xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns/hns_enet.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22 
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26 
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29 
30 #define SERVICE_TIMER_HZ (1 * HZ)
31 
32 #define NIC_TX_CLEAN_MAX_NUM 256
33 #define NIC_RX_CLEAN_MAX_NUM 64
34 
35 #define RCB_IRQ_NOT_INITED 0
36 #define RCB_IRQ_INITED 1
37 #define HNS_BUFFER_SIZE_2048 2048
38 
39 #define BD_MAX_SEND_SIZE 8191
40 #define SKB_TMP_LEN(SKB) \
41 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
42 
43 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
44 			 int size, dma_addr_t dma, int frag_end,
45 			 int buf_num, enum hns_desc_type type, int mtu)
46 {
47 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
48 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
49 	struct iphdr *iphdr;
50 	struct ipv6hdr *ipv6hdr;
51 	struct sk_buff *skb;
52 	__be16 protocol;
53 	u8 bn_pid = 0;
54 	u8 rrcfv = 0;
55 	u8 ip_offset = 0;
56 	u8 tvsvsn = 0;
57 	u16 mss = 0;
58 	u8 l4_len = 0;
59 	u16 paylen = 0;
60 
61 	desc_cb->priv = priv;
62 	desc_cb->length = size;
63 	desc_cb->dma = dma;
64 	desc_cb->type = type;
65 
66 	desc->addr = cpu_to_le64(dma);
67 	desc->tx.send_size = cpu_to_le16((u16)size);
68 
69 	/* config bd buffer end */
70 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72 
73 	/* fill port_id in the tx bd for sending management pkts */
74 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
75 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
76 
77 	if (type == DESC_TYPE_SKB) {
78 		skb = (struct sk_buff *)priv;
79 
80 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
81 			skb_reset_mac_len(skb);
82 			protocol = skb->protocol;
83 			ip_offset = ETH_HLEN;
84 
85 			if (protocol == htons(ETH_P_8021Q)) {
86 				ip_offset += VLAN_HLEN;
87 				protocol = vlan_get_protocol(skb);
88 				skb->protocol = protocol;
89 			}
90 
91 			if (skb->protocol == htons(ETH_P_IP)) {
92 				iphdr = ip_hdr(skb);
93 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
94 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
95 
96 				/* check for tcp/udp header */
97 				if (iphdr->protocol == IPPROTO_TCP &&
98 				    skb_is_gso(skb)) {
99 					hnae_set_bit(tvsvsn,
100 						     HNSV2_TXD_TSE_B, 1);
101 					l4_len = tcp_hdrlen(skb);
102 					mss = skb_shinfo(skb)->gso_size;
103 					paylen = skb->len - SKB_TMP_LEN(skb);
104 				}
105 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
106 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
107 				ipv6hdr = ipv6_hdr(skb);
108 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
109 
110 				/* check for tcp/udp header */
111 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
112 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
113 					hnae_set_bit(tvsvsn,
114 						     HNSV2_TXD_TSE_B, 1);
115 					l4_len = tcp_hdrlen(skb);
116 					mss = skb_shinfo(skb)->gso_size;
117 					paylen = skb->len - SKB_TMP_LEN(skb);
118 				}
119 			}
120 			desc->tx.ip_offset = ip_offset;
121 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
122 			desc->tx.mss = cpu_to_le16(mss);
123 			desc->tx.l4_len = l4_len;
124 			desc->tx.paylen = cpu_to_le16(paylen);
125 		}
126 	}
127 
128 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
129 
130 	desc->tx.bn_pid = bn_pid;
131 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
132 
133 	ring_ptr_move_fw(ring, next_to_use);
134 }
135 
136 static const struct acpi_device_id hns_enet_acpi_match[] = {
137 	{ "HISI00C1", 0 },
138 	{ "HISI00C2", 0 },
139 	{ },
140 };
141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
142 
143 static void fill_desc(struct hnae_ring *ring, void *priv,
144 		      int size, dma_addr_t dma, int frag_end,
145 		      int buf_num, enum hns_desc_type type, int mtu)
146 {
147 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
148 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
149 	struct sk_buff *skb;
150 	__be16 protocol;
151 	u32 ip_offset;
152 	u32 asid_bufnum_pid = 0;
153 	u32 flag_ipoffset = 0;
154 
155 	desc_cb->priv = priv;
156 	desc_cb->length = size;
157 	desc_cb->dma = dma;
158 	desc_cb->type = type;
159 
160 	desc->addr = cpu_to_le64(dma);
161 	desc->tx.send_size = cpu_to_le16((u16)size);
162 
163 	/*config bd buffer end */
164 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
165 
166 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
167 
168 	if (type == DESC_TYPE_SKB) {
169 		skb = (struct sk_buff *)priv;
170 
171 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
172 			protocol = skb->protocol;
173 			ip_offset = ETH_HLEN;
174 
175 			/*if it is a SW VLAN check the next protocol*/
176 			if (protocol == htons(ETH_P_8021Q)) {
177 				ip_offset += VLAN_HLEN;
178 				protocol = vlan_get_protocol(skb);
179 				skb->protocol = protocol;
180 			}
181 
182 			if (skb->protocol == htons(ETH_P_IP)) {
183 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
184 				/* check for tcp/udp header */
185 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
186 
187 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
188 				/* ipv6 has not l3 cs, check for L4 header */
189 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
190 			}
191 
192 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
193 		}
194 	}
195 
196 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
197 
198 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
199 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
200 
201 	ring_ptr_move_fw(ring, next_to_use);
202 }
203 
204 static void unfill_desc(struct hnae_ring *ring)
205 {
206 	ring_ptr_move_bw(ring, next_to_use);
207 }
208 
209 static int hns_nic_maybe_stop_tx(
210 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
211 {
212 	struct sk_buff *skb = *out_skb;
213 	struct sk_buff *new_skb = NULL;
214 	int buf_num;
215 
216 	/* no. of segments (plus a header) */
217 	buf_num = skb_shinfo(skb)->nr_frags + 1;
218 
219 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
220 		if (ring_space(ring) < 1)
221 			return -EBUSY;
222 
223 		new_skb = skb_copy(skb, GFP_ATOMIC);
224 		if (!new_skb)
225 			return -ENOMEM;
226 
227 		dev_kfree_skb_any(skb);
228 		*out_skb = new_skb;
229 		buf_num = 1;
230 	} else if (buf_num > ring_space(ring)) {
231 		return -EBUSY;
232 	}
233 
234 	*bnum = buf_num;
235 	return 0;
236 }
237 
238 static int hns_nic_maybe_stop_tso(
239 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
240 {
241 	int i;
242 	int size;
243 	int buf_num;
244 	int frag_num;
245 	struct sk_buff *skb = *out_skb;
246 	struct sk_buff *new_skb = NULL;
247 	struct skb_frag_struct *frag;
248 
249 	size = skb_headlen(skb);
250 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
251 
252 	frag_num = skb_shinfo(skb)->nr_frags;
253 	for (i = 0; i < frag_num; i++) {
254 		frag = &skb_shinfo(skb)->frags[i];
255 		size = skb_frag_size(frag);
256 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
257 	}
258 
259 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
260 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
261 		if (ring_space(ring) < buf_num)
262 			return -EBUSY;
263 		/* manual split the send packet */
264 		new_skb = skb_copy(skb, GFP_ATOMIC);
265 		if (!new_skb)
266 			return -ENOMEM;
267 		dev_kfree_skb_any(skb);
268 		*out_skb = new_skb;
269 
270 	} else if (ring_space(ring) < buf_num) {
271 		return -EBUSY;
272 	}
273 
274 	*bnum = buf_num;
275 	return 0;
276 }
277 
278 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
279 			  int size, dma_addr_t dma, int frag_end,
280 			  int buf_num, enum hns_desc_type type, int mtu)
281 {
282 	int frag_buf_num;
283 	int sizeoflast;
284 	int k;
285 
286 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
287 	sizeoflast = size % BD_MAX_SEND_SIZE;
288 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
289 
290 	/* when the frag size is bigger than hardware, split this frag */
291 	for (k = 0; k < frag_buf_num; k++)
292 		fill_v2_desc(ring, priv,
293 			     (k == frag_buf_num - 1) ?
294 					sizeoflast : BD_MAX_SEND_SIZE,
295 			     dma + BD_MAX_SEND_SIZE * k,
296 			     frag_end && (k == frag_buf_num - 1) ? 1 : 0,
297 			     buf_num,
298 			     (type == DESC_TYPE_SKB && !k) ?
299 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
300 			     mtu);
301 }
302 
303 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
304 				struct sk_buff *skb,
305 				struct hns_nic_ring_data *ring_data)
306 {
307 	struct hns_nic_priv *priv = netdev_priv(ndev);
308 	struct hnae_ring *ring = ring_data->ring;
309 	struct device *dev = ring_to_dev(ring);
310 	struct netdev_queue *dev_queue;
311 	struct skb_frag_struct *frag;
312 	int buf_num;
313 	int seg_num;
314 	dma_addr_t dma;
315 	int size, next_to_use;
316 	int i;
317 
318 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
319 	case -EBUSY:
320 		ring->stats.tx_busy++;
321 		goto out_net_tx_busy;
322 	case -ENOMEM:
323 		ring->stats.sw_err_cnt++;
324 		netdev_err(ndev, "no memory to xmit!\n");
325 		goto out_err_tx_ok;
326 	default:
327 		break;
328 	}
329 
330 	/* no. of segments (plus a header) */
331 	seg_num = skb_shinfo(skb)->nr_frags + 1;
332 	next_to_use = ring->next_to_use;
333 
334 	/* fill the first part */
335 	size = skb_headlen(skb);
336 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
337 	if (dma_mapping_error(dev, dma)) {
338 		netdev_err(ndev, "TX head DMA map failed\n");
339 		ring->stats.sw_err_cnt++;
340 		goto out_err_tx_ok;
341 	}
342 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
343 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
344 
345 	/* fill the fragments */
346 	for (i = 1; i < seg_num; i++) {
347 		frag = &skb_shinfo(skb)->frags[i - 1];
348 		size = skb_frag_size(frag);
349 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
350 		if (dma_mapping_error(dev, dma)) {
351 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
352 			ring->stats.sw_err_cnt++;
353 			goto out_map_frag_fail;
354 		}
355 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
356 				    seg_num - 1 == i ? 1 : 0, buf_num,
357 				    DESC_TYPE_PAGE, ndev->mtu);
358 	}
359 
360 	/*complete translate all packets*/
361 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
362 	netdev_tx_sent_queue(dev_queue, skb->len);
363 
364 	netif_trans_update(ndev);
365 	ndev->stats.tx_bytes += skb->len;
366 	ndev->stats.tx_packets++;
367 
368 	wmb(); /* commit all data before submit */
369 	assert(skb->queue_mapping < priv->ae_handle->q_num);
370 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
371 	ring->stats.tx_pkts++;
372 	ring->stats.tx_bytes += skb->len;
373 
374 	return NETDEV_TX_OK;
375 
376 out_map_frag_fail:
377 
378 	while (ring->next_to_use != next_to_use) {
379 		unfill_desc(ring);
380 		if (ring->next_to_use != next_to_use)
381 			dma_unmap_page(dev,
382 				       ring->desc_cb[ring->next_to_use].dma,
383 				       ring->desc_cb[ring->next_to_use].length,
384 				       DMA_TO_DEVICE);
385 		else
386 			dma_unmap_single(dev,
387 					 ring->desc_cb[next_to_use].dma,
388 					 ring->desc_cb[next_to_use].length,
389 					 DMA_TO_DEVICE);
390 	}
391 
392 out_err_tx_ok:
393 
394 	dev_kfree_skb_any(skb);
395 	return NETDEV_TX_OK;
396 
397 out_net_tx_busy:
398 
399 	netif_stop_subqueue(ndev, skb->queue_mapping);
400 
401 	/* Herbert's original patch had:
402 	 *  smp_mb__after_netif_stop_queue();
403 	 * but since that doesn't exist yet, just open code it.
404 	 */
405 	smp_mb();
406 	return NETDEV_TX_BUSY;
407 }
408 
409 /**
410  * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
411  * @data: pointer to the start of the headers
412  * @max: total length of section to find headers in
413  *
414  * This function is meant to determine the length of headers that will
415  * be recognized by hardware for LRO, GRO, and RSC offloads.  The main
416  * motivation of doing this is to only perform one pull for IPv4 TCP
417  * packets so that we can do basic things like calculating the gso_size
418  * based on the average data per packet.
419  **/
420 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
421 					unsigned int max_size)
422 {
423 	unsigned char *network;
424 	u8 hlen;
425 
426 	/* this should never happen, but better safe than sorry */
427 	if (max_size < ETH_HLEN)
428 		return max_size;
429 
430 	/* initialize network frame pointer */
431 	network = data;
432 
433 	/* set first protocol and move network header forward */
434 	network += ETH_HLEN;
435 
436 	/* handle any vlan tag if present */
437 	if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
438 		== HNS_RX_FLAG_VLAN_PRESENT) {
439 		if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
440 			return max_size;
441 
442 		network += VLAN_HLEN;
443 	}
444 
445 	/* handle L3 protocols */
446 	if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
447 		== HNS_RX_FLAG_L3ID_IPV4) {
448 		if ((typeof(max_size))(network - data) >
449 		    (max_size - sizeof(struct iphdr)))
450 			return max_size;
451 
452 		/* access ihl as a u8 to avoid unaligned access on ia64 */
453 		hlen = (network[0] & 0x0F) << 2;
454 
455 		/* verify hlen meets minimum size requirements */
456 		if (hlen < sizeof(struct iphdr))
457 			return network - data;
458 
459 		/* record next protocol if header is present */
460 	} else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
461 		== HNS_RX_FLAG_L3ID_IPV6) {
462 		if ((typeof(max_size))(network - data) >
463 		    (max_size - sizeof(struct ipv6hdr)))
464 			return max_size;
465 
466 		/* record next protocol */
467 		hlen = sizeof(struct ipv6hdr);
468 	} else {
469 		return network - data;
470 	}
471 
472 	/* relocate pointer to start of L4 header */
473 	network += hlen;
474 
475 	/* finally sort out TCP/UDP */
476 	if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
477 		== HNS_RX_FLAG_L4ID_TCP) {
478 		if ((typeof(max_size))(network - data) >
479 		    (max_size - sizeof(struct tcphdr)))
480 			return max_size;
481 
482 		/* access doff as a u8 to avoid unaligned access on ia64 */
483 		hlen = (network[12] & 0xF0) >> 2;
484 
485 		/* verify hlen meets minimum size requirements */
486 		if (hlen < sizeof(struct tcphdr))
487 			return network - data;
488 
489 		network += hlen;
490 	} else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
491 		== HNS_RX_FLAG_L4ID_UDP) {
492 		if ((typeof(max_size))(network - data) >
493 		    (max_size - sizeof(struct udphdr)))
494 			return max_size;
495 
496 		network += sizeof(struct udphdr);
497 	}
498 
499 	/* If everything has gone correctly network should be the
500 	 * data section of the packet and will be the end of the header.
501 	 * If not then it probably represents the end of the last recognized
502 	 * header.
503 	 */
504 	if ((typeof(max_size))(network - data) < max_size)
505 		return network - data;
506 	else
507 		return max_size;
508 }
509 
510 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
511 			       struct hnae_ring *ring, int pull_len,
512 			       struct hnae_desc_cb *desc_cb)
513 {
514 	struct hnae_desc *desc;
515 	int truesize, size;
516 	int last_offset;
517 	bool twobufs;
518 
519 	twobufs = ((PAGE_SIZE < 8192) &&
520 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
521 
522 	desc = &ring->desc[ring->next_to_clean];
523 	size = le16_to_cpu(desc->rx.size);
524 
525 	if (twobufs) {
526 		truesize = hnae_buf_size(ring);
527 	} else {
528 		truesize = ALIGN(size, L1_CACHE_BYTES);
529 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
530 	}
531 
532 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
533 			size - pull_len, truesize - pull_len);
534 
535 	 /* avoid re-using remote pages,flag default unreuse */
536 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
537 		return;
538 
539 	if (twobufs) {
540 		/* if we are only owner of page we can reuse it */
541 		if (likely(page_count(desc_cb->priv) == 1)) {
542 			/* flip page offset to other buffer */
543 			desc_cb->page_offset ^= truesize;
544 
545 			desc_cb->reuse_flag = 1;
546 			/* bump ref count on page before it is given*/
547 			get_page(desc_cb->priv);
548 		}
549 		return;
550 	}
551 
552 	/* move offset up to the next cache line */
553 	desc_cb->page_offset += truesize;
554 
555 	if (desc_cb->page_offset <= last_offset) {
556 		desc_cb->reuse_flag = 1;
557 		/* bump ref count on page before it is given*/
558 		get_page(desc_cb->priv);
559 	}
560 }
561 
562 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
563 {
564 	*out_bnum = hnae_get_field(bnum_flag,
565 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
566 }
567 
568 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
569 {
570 	*out_bnum = hnae_get_field(bnum_flag,
571 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
572 }
573 
574 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
575 				struct sk_buff *skb, u32 flag)
576 {
577 	struct net_device *netdev = ring_data->napi.dev;
578 	u32 l3id;
579 	u32 l4id;
580 
581 	/* check if RX checksum offload is enabled */
582 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
583 		return;
584 
585 	/* In hardware, we only support checksum for the following protocols:
586 	 * 1) IPv4,
587 	 * 2) TCP(over IPv4 or IPv6),
588 	 * 3) UDP(over IPv4 or IPv6),
589 	 * 4) SCTP(over IPv4 or IPv6)
590 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
591 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
592 	 *
593 	 * Hardware limitation:
594 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
595 	 * Error" bit (which usually can be used to indicate whether checksum
596 	 * was calculated by the hardware and if there was any error encountered
597 	 * during checksum calculation).
598 	 *
599 	 * Software workaround:
600 	 * We do get info within the RX descriptor about the kind of L3/L4
601 	 * protocol coming in the packet and the error status. These errors
602 	 * might not just be checksum errors but could be related to version,
603 	 * length of IPv4, UDP, TCP etc.
604 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
605 	 * checksum or any other L3/L4 error, we will not (cannot) convey
606 	 * checksum status for such cases to upper stack and will not maintain
607 	 * the RX L3/L4 checksum counters as well.
608 	 */
609 
610 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
611 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
612 
613 	/*  check L3 protocol for which checksum is supported */
614 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
615 		return;
616 
617 	/* check for any(not just checksum)flagged L3 protocol errors */
618 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
619 		return;
620 
621 	/* we do not support checksum of fragmented packets */
622 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
623 		return;
624 
625 	/*  check L4 protocol for which checksum is supported */
626 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
627 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
628 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
629 		return;
630 
631 	/* check for any(not just checksum)flagged L4 protocol errors */
632 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
633 		return;
634 
635 	/* now, this has to be a packet with valid RX checksum */
636 	skb->ip_summed = CHECKSUM_UNNECESSARY;
637 }
638 
639 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
640 			       struct sk_buff **out_skb, int *out_bnum)
641 {
642 	struct hnae_ring *ring = ring_data->ring;
643 	struct net_device *ndev = ring_data->napi.dev;
644 	struct hns_nic_priv *priv = netdev_priv(ndev);
645 	struct sk_buff *skb;
646 	struct hnae_desc *desc;
647 	struct hnae_desc_cb *desc_cb;
648 	unsigned char *va;
649 	int bnum, length, i;
650 	int pull_len;
651 	u32 bnum_flag;
652 
653 	desc = &ring->desc[ring->next_to_clean];
654 	desc_cb = &ring->desc_cb[ring->next_to_clean];
655 
656 	prefetch(desc);
657 
658 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
659 
660 	/* prefetch first cache line of first page */
661 	prefetch(va);
662 #if L1_CACHE_BYTES < 128
663 	prefetch(va + L1_CACHE_BYTES);
664 #endif
665 
666 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
667 					HNS_RX_HEAD_SIZE);
668 	if (unlikely(!skb)) {
669 		netdev_err(ndev, "alloc rx skb fail\n");
670 		ring->stats.sw_err_cnt++;
671 		return -ENOMEM;
672 	}
673 
674 	prefetchw(skb->data);
675 	length = le16_to_cpu(desc->rx.pkt_len);
676 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
677 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
678 	*out_bnum = bnum;
679 
680 	if (length <= HNS_RX_HEAD_SIZE) {
681 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
682 
683 		/* we can reuse buffer as-is, just make sure it is local */
684 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
685 			desc_cb->reuse_flag = 1;
686 		else /* this page cannot be reused so discard it */
687 			put_page(desc_cb->priv);
688 
689 		ring_ptr_move_fw(ring, next_to_clean);
690 
691 		if (unlikely(bnum != 1)) { /* check err*/
692 			*out_bnum = 1;
693 			goto out_bnum_err;
694 		}
695 	} else {
696 		ring->stats.seg_pkt_cnt++;
697 
698 		pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
699 		memcpy(__skb_put(skb, pull_len), va,
700 		       ALIGN(pull_len, sizeof(long)));
701 
702 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
703 		ring_ptr_move_fw(ring, next_to_clean);
704 
705 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
706 			*out_bnum = 1;
707 			goto out_bnum_err;
708 		}
709 		for (i = 1; i < bnum; i++) {
710 			desc = &ring->desc[ring->next_to_clean];
711 			desc_cb = &ring->desc_cb[ring->next_to_clean];
712 
713 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
714 			ring_ptr_move_fw(ring, next_to_clean);
715 		}
716 	}
717 
718 	/* check except process, free skb and jump the desc */
719 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
720 out_bnum_err:
721 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
722 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
723 			   bnum, ring->max_desc_num_per_pkt,
724 			   length, (int)MAX_SKB_FRAGS,
725 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
726 		ring->stats.err_bd_num++;
727 		dev_kfree_skb_any(skb);
728 		return -EDOM;
729 	}
730 
731 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
732 
733 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
734 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
735 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
736 		ring->stats.non_vld_descs++;
737 		dev_kfree_skb_any(skb);
738 		return -EINVAL;
739 	}
740 
741 	if (unlikely((!desc->rx.pkt_len) ||
742 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
743 		ring->stats.err_pkt_len++;
744 		dev_kfree_skb_any(skb);
745 		return -EFAULT;
746 	}
747 
748 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
749 		ring->stats.l2_err++;
750 		dev_kfree_skb_any(skb);
751 		return -EFAULT;
752 	}
753 
754 	ring->stats.rx_pkts++;
755 	ring->stats.rx_bytes += skb->len;
756 
757 	/* indicate to upper stack if our hardware has already calculated
758 	 * the RX checksum
759 	 */
760 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
761 
762 	return 0;
763 }
764 
765 static void
766 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
767 {
768 	int i, ret;
769 	struct hnae_desc_cb res_cbs;
770 	struct hnae_desc_cb *desc_cb;
771 	struct hnae_ring *ring = ring_data->ring;
772 	struct net_device *ndev = ring_data->napi.dev;
773 
774 	for (i = 0; i < cleand_count; i++) {
775 		desc_cb = &ring->desc_cb[ring->next_to_use];
776 		if (desc_cb->reuse_flag) {
777 			ring->stats.reuse_pg_cnt++;
778 			hnae_reuse_buffer(ring, ring->next_to_use);
779 		} else {
780 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
781 			if (ret) {
782 				ring->stats.sw_err_cnt++;
783 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
784 				break;
785 			}
786 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
787 		}
788 
789 		ring_ptr_move_fw(ring, next_to_use);
790 	}
791 
792 	wmb(); /* make all data has been write before submit */
793 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
794 }
795 
796 /* return error number for error or number of desc left to take
797  */
798 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
799 			      struct sk_buff *skb)
800 {
801 	struct net_device *ndev = ring_data->napi.dev;
802 
803 	skb->protocol = eth_type_trans(skb, ndev);
804 	(void)napi_gro_receive(&ring_data->napi, skb);
805 }
806 
807 static int hns_desc_unused(struct hnae_ring *ring)
808 {
809 	int ntc = ring->next_to_clean;
810 	int ntu = ring->next_to_use;
811 
812 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
813 }
814 
815 #define HNS_LOWEST_LATENCY_RATE		27	/* 27 MB/s */
816 #define HNS_LOW_LATENCY_RATE			80	/* 80 MB/s */
817 
818 #define HNS_COAL_BDNUM			3
819 
820 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
821 {
822 	bool coal_enable = ring->q->handle->coal_adapt_en;
823 
824 	if (coal_enable &&
825 	    ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
826 		return HNS_COAL_BDNUM;
827 	else
828 		return 0;
829 }
830 
831 static void hns_update_rx_rate(struct hnae_ring *ring)
832 {
833 	bool coal_enable = ring->q->handle->coal_adapt_en;
834 	u32 time_passed_ms;
835 	u64 total_bytes;
836 
837 	if (!coal_enable ||
838 	    time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
839 		return;
840 
841 	/* ring->stats.rx_bytes overflowed */
842 	if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
843 		ring->coal_last_rx_bytes = ring->stats.rx_bytes;
844 		ring->coal_last_jiffies = jiffies;
845 		return;
846 	}
847 
848 	total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
849 	time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
850 	do_div(total_bytes, time_passed_ms);
851 	ring->coal_rx_rate = total_bytes >> 10;
852 
853 	ring->coal_last_rx_bytes = ring->stats.rx_bytes;
854 	ring->coal_last_jiffies = jiffies;
855 }
856 
857 /**
858  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
859  **/
860 static u32 smooth_alg(u32 new_param, u32 old_param)
861 {
862 	u32 gap = (new_param > old_param) ? new_param - old_param
863 					  : old_param - new_param;
864 
865 	if (gap > 8)
866 		gap >>= 3;
867 
868 	if (new_param > old_param)
869 		return old_param + gap;
870 	else
871 		return old_param - gap;
872 }
873 
874 /**
875  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
876  * @ring_data: pointer to hns_nic_ring_data
877  **/
878 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
879 {
880 	struct hnae_ring *ring = ring_data->ring;
881 	struct hnae_handle *handle = ring->q->handle;
882 	u32 new_coal_param, old_coal_param = ring->coal_param;
883 
884 	if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
885 		new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
886 	else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
887 		new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
888 	else
889 		new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
890 
891 	if (new_coal_param == old_coal_param &&
892 	    new_coal_param == handle->coal_param)
893 		return;
894 
895 	new_coal_param = smooth_alg(new_coal_param, old_coal_param);
896 	ring->coal_param = new_coal_param;
897 
898 	/**
899 	 * Because all ring in one port has one coalesce param, when one ring
900 	 * calculate its own coalesce param, it cannot write to hardware at
901 	 * once. There are three conditions as follows:
902 	 *       1. current ring's coalesce param is larger than the hardware.
903 	 *       2. or ring which adapt last time can change again.
904 	 *       3. timeout.
905 	 */
906 	if (new_coal_param == handle->coal_param) {
907 		handle->coal_last_jiffies = jiffies;
908 		handle->coal_ring_idx = ring_data->queue_index;
909 	} else if (new_coal_param > handle->coal_param ||
910 		   handle->coal_ring_idx == ring_data->queue_index ||
911 		   time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
912 		handle->dev->ops->set_coalesce_usecs(handle,
913 					new_coal_param);
914 		handle->dev->ops->set_coalesce_frames(handle,
915 					1, new_coal_param);
916 		handle->coal_param = new_coal_param;
917 		handle->coal_ring_idx = ring_data->queue_index;
918 		handle->coal_last_jiffies = jiffies;
919 	}
920 }
921 
922 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
923 			       int budget, void *v)
924 {
925 	struct hnae_ring *ring = ring_data->ring;
926 	struct sk_buff *skb;
927 	int num, bnum;
928 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
929 	int recv_pkts, recv_bds, clean_count, err;
930 	int unused_count = hns_desc_unused(ring);
931 
932 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
933 	rmb(); /* make sure num taken effect before the other data is touched */
934 
935 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
936 	num -= unused_count;
937 
938 	while (recv_pkts < budget && recv_bds < num) {
939 		/* reuse or realloc buffers */
940 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
941 			hns_nic_alloc_rx_buffers(ring_data,
942 						 clean_count + unused_count);
943 			clean_count = 0;
944 			unused_count = hns_desc_unused(ring);
945 		}
946 
947 		/* poll one pkt */
948 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
949 		if (unlikely(!skb)) /* this fault cannot be repaired */
950 			goto out;
951 
952 		recv_bds += bnum;
953 		clean_count += bnum;
954 		if (unlikely(err)) {  /* do jump the err */
955 			recv_pkts++;
956 			continue;
957 		}
958 
959 		/* do update ip stack process*/
960 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
961 							ring_data, skb);
962 		recv_pkts++;
963 	}
964 
965 out:
966 	/* make all data has been write before submit */
967 	if (clean_count + unused_count > 0)
968 		hns_nic_alloc_rx_buffers(ring_data,
969 					 clean_count + unused_count);
970 
971 	return recv_pkts;
972 }
973 
974 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
975 {
976 	struct hnae_ring *ring = ring_data->ring;
977 	int num = 0;
978 	bool rx_stopped;
979 
980 	hns_update_rx_rate(ring);
981 
982 	/* for hardware bug fixed */
983 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
984 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
985 
986 	if (num <= hns_coal_rx_bdnum(ring)) {
987 		if (ring->q->handle->coal_adapt_en)
988 			hns_nic_adpt_coalesce(ring_data);
989 
990 		rx_stopped = true;
991 	} else {
992 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
993 			ring_data->ring, 1);
994 
995 		rx_stopped = false;
996 	}
997 
998 	return rx_stopped;
999 }
1000 
1001 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1002 {
1003 	struct hnae_ring *ring = ring_data->ring;
1004 	int num;
1005 
1006 	hns_update_rx_rate(ring);
1007 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
1008 
1009 	if (num <= hns_coal_rx_bdnum(ring)) {
1010 		if (ring->q->handle->coal_adapt_en)
1011 			hns_nic_adpt_coalesce(ring_data);
1012 
1013 		return true;
1014 	}
1015 
1016 	return false;
1017 }
1018 
1019 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
1020 					    int *bytes, int *pkts)
1021 {
1022 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
1023 
1024 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
1025 	(*bytes) += desc_cb->length;
1026 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
1027 	hnae_free_buffer_detach(ring, ring->next_to_clean);
1028 
1029 	ring_ptr_move_fw(ring, next_to_clean);
1030 }
1031 
1032 static int is_valid_clean_head(struct hnae_ring *ring, int h)
1033 {
1034 	int u = ring->next_to_use;
1035 	int c = ring->next_to_clean;
1036 
1037 	if (unlikely(h > ring->desc_num))
1038 		return 0;
1039 
1040 	assert(u > 0 && u < ring->desc_num);
1041 	assert(c > 0 && c < ring->desc_num);
1042 	assert(u != c && h != c); /* must be checked before call this func */
1043 
1044 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
1045 }
1046 
1047 /* netif_tx_lock will turn down the performance, set only when necessary */
1048 #ifdef CONFIG_NET_POLL_CONTROLLER
1049 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
1050 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
1051 #else
1052 #define NETIF_TX_LOCK(ring)
1053 #define NETIF_TX_UNLOCK(ring)
1054 #endif
1055 
1056 /* reclaim all desc in one budget
1057  * return error or number of desc left
1058  */
1059 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
1060 			       int budget, void *v)
1061 {
1062 	struct hnae_ring *ring = ring_data->ring;
1063 	struct net_device *ndev = ring_data->napi.dev;
1064 	struct netdev_queue *dev_queue;
1065 	struct hns_nic_priv *priv = netdev_priv(ndev);
1066 	int head;
1067 	int bytes, pkts;
1068 
1069 	NETIF_TX_LOCK(ring);
1070 
1071 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1072 	rmb(); /* make sure head is ready before touch any data */
1073 
1074 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
1075 		NETIF_TX_UNLOCK(ring);
1076 		return 0; /* no data to poll */
1077 	}
1078 
1079 	if (!is_valid_clean_head(ring, head)) {
1080 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
1081 			   ring->next_to_use, ring->next_to_clean);
1082 		ring->stats.io_err_cnt++;
1083 		NETIF_TX_UNLOCK(ring);
1084 		return -EIO;
1085 	}
1086 
1087 	bytes = 0;
1088 	pkts = 0;
1089 	while (head != ring->next_to_clean) {
1090 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1091 		/* issue prefetch for next Tx descriptor */
1092 		prefetch(&ring->desc_cb[ring->next_to_clean]);
1093 	}
1094 
1095 	NETIF_TX_UNLOCK(ring);
1096 
1097 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1098 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
1099 
1100 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1101 		netif_carrier_on(ndev);
1102 
1103 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
1104 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1105 		/* Make sure that anybody stopping the queue after this
1106 		 * sees the new next_to_clean.
1107 		 */
1108 		smp_mb();
1109 		if (netif_tx_queue_stopped(dev_queue) &&
1110 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
1111 			netif_tx_wake_queue(dev_queue);
1112 			ring->stats.restart_queue++;
1113 		}
1114 	}
1115 	return 0;
1116 }
1117 
1118 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1119 {
1120 	struct hnae_ring *ring = ring_data->ring;
1121 	int head;
1122 
1123 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1124 
1125 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1126 
1127 	if (head != ring->next_to_clean) {
1128 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1129 			ring_data->ring, 1);
1130 
1131 		return false;
1132 	} else {
1133 		return true;
1134 	}
1135 }
1136 
1137 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1138 {
1139 	struct hnae_ring *ring = ring_data->ring;
1140 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1141 
1142 	if (head == ring->next_to_clean)
1143 		return true;
1144 	else
1145 		return false;
1146 }
1147 
1148 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1149 {
1150 	struct hnae_ring *ring = ring_data->ring;
1151 	struct net_device *ndev = ring_data->napi.dev;
1152 	struct netdev_queue *dev_queue;
1153 	int head;
1154 	int bytes, pkts;
1155 
1156 	NETIF_TX_LOCK(ring);
1157 
1158 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1159 	bytes = 0;
1160 	pkts = 0;
1161 	while (head != ring->next_to_clean)
1162 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1163 
1164 	NETIF_TX_UNLOCK(ring);
1165 
1166 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1167 	netdev_tx_reset_queue(dev_queue);
1168 }
1169 
1170 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1171 {
1172 	int clean_complete = 0;
1173 	struct hns_nic_ring_data *ring_data =
1174 		container_of(napi, struct hns_nic_ring_data, napi);
1175 	struct hnae_ring *ring = ring_data->ring;
1176 
1177 try_again:
1178 	clean_complete += ring_data->poll_one(
1179 				ring_data, budget - clean_complete,
1180 				ring_data->ex_process);
1181 
1182 	if (clean_complete < budget) {
1183 		if (ring_data->fini_process(ring_data)) {
1184 			napi_complete(napi);
1185 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1186 		} else {
1187 			goto try_again;
1188 		}
1189 	}
1190 
1191 	return clean_complete;
1192 }
1193 
1194 static irqreturn_t hns_irq_handle(int irq, void *dev)
1195 {
1196 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1197 
1198 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1199 		ring_data->ring, 1);
1200 	napi_schedule(&ring_data->napi);
1201 
1202 	return IRQ_HANDLED;
1203 }
1204 
1205 /**
1206  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1207  *@ndev: net device
1208  */
1209 static void hns_nic_adjust_link(struct net_device *ndev)
1210 {
1211 	struct hns_nic_priv *priv = netdev_priv(ndev);
1212 	struct hnae_handle *h = priv->ae_handle;
1213 	int state = 1;
1214 
1215 	if (ndev->phydev) {
1216 		h->dev->ops->adjust_link(h, ndev->phydev->speed,
1217 					 ndev->phydev->duplex);
1218 		state = ndev->phydev->link;
1219 	}
1220 	state = state && h->dev->ops->get_status(h);
1221 
1222 	if (state != priv->link) {
1223 		if (state) {
1224 			netif_carrier_on(ndev);
1225 			netif_tx_wake_all_queues(ndev);
1226 			netdev_info(ndev, "link up\n");
1227 		} else {
1228 			netif_carrier_off(ndev);
1229 			netdev_info(ndev, "link down\n");
1230 		}
1231 		priv->link = state;
1232 	}
1233 }
1234 
1235 /**
1236  *hns_nic_init_phy - init phy
1237  *@ndev: net device
1238  *@h: ae handle
1239  * Return 0 on success, negative on failure
1240  */
1241 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1242 {
1243 	struct phy_device *phy_dev = h->phy_dev;
1244 	int ret;
1245 
1246 	if (!h->phy_dev)
1247 		return 0;
1248 
1249 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1250 		phy_dev->dev_flags = 0;
1251 
1252 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1253 					 h->phy_if);
1254 	} else {
1255 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1256 	}
1257 	if (unlikely(ret))
1258 		return -ENODEV;
1259 
1260 	phy_dev->supported &= h->if_support;
1261 	phy_dev->advertising = phy_dev->supported;
1262 
1263 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1264 		phy_dev->autoneg = false;
1265 
1266 	return 0;
1267 }
1268 
1269 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1270 {
1271 	struct hns_nic_priv *priv = netdev_priv(netdev);
1272 	struct hnae_handle *h = priv->ae_handle;
1273 
1274 	napi_enable(&priv->ring_data[idx].napi);
1275 
1276 	enable_irq(priv->ring_data[idx].ring->irq);
1277 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1278 
1279 	return 0;
1280 }
1281 
1282 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1283 {
1284 	struct hns_nic_priv *priv = netdev_priv(ndev);
1285 	struct hnae_handle *h = priv->ae_handle;
1286 	struct sockaddr *mac_addr = p;
1287 	int ret;
1288 
1289 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1290 		return -EADDRNOTAVAIL;
1291 
1292 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1293 	if (ret) {
1294 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1295 		return ret;
1296 	}
1297 
1298 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1299 
1300 	return 0;
1301 }
1302 
1303 static void hns_nic_update_stats(struct net_device *netdev)
1304 {
1305 	struct hns_nic_priv *priv = netdev_priv(netdev);
1306 	struct hnae_handle *h = priv->ae_handle;
1307 
1308 	h->dev->ops->update_stats(h, &netdev->stats);
1309 }
1310 
1311 /* set mac addr if it is configed. or leave it to the AE driver */
1312 static void hns_init_mac_addr(struct net_device *ndev)
1313 {
1314 	struct hns_nic_priv *priv = netdev_priv(ndev);
1315 
1316 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1317 		eth_hw_addr_random(ndev);
1318 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1319 			 ndev->dev_addr);
1320 	}
1321 }
1322 
1323 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1324 {
1325 	struct hns_nic_priv *priv = netdev_priv(netdev);
1326 	struct hnae_handle *h = priv->ae_handle;
1327 
1328 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1329 	disable_irq(priv->ring_data[idx].ring->irq);
1330 
1331 	napi_disable(&priv->ring_data[idx].napi);
1332 }
1333 
1334 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1335 				      struct hnae_ring *ring, cpumask_t *mask)
1336 {
1337 	int cpu;
1338 
1339 	/* Diffrent irq banlance between 16core and 32core.
1340 	 * The cpu mask set by ring index according to the ring flag
1341 	 * which indicate the ring is tx or rx.
1342 	 */
1343 	if (q_num == num_possible_cpus()) {
1344 		if (is_tx_ring(ring))
1345 			cpu = ring_idx;
1346 		else
1347 			cpu = ring_idx - q_num;
1348 	} else {
1349 		if (is_tx_ring(ring))
1350 			cpu = ring_idx * 2;
1351 		else
1352 			cpu = (ring_idx - q_num) * 2 + 1;
1353 	}
1354 
1355 	cpumask_clear(mask);
1356 	cpumask_set_cpu(cpu, mask);
1357 
1358 	return cpu;
1359 }
1360 
1361 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1362 {
1363 	struct hnae_handle *h = priv->ae_handle;
1364 	struct hns_nic_ring_data *rd;
1365 	int i;
1366 	int ret;
1367 	int cpu;
1368 
1369 	for (i = 0; i < h->q_num * 2; i++) {
1370 		rd = &priv->ring_data[i];
1371 
1372 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1373 			break;
1374 
1375 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1376 			 "%s-%s%d", priv->netdev->name,
1377 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1378 
1379 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1380 
1381 		ret = request_irq(rd->ring->irq,
1382 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1383 		if (ret) {
1384 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1385 				   rd->ring->irq);
1386 			return ret;
1387 		}
1388 		disable_irq(rd->ring->irq);
1389 
1390 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1391 						 rd->ring, &rd->mask);
1392 
1393 		if (cpu_online(cpu))
1394 			irq_set_affinity_hint(rd->ring->irq,
1395 					      &rd->mask);
1396 
1397 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static int hns_nic_net_up(struct net_device *ndev)
1404 {
1405 	struct hns_nic_priv *priv = netdev_priv(ndev);
1406 	struct hnae_handle *h = priv->ae_handle;
1407 	int i, j;
1408 	int ret;
1409 
1410 	ret = hns_nic_init_irq(priv);
1411 	if (ret != 0) {
1412 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1413 		return ret;
1414 	}
1415 
1416 	for (i = 0; i < h->q_num * 2; i++) {
1417 		ret = hns_nic_ring_open(ndev, i);
1418 		if (ret)
1419 			goto out_has_some_queues;
1420 	}
1421 
1422 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1423 	if (ret)
1424 		goto out_set_mac_addr_err;
1425 
1426 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1427 	if (ret)
1428 		goto out_start_err;
1429 
1430 	if (ndev->phydev)
1431 		phy_start(ndev->phydev);
1432 
1433 	clear_bit(NIC_STATE_DOWN, &priv->state);
1434 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1435 
1436 	return 0;
1437 
1438 out_start_err:
1439 	netif_stop_queue(ndev);
1440 out_set_mac_addr_err:
1441 out_has_some_queues:
1442 	for (j = i - 1; j >= 0; j--)
1443 		hns_nic_ring_close(ndev, j);
1444 
1445 	set_bit(NIC_STATE_DOWN, &priv->state);
1446 
1447 	return ret;
1448 }
1449 
1450 static void hns_nic_net_down(struct net_device *ndev)
1451 {
1452 	int i;
1453 	struct hnae_ae_ops *ops;
1454 	struct hns_nic_priv *priv = netdev_priv(ndev);
1455 
1456 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1457 		return;
1458 
1459 	(void)del_timer_sync(&priv->service_timer);
1460 	netif_tx_stop_all_queues(ndev);
1461 	netif_carrier_off(ndev);
1462 	netif_tx_disable(ndev);
1463 	priv->link = 0;
1464 
1465 	if (ndev->phydev)
1466 		phy_stop(ndev->phydev);
1467 
1468 	ops = priv->ae_handle->dev->ops;
1469 
1470 	if (ops->stop)
1471 		ops->stop(priv->ae_handle);
1472 
1473 	netif_tx_stop_all_queues(ndev);
1474 
1475 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1476 		hns_nic_ring_close(ndev, i);
1477 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1478 
1479 		/* clean tx buffers*/
1480 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1481 	}
1482 }
1483 
1484 void hns_nic_net_reset(struct net_device *ndev)
1485 {
1486 	struct hns_nic_priv *priv = netdev_priv(ndev);
1487 	struct hnae_handle *handle = priv->ae_handle;
1488 
1489 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1490 		usleep_range(1000, 2000);
1491 
1492 	(void)hnae_reinit_handle(handle);
1493 
1494 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1495 }
1496 
1497 void hns_nic_net_reinit(struct net_device *netdev)
1498 {
1499 	struct hns_nic_priv *priv = netdev_priv(netdev);
1500 	enum hnae_port_type type = priv->ae_handle->port_type;
1501 
1502 	netif_trans_update(priv->netdev);
1503 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1504 		usleep_range(1000, 2000);
1505 
1506 	hns_nic_net_down(netdev);
1507 
1508 	/* Only do hns_nic_net_reset in debug mode
1509 	 * because of hardware limitation.
1510 	 */
1511 	if (type == HNAE_PORT_DEBUG)
1512 		hns_nic_net_reset(netdev);
1513 
1514 	(void)hns_nic_net_up(netdev);
1515 	clear_bit(NIC_STATE_REINITING, &priv->state);
1516 }
1517 
1518 static int hns_nic_net_open(struct net_device *ndev)
1519 {
1520 	struct hns_nic_priv *priv = netdev_priv(ndev);
1521 	struct hnae_handle *h = priv->ae_handle;
1522 	int ret;
1523 
1524 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1525 		return -EBUSY;
1526 
1527 	priv->link = 0;
1528 	netif_carrier_off(ndev);
1529 
1530 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1531 	if (ret < 0) {
1532 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1533 			   ret);
1534 		return ret;
1535 	}
1536 
1537 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1538 	if (ret < 0) {
1539 		netdev_err(ndev,
1540 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1541 		return ret;
1542 	}
1543 
1544 	ret = hns_nic_net_up(ndev);
1545 	if (ret) {
1546 		netdev_err(ndev,
1547 			   "hns net up fail, ret=%d!\n", ret);
1548 		return ret;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 static int hns_nic_net_stop(struct net_device *ndev)
1555 {
1556 	hns_nic_net_down(ndev);
1557 
1558 	return 0;
1559 }
1560 
1561 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1562 static void hns_nic_net_timeout(struct net_device *ndev)
1563 {
1564 	struct hns_nic_priv *priv = netdev_priv(ndev);
1565 
1566 	hns_tx_timeout_reset(priv);
1567 }
1568 
1569 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1570 			    int cmd)
1571 {
1572 	struct phy_device *phy_dev = netdev->phydev;
1573 
1574 	if (!netif_running(netdev))
1575 		return -EINVAL;
1576 
1577 	if (!phy_dev)
1578 		return -ENOTSUPP;
1579 
1580 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1581 }
1582 
1583 /* use only for netconsole to poll with the device without interrupt */
1584 #ifdef CONFIG_NET_POLL_CONTROLLER
1585 static void hns_nic_poll_controller(struct net_device *ndev)
1586 {
1587 	struct hns_nic_priv *priv = netdev_priv(ndev);
1588 	unsigned long flags;
1589 	int i;
1590 
1591 	local_irq_save(flags);
1592 	for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1593 		napi_schedule(&priv->ring_data[i].napi);
1594 	local_irq_restore(flags);
1595 }
1596 #endif
1597 
1598 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1599 				    struct net_device *ndev)
1600 {
1601 	struct hns_nic_priv *priv = netdev_priv(ndev);
1602 
1603 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1604 
1605 	return hns_nic_net_xmit_hw(ndev, skb,
1606 				   &tx_ring_data(priv, skb->queue_mapping));
1607 }
1608 
1609 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1610 				  struct sk_buff *skb)
1611 {
1612 	dev_kfree_skb_any(skb);
1613 }
1614 
1615 #define HNS_LB_TX_RING	0
1616 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1617 {
1618 	struct sk_buff *skb;
1619 	struct ethhdr *ethhdr;
1620 	int frame_len;
1621 
1622 	/* allocate test skb */
1623 	skb = alloc_skb(64, GFP_KERNEL);
1624 	if (!skb)
1625 		return NULL;
1626 
1627 	skb_put(skb, 64);
1628 	skb->dev = ndev;
1629 	memset(skb->data, 0xFF, skb->len);
1630 
1631 	/* must be tcp/ip package */
1632 	ethhdr = (struct ethhdr *)skb->data;
1633 	ethhdr->h_proto = htons(ETH_P_IP);
1634 
1635 	frame_len = skb->len & (~1ul);
1636 	memset(&skb->data[frame_len / 2], 0xAA,
1637 	       frame_len / 2 - 1);
1638 
1639 	skb->queue_mapping = HNS_LB_TX_RING;
1640 
1641 	return skb;
1642 }
1643 
1644 static int hns_enable_serdes_lb(struct net_device *ndev)
1645 {
1646 	struct hns_nic_priv *priv = netdev_priv(ndev);
1647 	struct hnae_handle *h = priv->ae_handle;
1648 	struct hnae_ae_ops *ops = h->dev->ops;
1649 	int speed, duplex;
1650 	int ret;
1651 
1652 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1653 	if (ret)
1654 		return ret;
1655 
1656 	ret = ops->start ? ops->start(h) : 0;
1657 	if (ret)
1658 		return ret;
1659 
1660 	/* link adjust duplex*/
1661 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1662 		speed = 1000;
1663 	else
1664 		speed = 10000;
1665 	duplex = 1;
1666 
1667 	ops->adjust_link(h, speed, duplex);
1668 
1669 	/* wait h/w ready */
1670 	mdelay(300);
1671 
1672 	return 0;
1673 }
1674 
1675 static void hns_disable_serdes_lb(struct net_device *ndev)
1676 {
1677 	struct hns_nic_priv *priv = netdev_priv(ndev);
1678 	struct hnae_handle *h = priv->ae_handle;
1679 	struct hnae_ae_ops *ops = h->dev->ops;
1680 
1681 	ops->stop(h);
1682 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1683 }
1684 
1685 /**
1686  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1687  *function as follows:
1688  *    1. if one rx ring has found the page_offset is not equal 0 between head
1689  *       and tail, it means that the chip fetched the wrong descs for the ring
1690  *       which buffer size is 4096.
1691  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1692  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1693  *       recieving all packages and it will fetch new descriptions.
1694  *    4. recover to the original state.
1695  *
1696  *@ndev: net device
1697  */
1698 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1699 {
1700 	struct hns_nic_priv *priv = netdev_priv(ndev);
1701 	struct hnae_handle *h = priv->ae_handle;
1702 	struct hnae_ae_ops *ops = h->dev->ops;
1703 	struct hns_nic_ring_data *rd;
1704 	struct hnae_ring *ring;
1705 	struct sk_buff *skb;
1706 	u32 *org_indir;
1707 	u32 *cur_indir;
1708 	int indir_size;
1709 	int head, tail;
1710 	int fetch_num;
1711 	int i, j;
1712 	bool found;
1713 	int retry_times;
1714 	int ret = 0;
1715 
1716 	/* alloc indir memory */
1717 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1718 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1719 	if (!org_indir)
1720 		return -ENOMEM;
1721 
1722 	/* store the orginal indirection */
1723 	ops->get_rss(h, org_indir, NULL, NULL);
1724 
1725 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1726 	if (!cur_indir) {
1727 		ret = -ENOMEM;
1728 		goto cur_indir_alloc_err;
1729 	}
1730 
1731 	/* set loopback */
1732 	if (hns_enable_serdes_lb(ndev)) {
1733 		ret = -EINVAL;
1734 		goto enable_serdes_lb_err;
1735 	}
1736 
1737 	/* foreach every rx ring to clear fetch desc */
1738 	for (i = 0; i < h->q_num; i++) {
1739 		ring = &h->qs[i]->rx_ring;
1740 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1741 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1742 		found = false;
1743 		fetch_num = ring_dist(ring, head, tail);
1744 
1745 		while (head != tail) {
1746 			if (ring->desc_cb[head].page_offset != 0) {
1747 				found = true;
1748 				break;
1749 			}
1750 
1751 			head++;
1752 			if (head == ring->desc_num)
1753 				head = 0;
1754 		}
1755 
1756 		if (found) {
1757 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1758 				cur_indir[j] = i;
1759 			ops->set_rss(h, cur_indir, NULL, 0);
1760 
1761 			for (j = 0; j < fetch_num; j++) {
1762 				/* alloc one skb and init */
1763 				skb = hns_assemble_skb(ndev);
1764 				if (!skb)
1765 					goto out;
1766 				rd = &tx_ring_data(priv, skb->queue_mapping);
1767 				hns_nic_net_xmit_hw(ndev, skb, rd);
1768 
1769 				retry_times = 0;
1770 				while (retry_times++ < 10) {
1771 					mdelay(10);
1772 					/* clean rx */
1773 					rd = &rx_ring_data(priv, i);
1774 					if (rd->poll_one(rd, fetch_num,
1775 							 hns_nic_drop_rx_fetch))
1776 						break;
1777 				}
1778 
1779 				retry_times = 0;
1780 				while (retry_times++ < 10) {
1781 					mdelay(10);
1782 					/* clean tx ring 0 send package */
1783 					rd = &tx_ring_data(priv,
1784 							   HNS_LB_TX_RING);
1785 					if (rd->poll_one(rd, fetch_num, NULL))
1786 						break;
1787 				}
1788 			}
1789 		}
1790 	}
1791 
1792 out:
1793 	/* restore everything */
1794 	ops->set_rss(h, org_indir, NULL, 0);
1795 	hns_disable_serdes_lb(ndev);
1796 enable_serdes_lb_err:
1797 	kfree(cur_indir);
1798 cur_indir_alloc_err:
1799 	kfree(org_indir);
1800 
1801 	return ret;
1802 }
1803 
1804 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1805 {
1806 	struct hns_nic_priv *priv = netdev_priv(ndev);
1807 	struct hnae_handle *h = priv->ae_handle;
1808 	bool if_running = netif_running(ndev);
1809 	int ret;
1810 
1811 	/* MTU < 68 is an error and causes problems on some kernels */
1812 	if (new_mtu < 68)
1813 		return -EINVAL;
1814 
1815 	/* MTU no change */
1816 	if (new_mtu == ndev->mtu)
1817 		return 0;
1818 
1819 	if (!h->dev->ops->set_mtu)
1820 		return -ENOTSUPP;
1821 
1822 	if (if_running) {
1823 		(void)hns_nic_net_stop(ndev);
1824 		msleep(100);
1825 	}
1826 
1827 	if (priv->enet_ver != AE_VERSION_1 &&
1828 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1829 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1830 		/* update desc */
1831 		hnae_reinit_all_ring_desc(h);
1832 
1833 		/* clear the package which the chip has fetched */
1834 		ret = hns_nic_clear_all_rx_fetch(ndev);
1835 
1836 		/* the page offset must be consist with desc */
1837 		hnae_reinit_all_ring_page_off(h);
1838 
1839 		if (ret) {
1840 			netdev_err(ndev, "clear the fetched desc fail\n");
1841 			goto out;
1842 		}
1843 	}
1844 
1845 	ret = h->dev->ops->set_mtu(h, new_mtu);
1846 	if (ret) {
1847 		netdev_err(ndev, "set mtu fail, return value %d\n",
1848 			   ret);
1849 		goto out;
1850 	}
1851 
1852 	/* finally, set new mtu to netdevice */
1853 	ndev->mtu = new_mtu;
1854 
1855 out:
1856 	if (if_running) {
1857 		if (hns_nic_net_open(ndev)) {
1858 			netdev_err(ndev, "hns net open fail\n");
1859 			ret = -EINVAL;
1860 		}
1861 	}
1862 
1863 	return ret;
1864 }
1865 
1866 static int hns_nic_set_features(struct net_device *netdev,
1867 				netdev_features_t features)
1868 {
1869 	struct hns_nic_priv *priv = netdev_priv(netdev);
1870 
1871 	switch (priv->enet_ver) {
1872 	case AE_VERSION_1:
1873 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1874 			netdev_info(netdev, "enet v1 do not support tso!\n");
1875 		break;
1876 	default:
1877 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1878 			priv->ops.fill_desc = fill_tso_desc;
1879 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1880 			/* The chip only support 7*4096 */
1881 			netif_set_gso_max_size(netdev, 7 * 4096);
1882 		} else {
1883 			priv->ops.fill_desc = fill_v2_desc;
1884 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1885 		}
1886 		break;
1887 	}
1888 	netdev->features = features;
1889 	return 0;
1890 }
1891 
1892 static netdev_features_t hns_nic_fix_features(
1893 		struct net_device *netdev, netdev_features_t features)
1894 {
1895 	struct hns_nic_priv *priv = netdev_priv(netdev);
1896 
1897 	switch (priv->enet_ver) {
1898 	case AE_VERSION_1:
1899 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1900 				NETIF_F_HW_VLAN_CTAG_FILTER);
1901 		break;
1902 	default:
1903 		break;
1904 	}
1905 	return features;
1906 }
1907 
1908 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1909 {
1910 	struct hns_nic_priv *priv = netdev_priv(netdev);
1911 	struct hnae_handle *h = priv->ae_handle;
1912 
1913 	if (h->dev->ops->add_uc_addr)
1914 		return h->dev->ops->add_uc_addr(h, addr);
1915 
1916 	return 0;
1917 }
1918 
1919 static int hns_nic_uc_unsync(struct net_device *netdev,
1920 			     const unsigned char *addr)
1921 {
1922 	struct hns_nic_priv *priv = netdev_priv(netdev);
1923 	struct hnae_handle *h = priv->ae_handle;
1924 
1925 	if (h->dev->ops->rm_uc_addr)
1926 		return h->dev->ops->rm_uc_addr(h, addr);
1927 
1928 	return 0;
1929 }
1930 
1931 /**
1932  * nic_set_multicast_list - set mutl mac address
1933  * @netdev: net device
1934  * @p: mac address
1935  *
1936  * return void
1937  */
1938 static void hns_set_multicast_list(struct net_device *ndev)
1939 {
1940 	struct hns_nic_priv *priv = netdev_priv(ndev);
1941 	struct hnae_handle *h = priv->ae_handle;
1942 	struct netdev_hw_addr *ha = NULL;
1943 
1944 	if (!h)	{
1945 		netdev_err(ndev, "hnae handle is null\n");
1946 		return;
1947 	}
1948 
1949 	if (h->dev->ops->clr_mc_addr)
1950 		if (h->dev->ops->clr_mc_addr(h))
1951 			netdev_err(ndev, "clear multicast address fail\n");
1952 
1953 	if (h->dev->ops->set_mc_addr) {
1954 		netdev_for_each_mc_addr(ha, ndev)
1955 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1956 				netdev_err(ndev, "set multicast fail\n");
1957 	}
1958 }
1959 
1960 static void hns_nic_set_rx_mode(struct net_device *ndev)
1961 {
1962 	struct hns_nic_priv *priv = netdev_priv(ndev);
1963 	struct hnae_handle *h = priv->ae_handle;
1964 
1965 	if (h->dev->ops->set_promisc_mode) {
1966 		if (ndev->flags & IFF_PROMISC)
1967 			h->dev->ops->set_promisc_mode(h, 1);
1968 		else
1969 			h->dev->ops->set_promisc_mode(h, 0);
1970 	}
1971 
1972 	hns_set_multicast_list(ndev);
1973 
1974 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1975 		netdev_err(ndev, "sync uc address fail\n");
1976 }
1977 
1978 static void hns_nic_get_stats64(struct net_device *ndev,
1979 				struct rtnl_link_stats64 *stats)
1980 {
1981 	int idx = 0;
1982 	u64 tx_bytes = 0;
1983 	u64 rx_bytes = 0;
1984 	u64 tx_pkts = 0;
1985 	u64 rx_pkts = 0;
1986 	struct hns_nic_priv *priv = netdev_priv(ndev);
1987 	struct hnae_handle *h = priv->ae_handle;
1988 
1989 	for (idx = 0; idx < h->q_num; idx++) {
1990 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1991 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1992 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1993 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1994 	}
1995 
1996 	stats->tx_bytes = tx_bytes;
1997 	stats->tx_packets = tx_pkts;
1998 	stats->rx_bytes = rx_bytes;
1999 	stats->rx_packets = rx_pkts;
2000 
2001 	stats->rx_errors = ndev->stats.rx_errors;
2002 	stats->multicast = ndev->stats.multicast;
2003 	stats->rx_length_errors = ndev->stats.rx_length_errors;
2004 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
2005 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
2006 
2007 	stats->tx_errors = ndev->stats.tx_errors;
2008 	stats->rx_dropped = ndev->stats.rx_dropped;
2009 	stats->tx_dropped = ndev->stats.tx_dropped;
2010 	stats->collisions = ndev->stats.collisions;
2011 	stats->rx_over_errors = ndev->stats.rx_over_errors;
2012 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
2013 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
2014 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
2015 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
2016 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
2017 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
2018 	stats->tx_window_errors = ndev->stats.tx_window_errors;
2019 	stats->rx_compressed = ndev->stats.rx_compressed;
2020 	stats->tx_compressed = ndev->stats.tx_compressed;
2021 }
2022 
2023 static u16
2024 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
2025 		     struct net_device *sb_dev,
2026 		     select_queue_fallback_t fallback)
2027 {
2028 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
2029 	struct hns_nic_priv *priv = netdev_priv(ndev);
2030 
2031 	/* fix hardware broadcast/multicast packets queue loopback */
2032 	if (!AE_IS_VER1(priv->enet_ver) &&
2033 	    is_multicast_ether_addr(eth_hdr->h_dest))
2034 		return 0;
2035 	else
2036 		return fallback(ndev, skb, NULL);
2037 }
2038 
2039 static const struct net_device_ops hns_nic_netdev_ops = {
2040 	.ndo_open = hns_nic_net_open,
2041 	.ndo_stop = hns_nic_net_stop,
2042 	.ndo_start_xmit = hns_nic_net_xmit,
2043 	.ndo_tx_timeout = hns_nic_net_timeout,
2044 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
2045 	.ndo_change_mtu = hns_nic_change_mtu,
2046 	.ndo_do_ioctl = hns_nic_do_ioctl,
2047 	.ndo_set_features = hns_nic_set_features,
2048 	.ndo_fix_features = hns_nic_fix_features,
2049 	.ndo_get_stats64 = hns_nic_get_stats64,
2050 #ifdef CONFIG_NET_POLL_CONTROLLER
2051 	.ndo_poll_controller = hns_nic_poll_controller,
2052 #endif
2053 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
2054 	.ndo_select_queue = hns_nic_select_queue,
2055 };
2056 
2057 static void hns_nic_update_link_status(struct net_device *netdev)
2058 {
2059 	struct hns_nic_priv *priv = netdev_priv(netdev);
2060 
2061 	struct hnae_handle *h = priv->ae_handle;
2062 
2063 	if (h->phy_dev) {
2064 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
2065 			return;
2066 
2067 		(void)genphy_read_status(h->phy_dev);
2068 	}
2069 	hns_nic_adjust_link(netdev);
2070 }
2071 
2072 /* for dumping key regs*/
2073 static void hns_nic_dump(struct hns_nic_priv *priv)
2074 {
2075 	struct hnae_handle *h = priv->ae_handle;
2076 	struct hnae_ae_ops *ops = h->dev->ops;
2077 	u32 *data, reg_num, i;
2078 
2079 	if (ops->get_regs_len && ops->get_regs) {
2080 		reg_num = ops->get_regs_len(priv->ae_handle);
2081 		reg_num = (reg_num + 3ul) & ~3ul;
2082 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
2083 		if (data) {
2084 			ops->get_regs(priv->ae_handle, data);
2085 			for (i = 0; i < reg_num; i += 4)
2086 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2087 					i, data[i], data[i + 1],
2088 					data[i + 2], data[i + 3]);
2089 			kfree(data);
2090 		}
2091 	}
2092 
2093 	for (i = 0; i < h->q_num; i++) {
2094 		pr_info("tx_queue%d_next_to_clean:%d\n",
2095 			i, h->qs[i]->tx_ring.next_to_clean);
2096 		pr_info("tx_queue%d_next_to_use:%d\n",
2097 			i, h->qs[i]->tx_ring.next_to_use);
2098 		pr_info("rx_queue%d_next_to_clean:%d\n",
2099 			i, h->qs[i]->rx_ring.next_to_clean);
2100 		pr_info("rx_queue%d_next_to_use:%d\n",
2101 			i, h->qs[i]->rx_ring.next_to_use);
2102 	}
2103 }
2104 
2105 /* for resetting subtask */
2106 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2107 {
2108 	enum hnae_port_type type = priv->ae_handle->port_type;
2109 
2110 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2111 		return;
2112 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2113 
2114 	/* If we're already down, removing or resetting, just bail */
2115 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2116 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
2117 	    test_bit(NIC_STATE_RESETTING, &priv->state))
2118 		return;
2119 
2120 	hns_nic_dump(priv);
2121 	netdev_info(priv->netdev, "try to reset %s port!\n",
2122 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2123 
2124 	rtnl_lock();
2125 	/* put off any impending NetWatchDogTimeout */
2126 	netif_trans_update(priv->netdev);
2127 	hns_nic_net_reinit(priv->netdev);
2128 
2129 	rtnl_unlock();
2130 }
2131 
2132 /* for doing service complete*/
2133 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2134 {
2135 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2136 	/* make sure to commit the things */
2137 	smp_mb__before_atomic();
2138 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2139 }
2140 
2141 static void hns_nic_service_task(struct work_struct *work)
2142 {
2143 	struct hns_nic_priv *priv
2144 		= container_of(work, struct hns_nic_priv, service_task);
2145 	struct hnae_handle *h = priv->ae_handle;
2146 
2147 	hns_nic_update_link_status(priv->netdev);
2148 	h->dev->ops->update_led_status(h);
2149 	hns_nic_update_stats(priv->netdev);
2150 
2151 	hns_nic_reset_subtask(priv);
2152 	hns_nic_service_event_complete(priv);
2153 }
2154 
2155 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2156 {
2157 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2158 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2159 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2160 		(void)schedule_work(&priv->service_task);
2161 }
2162 
2163 static void hns_nic_service_timer(struct timer_list *t)
2164 {
2165 	struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2166 
2167 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2168 
2169 	hns_nic_task_schedule(priv);
2170 }
2171 
2172 /**
2173  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2174  * @priv: driver private struct
2175  **/
2176 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2177 {
2178 	/* Do the reset outside of interrupt context */
2179 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2180 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2181 		netdev_warn(priv->netdev,
2182 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2183 			    priv->tx_timeout_count, priv->state);
2184 		priv->tx_timeout_count++;
2185 		hns_nic_task_schedule(priv);
2186 	}
2187 }
2188 
2189 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2190 {
2191 	struct hnae_handle *h = priv->ae_handle;
2192 	struct hns_nic_ring_data *rd;
2193 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2194 	int i;
2195 
2196 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2197 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2198 		return -EINVAL;
2199 	}
2200 
2201 	priv->ring_data = kzalloc(array3_size(h->q_num,
2202 					      sizeof(*priv->ring_data), 2),
2203 				  GFP_KERNEL);
2204 	if (!priv->ring_data)
2205 		return -ENOMEM;
2206 
2207 	for (i = 0; i < h->q_num; i++) {
2208 		rd = &priv->ring_data[i];
2209 		rd->queue_index = i;
2210 		rd->ring = &h->qs[i]->tx_ring;
2211 		rd->poll_one = hns_nic_tx_poll_one;
2212 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2213 			hns_nic_tx_fini_pro_v2;
2214 
2215 		netif_napi_add(priv->netdev, &rd->napi,
2216 			       hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
2217 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2218 	}
2219 	for (i = h->q_num; i < h->q_num * 2; i++) {
2220 		rd = &priv->ring_data[i];
2221 		rd->queue_index = i - h->q_num;
2222 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2223 		rd->poll_one = hns_nic_rx_poll_one;
2224 		rd->ex_process = hns_nic_rx_up_pro;
2225 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2226 			hns_nic_rx_fini_pro_v2;
2227 
2228 		netif_napi_add(priv->netdev, &rd->napi,
2229 			       hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
2230 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2231 	}
2232 
2233 	return 0;
2234 }
2235 
2236 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2237 {
2238 	struct hnae_handle *h = priv->ae_handle;
2239 	int i;
2240 
2241 	for (i = 0; i < h->q_num * 2; i++) {
2242 		netif_napi_del(&priv->ring_data[i].napi);
2243 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2244 			(void)irq_set_affinity_hint(
2245 				priv->ring_data[i].ring->irq,
2246 				NULL);
2247 			free_irq(priv->ring_data[i].ring->irq,
2248 				 &priv->ring_data[i]);
2249 		}
2250 
2251 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2252 	}
2253 	kfree(priv->ring_data);
2254 }
2255 
2256 static void hns_nic_set_priv_ops(struct net_device *netdev)
2257 {
2258 	struct hns_nic_priv *priv = netdev_priv(netdev);
2259 	struct hnae_handle *h = priv->ae_handle;
2260 
2261 	if (AE_IS_VER1(priv->enet_ver)) {
2262 		priv->ops.fill_desc = fill_desc;
2263 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2264 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2265 	} else {
2266 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2267 		if ((netdev->features & NETIF_F_TSO) ||
2268 		    (netdev->features & NETIF_F_TSO6)) {
2269 			priv->ops.fill_desc = fill_tso_desc;
2270 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2271 			/* This chip only support 7*4096 */
2272 			netif_set_gso_max_size(netdev, 7 * 4096);
2273 		} else {
2274 			priv->ops.fill_desc = fill_v2_desc;
2275 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2276 		}
2277 		/* enable tso when init
2278 		 * control tso on/off through TSE bit in bd
2279 		 */
2280 		h->dev->ops->set_tso_stats(h, 1);
2281 	}
2282 }
2283 
2284 static int hns_nic_try_get_ae(struct net_device *ndev)
2285 {
2286 	struct hns_nic_priv *priv = netdev_priv(ndev);
2287 	struct hnae_handle *h;
2288 	int ret;
2289 
2290 	h = hnae_get_handle(&priv->netdev->dev,
2291 			    priv->fwnode, priv->port_id, NULL);
2292 	if (IS_ERR_OR_NULL(h)) {
2293 		ret = -ENODEV;
2294 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2295 		goto out;
2296 	}
2297 	priv->ae_handle = h;
2298 
2299 	ret = hns_nic_init_phy(ndev, h);
2300 	if (ret) {
2301 		dev_err(priv->dev, "probe phy device fail!\n");
2302 		goto out_init_phy;
2303 	}
2304 
2305 	ret = hns_nic_init_ring_data(priv);
2306 	if (ret) {
2307 		ret = -ENOMEM;
2308 		goto out_init_ring_data;
2309 	}
2310 
2311 	hns_nic_set_priv_ops(ndev);
2312 
2313 	ret = register_netdev(ndev);
2314 	if (ret) {
2315 		dev_err(priv->dev, "probe register netdev fail!\n");
2316 		goto out_reg_ndev_fail;
2317 	}
2318 	return 0;
2319 
2320 out_reg_ndev_fail:
2321 	hns_nic_uninit_ring_data(priv);
2322 	priv->ring_data = NULL;
2323 out_init_phy:
2324 out_init_ring_data:
2325 	hnae_put_handle(priv->ae_handle);
2326 	priv->ae_handle = NULL;
2327 out:
2328 	return ret;
2329 }
2330 
2331 static int hns_nic_notifier_action(struct notifier_block *nb,
2332 				   unsigned long action, void *data)
2333 {
2334 	struct hns_nic_priv *priv =
2335 		container_of(nb, struct hns_nic_priv, notifier_block);
2336 
2337 	assert(action == HNAE_AE_REGISTER);
2338 
2339 	if (!hns_nic_try_get_ae(priv->netdev)) {
2340 		hnae_unregister_notifier(&priv->notifier_block);
2341 		priv->notifier_block.notifier_call = NULL;
2342 	}
2343 	return 0;
2344 }
2345 
2346 static int hns_nic_dev_probe(struct platform_device *pdev)
2347 {
2348 	struct device *dev = &pdev->dev;
2349 	struct net_device *ndev;
2350 	struct hns_nic_priv *priv;
2351 	u32 port_id;
2352 	int ret;
2353 
2354 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2355 	if (!ndev)
2356 		return -ENOMEM;
2357 
2358 	platform_set_drvdata(pdev, ndev);
2359 
2360 	priv = netdev_priv(ndev);
2361 	priv->dev = dev;
2362 	priv->netdev = ndev;
2363 
2364 	if (dev_of_node(dev)) {
2365 		struct device_node *ae_node;
2366 
2367 		if (of_device_is_compatible(dev->of_node,
2368 					    "hisilicon,hns-nic-v1"))
2369 			priv->enet_ver = AE_VERSION_1;
2370 		else
2371 			priv->enet_ver = AE_VERSION_2;
2372 
2373 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2374 		if (!ae_node) {
2375 			ret = -ENODEV;
2376 			dev_err(dev, "not find ae-handle\n");
2377 			goto out_read_prop_fail;
2378 		}
2379 		priv->fwnode = &ae_node->fwnode;
2380 	} else if (is_acpi_node(dev->fwnode)) {
2381 		struct fwnode_reference_args args;
2382 
2383 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2384 			priv->enet_ver = AE_VERSION_1;
2385 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2386 			priv->enet_ver = AE_VERSION_2;
2387 		else
2388 			return -ENXIO;
2389 
2390 		/* try to find port-idx-in-ae first */
2391 		ret = acpi_node_get_property_reference(dev->fwnode,
2392 						       "ae-handle", 0, &args);
2393 		if (ret) {
2394 			dev_err(dev, "not find ae-handle\n");
2395 			goto out_read_prop_fail;
2396 		}
2397 		if (!is_acpi_device_node(args.fwnode)) {
2398 			ret = -EINVAL;
2399 			goto out_read_prop_fail;
2400 		}
2401 		priv->fwnode = args.fwnode;
2402 	} else {
2403 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2404 		return -ENXIO;
2405 	}
2406 
2407 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2408 	if (ret) {
2409 		/* only for old code compatible */
2410 		ret = device_property_read_u32(dev, "port-id", &port_id);
2411 		if (ret)
2412 			goto out_read_prop_fail;
2413 		/* for old dts, we need to caculate the port offset */
2414 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2415 			: port_id - HNS_SRV_OFFSET;
2416 	}
2417 	priv->port_id = port_id;
2418 
2419 	hns_init_mac_addr(ndev);
2420 
2421 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2422 	ndev->priv_flags |= IFF_UNICAST_FLT;
2423 	ndev->netdev_ops = &hns_nic_netdev_ops;
2424 	hns_ethtool_set_ops(ndev);
2425 
2426 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2427 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2428 		NETIF_F_GRO;
2429 	ndev->vlan_features |=
2430 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2431 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2432 
2433 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2434 	ndev->min_mtu = MAC_MIN_MTU;
2435 	switch (priv->enet_ver) {
2436 	case AE_VERSION_2:
2437 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
2438 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2439 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2440 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2441 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2442 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2443 		break;
2444 	default:
2445 		ndev->max_mtu = MAC_MAX_MTU -
2446 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2447 		break;
2448 	}
2449 
2450 	SET_NETDEV_DEV(ndev, dev);
2451 
2452 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2453 		dev_dbg(dev, "set mask to 64bit\n");
2454 	else
2455 		dev_err(dev, "set mask to 64bit fail!\n");
2456 
2457 	/* carrier off reporting is important to ethtool even BEFORE open */
2458 	netif_carrier_off(ndev);
2459 
2460 	timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2461 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2462 
2463 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2464 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2465 	set_bit(NIC_STATE_DOWN, &priv->state);
2466 
2467 	if (hns_nic_try_get_ae(priv->netdev)) {
2468 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2469 		ret = hnae_register_notifier(&priv->notifier_block);
2470 		if (ret) {
2471 			dev_err(dev, "register notifier fail!\n");
2472 			goto out_notify_fail;
2473 		}
2474 		dev_dbg(dev, "has not handle, register notifier!\n");
2475 	}
2476 
2477 	return 0;
2478 
2479 out_notify_fail:
2480 	(void)cancel_work_sync(&priv->service_task);
2481 out_read_prop_fail:
2482 	free_netdev(ndev);
2483 	return ret;
2484 }
2485 
2486 static int hns_nic_dev_remove(struct platform_device *pdev)
2487 {
2488 	struct net_device *ndev = platform_get_drvdata(pdev);
2489 	struct hns_nic_priv *priv = netdev_priv(ndev);
2490 
2491 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2492 		unregister_netdev(ndev);
2493 
2494 	if (priv->ring_data)
2495 		hns_nic_uninit_ring_data(priv);
2496 	priv->ring_data = NULL;
2497 
2498 	if (ndev->phydev)
2499 		phy_disconnect(ndev->phydev);
2500 
2501 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2502 		hnae_put_handle(priv->ae_handle);
2503 	priv->ae_handle = NULL;
2504 	if (priv->notifier_block.notifier_call)
2505 		hnae_unregister_notifier(&priv->notifier_block);
2506 	priv->notifier_block.notifier_call = NULL;
2507 
2508 	set_bit(NIC_STATE_REMOVING, &priv->state);
2509 	(void)cancel_work_sync(&priv->service_task);
2510 
2511 	free_netdev(ndev);
2512 	return 0;
2513 }
2514 
2515 static const struct of_device_id hns_enet_of_match[] = {
2516 	{.compatible = "hisilicon,hns-nic-v1",},
2517 	{.compatible = "hisilicon,hns-nic-v2",},
2518 	{},
2519 };
2520 
2521 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2522 
2523 static struct platform_driver hns_nic_dev_driver = {
2524 	.driver = {
2525 		.name = "hns-nic",
2526 		.of_match_table = hns_enet_of_match,
2527 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2528 	},
2529 	.probe = hns_nic_dev_probe,
2530 	.remove = hns_nic_dev_remove,
2531 };
2532 
2533 module_platform_driver(hns_nic_dev_driver);
2534 
2535 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2536 MODULE_AUTHOR("Hisilicon, Inc.");
2537 MODULE_LICENSE("GPL");
2538 MODULE_ALIAS("platform:hns-nic");
2539