1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2014-2015 Hisilicon Limited.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/cpumask.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_vlan.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/irq.h>
15 #include <linux/module.h>
16 #include <linux/phy.h>
17 #include <linux/platform_device.h>
18 #include <linux/skbuff.h>
19 
20 #include "hnae.h"
21 #include "hns_enet.h"
22 #include "hns_dsaf_mac.h"
23 
24 #define NIC_MAX_Q_PER_VF 16
25 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
26 
27 #define SERVICE_TIMER_HZ (1 * HZ)
28 
29 #define RCB_IRQ_NOT_INITED 0
30 #define RCB_IRQ_INITED 1
31 #define HNS_BUFFER_SIZE_2048 2048
32 
33 #define BD_MAX_SEND_SIZE 8191
34 
35 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
36 			    int send_sz, dma_addr_t dma, int frag_end,
37 			    int buf_num, enum hns_desc_type type, int mtu)
38 {
39 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
40 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
41 	struct iphdr *iphdr;
42 	struct ipv6hdr *ipv6hdr;
43 	struct sk_buff *skb;
44 	__be16 protocol;
45 	u8 bn_pid = 0;
46 	u8 rrcfv = 0;
47 	u8 ip_offset = 0;
48 	u8 tvsvsn = 0;
49 	u16 mss = 0;
50 	u8 l4_len = 0;
51 	u16 paylen = 0;
52 
53 	desc_cb->priv = priv;
54 	desc_cb->length = size;
55 	desc_cb->dma = dma;
56 	desc_cb->type = type;
57 
58 	desc->addr = cpu_to_le64(dma);
59 	desc->tx.send_size = cpu_to_le16((u16)send_sz);
60 
61 	/* config bd buffer end */
62 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
63 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
64 
65 	/* fill port_id in the tx bd for sending management pkts */
66 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
67 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
68 
69 	if (type == DESC_TYPE_SKB) {
70 		skb = (struct sk_buff *)priv;
71 
72 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
73 			skb_reset_mac_len(skb);
74 			protocol = skb->protocol;
75 			ip_offset = ETH_HLEN;
76 
77 			if (protocol == htons(ETH_P_8021Q)) {
78 				ip_offset += VLAN_HLEN;
79 				protocol = vlan_get_protocol(skb);
80 				skb->protocol = protocol;
81 			}
82 
83 			if (skb->protocol == htons(ETH_P_IP)) {
84 				iphdr = ip_hdr(skb);
85 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
86 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
87 
88 				/* check for tcp/udp header */
89 				if (iphdr->protocol == IPPROTO_TCP &&
90 				    skb_is_gso(skb)) {
91 					hnae_set_bit(tvsvsn,
92 						     HNSV2_TXD_TSE_B, 1);
93 					l4_len = tcp_hdrlen(skb);
94 					mss = skb_shinfo(skb)->gso_size;
95 					paylen = skb->len - skb_tcp_all_headers(skb);
96 				}
97 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
98 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
99 				ipv6hdr = ipv6_hdr(skb);
100 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
101 
102 				/* check for tcp/udp header */
103 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
104 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
105 					hnae_set_bit(tvsvsn,
106 						     HNSV2_TXD_TSE_B, 1);
107 					l4_len = tcp_hdrlen(skb);
108 					mss = skb_shinfo(skb)->gso_size;
109 					paylen = skb->len - skb_tcp_all_headers(skb);
110 				}
111 			}
112 			desc->tx.ip_offset = ip_offset;
113 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
114 			desc->tx.mss = cpu_to_le16(mss);
115 			desc->tx.l4_len = l4_len;
116 			desc->tx.paylen = cpu_to_le16(paylen);
117 		}
118 	}
119 
120 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
121 
122 	desc->tx.bn_pid = bn_pid;
123 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
124 
125 	ring_ptr_move_fw(ring, next_to_use);
126 }
127 
128 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
129 			 int size, dma_addr_t dma, int frag_end,
130 			 int buf_num, enum hns_desc_type type, int mtu)
131 {
132 	fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
133 			buf_num, type, mtu);
134 }
135 
136 static const struct acpi_device_id hns_enet_acpi_match[] = {
137 	{ "HISI00C1", 0 },
138 	{ "HISI00C2", 0 },
139 	{ },
140 };
141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
142 
143 static void fill_desc(struct hnae_ring *ring, void *priv,
144 		      int size, dma_addr_t dma, int frag_end,
145 		      int buf_num, enum hns_desc_type type, int mtu,
146 		      bool is_gso)
147 {
148 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
149 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
150 	struct sk_buff *skb;
151 	__be16 protocol;
152 	u32 ip_offset;
153 	u32 asid_bufnum_pid = 0;
154 	u32 flag_ipoffset = 0;
155 
156 	desc_cb->priv = priv;
157 	desc_cb->length = size;
158 	desc_cb->dma = dma;
159 	desc_cb->type = type;
160 
161 	desc->addr = cpu_to_le64(dma);
162 	desc->tx.send_size = cpu_to_le16((u16)size);
163 
164 	/*config bd buffer end */
165 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
166 
167 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
168 
169 	if (type == DESC_TYPE_SKB) {
170 		skb = (struct sk_buff *)priv;
171 
172 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
173 			protocol = skb->protocol;
174 			ip_offset = ETH_HLEN;
175 
176 			/*if it is a SW VLAN check the next protocol*/
177 			if (protocol == htons(ETH_P_8021Q)) {
178 				ip_offset += VLAN_HLEN;
179 				protocol = vlan_get_protocol(skb);
180 				skb->protocol = protocol;
181 			}
182 
183 			if (skb->protocol == htons(ETH_P_IP)) {
184 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
185 				/* check for tcp/udp header */
186 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
187 
188 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
189 				/* ipv6 has not l3 cs, check for L4 header */
190 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191 			}
192 
193 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
194 		}
195 	}
196 
197 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
198 
199 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
200 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
201 
202 	ring_ptr_move_fw(ring, next_to_use);
203 }
204 
205 static void unfill_desc(struct hnae_ring *ring)
206 {
207 	ring_ptr_move_bw(ring, next_to_use);
208 }
209 
210 static int hns_nic_maybe_stop_tx(
211 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
212 {
213 	struct sk_buff *skb = *out_skb;
214 	struct sk_buff *new_skb = NULL;
215 	int buf_num;
216 
217 	/* no. of segments (plus a header) */
218 	buf_num = skb_shinfo(skb)->nr_frags + 1;
219 
220 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
221 		if (ring_space(ring) < 1)
222 			return -EBUSY;
223 
224 		new_skb = skb_copy(skb, GFP_ATOMIC);
225 		if (!new_skb)
226 			return -ENOMEM;
227 
228 		dev_kfree_skb_any(skb);
229 		*out_skb = new_skb;
230 		buf_num = 1;
231 	} else if (buf_num > ring_space(ring)) {
232 		return -EBUSY;
233 	}
234 
235 	*bnum = buf_num;
236 	return 0;
237 }
238 
239 static int hns_nic_maybe_stop_tso(
240 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
241 {
242 	int i;
243 	int size;
244 	int buf_num;
245 	int frag_num;
246 	struct sk_buff *skb = *out_skb;
247 	struct sk_buff *new_skb = NULL;
248 	skb_frag_t *frag;
249 
250 	size = skb_headlen(skb);
251 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
252 
253 	frag_num = skb_shinfo(skb)->nr_frags;
254 	for (i = 0; i < frag_num; i++) {
255 		frag = &skb_shinfo(skb)->frags[i];
256 		size = skb_frag_size(frag);
257 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
258 	}
259 
260 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
261 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262 		if (ring_space(ring) < buf_num)
263 			return -EBUSY;
264 		/* manual split the send packet */
265 		new_skb = skb_copy(skb, GFP_ATOMIC);
266 		if (!new_skb)
267 			return -ENOMEM;
268 		dev_kfree_skb_any(skb);
269 		*out_skb = new_skb;
270 
271 	} else if (ring_space(ring) < buf_num) {
272 		return -EBUSY;
273 	}
274 
275 	*bnum = buf_num;
276 	return 0;
277 }
278 
279 static int hns_nic_maybe_stop_tx_v2(struct sk_buff **out_skb, int *bnum,
280 				    struct hnae_ring *ring)
281 {
282 	if (skb_is_gso(*out_skb))
283 		return hns_nic_maybe_stop_tso(out_skb, bnum, ring);
284 	else
285 		return hns_nic_maybe_stop_tx(out_skb, bnum, ring);
286 }
287 
288 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
289 			  int size, dma_addr_t dma, int frag_end,
290 			  int buf_num, enum hns_desc_type type, int mtu)
291 {
292 	int frag_buf_num;
293 	int sizeoflast;
294 	int k;
295 
296 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
297 	sizeoflast = size % BD_MAX_SEND_SIZE;
298 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
299 
300 	/* when the frag size is bigger than hardware, split this frag */
301 	for (k = 0; k < frag_buf_num; k++)
302 		fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
303 				(k == frag_buf_num - 1) ?
304 					sizeoflast : BD_MAX_SEND_SIZE,
305 				dma + BD_MAX_SEND_SIZE * k,
306 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
307 				buf_num,
308 				(type == DESC_TYPE_SKB && !k) ?
309 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
310 				mtu);
311 }
312 
313 static void fill_desc_v2(struct hnae_ring *ring, void *priv,
314 			 int size, dma_addr_t dma, int frag_end,
315 			 int buf_num, enum hns_desc_type type, int mtu,
316 			 bool is_gso)
317 {
318 	if (is_gso)
319 		fill_tso_desc(ring, priv, size, dma, frag_end, buf_num, type,
320 			      mtu);
321 	else
322 		fill_v2_desc(ring, priv, size, dma, frag_end, buf_num, type,
323 			     mtu);
324 }
325 
326 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
327 				struct sk_buff *skb,
328 				struct hns_nic_ring_data *ring_data)
329 {
330 	struct hns_nic_priv *priv = netdev_priv(ndev);
331 	struct hnae_ring *ring = ring_data->ring;
332 	struct device *dev = ring_to_dev(ring);
333 	struct netdev_queue *dev_queue;
334 	skb_frag_t *frag;
335 	int buf_num;
336 	int seg_num;
337 	dma_addr_t dma;
338 	int size, next_to_use;
339 	bool is_gso;
340 	int i;
341 
342 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
343 	case -EBUSY:
344 		ring->stats.tx_busy++;
345 		goto out_net_tx_busy;
346 	case -ENOMEM:
347 		ring->stats.sw_err_cnt++;
348 		netdev_err(ndev, "no memory to xmit!\n");
349 		goto out_err_tx_ok;
350 	default:
351 		break;
352 	}
353 
354 	/* no. of segments (plus a header) */
355 	seg_num = skb_shinfo(skb)->nr_frags + 1;
356 	next_to_use = ring->next_to_use;
357 
358 	/* fill the first part */
359 	size = skb_headlen(skb);
360 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
361 	if (dma_mapping_error(dev, dma)) {
362 		netdev_err(ndev, "TX head DMA map failed\n");
363 		ring->stats.sw_err_cnt++;
364 		goto out_err_tx_ok;
365 	}
366 	is_gso = skb_is_gso(skb);
367 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
368 			    buf_num, DESC_TYPE_SKB, ndev->mtu, is_gso);
369 
370 	/* fill the fragments */
371 	for (i = 1; i < seg_num; i++) {
372 		frag = &skb_shinfo(skb)->frags[i - 1];
373 		size = skb_frag_size(frag);
374 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
375 		if (dma_mapping_error(dev, dma)) {
376 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
377 			ring->stats.sw_err_cnt++;
378 			goto out_map_frag_fail;
379 		}
380 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
381 				    seg_num - 1 == i ? 1 : 0, buf_num,
382 				    DESC_TYPE_PAGE, ndev->mtu, is_gso);
383 	}
384 
385 	/*complete translate all packets*/
386 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
387 	netdev_tx_sent_queue(dev_queue, skb->len);
388 
389 	netif_trans_update(ndev);
390 	ndev->stats.tx_bytes += skb->len;
391 	ndev->stats.tx_packets++;
392 
393 	wmb(); /* commit all data before submit */
394 	assert(skb->queue_mapping < priv->ae_handle->q_num);
395 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
396 
397 	return NETDEV_TX_OK;
398 
399 out_map_frag_fail:
400 
401 	while (ring->next_to_use != next_to_use) {
402 		unfill_desc(ring);
403 		if (ring->next_to_use != next_to_use)
404 			dma_unmap_page(dev,
405 				       ring->desc_cb[ring->next_to_use].dma,
406 				       ring->desc_cb[ring->next_to_use].length,
407 				       DMA_TO_DEVICE);
408 		else
409 			dma_unmap_single(dev,
410 					 ring->desc_cb[next_to_use].dma,
411 					 ring->desc_cb[next_to_use].length,
412 					 DMA_TO_DEVICE);
413 	}
414 
415 out_err_tx_ok:
416 
417 	dev_kfree_skb_any(skb);
418 	return NETDEV_TX_OK;
419 
420 out_net_tx_busy:
421 
422 	netif_stop_subqueue(ndev, skb->queue_mapping);
423 
424 	/* Herbert's original patch had:
425 	 *  smp_mb__after_netif_stop_queue();
426 	 * but since that doesn't exist yet, just open code it.
427 	 */
428 	smp_mb();
429 	return NETDEV_TX_BUSY;
430 }
431 
432 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
433 			       struct hnae_ring *ring, int pull_len,
434 			       struct hnae_desc_cb *desc_cb)
435 {
436 	struct hnae_desc *desc;
437 	u32 truesize;
438 	int size;
439 	int last_offset;
440 	bool twobufs;
441 
442 	twobufs = ((PAGE_SIZE < 8192) &&
443 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
444 
445 	desc = &ring->desc[ring->next_to_clean];
446 	size = le16_to_cpu(desc->rx.size);
447 
448 	if (twobufs) {
449 		truesize = hnae_buf_size(ring);
450 	} else {
451 		truesize = ALIGN(size, L1_CACHE_BYTES);
452 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
453 	}
454 
455 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
456 			size - pull_len, truesize);
457 
458 	 /* avoid re-using remote pages,flag default unreuse */
459 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
460 		return;
461 
462 	if (twobufs) {
463 		/* if we are only owner of page we can reuse it */
464 		if (likely(page_count(desc_cb->priv) == 1)) {
465 			/* flip page offset to other buffer */
466 			desc_cb->page_offset ^= truesize;
467 
468 			desc_cb->reuse_flag = 1;
469 			/* bump ref count on page before it is given*/
470 			get_page(desc_cb->priv);
471 		}
472 		return;
473 	}
474 
475 	/* move offset up to the next cache line */
476 	desc_cb->page_offset += truesize;
477 
478 	if (desc_cb->page_offset <= last_offset) {
479 		desc_cb->reuse_flag = 1;
480 		/* bump ref count on page before it is given*/
481 		get_page(desc_cb->priv);
482 	}
483 }
484 
485 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
486 {
487 	*out_bnum = hnae_get_field(bnum_flag,
488 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
489 }
490 
491 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
492 {
493 	*out_bnum = hnae_get_field(bnum_flag,
494 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
495 }
496 
497 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
498 				struct sk_buff *skb, u32 flag)
499 {
500 	struct net_device *netdev = ring_data->napi.dev;
501 	u32 l3id;
502 	u32 l4id;
503 
504 	/* check if RX checksum offload is enabled */
505 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
506 		return;
507 
508 	/* In hardware, we only support checksum for the following protocols:
509 	 * 1) IPv4,
510 	 * 2) TCP(over IPv4 or IPv6),
511 	 * 3) UDP(over IPv4 or IPv6),
512 	 * 4) SCTP(over IPv4 or IPv6)
513 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
514 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
515 	 *
516 	 * Hardware limitation:
517 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
518 	 * Error" bit (which usually can be used to indicate whether checksum
519 	 * was calculated by the hardware and if there was any error encountered
520 	 * during checksum calculation).
521 	 *
522 	 * Software workaround:
523 	 * We do get info within the RX descriptor about the kind of L3/L4
524 	 * protocol coming in the packet and the error status. These errors
525 	 * might not just be checksum errors but could be related to version,
526 	 * length of IPv4, UDP, TCP etc.
527 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
528 	 * checksum or any other L3/L4 error, we will not (cannot) convey
529 	 * checksum status for such cases to upper stack and will not maintain
530 	 * the RX L3/L4 checksum counters as well.
531 	 */
532 
533 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
534 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
535 
536 	/*  check L3 protocol for which checksum is supported */
537 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
538 		return;
539 
540 	/* check for any(not just checksum)flagged L3 protocol errors */
541 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
542 		return;
543 
544 	/* we do not support checksum of fragmented packets */
545 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
546 		return;
547 
548 	/*  check L4 protocol for which checksum is supported */
549 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
550 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
551 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
552 		return;
553 
554 	/* check for any(not just checksum)flagged L4 protocol errors */
555 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
556 		return;
557 
558 	/* now, this has to be a packet with valid RX checksum */
559 	skb->ip_summed = CHECKSUM_UNNECESSARY;
560 }
561 
562 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
563 			       struct sk_buff **out_skb, int *out_bnum)
564 {
565 	struct hnae_ring *ring = ring_data->ring;
566 	struct net_device *ndev = ring_data->napi.dev;
567 	struct hns_nic_priv *priv = netdev_priv(ndev);
568 	struct sk_buff *skb;
569 	struct hnae_desc *desc;
570 	struct hnae_desc_cb *desc_cb;
571 	unsigned char *va;
572 	int bnum, length, i;
573 	int pull_len;
574 	u32 bnum_flag;
575 
576 	desc = &ring->desc[ring->next_to_clean];
577 	desc_cb = &ring->desc_cb[ring->next_to_clean];
578 
579 	prefetch(desc);
580 
581 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
582 
583 	/* prefetch first cache line of first page */
584 	net_prefetch(va);
585 
586 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
587 					HNS_RX_HEAD_SIZE);
588 	if (unlikely(!skb)) {
589 		ring->stats.sw_err_cnt++;
590 		return -ENOMEM;
591 	}
592 
593 	prefetchw(skb->data);
594 	length = le16_to_cpu(desc->rx.pkt_len);
595 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
596 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
597 	*out_bnum = bnum;
598 
599 	if (length <= HNS_RX_HEAD_SIZE) {
600 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
601 
602 		/* we can reuse buffer as-is, just make sure it is local */
603 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
604 			desc_cb->reuse_flag = 1;
605 		else /* this page cannot be reused so discard it */
606 			put_page(desc_cb->priv);
607 
608 		ring_ptr_move_fw(ring, next_to_clean);
609 
610 		if (unlikely(bnum != 1)) { /* check err*/
611 			*out_bnum = 1;
612 			goto out_bnum_err;
613 		}
614 	} else {
615 		ring->stats.seg_pkt_cnt++;
616 
617 		pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE);
618 		memcpy(__skb_put(skb, pull_len), va,
619 		       ALIGN(pull_len, sizeof(long)));
620 
621 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
622 		ring_ptr_move_fw(ring, next_to_clean);
623 
624 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
625 			*out_bnum = 1;
626 			goto out_bnum_err;
627 		}
628 		for (i = 1; i < bnum; i++) {
629 			desc = &ring->desc[ring->next_to_clean];
630 			desc_cb = &ring->desc_cb[ring->next_to_clean];
631 
632 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
633 			ring_ptr_move_fw(ring, next_to_clean);
634 		}
635 	}
636 
637 	/* check except process, free skb and jump the desc */
638 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
639 out_bnum_err:
640 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
641 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
642 			   bnum, ring->max_desc_num_per_pkt,
643 			   length, (int)MAX_SKB_FRAGS,
644 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
645 		ring->stats.err_bd_num++;
646 		dev_kfree_skb_any(skb);
647 		return -EDOM;
648 	}
649 
650 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
651 
652 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
653 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
654 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
655 		ring->stats.non_vld_descs++;
656 		dev_kfree_skb_any(skb);
657 		return -EINVAL;
658 	}
659 
660 	if (unlikely((!desc->rx.pkt_len) ||
661 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
662 		ring->stats.err_pkt_len++;
663 		dev_kfree_skb_any(skb);
664 		return -EFAULT;
665 	}
666 
667 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
668 		ring->stats.l2_err++;
669 		dev_kfree_skb_any(skb);
670 		return -EFAULT;
671 	}
672 
673 	ring->stats.rx_pkts++;
674 	ring->stats.rx_bytes += skb->len;
675 
676 	/* indicate to upper stack if our hardware has already calculated
677 	 * the RX checksum
678 	 */
679 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
680 
681 	return 0;
682 }
683 
684 static void
685 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
686 {
687 	int i, ret;
688 	struct hnae_desc_cb res_cbs;
689 	struct hnae_desc_cb *desc_cb;
690 	struct hnae_ring *ring = ring_data->ring;
691 	struct net_device *ndev = ring_data->napi.dev;
692 
693 	for (i = 0; i < cleand_count; i++) {
694 		desc_cb = &ring->desc_cb[ring->next_to_use];
695 		if (desc_cb->reuse_flag) {
696 			ring->stats.reuse_pg_cnt++;
697 			hnae_reuse_buffer(ring, ring->next_to_use);
698 		} else {
699 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
700 			if (ret) {
701 				ring->stats.sw_err_cnt++;
702 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
703 				break;
704 			}
705 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
706 		}
707 
708 		ring_ptr_move_fw(ring, next_to_use);
709 	}
710 
711 	wmb(); /* make all data has been write before submit */
712 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
713 }
714 
715 /* return error number for error or number of desc left to take
716  */
717 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
718 			      struct sk_buff *skb)
719 {
720 	struct net_device *ndev = ring_data->napi.dev;
721 
722 	skb->protocol = eth_type_trans(skb, ndev);
723 	napi_gro_receive(&ring_data->napi, skb);
724 }
725 
726 static int hns_desc_unused(struct hnae_ring *ring)
727 {
728 	int ntc = ring->next_to_clean;
729 	int ntu = ring->next_to_use;
730 
731 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
732 }
733 
734 #define HNS_LOWEST_LATENCY_RATE		27	/* 27 MB/s */
735 #define HNS_LOW_LATENCY_RATE			80	/* 80 MB/s */
736 
737 #define HNS_COAL_BDNUM			3
738 
739 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
740 {
741 	bool coal_enable = ring->q->handle->coal_adapt_en;
742 
743 	if (coal_enable &&
744 	    ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
745 		return HNS_COAL_BDNUM;
746 	else
747 		return 0;
748 }
749 
750 static void hns_update_rx_rate(struct hnae_ring *ring)
751 {
752 	bool coal_enable = ring->q->handle->coal_adapt_en;
753 	u32 time_passed_ms;
754 	u64 total_bytes;
755 
756 	if (!coal_enable ||
757 	    time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
758 		return;
759 
760 	/* ring->stats.rx_bytes overflowed */
761 	if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
762 		ring->coal_last_rx_bytes = ring->stats.rx_bytes;
763 		ring->coal_last_jiffies = jiffies;
764 		return;
765 	}
766 
767 	total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
768 	time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
769 	do_div(total_bytes, time_passed_ms);
770 	ring->coal_rx_rate = total_bytes >> 10;
771 
772 	ring->coal_last_rx_bytes = ring->stats.rx_bytes;
773 	ring->coal_last_jiffies = jiffies;
774 }
775 
776 /**
777  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
778  * @new_param: new value
779  * @old_param: old value
780  **/
781 static u32 smooth_alg(u32 new_param, u32 old_param)
782 {
783 	u32 gap = (new_param > old_param) ? new_param - old_param
784 					  : old_param - new_param;
785 
786 	if (gap > 8)
787 		gap >>= 3;
788 
789 	if (new_param > old_param)
790 		return old_param + gap;
791 	else
792 		return old_param - gap;
793 }
794 
795 /**
796  * hns_nic_adpt_coalesce - self adapte coalesce according to rx rate
797  * @ring_data: pointer to hns_nic_ring_data
798  **/
799 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
800 {
801 	struct hnae_ring *ring = ring_data->ring;
802 	struct hnae_handle *handle = ring->q->handle;
803 	u32 new_coal_param, old_coal_param = ring->coal_param;
804 
805 	if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
806 		new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
807 	else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
808 		new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
809 	else
810 		new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
811 
812 	if (new_coal_param == old_coal_param &&
813 	    new_coal_param == handle->coal_param)
814 		return;
815 
816 	new_coal_param = smooth_alg(new_coal_param, old_coal_param);
817 	ring->coal_param = new_coal_param;
818 
819 	/**
820 	 * Because all ring in one port has one coalesce param, when one ring
821 	 * calculate its own coalesce param, it cannot write to hardware at
822 	 * once. There are three conditions as follows:
823 	 *       1. current ring's coalesce param is larger than the hardware.
824 	 *       2. or ring which adapt last time can change again.
825 	 *       3. timeout.
826 	 */
827 	if (new_coal_param == handle->coal_param) {
828 		handle->coal_last_jiffies = jiffies;
829 		handle->coal_ring_idx = ring_data->queue_index;
830 	} else if (new_coal_param > handle->coal_param ||
831 		   handle->coal_ring_idx == ring_data->queue_index ||
832 		   time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
833 		handle->dev->ops->set_coalesce_usecs(handle,
834 					new_coal_param);
835 		handle->dev->ops->set_coalesce_frames(handle,
836 					1, new_coal_param);
837 		handle->coal_param = new_coal_param;
838 		handle->coal_ring_idx = ring_data->queue_index;
839 		handle->coal_last_jiffies = jiffies;
840 	}
841 }
842 
843 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
844 			       int budget, void *v)
845 {
846 	struct hnae_ring *ring = ring_data->ring;
847 	struct sk_buff *skb;
848 	int num, bnum;
849 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
850 	int recv_pkts, recv_bds, clean_count, err;
851 	int unused_count = hns_desc_unused(ring);
852 
853 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
854 	rmb(); /* make sure num taken effect before the other data is touched */
855 
856 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
857 	num -= unused_count;
858 
859 	while (recv_pkts < budget && recv_bds < num) {
860 		/* reuse or realloc buffers */
861 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
862 			hns_nic_alloc_rx_buffers(ring_data,
863 						 clean_count + unused_count);
864 			clean_count = 0;
865 			unused_count = hns_desc_unused(ring);
866 		}
867 
868 		/* poll one pkt */
869 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
870 		if (unlikely(!skb)) /* this fault cannot be repaired */
871 			goto out;
872 
873 		recv_bds += bnum;
874 		clean_count += bnum;
875 		if (unlikely(err)) {  /* do jump the err */
876 			recv_pkts++;
877 			continue;
878 		}
879 
880 		/* do update ip stack process*/
881 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
882 							ring_data, skb);
883 		recv_pkts++;
884 	}
885 
886 out:
887 	/* make all data has been write before submit */
888 	if (clean_count + unused_count > 0)
889 		hns_nic_alloc_rx_buffers(ring_data,
890 					 clean_count + unused_count);
891 
892 	return recv_pkts;
893 }
894 
895 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
896 {
897 	struct hnae_ring *ring = ring_data->ring;
898 	int num;
899 	bool rx_stopped;
900 
901 	hns_update_rx_rate(ring);
902 
903 	/* for hardware bug fixed */
904 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
905 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
906 
907 	if (num <= hns_coal_rx_bdnum(ring)) {
908 		if (ring->q->handle->coal_adapt_en)
909 			hns_nic_adpt_coalesce(ring_data);
910 
911 		rx_stopped = true;
912 	} else {
913 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
914 			ring_data->ring, 1);
915 
916 		rx_stopped = false;
917 	}
918 
919 	return rx_stopped;
920 }
921 
922 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
923 {
924 	struct hnae_ring *ring = ring_data->ring;
925 	int num;
926 
927 	hns_update_rx_rate(ring);
928 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
929 
930 	if (num <= hns_coal_rx_bdnum(ring)) {
931 		if (ring->q->handle->coal_adapt_en)
932 			hns_nic_adpt_coalesce(ring_data);
933 
934 		return true;
935 	}
936 
937 	return false;
938 }
939 
940 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
941 					    int *bytes, int *pkts)
942 {
943 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
944 
945 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
946 	(*bytes) += desc_cb->length;
947 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
948 	hnae_free_buffer_detach(ring, ring->next_to_clean);
949 
950 	ring_ptr_move_fw(ring, next_to_clean);
951 }
952 
953 static int is_valid_clean_head(struct hnae_ring *ring, int h)
954 {
955 	int u = ring->next_to_use;
956 	int c = ring->next_to_clean;
957 
958 	if (unlikely(h > ring->desc_num))
959 		return 0;
960 
961 	assert(u > 0 && u < ring->desc_num);
962 	assert(c > 0 && c < ring->desc_num);
963 	assert(u != c && h != c); /* must be checked before call this func */
964 
965 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
966 }
967 
968 /* reclaim all desc in one budget
969  * return error or number of desc left
970  */
971 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
972 			       int budget, void *v)
973 {
974 	struct hnae_ring *ring = ring_data->ring;
975 	struct net_device *ndev = ring_data->napi.dev;
976 	struct netdev_queue *dev_queue;
977 	struct hns_nic_priv *priv = netdev_priv(ndev);
978 	int head;
979 	int bytes, pkts;
980 
981 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
982 	rmb(); /* make sure head is ready before touch any data */
983 
984 	if (is_ring_empty(ring) || head == ring->next_to_clean)
985 		return 0; /* no data to poll */
986 
987 	if (!is_valid_clean_head(ring, head)) {
988 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
989 			   ring->next_to_use, ring->next_to_clean);
990 		ring->stats.io_err_cnt++;
991 		return -EIO;
992 	}
993 
994 	bytes = 0;
995 	pkts = 0;
996 	while (head != ring->next_to_clean) {
997 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
998 		/* issue prefetch for next Tx descriptor */
999 		prefetch(&ring->desc_cb[ring->next_to_clean]);
1000 	}
1001 	/* update tx ring statistics. */
1002 	ring->stats.tx_pkts += pkts;
1003 	ring->stats.tx_bytes += bytes;
1004 
1005 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1006 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
1007 
1008 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1009 		netif_carrier_on(ndev);
1010 
1011 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
1012 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1013 		/* Make sure that anybody stopping the queue after this
1014 		 * sees the new next_to_clean.
1015 		 */
1016 		smp_mb();
1017 		if (netif_tx_queue_stopped(dev_queue) &&
1018 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
1019 			netif_tx_wake_queue(dev_queue);
1020 			ring->stats.restart_queue++;
1021 		}
1022 	}
1023 	return 0;
1024 }
1025 
1026 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1027 {
1028 	struct hnae_ring *ring = ring_data->ring;
1029 	int head;
1030 
1031 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1032 
1033 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1034 
1035 	if (head != ring->next_to_clean) {
1036 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1037 			ring_data->ring, 1);
1038 
1039 		return false;
1040 	} else {
1041 		return true;
1042 	}
1043 }
1044 
1045 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1046 {
1047 	struct hnae_ring *ring = ring_data->ring;
1048 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1049 
1050 	if (head == ring->next_to_clean)
1051 		return true;
1052 	else
1053 		return false;
1054 }
1055 
1056 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1057 {
1058 	struct hnae_ring *ring = ring_data->ring;
1059 	struct net_device *ndev = ring_data->napi.dev;
1060 	struct netdev_queue *dev_queue;
1061 	int head;
1062 	int bytes, pkts;
1063 
1064 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1065 	bytes = 0;
1066 	pkts = 0;
1067 	while (head != ring->next_to_clean)
1068 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1069 
1070 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1071 	netdev_tx_reset_queue(dev_queue);
1072 }
1073 
1074 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1075 {
1076 	int clean_complete = 0;
1077 	struct hns_nic_ring_data *ring_data =
1078 		container_of(napi, struct hns_nic_ring_data, napi);
1079 	struct hnae_ring *ring = ring_data->ring;
1080 
1081 	clean_complete += ring_data->poll_one(
1082 				ring_data, budget - clean_complete,
1083 				ring_data->ex_process);
1084 
1085 	if (clean_complete < budget) {
1086 		if (ring_data->fini_process(ring_data)) {
1087 			napi_complete(napi);
1088 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1089 		} else {
1090 			return budget;
1091 		}
1092 	}
1093 
1094 	return clean_complete;
1095 }
1096 
1097 static irqreturn_t hns_irq_handle(int irq, void *dev)
1098 {
1099 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1100 
1101 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1102 		ring_data->ring, 1);
1103 	napi_schedule(&ring_data->napi);
1104 
1105 	return IRQ_HANDLED;
1106 }
1107 
1108 /**
1109  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1110  *@ndev: net device
1111  */
1112 static void hns_nic_adjust_link(struct net_device *ndev)
1113 {
1114 	struct hns_nic_priv *priv = netdev_priv(ndev);
1115 	struct hnae_handle *h = priv->ae_handle;
1116 	int state = 1;
1117 
1118 	/* If there is no phy, do not need adjust link */
1119 	if (ndev->phydev) {
1120 		/* When phy link down, do nothing */
1121 		if (ndev->phydev->link == 0)
1122 			return;
1123 
1124 		if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1125 						  ndev->phydev->duplex)) {
1126 			/* because Hi161X chip don't support to change gmac
1127 			 * speed and duplex with traffic. Delay 200ms to
1128 			 * make sure there is no more data in chip FIFO.
1129 			 */
1130 			netif_carrier_off(ndev);
1131 			msleep(200);
1132 			h->dev->ops->adjust_link(h, ndev->phydev->speed,
1133 						 ndev->phydev->duplex);
1134 			netif_carrier_on(ndev);
1135 		}
1136 	}
1137 
1138 	state = state && h->dev->ops->get_status(h);
1139 
1140 	if (state != priv->link) {
1141 		if (state) {
1142 			netif_carrier_on(ndev);
1143 			netif_tx_wake_all_queues(ndev);
1144 			netdev_info(ndev, "link up\n");
1145 		} else {
1146 			netif_carrier_off(ndev);
1147 			netdev_info(ndev, "link down\n");
1148 		}
1149 		priv->link = state;
1150 	}
1151 }
1152 
1153 /**
1154  *hns_nic_init_phy - init phy
1155  *@ndev: net device
1156  *@h: ae handle
1157  * Return 0 on success, negative on failure
1158  */
1159 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1160 {
1161 	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1162 	struct phy_device *phy_dev = h->phy_dev;
1163 	int ret;
1164 
1165 	if (!h->phy_dev)
1166 		return 0;
1167 
1168 	ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1169 	linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1170 	linkmode_copy(phy_dev->advertising, phy_dev->supported);
1171 
1172 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1173 		phy_dev->autoneg = false;
1174 
1175 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1176 		phy_dev->dev_flags = 0;
1177 
1178 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1179 					 h->phy_if);
1180 	} else {
1181 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1182 	}
1183 	if (unlikely(ret))
1184 		return -ENODEV;
1185 
1186 	phy_attached_info(phy_dev);
1187 
1188 	return 0;
1189 }
1190 
1191 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1192 {
1193 	struct hns_nic_priv *priv = netdev_priv(netdev);
1194 	struct hnae_handle *h = priv->ae_handle;
1195 
1196 	napi_enable(&priv->ring_data[idx].napi);
1197 
1198 	enable_irq(priv->ring_data[idx].ring->irq);
1199 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1200 
1201 	return 0;
1202 }
1203 
1204 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1205 {
1206 	struct hns_nic_priv *priv = netdev_priv(ndev);
1207 	struct hnae_handle *h = priv->ae_handle;
1208 	struct sockaddr *mac_addr = p;
1209 	int ret;
1210 
1211 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1212 		return -EADDRNOTAVAIL;
1213 
1214 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1215 	if (ret) {
1216 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1217 		return ret;
1218 	}
1219 
1220 	eth_hw_addr_set(ndev, mac_addr->sa_data);
1221 
1222 	return 0;
1223 }
1224 
1225 static void hns_nic_update_stats(struct net_device *netdev)
1226 {
1227 	struct hns_nic_priv *priv = netdev_priv(netdev);
1228 	struct hnae_handle *h = priv->ae_handle;
1229 
1230 	h->dev->ops->update_stats(h, &netdev->stats);
1231 }
1232 
1233 /* set mac addr if it is configed. or leave it to the AE driver */
1234 static void hns_init_mac_addr(struct net_device *ndev)
1235 {
1236 	struct hns_nic_priv *priv = netdev_priv(ndev);
1237 
1238 	if (device_get_ethdev_address(priv->dev, ndev)) {
1239 		eth_hw_addr_random(ndev);
1240 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1241 			 ndev->dev_addr);
1242 	}
1243 }
1244 
1245 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1246 {
1247 	struct hns_nic_priv *priv = netdev_priv(netdev);
1248 	struct hnae_handle *h = priv->ae_handle;
1249 
1250 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1251 	disable_irq(priv->ring_data[idx].ring->irq);
1252 
1253 	napi_disable(&priv->ring_data[idx].napi);
1254 }
1255 
1256 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1257 				      struct hnae_ring *ring, cpumask_t *mask)
1258 {
1259 	int cpu;
1260 
1261 	/* Different irq balance between 16core and 32core.
1262 	 * The cpu mask set by ring index according to the ring flag
1263 	 * which indicate the ring is tx or rx.
1264 	 */
1265 	if (q_num == num_possible_cpus()) {
1266 		if (is_tx_ring(ring))
1267 			cpu = ring_idx;
1268 		else
1269 			cpu = ring_idx - q_num;
1270 	} else {
1271 		if (is_tx_ring(ring))
1272 			cpu = ring_idx * 2;
1273 		else
1274 			cpu = (ring_idx - q_num) * 2 + 1;
1275 	}
1276 
1277 	cpumask_clear(mask);
1278 	cpumask_set_cpu(cpu, mask);
1279 
1280 	return cpu;
1281 }
1282 
1283 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1284 {
1285 	int i;
1286 
1287 	for (i = 0; i < q_num * 2; i++) {
1288 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1289 			irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1290 					      NULL);
1291 			free_irq(priv->ring_data[i].ring->irq,
1292 				 &priv->ring_data[i]);
1293 			priv->ring_data[i].ring->irq_init_flag =
1294 				RCB_IRQ_NOT_INITED;
1295 		}
1296 	}
1297 }
1298 
1299 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1300 {
1301 	struct hnae_handle *h = priv->ae_handle;
1302 	struct hns_nic_ring_data *rd;
1303 	int i;
1304 	int ret;
1305 	int cpu;
1306 
1307 	for (i = 0; i < h->q_num * 2; i++) {
1308 		rd = &priv->ring_data[i];
1309 
1310 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1311 			break;
1312 
1313 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1314 			 "%s-%s%d", priv->netdev->name,
1315 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1316 
1317 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1318 
1319 		irq_set_status_flags(rd->ring->irq, IRQ_NOAUTOEN);
1320 		ret = request_irq(rd->ring->irq,
1321 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1322 		if (ret) {
1323 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1324 				   rd->ring->irq);
1325 			goto out_free_irq;
1326 		}
1327 
1328 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1329 						 rd->ring, &rd->mask);
1330 
1331 		if (cpu_online(cpu))
1332 			irq_set_affinity_hint(rd->ring->irq,
1333 					      &rd->mask);
1334 
1335 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1336 	}
1337 
1338 	return 0;
1339 
1340 out_free_irq:
1341 	hns_nic_free_irq(h->q_num, priv);
1342 	return ret;
1343 }
1344 
1345 static int hns_nic_net_up(struct net_device *ndev)
1346 {
1347 	struct hns_nic_priv *priv = netdev_priv(ndev);
1348 	struct hnae_handle *h = priv->ae_handle;
1349 	int i, j;
1350 	int ret;
1351 
1352 	if (!test_bit(NIC_STATE_DOWN, &priv->state))
1353 		return 0;
1354 
1355 	ret = hns_nic_init_irq(priv);
1356 	if (ret != 0) {
1357 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1358 		return ret;
1359 	}
1360 
1361 	for (i = 0; i < h->q_num * 2; i++) {
1362 		ret = hns_nic_ring_open(ndev, i);
1363 		if (ret)
1364 			goto out_has_some_queues;
1365 	}
1366 
1367 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1368 	if (ret)
1369 		goto out_set_mac_addr_err;
1370 
1371 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1372 	if (ret)
1373 		goto out_start_err;
1374 
1375 	if (ndev->phydev)
1376 		phy_start(ndev->phydev);
1377 
1378 	clear_bit(NIC_STATE_DOWN, &priv->state);
1379 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1380 
1381 	return 0;
1382 
1383 out_start_err:
1384 	netif_stop_queue(ndev);
1385 out_set_mac_addr_err:
1386 out_has_some_queues:
1387 	for (j = i - 1; j >= 0; j--)
1388 		hns_nic_ring_close(ndev, j);
1389 
1390 	hns_nic_free_irq(h->q_num, priv);
1391 	set_bit(NIC_STATE_DOWN, &priv->state);
1392 
1393 	return ret;
1394 }
1395 
1396 static void hns_nic_net_down(struct net_device *ndev)
1397 {
1398 	int i;
1399 	struct hnae_ae_ops *ops;
1400 	struct hns_nic_priv *priv = netdev_priv(ndev);
1401 
1402 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1403 		return;
1404 
1405 	(void)del_timer_sync(&priv->service_timer);
1406 	netif_tx_stop_all_queues(ndev);
1407 	netif_carrier_off(ndev);
1408 	netif_tx_disable(ndev);
1409 	priv->link = 0;
1410 
1411 	if (ndev->phydev)
1412 		phy_stop(ndev->phydev);
1413 
1414 	ops = priv->ae_handle->dev->ops;
1415 
1416 	if (ops->stop)
1417 		ops->stop(priv->ae_handle);
1418 
1419 	netif_tx_stop_all_queues(ndev);
1420 
1421 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1422 		hns_nic_ring_close(ndev, i);
1423 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1424 
1425 		/* clean tx buffers*/
1426 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1427 	}
1428 }
1429 
1430 void hns_nic_net_reset(struct net_device *ndev)
1431 {
1432 	struct hns_nic_priv *priv = netdev_priv(ndev);
1433 	struct hnae_handle *handle = priv->ae_handle;
1434 
1435 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1436 		usleep_range(1000, 2000);
1437 
1438 	(void)hnae_reinit_handle(handle);
1439 
1440 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1441 }
1442 
1443 void hns_nic_net_reinit(struct net_device *netdev)
1444 {
1445 	struct hns_nic_priv *priv = netdev_priv(netdev);
1446 	enum hnae_port_type type = priv->ae_handle->port_type;
1447 
1448 	netif_trans_update(priv->netdev);
1449 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1450 		usleep_range(1000, 2000);
1451 
1452 	hns_nic_net_down(netdev);
1453 
1454 	/* Only do hns_nic_net_reset in debug mode
1455 	 * because of hardware limitation.
1456 	 */
1457 	if (type == HNAE_PORT_DEBUG)
1458 		hns_nic_net_reset(netdev);
1459 
1460 	(void)hns_nic_net_up(netdev);
1461 	clear_bit(NIC_STATE_REINITING, &priv->state);
1462 }
1463 
1464 static int hns_nic_net_open(struct net_device *ndev)
1465 {
1466 	struct hns_nic_priv *priv = netdev_priv(ndev);
1467 	struct hnae_handle *h = priv->ae_handle;
1468 	int ret;
1469 
1470 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1471 		return -EBUSY;
1472 
1473 	priv->link = 0;
1474 	netif_carrier_off(ndev);
1475 
1476 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1477 	if (ret < 0) {
1478 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1479 			   ret);
1480 		return ret;
1481 	}
1482 
1483 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1484 	if (ret < 0) {
1485 		netdev_err(ndev,
1486 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1487 		return ret;
1488 	}
1489 
1490 	ret = hns_nic_net_up(ndev);
1491 	if (ret) {
1492 		netdev_err(ndev,
1493 			   "hns net up fail, ret=%d!\n", ret);
1494 		return ret;
1495 	}
1496 
1497 	return 0;
1498 }
1499 
1500 static int hns_nic_net_stop(struct net_device *ndev)
1501 {
1502 	hns_nic_net_down(ndev);
1503 
1504 	return 0;
1505 }
1506 
1507 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1508 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1509 static void hns_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1510 {
1511 	struct hns_nic_priv *priv = netdev_priv(ndev);
1512 
1513 	if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1514 		ndev->watchdog_timeo *= 2;
1515 		netdev_info(ndev, "watchdog_timo changed to %d.\n",
1516 			    ndev->watchdog_timeo);
1517 	} else {
1518 		ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1519 		hns_tx_timeout_reset(priv);
1520 	}
1521 }
1522 
1523 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1524 				    struct net_device *ndev)
1525 {
1526 	struct hns_nic_priv *priv = netdev_priv(ndev);
1527 
1528 	assert(skb->queue_mapping < priv->ae_handle->q_num);
1529 
1530 	return hns_nic_net_xmit_hw(ndev, skb,
1531 				   &tx_ring_data(priv, skb->queue_mapping));
1532 }
1533 
1534 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1535 				  struct sk_buff *skb)
1536 {
1537 	dev_kfree_skb_any(skb);
1538 }
1539 
1540 #define HNS_LB_TX_RING	0
1541 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1542 {
1543 	struct sk_buff *skb;
1544 	struct ethhdr *ethhdr;
1545 	int frame_len;
1546 
1547 	/* allocate test skb */
1548 	skb = alloc_skb(64, GFP_KERNEL);
1549 	if (!skb)
1550 		return NULL;
1551 
1552 	skb_put(skb, 64);
1553 	skb->dev = ndev;
1554 	memset(skb->data, 0xFF, skb->len);
1555 
1556 	/* must be tcp/ip package */
1557 	ethhdr = (struct ethhdr *)skb->data;
1558 	ethhdr->h_proto = htons(ETH_P_IP);
1559 
1560 	frame_len = skb->len & (~1ul);
1561 	memset(&skb->data[frame_len / 2], 0xAA,
1562 	       frame_len / 2 - 1);
1563 
1564 	skb->queue_mapping = HNS_LB_TX_RING;
1565 
1566 	return skb;
1567 }
1568 
1569 static int hns_enable_serdes_lb(struct net_device *ndev)
1570 {
1571 	struct hns_nic_priv *priv = netdev_priv(ndev);
1572 	struct hnae_handle *h = priv->ae_handle;
1573 	struct hnae_ae_ops *ops = h->dev->ops;
1574 	int speed, duplex;
1575 	int ret;
1576 
1577 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1578 	if (ret)
1579 		return ret;
1580 
1581 	ret = ops->start ? ops->start(h) : 0;
1582 	if (ret)
1583 		return ret;
1584 
1585 	/* link adjust duplex*/
1586 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1587 		speed = 1000;
1588 	else
1589 		speed = 10000;
1590 	duplex = 1;
1591 
1592 	ops->adjust_link(h, speed, duplex);
1593 
1594 	/* wait h/w ready */
1595 	mdelay(300);
1596 
1597 	return 0;
1598 }
1599 
1600 static void hns_disable_serdes_lb(struct net_device *ndev)
1601 {
1602 	struct hns_nic_priv *priv = netdev_priv(ndev);
1603 	struct hnae_handle *h = priv->ae_handle;
1604 	struct hnae_ae_ops *ops = h->dev->ops;
1605 
1606 	ops->stop(h);
1607 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1608 }
1609 
1610 /**
1611  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1612  *function as follows:
1613  *    1. if one rx ring has found the page_offset is not equal 0 between head
1614  *       and tail, it means that the chip fetched the wrong descs for the ring
1615  *       which buffer size is 4096.
1616  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1617  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1618  *       receiving all packages and it will fetch new descriptions.
1619  *    4. recover to the original state.
1620  *
1621  *@ndev: net device
1622  */
1623 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1624 {
1625 	struct hns_nic_priv *priv = netdev_priv(ndev);
1626 	struct hnae_handle *h = priv->ae_handle;
1627 	struct hnae_ae_ops *ops = h->dev->ops;
1628 	struct hns_nic_ring_data *rd;
1629 	struct hnae_ring *ring;
1630 	struct sk_buff *skb;
1631 	u32 *org_indir;
1632 	u32 *cur_indir;
1633 	int indir_size;
1634 	int head, tail;
1635 	int fetch_num;
1636 	int i, j;
1637 	bool found;
1638 	int retry_times;
1639 	int ret = 0;
1640 
1641 	/* alloc indir memory */
1642 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1643 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1644 	if (!org_indir)
1645 		return -ENOMEM;
1646 
1647 	/* store the original indirection */
1648 	ops->get_rss(h, org_indir, NULL, NULL);
1649 
1650 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1651 	if (!cur_indir) {
1652 		ret = -ENOMEM;
1653 		goto cur_indir_alloc_err;
1654 	}
1655 
1656 	/* set loopback */
1657 	if (hns_enable_serdes_lb(ndev)) {
1658 		ret = -EINVAL;
1659 		goto enable_serdes_lb_err;
1660 	}
1661 
1662 	/* foreach every rx ring to clear fetch desc */
1663 	for (i = 0; i < h->q_num; i++) {
1664 		ring = &h->qs[i]->rx_ring;
1665 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1666 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1667 		found = false;
1668 		fetch_num = ring_dist(ring, head, tail);
1669 
1670 		while (head != tail) {
1671 			if (ring->desc_cb[head].page_offset != 0) {
1672 				found = true;
1673 				break;
1674 			}
1675 
1676 			head++;
1677 			if (head == ring->desc_num)
1678 				head = 0;
1679 		}
1680 
1681 		if (found) {
1682 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1683 				cur_indir[j] = i;
1684 			ops->set_rss(h, cur_indir, NULL, 0);
1685 
1686 			for (j = 0; j < fetch_num; j++) {
1687 				/* alloc one skb and init */
1688 				skb = hns_assemble_skb(ndev);
1689 				if (!skb) {
1690 					ret = -ENOMEM;
1691 					goto out;
1692 				}
1693 				rd = &tx_ring_data(priv, skb->queue_mapping);
1694 				hns_nic_net_xmit_hw(ndev, skb, rd);
1695 
1696 				retry_times = 0;
1697 				while (retry_times++ < 10) {
1698 					mdelay(10);
1699 					/* clean rx */
1700 					rd = &rx_ring_data(priv, i);
1701 					if (rd->poll_one(rd, fetch_num,
1702 							 hns_nic_drop_rx_fetch))
1703 						break;
1704 				}
1705 
1706 				retry_times = 0;
1707 				while (retry_times++ < 10) {
1708 					mdelay(10);
1709 					/* clean tx ring 0 send package */
1710 					rd = &tx_ring_data(priv,
1711 							   HNS_LB_TX_RING);
1712 					if (rd->poll_one(rd, fetch_num, NULL))
1713 						break;
1714 				}
1715 			}
1716 		}
1717 	}
1718 
1719 out:
1720 	/* restore everything */
1721 	ops->set_rss(h, org_indir, NULL, 0);
1722 	hns_disable_serdes_lb(ndev);
1723 enable_serdes_lb_err:
1724 	kfree(cur_indir);
1725 cur_indir_alloc_err:
1726 	kfree(org_indir);
1727 
1728 	return ret;
1729 }
1730 
1731 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1732 {
1733 	struct hns_nic_priv *priv = netdev_priv(ndev);
1734 	struct hnae_handle *h = priv->ae_handle;
1735 	bool if_running = netif_running(ndev);
1736 	int ret;
1737 
1738 	/* MTU < 68 is an error and causes problems on some kernels */
1739 	if (new_mtu < 68)
1740 		return -EINVAL;
1741 
1742 	/* MTU no change */
1743 	if (new_mtu == ndev->mtu)
1744 		return 0;
1745 
1746 	if (!h->dev->ops->set_mtu)
1747 		return -ENOTSUPP;
1748 
1749 	if (if_running) {
1750 		(void)hns_nic_net_stop(ndev);
1751 		msleep(100);
1752 	}
1753 
1754 	if (priv->enet_ver != AE_VERSION_1 &&
1755 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1756 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1757 		/* update desc */
1758 		hnae_reinit_all_ring_desc(h);
1759 
1760 		/* clear the package which the chip has fetched */
1761 		ret = hns_nic_clear_all_rx_fetch(ndev);
1762 
1763 		/* the page offset must be consist with desc */
1764 		hnae_reinit_all_ring_page_off(h);
1765 
1766 		if (ret) {
1767 			netdev_err(ndev, "clear the fetched desc fail\n");
1768 			goto out;
1769 		}
1770 	}
1771 
1772 	ret = h->dev->ops->set_mtu(h, new_mtu);
1773 	if (ret) {
1774 		netdev_err(ndev, "set mtu fail, return value %d\n",
1775 			   ret);
1776 		goto out;
1777 	}
1778 
1779 	/* finally, set new mtu to netdevice */
1780 	ndev->mtu = new_mtu;
1781 
1782 out:
1783 	if (if_running) {
1784 		if (hns_nic_net_open(ndev)) {
1785 			netdev_err(ndev, "hns net open fail\n");
1786 			ret = -EINVAL;
1787 		}
1788 	}
1789 
1790 	return ret;
1791 }
1792 
1793 static int hns_nic_set_features(struct net_device *netdev,
1794 				netdev_features_t features)
1795 {
1796 	struct hns_nic_priv *priv = netdev_priv(netdev);
1797 
1798 	switch (priv->enet_ver) {
1799 	case AE_VERSION_1:
1800 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1801 			netdev_info(netdev, "enet v1 do not support tso!\n");
1802 		break;
1803 	default:
1804 		break;
1805 	}
1806 	netdev->features = features;
1807 	return 0;
1808 }
1809 
1810 static netdev_features_t hns_nic_fix_features(
1811 		struct net_device *netdev, netdev_features_t features)
1812 {
1813 	struct hns_nic_priv *priv = netdev_priv(netdev);
1814 
1815 	switch (priv->enet_ver) {
1816 	case AE_VERSION_1:
1817 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1818 				NETIF_F_HW_VLAN_CTAG_FILTER);
1819 		break;
1820 	default:
1821 		break;
1822 	}
1823 	return features;
1824 }
1825 
1826 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1827 {
1828 	struct hns_nic_priv *priv = netdev_priv(netdev);
1829 	struct hnae_handle *h = priv->ae_handle;
1830 
1831 	if (h->dev->ops->add_uc_addr)
1832 		return h->dev->ops->add_uc_addr(h, addr);
1833 
1834 	return 0;
1835 }
1836 
1837 static int hns_nic_uc_unsync(struct net_device *netdev,
1838 			     const unsigned char *addr)
1839 {
1840 	struct hns_nic_priv *priv = netdev_priv(netdev);
1841 	struct hnae_handle *h = priv->ae_handle;
1842 
1843 	if (h->dev->ops->rm_uc_addr)
1844 		return h->dev->ops->rm_uc_addr(h, addr);
1845 
1846 	return 0;
1847 }
1848 
1849 /**
1850  * hns_set_multicast_list - set mutl mac address
1851  * @ndev: net device
1852  *
1853  * return void
1854  */
1855 static void hns_set_multicast_list(struct net_device *ndev)
1856 {
1857 	struct hns_nic_priv *priv = netdev_priv(ndev);
1858 	struct hnae_handle *h = priv->ae_handle;
1859 	struct netdev_hw_addr *ha = NULL;
1860 
1861 	if (!h)	{
1862 		netdev_err(ndev, "hnae handle is null\n");
1863 		return;
1864 	}
1865 
1866 	if (h->dev->ops->clr_mc_addr)
1867 		if (h->dev->ops->clr_mc_addr(h))
1868 			netdev_err(ndev, "clear multicast address fail\n");
1869 
1870 	if (h->dev->ops->set_mc_addr) {
1871 		netdev_for_each_mc_addr(ha, ndev)
1872 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1873 				netdev_err(ndev, "set multicast fail\n");
1874 	}
1875 }
1876 
1877 static void hns_nic_set_rx_mode(struct net_device *ndev)
1878 {
1879 	struct hns_nic_priv *priv = netdev_priv(ndev);
1880 	struct hnae_handle *h = priv->ae_handle;
1881 
1882 	if (h->dev->ops->set_promisc_mode) {
1883 		if (ndev->flags & IFF_PROMISC)
1884 			h->dev->ops->set_promisc_mode(h, 1);
1885 		else
1886 			h->dev->ops->set_promisc_mode(h, 0);
1887 	}
1888 
1889 	hns_set_multicast_list(ndev);
1890 
1891 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1892 		netdev_err(ndev, "sync uc address fail\n");
1893 }
1894 
1895 static void hns_nic_get_stats64(struct net_device *ndev,
1896 				struct rtnl_link_stats64 *stats)
1897 {
1898 	int idx;
1899 	u64 tx_bytes = 0;
1900 	u64 rx_bytes = 0;
1901 	u64 tx_pkts = 0;
1902 	u64 rx_pkts = 0;
1903 	struct hns_nic_priv *priv = netdev_priv(ndev);
1904 	struct hnae_handle *h = priv->ae_handle;
1905 
1906 	for (idx = 0; idx < h->q_num; idx++) {
1907 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1908 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1909 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1910 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1911 	}
1912 
1913 	stats->tx_bytes = tx_bytes;
1914 	stats->tx_packets = tx_pkts;
1915 	stats->rx_bytes = rx_bytes;
1916 	stats->rx_packets = rx_pkts;
1917 
1918 	stats->rx_errors = ndev->stats.rx_errors;
1919 	stats->multicast = ndev->stats.multicast;
1920 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1921 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1922 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1923 
1924 	stats->tx_errors = ndev->stats.tx_errors;
1925 	stats->rx_dropped = ndev->stats.rx_dropped;
1926 	stats->tx_dropped = ndev->stats.tx_dropped;
1927 	stats->collisions = ndev->stats.collisions;
1928 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1929 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1930 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1931 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1932 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1933 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1934 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1935 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1936 	stats->rx_compressed = ndev->stats.rx_compressed;
1937 	stats->tx_compressed = ndev->stats.tx_compressed;
1938 }
1939 
1940 static u16
1941 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1942 		     struct net_device *sb_dev)
1943 {
1944 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1945 	struct hns_nic_priv *priv = netdev_priv(ndev);
1946 
1947 	/* fix hardware broadcast/multicast packets queue loopback */
1948 	if (!AE_IS_VER1(priv->enet_ver) &&
1949 	    is_multicast_ether_addr(eth_hdr->h_dest))
1950 		return 0;
1951 	else
1952 		return netdev_pick_tx(ndev, skb, NULL);
1953 }
1954 
1955 static const struct net_device_ops hns_nic_netdev_ops = {
1956 	.ndo_open = hns_nic_net_open,
1957 	.ndo_stop = hns_nic_net_stop,
1958 	.ndo_start_xmit = hns_nic_net_xmit,
1959 	.ndo_tx_timeout = hns_nic_net_timeout,
1960 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1961 	.ndo_change_mtu = hns_nic_change_mtu,
1962 	.ndo_eth_ioctl = phy_do_ioctl_running,
1963 	.ndo_set_features = hns_nic_set_features,
1964 	.ndo_fix_features = hns_nic_fix_features,
1965 	.ndo_get_stats64 = hns_nic_get_stats64,
1966 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1967 	.ndo_select_queue = hns_nic_select_queue,
1968 };
1969 
1970 static void hns_nic_update_link_status(struct net_device *netdev)
1971 {
1972 	struct hns_nic_priv *priv = netdev_priv(netdev);
1973 
1974 	struct hnae_handle *h = priv->ae_handle;
1975 
1976 	if (h->phy_dev) {
1977 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1978 			return;
1979 
1980 		(void)genphy_read_status(h->phy_dev);
1981 	}
1982 	hns_nic_adjust_link(netdev);
1983 }
1984 
1985 /* for dumping key regs*/
1986 static void hns_nic_dump(struct hns_nic_priv *priv)
1987 {
1988 	struct hnae_handle *h = priv->ae_handle;
1989 	struct hnae_ae_ops *ops = h->dev->ops;
1990 	u32 *data, reg_num, i;
1991 
1992 	if (ops->get_regs_len && ops->get_regs) {
1993 		reg_num = ops->get_regs_len(priv->ae_handle);
1994 		reg_num = (reg_num + 3ul) & ~3ul;
1995 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1996 		if (data) {
1997 			ops->get_regs(priv->ae_handle, data);
1998 			for (i = 0; i < reg_num; i += 4)
1999 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2000 					i, data[i], data[i + 1],
2001 					data[i + 2], data[i + 3]);
2002 			kfree(data);
2003 		}
2004 	}
2005 
2006 	for (i = 0; i < h->q_num; i++) {
2007 		pr_info("tx_queue%d_next_to_clean:%d\n",
2008 			i, h->qs[i]->tx_ring.next_to_clean);
2009 		pr_info("tx_queue%d_next_to_use:%d\n",
2010 			i, h->qs[i]->tx_ring.next_to_use);
2011 		pr_info("rx_queue%d_next_to_clean:%d\n",
2012 			i, h->qs[i]->rx_ring.next_to_clean);
2013 		pr_info("rx_queue%d_next_to_use:%d\n",
2014 			i, h->qs[i]->rx_ring.next_to_use);
2015 	}
2016 }
2017 
2018 /* for resetting subtask */
2019 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2020 {
2021 	enum hnae_port_type type = priv->ae_handle->port_type;
2022 
2023 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2024 		return;
2025 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2026 
2027 	/* If we're already down, removing or resetting, just bail */
2028 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2029 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
2030 	    test_bit(NIC_STATE_RESETTING, &priv->state))
2031 		return;
2032 
2033 	hns_nic_dump(priv);
2034 	netdev_info(priv->netdev, "try to reset %s port!\n",
2035 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2036 
2037 	rtnl_lock();
2038 	/* put off any impending NetWatchDogTimeout */
2039 	netif_trans_update(priv->netdev);
2040 	hns_nic_net_reinit(priv->netdev);
2041 
2042 	rtnl_unlock();
2043 }
2044 
2045 /* for doing service complete*/
2046 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2047 {
2048 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2049 	/* make sure to commit the things */
2050 	smp_mb__before_atomic();
2051 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2052 }
2053 
2054 static void hns_nic_service_task(struct work_struct *work)
2055 {
2056 	struct hns_nic_priv *priv
2057 		= container_of(work, struct hns_nic_priv, service_task);
2058 	struct hnae_handle *h = priv->ae_handle;
2059 
2060 	hns_nic_reset_subtask(priv);
2061 	hns_nic_update_link_status(priv->netdev);
2062 	h->dev->ops->update_led_status(h);
2063 	hns_nic_update_stats(priv->netdev);
2064 
2065 	hns_nic_service_event_complete(priv);
2066 }
2067 
2068 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2069 {
2070 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2071 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2072 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2073 		(void)schedule_work(&priv->service_task);
2074 }
2075 
2076 static void hns_nic_service_timer(struct timer_list *t)
2077 {
2078 	struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2079 
2080 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2081 
2082 	hns_nic_task_schedule(priv);
2083 }
2084 
2085 /**
2086  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2087  * @priv: driver private struct
2088  **/
2089 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2090 {
2091 	/* Do the reset outside of interrupt context */
2092 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2093 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2094 		netdev_warn(priv->netdev,
2095 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2096 			    priv->tx_timeout_count, priv->state);
2097 		priv->tx_timeout_count++;
2098 		hns_nic_task_schedule(priv);
2099 	}
2100 }
2101 
2102 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2103 {
2104 	struct hnae_handle *h = priv->ae_handle;
2105 	struct hns_nic_ring_data *rd;
2106 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2107 	int i;
2108 
2109 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2110 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2111 		return -EINVAL;
2112 	}
2113 
2114 	priv->ring_data = kzalloc(array3_size(h->q_num,
2115 					      sizeof(*priv->ring_data), 2),
2116 				  GFP_KERNEL);
2117 	if (!priv->ring_data)
2118 		return -ENOMEM;
2119 
2120 	for (i = 0; i < h->q_num; i++) {
2121 		rd = &priv->ring_data[i];
2122 		rd->queue_index = i;
2123 		rd->ring = &h->qs[i]->tx_ring;
2124 		rd->poll_one = hns_nic_tx_poll_one;
2125 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2126 			hns_nic_tx_fini_pro_v2;
2127 
2128 		netif_napi_add(priv->netdev, &rd->napi, hns_nic_common_poll);
2129 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2130 	}
2131 	for (i = h->q_num; i < h->q_num * 2; i++) {
2132 		rd = &priv->ring_data[i];
2133 		rd->queue_index = i - h->q_num;
2134 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2135 		rd->poll_one = hns_nic_rx_poll_one;
2136 		rd->ex_process = hns_nic_rx_up_pro;
2137 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2138 			hns_nic_rx_fini_pro_v2;
2139 
2140 		netif_napi_add(priv->netdev, &rd->napi, hns_nic_common_poll);
2141 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2142 	}
2143 
2144 	return 0;
2145 }
2146 
2147 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2148 {
2149 	struct hnae_handle *h = priv->ae_handle;
2150 	int i;
2151 
2152 	for (i = 0; i < h->q_num * 2; i++) {
2153 		netif_napi_del(&priv->ring_data[i].napi);
2154 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2155 			(void)irq_set_affinity_hint(
2156 				priv->ring_data[i].ring->irq,
2157 				NULL);
2158 			free_irq(priv->ring_data[i].ring->irq,
2159 				 &priv->ring_data[i]);
2160 		}
2161 
2162 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2163 	}
2164 	kfree(priv->ring_data);
2165 }
2166 
2167 static void hns_nic_set_priv_ops(struct net_device *netdev)
2168 {
2169 	struct hns_nic_priv *priv = netdev_priv(netdev);
2170 	struct hnae_handle *h = priv->ae_handle;
2171 
2172 	if (AE_IS_VER1(priv->enet_ver)) {
2173 		priv->ops.fill_desc = fill_desc;
2174 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2175 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2176 	} else {
2177 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2178 		priv->ops.fill_desc = fill_desc_v2;
2179 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx_v2;
2180 		netif_set_tso_max_size(netdev, 7 * 4096);
2181 		/* enable tso when init
2182 		 * control tso on/off through TSE bit in bd
2183 		 */
2184 		h->dev->ops->set_tso_stats(h, 1);
2185 	}
2186 }
2187 
2188 static int hns_nic_try_get_ae(struct net_device *ndev)
2189 {
2190 	struct hns_nic_priv *priv = netdev_priv(ndev);
2191 	struct hnae_handle *h;
2192 	int ret;
2193 
2194 	h = hnae_get_handle(&priv->netdev->dev,
2195 			    priv->fwnode, priv->port_id, NULL);
2196 	if (IS_ERR_OR_NULL(h)) {
2197 		ret = -ENODEV;
2198 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2199 		goto out;
2200 	}
2201 	priv->ae_handle = h;
2202 
2203 	ret = hns_nic_init_phy(ndev, h);
2204 	if (ret) {
2205 		dev_err(priv->dev, "probe phy device fail!\n");
2206 		goto out_init_phy;
2207 	}
2208 
2209 	ret = hns_nic_init_ring_data(priv);
2210 	if (ret) {
2211 		ret = -ENOMEM;
2212 		goto out_init_ring_data;
2213 	}
2214 
2215 	hns_nic_set_priv_ops(ndev);
2216 
2217 	ret = register_netdev(ndev);
2218 	if (ret) {
2219 		dev_err(priv->dev, "probe register netdev fail!\n");
2220 		goto out_reg_ndev_fail;
2221 	}
2222 	return 0;
2223 
2224 out_reg_ndev_fail:
2225 	hns_nic_uninit_ring_data(priv);
2226 	priv->ring_data = NULL;
2227 out_init_phy:
2228 out_init_ring_data:
2229 	hnae_put_handle(priv->ae_handle);
2230 	priv->ae_handle = NULL;
2231 out:
2232 	return ret;
2233 }
2234 
2235 static int hns_nic_notifier_action(struct notifier_block *nb,
2236 				   unsigned long action, void *data)
2237 {
2238 	struct hns_nic_priv *priv =
2239 		container_of(nb, struct hns_nic_priv, notifier_block);
2240 
2241 	assert(action == HNAE_AE_REGISTER);
2242 
2243 	if (!hns_nic_try_get_ae(priv->netdev)) {
2244 		hnae_unregister_notifier(&priv->notifier_block);
2245 		priv->notifier_block.notifier_call = NULL;
2246 	}
2247 	return 0;
2248 }
2249 
2250 static int hns_nic_dev_probe(struct platform_device *pdev)
2251 {
2252 	struct device *dev = &pdev->dev;
2253 	struct net_device *ndev;
2254 	struct hns_nic_priv *priv;
2255 	u32 port_id;
2256 	int ret;
2257 
2258 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2259 	if (!ndev)
2260 		return -ENOMEM;
2261 
2262 	platform_set_drvdata(pdev, ndev);
2263 
2264 	priv = netdev_priv(ndev);
2265 	priv->dev = dev;
2266 	priv->netdev = ndev;
2267 
2268 	if (dev_of_node(dev)) {
2269 		struct device_node *ae_node;
2270 
2271 		if (of_device_is_compatible(dev->of_node,
2272 					    "hisilicon,hns-nic-v1"))
2273 			priv->enet_ver = AE_VERSION_1;
2274 		else
2275 			priv->enet_ver = AE_VERSION_2;
2276 
2277 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2278 		if (!ae_node) {
2279 			ret = -ENODEV;
2280 			dev_err(dev, "not find ae-handle\n");
2281 			goto out_read_prop_fail;
2282 		}
2283 		priv->fwnode = &ae_node->fwnode;
2284 	} else if (is_acpi_node(dev->fwnode)) {
2285 		struct fwnode_reference_args args;
2286 
2287 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2288 			priv->enet_ver = AE_VERSION_1;
2289 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2290 			priv->enet_ver = AE_VERSION_2;
2291 		else {
2292 			ret = -ENXIO;
2293 			goto out_read_prop_fail;
2294 		}
2295 
2296 		/* try to find port-idx-in-ae first */
2297 		ret = acpi_node_get_property_reference(dev->fwnode,
2298 						       "ae-handle", 0, &args);
2299 		if (ret) {
2300 			dev_err(dev, "not find ae-handle\n");
2301 			goto out_read_prop_fail;
2302 		}
2303 		if (!is_acpi_device_node(args.fwnode)) {
2304 			ret = -EINVAL;
2305 			goto out_read_prop_fail;
2306 		}
2307 		priv->fwnode = args.fwnode;
2308 	} else {
2309 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2310 		ret = -ENXIO;
2311 		goto out_read_prop_fail;
2312 	}
2313 
2314 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2315 	if (ret) {
2316 		/* only for old code compatible */
2317 		ret = device_property_read_u32(dev, "port-id", &port_id);
2318 		if (ret)
2319 			goto out_read_prop_fail;
2320 		/* for old dts, we need to caculate the port offset */
2321 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2322 			: port_id - HNS_SRV_OFFSET;
2323 	}
2324 	priv->port_id = port_id;
2325 
2326 	hns_init_mac_addr(ndev);
2327 
2328 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2329 	ndev->priv_flags |= IFF_UNICAST_FLT;
2330 	ndev->netdev_ops = &hns_nic_netdev_ops;
2331 	hns_ethtool_set_ops(ndev);
2332 
2333 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2334 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2335 		NETIF_F_GRO;
2336 	ndev->vlan_features |=
2337 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2338 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2339 
2340 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2341 	ndev->min_mtu = MAC_MIN_MTU;
2342 	switch (priv->enet_ver) {
2343 	case AE_VERSION_2:
2344 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2345 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2346 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2347 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2348 		ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2349 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2350 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2351 		break;
2352 	default:
2353 		ndev->max_mtu = MAC_MAX_MTU -
2354 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2355 		break;
2356 	}
2357 
2358 	SET_NETDEV_DEV(ndev, dev);
2359 
2360 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2361 		dev_dbg(dev, "set mask to 64bit\n");
2362 	else
2363 		dev_err(dev, "set mask to 64bit fail!\n");
2364 
2365 	/* carrier off reporting is important to ethtool even BEFORE open */
2366 	netif_carrier_off(ndev);
2367 
2368 	timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2369 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2370 
2371 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2372 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2373 	set_bit(NIC_STATE_DOWN, &priv->state);
2374 
2375 	if (hns_nic_try_get_ae(priv->netdev)) {
2376 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2377 		ret = hnae_register_notifier(&priv->notifier_block);
2378 		if (ret) {
2379 			dev_err(dev, "register notifier fail!\n");
2380 			goto out_notify_fail;
2381 		}
2382 		dev_dbg(dev, "has not handle, register notifier!\n");
2383 	}
2384 
2385 	return 0;
2386 
2387 out_notify_fail:
2388 	(void)cancel_work_sync(&priv->service_task);
2389 out_read_prop_fail:
2390 	/* safe for ACPI FW */
2391 	of_node_put(to_of_node(priv->fwnode));
2392 	free_netdev(ndev);
2393 	return ret;
2394 }
2395 
2396 static int hns_nic_dev_remove(struct platform_device *pdev)
2397 {
2398 	struct net_device *ndev = platform_get_drvdata(pdev);
2399 	struct hns_nic_priv *priv = netdev_priv(ndev);
2400 
2401 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2402 		unregister_netdev(ndev);
2403 
2404 	if (priv->ring_data)
2405 		hns_nic_uninit_ring_data(priv);
2406 	priv->ring_data = NULL;
2407 
2408 	if (ndev->phydev)
2409 		phy_disconnect(ndev->phydev);
2410 
2411 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2412 		hnae_put_handle(priv->ae_handle);
2413 	priv->ae_handle = NULL;
2414 	if (priv->notifier_block.notifier_call)
2415 		hnae_unregister_notifier(&priv->notifier_block);
2416 	priv->notifier_block.notifier_call = NULL;
2417 
2418 	set_bit(NIC_STATE_REMOVING, &priv->state);
2419 	(void)cancel_work_sync(&priv->service_task);
2420 
2421 	/* safe for ACPI FW */
2422 	of_node_put(to_of_node(priv->fwnode));
2423 
2424 	free_netdev(ndev);
2425 	return 0;
2426 }
2427 
2428 static const struct of_device_id hns_enet_of_match[] = {
2429 	{.compatible = "hisilicon,hns-nic-v1",},
2430 	{.compatible = "hisilicon,hns-nic-v2",},
2431 	{},
2432 };
2433 
2434 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2435 
2436 static struct platform_driver hns_nic_dev_driver = {
2437 	.driver = {
2438 		.name = "hns-nic",
2439 		.of_match_table = hns_enet_of_match,
2440 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2441 	},
2442 	.probe = hns_nic_dev_probe,
2443 	.remove = hns_nic_dev_remove,
2444 };
2445 
2446 module_platform_driver(hns_nic_dev_driver);
2447 
2448 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2449 MODULE_AUTHOR("Hisilicon, Inc.");
2450 MODULE_LICENSE("GPL");
2451 MODULE_ALIAS("platform:hns-nic");
2452