1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2014-2015 Hisilicon Limited. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/cpumask.h> 8 #include <linux/etherdevice.h> 9 #include <linux/if_vlan.h> 10 #include <linux/interrupt.h> 11 #include <linux/io.h> 12 #include <linux/ip.h> 13 #include <linux/ipv6.h> 14 #include <linux/module.h> 15 #include <linux/phy.h> 16 #include <linux/platform_device.h> 17 #include <linux/skbuff.h> 18 19 #include "hnae.h" 20 #include "hns_enet.h" 21 #include "hns_dsaf_mac.h" 22 23 #define NIC_MAX_Q_PER_VF 16 24 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 25 26 #define SERVICE_TIMER_HZ (1 * HZ) 27 28 #define RCB_IRQ_NOT_INITED 0 29 #define RCB_IRQ_INITED 1 30 #define HNS_BUFFER_SIZE_2048 2048 31 32 #define BD_MAX_SEND_SIZE 8191 33 #define SKB_TMP_LEN(SKB) \ 34 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) 35 36 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size, 37 int send_sz, dma_addr_t dma, int frag_end, 38 int buf_num, enum hns_desc_type type, int mtu) 39 { 40 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 41 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 42 struct iphdr *iphdr; 43 struct ipv6hdr *ipv6hdr; 44 struct sk_buff *skb; 45 __be16 protocol; 46 u8 bn_pid = 0; 47 u8 rrcfv = 0; 48 u8 ip_offset = 0; 49 u8 tvsvsn = 0; 50 u16 mss = 0; 51 u8 l4_len = 0; 52 u16 paylen = 0; 53 54 desc_cb->priv = priv; 55 desc_cb->length = size; 56 desc_cb->dma = dma; 57 desc_cb->type = type; 58 59 desc->addr = cpu_to_le64(dma); 60 desc->tx.send_size = cpu_to_le16((u16)send_sz); 61 62 /* config bd buffer end */ 63 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 64 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 65 66 /* fill port_id in the tx bd for sending management pkts */ 67 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 68 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 69 70 if (type == DESC_TYPE_SKB) { 71 skb = (struct sk_buff *)priv; 72 73 if (skb->ip_summed == CHECKSUM_PARTIAL) { 74 skb_reset_mac_len(skb); 75 protocol = skb->protocol; 76 ip_offset = ETH_HLEN; 77 78 if (protocol == htons(ETH_P_8021Q)) { 79 ip_offset += VLAN_HLEN; 80 protocol = vlan_get_protocol(skb); 81 skb->protocol = protocol; 82 } 83 84 if (skb->protocol == htons(ETH_P_IP)) { 85 iphdr = ip_hdr(skb); 86 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 87 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 88 89 /* check for tcp/udp header */ 90 if (iphdr->protocol == IPPROTO_TCP && 91 skb_is_gso(skb)) { 92 hnae_set_bit(tvsvsn, 93 HNSV2_TXD_TSE_B, 1); 94 l4_len = tcp_hdrlen(skb); 95 mss = skb_shinfo(skb)->gso_size; 96 paylen = skb->len - SKB_TMP_LEN(skb); 97 } 98 } else if (skb->protocol == htons(ETH_P_IPV6)) { 99 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 100 ipv6hdr = ipv6_hdr(skb); 101 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 102 103 /* check for tcp/udp header */ 104 if (ipv6hdr->nexthdr == IPPROTO_TCP && 105 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 106 hnae_set_bit(tvsvsn, 107 HNSV2_TXD_TSE_B, 1); 108 l4_len = tcp_hdrlen(skb); 109 mss = skb_shinfo(skb)->gso_size; 110 paylen = skb->len - SKB_TMP_LEN(skb); 111 } 112 } 113 desc->tx.ip_offset = ip_offset; 114 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 115 desc->tx.mss = cpu_to_le16(mss); 116 desc->tx.l4_len = l4_len; 117 desc->tx.paylen = cpu_to_le16(paylen); 118 } 119 } 120 121 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 122 123 desc->tx.bn_pid = bn_pid; 124 desc->tx.ra_ri_cs_fe_vld = rrcfv; 125 126 ring_ptr_move_fw(ring, next_to_use); 127 } 128 129 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 130 int size, dma_addr_t dma, int frag_end, 131 int buf_num, enum hns_desc_type type, int mtu) 132 { 133 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end, 134 buf_num, type, mtu); 135 } 136 137 static const struct acpi_device_id hns_enet_acpi_match[] = { 138 { "HISI00C1", 0 }, 139 { "HISI00C2", 0 }, 140 { }, 141 }; 142 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 143 144 static void fill_desc(struct hnae_ring *ring, void *priv, 145 int size, dma_addr_t dma, int frag_end, 146 int buf_num, enum hns_desc_type type, int mtu) 147 { 148 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 149 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 150 struct sk_buff *skb; 151 __be16 protocol; 152 u32 ip_offset; 153 u32 asid_bufnum_pid = 0; 154 u32 flag_ipoffset = 0; 155 156 desc_cb->priv = priv; 157 desc_cb->length = size; 158 desc_cb->dma = dma; 159 desc_cb->type = type; 160 161 desc->addr = cpu_to_le64(dma); 162 desc->tx.send_size = cpu_to_le16((u16)size); 163 164 /*config bd buffer end */ 165 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 166 167 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 168 169 if (type == DESC_TYPE_SKB) { 170 skb = (struct sk_buff *)priv; 171 172 if (skb->ip_summed == CHECKSUM_PARTIAL) { 173 protocol = skb->protocol; 174 ip_offset = ETH_HLEN; 175 176 /*if it is a SW VLAN check the next protocol*/ 177 if (protocol == htons(ETH_P_8021Q)) { 178 ip_offset += VLAN_HLEN; 179 protocol = vlan_get_protocol(skb); 180 skb->protocol = protocol; 181 } 182 183 if (skb->protocol == htons(ETH_P_IP)) { 184 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 185 /* check for tcp/udp header */ 186 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 187 188 } else if (skb->protocol == htons(ETH_P_IPV6)) { 189 /* ipv6 has not l3 cs, check for L4 header */ 190 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 191 } 192 193 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 194 } 195 } 196 197 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 198 199 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 200 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 201 202 ring_ptr_move_fw(ring, next_to_use); 203 } 204 205 static void unfill_desc(struct hnae_ring *ring) 206 { 207 ring_ptr_move_bw(ring, next_to_use); 208 } 209 210 static int hns_nic_maybe_stop_tx( 211 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 212 { 213 struct sk_buff *skb = *out_skb; 214 struct sk_buff *new_skb = NULL; 215 int buf_num; 216 217 /* no. of segments (plus a header) */ 218 buf_num = skb_shinfo(skb)->nr_frags + 1; 219 220 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 221 if (ring_space(ring) < 1) 222 return -EBUSY; 223 224 new_skb = skb_copy(skb, GFP_ATOMIC); 225 if (!new_skb) 226 return -ENOMEM; 227 228 dev_kfree_skb_any(skb); 229 *out_skb = new_skb; 230 buf_num = 1; 231 } else if (buf_num > ring_space(ring)) { 232 return -EBUSY; 233 } 234 235 *bnum = buf_num; 236 return 0; 237 } 238 239 static int hns_nic_maybe_stop_tso( 240 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 241 { 242 int i; 243 int size; 244 int buf_num; 245 int frag_num; 246 struct sk_buff *skb = *out_skb; 247 struct sk_buff *new_skb = NULL; 248 skb_frag_t *frag; 249 250 size = skb_headlen(skb); 251 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 252 253 frag_num = skb_shinfo(skb)->nr_frags; 254 for (i = 0; i < frag_num; i++) { 255 frag = &skb_shinfo(skb)->frags[i]; 256 size = skb_frag_size(frag); 257 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 258 } 259 260 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 261 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 262 if (ring_space(ring) < buf_num) 263 return -EBUSY; 264 /* manual split the send packet */ 265 new_skb = skb_copy(skb, GFP_ATOMIC); 266 if (!new_skb) 267 return -ENOMEM; 268 dev_kfree_skb_any(skb); 269 *out_skb = new_skb; 270 271 } else if (ring_space(ring) < buf_num) { 272 return -EBUSY; 273 } 274 275 *bnum = buf_num; 276 return 0; 277 } 278 279 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 280 int size, dma_addr_t dma, int frag_end, 281 int buf_num, enum hns_desc_type type, int mtu) 282 { 283 int frag_buf_num; 284 int sizeoflast; 285 int k; 286 287 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 288 sizeoflast = size % BD_MAX_SEND_SIZE; 289 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 290 291 /* when the frag size is bigger than hardware, split this frag */ 292 for (k = 0; k < frag_buf_num; k++) 293 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0, 294 (k == frag_buf_num - 1) ? 295 sizeoflast : BD_MAX_SEND_SIZE, 296 dma + BD_MAX_SEND_SIZE * k, 297 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 298 buf_num, 299 (type == DESC_TYPE_SKB && !k) ? 300 DESC_TYPE_SKB : DESC_TYPE_PAGE, 301 mtu); 302 } 303 304 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev, 305 struct sk_buff *skb, 306 struct hns_nic_ring_data *ring_data) 307 { 308 struct hns_nic_priv *priv = netdev_priv(ndev); 309 struct hnae_ring *ring = ring_data->ring; 310 struct device *dev = ring_to_dev(ring); 311 struct netdev_queue *dev_queue; 312 skb_frag_t *frag; 313 int buf_num; 314 int seg_num; 315 dma_addr_t dma; 316 int size, next_to_use; 317 int i; 318 319 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 320 case -EBUSY: 321 ring->stats.tx_busy++; 322 goto out_net_tx_busy; 323 case -ENOMEM: 324 ring->stats.sw_err_cnt++; 325 netdev_err(ndev, "no memory to xmit!\n"); 326 goto out_err_tx_ok; 327 default: 328 break; 329 } 330 331 /* no. of segments (plus a header) */ 332 seg_num = skb_shinfo(skb)->nr_frags + 1; 333 next_to_use = ring->next_to_use; 334 335 /* fill the first part */ 336 size = skb_headlen(skb); 337 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 338 if (dma_mapping_error(dev, dma)) { 339 netdev_err(ndev, "TX head DMA map failed\n"); 340 ring->stats.sw_err_cnt++; 341 goto out_err_tx_ok; 342 } 343 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 344 buf_num, DESC_TYPE_SKB, ndev->mtu); 345 346 /* fill the fragments */ 347 for (i = 1; i < seg_num; i++) { 348 frag = &skb_shinfo(skb)->frags[i - 1]; 349 size = skb_frag_size(frag); 350 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 351 if (dma_mapping_error(dev, dma)) { 352 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 353 ring->stats.sw_err_cnt++; 354 goto out_map_frag_fail; 355 } 356 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 357 seg_num - 1 == i ? 1 : 0, buf_num, 358 DESC_TYPE_PAGE, ndev->mtu); 359 } 360 361 /*complete translate all packets*/ 362 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 363 netdev_tx_sent_queue(dev_queue, skb->len); 364 365 netif_trans_update(ndev); 366 ndev->stats.tx_bytes += skb->len; 367 ndev->stats.tx_packets++; 368 369 wmb(); /* commit all data before submit */ 370 assert(skb->queue_mapping < priv->ae_handle->q_num); 371 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 372 373 return NETDEV_TX_OK; 374 375 out_map_frag_fail: 376 377 while (ring->next_to_use != next_to_use) { 378 unfill_desc(ring); 379 if (ring->next_to_use != next_to_use) 380 dma_unmap_page(dev, 381 ring->desc_cb[ring->next_to_use].dma, 382 ring->desc_cb[ring->next_to_use].length, 383 DMA_TO_DEVICE); 384 else 385 dma_unmap_single(dev, 386 ring->desc_cb[next_to_use].dma, 387 ring->desc_cb[next_to_use].length, 388 DMA_TO_DEVICE); 389 } 390 391 out_err_tx_ok: 392 393 dev_kfree_skb_any(skb); 394 return NETDEV_TX_OK; 395 396 out_net_tx_busy: 397 398 netif_stop_subqueue(ndev, skb->queue_mapping); 399 400 /* Herbert's original patch had: 401 * smp_mb__after_netif_stop_queue(); 402 * but since that doesn't exist yet, just open code it. 403 */ 404 smp_mb(); 405 return NETDEV_TX_BUSY; 406 } 407 408 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 409 struct hnae_ring *ring, int pull_len, 410 struct hnae_desc_cb *desc_cb) 411 { 412 struct hnae_desc *desc; 413 u32 truesize; 414 int size; 415 int last_offset; 416 bool twobufs; 417 418 twobufs = ((PAGE_SIZE < 8192) && 419 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 420 421 desc = &ring->desc[ring->next_to_clean]; 422 size = le16_to_cpu(desc->rx.size); 423 424 if (twobufs) { 425 truesize = hnae_buf_size(ring); 426 } else { 427 truesize = ALIGN(size, L1_CACHE_BYTES); 428 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 429 } 430 431 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 432 size - pull_len, truesize); 433 434 /* avoid re-using remote pages,flag default unreuse */ 435 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 436 return; 437 438 if (twobufs) { 439 /* if we are only owner of page we can reuse it */ 440 if (likely(page_count(desc_cb->priv) == 1)) { 441 /* flip page offset to other buffer */ 442 desc_cb->page_offset ^= truesize; 443 444 desc_cb->reuse_flag = 1; 445 /* bump ref count on page before it is given*/ 446 get_page(desc_cb->priv); 447 } 448 return; 449 } 450 451 /* move offset up to the next cache line */ 452 desc_cb->page_offset += truesize; 453 454 if (desc_cb->page_offset <= last_offset) { 455 desc_cb->reuse_flag = 1; 456 /* bump ref count on page before it is given*/ 457 get_page(desc_cb->priv); 458 } 459 } 460 461 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 462 { 463 *out_bnum = hnae_get_field(bnum_flag, 464 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 465 } 466 467 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 468 { 469 *out_bnum = hnae_get_field(bnum_flag, 470 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 471 } 472 473 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 474 struct sk_buff *skb, u32 flag) 475 { 476 struct net_device *netdev = ring_data->napi.dev; 477 u32 l3id; 478 u32 l4id; 479 480 /* check if RX checksum offload is enabled */ 481 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 482 return; 483 484 /* In hardware, we only support checksum for the following protocols: 485 * 1) IPv4, 486 * 2) TCP(over IPv4 or IPv6), 487 * 3) UDP(over IPv4 or IPv6), 488 * 4) SCTP(over IPv4 or IPv6) 489 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 490 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 491 * 492 * Hardware limitation: 493 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 494 * Error" bit (which usually can be used to indicate whether checksum 495 * was calculated by the hardware and if there was any error encountered 496 * during checksum calculation). 497 * 498 * Software workaround: 499 * We do get info within the RX descriptor about the kind of L3/L4 500 * protocol coming in the packet and the error status. These errors 501 * might not just be checksum errors but could be related to version, 502 * length of IPv4, UDP, TCP etc. 503 * Because there is no-way of knowing if it is a L3/L4 error due to bad 504 * checksum or any other L3/L4 error, we will not (cannot) convey 505 * checksum status for such cases to upper stack and will not maintain 506 * the RX L3/L4 checksum counters as well. 507 */ 508 509 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 510 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 511 512 /* check L3 protocol for which checksum is supported */ 513 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 514 return; 515 516 /* check for any(not just checksum)flagged L3 protocol errors */ 517 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 518 return; 519 520 /* we do not support checksum of fragmented packets */ 521 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 522 return; 523 524 /* check L4 protocol for which checksum is supported */ 525 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 526 (l4id != HNS_RX_FLAG_L4ID_UDP) && 527 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 528 return; 529 530 /* check for any(not just checksum)flagged L4 protocol errors */ 531 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 532 return; 533 534 /* now, this has to be a packet with valid RX checksum */ 535 skb->ip_summed = CHECKSUM_UNNECESSARY; 536 } 537 538 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 539 struct sk_buff **out_skb, int *out_bnum) 540 { 541 struct hnae_ring *ring = ring_data->ring; 542 struct net_device *ndev = ring_data->napi.dev; 543 struct hns_nic_priv *priv = netdev_priv(ndev); 544 struct sk_buff *skb; 545 struct hnae_desc *desc; 546 struct hnae_desc_cb *desc_cb; 547 unsigned char *va; 548 int bnum, length, i; 549 int pull_len; 550 u32 bnum_flag; 551 552 desc = &ring->desc[ring->next_to_clean]; 553 desc_cb = &ring->desc_cb[ring->next_to_clean]; 554 555 prefetch(desc); 556 557 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 558 559 /* prefetch first cache line of first page */ 560 prefetch(va); 561 #if L1_CACHE_BYTES < 128 562 prefetch(va + L1_CACHE_BYTES); 563 #endif 564 565 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 566 HNS_RX_HEAD_SIZE); 567 if (unlikely(!skb)) { 568 netdev_err(ndev, "alloc rx skb fail\n"); 569 ring->stats.sw_err_cnt++; 570 return -ENOMEM; 571 } 572 573 prefetchw(skb->data); 574 length = le16_to_cpu(desc->rx.pkt_len); 575 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 576 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 577 *out_bnum = bnum; 578 579 if (length <= HNS_RX_HEAD_SIZE) { 580 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 581 582 /* we can reuse buffer as-is, just make sure it is local */ 583 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 584 desc_cb->reuse_flag = 1; 585 else /* this page cannot be reused so discard it */ 586 put_page(desc_cb->priv); 587 588 ring_ptr_move_fw(ring, next_to_clean); 589 590 if (unlikely(bnum != 1)) { /* check err*/ 591 *out_bnum = 1; 592 goto out_bnum_err; 593 } 594 } else { 595 ring->stats.seg_pkt_cnt++; 596 597 pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE); 598 memcpy(__skb_put(skb, pull_len), va, 599 ALIGN(pull_len, sizeof(long))); 600 601 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 602 ring_ptr_move_fw(ring, next_to_clean); 603 604 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 605 *out_bnum = 1; 606 goto out_bnum_err; 607 } 608 for (i = 1; i < bnum; i++) { 609 desc = &ring->desc[ring->next_to_clean]; 610 desc_cb = &ring->desc_cb[ring->next_to_clean]; 611 612 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 613 ring_ptr_move_fw(ring, next_to_clean); 614 } 615 } 616 617 /* check except process, free skb and jump the desc */ 618 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 619 out_bnum_err: 620 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 621 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 622 bnum, ring->max_desc_num_per_pkt, 623 length, (int)MAX_SKB_FRAGS, 624 ((u64 *)desc)[0], ((u64 *)desc)[1]); 625 ring->stats.err_bd_num++; 626 dev_kfree_skb_any(skb); 627 return -EDOM; 628 } 629 630 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 631 632 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 633 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 634 ((u64 *)desc)[0], ((u64 *)desc)[1]); 635 ring->stats.non_vld_descs++; 636 dev_kfree_skb_any(skb); 637 return -EINVAL; 638 } 639 640 if (unlikely((!desc->rx.pkt_len) || 641 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 642 ring->stats.err_pkt_len++; 643 dev_kfree_skb_any(skb); 644 return -EFAULT; 645 } 646 647 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 648 ring->stats.l2_err++; 649 dev_kfree_skb_any(skb); 650 return -EFAULT; 651 } 652 653 ring->stats.rx_pkts++; 654 ring->stats.rx_bytes += skb->len; 655 656 /* indicate to upper stack if our hardware has already calculated 657 * the RX checksum 658 */ 659 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 660 661 return 0; 662 } 663 664 static void 665 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 666 { 667 int i, ret; 668 struct hnae_desc_cb res_cbs; 669 struct hnae_desc_cb *desc_cb; 670 struct hnae_ring *ring = ring_data->ring; 671 struct net_device *ndev = ring_data->napi.dev; 672 673 for (i = 0; i < cleand_count; i++) { 674 desc_cb = &ring->desc_cb[ring->next_to_use]; 675 if (desc_cb->reuse_flag) { 676 ring->stats.reuse_pg_cnt++; 677 hnae_reuse_buffer(ring, ring->next_to_use); 678 } else { 679 ret = hnae_reserve_buffer_map(ring, &res_cbs); 680 if (ret) { 681 ring->stats.sw_err_cnt++; 682 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 683 break; 684 } 685 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 686 } 687 688 ring_ptr_move_fw(ring, next_to_use); 689 } 690 691 wmb(); /* make all data has been write before submit */ 692 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 693 } 694 695 /* return error number for error or number of desc left to take 696 */ 697 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 698 struct sk_buff *skb) 699 { 700 struct net_device *ndev = ring_data->napi.dev; 701 702 skb->protocol = eth_type_trans(skb, ndev); 703 (void)napi_gro_receive(&ring_data->napi, skb); 704 } 705 706 static int hns_desc_unused(struct hnae_ring *ring) 707 { 708 int ntc = ring->next_to_clean; 709 int ntu = ring->next_to_use; 710 711 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 712 } 713 714 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */ 715 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */ 716 717 #define HNS_COAL_BDNUM 3 718 719 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring) 720 { 721 bool coal_enable = ring->q->handle->coal_adapt_en; 722 723 if (coal_enable && 724 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE) 725 return HNS_COAL_BDNUM; 726 else 727 return 0; 728 } 729 730 static void hns_update_rx_rate(struct hnae_ring *ring) 731 { 732 bool coal_enable = ring->q->handle->coal_adapt_en; 733 u32 time_passed_ms; 734 u64 total_bytes; 735 736 if (!coal_enable || 737 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4))) 738 return; 739 740 /* ring->stats.rx_bytes overflowed */ 741 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) { 742 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 743 ring->coal_last_jiffies = jiffies; 744 return; 745 } 746 747 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes; 748 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies); 749 do_div(total_bytes, time_passed_ms); 750 ring->coal_rx_rate = total_bytes >> 10; 751 752 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 753 ring->coal_last_jiffies = jiffies; 754 } 755 756 /** 757 * smooth_alg - smoothing algrithm for adjusting coalesce parameter 758 **/ 759 static u32 smooth_alg(u32 new_param, u32 old_param) 760 { 761 u32 gap = (new_param > old_param) ? new_param - old_param 762 : old_param - new_param; 763 764 if (gap > 8) 765 gap >>= 3; 766 767 if (new_param > old_param) 768 return old_param + gap; 769 else 770 return old_param - gap; 771 } 772 773 /** 774 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate 775 * @ring_data: pointer to hns_nic_ring_data 776 **/ 777 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data) 778 { 779 struct hnae_ring *ring = ring_data->ring; 780 struct hnae_handle *handle = ring->q->handle; 781 u32 new_coal_param, old_coal_param = ring->coal_param; 782 783 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE) 784 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM; 785 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE) 786 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM; 787 else 788 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM; 789 790 if (new_coal_param == old_coal_param && 791 new_coal_param == handle->coal_param) 792 return; 793 794 new_coal_param = smooth_alg(new_coal_param, old_coal_param); 795 ring->coal_param = new_coal_param; 796 797 /** 798 * Because all ring in one port has one coalesce param, when one ring 799 * calculate its own coalesce param, it cannot write to hardware at 800 * once. There are three conditions as follows: 801 * 1. current ring's coalesce param is larger than the hardware. 802 * 2. or ring which adapt last time can change again. 803 * 3. timeout. 804 */ 805 if (new_coal_param == handle->coal_param) { 806 handle->coal_last_jiffies = jiffies; 807 handle->coal_ring_idx = ring_data->queue_index; 808 } else if (new_coal_param > handle->coal_param || 809 handle->coal_ring_idx == ring_data->queue_index || 810 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) { 811 handle->dev->ops->set_coalesce_usecs(handle, 812 new_coal_param); 813 handle->dev->ops->set_coalesce_frames(handle, 814 1, new_coal_param); 815 handle->coal_param = new_coal_param; 816 handle->coal_ring_idx = ring_data->queue_index; 817 handle->coal_last_jiffies = jiffies; 818 } 819 } 820 821 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 822 int budget, void *v) 823 { 824 struct hnae_ring *ring = ring_data->ring; 825 struct sk_buff *skb; 826 int num, bnum; 827 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 828 int recv_pkts, recv_bds, clean_count, err; 829 int unused_count = hns_desc_unused(ring); 830 831 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 832 rmb(); /* make sure num taken effect before the other data is touched */ 833 834 recv_pkts = 0, recv_bds = 0, clean_count = 0; 835 num -= unused_count; 836 837 while (recv_pkts < budget && recv_bds < num) { 838 /* reuse or realloc buffers */ 839 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 840 hns_nic_alloc_rx_buffers(ring_data, 841 clean_count + unused_count); 842 clean_count = 0; 843 unused_count = hns_desc_unused(ring); 844 } 845 846 /* poll one pkt */ 847 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 848 if (unlikely(!skb)) /* this fault cannot be repaired */ 849 goto out; 850 851 recv_bds += bnum; 852 clean_count += bnum; 853 if (unlikely(err)) { /* do jump the err */ 854 recv_pkts++; 855 continue; 856 } 857 858 /* do update ip stack process*/ 859 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 860 ring_data, skb); 861 recv_pkts++; 862 } 863 864 out: 865 /* make all data has been write before submit */ 866 if (clean_count + unused_count > 0) 867 hns_nic_alloc_rx_buffers(ring_data, 868 clean_count + unused_count); 869 870 return recv_pkts; 871 } 872 873 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 874 { 875 struct hnae_ring *ring = ring_data->ring; 876 int num = 0; 877 bool rx_stopped; 878 879 hns_update_rx_rate(ring); 880 881 /* for hardware bug fixed */ 882 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 883 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 884 885 if (num <= hns_coal_rx_bdnum(ring)) { 886 if (ring->q->handle->coal_adapt_en) 887 hns_nic_adpt_coalesce(ring_data); 888 889 rx_stopped = true; 890 } else { 891 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 892 ring_data->ring, 1); 893 894 rx_stopped = false; 895 } 896 897 return rx_stopped; 898 } 899 900 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 901 { 902 struct hnae_ring *ring = ring_data->ring; 903 int num; 904 905 hns_update_rx_rate(ring); 906 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 907 908 if (num <= hns_coal_rx_bdnum(ring)) { 909 if (ring->q->handle->coal_adapt_en) 910 hns_nic_adpt_coalesce(ring_data); 911 912 return true; 913 } 914 915 return false; 916 } 917 918 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 919 int *bytes, int *pkts) 920 { 921 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 922 923 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 924 (*bytes) += desc_cb->length; 925 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 926 hnae_free_buffer_detach(ring, ring->next_to_clean); 927 928 ring_ptr_move_fw(ring, next_to_clean); 929 } 930 931 static int is_valid_clean_head(struct hnae_ring *ring, int h) 932 { 933 int u = ring->next_to_use; 934 int c = ring->next_to_clean; 935 936 if (unlikely(h > ring->desc_num)) 937 return 0; 938 939 assert(u > 0 && u < ring->desc_num); 940 assert(c > 0 && c < ring->desc_num); 941 assert(u != c && h != c); /* must be checked before call this func */ 942 943 return u > c ? (h > c && h <= u) : (h > c || h <= u); 944 } 945 946 /* netif_tx_lock will turn down the performance, set only when necessary */ 947 #ifdef CONFIG_NET_POLL_CONTROLLER 948 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock) 949 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock) 950 #else 951 #define NETIF_TX_LOCK(ring) 952 #define NETIF_TX_UNLOCK(ring) 953 #endif 954 955 /* reclaim all desc in one budget 956 * return error or number of desc left 957 */ 958 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 959 int budget, void *v) 960 { 961 struct hnae_ring *ring = ring_data->ring; 962 struct net_device *ndev = ring_data->napi.dev; 963 struct netdev_queue *dev_queue; 964 struct hns_nic_priv *priv = netdev_priv(ndev); 965 int head; 966 int bytes, pkts; 967 968 NETIF_TX_LOCK(ring); 969 970 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 971 rmb(); /* make sure head is ready before touch any data */ 972 973 if (is_ring_empty(ring) || head == ring->next_to_clean) { 974 NETIF_TX_UNLOCK(ring); 975 return 0; /* no data to poll */ 976 } 977 978 if (!is_valid_clean_head(ring, head)) { 979 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 980 ring->next_to_use, ring->next_to_clean); 981 ring->stats.io_err_cnt++; 982 NETIF_TX_UNLOCK(ring); 983 return -EIO; 984 } 985 986 bytes = 0; 987 pkts = 0; 988 while (head != ring->next_to_clean) { 989 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 990 /* issue prefetch for next Tx descriptor */ 991 prefetch(&ring->desc_cb[ring->next_to_clean]); 992 } 993 /* update tx ring statistics. */ 994 ring->stats.tx_pkts += pkts; 995 ring->stats.tx_bytes += bytes; 996 997 NETIF_TX_UNLOCK(ring); 998 999 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1000 netdev_tx_completed_queue(dev_queue, pkts, bytes); 1001 1002 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 1003 netif_carrier_on(ndev); 1004 1005 if (unlikely(pkts && netif_carrier_ok(ndev) && 1006 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 1007 /* Make sure that anybody stopping the queue after this 1008 * sees the new next_to_clean. 1009 */ 1010 smp_mb(); 1011 if (netif_tx_queue_stopped(dev_queue) && 1012 !test_bit(NIC_STATE_DOWN, &priv->state)) { 1013 netif_tx_wake_queue(dev_queue); 1014 ring->stats.restart_queue++; 1015 } 1016 } 1017 return 0; 1018 } 1019 1020 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 1021 { 1022 struct hnae_ring *ring = ring_data->ring; 1023 int head; 1024 1025 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1026 1027 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1028 1029 if (head != ring->next_to_clean) { 1030 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1031 ring_data->ring, 1); 1032 1033 return false; 1034 } else { 1035 return true; 1036 } 1037 } 1038 1039 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1040 { 1041 struct hnae_ring *ring = ring_data->ring; 1042 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1043 1044 if (head == ring->next_to_clean) 1045 return true; 1046 else 1047 return false; 1048 } 1049 1050 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1051 { 1052 struct hnae_ring *ring = ring_data->ring; 1053 struct net_device *ndev = ring_data->napi.dev; 1054 struct netdev_queue *dev_queue; 1055 int head; 1056 int bytes, pkts; 1057 1058 NETIF_TX_LOCK(ring); 1059 1060 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1061 bytes = 0; 1062 pkts = 0; 1063 while (head != ring->next_to_clean) 1064 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1065 1066 NETIF_TX_UNLOCK(ring); 1067 1068 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1069 netdev_tx_reset_queue(dev_queue); 1070 } 1071 1072 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1073 { 1074 int clean_complete = 0; 1075 struct hns_nic_ring_data *ring_data = 1076 container_of(napi, struct hns_nic_ring_data, napi); 1077 struct hnae_ring *ring = ring_data->ring; 1078 1079 try_again: 1080 clean_complete += ring_data->poll_one( 1081 ring_data, budget - clean_complete, 1082 ring_data->ex_process); 1083 1084 if (clean_complete < budget) { 1085 if (ring_data->fini_process(ring_data)) { 1086 napi_complete(napi); 1087 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1088 } else { 1089 goto try_again; 1090 } 1091 } 1092 1093 return clean_complete; 1094 } 1095 1096 static irqreturn_t hns_irq_handle(int irq, void *dev) 1097 { 1098 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1099 1100 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1101 ring_data->ring, 1); 1102 napi_schedule(&ring_data->napi); 1103 1104 return IRQ_HANDLED; 1105 } 1106 1107 /** 1108 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1109 *@ndev: net device 1110 */ 1111 static void hns_nic_adjust_link(struct net_device *ndev) 1112 { 1113 struct hns_nic_priv *priv = netdev_priv(ndev); 1114 struct hnae_handle *h = priv->ae_handle; 1115 int state = 1; 1116 1117 /* If there is no phy, do not need adjust link */ 1118 if (ndev->phydev) { 1119 /* When phy link down, do nothing */ 1120 if (ndev->phydev->link == 0) 1121 return; 1122 1123 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed, 1124 ndev->phydev->duplex)) { 1125 /* because Hi161X chip don't support to change gmac 1126 * speed and duplex with traffic. Delay 200ms to 1127 * make sure there is no more data in chip FIFO. 1128 */ 1129 netif_carrier_off(ndev); 1130 msleep(200); 1131 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1132 ndev->phydev->duplex); 1133 netif_carrier_on(ndev); 1134 } 1135 } 1136 1137 state = state && h->dev->ops->get_status(h); 1138 1139 if (state != priv->link) { 1140 if (state) { 1141 netif_carrier_on(ndev); 1142 netif_tx_wake_all_queues(ndev); 1143 netdev_info(ndev, "link up\n"); 1144 } else { 1145 netif_carrier_off(ndev); 1146 netdev_info(ndev, "link down\n"); 1147 } 1148 priv->link = state; 1149 } 1150 } 1151 1152 /** 1153 *hns_nic_init_phy - init phy 1154 *@ndev: net device 1155 *@h: ae handle 1156 * Return 0 on success, negative on failure 1157 */ 1158 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1159 { 1160 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, }; 1161 struct phy_device *phy_dev = h->phy_dev; 1162 int ret; 1163 1164 if (!h->phy_dev) 1165 return 0; 1166 1167 ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support); 1168 linkmode_and(phy_dev->supported, phy_dev->supported, supported); 1169 linkmode_copy(phy_dev->advertising, phy_dev->supported); 1170 1171 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1172 phy_dev->autoneg = false; 1173 1174 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1175 phy_dev->dev_flags = 0; 1176 1177 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1178 h->phy_if); 1179 } else { 1180 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1181 } 1182 if (unlikely(ret)) 1183 return -ENODEV; 1184 1185 phy_attached_info(phy_dev); 1186 1187 return 0; 1188 } 1189 1190 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1191 { 1192 struct hns_nic_priv *priv = netdev_priv(netdev); 1193 struct hnae_handle *h = priv->ae_handle; 1194 1195 napi_enable(&priv->ring_data[idx].napi); 1196 1197 enable_irq(priv->ring_data[idx].ring->irq); 1198 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1199 1200 return 0; 1201 } 1202 1203 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1204 { 1205 struct hns_nic_priv *priv = netdev_priv(ndev); 1206 struct hnae_handle *h = priv->ae_handle; 1207 struct sockaddr *mac_addr = p; 1208 int ret; 1209 1210 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1211 return -EADDRNOTAVAIL; 1212 1213 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1214 if (ret) { 1215 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1216 return ret; 1217 } 1218 1219 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); 1220 1221 return 0; 1222 } 1223 1224 static void hns_nic_update_stats(struct net_device *netdev) 1225 { 1226 struct hns_nic_priv *priv = netdev_priv(netdev); 1227 struct hnae_handle *h = priv->ae_handle; 1228 1229 h->dev->ops->update_stats(h, &netdev->stats); 1230 } 1231 1232 /* set mac addr if it is configed. or leave it to the AE driver */ 1233 static void hns_init_mac_addr(struct net_device *ndev) 1234 { 1235 struct hns_nic_priv *priv = netdev_priv(ndev); 1236 1237 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { 1238 eth_hw_addr_random(ndev); 1239 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1240 ndev->dev_addr); 1241 } 1242 } 1243 1244 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1245 { 1246 struct hns_nic_priv *priv = netdev_priv(netdev); 1247 struct hnae_handle *h = priv->ae_handle; 1248 1249 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1250 disable_irq(priv->ring_data[idx].ring->irq); 1251 1252 napi_disable(&priv->ring_data[idx].napi); 1253 } 1254 1255 static int hns_nic_init_affinity_mask(int q_num, int ring_idx, 1256 struct hnae_ring *ring, cpumask_t *mask) 1257 { 1258 int cpu; 1259 1260 /* Diffrent irq banlance between 16core and 32core. 1261 * The cpu mask set by ring index according to the ring flag 1262 * which indicate the ring is tx or rx. 1263 */ 1264 if (q_num == num_possible_cpus()) { 1265 if (is_tx_ring(ring)) 1266 cpu = ring_idx; 1267 else 1268 cpu = ring_idx - q_num; 1269 } else { 1270 if (is_tx_ring(ring)) 1271 cpu = ring_idx * 2; 1272 else 1273 cpu = (ring_idx - q_num) * 2 + 1; 1274 } 1275 1276 cpumask_clear(mask); 1277 cpumask_set_cpu(cpu, mask); 1278 1279 return cpu; 1280 } 1281 1282 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv) 1283 { 1284 int i; 1285 1286 for (i = 0; i < q_num * 2; i++) { 1287 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 1288 irq_set_affinity_hint(priv->ring_data[i].ring->irq, 1289 NULL); 1290 free_irq(priv->ring_data[i].ring->irq, 1291 &priv->ring_data[i]); 1292 priv->ring_data[i].ring->irq_init_flag = 1293 RCB_IRQ_NOT_INITED; 1294 } 1295 } 1296 } 1297 1298 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1299 { 1300 struct hnae_handle *h = priv->ae_handle; 1301 struct hns_nic_ring_data *rd; 1302 int i; 1303 int ret; 1304 int cpu; 1305 1306 for (i = 0; i < h->q_num * 2; i++) { 1307 rd = &priv->ring_data[i]; 1308 1309 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1310 break; 1311 1312 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1313 "%s-%s%d", priv->netdev->name, 1314 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); 1315 1316 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1317 1318 ret = request_irq(rd->ring->irq, 1319 hns_irq_handle, 0, rd->ring->ring_name, rd); 1320 if (ret) { 1321 netdev_err(priv->netdev, "request irq(%d) fail\n", 1322 rd->ring->irq); 1323 goto out_free_irq; 1324 } 1325 disable_irq(rd->ring->irq); 1326 1327 cpu = hns_nic_init_affinity_mask(h->q_num, i, 1328 rd->ring, &rd->mask); 1329 1330 if (cpu_online(cpu)) 1331 irq_set_affinity_hint(rd->ring->irq, 1332 &rd->mask); 1333 1334 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1335 } 1336 1337 return 0; 1338 1339 out_free_irq: 1340 hns_nic_free_irq(h->q_num, priv); 1341 return ret; 1342 } 1343 1344 static int hns_nic_net_up(struct net_device *ndev) 1345 { 1346 struct hns_nic_priv *priv = netdev_priv(ndev); 1347 struct hnae_handle *h = priv->ae_handle; 1348 int i, j; 1349 int ret; 1350 1351 if (!test_bit(NIC_STATE_DOWN, &priv->state)) 1352 return 0; 1353 1354 ret = hns_nic_init_irq(priv); 1355 if (ret != 0) { 1356 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1357 return ret; 1358 } 1359 1360 for (i = 0; i < h->q_num * 2; i++) { 1361 ret = hns_nic_ring_open(ndev, i); 1362 if (ret) 1363 goto out_has_some_queues; 1364 } 1365 1366 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1367 if (ret) 1368 goto out_set_mac_addr_err; 1369 1370 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1371 if (ret) 1372 goto out_start_err; 1373 1374 if (ndev->phydev) 1375 phy_start(ndev->phydev); 1376 1377 clear_bit(NIC_STATE_DOWN, &priv->state); 1378 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1379 1380 return 0; 1381 1382 out_start_err: 1383 netif_stop_queue(ndev); 1384 out_set_mac_addr_err: 1385 out_has_some_queues: 1386 for (j = i - 1; j >= 0; j--) 1387 hns_nic_ring_close(ndev, j); 1388 1389 hns_nic_free_irq(h->q_num, priv); 1390 set_bit(NIC_STATE_DOWN, &priv->state); 1391 1392 return ret; 1393 } 1394 1395 static void hns_nic_net_down(struct net_device *ndev) 1396 { 1397 int i; 1398 struct hnae_ae_ops *ops; 1399 struct hns_nic_priv *priv = netdev_priv(ndev); 1400 1401 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1402 return; 1403 1404 (void)del_timer_sync(&priv->service_timer); 1405 netif_tx_stop_all_queues(ndev); 1406 netif_carrier_off(ndev); 1407 netif_tx_disable(ndev); 1408 priv->link = 0; 1409 1410 if (ndev->phydev) 1411 phy_stop(ndev->phydev); 1412 1413 ops = priv->ae_handle->dev->ops; 1414 1415 if (ops->stop) 1416 ops->stop(priv->ae_handle); 1417 1418 netif_tx_stop_all_queues(ndev); 1419 1420 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1421 hns_nic_ring_close(ndev, i); 1422 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1423 1424 /* clean tx buffers*/ 1425 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1426 } 1427 } 1428 1429 void hns_nic_net_reset(struct net_device *ndev) 1430 { 1431 struct hns_nic_priv *priv = netdev_priv(ndev); 1432 struct hnae_handle *handle = priv->ae_handle; 1433 1434 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1435 usleep_range(1000, 2000); 1436 1437 (void)hnae_reinit_handle(handle); 1438 1439 clear_bit(NIC_STATE_RESETTING, &priv->state); 1440 } 1441 1442 void hns_nic_net_reinit(struct net_device *netdev) 1443 { 1444 struct hns_nic_priv *priv = netdev_priv(netdev); 1445 enum hnae_port_type type = priv->ae_handle->port_type; 1446 1447 netif_trans_update(priv->netdev); 1448 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1449 usleep_range(1000, 2000); 1450 1451 hns_nic_net_down(netdev); 1452 1453 /* Only do hns_nic_net_reset in debug mode 1454 * because of hardware limitation. 1455 */ 1456 if (type == HNAE_PORT_DEBUG) 1457 hns_nic_net_reset(netdev); 1458 1459 (void)hns_nic_net_up(netdev); 1460 clear_bit(NIC_STATE_REINITING, &priv->state); 1461 } 1462 1463 static int hns_nic_net_open(struct net_device *ndev) 1464 { 1465 struct hns_nic_priv *priv = netdev_priv(ndev); 1466 struct hnae_handle *h = priv->ae_handle; 1467 int ret; 1468 1469 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1470 return -EBUSY; 1471 1472 priv->link = 0; 1473 netif_carrier_off(ndev); 1474 1475 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1476 if (ret < 0) { 1477 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1478 ret); 1479 return ret; 1480 } 1481 1482 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1483 if (ret < 0) { 1484 netdev_err(ndev, 1485 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1486 return ret; 1487 } 1488 1489 ret = hns_nic_net_up(ndev); 1490 if (ret) { 1491 netdev_err(ndev, 1492 "hns net up fail, ret=%d!\n", ret); 1493 return ret; 1494 } 1495 1496 return 0; 1497 } 1498 1499 static int hns_nic_net_stop(struct net_device *ndev) 1500 { 1501 hns_nic_net_down(ndev); 1502 1503 return 0; 1504 } 1505 1506 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1507 #define HNS_TX_TIMEO_LIMIT (40 * HZ) 1508 static void hns_nic_net_timeout(struct net_device *ndev) 1509 { 1510 struct hns_nic_priv *priv = netdev_priv(ndev); 1511 1512 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) { 1513 ndev->watchdog_timeo *= 2; 1514 netdev_info(ndev, "watchdog_timo changed to %d.\n", 1515 ndev->watchdog_timeo); 1516 } else { 1517 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 1518 hns_tx_timeout_reset(priv); 1519 } 1520 } 1521 1522 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr, 1523 int cmd) 1524 { 1525 struct phy_device *phy_dev = netdev->phydev; 1526 1527 if (!netif_running(netdev)) 1528 return -EINVAL; 1529 1530 if (!phy_dev) 1531 return -ENOTSUPP; 1532 1533 return phy_mii_ioctl(phy_dev, ifr, cmd); 1534 } 1535 1536 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1537 struct net_device *ndev) 1538 { 1539 struct hns_nic_priv *priv = netdev_priv(ndev); 1540 1541 assert(skb->queue_mapping < ndev->ae_handle->q_num); 1542 1543 return hns_nic_net_xmit_hw(ndev, skb, 1544 &tx_ring_data(priv, skb->queue_mapping)); 1545 } 1546 1547 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, 1548 struct sk_buff *skb) 1549 { 1550 dev_kfree_skb_any(skb); 1551 } 1552 1553 #define HNS_LB_TX_RING 0 1554 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) 1555 { 1556 struct sk_buff *skb; 1557 struct ethhdr *ethhdr; 1558 int frame_len; 1559 1560 /* allocate test skb */ 1561 skb = alloc_skb(64, GFP_KERNEL); 1562 if (!skb) 1563 return NULL; 1564 1565 skb_put(skb, 64); 1566 skb->dev = ndev; 1567 memset(skb->data, 0xFF, skb->len); 1568 1569 /* must be tcp/ip package */ 1570 ethhdr = (struct ethhdr *)skb->data; 1571 ethhdr->h_proto = htons(ETH_P_IP); 1572 1573 frame_len = skb->len & (~1ul); 1574 memset(&skb->data[frame_len / 2], 0xAA, 1575 frame_len / 2 - 1); 1576 1577 skb->queue_mapping = HNS_LB_TX_RING; 1578 1579 return skb; 1580 } 1581 1582 static int hns_enable_serdes_lb(struct net_device *ndev) 1583 { 1584 struct hns_nic_priv *priv = netdev_priv(ndev); 1585 struct hnae_handle *h = priv->ae_handle; 1586 struct hnae_ae_ops *ops = h->dev->ops; 1587 int speed, duplex; 1588 int ret; 1589 1590 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); 1591 if (ret) 1592 return ret; 1593 1594 ret = ops->start ? ops->start(h) : 0; 1595 if (ret) 1596 return ret; 1597 1598 /* link adjust duplex*/ 1599 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1600 speed = 1000; 1601 else 1602 speed = 10000; 1603 duplex = 1; 1604 1605 ops->adjust_link(h, speed, duplex); 1606 1607 /* wait h/w ready */ 1608 mdelay(300); 1609 1610 return 0; 1611 } 1612 1613 static void hns_disable_serdes_lb(struct net_device *ndev) 1614 { 1615 struct hns_nic_priv *priv = netdev_priv(ndev); 1616 struct hnae_handle *h = priv->ae_handle; 1617 struct hnae_ae_ops *ops = h->dev->ops; 1618 1619 ops->stop(h); 1620 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); 1621 } 1622 1623 /** 1624 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The 1625 *function as follows: 1626 * 1. if one rx ring has found the page_offset is not equal 0 between head 1627 * and tail, it means that the chip fetched the wrong descs for the ring 1628 * which buffer size is 4096. 1629 * 2. we set the chip serdes loopback and set rss indirection to the ring. 1630 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring 1631 * recieving all packages and it will fetch new descriptions. 1632 * 4. recover to the original state. 1633 * 1634 *@ndev: net device 1635 */ 1636 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) 1637 { 1638 struct hns_nic_priv *priv = netdev_priv(ndev); 1639 struct hnae_handle *h = priv->ae_handle; 1640 struct hnae_ae_ops *ops = h->dev->ops; 1641 struct hns_nic_ring_data *rd; 1642 struct hnae_ring *ring; 1643 struct sk_buff *skb; 1644 u32 *org_indir; 1645 u32 *cur_indir; 1646 int indir_size; 1647 int head, tail; 1648 int fetch_num; 1649 int i, j; 1650 bool found; 1651 int retry_times; 1652 int ret = 0; 1653 1654 /* alloc indir memory */ 1655 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); 1656 org_indir = kzalloc(indir_size, GFP_KERNEL); 1657 if (!org_indir) 1658 return -ENOMEM; 1659 1660 /* store the orginal indirection */ 1661 ops->get_rss(h, org_indir, NULL, NULL); 1662 1663 cur_indir = kzalloc(indir_size, GFP_KERNEL); 1664 if (!cur_indir) { 1665 ret = -ENOMEM; 1666 goto cur_indir_alloc_err; 1667 } 1668 1669 /* set loopback */ 1670 if (hns_enable_serdes_lb(ndev)) { 1671 ret = -EINVAL; 1672 goto enable_serdes_lb_err; 1673 } 1674 1675 /* foreach every rx ring to clear fetch desc */ 1676 for (i = 0; i < h->q_num; i++) { 1677 ring = &h->qs[i]->rx_ring; 1678 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1679 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); 1680 found = false; 1681 fetch_num = ring_dist(ring, head, tail); 1682 1683 while (head != tail) { 1684 if (ring->desc_cb[head].page_offset != 0) { 1685 found = true; 1686 break; 1687 } 1688 1689 head++; 1690 if (head == ring->desc_num) 1691 head = 0; 1692 } 1693 1694 if (found) { 1695 for (j = 0; j < indir_size / sizeof(*org_indir); j++) 1696 cur_indir[j] = i; 1697 ops->set_rss(h, cur_indir, NULL, 0); 1698 1699 for (j = 0; j < fetch_num; j++) { 1700 /* alloc one skb and init */ 1701 skb = hns_assemble_skb(ndev); 1702 if (!skb) 1703 goto out; 1704 rd = &tx_ring_data(priv, skb->queue_mapping); 1705 hns_nic_net_xmit_hw(ndev, skb, rd); 1706 1707 retry_times = 0; 1708 while (retry_times++ < 10) { 1709 mdelay(10); 1710 /* clean rx */ 1711 rd = &rx_ring_data(priv, i); 1712 if (rd->poll_one(rd, fetch_num, 1713 hns_nic_drop_rx_fetch)) 1714 break; 1715 } 1716 1717 retry_times = 0; 1718 while (retry_times++ < 10) { 1719 mdelay(10); 1720 /* clean tx ring 0 send package */ 1721 rd = &tx_ring_data(priv, 1722 HNS_LB_TX_RING); 1723 if (rd->poll_one(rd, fetch_num, NULL)) 1724 break; 1725 } 1726 } 1727 } 1728 } 1729 1730 out: 1731 /* restore everything */ 1732 ops->set_rss(h, org_indir, NULL, 0); 1733 hns_disable_serdes_lb(ndev); 1734 enable_serdes_lb_err: 1735 kfree(cur_indir); 1736 cur_indir_alloc_err: 1737 kfree(org_indir); 1738 1739 return ret; 1740 } 1741 1742 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1743 { 1744 struct hns_nic_priv *priv = netdev_priv(ndev); 1745 struct hnae_handle *h = priv->ae_handle; 1746 bool if_running = netif_running(ndev); 1747 int ret; 1748 1749 /* MTU < 68 is an error and causes problems on some kernels */ 1750 if (new_mtu < 68) 1751 return -EINVAL; 1752 1753 /* MTU no change */ 1754 if (new_mtu == ndev->mtu) 1755 return 0; 1756 1757 if (!h->dev->ops->set_mtu) 1758 return -ENOTSUPP; 1759 1760 if (if_running) { 1761 (void)hns_nic_net_stop(ndev); 1762 msleep(100); 1763 } 1764 1765 if (priv->enet_ver != AE_VERSION_1 && 1766 ndev->mtu <= BD_SIZE_2048_MAX_MTU && 1767 new_mtu > BD_SIZE_2048_MAX_MTU) { 1768 /* update desc */ 1769 hnae_reinit_all_ring_desc(h); 1770 1771 /* clear the package which the chip has fetched */ 1772 ret = hns_nic_clear_all_rx_fetch(ndev); 1773 1774 /* the page offset must be consist with desc */ 1775 hnae_reinit_all_ring_page_off(h); 1776 1777 if (ret) { 1778 netdev_err(ndev, "clear the fetched desc fail\n"); 1779 goto out; 1780 } 1781 } 1782 1783 ret = h->dev->ops->set_mtu(h, new_mtu); 1784 if (ret) { 1785 netdev_err(ndev, "set mtu fail, return value %d\n", 1786 ret); 1787 goto out; 1788 } 1789 1790 /* finally, set new mtu to netdevice */ 1791 ndev->mtu = new_mtu; 1792 1793 out: 1794 if (if_running) { 1795 if (hns_nic_net_open(ndev)) { 1796 netdev_err(ndev, "hns net open fail\n"); 1797 ret = -EINVAL; 1798 } 1799 } 1800 1801 return ret; 1802 } 1803 1804 static int hns_nic_set_features(struct net_device *netdev, 1805 netdev_features_t features) 1806 { 1807 struct hns_nic_priv *priv = netdev_priv(netdev); 1808 1809 switch (priv->enet_ver) { 1810 case AE_VERSION_1: 1811 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1812 netdev_info(netdev, "enet v1 do not support tso!\n"); 1813 break; 1814 default: 1815 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1816 priv->ops.fill_desc = fill_tso_desc; 1817 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1818 /* The chip only support 7*4096 */ 1819 netif_set_gso_max_size(netdev, 7 * 4096); 1820 } else { 1821 priv->ops.fill_desc = fill_v2_desc; 1822 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1823 } 1824 break; 1825 } 1826 netdev->features = features; 1827 return 0; 1828 } 1829 1830 static netdev_features_t hns_nic_fix_features( 1831 struct net_device *netdev, netdev_features_t features) 1832 { 1833 struct hns_nic_priv *priv = netdev_priv(netdev); 1834 1835 switch (priv->enet_ver) { 1836 case AE_VERSION_1: 1837 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1838 NETIF_F_HW_VLAN_CTAG_FILTER); 1839 break; 1840 default: 1841 break; 1842 } 1843 return features; 1844 } 1845 1846 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1847 { 1848 struct hns_nic_priv *priv = netdev_priv(netdev); 1849 struct hnae_handle *h = priv->ae_handle; 1850 1851 if (h->dev->ops->add_uc_addr) 1852 return h->dev->ops->add_uc_addr(h, addr); 1853 1854 return 0; 1855 } 1856 1857 static int hns_nic_uc_unsync(struct net_device *netdev, 1858 const unsigned char *addr) 1859 { 1860 struct hns_nic_priv *priv = netdev_priv(netdev); 1861 struct hnae_handle *h = priv->ae_handle; 1862 1863 if (h->dev->ops->rm_uc_addr) 1864 return h->dev->ops->rm_uc_addr(h, addr); 1865 1866 return 0; 1867 } 1868 1869 /** 1870 * nic_set_multicast_list - set mutl mac address 1871 * @netdev: net device 1872 * @p: mac address 1873 * 1874 * return void 1875 */ 1876 static void hns_set_multicast_list(struct net_device *ndev) 1877 { 1878 struct hns_nic_priv *priv = netdev_priv(ndev); 1879 struct hnae_handle *h = priv->ae_handle; 1880 struct netdev_hw_addr *ha = NULL; 1881 1882 if (!h) { 1883 netdev_err(ndev, "hnae handle is null\n"); 1884 return; 1885 } 1886 1887 if (h->dev->ops->clr_mc_addr) 1888 if (h->dev->ops->clr_mc_addr(h)) 1889 netdev_err(ndev, "clear multicast address fail\n"); 1890 1891 if (h->dev->ops->set_mc_addr) { 1892 netdev_for_each_mc_addr(ha, ndev) 1893 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1894 netdev_err(ndev, "set multicast fail\n"); 1895 } 1896 } 1897 1898 static void hns_nic_set_rx_mode(struct net_device *ndev) 1899 { 1900 struct hns_nic_priv *priv = netdev_priv(ndev); 1901 struct hnae_handle *h = priv->ae_handle; 1902 1903 if (h->dev->ops->set_promisc_mode) { 1904 if (ndev->flags & IFF_PROMISC) 1905 h->dev->ops->set_promisc_mode(h, 1); 1906 else 1907 h->dev->ops->set_promisc_mode(h, 0); 1908 } 1909 1910 hns_set_multicast_list(ndev); 1911 1912 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1913 netdev_err(ndev, "sync uc address fail\n"); 1914 } 1915 1916 static void hns_nic_get_stats64(struct net_device *ndev, 1917 struct rtnl_link_stats64 *stats) 1918 { 1919 int idx = 0; 1920 u64 tx_bytes = 0; 1921 u64 rx_bytes = 0; 1922 u64 tx_pkts = 0; 1923 u64 rx_pkts = 0; 1924 struct hns_nic_priv *priv = netdev_priv(ndev); 1925 struct hnae_handle *h = priv->ae_handle; 1926 1927 for (idx = 0; idx < h->q_num; idx++) { 1928 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1929 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1930 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1931 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1932 } 1933 1934 stats->tx_bytes = tx_bytes; 1935 stats->tx_packets = tx_pkts; 1936 stats->rx_bytes = rx_bytes; 1937 stats->rx_packets = rx_pkts; 1938 1939 stats->rx_errors = ndev->stats.rx_errors; 1940 stats->multicast = ndev->stats.multicast; 1941 stats->rx_length_errors = ndev->stats.rx_length_errors; 1942 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1943 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1944 1945 stats->tx_errors = ndev->stats.tx_errors; 1946 stats->rx_dropped = ndev->stats.rx_dropped; 1947 stats->tx_dropped = ndev->stats.tx_dropped; 1948 stats->collisions = ndev->stats.collisions; 1949 stats->rx_over_errors = ndev->stats.rx_over_errors; 1950 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1951 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1952 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1953 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1954 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1955 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1956 stats->tx_window_errors = ndev->stats.tx_window_errors; 1957 stats->rx_compressed = ndev->stats.rx_compressed; 1958 stats->tx_compressed = ndev->stats.tx_compressed; 1959 } 1960 1961 static u16 1962 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1963 struct net_device *sb_dev) 1964 { 1965 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1966 struct hns_nic_priv *priv = netdev_priv(ndev); 1967 1968 /* fix hardware broadcast/multicast packets queue loopback */ 1969 if (!AE_IS_VER1(priv->enet_ver) && 1970 is_multicast_ether_addr(eth_hdr->h_dest)) 1971 return 0; 1972 else 1973 return netdev_pick_tx(ndev, skb, NULL); 1974 } 1975 1976 static const struct net_device_ops hns_nic_netdev_ops = { 1977 .ndo_open = hns_nic_net_open, 1978 .ndo_stop = hns_nic_net_stop, 1979 .ndo_start_xmit = hns_nic_net_xmit, 1980 .ndo_tx_timeout = hns_nic_net_timeout, 1981 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1982 .ndo_change_mtu = hns_nic_change_mtu, 1983 .ndo_do_ioctl = hns_nic_do_ioctl, 1984 .ndo_set_features = hns_nic_set_features, 1985 .ndo_fix_features = hns_nic_fix_features, 1986 .ndo_get_stats64 = hns_nic_get_stats64, 1987 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1988 .ndo_select_queue = hns_nic_select_queue, 1989 }; 1990 1991 static void hns_nic_update_link_status(struct net_device *netdev) 1992 { 1993 struct hns_nic_priv *priv = netdev_priv(netdev); 1994 1995 struct hnae_handle *h = priv->ae_handle; 1996 1997 if (h->phy_dev) { 1998 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1999 return; 2000 2001 (void)genphy_read_status(h->phy_dev); 2002 } 2003 hns_nic_adjust_link(netdev); 2004 } 2005 2006 /* for dumping key regs*/ 2007 static void hns_nic_dump(struct hns_nic_priv *priv) 2008 { 2009 struct hnae_handle *h = priv->ae_handle; 2010 struct hnae_ae_ops *ops = h->dev->ops; 2011 u32 *data, reg_num, i; 2012 2013 if (ops->get_regs_len && ops->get_regs) { 2014 reg_num = ops->get_regs_len(priv->ae_handle); 2015 reg_num = (reg_num + 3ul) & ~3ul; 2016 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 2017 if (data) { 2018 ops->get_regs(priv->ae_handle, data); 2019 for (i = 0; i < reg_num; i += 4) 2020 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 2021 i, data[i], data[i + 1], 2022 data[i + 2], data[i + 3]); 2023 kfree(data); 2024 } 2025 } 2026 2027 for (i = 0; i < h->q_num; i++) { 2028 pr_info("tx_queue%d_next_to_clean:%d\n", 2029 i, h->qs[i]->tx_ring.next_to_clean); 2030 pr_info("tx_queue%d_next_to_use:%d\n", 2031 i, h->qs[i]->tx_ring.next_to_use); 2032 pr_info("rx_queue%d_next_to_clean:%d\n", 2033 i, h->qs[i]->rx_ring.next_to_clean); 2034 pr_info("rx_queue%d_next_to_use:%d\n", 2035 i, h->qs[i]->rx_ring.next_to_use); 2036 } 2037 } 2038 2039 /* for resetting subtask */ 2040 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 2041 { 2042 enum hnae_port_type type = priv->ae_handle->port_type; 2043 2044 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 2045 return; 2046 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2047 2048 /* If we're already down, removing or resetting, just bail */ 2049 if (test_bit(NIC_STATE_DOWN, &priv->state) || 2050 test_bit(NIC_STATE_REMOVING, &priv->state) || 2051 test_bit(NIC_STATE_RESETTING, &priv->state)) 2052 return; 2053 2054 hns_nic_dump(priv); 2055 netdev_info(priv->netdev, "try to reset %s port!\n", 2056 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 2057 2058 rtnl_lock(); 2059 /* put off any impending NetWatchDogTimeout */ 2060 netif_trans_update(priv->netdev); 2061 hns_nic_net_reinit(priv->netdev); 2062 2063 rtnl_unlock(); 2064 } 2065 2066 /* for doing service complete*/ 2067 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 2068 { 2069 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 2070 /* make sure to commit the things */ 2071 smp_mb__before_atomic(); 2072 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2073 } 2074 2075 static void hns_nic_service_task(struct work_struct *work) 2076 { 2077 struct hns_nic_priv *priv 2078 = container_of(work, struct hns_nic_priv, service_task); 2079 struct hnae_handle *h = priv->ae_handle; 2080 2081 hns_nic_reset_subtask(priv); 2082 hns_nic_update_link_status(priv->netdev); 2083 h->dev->ops->update_led_status(h); 2084 hns_nic_update_stats(priv->netdev); 2085 2086 hns_nic_service_event_complete(priv); 2087 } 2088 2089 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 2090 { 2091 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 2092 !test_bit(NIC_STATE_REMOVING, &priv->state) && 2093 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 2094 (void)schedule_work(&priv->service_task); 2095 } 2096 2097 static void hns_nic_service_timer(struct timer_list *t) 2098 { 2099 struct hns_nic_priv *priv = from_timer(priv, t, service_timer); 2100 2101 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 2102 2103 hns_nic_task_schedule(priv); 2104 } 2105 2106 /** 2107 * hns_tx_timeout_reset - initiate reset due to Tx timeout 2108 * @priv: driver private struct 2109 **/ 2110 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 2111 { 2112 /* Do the reset outside of interrupt context */ 2113 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 2114 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2115 netdev_warn(priv->netdev, 2116 "initiating reset due to tx timeout(%llu,0x%lx)\n", 2117 priv->tx_timeout_count, priv->state); 2118 priv->tx_timeout_count++; 2119 hns_nic_task_schedule(priv); 2120 } 2121 } 2122 2123 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 2124 { 2125 struct hnae_handle *h = priv->ae_handle; 2126 struct hns_nic_ring_data *rd; 2127 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 2128 int i; 2129 2130 if (h->q_num > NIC_MAX_Q_PER_VF) { 2131 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 2132 return -EINVAL; 2133 } 2134 2135 priv->ring_data = kzalloc(array3_size(h->q_num, 2136 sizeof(*priv->ring_data), 2), 2137 GFP_KERNEL); 2138 if (!priv->ring_data) 2139 return -ENOMEM; 2140 2141 for (i = 0; i < h->q_num; i++) { 2142 rd = &priv->ring_data[i]; 2143 rd->queue_index = i; 2144 rd->ring = &h->qs[i]->tx_ring; 2145 rd->poll_one = hns_nic_tx_poll_one; 2146 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 2147 hns_nic_tx_fini_pro_v2; 2148 2149 netif_napi_add(priv->netdev, &rd->napi, 2150 hns_nic_common_poll, NAPI_POLL_WEIGHT); 2151 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2152 } 2153 for (i = h->q_num; i < h->q_num * 2; i++) { 2154 rd = &priv->ring_data[i]; 2155 rd->queue_index = i - h->q_num; 2156 rd->ring = &h->qs[i - h->q_num]->rx_ring; 2157 rd->poll_one = hns_nic_rx_poll_one; 2158 rd->ex_process = hns_nic_rx_up_pro; 2159 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 2160 hns_nic_rx_fini_pro_v2; 2161 2162 netif_napi_add(priv->netdev, &rd->napi, 2163 hns_nic_common_poll, NAPI_POLL_WEIGHT); 2164 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2165 } 2166 2167 return 0; 2168 } 2169 2170 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 2171 { 2172 struct hnae_handle *h = priv->ae_handle; 2173 int i; 2174 2175 for (i = 0; i < h->q_num * 2; i++) { 2176 netif_napi_del(&priv->ring_data[i].napi); 2177 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 2178 (void)irq_set_affinity_hint( 2179 priv->ring_data[i].ring->irq, 2180 NULL); 2181 free_irq(priv->ring_data[i].ring->irq, 2182 &priv->ring_data[i]); 2183 } 2184 2185 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2186 } 2187 kfree(priv->ring_data); 2188 } 2189 2190 static void hns_nic_set_priv_ops(struct net_device *netdev) 2191 { 2192 struct hns_nic_priv *priv = netdev_priv(netdev); 2193 struct hnae_handle *h = priv->ae_handle; 2194 2195 if (AE_IS_VER1(priv->enet_ver)) { 2196 priv->ops.fill_desc = fill_desc; 2197 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 2198 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2199 } else { 2200 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 2201 if ((netdev->features & NETIF_F_TSO) || 2202 (netdev->features & NETIF_F_TSO6)) { 2203 priv->ops.fill_desc = fill_tso_desc; 2204 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 2205 /* This chip only support 7*4096 */ 2206 netif_set_gso_max_size(netdev, 7 * 4096); 2207 } else { 2208 priv->ops.fill_desc = fill_v2_desc; 2209 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2210 } 2211 /* enable tso when init 2212 * control tso on/off through TSE bit in bd 2213 */ 2214 h->dev->ops->set_tso_stats(h, 1); 2215 } 2216 } 2217 2218 static int hns_nic_try_get_ae(struct net_device *ndev) 2219 { 2220 struct hns_nic_priv *priv = netdev_priv(ndev); 2221 struct hnae_handle *h; 2222 int ret; 2223 2224 h = hnae_get_handle(&priv->netdev->dev, 2225 priv->fwnode, priv->port_id, NULL); 2226 if (IS_ERR_OR_NULL(h)) { 2227 ret = -ENODEV; 2228 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 2229 goto out; 2230 } 2231 priv->ae_handle = h; 2232 2233 ret = hns_nic_init_phy(ndev, h); 2234 if (ret) { 2235 dev_err(priv->dev, "probe phy device fail!\n"); 2236 goto out_init_phy; 2237 } 2238 2239 ret = hns_nic_init_ring_data(priv); 2240 if (ret) { 2241 ret = -ENOMEM; 2242 goto out_init_ring_data; 2243 } 2244 2245 hns_nic_set_priv_ops(ndev); 2246 2247 ret = register_netdev(ndev); 2248 if (ret) { 2249 dev_err(priv->dev, "probe register netdev fail!\n"); 2250 goto out_reg_ndev_fail; 2251 } 2252 return 0; 2253 2254 out_reg_ndev_fail: 2255 hns_nic_uninit_ring_data(priv); 2256 priv->ring_data = NULL; 2257 out_init_phy: 2258 out_init_ring_data: 2259 hnae_put_handle(priv->ae_handle); 2260 priv->ae_handle = NULL; 2261 out: 2262 return ret; 2263 } 2264 2265 static int hns_nic_notifier_action(struct notifier_block *nb, 2266 unsigned long action, void *data) 2267 { 2268 struct hns_nic_priv *priv = 2269 container_of(nb, struct hns_nic_priv, notifier_block); 2270 2271 assert(action == HNAE_AE_REGISTER); 2272 2273 if (!hns_nic_try_get_ae(priv->netdev)) { 2274 hnae_unregister_notifier(&priv->notifier_block); 2275 priv->notifier_block.notifier_call = NULL; 2276 } 2277 return 0; 2278 } 2279 2280 static int hns_nic_dev_probe(struct platform_device *pdev) 2281 { 2282 struct device *dev = &pdev->dev; 2283 struct net_device *ndev; 2284 struct hns_nic_priv *priv; 2285 u32 port_id; 2286 int ret; 2287 2288 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2289 if (!ndev) 2290 return -ENOMEM; 2291 2292 platform_set_drvdata(pdev, ndev); 2293 2294 priv = netdev_priv(ndev); 2295 priv->dev = dev; 2296 priv->netdev = ndev; 2297 2298 if (dev_of_node(dev)) { 2299 struct device_node *ae_node; 2300 2301 if (of_device_is_compatible(dev->of_node, 2302 "hisilicon,hns-nic-v1")) 2303 priv->enet_ver = AE_VERSION_1; 2304 else 2305 priv->enet_ver = AE_VERSION_2; 2306 2307 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2308 if (!ae_node) { 2309 ret = -ENODEV; 2310 dev_err(dev, "not find ae-handle\n"); 2311 goto out_read_prop_fail; 2312 } 2313 priv->fwnode = &ae_node->fwnode; 2314 } else if (is_acpi_node(dev->fwnode)) { 2315 struct fwnode_reference_args args; 2316 2317 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2318 priv->enet_ver = AE_VERSION_1; 2319 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2320 priv->enet_ver = AE_VERSION_2; 2321 else 2322 return -ENXIO; 2323 2324 /* try to find port-idx-in-ae first */ 2325 ret = acpi_node_get_property_reference(dev->fwnode, 2326 "ae-handle", 0, &args); 2327 if (ret) { 2328 dev_err(dev, "not find ae-handle\n"); 2329 goto out_read_prop_fail; 2330 } 2331 if (!is_acpi_device_node(args.fwnode)) { 2332 ret = -EINVAL; 2333 goto out_read_prop_fail; 2334 } 2335 priv->fwnode = args.fwnode; 2336 } else { 2337 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2338 return -ENXIO; 2339 } 2340 2341 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2342 if (ret) { 2343 /* only for old code compatible */ 2344 ret = device_property_read_u32(dev, "port-id", &port_id); 2345 if (ret) 2346 goto out_read_prop_fail; 2347 /* for old dts, we need to caculate the port offset */ 2348 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2349 : port_id - HNS_SRV_OFFSET; 2350 } 2351 priv->port_id = port_id; 2352 2353 hns_init_mac_addr(ndev); 2354 2355 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2356 ndev->priv_flags |= IFF_UNICAST_FLT; 2357 ndev->netdev_ops = &hns_nic_netdev_ops; 2358 hns_ethtool_set_ops(ndev); 2359 2360 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2361 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2362 NETIF_F_GRO; 2363 ndev->vlan_features |= 2364 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2365 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2366 2367 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2368 ndev->min_mtu = MAC_MIN_MTU; 2369 switch (priv->enet_ver) { 2370 case AE_VERSION_2: 2371 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE; 2372 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2373 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2374 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2375 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6; 2376 ndev->max_mtu = MAC_MAX_MTU_V2 - 2377 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2378 break; 2379 default: 2380 ndev->max_mtu = MAC_MAX_MTU - 2381 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2382 break; 2383 } 2384 2385 SET_NETDEV_DEV(ndev, dev); 2386 2387 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2388 dev_dbg(dev, "set mask to 64bit\n"); 2389 else 2390 dev_err(dev, "set mask to 64bit fail!\n"); 2391 2392 /* carrier off reporting is important to ethtool even BEFORE open */ 2393 netif_carrier_off(ndev); 2394 2395 timer_setup(&priv->service_timer, hns_nic_service_timer, 0); 2396 INIT_WORK(&priv->service_task, hns_nic_service_task); 2397 2398 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2399 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2400 set_bit(NIC_STATE_DOWN, &priv->state); 2401 2402 if (hns_nic_try_get_ae(priv->netdev)) { 2403 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2404 ret = hnae_register_notifier(&priv->notifier_block); 2405 if (ret) { 2406 dev_err(dev, "register notifier fail!\n"); 2407 goto out_notify_fail; 2408 } 2409 dev_dbg(dev, "has not handle, register notifier!\n"); 2410 } 2411 2412 return 0; 2413 2414 out_notify_fail: 2415 (void)cancel_work_sync(&priv->service_task); 2416 out_read_prop_fail: 2417 /* safe for ACPI FW */ 2418 of_node_put(to_of_node(priv->fwnode)); 2419 free_netdev(ndev); 2420 return ret; 2421 } 2422 2423 static int hns_nic_dev_remove(struct platform_device *pdev) 2424 { 2425 struct net_device *ndev = platform_get_drvdata(pdev); 2426 struct hns_nic_priv *priv = netdev_priv(ndev); 2427 2428 if (ndev->reg_state != NETREG_UNINITIALIZED) 2429 unregister_netdev(ndev); 2430 2431 if (priv->ring_data) 2432 hns_nic_uninit_ring_data(priv); 2433 priv->ring_data = NULL; 2434 2435 if (ndev->phydev) 2436 phy_disconnect(ndev->phydev); 2437 2438 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2439 hnae_put_handle(priv->ae_handle); 2440 priv->ae_handle = NULL; 2441 if (priv->notifier_block.notifier_call) 2442 hnae_unregister_notifier(&priv->notifier_block); 2443 priv->notifier_block.notifier_call = NULL; 2444 2445 set_bit(NIC_STATE_REMOVING, &priv->state); 2446 (void)cancel_work_sync(&priv->service_task); 2447 2448 /* safe for ACPI FW */ 2449 of_node_put(to_of_node(priv->fwnode)); 2450 2451 free_netdev(ndev); 2452 return 0; 2453 } 2454 2455 static const struct of_device_id hns_enet_of_match[] = { 2456 {.compatible = "hisilicon,hns-nic-v1",}, 2457 {.compatible = "hisilicon,hns-nic-v2",}, 2458 {}, 2459 }; 2460 2461 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2462 2463 static struct platform_driver hns_nic_dev_driver = { 2464 .driver = { 2465 .name = "hns-nic", 2466 .of_match_table = hns_enet_of_match, 2467 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2468 }, 2469 .probe = hns_nic_dev_probe, 2470 .remove = hns_nic_dev_remove, 2471 }; 2472 2473 module_platform_driver(hns_nic_dev_driver); 2474 2475 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2476 MODULE_AUTHOR("Hisilicon, Inc."); 2477 MODULE_LICENSE("GPL"); 2478 MODULE_ALIAS("platform:hns-nic"); 2479