1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2014-2015 Hisilicon Limited. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/cpumask.h> 8 #include <linux/etherdevice.h> 9 #include <linux/if_vlan.h> 10 #include <linux/interrupt.h> 11 #include <linux/io.h> 12 #include <linux/ip.h> 13 #include <linux/ipv6.h> 14 #include <linux/irq.h> 15 #include <linux/module.h> 16 #include <linux/phy.h> 17 #include <linux/platform_device.h> 18 #include <linux/skbuff.h> 19 20 #include "hnae.h" 21 #include "hns_enet.h" 22 #include "hns_dsaf_mac.h" 23 24 #define NIC_MAX_Q_PER_VF 16 25 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 26 27 #define SERVICE_TIMER_HZ (1 * HZ) 28 29 #define RCB_IRQ_NOT_INITED 0 30 #define RCB_IRQ_INITED 1 31 #define HNS_BUFFER_SIZE_2048 2048 32 33 #define BD_MAX_SEND_SIZE 8191 34 35 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size, 36 int send_sz, dma_addr_t dma, int frag_end, 37 int buf_num, enum hns_desc_type type, int mtu) 38 { 39 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 40 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 41 struct iphdr *iphdr; 42 struct ipv6hdr *ipv6hdr; 43 struct sk_buff *skb; 44 __be16 protocol; 45 u8 bn_pid = 0; 46 u8 rrcfv = 0; 47 u8 ip_offset = 0; 48 u8 tvsvsn = 0; 49 u16 mss = 0; 50 u8 l4_len = 0; 51 u16 paylen = 0; 52 53 desc_cb->priv = priv; 54 desc_cb->length = size; 55 desc_cb->dma = dma; 56 desc_cb->type = type; 57 58 desc->addr = cpu_to_le64(dma); 59 desc->tx.send_size = cpu_to_le16((u16)send_sz); 60 61 /* config bd buffer end */ 62 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 63 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 64 65 /* fill port_id in the tx bd for sending management pkts */ 66 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 67 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 68 69 if (type == DESC_TYPE_SKB) { 70 skb = (struct sk_buff *)priv; 71 72 if (skb->ip_summed == CHECKSUM_PARTIAL) { 73 skb_reset_mac_len(skb); 74 protocol = skb->protocol; 75 ip_offset = ETH_HLEN; 76 77 if (protocol == htons(ETH_P_8021Q)) { 78 ip_offset += VLAN_HLEN; 79 protocol = vlan_get_protocol(skb); 80 skb->protocol = protocol; 81 } 82 83 if (skb->protocol == htons(ETH_P_IP)) { 84 iphdr = ip_hdr(skb); 85 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 86 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 87 88 /* check for tcp/udp header */ 89 if (iphdr->protocol == IPPROTO_TCP && 90 skb_is_gso(skb)) { 91 hnae_set_bit(tvsvsn, 92 HNSV2_TXD_TSE_B, 1); 93 l4_len = tcp_hdrlen(skb); 94 mss = skb_shinfo(skb)->gso_size; 95 paylen = skb->len - skb_tcp_all_headers(skb); 96 } 97 } else if (skb->protocol == htons(ETH_P_IPV6)) { 98 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 99 ipv6hdr = ipv6_hdr(skb); 100 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 101 102 /* check for tcp/udp header */ 103 if (ipv6hdr->nexthdr == IPPROTO_TCP && 104 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 105 hnae_set_bit(tvsvsn, 106 HNSV2_TXD_TSE_B, 1); 107 l4_len = tcp_hdrlen(skb); 108 mss = skb_shinfo(skb)->gso_size; 109 paylen = skb->len - skb_tcp_all_headers(skb); 110 } 111 } 112 desc->tx.ip_offset = ip_offset; 113 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 114 desc->tx.mss = cpu_to_le16(mss); 115 desc->tx.l4_len = l4_len; 116 desc->tx.paylen = cpu_to_le16(paylen); 117 } 118 } 119 120 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 121 122 desc->tx.bn_pid = bn_pid; 123 desc->tx.ra_ri_cs_fe_vld = rrcfv; 124 125 ring_ptr_move_fw(ring, next_to_use); 126 } 127 128 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 129 int size, dma_addr_t dma, int frag_end, 130 int buf_num, enum hns_desc_type type, int mtu) 131 { 132 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end, 133 buf_num, type, mtu); 134 } 135 136 static const struct acpi_device_id hns_enet_acpi_match[] = { 137 { "HISI00C1", 0 }, 138 { "HISI00C2", 0 }, 139 { }, 140 }; 141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 142 143 static void fill_desc(struct hnae_ring *ring, void *priv, 144 int size, dma_addr_t dma, int frag_end, 145 int buf_num, enum hns_desc_type type, int mtu, 146 bool is_gso) 147 { 148 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 149 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 150 struct sk_buff *skb; 151 __be16 protocol; 152 u32 ip_offset; 153 u32 asid_bufnum_pid = 0; 154 u32 flag_ipoffset = 0; 155 156 desc_cb->priv = priv; 157 desc_cb->length = size; 158 desc_cb->dma = dma; 159 desc_cb->type = type; 160 161 desc->addr = cpu_to_le64(dma); 162 desc->tx.send_size = cpu_to_le16((u16)size); 163 164 /*config bd buffer end */ 165 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 166 167 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 168 169 if (type == DESC_TYPE_SKB) { 170 skb = (struct sk_buff *)priv; 171 172 if (skb->ip_summed == CHECKSUM_PARTIAL) { 173 protocol = skb->protocol; 174 ip_offset = ETH_HLEN; 175 176 /*if it is a SW VLAN check the next protocol*/ 177 if (protocol == htons(ETH_P_8021Q)) { 178 ip_offset += VLAN_HLEN; 179 protocol = vlan_get_protocol(skb); 180 skb->protocol = protocol; 181 } 182 183 if (skb->protocol == htons(ETH_P_IP)) { 184 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 185 /* check for tcp/udp header */ 186 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 187 188 } else if (skb->protocol == htons(ETH_P_IPV6)) { 189 /* ipv6 has not l3 cs, check for L4 header */ 190 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 191 } 192 193 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 194 } 195 } 196 197 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 198 199 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 200 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 201 202 ring_ptr_move_fw(ring, next_to_use); 203 } 204 205 static void unfill_desc(struct hnae_ring *ring) 206 { 207 ring_ptr_move_bw(ring, next_to_use); 208 } 209 210 static int hns_nic_maybe_stop_tx( 211 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 212 { 213 struct sk_buff *skb = *out_skb; 214 struct sk_buff *new_skb = NULL; 215 int buf_num; 216 217 /* no. of segments (plus a header) */ 218 buf_num = skb_shinfo(skb)->nr_frags + 1; 219 220 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 221 if (ring_space(ring) < 1) 222 return -EBUSY; 223 224 new_skb = skb_copy(skb, GFP_ATOMIC); 225 if (!new_skb) 226 return -ENOMEM; 227 228 dev_kfree_skb_any(skb); 229 *out_skb = new_skb; 230 buf_num = 1; 231 } else if (buf_num > ring_space(ring)) { 232 return -EBUSY; 233 } 234 235 *bnum = buf_num; 236 return 0; 237 } 238 239 static int hns_nic_maybe_stop_tso( 240 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 241 { 242 int i; 243 int size; 244 int buf_num; 245 int frag_num; 246 struct sk_buff *skb = *out_skb; 247 struct sk_buff *new_skb = NULL; 248 skb_frag_t *frag; 249 250 size = skb_headlen(skb); 251 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 252 253 frag_num = skb_shinfo(skb)->nr_frags; 254 for (i = 0; i < frag_num; i++) { 255 frag = &skb_shinfo(skb)->frags[i]; 256 size = skb_frag_size(frag); 257 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 258 } 259 260 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 261 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 262 if (ring_space(ring) < buf_num) 263 return -EBUSY; 264 /* manual split the send packet */ 265 new_skb = skb_copy(skb, GFP_ATOMIC); 266 if (!new_skb) 267 return -ENOMEM; 268 dev_kfree_skb_any(skb); 269 *out_skb = new_skb; 270 271 } else if (ring_space(ring) < buf_num) { 272 return -EBUSY; 273 } 274 275 *bnum = buf_num; 276 return 0; 277 } 278 279 static int hns_nic_maybe_stop_tx_v2(struct sk_buff **out_skb, int *bnum, 280 struct hnae_ring *ring) 281 { 282 if (skb_is_gso(*out_skb)) 283 return hns_nic_maybe_stop_tso(out_skb, bnum, ring); 284 else 285 return hns_nic_maybe_stop_tx(out_skb, bnum, ring); 286 } 287 288 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 289 int size, dma_addr_t dma, int frag_end, 290 int buf_num, enum hns_desc_type type, int mtu) 291 { 292 int frag_buf_num; 293 int sizeoflast; 294 int k; 295 296 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 297 sizeoflast = size % BD_MAX_SEND_SIZE; 298 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 299 300 /* when the frag size is bigger than hardware, split this frag */ 301 for (k = 0; k < frag_buf_num; k++) 302 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0, 303 (k == frag_buf_num - 1) ? 304 sizeoflast : BD_MAX_SEND_SIZE, 305 dma + BD_MAX_SEND_SIZE * k, 306 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 307 buf_num, 308 (type == DESC_TYPE_SKB && !k) ? 309 DESC_TYPE_SKB : DESC_TYPE_PAGE, 310 mtu); 311 } 312 313 static void fill_desc_v2(struct hnae_ring *ring, void *priv, 314 int size, dma_addr_t dma, int frag_end, 315 int buf_num, enum hns_desc_type type, int mtu, 316 bool is_gso) 317 { 318 if (is_gso) 319 fill_tso_desc(ring, priv, size, dma, frag_end, buf_num, type, 320 mtu); 321 else 322 fill_v2_desc(ring, priv, size, dma, frag_end, buf_num, type, 323 mtu); 324 } 325 326 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev, 327 struct sk_buff *skb, 328 struct hns_nic_ring_data *ring_data) 329 { 330 struct hns_nic_priv *priv = netdev_priv(ndev); 331 struct hnae_ring *ring = ring_data->ring; 332 struct device *dev = ring_to_dev(ring); 333 struct netdev_queue *dev_queue; 334 skb_frag_t *frag; 335 int buf_num; 336 int seg_num; 337 dma_addr_t dma; 338 int size, next_to_use; 339 bool is_gso; 340 int i; 341 342 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 343 case -EBUSY: 344 ring->stats.tx_busy++; 345 goto out_net_tx_busy; 346 case -ENOMEM: 347 ring->stats.sw_err_cnt++; 348 netdev_err(ndev, "no memory to xmit!\n"); 349 goto out_err_tx_ok; 350 default: 351 break; 352 } 353 354 /* no. of segments (plus a header) */ 355 seg_num = skb_shinfo(skb)->nr_frags + 1; 356 next_to_use = ring->next_to_use; 357 358 /* fill the first part */ 359 size = skb_headlen(skb); 360 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 361 if (dma_mapping_error(dev, dma)) { 362 netdev_err(ndev, "TX head DMA map failed\n"); 363 ring->stats.sw_err_cnt++; 364 goto out_err_tx_ok; 365 } 366 is_gso = skb_is_gso(skb); 367 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 368 buf_num, DESC_TYPE_SKB, ndev->mtu, is_gso); 369 370 /* fill the fragments */ 371 for (i = 1; i < seg_num; i++) { 372 frag = &skb_shinfo(skb)->frags[i - 1]; 373 size = skb_frag_size(frag); 374 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 375 if (dma_mapping_error(dev, dma)) { 376 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 377 ring->stats.sw_err_cnt++; 378 goto out_map_frag_fail; 379 } 380 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 381 seg_num - 1 == i ? 1 : 0, buf_num, 382 DESC_TYPE_PAGE, ndev->mtu, is_gso); 383 } 384 385 /*complete translate all packets*/ 386 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 387 netdev_tx_sent_queue(dev_queue, skb->len); 388 389 netif_trans_update(ndev); 390 ndev->stats.tx_bytes += skb->len; 391 ndev->stats.tx_packets++; 392 393 wmb(); /* commit all data before submit */ 394 assert(skb->queue_mapping < priv->ae_handle->q_num); 395 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 396 397 return NETDEV_TX_OK; 398 399 out_map_frag_fail: 400 401 while (ring->next_to_use != next_to_use) { 402 unfill_desc(ring); 403 if (ring->next_to_use != next_to_use) 404 dma_unmap_page(dev, 405 ring->desc_cb[ring->next_to_use].dma, 406 ring->desc_cb[ring->next_to_use].length, 407 DMA_TO_DEVICE); 408 else 409 dma_unmap_single(dev, 410 ring->desc_cb[next_to_use].dma, 411 ring->desc_cb[next_to_use].length, 412 DMA_TO_DEVICE); 413 } 414 415 out_err_tx_ok: 416 417 dev_kfree_skb_any(skb); 418 return NETDEV_TX_OK; 419 420 out_net_tx_busy: 421 422 netif_stop_subqueue(ndev, skb->queue_mapping); 423 424 /* Herbert's original patch had: 425 * smp_mb__after_netif_stop_queue(); 426 * but since that doesn't exist yet, just open code it. 427 */ 428 smp_mb(); 429 return NETDEV_TX_BUSY; 430 } 431 432 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 433 struct hnae_ring *ring, int pull_len, 434 struct hnae_desc_cb *desc_cb) 435 { 436 struct hnae_desc *desc; 437 u32 truesize; 438 int size; 439 int last_offset; 440 bool twobufs; 441 442 twobufs = ((PAGE_SIZE < 8192) && 443 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 444 445 desc = &ring->desc[ring->next_to_clean]; 446 size = le16_to_cpu(desc->rx.size); 447 448 if (twobufs) { 449 truesize = hnae_buf_size(ring); 450 } else { 451 truesize = ALIGN(size, L1_CACHE_BYTES); 452 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 453 } 454 455 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 456 size - pull_len, truesize); 457 458 /* avoid re-using remote pages,flag default unreuse */ 459 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 460 return; 461 462 if (twobufs) { 463 /* if we are only owner of page we can reuse it */ 464 if (likely(page_count(desc_cb->priv) == 1)) { 465 /* flip page offset to other buffer */ 466 desc_cb->page_offset ^= truesize; 467 468 desc_cb->reuse_flag = 1; 469 /* bump ref count on page before it is given*/ 470 get_page(desc_cb->priv); 471 } 472 return; 473 } 474 475 /* move offset up to the next cache line */ 476 desc_cb->page_offset += truesize; 477 478 if (desc_cb->page_offset <= last_offset) { 479 desc_cb->reuse_flag = 1; 480 /* bump ref count on page before it is given*/ 481 get_page(desc_cb->priv); 482 } 483 } 484 485 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 486 { 487 *out_bnum = hnae_get_field(bnum_flag, 488 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 489 } 490 491 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 492 { 493 *out_bnum = hnae_get_field(bnum_flag, 494 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 495 } 496 497 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 498 struct sk_buff *skb, u32 flag) 499 { 500 struct net_device *netdev = ring_data->napi.dev; 501 u32 l3id; 502 u32 l4id; 503 504 /* check if RX checksum offload is enabled */ 505 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 506 return; 507 508 /* In hardware, we only support checksum for the following protocols: 509 * 1) IPv4, 510 * 2) TCP(over IPv4 or IPv6), 511 * 3) UDP(over IPv4 or IPv6), 512 * 4) SCTP(over IPv4 or IPv6) 513 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 514 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 515 * 516 * Hardware limitation: 517 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 518 * Error" bit (which usually can be used to indicate whether checksum 519 * was calculated by the hardware and if there was any error encountered 520 * during checksum calculation). 521 * 522 * Software workaround: 523 * We do get info within the RX descriptor about the kind of L3/L4 524 * protocol coming in the packet and the error status. These errors 525 * might not just be checksum errors but could be related to version, 526 * length of IPv4, UDP, TCP etc. 527 * Because there is no-way of knowing if it is a L3/L4 error due to bad 528 * checksum or any other L3/L4 error, we will not (cannot) convey 529 * checksum status for such cases to upper stack and will not maintain 530 * the RX L3/L4 checksum counters as well. 531 */ 532 533 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 534 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 535 536 /* check L3 protocol for which checksum is supported */ 537 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 538 return; 539 540 /* check for any(not just checksum)flagged L3 protocol errors */ 541 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 542 return; 543 544 /* we do not support checksum of fragmented packets */ 545 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 546 return; 547 548 /* check L4 protocol for which checksum is supported */ 549 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 550 (l4id != HNS_RX_FLAG_L4ID_UDP) && 551 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 552 return; 553 554 /* check for any(not just checksum)flagged L4 protocol errors */ 555 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 556 return; 557 558 /* now, this has to be a packet with valid RX checksum */ 559 skb->ip_summed = CHECKSUM_UNNECESSARY; 560 } 561 562 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 563 struct sk_buff **out_skb, int *out_bnum) 564 { 565 struct hnae_ring *ring = ring_data->ring; 566 struct net_device *ndev = ring_data->napi.dev; 567 struct hns_nic_priv *priv = netdev_priv(ndev); 568 struct sk_buff *skb; 569 struct hnae_desc *desc; 570 struct hnae_desc_cb *desc_cb; 571 unsigned char *va; 572 int bnum, length, i; 573 int pull_len; 574 u32 bnum_flag; 575 576 desc = &ring->desc[ring->next_to_clean]; 577 desc_cb = &ring->desc_cb[ring->next_to_clean]; 578 579 prefetch(desc); 580 581 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 582 583 /* prefetch first cache line of first page */ 584 net_prefetch(va); 585 586 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 587 HNS_RX_HEAD_SIZE); 588 if (unlikely(!skb)) { 589 ring->stats.sw_err_cnt++; 590 return -ENOMEM; 591 } 592 593 prefetchw(skb->data); 594 length = le16_to_cpu(desc->rx.pkt_len); 595 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 596 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 597 *out_bnum = bnum; 598 599 if (length <= HNS_RX_HEAD_SIZE) { 600 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 601 602 /* we can reuse buffer as-is, just make sure it is local */ 603 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 604 desc_cb->reuse_flag = 1; 605 else /* this page cannot be reused so discard it */ 606 put_page(desc_cb->priv); 607 608 ring_ptr_move_fw(ring, next_to_clean); 609 610 if (unlikely(bnum != 1)) { /* check err*/ 611 *out_bnum = 1; 612 goto out_bnum_err; 613 } 614 } else { 615 ring->stats.seg_pkt_cnt++; 616 617 pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE); 618 memcpy(__skb_put(skb, pull_len), va, 619 ALIGN(pull_len, sizeof(long))); 620 621 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 622 ring_ptr_move_fw(ring, next_to_clean); 623 624 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 625 *out_bnum = 1; 626 goto out_bnum_err; 627 } 628 for (i = 1; i < bnum; i++) { 629 desc = &ring->desc[ring->next_to_clean]; 630 desc_cb = &ring->desc_cb[ring->next_to_clean]; 631 632 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 633 ring_ptr_move_fw(ring, next_to_clean); 634 } 635 } 636 637 /* check except process, free skb and jump the desc */ 638 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 639 out_bnum_err: 640 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 641 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 642 bnum, ring->max_desc_num_per_pkt, 643 length, (int)MAX_SKB_FRAGS, 644 ((u64 *)desc)[0], ((u64 *)desc)[1]); 645 ring->stats.err_bd_num++; 646 dev_kfree_skb_any(skb); 647 return -EDOM; 648 } 649 650 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 651 652 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 653 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 654 ((u64 *)desc)[0], ((u64 *)desc)[1]); 655 ring->stats.non_vld_descs++; 656 dev_kfree_skb_any(skb); 657 return -EINVAL; 658 } 659 660 if (unlikely((!desc->rx.pkt_len) || 661 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 662 ring->stats.err_pkt_len++; 663 dev_kfree_skb_any(skb); 664 return -EFAULT; 665 } 666 667 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 668 ring->stats.l2_err++; 669 dev_kfree_skb_any(skb); 670 return -EFAULT; 671 } 672 673 ring->stats.rx_pkts++; 674 ring->stats.rx_bytes += skb->len; 675 676 /* indicate to upper stack if our hardware has already calculated 677 * the RX checksum 678 */ 679 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 680 681 return 0; 682 } 683 684 static void 685 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 686 { 687 int i, ret; 688 struct hnae_desc_cb res_cbs; 689 struct hnae_desc_cb *desc_cb; 690 struct hnae_ring *ring = ring_data->ring; 691 struct net_device *ndev = ring_data->napi.dev; 692 693 for (i = 0; i < cleand_count; i++) { 694 desc_cb = &ring->desc_cb[ring->next_to_use]; 695 if (desc_cb->reuse_flag) { 696 ring->stats.reuse_pg_cnt++; 697 hnae_reuse_buffer(ring, ring->next_to_use); 698 } else { 699 ret = hnae_reserve_buffer_map(ring, &res_cbs); 700 if (ret) { 701 ring->stats.sw_err_cnt++; 702 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 703 break; 704 } 705 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 706 } 707 708 ring_ptr_move_fw(ring, next_to_use); 709 } 710 711 wmb(); /* make all data has been write before submit */ 712 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 713 } 714 715 /* return error number for error or number of desc left to take 716 */ 717 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 718 struct sk_buff *skb) 719 { 720 struct net_device *ndev = ring_data->napi.dev; 721 722 skb->protocol = eth_type_trans(skb, ndev); 723 napi_gro_receive(&ring_data->napi, skb); 724 } 725 726 static int hns_desc_unused(struct hnae_ring *ring) 727 { 728 int ntc = ring->next_to_clean; 729 int ntu = ring->next_to_use; 730 731 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 732 } 733 734 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */ 735 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */ 736 737 #define HNS_COAL_BDNUM 3 738 739 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring) 740 { 741 bool coal_enable = ring->q->handle->coal_adapt_en; 742 743 if (coal_enable && 744 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE) 745 return HNS_COAL_BDNUM; 746 else 747 return 0; 748 } 749 750 static void hns_update_rx_rate(struct hnae_ring *ring) 751 { 752 bool coal_enable = ring->q->handle->coal_adapt_en; 753 u32 time_passed_ms; 754 u64 total_bytes; 755 756 if (!coal_enable || 757 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4))) 758 return; 759 760 /* ring->stats.rx_bytes overflowed */ 761 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) { 762 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 763 ring->coal_last_jiffies = jiffies; 764 return; 765 } 766 767 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes; 768 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies); 769 do_div(total_bytes, time_passed_ms); 770 ring->coal_rx_rate = total_bytes >> 10; 771 772 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 773 ring->coal_last_jiffies = jiffies; 774 } 775 776 /** 777 * smooth_alg - smoothing algrithm for adjusting coalesce parameter 778 * @new_param: new value 779 * @old_param: old value 780 **/ 781 static u32 smooth_alg(u32 new_param, u32 old_param) 782 { 783 u32 gap = (new_param > old_param) ? new_param - old_param 784 : old_param - new_param; 785 786 if (gap > 8) 787 gap >>= 3; 788 789 if (new_param > old_param) 790 return old_param + gap; 791 else 792 return old_param - gap; 793 } 794 795 /** 796 * hns_nic_adpt_coalesce - self adapte coalesce according to rx rate 797 * @ring_data: pointer to hns_nic_ring_data 798 **/ 799 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data) 800 { 801 struct hnae_ring *ring = ring_data->ring; 802 struct hnae_handle *handle = ring->q->handle; 803 u32 new_coal_param, old_coal_param = ring->coal_param; 804 805 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE) 806 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM; 807 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE) 808 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM; 809 else 810 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM; 811 812 if (new_coal_param == old_coal_param && 813 new_coal_param == handle->coal_param) 814 return; 815 816 new_coal_param = smooth_alg(new_coal_param, old_coal_param); 817 ring->coal_param = new_coal_param; 818 819 /** 820 * Because all ring in one port has one coalesce param, when one ring 821 * calculate its own coalesce param, it cannot write to hardware at 822 * once. There are three conditions as follows: 823 * 1. current ring's coalesce param is larger than the hardware. 824 * 2. or ring which adapt last time can change again. 825 * 3. timeout. 826 */ 827 if (new_coal_param == handle->coal_param) { 828 handle->coal_last_jiffies = jiffies; 829 handle->coal_ring_idx = ring_data->queue_index; 830 } else if (new_coal_param > handle->coal_param || 831 handle->coal_ring_idx == ring_data->queue_index || 832 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) { 833 handle->dev->ops->set_coalesce_usecs(handle, 834 new_coal_param); 835 handle->dev->ops->set_coalesce_frames(handle, 836 1, new_coal_param); 837 handle->coal_param = new_coal_param; 838 handle->coal_ring_idx = ring_data->queue_index; 839 handle->coal_last_jiffies = jiffies; 840 } 841 } 842 843 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 844 int budget, void *v) 845 { 846 struct hnae_ring *ring = ring_data->ring; 847 struct sk_buff *skb; 848 int num, bnum; 849 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 850 int recv_pkts, recv_bds, clean_count, err; 851 int unused_count = hns_desc_unused(ring); 852 853 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 854 rmb(); /* make sure num taken effect before the other data is touched */ 855 856 recv_pkts = 0, recv_bds = 0, clean_count = 0; 857 num -= unused_count; 858 859 while (recv_pkts < budget && recv_bds < num) { 860 /* reuse or realloc buffers */ 861 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 862 hns_nic_alloc_rx_buffers(ring_data, 863 clean_count + unused_count); 864 clean_count = 0; 865 unused_count = hns_desc_unused(ring); 866 } 867 868 /* poll one pkt */ 869 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 870 if (unlikely(!skb)) /* this fault cannot be repaired */ 871 goto out; 872 873 recv_bds += bnum; 874 clean_count += bnum; 875 if (unlikely(err)) { /* do jump the err */ 876 recv_pkts++; 877 continue; 878 } 879 880 /* do update ip stack process*/ 881 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 882 ring_data, skb); 883 recv_pkts++; 884 } 885 886 out: 887 /* make all data has been write before submit */ 888 if (clean_count + unused_count > 0) 889 hns_nic_alloc_rx_buffers(ring_data, 890 clean_count + unused_count); 891 892 return recv_pkts; 893 } 894 895 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 896 { 897 struct hnae_ring *ring = ring_data->ring; 898 int num; 899 bool rx_stopped; 900 901 hns_update_rx_rate(ring); 902 903 /* for hardware bug fixed */ 904 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 905 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 906 907 if (num <= hns_coal_rx_bdnum(ring)) { 908 if (ring->q->handle->coal_adapt_en) 909 hns_nic_adpt_coalesce(ring_data); 910 911 rx_stopped = true; 912 } else { 913 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 914 ring_data->ring, 1); 915 916 rx_stopped = false; 917 } 918 919 return rx_stopped; 920 } 921 922 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 923 { 924 struct hnae_ring *ring = ring_data->ring; 925 int num; 926 927 hns_update_rx_rate(ring); 928 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 929 930 if (num <= hns_coal_rx_bdnum(ring)) { 931 if (ring->q->handle->coal_adapt_en) 932 hns_nic_adpt_coalesce(ring_data); 933 934 return true; 935 } 936 937 return false; 938 } 939 940 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 941 int *bytes, int *pkts) 942 { 943 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 944 945 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 946 (*bytes) += desc_cb->length; 947 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 948 hnae_free_buffer_detach(ring, ring->next_to_clean); 949 950 ring_ptr_move_fw(ring, next_to_clean); 951 } 952 953 static int is_valid_clean_head(struct hnae_ring *ring, int h) 954 { 955 int u = ring->next_to_use; 956 int c = ring->next_to_clean; 957 958 if (unlikely(h > ring->desc_num)) 959 return 0; 960 961 assert(u > 0 && u < ring->desc_num); 962 assert(c > 0 && c < ring->desc_num); 963 assert(u != c && h != c); /* must be checked before call this func */ 964 965 return u > c ? (h > c && h <= u) : (h > c || h <= u); 966 } 967 968 /* reclaim all desc in one budget 969 * return error or number of desc left 970 */ 971 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 972 int budget, void *v) 973 { 974 struct hnae_ring *ring = ring_data->ring; 975 struct net_device *ndev = ring_data->napi.dev; 976 struct netdev_queue *dev_queue; 977 struct hns_nic_priv *priv = netdev_priv(ndev); 978 int head; 979 int bytes, pkts; 980 981 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 982 rmb(); /* make sure head is ready before touch any data */ 983 984 if (is_ring_empty(ring) || head == ring->next_to_clean) 985 return 0; /* no data to poll */ 986 987 if (!is_valid_clean_head(ring, head)) { 988 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 989 ring->next_to_use, ring->next_to_clean); 990 ring->stats.io_err_cnt++; 991 return -EIO; 992 } 993 994 bytes = 0; 995 pkts = 0; 996 while (head != ring->next_to_clean) { 997 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 998 /* issue prefetch for next Tx descriptor */ 999 prefetch(&ring->desc_cb[ring->next_to_clean]); 1000 } 1001 /* update tx ring statistics. */ 1002 ring->stats.tx_pkts += pkts; 1003 ring->stats.tx_bytes += bytes; 1004 1005 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1006 netdev_tx_completed_queue(dev_queue, pkts, bytes); 1007 1008 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 1009 netif_carrier_on(ndev); 1010 1011 if (unlikely(pkts && netif_carrier_ok(ndev) && 1012 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 1013 /* Make sure that anybody stopping the queue after this 1014 * sees the new next_to_clean. 1015 */ 1016 smp_mb(); 1017 if (netif_tx_queue_stopped(dev_queue) && 1018 !test_bit(NIC_STATE_DOWN, &priv->state)) { 1019 netif_tx_wake_queue(dev_queue); 1020 ring->stats.restart_queue++; 1021 } 1022 } 1023 return 0; 1024 } 1025 1026 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 1027 { 1028 struct hnae_ring *ring = ring_data->ring; 1029 int head; 1030 1031 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1032 1033 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1034 1035 if (head != ring->next_to_clean) { 1036 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1037 ring_data->ring, 1); 1038 1039 return false; 1040 } else { 1041 return true; 1042 } 1043 } 1044 1045 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1046 { 1047 struct hnae_ring *ring = ring_data->ring; 1048 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1049 1050 if (head == ring->next_to_clean) 1051 return true; 1052 else 1053 return false; 1054 } 1055 1056 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1057 { 1058 struct hnae_ring *ring = ring_data->ring; 1059 struct net_device *ndev = ring_data->napi.dev; 1060 struct netdev_queue *dev_queue; 1061 int head; 1062 int bytes, pkts; 1063 1064 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1065 bytes = 0; 1066 pkts = 0; 1067 while (head != ring->next_to_clean) 1068 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1069 1070 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1071 netdev_tx_reset_queue(dev_queue); 1072 } 1073 1074 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1075 { 1076 int clean_complete = 0; 1077 struct hns_nic_ring_data *ring_data = 1078 container_of(napi, struct hns_nic_ring_data, napi); 1079 struct hnae_ring *ring = ring_data->ring; 1080 1081 clean_complete += ring_data->poll_one( 1082 ring_data, budget - clean_complete, 1083 ring_data->ex_process); 1084 1085 if (clean_complete < budget) { 1086 if (ring_data->fini_process(ring_data)) { 1087 napi_complete(napi); 1088 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1089 } else { 1090 return budget; 1091 } 1092 } 1093 1094 return clean_complete; 1095 } 1096 1097 static irqreturn_t hns_irq_handle(int irq, void *dev) 1098 { 1099 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1100 1101 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1102 ring_data->ring, 1); 1103 napi_schedule(&ring_data->napi); 1104 1105 return IRQ_HANDLED; 1106 } 1107 1108 /** 1109 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1110 *@ndev: net device 1111 */ 1112 static void hns_nic_adjust_link(struct net_device *ndev) 1113 { 1114 struct hns_nic_priv *priv = netdev_priv(ndev); 1115 struct hnae_handle *h = priv->ae_handle; 1116 int state = 1; 1117 1118 /* If there is no phy, do not need adjust link */ 1119 if (ndev->phydev) { 1120 /* When phy link down, do nothing */ 1121 if (ndev->phydev->link == 0) 1122 return; 1123 1124 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed, 1125 ndev->phydev->duplex)) { 1126 /* because Hi161X chip don't support to change gmac 1127 * speed and duplex with traffic. Delay 200ms to 1128 * make sure there is no more data in chip FIFO. 1129 */ 1130 netif_carrier_off(ndev); 1131 msleep(200); 1132 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1133 ndev->phydev->duplex); 1134 netif_carrier_on(ndev); 1135 } 1136 } 1137 1138 state = state && h->dev->ops->get_status(h); 1139 1140 if (state != priv->link) { 1141 if (state) { 1142 netif_carrier_on(ndev); 1143 netif_tx_wake_all_queues(ndev); 1144 netdev_info(ndev, "link up\n"); 1145 } else { 1146 netif_carrier_off(ndev); 1147 netdev_info(ndev, "link down\n"); 1148 } 1149 priv->link = state; 1150 } 1151 } 1152 1153 /** 1154 *hns_nic_init_phy - init phy 1155 *@ndev: net device 1156 *@h: ae handle 1157 * Return 0 on success, negative on failure 1158 */ 1159 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1160 { 1161 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, }; 1162 struct phy_device *phy_dev = h->phy_dev; 1163 int ret; 1164 1165 if (!h->phy_dev) 1166 return 0; 1167 1168 ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support); 1169 linkmode_and(phy_dev->supported, phy_dev->supported, supported); 1170 linkmode_copy(phy_dev->advertising, phy_dev->supported); 1171 1172 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1173 phy_dev->autoneg = false; 1174 1175 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1176 phy_dev->dev_flags = 0; 1177 1178 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1179 h->phy_if); 1180 } else { 1181 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1182 } 1183 if (unlikely(ret)) 1184 return -ENODEV; 1185 1186 phy_attached_info(phy_dev); 1187 1188 return 0; 1189 } 1190 1191 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1192 { 1193 struct hns_nic_priv *priv = netdev_priv(netdev); 1194 struct hnae_handle *h = priv->ae_handle; 1195 1196 napi_enable(&priv->ring_data[idx].napi); 1197 1198 enable_irq(priv->ring_data[idx].ring->irq); 1199 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1200 1201 return 0; 1202 } 1203 1204 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1205 { 1206 struct hns_nic_priv *priv = netdev_priv(ndev); 1207 struct hnae_handle *h = priv->ae_handle; 1208 struct sockaddr *mac_addr = p; 1209 int ret; 1210 1211 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1212 return -EADDRNOTAVAIL; 1213 1214 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1215 if (ret) { 1216 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1217 return ret; 1218 } 1219 1220 eth_hw_addr_set(ndev, mac_addr->sa_data); 1221 1222 return 0; 1223 } 1224 1225 static void hns_nic_update_stats(struct net_device *netdev) 1226 { 1227 struct hns_nic_priv *priv = netdev_priv(netdev); 1228 struct hnae_handle *h = priv->ae_handle; 1229 1230 h->dev->ops->update_stats(h, &netdev->stats); 1231 } 1232 1233 /* set mac addr if it is configed. or leave it to the AE driver */ 1234 static void hns_init_mac_addr(struct net_device *ndev) 1235 { 1236 struct hns_nic_priv *priv = netdev_priv(ndev); 1237 1238 if (device_get_ethdev_address(priv->dev, ndev)) { 1239 eth_hw_addr_random(ndev); 1240 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1241 ndev->dev_addr); 1242 } 1243 } 1244 1245 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1246 { 1247 struct hns_nic_priv *priv = netdev_priv(netdev); 1248 struct hnae_handle *h = priv->ae_handle; 1249 1250 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1251 disable_irq(priv->ring_data[idx].ring->irq); 1252 1253 napi_disable(&priv->ring_data[idx].napi); 1254 } 1255 1256 static int hns_nic_init_affinity_mask(int q_num, int ring_idx, 1257 struct hnae_ring *ring, cpumask_t *mask) 1258 { 1259 int cpu; 1260 1261 /* Different irq balance between 16core and 32core. 1262 * The cpu mask set by ring index according to the ring flag 1263 * which indicate the ring is tx or rx. 1264 */ 1265 if (q_num == num_possible_cpus()) { 1266 if (is_tx_ring(ring)) 1267 cpu = ring_idx; 1268 else 1269 cpu = ring_idx - q_num; 1270 } else { 1271 if (is_tx_ring(ring)) 1272 cpu = ring_idx * 2; 1273 else 1274 cpu = (ring_idx - q_num) * 2 + 1; 1275 } 1276 1277 cpumask_clear(mask); 1278 cpumask_set_cpu(cpu, mask); 1279 1280 return cpu; 1281 } 1282 1283 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv) 1284 { 1285 int i; 1286 1287 for (i = 0; i < q_num * 2; i++) { 1288 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 1289 irq_set_affinity_hint(priv->ring_data[i].ring->irq, 1290 NULL); 1291 free_irq(priv->ring_data[i].ring->irq, 1292 &priv->ring_data[i]); 1293 priv->ring_data[i].ring->irq_init_flag = 1294 RCB_IRQ_NOT_INITED; 1295 } 1296 } 1297 } 1298 1299 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1300 { 1301 struct hnae_handle *h = priv->ae_handle; 1302 struct hns_nic_ring_data *rd; 1303 int i; 1304 int ret; 1305 int cpu; 1306 1307 for (i = 0; i < h->q_num * 2; i++) { 1308 rd = &priv->ring_data[i]; 1309 1310 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1311 break; 1312 1313 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1314 "%s-%s%d", priv->netdev->name, 1315 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); 1316 1317 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1318 1319 irq_set_status_flags(rd->ring->irq, IRQ_NOAUTOEN); 1320 ret = request_irq(rd->ring->irq, 1321 hns_irq_handle, 0, rd->ring->ring_name, rd); 1322 if (ret) { 1323 netdev_err(priv->netdev, "request irq(%d) fail\n", 1324 rd->ring->irq); 1325 goto out_free_irq; 1326 } 1327 1328 cpu = hns_nic_init_affinity_mask(h->q_num, i, 1329 rd->ring, &rd->mask); 1330 1331 if (cpu_online(cpu)) 1332 irq_set_affinity_hint(rd->ring->irq, 1333 &rd->mask); 1334 1335 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1336 } 1337 1338 return 0; 1339 1340 out_free_irq: 1341 hns_nic_free_irq(h->q_num, priv); 1342 return ret; 1343 } 1344 1345 static int hns_nic_net_up(struct net_device *ndev) 1346 { 1347 struct hns_nic_priv *priv = netdev_priv(ndev); 1348 struct hnae_handle *h = priv->ae_handle; 1349 int i, j; 1350 int ret; 1351 1352 if (!test_bit(NIC_STATE_DOWN, &priv->state)) 1353 return 0; 1354 1355 ret = hns_nic_init_irq(priv); 1356 if (ret != 0) { 1357 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1358 return ret; 1359 } 1360 1361 for (i = 0; i < h->q_num * 2; i++) { 1362 ret = hns_nic_ring_open(ndev, i); 1363 if (ret) 1364 goto out_has_some_queues; 1365 } 1366 1367 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1368 if (ret) 1369 goto out_set_mac_addr_err; 1370 1371 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1372 if (ret) 1373 goto out_start_err; 1374 1375 if (ndev->phydev) 1376 phy_start(ndev->phydev); 1377 1378 clear_bit(NIC_STATE_DOWN, &priv->state); 1379 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1380 1381 return 0; 1382 1383 out_start_err: 1384 netif_stop_queue(ndev); 1385 out_set_mac_addr_err: 1386 out_has_some_queues: 1387 for (j = i - 1; j >= 0; j--) 1388 hns_nic_ring_close(ndev, j); 1389 1390 hns_nic_free_irq(h->q_num, priv); 1391 set_bit(NIC_STATE_DOWN, &priv->state); 1392 1393 return ret; 1394 } 1395 1396 static void hns_nic_net_down(struct net_device *ndev) 1397 { 1398 int i; 1399 struct hnae_ae_ops *ops; 1400 struct hns_nic_priv *priv = netdev_priv(ndev); 1401 1402 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1403 return; 1404 1405 (void)del_timer_sync(&priv->service_timer); 1406 netif_tx_stop_all_queues(ndev); 1407 netif_carrier_off(ndev); 1408 netif_tx_disable(ndev); 1409 priv->link = 0; 1410 1411 if (ndev->phydev) 1412 phy_stop(ndev->phydev); 1413 1414 ops = priv->ae_handle->dev->ops; 1415 1416 if (ops->stop) 1417 ops->stop(priv->ae_handle); 1418 1419 netif_tx_stop_all_queues(ndev); 1420 1421 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1422 hns_nic_ring_close(ndev, i); 1423 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1424 1425 /* clean tx buffers*/ 1426 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1427 } 1428 } 1429 1430 void hns_nic_net_reset(struct net_device *ndev) 1431 { 1432 struct hns_nic_priv *priv = netdev_priv(ndev); 1433 struct hnae_handle *handle = priv->ae_handle; 1434 1435 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1436 usleep_range(1000, 2000); 1437 1438 (void)hnae_reinit_handle(handle); 1439 1440 clear_bit(NIC_STATE_RESETTING, &priv->state); 1441 } 1442 1443 void hns_nic_net_reinit(struct net_device *netdev) 1444 { 1445 struct hns_nic_priv *priv = netdev_priv(netdev); 1446 enum hnae_port_type type = priv->ae_handle->port_type; 1447 1448 netif_trans_update(priv->netdev); 1449 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1450 usleep_range(1000, 2000); 1451 1452 hns_nic_net_down(netdev); 1453 1454 /* Only do hns_nic_net_reset in debug mode 1455 * because of hardware limitation. 1456 */ 1457 if (type == HNAE_PORT_DEBUG) 1458 hns_nic_net_reset(netdev); 1459 1460 (void)hns_nic_net_up(netdev); 1461 clear_bit(NIC_STATE_REINITING, &priv->state); 1462 } 1463 1464 static int hns_nic_net_open(struct net_device *ndev) 1465 { 1466 struct hns_nic_priv *priv = netdev_priv(ndev); 1467 struct hnae_handle *h = priv->ae_handle; 1468 int ret; 1469 1470 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1471 return -EBUSY; 1472 1473 priv->link = 0; 1474 netif_carrier_off(ndev); 1475 1476 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1477 if (ret < 0) { 1478 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1479 ret); 1480 return ret; 1481 } 1482 1483 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1484 if (ret < 0) { 1485 netdev_err(ndev, 1486 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1487 return ret; 1488 } 1489 1490 ret = hns_nic_net_up(ndev); 1491 if (ret) { 1492 netdev_err(ndev, 1493 "hns net up fail, ret=%d!\n", ret); 1494 return ret; 1495 } 1496 1497 return 0; 1498 } 1499 1500 static int hns_nic_net_stop(struct net_device *ndev) 1501 { 1502 hns_nic_net_down(ndev); 1503 1504 return 0; 1505 } 1506 1507 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1508 #define HNS_TX_TIMEO_LIMIT (40 * HZ) 1509 static void hns_nic_net_timeout(struct net_device *ndev, unsigned int txqueue) 1510 { 1511 struct hns_nic_priv *priv = netdev_priv(ndev); 1512 1513 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) { 1514 ndev->watchdog_timeo *= 2; 1515 netdev_info(ndev, "watchdog_timo changed to %d.\n", 1516 ndev->watchdog_timeo); 1517 } else { 1518 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 1519 hns_tx_timeout_reset(priv); 1520 } 1521 } 1522 1523 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1524 struct net_device *ndev) 1525 { 1526 struct hns_nic_priv *priv = netdev_priv(ndev); 1527 1528 assert(skb->queue_mapping < priv->ae_handle->q_num); 1529 1530 return hns_nic_net_xmit_hw(ndev, skb, 1531 &tx_ring_data(priv, skb->queue_mapping)); 1532 } 1533 1534 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, 1535 struct sk_buff *skb) 1536 { 1537 dev_kfree_skb_any(skb); 1538 } 1539 1540 #define HNS_LB_TX_RING 0 1541 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) 1542 { 1543 struct sk_buff *skb; 1544 struct ethhdr *ethhdr; 1545 int frame_len; 1546 1547 /* allocate test skb */ 1548 skb = alloc_skb(64, GFP_KERNEL); 1549 if (!skb) 1550 return NULL; 1551 1552 skb_put(skb, 64); 1553 skb->dev = ndev; 1554 memset(skb->data, 0xFF, skb->len); 1555 1556 /* must be tcp/ip package */ 1557 ethhdr = (struct ethhdr *)skb->data; 1558 ethhdr->h_proto = htons(ETH_P_IP); 1559 1560 frame_len = skb->len & (~1ul); 1561 memset(&skb->data[frame_len / 2], 0xAA, 1562 frame_len / 2 - 1); 1563 1564 skb->queue_mapping = HNS_LB_TX_RING; 1565 1566 return skb; 1567 } 1568 1569 static int hns_enable_serdes_lb(struct net_device *ndev) 1570 { 1571 struct hns_nic_priv *priv = netdev_priv(ndev); 1572 struct hnae_handle *h = priv->ae_handle; 1573 struct hnae_ae_ops *ops = h->dev->ops; 1574 int speed, duplex; 1575 int ret; 1576 1577 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); 1578 if (ret) 1579 return ret; 1580 1581 ret = ops->start ? ops->start(h) : 0; 1582 if (ret) 1583 return ret; 1584 1585 /* link adjust duplex*/ 1586 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1587 speed = 1000; 1588 else 1589 speed = 10000; 1590 duplex = 1; 1591 1592 ops->adjust_link(h, speed, duplex); 1593 1594 /* wait h/w ready */ 1595 mdelay(300); 1596 1597 return 0; 1598 } 1599 1600 static void hns_disable_serdes_lb(struct net_device *ndev) 1601 { 1602 struct hns_nic_priv *priv = netdev_priv(ndev); 1603 struct hnae_handle *h = priv->ae_handle; 1604 struct hnae_ae_ops *ops = h->dev->ops; 1605 1606 ops->stop(h); 1607 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); 1608 } 1609 1610 /** 1611 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The 1612 *function as follows: 1613 * 1. if one rx ring has found the page_offset is not equal 0 between head 1614 * and tail, it means that the chip fetched the wrong descs for the ring 1615 * which buffer size is 4096. 1616 * 2. we set the chip serdes loopback and set rss indirection to the ring. 1617 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring 1618 * receiving all packages and it will fetch new descriptions. 1619 * 4. recover to the original state. 1620 * 1621 *@ndev: net device 1622 */ 1623 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) 1624 { 1625 struct hns_nic_priv *priv = netdev_priv(ndev); 1626 struct hnae_handle *h = priv->ae_handle; 1627 struct hnae_ae_ops *ops = h->dev->ops; 1628 struct hns_nic_ring_data *rd; 1629 struct hnae_ring *ring; 1630 struct sk_buff *skb; 1631 u32 *org_indir; 1632 u32 *cur_indir; 1633 int indir_size; 1634 int head, tail; 1635 int fetch_num; 1636 int i, j; 1637 bool found; 1638 int retry_times; 1639 int ret = 0; 1640 1641 /* alloc indir memory */ 1642 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); 1643 org_indir = kzalloc(indir_size, GFP_KERNEL); 1644 if (!org_indir) 1645 return -ENOMEM; 1646 1647 /* store the original indirection */ 1648 ops->get_rss(h, org_indir, NULL, NULL); 1649 1650 cur_indir = kzalloc(indir_size, GFP_KERNEL); 1651 if (!cur_indir) { 1652 ret = -ENOMEM; 1653 goto cur_indir_alloc_err; 1654 } 1655 1656 /* set loopback */ 1657 if (hns_enable_serdes_lb(ndev)) { 1658 ret = -EINVAL; 1659 goto enable_serdes_lb_err; 1660 } 1661 1662 /* foreach every rx ring to clear fetch desc */ 1663 for (i = 0; i < h->q_num; i++) { 1664 ring = &h->qs[i]->rx_ring; 1665 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1666 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); 1667 found = false; 1668 fetch_num = ring_dist(ring, head, tail); 1669 1670 while (head != tail) { 1671 if (ring->desc_cb[head].page_offset != 0) { 1672 found = true; 1673 break; 1674 } 1675 1676 head++; 1677 if (head == ring->desc_num) 1678 head = 0; 1679 } 1680 1681 if (found) { 1682 for (j = 0; j < indir_size / sizeof(*org_indir); j++) 1683 cur_indir[j] = i; 1684 ops->set_rss(h, cur_indir, NULL, 0); 1685 1686 for (j = 0; j < fetch_num; j++) { 1687 /* alloc one skb and init */ 1688 skb = hns_assemble_skb(ndev); 1689 if (!skb) { 1690 ret = -ENOMEM; 1691 goto out; 1692 } 1693 rd = &tx_ring_data(priv, skb->queue_mapping); 1694 hns_nic_net_xmit_hw(ndev, skb, rd); 1695 1696 retry_times = 0; 1697 while (retry_times++ < 10) { 1698 mdelay(10); 1699 /* clean rx */ 1700 rd = &rx_ring_data(priv, i); 1701 if (rd->poll_one(rd, fetch_num, 1702 hns_nic_drop_rx_fetch)) 1703 break; 1704 } 1705 1706 retry_times = 0; 1707 while (retry_times++ < 10) { 1708 mdelay(10); 1709 /* clean tx ring 0 send package */ 1710 rd = &tx_ring_data(priv, 1711 HNS_LB_TX_RING); 1712 if (rd->poll_one(rd, fetch_num, NULL)) 1713 break; 1714 } 1715 } 1716 } 1717 } 1718 1719 out: 1720 /* restore everything */ 1721 ops->set_rss(h, org_indir, NULL, 0); 1722 hns_disable_serdes_lb(ndev); 1723 enable_serdes_lb_err: 1724 kfree(cur_indir); 1725 cur_indir_alloc_err: 1726 kfree(org_indir); 1727 1728 return ret; 1729 } 1730 1731 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1732 { 1733 struct hns_nic_priv *priv = netdev_priv(ndev); 1734 struct hnae_handle *h = priv->ae_handle; 1735 bool if_running = netif_running(ndev); 1736 int ret; 1737 1738 /* MTU < 68 is an error and causes problems on some kernels */ 1739 if (new_mtu < 68) 1740 return -EINVAL; 1741 1742 /* MTU no change */ 1743 if (new_mtu == ndev->mtu) 1744 return 0; 1745 1746 if (!h->dev->ops->set_mtu) 1747 return -ENOTSUPP; 1748 1749 if (if_running) { 1750 (void)hns_nic_net_stop(ndev); 1751 msleep(100); 1752 } 1753 1754 if (priv->enet_ver != AE_VERSION_1 && 1755 ndev->mtu <= BD_SIZE_2048_MAX_MTU && 1756 new_mtu > BD_SIZE_2048_MAX_MTU) { 1757 /* update desc */ 1758 hnae_reinit_all_ring_desc(h); 1759 1760 /* clear the package which the chip has fetched */ 1761 ret = hns_nic_clear_all_rx_fetch(ndev); 1762 1763 /* the page offset must be consist with desc */ 1764 hnae_reinit_all_ring_page_off(h); 1765 1766 if (ret) { 1767 netdev_err(ndev, "clear the fetched desc fail\n"); 1768 goto out; 1769 } 1770 } 1771 1772 ret = h->dev->ops->set_mtu(h, new_mtu); 1773 if (ret) { 1774 netdev_err(ndev, "set mtu fail, return value %d\n", 1775 ret); 1776 goto out; 1777 } 1778 1779 /* finally, set new mtu to netdevice */ 1780 ndev->mtu = new_mtu; 1781 1782 out: 1783 if (if_running) { 1784 if (hns_nic_net_open(ndev)) { 1785 netdev_err(ndev, "hns net open fail\n"); 1786 ret = -EINVAL; 1787 } 1788 } 1789 1790 return ret; 1791 } 1792 1793 static int hns_nic_set_features(struct net_device *netdev, 1794 netdev_features_t features) 1795 { 1796 struct hns_nic_priv *priv = netdev_priv(netdev); 1797 1798 switch (priv->enet_ver) { 1799 case AE_VERSION_1: 1800 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1801 netdev_info(netdev, "enet v1 do not support tso!\n"); 1802 break; 1803 default: 1804 break; 1805 } 1806 netdev->features = features; 1807 return 0; 1808 } 1809 1810 static netdev_features_t hns_nic_fix_features( 1811 struct net_device *netdev, netdev_features_t features) 1812 { 1813 struct hns_nic_priv *priv = netdev_priv(netdev); 1814 1815 switch (priv->enet_ver) { 1816 case AE_VERSION_1: 1817 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1818 NETIF_F_HW_VLAN_CTAG_FILTER); 1819 break; 1820 default: 1821 break; 1822 } 1823 return features; 1824 } 1825 1826 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1827 { 1828 struct hns_nic_priv *priv = netdev_priv(netdev); 1829 struct hnae_handle *h = priv->ae_handle; 1830 1831 if (h->dev->ops->add_uc_addr) 1832 return h->dev->ops->add_uc_addr(h, addr); 1833 1834 return 0; 1835 } 1836 1837 static int hns_nic_uc_unsync(struct net_device *netdev, 1838 const unsigned char *addr) 1839 { 1840 struct hns_nic_priv *priv = netdev_priv(netdev); 1841 struct hnae_handle *h = priv->ae_handle; 1842 1843 if (h->dev->ops->rm_uc_addr) 1844 return h->dev->ops->rm_uc_addr(h, addr); 1845 1846 return 0; 1847 } 1848 1849 /** 1850 * hns_set_multicast_list - set mutl mac address 1851 * @ndev: net device 1852 * 1853 * return void 1854 */ 1855 static void hns_set_multicast_list(struct net_device *ndev) 1856 { 1857 struct hns_nic_priv *priv = netdev_priv(ndev); 1858 struct hnae_handle *h = priv->ae_handle; 1859 struct netdev_hw_addr *ha = NULL; 1860 1861 if (!h) { 1862 netdev_err(ndev, "hnae handle is null\n"); 1863 return; 1864 } 1865 1866 if (h->dev->ops->clr_mc_addr) 1867 if (h->dev->ops->clr_mc_addr(h)) 1868 netdev_err(ndev, "clear multicast address fail\n"); 1869 1870 if (h->dev->ops->set_mc_addr) { 1871 netdev_for_each_mc_addr(ha, ndev) 1872 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1873 netdev_err(ndev, "set multicast fail\n"); 1874 } 1875 } 1876 1877 static void hns_nic_set_rx_mode(struct net_device *ndev) 1878 { 1879 struct hns_nic_priv *priv = netdev_priv(ndev); 1880 struct hnae_handle *h = priv->ae_handle; 1881 1882 if (h->dev->ops->set_promisc_mode) { 1883 if (ndev->flags & IFF_PROMISC) 1884 h->dev->ops->set_promisc_mode(h, 1); 1885 else 1886 h->dev->ops->set_promisc_mode(h, 0); 1887 } 1888 1889 hns_set_multicast_list(ndev); 1890 1891 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1892 netdev_err(ndev, "sync uc address fail\n"); 1893 } 1894 1895 static void hns_nic_get_stats64(struct net_device *ndev, 1896 struct rtnl_link_stats64 *stats) 1897 { 1898 int idx; 1899 u64 tx_bytes = 0; 1900 u64 rx_bytes = 0; 1901 u64 tx_pkts = 0; 1902 u64 rx_pkts = 0; 1903 struct hns_nic_priv *priv = netdev_priv(ndev); 1904 struct hnae_handle *h = priv->ae_handle; 1905 1906 for (idx = 0; idx < h->q_num; idx++) { 1907 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1908 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1909 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1910 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1911 } 1912 1913 stats->tx_bytes = tx_bytes; 1914 stats->tx_packets = tx_pkts; 1915 stats->rx_bytes = rx_bytes; 1916 stats->rx_packets = rx_pkts; 1917 1918 stats->rx_errors = ndev->stats.rx_errors; 1919 stats->multicast = ndev->stats.multicast; 1920 stats->rx_length_errors = ndev->stats.rx_length_errors; 1921 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1922 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1923 1924 stats->tx_errors = ndev->stats.tx_errors; 1925 stats->rx_dropped = ndev->stats.rx_dropped; 1926 stats->tx_dropped = ndev->stats.tx_dropped; 1927 stats->collisions = ndev->stats.collisions; 1928 stats->rx_over_errors = ndev->stats.rx_over_errors; 1929 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1930 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1931 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1932 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1933 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1934 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1935 stats->tx_window_errors = ndev->stats.tx_window_errors; 1936 stats->rx_compressed = ndev->stats.rx_compressed; 1937 stats->tx_compressed = ndev->stats.tx_compressed; 1938 } 1939 1940 static u16 1941 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1942 struct net_device *sb_dev) 1943 { 1944 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1945 struct hns_nic_priv *priv = netdev_priv(ndev); 1946 1947 /* fix hardware broadcast/multicast packets queue loopback */ 1948 if (!AE_IS_VER1(priv->enet_ver) && 1949 is_multicast_ether_addr(eth_hdr->h_dest)) 1950 return 0; 1951 else 1952 return netdev_pick_tx(ndev, skb, NULL); 1953 } 1954 1955 static const struct net_device_ops hns_nic_netdev_ops = { 1956 .ndo_open = hns_nic_net_open, 1957 .ndo_stop = hns_nic_net_stop, 1958 .ndo_start_xmit = hns_nic_net_xmit, 1959 .ndo_tx_timeout = hns_nic_net_timeout, 1960 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1961 .ndo_change_mtu = hns_nic_change_mtu, 1962 .ndo_eth_ioctl = phy_do_ioctl_running, 1963 .ndo_set_features = hns_nic_set_features, 1964 .ndo_fix_features = hns_nic_fix_features, 1965 .ndo_get_stats64 = hns_nic_get_stats64, 1966 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1967 .ndo_select_queue = hns_nic_select_queue, 1968 }; 1969 1970 static void hns_nic_update_link_status(struct net_device *netdev) 1971 { 1972 struct hns_nic_priv *priv = netdev_priv(netdev); 1973 1974 struct hnae_handle *h = priv->ae_handle; 1975 1976 if (h->phy_dev) { 1977 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1978 return; 1979 1980 (void)genphy_read_status(h->phy_dev); 1981 } 1982 hns_nic_adjust_link(netdev); 1983 } 1984 1985 /* for dumping key regs*/ 1986 static void hns_nic_dump(struct hns_nic_priv *priv) 1987 { 1988 struct hnae_handle *h = priv->ae_handle; 1989 struct hnae_ae_ops *ops = h->dev->ops; 1990 u32 *data, reg_num, i; 1991 1992 if (ops->get_regs_len && ops->get_regs) { 1993 reg_num = ops->get_regs_len(priv->ae_handle); 1994 reg_num = (reg_num + 3ul) & ~3ul; 1995 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 1996 if (data) { 1997 ops->get_regs(priv->ae_handle, data); 1998 for (i = 0; i < reg_num; i += 4) 1999 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 2000 i, data[i], data[i + 1], 2001 data[i + 2], data[i + 3]); 2002 kfree(data); 2003 } 2004 } 2005 2006 for (i = 0; i < h->q_num; i++) { 2007 pr_info("tx_queue%d_next_to_clean:%d\n", 2008 i, h->qs[i]->tx_ring.next_to_clean); 2009 pr_info("tx_queue%d_next_to_use:%d\n", 2010 i, h->qs[i]->tx_ring.next_to_use); 2011 pr_info("rx_queue%d_next_to_clean:%d\n", 2012 i, h->qs[i]->rx_ring.next_to_clean); 2013 pr_info("rx_queue%d_next_to_use:%d\n", 2014 i, h->qs[i]->rx_ring.next_to_use); 2015 } 2016 } 2017 2018 /* for resetting subtask */ 2019 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 2020 { 2021 enum hnae_port_type type = priv->ae_handle->port_type; 2022 2023 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 2024 return; 2025 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2026 2027 /* If we're already down, removing or resetting, just bail */ 2028 if (test_bit(NIC_STATE_DOWN, &priv->state) || 2029 test_bit(NIC_STATE_REMOVING, &priv->state) || 2030 test_bit(NIC_STATE_RESETTING, &priv->state)) 2031 return; 2032 2033 hns_nic_dump(priv); 2034 netdev_info(priv->netdev, "try to reset %s port!\n", 2035 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 2036 2037 rtnl_lock(); 2038 /* put off any impending NetWatchDogTimeout */ 2039 netif_trans_update(priv->netdev); 2040 hns_nic_net_reinit(priv->netdev); 2041 2042 rtnl_unlock(); 2043 } 2044 2045 /* for doing service complete*/ 2046 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 2047 { 2048 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 2049 /* make sure to commit the things */ 2050 smp_mb__before_atomic(); 2051 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2052 } 2053 2054 static void hns_nic_service_task(struct work_struct *work) 2055 { 2056 struct hns_nic_priv *priv 2057 = container_of(work, struct hns_nic_priv, service_task); 2058 struct hnae_handle *h = priv->ae_handle; 2059 2060 hns_nic_reset_subtask(priv); 2061 hns_nic_update_link_status(priv->netdev); 2062 h->dev->ops->update_led_status(h); 2063 hns_nic_update_stats(priv->netdev); 2064 2065 hns_nic_service_event_complete(priv); 2066 } 2067 2068 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 2069 { 2070 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 2071 !test_bit(NIC_STATE_REMOVING, &priv->state) && 2072 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 2073 (void)schedule_work(&priv->service_task); 2074 } 2075 2076 static void hns_nic_service_timer(struct timer_list *t) 2077 { 2078 struct hns_nic_priv *priv = from_timer(priv, t, service_timer); 2079 2080 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 2081 2082 hns_nic_task_schedule(priv); 2083 } 2084 2085 /** 2086 * hns_tx_timeout_reset - initiate reset due to Tx timeout 2087 * @priv: driver private struct 2088 **/ 2089 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 2090 { 2091 /* Do the reset outside of interrupt context */ 2092 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 2093 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2094 netdev_warn(priv->netdev, 2095 "initiating reset due to tx timeout(%llu,0x%lx)\n", 2096 priv->tx_timeout_count, priv->state); 2097 priv->tx_timeout_count++; 2098 hns_nic_task_schedule(priv); 2099 } 2100 } 2101 2102 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 2103 { 2104 struct hnae_handle *h = priv->ae_handle; 2105 struct hns_nic_ring_data *rd; 2106 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 2107 int i; 2108 2109 if (h->q_num > NIC_MAX_Q_PER_VF) { 2110 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 2111 return -EINVAL; 2112 } 2113 2114 priv->ring_data = kzalloc(array3_size(h->q_num, 2115 sizeof(*priv->ring_data), 2), 2116 GFP_KERNEL); 2117 if (!priv->ring_data) 2118 return -ENOMEM; 2119 2120 for (i = 0; i < h->q_num; i++) { 2121 rd = &priv->ring_data[i]; 2122 rd->queue_index = i; 2123 rd->ring = &h->qs[i]->tx_ring; 2124 rd->poll_one = hns_nic_tx_poll_one; 2125 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 2126 hns_nic_tx_fini_pro_v2; 2127 2128 netif_napi_add(priv->netdev, &rd->napi, hns_nic_common_poll); 2129 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2130 } 2131 for (i = h->q_num; i < h->q_num * 2; i++) { 2132 rd = &priv->ring_data[i]; 2133 rd->queue_index = i - h->q_num; 2134 rd->ring = &h->qs[i - h->q_num]->rx_ring; 2135 rd->poll_one = hns_nic_rx_poll_one; 2136 rd->ex_process = hns_nic_rx_up_pro; 2137 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 2138 hns_nic_rx_fini_pro_v2; 2139 2140 netif_napi_add(priv->netdev, &rd->napi, hns_nic_common_poll); 2141 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2142 } 2143 2144 return 0; 2145 } 2146 2147 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 2148 { 2149 struct hnae_handle *h = priv->ae_handle; 2150 int i; 2151 2152 for (i = 0; i < h->q_num * 2; i++) { 2153 netif_napi_del(&priv->ring_data[i].napi); 2154 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 2155 (void)irq_set_affinity_hint( 2156 priv->ring_data[i].ring->irq, 2157 NULL); 2158 free_irq(priv->ring_data[i].ring->irq, 2159 &priv->ring_data[i]); 2160 } 2161 2162 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2163 } 2164 kfree(priv->ring_data); 2165 } 2166 2167 static void hns_nic_set_priv_ops(struct net_device *netdev) 2168 { 2169 struct hns_nic_priv *priv = netdev_priv(netdev); 2170 struct hnae_handle *h = priv->ae_handle; 2171 2172 if (AE_IS_VER1(priv->enet_ver)) { 2173 priv->ops.fill_desc = fill_desc; 2174 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 2175 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2176 } else { 2177 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 2178 priv->ops.fill_desc = fill_desc_v2; 2179 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx_v2; 2180 netif_set_tso_max_size(netdev, 7 * 4096); 2181 /* enable tso when init 2182 * control tso on/off through TSE bit in bd 2183 */ 2184 h->dev->ops->set_tso_stats(h, 1); 2185 } 2186 } 2187 2188 static int hns_nic_try_get_ae(struct net_device *ndev) 2189 { 2190 struct hns_nic_priv *priv = netdev_priv(ndev); 2191 struct hnae_handle *h; 2192 int ret; 2193 2194 h = hnae_get_handle(&priv->netdev->dev, 2195 priv->fwnode, priv->port_id, NULL); 2196 if (IS_ERR_OR_NULL(h)) { 2197 ret = -ENODEV; 2198 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 2199 goto out; 2200 } 2201 priv->ae_handle = h; 2202 2203 ret = hns_nic_init_phy(ndev, h); 2204 if (ret) { 2205 dev_err(priv->dev, "probe phy device fail!\n"); 2206 goto out_init_phy; 2207 } 2208 2209 ret = hns_nic_init_ring_data(priv); 2210 if (ret) { 2211 ret = -ENOMEM; 2212 goto out_init_ring_data; 2213 } 2214 2215 hns_nic_set_priv_ops(ndev); 2216 2217 ret = register_netdev(ndev); 2218 if (ret) { 2219 dev_err(priv->dev, "probe register netdev fail!\n"); 2220 goto out_reg_ndev_fail; 2221 } 2222 return 0; 2223 2224 out_reg_ndev_fail: 2225 hns_nic_uninit_ring_data(priv); 2226 priv->ring_data = NULL; 2227 out_init_phy: 2228 out_init_ring_data: 2229 hnae_put_handle(priv->ae_handle); 2230 priv->ae_handle = NULL; 2231 out: 2232 return ret; 2233 } 2234 2235 static int hns_nic_notifier_action(struct notifier_block *nb, 2236 unsigned long action, void *data) 2237 { 2238 struct hns_nic_priv *priv = 2239 container_of(nb, struct hns_nic_priv, notifier_block); 2240 2241 assert(action == HNAE_AE_REGISTER); 2242 2243 if (!hns_nic_try_get_ae(priv->netdev)) { 2244 hnae_unregister_notifier(&priv->notifier_block); 2245 priv->notifier_block.notifier_call = NULL; 2246 } 2247 return 0; 2248 } 2249 2250 static int hns_nic_dev_probe(struct platform_device *pdev) 2251 { 2252 struct device *dev = &pdev->dev; 2253 struct net_device *ndev; 2254 struct hns_nic_priv *priv; 2255 u32 port_id; 2256 int ret; 2257 2258 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2259 if (!ndev) 2260 return -ENOMEM; 2261 2262 platform_set_drvdata(pdev, ndev); 2263 2264 priv = netdev_priv(ndev); 2265 priv->dev = dev; 2266 priv->netdev = ndev; 2267 2268 if (dev_of_node(dev)) { 2269 struct device_node *ae_node; 2270 2271 if (of_device_is_compatible(dev->of_node, 2272 "hisilicon,hns-nic-v1")) 2273 priv->enet_ver = AE_VERSION_1; 2274 else 2275 priv->enet_ver = AE_VERSION_2; 2276 2277 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2278 if (!ae_node) { 2279 ret = -ENODEV; 2280 dev_err(dev, "not find ae-handle\n"); 2281 goto out_read_prop_fail; 2282 } 2283 priv->fwnode = &ae_node->fwnode; 2284 } else if (is_acpi_node(dev->fwnode)) { 2285 struct fwnode_reference_args args; 2286 2287 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2288 priv->enet_ver = AE_VERSION_1; 2289 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2290 priv->enet_ver = AE_VERSION_2; 2291 else { 2292 ret = -ENXIO; 2293 goto out_read_prop_fail; 2294 } 2295 2296 /* try to find port-idx-in-ae first */ 2297 ret = acpi_node_get_property_reference(dev->fwnode, 2298 "ae-handle", 0, &args); 2299 if (ret) { 2300 dev_err(dev, "not find ae-handle\n"); 2301 goto out_read_prop_fail; 2302 } 2303 if (!is_acpi_device_node(args.fwnode)) { 2304 ret = -EINVAL; 2305 goto out_read_prop_fail; 2306 } 2307 priv->fwnode = args.fwnode; 2308 } else { 2309 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2310 ret = -ENXIO; 2311 goto out_read_prop_fail; 2312 } 2313 2314 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2315 if (ret) { 2316 /* only for old code compatible */ 2317 ret = device_property_read_u32(dev, "port-id", &port_id); 2318 if (ret) 2319 goto out_read_prop_fail; 2320 /* for old dts, we need to caculate the port offset */ 2321 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2322 : port_id - HNS_SRV_OFFSET; 2323 } 2324 priv->port_id = port_id; 2325 2326 hns_init_mac_addr(ndev); 2327 2328 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2329 ndev->priv_flags |= IFF_UNICAST_FLT; 2330 ndev->netdev_ops = &hns_nic_netdev_ops; 2331 hns_ethtool_set_ops(ndev); 2332 2333 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2334 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2335 NETIF_F_GRO; 2336 ndev->vlan_features |= 2337 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2338 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2339 2340 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2341 ndev->min_mtu = MAC_MIN_MTU; 2342 switch (priv->enet_ver) { 2343 case AE_VERSION_2: 2344 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE; 2345 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2346 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2347 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2348 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6; 2349 ndev->max_mtu = MAC_MAX_MTU_V2 - 2350 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2351 break; 2352 default: 2353 ndev->max_mtu = MAC_MAX_MTU - 2354 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2355 break; 2356 } 2357 2358 SET_NETDEV_DEV(ndev, dev); 2359 2360 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2361 dev_dbg(dev, "set mask to 64bit\n"); 2362 else 2363 dev_err(dev, "set mask to 64bit fail!\n"); 2364 2365 /* carrier off reporting is important to ethtool even BEFORE open */ 2366 netif_carrier_off(ndev); 2367 2368 timer_setup(&priv->service_timer, hns_nic_service_timer, 0); 2369 INIT_WORK(&priv->service_task, hns_nic_service_task); 2370 2371 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2372 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2373 set_bit(NIC_STATE_DOWN, &priv->state); 2374 2375 if (hns_nic_try_get_ae(priv->netdev)) { 2376 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2377 ret = hnae_register_notifier(&priv->notifier_block); 2378 if (ret) { 2379 dev_err(dev, "register notifier fail!\n"); 2380 goto out_notify_fail; 2381 } 2382 dev_dbg(dev, "has not handle, register notifier!\n"); 2383 } 2384 2385 return 0; 2386 2387 out_notify_fail: 2388 (void)cancel_work_sync(&priv->service_task); 2389 out_read_prop_fail: 2390 /* safe for ACPI FW */ 2391 of_node_put(to_of_node(priv->fwnode)); 2392 free_netdev(ndev); 2393 return ret; 2394 } 2395 2396 static int hns_nic_dev_remove(struct platform_device *pdev) 2397 { 2398 struct net_device *ndev = platform_get_drvdata(pdev); 2399 struct hns_nic_priv *priv = netdev_priv(ndev); 2400 2401 if (ndev->reg_state != NETREG_UNINITIALIZED) 2402 unregister_netdev(ndev); 2403 2404 if (priv->ring_data) 2405 hns_nic_uninit_ring_data(priv); 2406 priv->ring_data = NULL; 2407 2408 if (ndev->phydev) 2409 phy_disconnect(ndev->phydev); 2410 2411 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2412 hnae_put_handle(priv->ae_handle); 2413 priv->ae_handle = NULL; 2414 if (priv->notifier_block.notifier_call) 2415 hnae_unregister_notifier(&priv->notifier_block); 2416 priv->notifier_block.notifier_call = NULL; 2417 2418 set_bit(NIC_STATE_REMOVING, &priv->state); 2419 (void)cancel_work_sync(&priv->service_task); 2420 2421 /* safe for ACPI FW */ 2422 of_node_put(to_of_node(priv->fwnode)); 2423 2424 free_netdev(ndev); 2425 return 0; 2426 } 2427 2428 static const struct of_device_id hns_enet_of_match[] = { 2429 {.compatible = "hisilicon,hns-nic-v1",}, 2430 {.compatible = "hisilicon,hns-nic-v2",}, 2431 {}, 2432 }; 2433 2434 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2435 2436 static struct platform_driver hns_nic_dev_driver = { 2437 .driver = { 2438 .name = "hns-nic", 2439 .of_match_table = hns_enet_of_match, 2440 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2441 }, 2442 .probe = hns_nic_dev_probe, 2443 .remove = hns_nic_dev_remove, 2444 }; 2445 2446 module_platform_driver(hns_nic_dev_driver); 2447 2448 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2449 MODULE_AUTHOR("Hisilicon, Inc."); 2450 MODULE_LICENSE("GPL"); 2451 MODULE_ALIAS("platform:hns-nic"); 2452