1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2014-2015 Hisilicon Limited. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/cpumask.h> 8 #include <linux/etherdevice.h> 9 #include <linux/if_vlan.h> 10 #include <linux/interrupt.h> 11 #include <linux/io.h> 12 #include <linux/ip.h> 13 #include <linux/ipv6.h> 14 #include <linux/irq.h> 15 #include <linux/module.h> 16 #include <linux/phy.h> 17 #include <linux/platform_device.h> 18 #include <linux/skbuff.h> 19 20 #include "hnae.h" 21 #include "hns_enet.h" 22 #include "hns_dsaf_mac.h" 23 24 #define NIC_MAX_Q_PER_VF 16 25 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 26 27 #define SERVICE_TIMER_HZ (1 * HZ) 28 29 #define RCB_IRQ_NOT_INITED 0 30 #define RCB_IRQ_INITED 1 31 #define HNS_BUFFER_SIZE_2048 2048 32 33 #define BD_MAX_SEND_SIZE 8191 34 35 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size, 36 int send_sz, dma_addr_t dma, int frag_end, 37 int buf_num, enum hns_desc_type type, int mtu) 38 { 39 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 40 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 41 struct iphdr *iphdr; 42 struct ipv6hdr *ipv6hdr; 43 struct sk_buff *skb; 44 __be16 protocol; 45 u8 bn_pid = 0; 46 u8 rrcfv = 0; 47 u8 ip_offset = 0; 48 u8 tvsvsn = 0; 49 u16 mss = 0; 50 u8 l4_len = 0; 51 u16 paylen = 0; 52 53 desc_cb->priv = priv; 54 desc_cb->length = size; 55 desc_cb->dma = dma; 56 desc_cb->type = type; 57 58 desc->addr = cpu_to_le64(dma); 59 desc->tx.send_size = cpu_to_le16((u16)send_sz); 60 61 /* config bd buffer end */ 62 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 63 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 64 65 /* fill port_id in the tx bd for sending management pkts */ 66 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 67 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 68 69 if (type == DESC_TYPE_SKB) { 70 skb = (struct sk_buff *)priv; 71 72 if (skb->ip_summed == CHECKSUM_PARTIAL) { 73 skb_reset_mac_len(skb); 74 protocol = skb->protocol; 75 ip_offset = ETH_HLEN; 76 77 if (protocol == htons(ETH_P_8021Q)) { 78 ip_offset += VLAN_HLEN; 79 protocol = vlan_get_protocol(skb); 80 skb->protocol = protocol; 81 } 82 83 if (skb->protocol == htons(ETH_P_IP)) { 84 iphdr = ip_hdr(skb); 85 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 86 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 87 88 /* check for tcp/udp header */ 89 if (iphdr->protocol == IPPROTO_TCP && 90 skb_is_gso(skb)) { 91 hnae_set_bit(tvsvsn, 92 HNSV2_TXD_TSE_B, 1); 93 l4_len = tcp_hdrlen(skb); 94 mss = skb_shinfo(skb)->gso_size; 95 paylen = skb->len - skb_tcp_all_headers(skb); 96 } 97 } else if (skb->protocol == htons(ETH_P_IPV6)) { 98 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 99 ipv6hdr = ipv6_hdr(skb); 100 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 101 102 /* check for tcp/udp header */ 103 if (ipv6hdr->nexthdr == IPPROTO_TCP && 104 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 105 hnae_set_bit(tvsvsn, 106 HNSV2_TXD_TSE_B, 1); 107 l4_len = tcp_hdrlen(skb); 108 mss = skb_shinfo(skb)->gso_size; 109 paylen = skb->len - skb_tcp_all_headers(skb); 110 } 111 } 112 desc->tx.ip_offset = ip_offset; 113 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 114 desc->tx.mss = cpu_to_le16(mss); 115 desc->tx.l4_len = l4_len; 116 desc->tx.paylen = cpu_to_le16(paylen); 117 } 118 } 119 120 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 121 122 desc->tx.bn_pid = bn_pid; 123 desc->tx.ra_ri_cs_fe_vld = rrcfv; 124 125 ring_ptr_move_fw(ring, next_to_use); 126 } 127 128 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 129 int size, dma_addr_t dma, int frag_end, 130 int buf_num, enum hns_desc_type type, int mtu) 131 { 132 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end, 133 buf_num, type, mtu); 134 } 135 136 static const struct acpi_device_id hns_enet_acpi_match[] = { 137 { "HISI00C1", 0 }, 138 { "HISI00C2", 0 }, 139 { }, 140 }; 141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 142 143 static void fill_desc(struct hnae_ring *ring, void *priv, 144 int size, dma_addr_t dma, int frag_end, 145 int buf_num, enum hns_desc_type type, int mtu) 146 { 147 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 148 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 149 struct sk_buff *skb; 150 __be16 protocol; 151 u32 ip_offset; 152 u32 asid_bufnum_pid = 0; 153 u32 flag_ipoffset = 0; 154 155 desc_cb->priv = priv; 156 desc_cb->length = size; 157 desc_cb->dma = dma; 158 desc_cb->type = type; 159 160 desc->addr = cpu_to_le64(dma); 161 desc->tx.send_size = cpu_to_le16((u16)size); 162 163 /*config bd buffer end */ 164 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 165 166 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 167 168 if (type == DESC_TYPE_SKB) { 169 skb = (struct sk_buff *)priv; 170 171 if (skb->ip_summed == CHECKSUM_PARTIAL) { 172 protocol = skb->protocol; 173 ip_offset = ETH_HLEN; 174 175 /*if it is a SW VLAN check the next protocol*/ 176 if (protocol == htons(ETH_P_8021Q)) { 177 ip_offset += VLAN_HLEN; 178 protocol = vlan_get_protocol(skb); 179 skb->protocol = protocol; 180 } 181 182 if (skb->protocol == htons(ETH_P_IP)) { 183 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 184 /* check for tcp/udp header */ 185 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 186 187 } else if (skb->protocol == htons(ETH_P_IPV6)) { 188 /* ipv6 has not l3 cs, check for L4 header */ 189 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 190 } 191 192 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 193 } 194 } 195 196 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 197 198 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 199 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 200 201 ring_ptr_move_fw(ring, next_to_use); 202 } 203 204 static void unfill_desc(struct hnae_ring *ring) 205 { 206 ring_ptr_move_bw(ring, next_to_use); 207 } 208 209 static int hns_nic_maybe_stop_tx( 210 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 211 { 212 struct sk_buff *skb = *out_skb; 213 struct sk_buff *new_skb = NULL; 214 int buf_num; 215 216 /* no. of segments (plus a header) */ 217 buf_num = skb_shinfo(skb)->nr_frags + 1; 218 219 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 220 if (ring_space(ring) < 1) 221 return -EBUSY; 222 223 new_skb = skb_copy(skb, GFP_ATOMIC); 224 if (!new_skb) 225 return -ENOMEM; 226 227 dev_kfree_skb_any(skb); 228 *out_skb = new_skb; 229 buf_num = 1; 230 } else if (buf_num > ring_space(ring)) { 231 return -EBUSY; 232 } 233 234 *bnum = buf_num; 235 return 0; 236 } 237 238 static int hns_nic_maybe_stop_tso( 239 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 240 { 241 int i; 242 int size; 243 int buf_num; 244 int frag_num; 245 struct sk_buff *skb = *out_skb; 246 struct sk_buff *new_skb = NULL; 247 skb_frag_t *frag; 248 249 size = skb_headlen(skb); 250 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 251 252 frag_num = skb_shinfo(skb)->nr_frags; 253 for (i = 0; i < frag_num; i++) { 254 frag = &skb_shinfo(skb)->frags[i]; 255 size = skb_frag_size(frag); 256 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 257 } 258 259 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 260 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 261 if (ring_space(ring) < buf_num) 262 return -EBUSY; 263 /* manual split the send packet */ 264 new_skb = skb_copy(skb, GFP_ATOMIC); 265 if (!new_skb) 266 return -ENOMEM; 267 dev_kfree_skb_any(skb); 268 *out_skb = new_skb; 269 270 } else if (ring_space(ring) < buf_num) { 271 return -EBUSY; 272 } 273 274 *bnum = buf_num; 275 return 0; 276 } 277 278 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 279 int size, dma_addr_t dma, int frag_end, 280 int buf_num, enum hns_desc_type type, int mtu) 281 { 282 int frag_buf_num; 283 int sizeoflast; 284 int k; 285 286 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 287 sizeoflast = size % BD_MAX_SEND_SIZE; 288 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 289 290 /* when the frag size is bigger than hardware, split this frag */ 291 for (k = 0; k < frag_buf_num; k++) 292 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0, 293 (k == frag_buf_num - 1) ? 294 sizeoflast : BD_MAX_SEND_SIZE, 295 dma + BD_MAX_SEND_SIZE * k, 296 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 297 buf_num, 298 (type == DESC_TYPE_SKB && !k) ? 299 DESC_TYPE_SKB : DESC_TYPE_PAGE, 300 mtu); 301 } 302 303 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev, 304 struct sk_buff *skb, 305 struct hns_nic_ring_data *ring_data) 306 { 307 struct hns_nic_priv *priv = netdev_priv(ndev); 308 struct hnae_ring *ring = ring_data->ring; 309 struct device *dev = ring_to_dev(ring); 310 struct netdev_queue *dev_queue; 311 skb_frag_t *frag; 312 int buf_num; 313 int seg_num; 314 dma_addr_t dma; 315 int size, next_to_use; 316 int i; 317 318 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 319 case -EBUSY: 320 ring->stats.tx_busy++; 321 goto out_net_tx_busy; 322 case -ENOMEM: 323 ring->stats.sw_err_cnt++; 324 netdev_err(ndev, "no memory to xmit!\n"); 325 goto out_err_tx_ok; 326 default: 327 break; 328 } 329 330 /* no. of segments (plus a header) */ 331 seg_num = skb_shinfo(skb)->nr_frags + 1; 332 next_to_use = ring->next_to_use; 333 334 /* fill the first part */ 335 size = skb_headlen(skb); 336 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 337 if (dma_mapping_error(dev, dma)) { 338 netdev_err(ndev, "TX head DMA map failed\n"); 339 ring->stats.sw_err_cnt++; 340 goto out_err_tx_ok; 341 } 342 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 343 buf_num, DESC_TYPE_SKB, ndev->mtu); 344 345 /* fill the fragments */ 346 for (i = 1; i < seg_num; i++) { 347 frag = &skb_shinfo(skb)->frags[i - 1]; 348 size = skb_frag_size(frag); 349 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 350 if (dma_mapping_error(dev, dma)) { 351 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 352 ring->stats.sw_err_cnt++; 353 goto out_map_frag_fail; 354 } 355 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 356 seg_num - 1 == i ? 1 : 0, buf_num, 357 DESC_TYPE_PAGE, ndev->mtu); 358 } 359 360 /*complete translate all packets*/ 361 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 362 netdev_tx_sent_queue(dev_queue, skb->len); 363 364 netif_trans_update(ndev); 365 ndev->stats.tx_bytes += skb->len; 366 ndev->stats.tx_packets++; 367 368 wmb(); /* commit all data before submit */ 369 assert(skb->queue_mapping < priv->ae_handle->q_num); 370 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 371 372 return NETDEV_TX_OK; 373 374 out_map_frag_fail: 375 376 while (ring->next_to_use != next_to_use) { 377 unfill_desc(ring); 378 if (ring->next_to_use != next_to_use) 379 dma_unmap_page(dev, 380 ring->desc_cb[ring->next_to_use].dma, 381 ring->desc_cb[ring->next_to_use].length, 382 DMA_TO_DEVICE); 383 else 384 dma_unmap_single(dev, 385 ring->desc_cb[next_to_use].dma, 386 ring->desc_cb[next_to_use].length, 387 DMA_TO_DEVICE); 388 } 389 390 out_err_tx_ok: 391 392 dev_kfree_skb_any(skb); 393 return NETDEV_TX_OK; 394 395 out_net_tx_busy: 396 397 netif_stop_subqueue(ndev, skb->queue_mapping); 398 399 /* Herbert's original patch had: 400 * smp_mb__after_netif_stop_queue(); 401 * but since that doesn't exist yet, just open code it. 402 */ 403 smp_mb(); 404 return NETDEV_TX_BUSY; 405 } 406 407 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 408 struct hnae_ring *ring, int pull_len, 409 struct hnae_desc_cb *desc_cb) 410 { 411 struct hnae_desc *desc; 412 u32 truesize; 413 int size; 414 int last_offset; 415 bool twobufs; 416 417 twobufs = ((PAGE_SIZE < 8192) && 418 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 419 420 desc = &ring->desc[ring->next_to_clean]; 421 size = le16_to_cpu(desc->rx.size); 422 423 if (twobufs) { 424 truesize = hnae_buf_size(ring); 425 } else { 426 truesize = ALIGN(size, L1_CACHE_BYTES); 427 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 428 } 429 430 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 431 size - pull_len, truesize); 432 433 /* avoid re-using remote pages,flag default unreuse */ 434 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 435 return; 436 437 if (twobufs) { 438 /* if we are only owner of page we can reuse it */ 439 if (likely(page_count(desc_cb->priv) == 1)) { 440 /* flip page offset to other buffer */ 441 desc_cb->page_offset ^= truesize; 442 443 desc_cb->reuse_flag = 1; 444 /* bump ref count on page before it is given*/ 445 get_page(desc_cb->priv); 446 } 447 return; 448 } 449 450 /* move offset up to the next cache line */ 451 desc_cb->page_offset += truesize; 452 453 if (desc_cb->page_offset <= last_offset) { 454 desc_cb->reuse_flag = 1; 455 /* bump ref count on page before it is given*/ 456 get_page(desc_cb->priv); 457 } 458 } 459 460 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 461 { 462 *out_bnum = hnae_get_field(bnum_flag, 463 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 464 } 465 466 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 467 { 468 *out_bnum = hnae_get_field(bnum_flag, 469 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 470 } 471 472 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 473 struct sk_buff *skb, u32 flag) 474 { 475 struct net_device *netdev = ring_data->napi.dev; 476 u32 l3id; 477 u32 l4id; 478 479 /* check if RX checksum offload is enabled */ 480 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 481 return; 482 483 /* In hardware, we only support checksum for the following protocols: 484 * 1) IPv4, 485 * 2) TCP(over IPv4 or IPv6), 486 * 3) UDP(over IPv4 or IPv6), 487 * 4) SCTP(over IPv4 or IPv6) 488 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 489 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 490 * 491 * Hardware limitation: 492 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 493 * Error" bit (which usually can be used to indicate whether checksum 494 * was calculated by the hardware and if there was any error encountered 495 * during checksum calculation). 496 * 497 * Software workaround: 498 * We do get info within the RX descriptor about the kind of L3/L4 499 * protocol coming in the packet and the error status. These errors 500 * might not just be checksum errors but could be related to version, 501 * length of IPv4, UDP, TCP etc. 502 * Because there is no-way of knowing if it is a L3/L4 error due to bad 503 * checksum or any other L3/L4 error, we will not (cannot) convey 504 * checksum status for such cases to upper stack and will not maintain 505 * the RX L3/L4 checksum counters as well. 506 */ 507 508 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 509 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 510 511 /* check L3 protocol for which checksum is supported */ 512 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 513 return; 514 515 /* check for any(not just checksum)flagged L3 protocol errors */ 516 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 517 return; 518 519 /* we do not support checksum of fragmented packets */ 520 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 521 return; 522 523 /* check L4 protocol for which checksum is supported */ 524 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 525 (l4id != HNS_RX_FLAG_L4ID_UDP) && 526 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 527 return; 528 529 /* check for any(not just checksum)flagged L4 protocol errors */ 530 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 531 return; 532 533 /* now, this has to be a packet with valid RX checksum */ 534 skb->ip_summed = CHECKSUM_UNNECESSARY; 535 } 536 537 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 538 struct sk_buff **out_skb, int *out_bnum) 539 { 540 struct hnae_ring *ring = ring_data->ring; 541 struct net_device *ndev = ring_data->napi.dev; 542 struct hns_nic_priv *priv = netdev_priv(ndev); 543 struct sk_buff *skb; 544 struct hnae_desc *desc; 545 struct hnae_desc_cb *desc_cb; 546 unsigned char *va; 547 int bnum, length, i; 548 int pull_len; 549 u32 bnum_flag; 550 551 desc = &ring->desc[ring->next_to_clean]; 552 desc_cb = &ring->desc_cb[ring->next_to_clean]; 553 554 prefetch(desc); 555 556 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 557 558 /* prefetch first cache line of first page */ 559 net_prefetch(va); 560 561 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 562 HNS_RX_HEAD_SIZE); 563 if (unlikely(!skb)) { 564 ring->stats.sw_err_cnt++; 565 return -ENOMEM; 566 } 567 568 prefetchw(skb->data); 569 length = le16_to_cpu(desc->rx.pkt_len); 570 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 571 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 572 *out_bnum = bnum; 573 574 if (length <= HNS_RX_HEAD_SIZE) { 575 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 576 577 /* we can reuse buffer as-is, just make sure it is local */ 578 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 579 desc_cb->reuse_flag = 1; 580 else /* this page cannot be reused so discard it */ 581 put_page(desc_cb->priv); 582 583 ring_ptr_move_fw(ring, next_to_clean); 584 585 if (unlikely(bnum != 1)) { /* check err*/ 586 *out_bnum = 1; 587 goto out_bnum_err; 588 } 589 } else { 590 ring->stats.seg_pkt_cnt++; 591 592 pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE); 593 memcpy(__skb_put(skb, pull_len), va, 594 ALIGN(pull_len, sizeof(long))); 595 596 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 597 ring_ptr_move_fw(ring, next_to_clean); 598 599 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 600 *out_bnum = 1; 601 goto out_bnum_err; 602 } 603 for (i = 1; i < bnum; i++) { 604 desc = &ring->desc[ring->next_to_clean]; 605 desc_cb = &ring->desc_cb[ring->next_to_clean]; 606 607 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 608 ring_ptr_move_fw(ring, next_to_clean); 609 } 610 } 611 612 /* check except process, free skb and jump the desc */ 613 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 614 out_bnum_err: 615 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 616 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 617 bnum, ring->max_desc_num_per_pkt, 618 length, (int)MAX_SKB_FRAGS, 619 ((u64 *)desc)[0], ((u64 *)desc)[1]); 620 ring->stats.err_bd_num++; 621 dev_kfree_skb_any(skb); 622 return -EDOM; 623 } 624 625 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 626 627 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 628 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 629 ((u64 *)desc)[0], ((u64 *)desc)[1]); 630 ring->stats.non_vld_descs++; 631 dev_kfree_skb_any(skb); 632 return -EINVAL; 633 } 634 635 if (unlikely((!desc->rx.pkt_len) || 636 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 637 ring->stats.err_pkt_len++; 638 dev_kfree_skb_any(skb); 639 return -EFAULT; 640 } 641 642 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 643 ring->stats.l2_err++; 644 dev_kfree_skb_any(skb); 645 return -EFAULT; 646 } 647 648 ring->stats.rx_pkts++; 649 ring->stats.rx_bytes += skb->len; 650 651 /* indicate to upper stack if our hardware has already calculated 652 * the RX checksum 653 */ 654 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 655 656 return 0; 657 } 658 659 static void 660 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 661 { 662 int i, ret; 663 struct hnae_desc_cb res_cbs; 664 struct hnae_desc_cb *desc_cb; 665 struct hnae_ring *ring = ring_data->ring; 666 struct net_device *ndev = ring_data->napi.dev; 667 668 for (i = 0; i < cleand_count; i++) { 669 desc_cb = &ring->desc_cb[ring->next_to_use]; 670 if (desc_cb->reuse_flag) { 671 ring->stats.reuse_pg_cnt++; 672 hnae_reuse_buffer(ring, ring->next_to_use); 673 } else { 674 ret = hnae_reserve_buffer_map(ring, &res_cbs); 675 if (ret) { 676 ring->stats.sw_err_cnt++; 677 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 678 break; 679 } 680 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 681 } 682 683 ring_ptr_move_fw(ring, next_to_use); 684 } 685 686 wmb(); /* make all data has been write before submit */ 687 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 688 } 689 690 /* return error number for error or number of desc left to take 691 */ 692 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 693 struct sk_buff *skb) 694 { 695 struct net_device *ndev = ring_data->napi.dev; 696 697 skb->protocol = eth_type_trans(skb, ndev); 698 napi_gro_receive(&ring_data->napi, skb); 699 } 700 701 static int hns_desc_unused(struct hnae_ring *ring) 702 { 703 int ntc = ring->next_to_clean; 704 int ntu = ring->next_to_use; 705 706 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 707 } 708 709 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */ 710 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */ 711 712 #define HNS_COAL_BDNUM 3 713 714 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring) 715 { 716 bool coal_enable = ring->q->handle->coal_adapt_en; 717 718 if (coal_enable && 719 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE) 720 return HNS_COAL_BDNUM; 721 else 722 return 0; 723 } 724 725 static void hns_update_rx_rate(struct hnae_ring *ring) 726 { 727 bool coal_enable = ring->q->handle->coal_adapt_en; 728 u32 time_passed_ms; 729 u64 total_bytes; 730 731 if (!coal_enable || 732 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4))) 733 return; 734 735 /* ring->stats.rx_bytes overflowed */ 736 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) { 737 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 738 ring->coal_last_jiffies = jiffies; 739 return; 740 } 741 742 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes; 743 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies); 744 do_div(total_bytes, time_passed_ms); 745 ring->coal_rx_rate = total_bytes >> 10; 746 747 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 748 ring->coal_last_jiffies = jiffies; 749 } 750 751 /** 752 * smooth_alg - smoothing algrithm for adjusting coalesce parameter 753 * @new_param: new value 754 * @old_param: old value 755 **/ 756 static u32 smooth_alg(u32 new_param, u32 old_param) 757 { 758 u32 gap = (new_param > old_param) ? new_param - old_param 759 : old_param - new_param; 760 761 if (gap > 8) 762 gap >>= 3; 763 764 if (new_param > old_param) 765 return old_param + gap; 766 else 767 return old_param - gap; 768 } 769 770 /** 771 * hns_nic_adpt_coalesce - self adapte coalesce according to rx rate 772 * @ring_data: pointer to hns_nic_ring_data 773 **/ 774 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data) 775 { 776 struct hnae_ring *ring = ring_data->ring; 777 struct hnae_handle *handle = ring->q->handle; 778 u32 new_coal_param, old_coal_param = ring->coal_param; 779 780 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE) 781 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM; 782 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE) 783 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM; 784 else 785 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM; 786 787 if (new_coal_param == old_coal_param && 788 new_coal_param == handle->coal_param) 789 return; 790 791 new_coal_param = smooth_alg(new_coal_param, old_coal_param); 792 ring->coal_param = new_coal_param; 793 794 /** 795 * Because all ring in one port has one coalesce param, when one ring 796 * calculate its own coalesce param, it cannot write to hardware at 797 * once. There are three conditions as follows: 798 * 1. current ring's coalesce param is larger than the hardware. 799 * 2. or ring which adapt last time can change again. 800 * 3. timeout. 801 */ 802 if (new_coal_param == handle->coal_param) { 803 handle->coal_last_jiffies = jiffies; 804 handle->coal_ring_idx = ring_data->queue_index; 805 } else if (new_coal_param > handle->coal_param || 806 handle->coal_ring_idx == ring_data->queue_index || 807 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) { 808 handle->dev->ops->set_coalesce_usecs(handle, 809 new_coal_param); 810 handle->dev->ops->set_coalesce_frames(handle, 811 1, new_coal_param); 812 handle->coal_param = new_coal_param; 813 handle->coal_ring_idx = ring_data->queue_index; 814 handle->coal_last_jiffies = jiffies; 815 } 816 } 817 818 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 819 int budget, void *v) 820 { 821 struct hnae_ring *ring = ring_data->ring; 822 struct sk_buff *skb; 823 int num, bnum; 824 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 825 int recv_pkts, recv_bds, clean_count, err; 826 int unused_count = hns_desc_unused(ring); 827 828 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 829 rmb(); /* make sure num taken effect before the other data is touched */ 830 831 recv_pkts = 0, recv_bds = 0, clean_count = 0; 832 num -= unused_count; 833 834 while (recv_pkts < budget && recv_bds < num) { 835 /* reuse or realloc buffers */ 836 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 837 hns_nic_alloc_rx_buffers(ring_data, 838 clean_count + unused_count); 839 clean_count = 0; 840 unused_count = hns_desc_unused(ring); 841 } 842 843 /* poll one pkt */ 844 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 845 if (unlikely(!skb)) /* this fault cannot be repaired */ 846 goto out; 847 848 recv_bds += bnum; 849 clean_count += bnum; 850 if (unlikely(err)) { /* do jump the err */ 851 recv_pkts++; 852 continue; 853 } 854 855 /* do update ip stack process*/ 856 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 857 ring_data, skb); 858 recv_pkts++; 859 } 860 861 out: 862 /* make all data has been write before submit */ 863 if (clean_count + unused_count > 0) 864 hns_nic_alloc_rx_buffers(ring_data, 865 clean_count + unused_count); 866 867 return recv_pkts; 868 } 869 870 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 871 { 872 struct hnae_ring *ring = ring_data->ring; 873 int num; 874 bool rx_stopped; 875 876 hns_update_rx_rate(ring); 877 878 /* for hardware bug fixed */ 879 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 880 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 881 882 if (num <= hns_coal_rx_bdnum(ring)) { 883 if (ring->q->handle->coal_adapt_en) 884 hns_nic_adpt_coalesce(ring_data); 885 886 rx_stopped = true; 887 } else { 888 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 889 ring_data->ring, 1); 890 891 rx_stopped = false; 892 } 893 894 return rx_stopped; 895 } 896 897 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 898 { 899 struct hnae_ring *ring = ring_data->ring; 900 int num; 901 902 hns_update_rx_rate(ring); 903 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 904 905 if (num <= hns_coal_rx_bdnum(ring)) { 906 if (ring->q->handle->coal_adapt_en) 907 hns_nic_adpt_coalesce(ring_data); 908 909 return true; 910 } 911 912 return false; 913 } 914 915 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 916 int *bytes, int *pkts) 917 { 918 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 919 920 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 921 (*bytes) += desc_cb->length; 922 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 923 hnae_free_buffer_detach(ring, ring->next_to_clean); 924 925 ring_ptr_move_fw(ring, next_to_clean); 926 } 927 928 static int is_valid_clean_head(struct hnae_ring *ring, int h) 929 { 930 int u = ring->next_to_use; 931 int c = ring->next_to_clean; 932 933 if (unlikely(h > ring->desc_num)) 934 return 0; 935 936 assert(u > 0 && u < ring->desc_num); 937 assert(c > 0 && c < ring->desc_num); 938 assert(u != c && h != c); /* must be checked before call this func */ 939 940 return u > c ? (h > c && h <= u) : (h > c || h <= u); 941 } 942 943 /* reclaim all desc in one budget 944 * return error or number of desc left 945 */ 946 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 947 int budget, void *v) 948 { 949 struct hnae_ring *ring = ring_data->ring; 950 struct net_device *ndev = ring_data->napi.dev; 951 struct netdev_queue *dev_queue; 952 struct hns_nic_priv *priv = netdev_priv(ndev); 953 int head; 954 int bytes, pkts; 955 956 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 957 rmb(); /* make sure head is ready before touch any data */ 958 959 if (is_ring_empty(ring) || head == ring->next_to_clean) 960 return 0; /* no data to poll */ 961 962 if (!is_valid_clean_head(ring, head)) { 963 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 964 ring->next_to_use, ring->next_to_clean); 965 ring->stats.io_err_cnt++; 966 return -EIO; 967 } 968 969 bytes = 0; 970 pkts = 0; 971 while (head != ring->next_to_clean) { 972 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 973 /* issue prefetch for next Tx descriptor */ 974 prefetch(&ring->desc_cb[ring->next_to_clean]); 975 } 976 /* update tx ring statistics. */ 977 ring->stats.tx_pkts += pkts; 978 ring->stats.tx_bytes += bytes; 979 980 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 981 netdev_tx_completed_queue(dev_queue, pkts, bytes); 982 983 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 984 netif_carrier_on(ndev); 985 986 if (unlikely(pkts && netif_carrier_ok(ndev) && 987 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 988 /* Make sure that anybody stopping the queue after this 989 * sees the new next_to_clean. 990 */ 991 smp_mb(); 992 if (netif_tx_queue_stopped(dev_queue) && 993 !test_bit(NIC_STATE_DOWN, &priv->state)) { 994 netif_tx_wake_queue(dev_queue); 995 ring->stats.restart_queue++; 996 } 997 } 998 return 0; 999 } 1000 1001 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 1002 { 1003 struct hnae_ring *ring = ring_data->ring; 1004 int head; 1005 1006 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1007 1008 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1009 1010 if (head != ring->next_to_clean) { 1011 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1012 ring_data->ring, 1); 1013 1014 return false; 1015 } else { 1016 return true; 1017 } 1018 } 1019 1020 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1021 { 1022 struct hnae_ring *ring = ring_data->ring; 1023 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1024 1025 if (head == ring->next_to_clean) 1026 return true; 1027 else 1028 return false; 1029 } 1030 1031 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1032 { 1033 struct hnae_ring *ring = ring_data->ring; 1034 struct net_device *ndev = ring_data->napi.dev; 1035 struct netdev_queue *dev_queue; 1036 int head; 1037 int bytes, pkts; 1038 1039 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1040 bytes = 0; 1041 pkts = 0; 1042 while (head != ring->next_to_clean) 1043 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1044 1045 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1046 netdev_tx_reset_queue(dev_queue); 1047 } 1048 1049 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1050 { 1051 int clean_complete = 0; 1052 struct hns_nic_ring_data *ring_data = 1053 container_of(napi, struct hns_nic_ring_data, napi); 1054 struct hnae_ring *ring = ring_data->ring; 1055 1056 clean_complete += ring_data->poll_one( 1057 ring_data, budget - clean_complete, 1058 ring_data->ex_process); 1059 1060 if (clean_complete < budget) { 1061 if (ring_data->fini_process(ring_data)) { 1062 napi_complete(napi); 1063 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1064 } else { 1065 return budget; 1066 } 1067 } 1068 1069 return clean_complete; 1070 } 1071 1072 static irqreturn_t hns_irq_handle(int irq, void *dev) 1073 { 1074 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1075 1076 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1077 ring_data->ring, 1); 1078 napi_schedule(&ring_data->napi); 1079 1080 return IRQ_HANDLED; 1081 } 1082 1083 /** 1084 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1085 *@ndev: net device 1086 */ 1087 static void hns_nic_adjust_link(struct net_device *ndev) 1088 { 1089 struct hns_nic_priv *priv = netdev_priv(ndev); 1090 struct hnae_handle *h = priv->ae_handle; 1091 int state = 1; 1092 1093 /* If there is no phy, do not need adjust link */ 1094 if (ndev->phydev) { 1095 /* When phy link down, do nothing */ 1096 if (ndev->phydev->link == 0) 1097 return; 1098 1099 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed, 1100 ndev->phydev->duplex)) { 1101 /* because Hi161X chip don't support to change gmac 1102 * speed and duplex with traffic. Delay 200ms to 1103 * make sure there is no more data in chip FIFO. 1104 */ 1105 netif_carrier_off(ndev); 1106 msleep(200); 1107 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1108 ndev->phydev->duplex); 1109 netif_carrier_on(ndev); 1110 } 1111 } 1112 1113 state = state && h->dev->ops->get_status(h); 1114 1115 if (state != priv->link) { 1116 if (state) { 1117 netif_carrier_on(ndev); 1118 netif_tx_wake_all_queues(ndev); 1119 netdev_info(ndev, "link up\n"); 1120 } else { 1121 netif_carrier_off(ndev); 1122 netdev_info(ndev, "link down\n"); 1123 } 1124 priv->link = state; 1125 } 1126 } 1127 1128 /** 1129 *hns_nic_init_phy - init phy 1130 *@ndev: net device 1131 *@h: ae handle 1132 * Return 0 on success, negative on failure 1133 */ 1134 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1135 { 1136 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, }; 1137 struct phy_device *phy_dev = h->phy_dev; 1138 int ret; 1139 1140 if (!h->phy_dev) 1141 return 0; 1142 1143 ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support); 1144 linkmode_and(phy_dev->supported, phy_dev->supported, supported); 1145 linkmode_copy(phy_dev->advertising, phy_dev->supported); 1146 1147 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1148 phy_dev->autoneg = false; 1149 1150 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1151 phy_dev->dev_flags = 0; 1152 1153 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1154 h->phy_if); 1155 } else { 1156 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1157 } 1158 if (unlikely(ret)) 1159 return -ENODEV; 1160 1161 phy_attached_info(phy_dev); 1162 1163 return 0; 1164 } 1165 1166 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1167 { 1168 struct hns_nic_priv *priv = netdev_priv(netdev); 1169 struct hnae_handle *h = priv->ae_handle; 1170 1171 napi_enable(&priv->ring_data[idx].napi); 1172 1173 enable_irq(priv->ring_data[idx].ring->irq); 1174 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1175 1176 return 0; 1177 } 1178 1179 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1180 { 1181 struct hns_nic_priv *priv = netdev_priv(ndev); 1182 struct hnae_handle *h = priv->ae_handle; 1183 struct sockaddr *mac_addr = p; 1184 int ret; 1185 1186 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1187 return -EADDRNOTAVAIL; 1188 1189 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1190 if (ret) { 1191 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1192 return ret; 1193 } 1194 1195 eth_hw_addr_set(ndev, mac_addr->sa_data); 1196 1197 return 0; 1198 } 1199 1200 static void hns_nic_update_stats(struct net_device *netdev) 1201 { 1202 struct hns_nic_priv *priv = netdev_priv(netdev); 1203 struct hnae_handle *h = priv->ae_handle; 1204 1205 h->dev->ops->update_stats(h, &netdev->stats); 1206 } 1207 1208 /* set mac addr if it is configed. or leave it to the AE driver */ 1209 static void hns_init_mac_addr(struct net_device *ndev) 1210 { 1211 struct hns_nic_priv *priv = netdev_priv(ndev); 1212 1213 if (device_get_ethdev_address(priv->dev, ndev)) { 1214 eth_hw_addr_random(ndev); 1215 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1216 ndev->dev_addr); 1217 } 1218 } 1219 1220 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1221 { 1222 struct hns_nic_priv *priv = netdev_priv(netdev); 1223 struct hnae_handle *h = priv->ae_handle; 1224 1225 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1226 disable_irq(priv->ring_data[idx].ring->irq); 1227 1228 napi_disable(&priv->ring_data[idx].napi); 1229 } 1230 1231 static int hns_nic_init_affinity_mask(int q_num, int ring_idx, 1232 struct hnae_ring *ring, cpumask_t *mask) 1233 { 1234 int cpu; 1235 1236 /* Different irq balance between 16core and 32core. 1237 * The cpu mask set by ring index according to the ring flag 1238 * which indicate the ring is tx or rx. 1239 */ 1240 if (q_num == num_possible_cpus()) { 1241 if (is_tx_ring(ring)) 1242 cpu = ring_idx; 1243 else 1244 cpu = ring_idx - q_num; 1245 } else { 1246 if (is_tx_ring(ring)) 1247 cpu = ring_idx * 2; 1248 else 1249 cpu = (ring_idx - q_num) * 2 + 1; 1250 } 1251 1252 cpumask_clear(mask); 1253 cpumask_set_cpu(cpu, mask); 1254 1255 return cpu; 1256 } 1257 1258 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv) 1259 { 1260 int i; 1261 1262 for (i = 0; i < q_num * 2; i++) { 1263 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 1264 irq_set_affinity_hint(priv->ring_data[i].ring->irq, 1265 NULL); 1266 free_irq(priv->ring_data[i].ring->irq, 1267 &priv->ring_data[i]); 1268 priv->ring_data[i].ring->irq_init_flag = 1269 RCB_IRQ_NOT_INITED; 1270 } 1271 } 1272 } 1273 1274 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1275 { 1276 struct hnae_handle *h = priv->ae_handle; 1277 struct hns_nic_ring_data *rd; 1278 int i; 1279 int ret; 1280 int cpu; 1281 1282 for (i = 0; i < h->q_num * 2; i++) { 1283 rd = &priv->ring_data[i]; 1284 1285 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1286 break; 1287 1288 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1289 "%s-%s%d", priv->netdev->name, 1290 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); 1291 1292 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1293 1294 irq_set_status_flags(rd->ring->irq, IRQ_NOAUTOEN); 1295 ret = request_irq(rd->ring->irq, 1296 hns_irq_handle, 0, rd->ring->ring_name, rd); 1297 if (ret) { 1298 netdev_err(priv->netdev, "request irq(%d) fail\n", 1299 rd->ring->irq); 1300 goto out_free_irq; 1301 } 1302 1303 cpu = hns_nic_init_affinity_mask(h->q_num, i, 1304 rd->ring, &rd->mask); 1305 1306 if (cpu_online(cpu)) 1307 irq_set_affinity_hint(rd->ring->irq, 1308 &rd->mask); 1309 1310 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1311 } 1312 1313 return 0; 1314 1315 out_free_irq: 1316 hns_nic_free_irq(h->q_num, priv); 1317 return ret; 1318 } 1319 1320 static int hns_nic_net_up(struct net_device *ndev) 1321 { 1322 struct hns_nic_priv *priv = netdev_priv(ndev); 1323 struct hnae_handle *h = priv->ae_handle; 1324 int i, j; 1325 int ret; 1326 1327 if (!test_bit(NIC_STATE_DOWN, &priv->state)) 1328 return 0; 1329 1330 ret = hns_nic_init_irq(priv); 1331 if (ret != 0) { 1332 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1333 return ret; 1334 } 1335 1336 for (i = 0; i < h->q_num * 2; i++) { 1337 ret = hns_nic_ring_open(ndev, i); 1338 if (ret) 1339 goto out_has_some_queues; 1340 } 1341 1342 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1343 if (ret) 1344 goto out_set_mac_addr_err; 1345 1346 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1347 if (ret) 1348 goto out_start_err; 1349 1350 if (ndev->phydev) 1351 phy_start(ndev->phydev); 1352 1353 clear_bit(NIC_STATE_DOWN, &priv->state); 1354 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1355 1356 return 0; 1357 1358 out_start_err: 1359 netif_stop_queue(ndev); 1360 out_set_mac_addr_err: 1361 out_has_some_queues: 1362 for (j = i - 1; j >= 0; j--) 1363 hns_nic_ring_close(ndev, j); 1364 1365 hns_nic_free_irq(h->q_num, priv); 1366 set_bit(NIC_STATE_DOWN, &priv->state); 1367 1368 return ret; 1369 } 1370 1371 static void hns_nic_net_down(struct net_device *ndev) 1372 { 1373 int i; 1374 struct hnae_ae_ops *ops; 1375 struct hns_nic_priv *priv = netdev_priv(ndev); 1376 1377 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1378 return; 1379 1380 (void)del_timer_sync(&priv->service_timer); 1381 netif_tx_stop_all_queues(ndev); 1382 netif_carrier_off(ndev); 1383 netif_tx_disable(ndev); 1384 priv->link = 0; 1385 1386 if (ndev->phydev) 1387 phy_stop(ndev->phydev); 1388 1389 ops = priv->ae_handle->dev->ops; 1390 1391 if (ops->stop) 1392 ops->stop(priv->ae_handle); 1393 1394 netif_tx_stop_all_queues(ndev); 1395 1396 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1397 hns_nic_ring_close(ndev, i); 1398 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1399 1400 /* clean tx buffers*/ 1401 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1402 } 1403 } 1404 1405 void hns_nic_net_reset(struct net_device *ndev) 1406 { 1407 struct hns_nic_priv *priv = netdev_priv(ndev); 1408 struct hnae_handle *handle = priv->ae_handle; 1409 1410 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1411 usleep_range(1000, 2000); 1412 1413 (void)hnae_reinit_handle(handle); 1414 1415 clear_bit(NIC_STATE_RESETTING, &priv->state); 1416 } 1417 1418 void hns_nic_net_reinit(struct net_device *netdev) 1419 { 1420 struct hns_nic_priv *priv = netdev_priv(netdev); 1421 enum hnae_port_type type = priv->ae_handle->port_type; 1422 1423 netif_trans_update(priv->netdev); 1424 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1425 usleep_range(1000, 2000); 1426 1427 hns_nic_net_down(netdev); 1428 1429 /* Only do hns_nic_net_reset in debug mode 1430 * because of hardware limitation. 1431 */ 1432 if (type == HNAE_PORT_DEBUG) 1433 hns_nic_net_reset(netdev); 1434 1435 (void)hns_nic_net_up(netdev); 1436 clear_bit(NIC_STATE_REINITING, &priv->state); 1437 } 1438 1439 static int hns_nic_net_open(struct net_device *ndev) 1440 { 1441 struct hns_nic_priv *priv = netdev_priv(ndev); 1442 struct hnae_handle *h = priv->ae_handle; 1443 int ret; 1444 1445 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1446 return -EBUSY; 1447 1448 priv->link = 0; 1449 netif_carrier_off(ndev); 1450 1451 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1452 if (ret < 0) { 1453 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1454 ret); 1455 return ret; 1456 } 1457 1458 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1459 if (ret < 0) { 1460 netdev_err(ndev, 1461 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1462 return ret; 1463 } 1464 1465 ret = hns_nic_net_up(ndev); 1466 if (ret) { 1467 netdev_err(ndev, 1468 "hns net up fail, ret=%d!\n", ret); 1469 return ret; 1470 } 1471 1472 return 0; 1473 } 1474 1475 static int hns_nic_net_stop(struct net_device *ndev) 1476 { 1477 hns_nic_net_down(ndev); 1478 1479 return 0; 1480 } 1481 1482 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1483 #define HNS_TX_TIMEO_LIMIT (40 * HZ) 1484 static void hns_nic_net_timeout(struct net_device *ndev, unsigned int txqueue) 1485 { 1486 struct hns_nic_priv *priv = netdev_priv(ndev); 1487 1488 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) { 1489 ndev->watchdog_timeo *= 2; 1490 netdev_info(ndev, "watchdog_timo changed to %d.\n", 1491 ndev->watchdog_timeo); 1492 } else { 1493 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 1494 hns_tx_timeout_reset(priv); 1495 } 1496 } 1497 1498 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1499 struct net_device *ndev) 1500 { 1501 struct hns_nic_priv *priv = netdev_priv(ndev); 1502 1503 assert(skb->queue_mapping < priv->ae_handle->q_num); 1504 1505 return hns_nic_net_xmit_hw(ndev, skb, 1506 &tx_ring_data(priv, skb->queue_mapping)); 1507 } 1508 1509 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, 1510 struct sk_buff *skb) 1511 { 1512 dev_kfree_skb_any(skb); 1513 } 1514 1515 #define HNS_LB_TX_RING 0 1516 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) 1517 { 1518 struct sk_buff *skb; 1519 struct ethhdr *ethhdr; 1520 int frame_len; 1521 1522 /* allocate test skb */ 1523 skb = alloc_skb(64, GFP_KERNEL); 1524 if (!skb) 1525 return NULL; 1526 1527 skb_put(skb, 64); 1528 skb->dev = ndev; 1529 memset(skb->data, 0xFF, skb->len); 1530 1531 /* must be tcp/ip package */ 1532 ethhdr = (struct ethhdr *)skb->data; 1533 ethhdr->h_proto = htons(ETH_P_IP); 1534 1535 frame_len = skb->len & (~1ul); 1536 memset(&skb->data[frame_len / 2], 0xAA, 1537 frame_len / 2 - 1); 1538 1539 skb->queue_mapping = HNS_LB_TX_RING; 1540 1541 return skb; 1542 } 1543 1544 static int hns_enable_serdes_lb(struct net_device *ndev) 1545 { 1546 struct hns_nic_priv *priv = netdev_priv(ndev); 1547 struct hnae_handle *h = priv->ae_handle; 1548 struct hnae_ae_ops *ops = h->dev->ops; 1549 int speed, duplex; 1550 int ret; 1551 1552 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); 1553 if (ret) 1554 return ret; 1555 1556 ret = ops->start ? ops->start(h) : 0; 1557 if (ret) 1558 return ret; 1559 1560 /* link adjust duplex*/ 1561 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1562 speed = 1000; 1563 else 1564 speed = 10000; 1565 duplex = 1; 1566 1567 ops->adjust_link(h, speed, duplex); 1568 1569 /* wait h/w ready */ 1570 mdelay(300); 1571 1572 return 0; 1573 } 1574 1575 static void hns_disable_serdes_lb(struct net_device *ndev) 1576 { 1577 struct hns_nic_priv *priv = netdev_priv(ndev); 1578 struct hnae_handle *h = priv->ae_handle; 1579 struct hnae_ae_ops *ops = h->dev->ops; 1580 1581 ops->stop(h); 1582 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); 1583 } 1584 1585 /** 1586 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The 1587 *function as follows: 1588 * 1. if one rx ring has found the page_offset is not equal 0 between head 1589 * and tail, it means that the chip fetched the wrong descs for the ring 1590 * which buffer size is 4096. 1591 * 2. we set the chip serdes loopback and set rss indirection to the ring. 1592 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring 1593 * receiving all packages and it will fetch new descriptions. 1594 * 4. recover to the original state. 1595 * 1596 *@ndev: net device 1597 */ 1598 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) 1599 { 1600 struct hns_nic_priv *priv = netdev_priv(ndev); 1601 struct hnae_handle *h = priv->ae_handle; 1602 struct hnae_ae_ops *ops = h->dev->ops; 1603 struct hns_nic_ring_data *rd; 1604 struct hnae_ring *ring; 1605 struct sk_buff *skb; 1606 u32 *org_indir; 1607 u32 *cur_indir; 1608 int indir_size; 1609 int head, tail; 1610 int fetch_num; 1611 int i, j; 1612 bool found; 1613 int retry_times; 1614 int ret = 0; 1615 1616 /* alloc indir memory */ 1617 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); 1618 org_indir = kzalloc(indir_size, GFP_KERNEL); 1619 if (!org_indir) 1620 return -ENOMEM; 1621 1622 /* store the original indirection */ 1623 ops->get_rss(h, org_indir, NULL, NULL); 1624 1625 cur_indir = kzalloc(indir_size, GFP_KERNEL); 1626 if (!cur_indir) { 1627 ret = -ENOMEM; 1628 goto cur_indir_alloc_err; 1629 } 1630 1631 /* set loopback */ 1632 if (hns_enable_serdes_lb(ndev)) { 1633 ret = -EINVAL; 1634 goto enable_serdes_lb_err; 1635 } 1636 1637 /* foreach every rx ring to clear fetch desc */ 1638 for (i = 0; i < h->q_num; i++) { 1639 ring = &h->qs[i]->rx_ring; 1640 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1641 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); 1642 found = false; 1643 fetch_num = ring_dist(ring, head, tail); 1644 1645 while (head != tail) { 1646 if (ring->desc_cb[head].page_offset != 0) { 1647 found = true; 1648 break; 1649 } 1650 1651 head++; 1652 if (head == ring->desc_num) 1653 head = 0; 1654 } 1655 1656 if (found) { 1657 for (j = 0; j < indir_size / sizeof(*org_indir); j++) 1658 cur_indir[j] = i; 1659 ops->set_rss(h, cur_indir, NULL, 0); 1660 1661 for (j = 0; j < fetch_num; j++) { 1662 /* alloc one skb and init */ 1663 skb = hns_assemble_skb(ndev); 1664 if (!skb) { 1665 ret = -ENOMEM; 1666 goto out; 1667 } 1668 rd = &tx_ring_data(priv, skb->queue_mapping); 1669 hns_nic_net_xmit_hw(ndev, skb, rd); 1670 1671 retry_times = 0; 1672 while (retry_times++ < 10) { 1673 mdelay(10); 1674 /* clean rx */ 1675 rd = &rx_ring_data(priv, i); 1676 if (rd->poll_one(rd, fetch_num, 1677 hns_nic_drop_rx_fetch)) 1678 break; 1679 } 1680 1681 retry_times = 0; 1682 while (retry_times++ < 10) { 1683 mdelay(10); 1684 /* clean tx ring 0 send package */ 1685 rd = &tx_ring_data(priv, 1686 HNS_LB_TX_RING); 1687 if (rd->poll_one(rd, fetch_num, NULL)) 1688 break; 1689 } 1690 } 1691 } 1692 } 1693 1694 out: 1695 /* restore everything */ 1696 ops->set_rss(h, org_indir, NULL, 0); 1697 hns_disable_serdes_lb(ndev); 1698 enable_serdes_lb_err: 1699 kfree(cur_indir); 1700 cur_indir_alloc_err: 1701 kfree(org_indir); 1702 1703 return ret; 1704 } 1705 1706 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1707 { 1708 struct hns_nic_priv *priv = netdev_priv(ndev); 1709 struct hnae_handle *h = priv->ae_handle; 1710 bool if_running = netif_running(ndev); 1711 int ret; 1712 1713 /* MTU < 68 is an error and causes problems on some kernels */ 1714 if (new_mtu < 68) 1715 return -EINVAL; 1716 1717 /* MTU no change */ 1718 if (new_mtu == ndev->mtu) 1719 return 0; 1720 1721 if (!h->dev->ops->set_mtu) 1722 return -ENOTSUPP; 1723 1724 if (if_running) { 1725 (void)hns_nic_net_stop(ndev); 1726 msleep(100); 1727 } 1728 1729 if (priv->enet_ver != AE_VERSION_1 && 1730 ndev->mtu <= BD_SIZE_2048_MAX_MTU && 1731 new_mtu > BD_SIZE_2048_MAX_MTU) { 1732 /* update desc */ 1733 hnae_reinit_all_ring_desc(h); 1734 1735 /* clear the package which the chip has fetched */ 1736 ret = hns_nic_clear_all_rx_fetch(ndev); 1737 1738 /* the page offset must be consist with desc */ 1739 hnae_reinit_all_ring_page_off(h); 1740 1741 if (ret) { 1742 netdev_err(ndev, "clear the fetched desc fail\n"); 1743 goto out; 1744 } 1745 } 1746 1747 ret = h->dev->ops->set_mtu(h, new_mtu); 1748 if (ret) { 1749 netdev_err(ndev, "set mtu fail, return value %d\n", 1750 ret); 1751 goto out; 1752 } 1753 1754 /* finally, set new mtu to netdevice */ 1755 ndev->mtu = new_mtu; 1756 1757 out: 1758 if (if_running) { 1759 if (hns_nic_net_open(ndev)) { 1760 netdev_err(ndev, "hns net open fail\n"); 1761 ret = -EINVAL; 1762 } 1763 } 1764 1765 return ret; 1766 } 1767 1768 static int hns_nic_set_features(struct net_device *netdev, 1769 netdev_features_t features) 1770 { 1771 struct hns_nic_priv *priv = netdev_priv(netdev); 1772 1773 switch (priv->enet_ver) { 1774 case AE_VERSION_1: 1775 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1776 netdev_info(netdev, "enet v1 do not support tso!\n"); 1777 break; 1778 default: 1779 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1780 priv->ops.fill_desc = fill_tso_desc; 1781 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1782 /* The chip only support 7*4096 */ 1783 netif_set_tso_max_size(netdev, 7 * 4096); 1784 } else { 1785 priv->ops.fill_desc = fill_v2_desc; 1786 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1787 } 1788 break; 1789 } 1790 netdev->features = features; 1791 return 0; 1792 } 1793 1794 static netdev_features_t hns_nic_fix_features( 1795 struct net_device *netdev, netdev_features_t features) 1796 { 1797 struct hns_nic_priv *priv = netdev_priv(netdev); 1798 1799 switch (priv->enet_ver) { 1800 case AE_VERSION_1: 1801 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1802 NETIF_F_HW_VLAN_CTAG_FILTER); 1803 break; 1804 default: 1805 break; 1806 } 1807 return features; 1808 } 1809 1810 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1811 { 1812 struct hns_nic_priv *priv = netdev_priv(netdev); 1813 struct hnae_handle *h = priv->ae_handle; 1814 1815 if (h->dev->ops->add_uc_addr) 1816 return h->dev->ops->add_uc_addr(h, addr); 1817 1818 return 0; 1819 } 1820 1821 static int hns_nic_uc_unsync(struct net_device *netdev, 1822 const unsigned char *addr) 1823 { 1824 struct hns_nic_priv *priv = netdev_priv(netdev); 1825 struct hnae_handle *h = priv->ae_handle; 1826 1827 if (h->dev->ops->rm_uc_addr) 1828 return h->dev->ops->rm_uc_addr(h, addr); 1829 1830 return 0; 1831 } 1832 1833 /** 1834 * hns_set_multicast_list - set mutl mac address 1835 * @ndev: net device 1836 * 1837 * return void 1838 */ 1839 static void hns_set_multicast_list(struct net_device *ndev) 1840 { 1841 struct hns_nic_priv *priv = netdev_priv(ndev); 1842 struct hnae_handle *h = priv->ae_handle; 1843 struct netdev_hw_addr *ha = NULL; 1844 1845 if (!h) { 1846 netdev_err(ndev, "hnae handle is null\n"); 1847 return; 1848 } 1849 1850 if (h->dev->ops->clr_mc_addr) 1851 if (h->dev->ops->clr_mc_addr(h)) 1852 netdev_err(ndev, "clear multicast address fail\n"); 1853 1854 if (h->dev->ops->set_mc_addr) { 1855 netdev_for_each_mc_addr(ha, ndev) 1856 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1857 netdev_err(ndev, "set multicast fail\n"); 1858 } 1859 } 1860 1861 static void hns_nic_set_rx_mode(struct net_device *ndev) 1862 { 1863 struct hns_nic_priv *priv = netdev_priv(ndev); 1864 struct hnae_handle *h = priv->ae_handle; 1865 1866 if (h->dev->ops->set_promisc_mode) { 1867 if (ndev->flags & IFF_PROMISC) 1868 h->dev->ops->set_promisc_mode(h, 1); 1869 else 1870 h->dev->ops->set_promisc_mode(h, 0); 1871 } 1872 1873 hns_set_multicast_list(ndev); 1874 1875 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1876 netdev_err(ndev, "sync uc address fail\n"); 1877 } 1878 1879 static void hns_nic_get_stats64(struct net_device *ndev, 1880 struct rtnl_link_stats64 *stats) 1881 { 1882 int idx; 1883 u64 tx_bytes = 0; 1884 u64 rx_bytes = 0; 1885 u64 tx_pkts = 0; 1886 u64 rx_pkts = 0; 1887 struct hns_nic_priv *priv = netdev_priv(ndev); 1888 struct hnae_handle *h = priv->ae_handle; 1889 1890 for (idx = 0; idx < h->q_num; idx++) { 1891 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1892 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1893 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1894 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1895 } 1896 1897 stats->tx_bytes = tx_bytes; 1898 stats->tx_packets = tx_pkts; 1899 stats->rx_bytes = rx_bytes; 1900 stats->rx_packets = rx_pkts; 1901 1902 stats->rx_errors = ndev->stats.rx_errors; 1903 stats->multicast = ndev->stats.multicast; 1904 stats->rx_length_errors = ndev->stats.rx_length_errors; 1905 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1906 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1907 1908 stats->tx_errors = ndev->stats.tx_errors; 1909 stats->rx_dropped = ndev->stats.rx_dropped; 1910 stats->tx_dropped = ndev->stats.tx_dropped; 1911 stats->collisions = ndev->stats.collisions; 1912 stats->rx_over_errors = ndev->stats.rx_over_errors; 1913 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1914 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1915 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1916 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1917 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1918 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1919 stats->tx_window_errors = ndev->stats.tx_window_errors; 1920 stats->rx_compressed = ndev->stats.rx_compressed; 1921 stats->tx_compressed = ndev->stats.tx_compressed; 1922 } 1923 1924 static u16 1925 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1926 struct net_device *sb_dev) 1927 { 1928 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1929 struct hns_nic_priv *priv = netdev_priv(ndev); 1930 1931 /* fix hardware broadcast/multicast packets queue loopback */ 1932 if (!AE_IS_VER1(priv->enet_ver) && 1933 is_multicast_ether_addr(eth_hdr->h_dest)) 1934 return 0; 1935 else 1936 return netdev_pick_tx(ndev, skb, NULL); 1937 } 1938 1939 static const struct net_device_ops hns_nic_netdev_ops = { 1940 .ndo_open = hns_nic_net_open, 1941 .ndo_stop = hns_nic_net_stop, 1942 .ndo_start_xmit = hns_nic_net_xmit, 1943 .ndo_tx_timeout = hns_nic_net_timeout, 1944 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1945 .ndo_change_mtu = hns_nic_change_mtu, 1946 .ndo_eth_ioctl = phy_do_ioctl_running, 1947 .ndo_set_features = hns_nic_set_features, 1948 .ndo_fix_features = hns_nic_fix_features, 1949 .ndo_get_stats64 = hns_nic_get_stats64, 1950 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1951 .ndo_select_queue = hns_nic_select_queue, 1952 }; 1953 1954 static void hns_nic_update_link_status(struct net_device *netdev) 1955 { 1956 struct hns_nic_priv *priv = netdev_priv(netdev); 1957 1958 struct hnae_handle *h = priv->ae_handle; 1959 1960 if (h->phy_dev) { 1961 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1962 return; 1963 1964 (void)genphy_read_status(h->phy_dev); 1965 } 1966 hns_nic_adjust_link(netdev); 1967 } 1968 1969 /* for dumping key regs*/ 1970 static void hns_nic_dump(struct hns_nic_priv *priv) 1971 { 1972 struct hnae_handle *h = priv->ae_handle; 1973 struct hnae_ae_ops *ops = h->dev->ops; 1974 u32 *data, reg_num, i; 1975 1976 if (ops->get_regs_len && ops->get_regs) { 1977 reg_num = ops->get_regs_len(priv->ae_handle); 1978 reg_num = (reg_num + 3ul) & ~3ul; 1979 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 1980 if (data) { 1981 ops->get_regs(priv->ae_handle, data); 1982 for (i = 0; i < reg_num; i += 4) 1983 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 1984 i, data[i], data[i + 1], 1985 data[i + 2], data[i + 3]); 1986 kfree(data); 1987 } 1988 } 1989 1990 for (i = 0; i < h->q_num; i++) { 1991 pr_info("tx_queue%d_next_to_clean:%d\n", 1992 i, h->qs[i]->tx_ring.next_to_clean); 1993 pr_info("tx_queue%d_next_to_use:%d\n", 1994 i, h->qs[i]->tx_ring.next_to_use); 1995 pr_info("rx_queue%d_next_to_clean:%d\n", 1996 i, h->qs[i]->rx_ring.next_to_clean); 1997 pr_info("rx_queue%d_next_to_use:%d\n", 1998 i, h->qs[i]->rx_ring.next_to_use); 1999 } 2000 } 2001 2002 /* for resetting subtask */ 2003 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 2004 { 2005 enum hnae_port_type type = priv->ae_handle->port_type; 2006 2007 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 2008 return; 2009 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2010 2011 /* If we're already down, removing or resetting, just bail */ 2012 if (test_bit(NIC_STATE_DOWN, &priv->state) || 2013 test_bit(NIC_STATE_REMOVING, &priv->state) || 2014 test_bit(NIC_STATE_RESETTING, &priv->state)) 2015 return; 2016 2017 hns_nic_dump(priv); 2018 netdev_info(priv->netdev, "try to reset %s port!\n", 2019 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 2020 2021 rtnl_lock(); 2022 /* put off any impending NetWatchDogTimeout */ 2023 netif_trans_update(priv->netdev); 2024 hns_nic_net_reinit(priv->netdev); 2025 2026 rtnl_unlock(); 2027 } 2028 2029 /* for doing service complete*/ 2030 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 2031 { 2032 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 2033 /* make sure to commit the things */ 2034 smp_mb__before_atomic(); 2035 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2036 } 2037 2038 static void hns_nic_service_task(struct work_struct *work) 2039 { 2040 struct hns_nic_priv *priv 2041 = container_of(work, struct hns_nic_priv, service_task); 2042 struct hnae_handle *h = priv->ae_handle; 2043 2044 hns_nic_reset_subtask(priv); 2045 hns_nic_update_link_status(priv->netdev); 2046 h->dev->ops->update_led_status(h); 2047 hns_nic_update_stats(priv->netdev); 2048 2049 hns_nic_service_event_complete(priv); 2050 } 2051 2052 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 2053 { 2054 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 2055 !test_bit(NIC_STATE_REMOVING, &priv->state) && 2056 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 2057 (void)schedule_work(&priv->service_task); 2058 } 2059 2060 static void hns_nic_service_timer(struct timer_list *t) 2061 { 2062 struct hns_nic_priv *priv = from_timer(priv, t, service_timer); 2063 2064 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 2065 2066 hns_nic_task_schedule(priv); 2067 } 2068 2069 /** 2070 * hns_tx_timeout_reset - initiate reset due to Tx timeout 2071 * @priv: driver private struct 2072 **/ 2073 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 2074 { 2075 /* Do the reset outside of interrupt context */ 2076 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 2077 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2078 netdev_warn(priv->netdev, 2079 "initiating reset due to tx timeout(%llu,0x%lx)\n", 2080 priv->tx_timeout_count, priv->state); 2081 priv->tx_timeout_count++; 2082 hns_nic_task_schedule(priv); 2083 } 2084 } 2085 2086 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 2087 { 2088 struct hnae_handle *h = priv->ae_handle; 2089 struct hns_nic_ring_data *rd; 2090 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 2091 int i; 2092 2093 if (h->q_num > NIC_MAX_Q_PER_VF) { 2094 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 2095 return -EINVAL; 2096 } 2097 2098 priv->ring_data = kzalloc(array3_size(h->q_num, 2099 sizeof(*priv->ring_data), 2), 2100 GFP_KERNEL); 2101 if (!priv->ring_data) 2102 return -ENOMEM; 2103 2104 for (i = 0; i < h->q_num; i++) { 2105 rd = &priv->ring_data[i]; 2106 rd->queue_index = i; 2107 rd->ring = &h->qs[i]->tx_ring; 2108 rd->poll_one = hns_nic_tx_poll_one; 2109 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 2110 hns_nic_tx_fini_pro_v2; 2111 2112 netif_napi_add(priv->netdev, &rd->napi, hns_nic_common_poll); 2113 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2114 } 2115 for (i = h->q_num; i < h->q_num * 2; i++) { 2116 rd = &priv->ring_data[i]; 2117 rd->queue_index = i - h->q_num; 2118 rd->ring = &h->qs[i - h->q_num]->rx_ring; 2119 rd->poll_one = hns_nic_rx_poll_one; 2120 rd->ex_process = hns_nic_rx_up_pro; 2121 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 2122 hns_nic_rx_fini_pro_v2; 2123 2124 netif_napi_add(priv->netdev, &rd->napi, hns_nic_common_poll); 2125 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2126 } 2127 2128 return 0; 2129 } 2130 2131 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 2132 { 2133 struct hnae_handle *h = priv->ae_handle; 2134 int i; 2135 2136 for (i = 0; i < h->q_num * 2; i++) { 2137 netif_napi_del(&priv->ring_data[i].napi); 2138 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 2139 (void)irq_set_affinity_hint( 2140 priv->ring_data[i].ring->irq, 2141 NULL); 2142 free_irq(priv->ring_data[i].ring->irq, 2143 &priv->ring_data[i]); 2144 } 2145 2146 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2147 } 2148 kfree(priv->ring_data); 2149 } 2150 2151 static void hns_nic_set_priv_ops(struct net_device *netdev) 2152 { 2153 struct hns_nic_priv *priv = netdev_priv(netdev); 2154 struct hnae_handle *h = priv->ae_handle; 2155 2156 if (AE_IS_VER1(priv->enet_ver)) { 2157 priv->ops.fill_desc = fill_desc; 2158 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 2159 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2160 } else { 2161 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 2162 if ((netdev->features & NETIF_F_TSO) || 2163 (netdev->features & NETIF_F_TSO6)) { 2164 priv->ops.fill_desc = fill_tso_desc; 2165 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 2166 /* This chip only support 7*4096 */ 2167 netif_set_tso_max_size(netdev, 7 * 4096); 2168 } else { 2169 priv->ops.fill_desc = fill_v2_desc; 2170 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2171 } 2172 /* enable tso when init 2173 * control tso on/off through TSE bit in bd 2174 */ 2175 h->dev->ops->set_tso_stats(h, 1); 2176 } 2177 } 2178 2179 static int hns_nic_try_get_ae(struct net_device *ndev) 2180 { 2181 struct hns_nic_priv *priv = netdev_priv(ndev); 2182 struct hnae_handle *h; 2183 int ret; 2184 2185 h = hnae_get_handle(&priv->netdev->dev, 2186 priv->fwnode, priv->port_id, NULL); 2187 if (IS_ERR_OR_NULL(h)) { 2188 ret = -ENODEV; 2189 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 2190 goto out; 2191 } 2192 priv->ae_handle = h; 2193 2194 ret = hns_nic_init_phy(ndev, h); 2195 if (ret) { 2196 dev_err(priv->dev, "probe phy device fail!\n"); 2197 goto out_init_phy; 2198 } 2199 2200 ret = hns_nic_init_ring_data(priv); 2201 if (ret) { 2202 ret = -ENOMEM; 2203 goto out_init_ring_data; 2204 } 2205 2206 hns_nic_set_priv_ops(ndev); 2207 2208 ret = register_netdev(ndev); 2209 if (ret) { 2210 dev_err(priv->dev, "probe register netdev fail!\n"); 2211 goto out_reg_ndev_fail; 2212 } 2213 return 0; 2214 2215 out_reg_ndev_fail: 2216 hns_nic_uninit_ring_data(priv); 2217 priv->ring_data = NULL; 2218 out_init_phy: 2219 out_init_ring_data: 2220 hnae_put_handle(priv->ae_handle); 2221 priv->ae_handle = NULL; 2222 out: 2223 return ret; 2224 } 2225 2226 static int hns_nic_notifier_action(struct notifier_block *nb, 2227 unsigned long action, void *data) 2228 { 2229 struct hns_nic_priv *priv = 2230 container_of(nb, struct hns_nic_priv, notifier_block); 2231 2232 assert(action == HNAE_AE_REGISTER); 2233 2234 if (!hns_nic_try_get_ae(priv->netdev)) { 2235 hnae_unregister_notifier(&priv->notifier_block); 2236 priv->notifier_block.notifier_call = NULL; 2237 } 2238 return 0; 2239 } 2240 2241 static int hns_nic_dev_probe(struct platform_device *pdev) 2242 { 2243 struct device *dev = &pdev->dev; 2244 struct net_device *ndev; 2245 struct hns_nic_priv *priv; 2246 u32 port_id; 2247 int ret; 2248 2249 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2250 if (!ndev) 2251 return -ENOMEM; 2252 2253 platform_set_drvdata(pdev, ndev); 2254 2255 priv = netdev_priv(ndev); 2256 priv->dev = dev; 2257 priv->netdev = ndev; 2258 2259 if (dev_of_node(dev)) { 2260 struct device_node *ae_node; 2261 2262 if (of_device_is_compatible(dev->of_node, 2263 "hisilicon,hns-nic-v1")) 2264 priv->enet_ver = AE_VERSION_1; 2265 else 2266 priv->enet_ver = AE_VERSION_2; 2267 2268 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2269 if (!ae_node) { 2270 ret = -ENODEV; 2271 dev_err(dev, "not find ae-handle\n"); 2272 goto out_read_prop_fail; 2273 } 2274 priv->fwnode = &ae_node->fwnode; 2275 } else if (is_acpi_node(dev->fwnode)) { 2276 struct fwnode_reference_args args; 2277 2278 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2279 priv->enet_ver = AE_VERSION_1; 2280 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2281 priv->enet_ver = AE_VERSION_2; 2282 else { 2283 ret = -ENXIO; 2284 goto out_read_prop_fail; 2285 } 2286 2287 /* try to find port-idx-in-ae first */ 2288 ret = acpi_node_get_property_reference(dev->fwnode, 2289 "ae-handle", 0, &args); 2290 if (ret) { 2291 dev_err(dev, "not find ae-handle\n"); 2292 goto out_read_prop_fail; 2293 } 2294 if (!is_acpi_device_node(args.fwnode)) { 2295 ret = -EINVAL; 2296 goto out_read_prop_fail; 2297 } 2298 priv->fwnode = args.fwnode; 2299 } else { 2300 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2301 ret = -ENXIO; 2302 goto out_read_prop_fail; 2303 } 2304 2305 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2306 if (ret) { 2307 /* only for old code compatible */ 2308 ret = device_property_read_u32(dev, "port-id", &port_id); 2309 if (ret) 2310 goto out_read_prop_fail; 2311 /* for old dts, we need to caculate the port offset */ 2312 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2313 : port_id - HNS_SRV_OFFSET; 2314 } 2315 priv->port_id = port_id; 2316 2317 hns_init_mac_addr(ndev); 2318 2319 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2320 ndev->priv_flags |= IFF_UNICAST_FLT; 2321 ndev->netdev_ops = &hns_nic_netdev_ops; 2322 hns_ethtool_set_ops(ndev); 2323 2324 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2325 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2326 NETIF_F_GRO; 2327 ndev->vlan_features |= 2328 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2329 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2330 2331 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2332 ndev->min_mtu = MAC_MIN_MTU; 2333 switch (priv->enet_ver) { 2334 case AE_VERSION_2: 2335 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE; 2336 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2337 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2338 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2339 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6; 2340 ndev->max_mtu = MAC_MAX_MTU_V2 - 2341 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2342 break; 2343 default: 2344 ndev->max_mtu = MAC_MAX_MTU - 2345 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2346 break; 2347 } 2348 2349 SET_NETDEV_DEV(ndev, dev); 2350 2351 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2352 dev_dbg(dev, "set mask to 64bit\n"); 2353 else 2354 dev_err(dev, "set mask to 64bit fail!\n"); 2355 2356 /* carrier off reporting is important to ethtool even BEFORE open */ 2357 netif_carrier_off(ndev); 2358 2359 timer_setup(&priv->service_timer, hns_nic_service_timer, 0); 2360 INIT_WORK(&priv->service_task, hns_nic_service_task); 2361 2362 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2363 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2364 set_bit(NIC_STATE_DOWN, &priv->state); 2365 2366 if (hns_nic_try_get_ae(priv->netdev)) { 2367 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2368 ret = hnae_register_notifier(&priv->notifier_block); 2369 if (ret) { 2370 dev_err(dev, "register notifier fail!\n"); 2371 goto out_notify_fail; 2372 } 2373 dev_dbg(dev, "has not handle, register notifier!\n"); 2374 } 2375 2376 return 0; 2377 2378 out_notify_fail: 2379 (void)cancel_work_sync(&priv->service_task); 2380 out_read_prop_fail: 2381 /* safe for ACPI FW */ 2382 of_node_put(to_of_node(priv->fwnode)); 2383 free_netdev(ndev); 2384 return ret; 2385 } 2386 2387 static int hns_nic_dev_remove(struct platform_device *pdev) 2388 { 2389 struct net_device *ndev = platform_get_drvdata(pdev); 2390 struct hns_nic_priv *priv = netdev_priv(ndev); 2391 2392 if (ndev->reg_state != NETREG_UNINITIALIZED) 2393 unregister_netdev(ndev); 2394 2395 if (priv->ring_data) 2396 hns_nic_uninit_ring_data(priv); 2397 priv->ring_data = NULL; 2398 2399 if (ndev->phydev) 2400 phy_disconnect(ndev->phydev); 2401 2402 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2403 hnae_put_handle(priv->ae_handle); 2404 priv->ae_handle = NULL; 2405 if (priv->notifier_block.notifier_call) 2406 hnae_unregister_notifier(&priv->notifier_block); 2407 priv->notifier_block.notifier_call = NULL; 2408 2409 set_bit(NIC_STATE_REMOVING, &priv->state); 2410 (void)cancel_work_sync(&priv->service_task); 2411 2412 /* safe for ACPI FW */ 2413 of_node_put(to_of_node(priv->fwnode)); 2414 2415 free_netdev(ndev); 2416 return 0; 2417 } 2418 2419 static const struct of_device_id hns_enet_of_match[] = { 2420 {.compatible = "hisilicon,hns-nic-v1",}, 2421 {.compatible = "hisilicon,hns-nic-v2",}, 2422 {}, 2423 }; 2424 2425 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2426 2427 static struct platform_driver hns_nic_dev_driver = { 2428 .driver = { 2429 .name = "hns-nic", 2430 .of_match_table = hns_enet_of_match, 2431 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2432 }, 2433 .probe = hns_nic_dev_probe, 2434 .remove = hns_nic_dev_remove, 2435 }; 2436 2437 module_platform_driver(hns_nic_dev_driver); 2438 2439 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2440 MODULE_AUTHOR("Hisilicon, Inc."); 2441 MODULE_LICENSE("GPL"); 2442 MODULE_ALIAS("platform:hns-nic"); 2443