(ndev);
2191 
2192 	ret = register_netdev(ndev);
2193 	if (ret) {
2194 		dev_err(priv->dev, "probe register netdev fail!\n");
2195 		goto out_reg_ndev_fail;
2196 	}
2197 	return 0;
2198 
2199 out_reg_ndev_fail:
2200 	hns_nic_uninit_ring_data(priv);
2201 	priv->ring_data = NULL;
2202 out_init_phy:
2203 out_init_ring_data:
2204 	hnae_put_handle(priv->ae_handle);
2205 	priv->ae_handle = NULL;
2206 out:
2207 	return ret;
2208 }
2209 
2210 static int hns_nic_notifier_action(struct notifier_block *nb,
2211 				   unsigned long action, void *data)
2212 {
2213 	struct hns_nic_priv *priv =
2214 		container_of(nb, struct hns_nic_priv, notifier_block);
2215 
2216 	assert(action == HNAE_AE_REGISTER);
2217 
2218 	if (!hns_nic_try_get_ae(priv->netdev)) {
2219 		hnae_unregister_notifier(&priv->notifier_block);
2220 		priv->notifier_block.notifier_call = NULL;
2221 	}
2222 	return 0;
2223 }
2224 
2225 static int hns_nic_dev_probe(struct platform_device *pdev)
2226 {
2227 	struct device *dev = &pdev->dev;
2228 	struct net_device *ndev;
2229 	struct hns_nic_priv *priv;
2230 	u32 port_id;
2231 	int ret;
2232 
2233 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2234 	if (!ndev)
2235 		return -ENOMEM;
2236 
2237 	platform_set_drvdata(pdev, ndev);
2238 
2239 	priv = netdev_priv(ndev);
2240 	priv->dev = dev;
2241 	priv->netdev = ndev;
2242 
2243 	if (dev_of_node(dev)) {
2244 		struct device_node *ae_node;
2245 
2246 		if (of_device_is_compatible(dev->of_node,
2247 					    "hisilicon,hns-nic-v1"))
2248 			priv->enet_ver = AE_VERSION_1;
2249 		else
2250 			priv->enet_ver = AE_VERSION_2;
2251 
2252 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2253 		if (IS_ERR_OR_NULL(ae_node)) {
2254 			ret = PTR_ERR(ae_node);
2255 			dev_err(dev, "not find ae-handle\n");
2256 			goto out_read_prop_fail;
2257 		}
2258 		priv->fwnode = &ae_node->fwnode;
2259 	} else if (is_acpi_node(dev->fwnode)) {
2260 		struct acpi_reference_args args;
2261 
2262 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2263 			priv->enet_ver = AE_VERSION_1;
2264 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2265 			priv->enet_ver = AE_VERSION_2;
2266 		else
2267 			return -ENXIO;
2268 
2269 		/* try to find port-idx-in-ae first */
2270 		ret = acpi_node_get_property_reference(dev->fwnode,
2271 						       "ae-handle", 0, &args);
2272 		if (ret) {
2273 			dev_err(dev, "not find ae-handle\n");
2274 			goto out_read_prop_fail;
2275 		}
2276 		priv->fwnode = acpi_fwnode_handle(args.adev);
2277 	} else {
2278 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2279 		return -ENXIO;
2280 	}
2281 
2282 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2283 	if (ret) {
2284 		/* only for old code compatible */
2285 		ret = device_property_read_u32(dev, "port-id", &port_id);
2286 		if (ret)
2287 			goto out_read_prop_fail;
2288 		/* for old dts, we need to caculate the port offset */
2289 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2290 			: port_id - HNS_SRV_OFFSET;
2291 	}
2292 	priv->port_id = port_id;
2293 
2294 	hns_init_mac_addr(ndev);
2295 
2296 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2297 	ndev->priv_flags |= IFF_UNICAST_FLT;
2298 	ndev->netdev_ops = &hns_nic_netdev_ops;
2299 	hns_ethtool_set_ops(ndev);
2300 
2301 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2302 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2303 		NETIF_F_GRO;
2304 	ndev->vlan_features |=
2305 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2306 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2307 
2308 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2309 	ndev->min_mtu = MAC_MIN_MTU;
2310 	switch (priv->enet_ver) {
2311 	case AE_VERSION_2:
2312 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
2313 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2314 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2315 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2316 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2317 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2318 		break;
2319 	default:
2320 		ndev->max_mtu = MAC_MAX_MTU -
2321 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2322 		break;
2323 	}
2324 
2325 	SET_NETDEV_DEV(ndev, dev);
2326 
2327 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2328 		dev_dbg(dev, "set mask to 64bit\n");
2329 	else
2330 		dev_err(dev, "set mask to 64bit fail!\n");
2331 
2332 	/* carrier off reporting is important to ethtool even BEFORE open */
2333 	netif_carrier_off(ndev);
2334 
2335 	setup_timer(&priv->service_timer, hns_nic_service_timer,
2336 		    (unsigned long)priv);
2337 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2338 
2339 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2340 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2341 	set_bit(NIC_STATE_DOWN, &priv->state);
2342 
2343 	if (hns_nic_try_get_ae(priv->netdev)) {
2344 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2345 		ret = hnae_register_notifier(&priv->notifier_block);
2346 		if (ret) {
2347 			dev_err(dev, "register notifier fail!\n");
2348 			goto out_notify_fail;
2349 		}
2350 		dev_dbg(dev, "has not handle, register notifier!\n");
2351 	}
2352 
2353 	return 0;
2354 
2355 out_notify_fail:
2356 	(void)cancel_work_sync(&priv->service_task);
2357 out_read_prop_fail:
2358 	free_netdev(ndev);
2359 	return ret;
2360 }
2361 
2362 static int hns_nic_dev_remove(struct platform_device *pdev)
2363 {
2364 	struct net_device *ndev = platform_get_drvdata(pdev);
2365 	struct hns_nic_priv *priv = netdev_priv(ndev);
2366 
2367 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2368 		unregister_netdev(ndev);
2369 
2370 	if (priv->ring_data)
2371 		hns_nic_uninit_ring_data(priv);
2372 	priv->ring_data = NULL;
2373 
2374 	if (ndev->phydev)
2375 		phy_disconnect(ndev->phydev);
2376 
2377 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2378 		hnae_put_handle(priv->ae_handle);
2379 	priv->ae_handle = NULL;
2380 	if (priv->notifier_block.notifier_call)
2381 		hnae_unregister_notifier(&priv->notifier_block);
2382 	priv->notifier_block.notifier_call = NULL;
2383 
2384 	set_bit(NIC_STATE_REMOVING, &priv->state);
2385 	(void)cancel_work_sync(&priv->service_task);
2386 
2387 	free_netdev(ndev);
2388 	return 0;
2389 }
2390 
2391 static const struct of_device_id hns_enet_of_match[] = {
2392 	{.compatible = "hisilicon,hns-nic-v1",},
2393 	{.compatible = "hisilicon,hns-nic-v2",},
2394 	{},
2395 };
2396 
2397 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2398 
2399 static struct platform_driver hns_nic_dev_driver = {
2400 	.driver = {
2401 		.name = "hns-nic",
2402 		.of_match_table = hns_enet_of_match,
2403 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2404 	},
2405 	.probe = hns_nic_dev_probe,
2406 	.remove = hns_nic_dev_remove,
2407 };
2408 
2409 module_platform_driver(hns_nic_dev_driver);
2410 
2411 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2412 MODULE_AUTHOR("Hisilicon, Inc.");
2413 MODULE_LICENSE("GPL");
2414 MODULE_ALIAS("platform:hns-nic");
2415