1 /* 2 * Copyright (c) 2014-2015 Hisilicon Limited. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 */ 9 10 #include <linux/clk.h> 11 #include <linux/cpumask.h> 12 #include <linux/etherdevice.h> 13 #include <linux/if_vlan.h> 14 #include <linux/interrupt.h> 15 #include <linux/io.h> 16 #include <linux/ip.h> 17 #include <linux/ipv6.h> 18 #include <linux/module.h> 19 #include <linux/phy.h> 20 #include <linux/platform_device.h> 21 #include <linux/skbuff.h> 22 23 #include "hnae.h" 24 #include "hns_enet.h" 25 #include "hns_dsaf_mac.h" 26 27 #define NIC_MAX_Q_PER_VF 16 28 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 29 30 #define SERVICE_TIMER_HZ (1 * HZ) 31 32 #define NIC_TX_CLEAN_MAX_NUM 256 33 #define NIC_RX_CLEAN_MAX_NUM 64 34 35 #define RCB_IRQ_NOT_INITED 0 36 #define RCB_IRQ_INITED 1 37 #define HNS_BUFFER_SIZE_2048 2048 38 39 #define BD_MAX_SEND_SIZE 8191 40 #define SKB_TMP_LEN(SKB) \ 41 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) 42 43 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 44 int size, dma_addr_t dma, int frag_end, 45 int buf_num, enum hns_desc_type type, int mtu) 46 { 47 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 48 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 49 struct iphdr *iphdr; 50 struct ipv6hdr *ipv6hdr; 51 struct sk_buff *skb; 52 __be16 protocol; 53 u8 bn_pid = 0; 54 u8 rrcfv = 0; 55 u8 ip_offset = 0; 56 u8 tvsvsn = 0; 57 u16 mss = 0; 58 u8 l4_len = 0; 59 u16 paylen = 0; 60 61 desc_cb->priv = priv; 62 desc_cb->length = size; 63 desc_cb->dma = dma; 64 desc_cb->type = type; 65 66 desc->addr = cpu_to_le64(dma); 67 desc->tx.send_size = cpu_to_le16((u16)size); 68 69 /* config bd buffer end */ 70 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 71 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 72 73 /* fill port_id in the tx bd for sending management pkts */ 74 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 75 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 76 77 if (type == DESC_TYPE_SKB) { 78 skb = (struct sk_buff *)priv; 79 80 if (skb->ip_summed == CHECKSUM_PARTIAL) { 81 skb_reset_mac_len(skb); 82 protocol = skb->protocol; 83 ip_offset = ETH_HLEN; 84 85 if (protocol == htons(ETH_P_8021Q)) { 86 ip_offset += VLAN_HLEN; 87 protocol = vlan_get_protocol(skb); 88 skb->protocol = protocol; 89 } 90 91 if (skb->protocol == htons(ETH_P_IP)) { 92 iphdr = ip_hdr(skb); 93 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 94 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 95 96 /* check for tcp/udp header */ 97 if (iphdr->protocol == IPPROTO_TCP && 98 skb_is_gso(skb)) { 99 hnae_set_bit(tvsvsn, 100 HNSV2_TXD_TSE_B, 1); 101 l4_len = tcp_hdrlen(skb); 102 mss = skb_shinfo(skb)->gso_size; 103 paylen = skb->len - SKB_TMP_LEN(skb); 104 } 105 } else if (skb->protocol == htons(ETH_P_IPV6)) { 106 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 107 ipv6hdr = ipv6_hdr(skb); 108 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 109 110 /* check for tcp/udp header */ 111 if (ipv6hdr->nexthdr == IPPROTO_TCP && 112 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 113 hnae_set_bit(tvsvsn, 114 HNSV2_TXD_TSE_B, 1); 115 l4_len = tcp_hdrlen(skb); 116 mss = skb_shinfo(skb)->gso_size; 117 paylen = skb->len - SKB_TMP_LEN(skb); 118 } 119 } 120 desc->tx.ip_offset = ip_offset; 121 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 122 desc->tx.mss = cpu_to_le16(mss); 123 desc->tx.l4_len = l4_len; 124 desc->tx.paylen = cpu_to_le16(paylen); 125 } 126 } 127 128 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 129 130 desc->tx.bn_pid = bn_pid; 131 desc->tx.ra_ri_cs_fe_vld = rrcfv; 132 133 ring_ptr_move_fw(ring, next_to_use); 134 } 135 136 static const struct acpi_device_id hns_enet_acpi_match[] = { 137 { "HISI00C1", 0 }, 138 { "HISI00C2", 0 }, 139 { }, 140 }; 141 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 142 143 static void fill_desc(struct hnae_ring *ring, void *priv, 144 int size, dma_addr_t dma, int frag_end, 145 int buf_num, enum hns_desc_type type, int mtu) 146 { 147 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 148 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 149 struct sk_buff *skb; 150 __be16 protocol; 151 u32 ip_offset; 152 u32 asid_bufnum_pid = 0; 153 u32 flag_ipoffset = 0; 154 155 desc_cb->priv = priv; 156 desc_cb->length = size; 157 desc_cb->dma = dma; 158 desc_cb->type = type; 159 160 desc->addr = cpu_to_le64(dma); 161 desc->tx.send_size = cpu_to_le16((u16)size); 162 163 /*config bd buffer end */ 164 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 165 166 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 167 168 if (type == DESC_TYPE_SKB) { 169 skb = (struct sk_buff *)priv; 170 171 if (skb->ip_summed == CHECKSUM_PARTIAL) { 172 protocol = skb->protocol; 173 ip_offset = ETH_HLEN; 174 175 /*if it is a SW VLAN check the next protocol*/ 176 if (protocol == htons(ETH_P_8021Q)) { 177 ip_offset += VLAN_HLEN; 178 protocol = vlan_get_protocol(skb); 179 skb->protocol = protocol; 180 } 181 182 if (skb->protocol == htons(ETH_P_IP)) { 183 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 184 /* check for tcp/udp header */ 185 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 186 187 } else if (skb->protocol == htons(ETH_P_IPV6)) { 188 /* ipv6 has not l3 cs, check for L4 header */ 189 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 190 } 191 192 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 193 } 194 } 195 196 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 197 198 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 199 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 200 201 ring_ptr_move_fw(ring, next_to_use); 202 } 203 204 static void unfill_desc(struct hnae_ring *ring) 205 { 206 ring_ptr_move_bw(ring, next_to_use); 207 } 208 209 static int hns_nic_maybe_stop_tx( 210 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 211 { 212 struct sk_buff *skb = *out_skb; 213 struct sk_buff *new_skb = NULL; 214 int buf_num; 215 216 /* no. of segments (plus a header) */ 217 buf_num = skb_shinfo(skb)->nr_frags + 1; 218 219 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 220 if (ring_space(ring) < 1) 221 return -EBUSY; 222 223 new_skb = skb_copy(skb, GFP_ATOMIC); 224 if (!new_skb) 225 return -ENOMEM; 226 227 dev_kfree_skb_any(skb); 228 *out_skb = new_skb; 229 buf_num = 1; 230 } else if (buf_num > ring_space(ring)) { 231 return -EBUSY; 232 } 233 234 *bnum = buf_num; 235 return 0; 236 } 237 238 static int hns_nic_maybe_stop_tso( 239 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 240 { 241 int i; 242 int size; 243 int buf_num; 244 int frag_num; 245 struct sk_buff *skb = *out_skb; 246 struct sk_buff *new_skb = NULL; 247 struct skb_frag_struct *frag; 248 249 size = skb_headlen(skb); 250 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 251 252 frag_num = skb_shinfo(skb)->nr_frags; 253 for (i = 0; i < frag_num; i++) { 254 frag = &skb_shinfo(skb)->frags[i]; 255 size = skb_frag_size(frag); 256 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 257 } 258 259 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 260 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 261 if (ring_space(ring) < buf_num) 262 return -EBUSY; 263 /* manual split the send packet */ 264 new_skb = skb_copy(skb, GFP_ATOMIC); 265 if (!new_skb) 266 return -ENOMEM; 267 dev_kfree_skb_any(skb); 268 *out_skb = new_skb; 269 270 } else if (ring_space(ring) < buf_num) { 271 return -EBUSY; 272 } 273 274 *bnum = buf_num; 275 return 0; 276 } 277 278 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 279 int size, dma_addr_t dma, int frag_end, 280 int buf_num, enum hns_desc_type type, int mtu) 281 { 282 int frag_buf_num; 283 int sizeoflast; 284 int k; 285 286 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 287 sizeoflast = size % BD_MAX_SEND_SIZE; 288 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 289 290 /* when the frag size is bigger than hardware, split this frag */ 291 for (k = 0; k < frag_buf_num; k++) 292 fill_v2_desc(ring, priv, 293 (k == frag_buf_num - 1) ? 294 sizeoflast : BD_MAX_SEND_SIZE, 295 dma + BD_MAX_SEND_SIZE * k, 296 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 297 buf_num, 298 (type == DESC_TYPE_SKB && !k) ? 299 DESC_TYPE_SKB : DESC_TYPE_PAGE, 300 mtu); 301 } 302 303 int hns_nic_net_xmit_hw(struct net_device *ndev, 304 struct sk_buff *skb, 305 struct hns_nic_ring_data *ring_data) 306 { 307 struct hns_nic_priv *priv = netdev_priv(ndev); 308 struct hnae_ring *ring = ring_data->ring; 309 struct device *dev = ring_to_dev(ring); 310 struct netdev_queue *dev_queue; 311 struct skb_frag_struct *frag; 312 int buf_num; 313 int seg_num; 314 dma_addr_t dma; 315 int size, next_to_use; 316 int i; 317 318 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 319 case -EBUSY: 320 ring->stats.tx_busy++; 321 goto out_net_tx_busy; 322 case -ENOMEM: 323 ring->stats.sw_err_cnt++; 324 netdev_err(ndev, "no memory to xmit!\n"); 325 goto out_err_tx_ok; 326 default: 327 break; 328 } 329 330 /* no. of segments (plus a header) */ 331 seg_num = skb_shinfo(skb)->nr_frags + 1; 332 next_to_use = ring->next_to_use; 333 334 /* fill the first part */ 335 size = skb_headlen(skb); 336 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 337 if (dma_mapping_error(dev, dma)) { 338 netdev_err(ndev, "TX head DMA map failed\n"); 339 ring->stats.sw_err_cnt++; 340 goto out_err_tx_ok; 341 } 342 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 343 buf_num, DESC_TYPE_SKB, ndev->mtu); 344 345 /* fill the fragments */ 346 for (i = 1; i < seg_num; i++) { 347 frag = &skb_shinfo(skb)->frags[i - 1]; 348 size = skb_frag_size(frag); 349 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 350 if (dma_mapping_error(dev, dma)) { 351 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 352 ring->stats.sw_err_cnt++; 353 goto out_map_frag_fail; 354 } 355 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 356 seg_num - 1 == i ? 1 : 0, buf_num, 357 DESC_TYPE_PAGE, ndev->mtu); 358 } 359 360 /*complete translate all packets*/ 361 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 362 netdev_tx_sent_queue(dev_queue, skb->len); 363 364 wmb(); /* commit all data before submit */ 365 assert(skb->queue_mapping < priv->ae_handle->q_num); 366 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 367 ring->stats.tx_pkts++; 368 ring->stats.tx_bytes += skb->len; 369 370 return NETDEV_TX_OK; 371 372 out_map_frag_fail: 373 374 while (ring->next_to_use != next_to_use) { 375 unfill_desc(ring); 376 if (ring->next_to_use != next_to_use) 377 dma_unmap_page(dev, 378 ring->desc_cb[ring->next_to_use].dma, 379 ring->desc_cb[ring->next_to_use].length, 380 DMA_TO_DEVICE); 381 else 382 dma_unmap_single(dev, 383 ring->desc_cb[next_to_use].dma, 384 ring->desc_cb[next_to_use].length, 385 DMA_TO_DEVICE); 386 } 387 388 out_err_tx_ok: 389 390 dev_kfree_skb_any(skb); 391 return NETDEV_TX_OK; 392 393 out_net_tx_busy: 394 395 netif_stop_subqueue(ndev, skb->queue_mapping); 396 397 /* Herbert's original patch had: 398 * smp_mb__after_netif_stop_queue(); 399 * but since that doesn't exist yet, just open code it. 400 */ 401 smp_mb(); 402 return NETDEV_TX_BUSY; 403 } 404 405 /** 406 * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE 407 * @data: pointer to the start of the headers 408 * @max: total length of section to find headers in 409 * 410 * This function is meant to determine the length of headers that will 411 * be recognized by hardware for LRO, GRO, and RSC offloads. The main 412 * motivation of doing this is to only perform one pull for IPv4 TCP 413 * packets so that we can do basic things like calculating the gso_size 414 * based on the average data per packet. 415 **/ 416 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag, 417 unsigned int max_size) 418 { 419 unsigned char *network; 420 u8 hlen; 421 422 /* this should never happen, but better safe than sorry */ 423 if (max_size < ETH_HLEN) 424 return max_size; 425 426 /* initialize network frame pointer */ 427 network = data; 428 429 /* set first protocol and move network header forward */ 430 network += ETH_HLEN; 431 432 /* handle any vlan tag if present */ 433 if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S) 434 == HNS_RX_FLAG_VLAN_PRESENT) { 435 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN)) 436 return max_size; 437 438 network += VLAN_HLEN; 439 } 440 441 /* handle L3 protocols */ 442 if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S) 443 == HNS_RX_FLAG_L3ID_IPV4) { 444 if ((typeof(max_size))(network - data) > 445 (max_size - sizeof(struct iphdr))) 446 return max_size; 447 448 /* access ihl as a u8 to avoid unaligned access on ia64 */ 449 hlen = (network[0] & 0x0F) << 2; 450 451 /* verify hlen meets minimum size requirements */ 452 if (hlen < sizeof(struct iphdr)) 453 return network - data; 454 455 /* record next protocol if header is present */ 456 } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S) 457 == HNS_RX_FLAG_L3ID_IPV6) { 458 if ((typeof(max_size))(network - data) > 459 (max_size - sizeof(struct ipv6hdr))) 460 return max_size; 461 462 /* record next protocol */ 463 hlen = sizeof(struct ipv6hdr); 464 } else { 465 return network - data; 466 } 467 468 /* relocate pointer to start of L4 header */ 469 network += hlen; 470 471 /* finally sort out TCP/UDP */ 472 if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S) 473 == HNS_RX_FLAG_L4ID_TCP) { 474 if ((typeof(max_size))(network - data) > 475 (max_size - sizeof(struct tcphdr))) 476 return max_size; 477 478 /* access doff as a u8 to avoid unaligned access on ia64 */ 479 hlen = (network[12] & 0xF0) >> 2; 480 481 /* verify hlen meets minimum size requirements */ 482 if (hlen < sizeof(struct tcphdr)) 483 return network - data; 484 485 network += hlen; 486 } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S) 487 == HNS_RX_FLAG_L4ID_UDP) { 488 if ((typeof(max_size))(network - data) > 489 (max_size - sizeof(struct udphdr))) 490 return max_size; 491 492 network += sizeof(struct udphdr); 493 } 494 495 /* If everything has gone correctly network should be the 496 * data section of the packet and will be the end of the header. 497 * If not then it probably represents the end of the last recognized 498 * header. 499 */ 500 if ((typeof(max_size))(network - data) < max_size) 501 return network - data; 502 else 503 return max_size; 504 } 505 506 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 507 struct hnae_ring *ring, int pull_len, 508 struct hnae_desc_cb *desc_cb) 509 { 510 struct hnae_desc *desc; 511 int truesize, size; 512 int last_offset; 513 bool twobufs; 514 515 twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 516 517 desc = &ring->desc[ring->next_to_clean]; 518 size = le16_to_cpu(desc->rx.size); 519 520 if (twobufs) { 521 truesize = hnae_buf_size(ring); 522 } else { 523 truesize = ALIGN(size, L1_CACHE_BYTES); 524 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 525 } 526 527 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 528 size - pull_len, truesize - pull_len); 529 530 /* avoid re-using remote pages,flag default unreuse */ 531 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 532 return; 533 534 if (twobufs) { 535 /* if we are only owner of page we can reuse it */ 536 if (likely(page_count(desc_cb->priv) == 1)) { 537 /* flip page offset to other buffer */ 538 desc_cb->page_offset ^= truesize; 539 540 desc_cb->reuse_flag = 1; 541 /* bump ref count on page before it is given*/ 542 get_page(desc_cb->priv); 543 } 544 return; 545 } 546 547 /* move offset up to the next cache line */ 548 desc_cb->page_offset += truesize; 549 550 if (desc_cb->page_offset <= last_offset) { 551 desc_cb->reuse_flag = 1; 552 /* bump ref count on page before it is given*/ 553 get_page(desc_cb->priv); 554 } 555 } 556 557 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 558 { 559 *out_bnum = hnae_get_field(bnum_flag, 560 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 561 } 562 563 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 564 { 565 *out_bnum = hnae_get_field(bnum_flag, 566 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 567 } 568 569 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 570 struct sk_buff *skb, u32 flag) 571 { 572 struct net_device *netdev = ring_data->napi.dev; 573 u32 l3id; 574 u32 l4id; 575 576 /* check if RX checksum offload is enabled */ 577 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 578 return; 579 580 /* In hardware, we only support checksum for the following protocols: 581 * 1) IPv4, 582 * 2) TCP(over IPv4 or IPv6), 583 * 3) UDP(over IPv4 or IPv6), 584 * 4) SCTP(over IPv4 or IPv6) 585 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 586 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 587 * 588 * Hardware limitation: 589 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 590 * Error" bit (which usually can be used to indicate whether checksum 591 * was calculated by the hardware and if there was any error encountered 592 * during checksum calculation). 593 * 594 * Software workaround: 595 * We do get info within the RX descriptor about the kind of L3/L4 596 * protocol coming in the packet and the error status. These errors 597 * might not just be checksum errors but could be related to version, 598 * length of IPv4, UDP, TCP etc. 599 * Because there is no-way of knowing if it is a L3/L4 error due to bad 600 * checksum or any other L3/L4 error, we will not (cannot) convey 601 * checksum status for such cases to upper stack and will not maintain 602 * the RX L3/L4 checksum counters as well. 603 */ 604 605 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 606 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 607 608 /* check L3 protocol for which checksum is supported */ 609 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 610 return; 611 612 /* check for any(not just checksum)flagged L3 protocol errors */ 613 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 614 return; 615 616 /* we do not support checksum of fragmented packets */ 617 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 618 return; 619 620 /* check L4 protocol for which checksum is supported */ 621 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 622 (l4id != HNS_RX_FLAG_L4ID_UDP) && 623 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 624 return; 625 626 /* check for any(not just checksum)flagged L4 protocol errors */ 627 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 628 return; 629 630 /* now, this has to be a packet with valid RX checksum */ 631 skb->ip_summed = CHECKSUM_UNNECESSARY; 632 } 633 634 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 635 struct sk_buff **out_skb, int *out_bnum) 636 { 637 struct hnae_ring *ring = ring_data->ring; 638 struct net_device *ndev = ring_data->napi.dev; 639 struct hns_nic_priv *priv = netdev_priv(ndev); 640 struct sk_buff *skb; 641 struct hnae_desc *desc; 642 struct hnae_desc_cb *desc_cb; 643 unsigned char *va; 644 int bnum, length, i; 645 int pull_len; 646 u32 bnum_flag; 647 648 desc = &ring->desc[ring->next_to_clean]; 649 desc_cb = &ring->desc_cb[ring->next_to_clean]; 650 651 prefetch(desc); 652 653 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 654 655 /* prefetch first cache line of first page */ 656 prefetch(va); 657 #if L1_CACHE_BYTES < 128 658 prefetch(va + L1_CACHE_BYTES); 659 #endif 660 661 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 662 HNS_RX_HEAD_SIZE); 663 if (unlikely(!skb)) { 664 netdev_err(ndev, "alloc rx skb fail\n"); 665 ring->stats.sw_err_cnt++; 666 return -ENOMEM; 667 } 668 669 prefetchw(skb->data); 670 length = le16_to_cpu(desc->rx.pkt_len); 671 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 672 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 673 *out_bnum = bnum; 674 675 if (length <= HNS_RX_HEAD_SIZE) { 676 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 677 678 /* we can reuse buffer as-is, just make sure it is local */ 679 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 680 desc_cb->reuse_flag = 1; 681 else /* this page cannot be reused so discard it */ 682 put_page(desc_cb->priv); 683 684 ring_ptr_move_fw(ring, next_to_clean); 685 686 if (unlikely(bnum != 1)) { /* check err*/ 687 *out_bnum = 1; 688 goto out_bnum_err; 689 } 690 } else { 691 ring->stats.seg_pkt_cnt++; 692 693 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE); 694 memcpy(__skb_put(skb, pull_len), va, 695 ALIGN(pull_len, sizeof(long))); 696 697 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 698 ring_ptr_move_fw(ring, next_to_clean); 699 700 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 701 *out_bnum = 1; 702 goto out_bnum_err; 703 } 704 for (i = 1; i < bnum; i++) { 705 desc = &ring->desc[ring->next_to_clean]; 706 desc_cb = &ring->desc_cb[ring->next_to_clean]; 707 708 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 709 ring_ptr_move_fw(ring, next_to_clean); 710 } 711 } 712 713 /* check except process, free skb and jump the desc */ 714 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 715 out_bnum_err: 716 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 717 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 718 bnum, ring->max_desc_num_per_pkt, 719 length, (int)MAX_SKB_FRAGS, 720 ((u64 *)desc)[0], ((u64 *)desc)[1]); 721 ring->stats.err_bd_num++; 722 dev_kfree_skb_any(skb); 723 return -EDOM; 724 } 725 726 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 727 728 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 729 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 730 ((u64 *)desc)[0], ((u64 *)desc)[1]); 731 ring->stats.non_vld_descs++; 732 dev_kfree_skb_any(skb); 733 return -EINVAL; 734 } 735 736 if (unlikely((!desc->rx.pkt_len) || 737 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 738 ring->stats.err_pkt_len++; 739 dev_kfree_skb_any(skb); 740 return -EFAULT; 741 } 742 743 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 744 ring->stats.l2_err++; 745 dev_kfree_skb_any(skb); 746 return -EFAULT; 747 } 748 749 ring->stats.rx_pkts++; 750 ring->stats.rx_bytes += skb->len; 751 752 /* indicate to upper stack if our hardware has already calculated 753 * the RX checksum 754 */ 755 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 756 757 return 0; 758 } 759 760 static void 761 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 762 { 763 int i, ret; 764 struct hnae_desc_cb res_cbs; 765 struct hnae_desc_cb *desc_cb; 766 struct hnae_ring *ring = ring_data->ring; 767 struct net_device *ndev = ring_data->napi.dev; 768 769 for (i = 0; i < cleand_count; i++) { 770 desc_cb = &ring->desc_cb[ring->next_to_use]; 771 if (desc_cb->reuse_flag) { 772 ring->stats.reuse_pg_cnt++; 773 hnae_reuse_buffer(ring, ring->next_to_use); 774 } else { 775 ret = hnae_reserve_buffer_map(ring, &res_cbs); 776 if (ret) { 777 ring->stats.sw_err_cnt++; 778 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 779 break; 780 } 781 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 782 } 783 784 ring_ptr_move_fw(ring, next_to_use); 785 } 786 787 wmb(); /* make all data has been write before submit */ 788 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 789 } 790 791 /* return error number for error or number of desc left to take 792 */ 793 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 794 struct sk_buff *skb) 795 { 796 struct net_device *ndev = ring_data->napi.dev; 797 798 skb->protocol = eth_type_trans(skb, ndev); 799 (void)napi_gro_receive(&ring_data->napi, skb); 800 } 801 802 static int hns_desc_unused(struct hnae_ring *ring) 803 { 804 int ntc = ring->next_to_clean; 805 int ntu = ring->next_to_use; 806 807 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 808 } 809 810 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 811 int budget, void *v) 812 { 813 struct hnae_ring *ring = ring_data->ring; 814 struct sk_buff *skb; 815 int num, bnum; 816 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 817 int recv_pkts, recv_bds, clean_count, err; 818 int unused_count = hns_desc_unused(ring); 819 820 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 821 rmb(); /* make sure num taken effect before the other data is touched */ 822 823 recv_pkts = 0, recv_bds = 0, clean_count = 0; 824 num -= unused_count; 825 826 while (recv_pkts < budget && recv_bds < num) { 827 /* reuse or realloc buffers */ 828 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 829 hns_nic_alloc_rx_buffers(ring_data, 830 clean_count + unused_count); 831 clean_count = 0; 832 unused_count = hns_desc_unused(ring); 833 } 834 835 /* poll one pkt */ 836 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 837 if (unlikely(!skb)) /* this fault cannot be repaired */ 838 goto out; 839 840 recv_bds += bnum; 841 clean_count += bnum; 842 if (unlikely(err)) { /* do jump the err */ 843 recv_pkts++; 844 continue; 845 } 846 847 /* do update ip stack process*/ 848 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 849 ring_data, skb); 850 recv_pkts++; 851 } 852 853 out: 854 /* make all data has been write before submit */ 855 if (clean_count + unused_count > 0) 856 hns_nic_alloc_rx_buffers(ring_data, 857 clean_count + unused_count); 858 859 return recv_pkts; 860 } 861 862 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 863 { 864 struct hnae_ring *ring = ring_data->ring; 865 int num = 0; 866 867 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 868 869 /* for hardware bug fixed */ 870 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 871 872 if (num > 0) { 873 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 874 ring_data->ring, 1); 875 876 napi_schedule(&ring_data->napi); 877 } 878 } 879 880 static void hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 881 { 882 struct hnae_ring *ring = ring_data->ring; 883 int num = 0; 884 885 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 886 887 if (num == 0) 888 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 889 ring, 0); 890 else 891 napi_schedule(&ring_data->napi); 892 } 893 894 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 895 int *bytes, int *pkts) 896 { 897 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 898 899 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 900 (*bytes) += desc_cb->length; 901 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 902 hnae_free_buffer_detach(ring, ring->next_to_clean); 903 904 ring_ptr_move_fw(ring, next_to_clean); 905 } 906 907 static int is_valid_clean_head(struct hnae_ring *ring, int h) 908 { 909 int u = ring->next_to_use; 910 int c = ring->next_to_clean; 911 912 if (unlikely(h > ring->desc_num)) 913 return 0; 914 915 assert(u > 0 && u < ring->desc_num); 916 assert(c > 0 && c < ring->desc_num); 917 assert(u != c && h != c); /* must be checked before call this func */ 918 919 return u > c ? (h > c && h <= u) : (h > c || h <= u); 920 } 921 922 /* netif_tx_lock will turn down the performance, set only when necessary */ 923 #ifdef CONFIG_NET_POLL_CONTROLLER 924 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev) 925 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev) 926 #else 927 #define NETIF_TX_LOCK(ndev) 928 #define NETIF_TX_UNLOCK(ndev) 929 #endif 930 /* reclaim all desc in one budget 931 * return error or number of desc left 932 */ 933 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 934 int budget, void *v) 935 { 936 struct hnae_ring *ring = ring_data->ring; 937 struct net_device *ndev = ring_data->napi.dev; 938 struct netdev_queue *dev_queue; 939 struct hns_nic_priv *priv = netdev_priv(ndev); 940 int head; 941 int bytes, pkts; 942 943 NETIF_TX_LOCK(ndev); 944 945 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 946 rmb(); /* make sure head is ready before touch any data */ 947 948 if (is_ring_empty(ring) || head == ring->next_to_clean) { 949 NETIF_TX_UNLOCK(ndev); 950 return 0; /* no data to poll */ 951 } 952 953 if (!is_valid_clean_head(ring, head)) { 954 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 955 ring->next_to_use, ring->next_to_clean); 956 ring->stats.io_err_cnt++; 957 NETIF_TX_UNLOCK(ndev); 958 return -EIO; 959 } 960 961 bytes = 0; 962 pkts = 0; 963 while (head != ring->next_to_clean) { 964 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 965 /* issue prefetch for next Tx descriptor */ 966 prefetch(&ring->desc_cb[ring->next_to_clean]); 967 } 968 969 NETIF_TX_UNLOCK(ndev); 970 971 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 972 netdev_tx_completed_queue(dev_queue, pkts, bytes); 973 974 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 975 netif_carrier_on(ndev); 976 977 if (unlikely(pkts && netif_carrier_ok(ndev) && 978 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 979 /* Make sure that anybody stopping the queue after this 980 * sees the new next_to_clean. 981 */ 982 smp_mb(); 983 if (netif_tx_queue_stopped(dev_queue) && 984 !test_bit(NIC_STATE_DOWN, &priv->state)) { 985 netif_tx_wake_queue(dev_queue); 986 ring->stats.restart_queue++; 987 } 988 } 989 return 0; 990 } 991 992 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 993 { 994 struct hnae_ring *ring = ring_data->ring; 995 int head; 996 997 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 998 999 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1000 1001 if (head != ring->next_to_clean) { 1002 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1003 ring_data->ring, 1); 1004 1005 napi_schedule(&ring_data->napi); 1006 } 1007 } 1008 1009 static void hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1010 { 1011 struct hnae_ring *ring = ring_data->ring; 1012 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1013 1014 if (head == ring->next_to_clean) 1015 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1016 ring, 0); 1017 else 1018 napi_schedule(&ring_data->napi); 1019 } 1020 1021 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1022 { 1023 struct hnae_ring *ring = ring_data->ring; 1024 struct net_device *ndev = ring_data->napi.dev; 1025 struct netdev_queue *dev_queue; 1026 int head; 1027 int bytes, pkts; 1028 1029 NETIF_TX_LOCK(ndev); 1030 1031 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1032 bytes = 0; 1033 pkts = 0; 1034 while (head != ring->next_to_clean) 1035 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1036 1037 NETIF_TX_UNLOCK(ndev); 1038 1039 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1040 netdev_tx_reset_queue(dev_queue); 1041 } 1042 1043 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1044 { 1045 struct hns_nic_ring_data *ring_data = 1046 container_of(napi, struct hns_nic_ring_data, napi); 1047 int clean_complete = ring_data->poll_one( 1048 ring_data, budget, ring_data->ex_process); 1049 1050 if (clean_complete >= 0 && clean_complete < budget) { 1051 napi_complete(napi); 1052 ring_data->fini_process(ring_data); 1053 return 0; 1054 } 1055 1056 return clean_complete; 1057 } 1058 1059 static irqreturn_t hns_irq_handle(int irq, void *dev) 1060 { 1061 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1062 1063 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1064 ring_data->ring, 1); 1065 napi_schedule(&ring_data->napi); 1066 1067 return IRQ_HANDLED; 1068 } 1069 1070 /** 1071 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1072 *@ndev: net device 1073 */ 1074 static void hns_nic_adjust_link(struct net_device *ndev) 1075 { 1076 struct hns_nic_priv *priv = netdev_priv(ndev); 1077 struct hnae_handle *h = priv->ae_handle; 1078 int state = 1; 1079 1080 if (ndev->phydev) { 1081 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1082 ndev->phydev->duplex); 1083 state = ndev->phydev->link; 1084 } 1085 state = state && h->dev->ops->get_status(h); 1086 1087 if (state != priv->link) { 1088 if (state) { 1089 netif_carrier_on(ndev); 1090 netif_tx_wake_all_queues(ndev); 1091 netdev_info(ndev, "link up\n"); 1092 } else { 1093 netif_carrier_off(ndev); 1094 netdev_info(ndev, "link down\n"); 1095 } 1096 priv->link = state; 1097 } 1098 } 1099 1100 /** 1101 *hns_nic_init_phy - init phy 1102 *@ndev: net device 1103 *@h: ae handle 1104 * Return 0 on success, negative on failure 1105 */ 1106 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1107 { 1108 struct phy_device *phy_dev = h->phy_dev; 1109 int ret; 1110 1111 if (!h->phy_dev) 1112 return 0; 1113 1114 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1115 phy_dev->dev_flags = 0; 1116 1117 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1118 h->phy_if); 1119 } else { 1120 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1121 } 1122 if (unlikely(ret)) 1123 return -ENODEV; 1124 1125 phy_dev->supported &= h->if_support; 1126 phy_dev->advertising = phy_dev->supported; 1127 1128 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1129 phy_dev->autoneg = false; 1130 1131 return 0; 1132 } 1133 1134 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1135 { 1136 struct hns_nic_priv *priv = netdev_priv(netdev); 1137 struct hnae_handle *h = priv->ae_handle; 1138 1139 napi_enable(&priv->ring_data[idx].napi); 1140 1141 enable_irq(priv->ring_data[idx].ring->irq); 1142 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1143 1144 return 0; 1145 } 1146 1147 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1148 { 1149 struct hns_nic_priv *priv = netdev_priv(ndev); 1150 struct hnae_handle *h = priv->ae_handle; 1151 struct sockaddr *mac_addr = p; 1152 int ret; 1153 1154 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1155 return -EADDRNOTAVAIL; 1156 1157 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1158 if (ret) { 1159 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1160 return ret; 1161 } 1162 1163 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); 1164 1165 return 0; 1166 } 1167 1168 void hns_nic_update_stats(struct net_device *netdev) 1169 { 1170 struct hns_nic_priv *priv = netdev_priv(netdev); 1171 struct hnae_handle *h = priv->ae_handle; 1172 1173 h->dev->ops->update_stats(h, &netdev->stats); 1174 } 1175 1176 /* set mac addr if it is configed. or leave it to the AE driver */ 1177 static void hns_init_mac_addr(struct net_device *ndev) 1178 { 1179 struct hns_nic_priv *priv = netdev_priv(ndev); 1180 1181 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { 1182 eth_hw_addr_random(ndev); 1183 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1184 ndev->dev_addr); 1185 } 1186 } 1187 1188 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1189 { 1190 struct hns_nic_priv *priv = netdev_priv(netdev); 1191 struct hnae_handle *h = priv->ae_handle; 1192 1193 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1194 disable_irq(priv->ring_data[idx].ring->irq); 1195 1196 napi_disable(&priv->ring_data[idx].napi); 1197 } 1198 1199 static void hns_set_irq_affinity(struct hns_nic_priv *priv) 1200 { 1201 struct hnae_handle *h = priv->ae_handle; 1202 struct hns_nic_ring_data *rd; 1203 int i; 1204 int cpu; 1205 cpumask_var_t mask; 1206 1207 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) 1208 return; 1209 1210 /*diffrent irq banlance for 16core and 32core*/ 1211 if (h->q_num == num_possible_cpus()) { 1212 for (i = 0; i < h->q_num * 2; i++) { 1213 rd = &priv->ring_data[i]; 1214 if (cpu_online(rd->queue_index)) { 1215 cpumask_clear(mask); 1216 cpu = rd->queue_index; 1217 cpumask_set_cpu(cpu, mask); 1218 (void)irq_set_affinity_hint(rd->ring->irq, 1219 mask); 1220 } 1221 } 1222 } else { 1223 for (i = 0; i < h->q_num; i++) { 1224 rd = &priv->ring_data[i]; 1225 if (cpu_online(rd->queue_index * 2)) { 1226 cpumask_clear(mask); 1227 cpu = rd->queue_index * 2; 1228 cpumask_set_cpu(cpu, mask); 1229 (void)irq_set_affinity_hint(rd->ring->irq, 1230 mask); 1231 } 1232 } 1233 1234 for (i = h->q_num; i < h->q_num * 2; i++) { 1235 rd = &priv->ring_data[i]; 1236 if (cpu_online(rd->queue_index * 2 + 1)) { 1237 cpumask_clear(mask); 1238 cpu = rd->queue_index * 2 + 1; 1239 cpumask_set_cpu(cpu, mask); 1240 (void)irq_set_affinity_hint(rd->ring->irq, 1241 mask); 1242 } 1243 } 1244 } 1245 1246 free_cpumask_var(mask); 1247 } 1248 1249 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1250 { 1251 struct hnae_handle *h = priv->ae_handle; 1252 struct hns_nic_ring_data *rd; 1253 int i; 1254 int ret; 1255 1256 for (i = 0; i < h->q_num * 2; i++) { 1257 rd = &priv->ring_data[i]; 1258 1259 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1260 break; 1261 1262 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1263 "%s-%s%d", priv->netdev->name, 1264 (i < h->q_num ? "tx" : "rx"), rd->queue_index); 1265 1266 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1267 1268 ret = request_irq(rd->ring->irq, 1269 hns_irq_handle, 0, rd->ring->ring_name, rd); 1270 if (ret) { 1271 netdev_err(priv->netdev, "request irq(%d) fail\n", 1272 rd->ring->irq); 1273 return ret; 1274 } 1275 disable_irq(rd->ring->irq); 1276 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1277 } 1278 1279 /*set cpu affinity*/ 1280 hns_set_irq_affinity(priv); 1281 1282 return 0; 1283 } 1284 1285 static int hns_nic_net_up(struct net_device *ndev) 1286 { 1287 struct hns_nic_priv *priv = netdev_priv(ndev); 1288 struct hnae_handle *h = priv->ae_handle; 1289 int i, j; 1290 int ret; 1291 1292 ret = hns_nic_init_irq(priv); 1293 if (ret != 0) { 1294 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1295 return ret; 1296 } 1297 1298 for (i = 0; i < h->q_num * 2; i++) { 1299 ret = hns_nic_ring_open(ndev, i); 1300 if (ret) 1301 goto out_has_some_queues; 1302 } 1303 1304 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1305 if (ret) 1306 goto out_set_mac_addr_err; 1307 1308 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1309 if (ret) 1310 goto out_start_err; 1311 1312 if (ndev->phydev) 1313 phy_start(ndev->phydev); 1314 1315 clear_bit(NIC_STATE_DOWN, &priv->state); 1316 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1317 1318 return 0; 1319 1320 out_start_err: 1321 netif_stop_queue(ndev); 1322 out_set_mac_addr_err: 1323 out_has_some_queues: 1324 for (j = i - 1; j >= 0; j--) 1325 hns_nic_ring_close(ndev, j); 1326 1327 set_bit(NIC_STATE_DOWN, &priv->state); 1328 1329 return ret; 1330 } 1331 1332 static void hns_nic_net_down(struct net_device *ndev) 1333 { 1334 int i; 1335 struct hnae_ae_ops *ops; 1336 struct hns_nic_priv *priv = netdev_priv(ndev); 1337 1338 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1339 return; 1340 1341 (void)del_timer_sync(&priv->service_timer); 1342 netif_tx_stop_all_queues(ndev); 1343 netif_carrier_off(ndev); 1344 netif_tx_disable(ndev); 1345 priv->link = 0; 1346 1347 if (ndev->phydev) 1348 phy_stop(ndev->phydev); 1349 1350 ops = priv->ae_handle->dev->ops; 1351 1352 if (ops->stop) 1353 ops->stop(priv->ae_handle); 1354 1355 netif_tx_stop_all_queues(ndev); 1356 1357 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1358 hns_nic_ring_close(ndev, i); 1359 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1360 1361 /* clean tx buffers*/ 1362 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1363 } 1364 } 1365 1366 void hns_nic_net_reset(struct net_device *ndev) 1367 { 1368 struct hns_nic_priv *priv = netdev_priv(ndev); 1369 struct hnae_handle *handle = priv->ae_handle; 1370 1371 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1372 usleep_range(1000, 2000); 1373 1374 (void)hnae_reinit_handle(handle); 1375 1376 clear_bit(NIC_STATE_RESETTING, &priv->state); 1377 } 1378 1379 void hns_nic_net_reinit(struct net_device *netdev) 1380 { 1381 struct hns_nic_priv *priv = netdev_priv(netdev); 1382 1383 netif_trans_update(priv->netdev); 1384 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1385 usleep_range(1000, 2000); 1386 1387 hns_nic_net_down(netdev); 1388 hns_nic_net_reset(netdev); 1389 (void)hns_nic_net_up(netdev); 1390 clear_bit(NIC_STATE_REINITING, &priv->state); 1391 } 1392 1393 static int hns_nic_net_open(struct net_device *ndev) 1394 { 1395 struct hns_nic_priv *priv = netdev_priv(ndev); 1396 struct hnae_handle *h = priv->ae_handle; 1397 int ret; 1398 1399 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1400 return -EBUSY; 1401 1402 priv->link = 0; 1403 netif_carrier_off(ndev); 1404 1405 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1406 if (ret < 0) { 1407 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1408 ret); 1409 return ret; 1410 } 1411 1412 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1413 if (ret < 0) { 1414 netdev_err(ndev, 1415 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1416 return ret; 1417 } 1418 1419 ret = hns_nic_net_up(ndev); 1420 if (ret) { 1421 netdev_err(ndev, 1422 "hns net up fail, ret=%d!\n", ret); 1423 return ret; 1424 } 1425 1426 return 0; 1427 } 1428 1429 static int hns_nic_net_stop(struct net_device *ndev) 1430 { 1431 hns_nic_net_down(ndev); 1432 1433 return 0; 1434 } 1435 1436 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1437 static void hns_nic_net_timeout(struct net_device *ndev) 1438 { 1439 struct hns_nic_priv *priv = netdev_priv(ndev); 1440 1441 hns_tx_timeout_reset(priv); 1442 } 1443 1444 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr, 1445 int cmd) 1446 { 1447 struct phy_device *phy_dev = netdev->phydev; 1448 1449 if (!netif_running(netdev)) 1450 return -EINVAL; 1451 1452 if (!phy_dev) 1453 return -ENOTSUPP; 1454 1455 return phy_mii_ioctl(phy_dev, ifr, cmd); 1456 } 1457 1458 /* use only for netconsole to poll with the device without interrupt */ 1459 #ifdef CONFIG_NET_POLL_CONTROLLER 1460 void hns_nic_poll_controller(struct net_device *ndev) 1461 { 1462 struct hns_nic_priv *priv = netdev_priv(ndev); 1463 unsigned long flags; 1464 int i; 1465 1466 local_irq_save(flags); 1467 for (i = 0; i < priv->ae_handle->q_num * 2; i++) 1468 napi_schedule(&priv->ring_data[i].napi); 1469 local_irq_restore(flags); 1470 } 1471 #endif 1472 1473 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1474 struct net_device *ndev) 1475 { 1476 struct hns_nic_priv *priv = netdev_priv(ndev); 1477 int ret; 1478 1479 assert(skb->queue_mapping < ndev->ae_handle->q_num); 1480 ret = hns_nic_net_xmit_hw(ndev, skb, 1481 &tx_ring_data(priv, skb->queue_mapping)); 1482 if (ret == NETDEV_TX_OK) { 1483 netif_trans_update(ndev); 1484 ndev->stats.tx_bytes += skb->len; 1485 ndev->stats.tx_packets++; 1486 } 1487 return (netdev_tx_t)ret; 1488 } 1489 1490 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1491 { 1492 struct hns_nic_priv *priv = netdev_priv(ndev); 1493 struct hnae_handle *h = priv->ae_handle; 1494 int ret; 1495 1496 if (!h->dev->ops->set_mtu) 1497 return -ENOTSUPP; 1498 1499 if (netif_running(ndev)) { 1500 (void)hns_nic_net_stop(ndev); 1501 msleep(100); 1502 1503 ret = h->dev->ops->set_mtu(h, new_mtu); 1504 if (ret) 1505 netdev_err(ndev, "set mtu fail, return value %d\n", 1506 ret); 1507 1508 if (hns_nic_net_open(ndev)) 1509 netdev_err(ndev, "hns net open fail\n"); 1510 } else { 1511 ret = h->dev->ops->set_mtu(h, new_mtu); 1512 } 1513 1514 if (!ret) 1515 ndev->mtu = new_mtu; 1516 1517 return ret; 1518 } 1519 1520 static int hns_nic_set_features(struct net_device *netdev, 1521 netdev_features_t features) 1522 { 1523 struct hns_nic_priv *priv = netdev_priv(netdev); 1524 1525 switch (priv->enet_ver) { 1526 case AE_VERSION_1: 1527 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1528 netdev_info(netdev, "enet v1 do not support tso!\n"); 1529 break; 1530 default: 1531 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1532 priv->ops.fill_desc = fill_tso_desc; 1533 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1534 /* The chip only support 7*4096 */ 1535 netif_set_gso_max_size(netdev, 7 * 4096); 1536 } else { 1537 priv->ops.fill_desc = fill_v2_desc; 1538 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1539 } 1540 break; 1541 } 1542 netdev->features = features; 1543 return 0; 1544 } 1545 1546 static netdev_features_t hns_nic_fix_features( 1547 struct net_device *netdev, netdev_features_t features) 1548 { 1549 struct hns_nic_priv *priv = netdev_priv(netdev); 1550 1551 switch (priv->enet_ver) { 1552 case AE_VERSION_1: 1553 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1554 NETIF_F_HW_VLAN_CTAG_FILTER); 1555 break; 1556 default: 1557 break; 1558 } 1559 return features; 1560 } 1561 1562 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1563 { 1564 struct hns_nic_priv *priv = netdev_priv(netdev); 1565 struct hnae_handle *h = priv->ae_handle; 1566 1567 if (h->dev->ops->add_uc_addr) 1568 return h->dev->ops->add_uc_addr(h, addr); 1569 1570 return 0; 1571 } 1572 1573 static int hns_nic_uc_unsync(struct net_device *netdev, 1574 const unsigned char *addr) 1575 { 1576 struct hns_nic_priv *priv = netdev_priv(netdev); 1577 struct hnae_handle *h = priv->ae_handle; 1578 1579 if (h->dev->ops->rm_uc_addr) 1580 return h->dev->ops->rm_uc_addr(h, addr); 1581 1582 return 0; 1583 } 1584 1585 /** 1586 * nic_set_multicast_list - set mutl mac address 1587 * @netdev: net device 1588 * @p: mac address 1589 * 1590 * return void 1591 */ 1592 void hns_set_multicast_list(struct net_device *ndev) 1593 { 1594 struct hns_nic_priv *priv = netdev_priv(ndev); 1595 struct hnae_handle *h = priv->ae_handle; 1596 struct netdev_hw_addr *ha = NULL; 1597 1598 if (!h) { 1599 netdev_err(ndev, "hnae handle is null\n"); 1600 return; 1601 } 1602 1603 if (h->dev->ops->clr_mc_addr) 1604 if (h->dev->ops->clr_mc_addr(h)) 1605 netdev_err(ndev, "clear multicast address fail\n"); 1606 1607 if (h->dev->ops->set_mc_addr) { 1608 netdev_for_each_mc_addr(ha, ndev) 1609 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1610 netdev_err(ndev, "set multicast fail\n"); 1611 } 1612 } 1613 1614 void hns_nic_set_rx_mode(struct net_device *ndev) 1615 { 1616 struct hns_nic_priv *priv = netdev_priv(ndev); 1617 struct hnae_handle *h = priv->ae_handle; 1618 1619 if (h->dev->ops->set_promisc_mode) { 1620 if (ndev->flags & IFF_PROMISC) 1621 h->dev->ops->set_promisc_mode(h, 1); 1622 else 1623 h->dev->ops->set_promisc_mode(h, 0); 1624 } 1625 1626 hns_set_multicast_list(ndev); 1627 1628 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1629 netdev_err(ndev, "sync uc address fail\n"); 1630 } 1631 1632 static void hns_nic_get_stats64(struct net_device *ndev, 1633 struct rtnl_link_stats64 *stats) 1634 { 1635 int idx = 0; 1636 u64 tx_bytes = 0; 1637 u64 rx_bytes = 0; 1638 u64 tx_pkts = 0; 1639 u64 rx_pkts = 0; 1640 struct hns_nic_priv *priv = netdev_priv(ndev); 1641 struct hnae_handle *h = priv->ae_handle; 1642 1643 for (idx = 0; idx < h->q_num; idx++) { 1644 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1645 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1646 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1647 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1648 } 1649 1650 stats->tx_bytes = tx_bytes; 1651 stats->tx_packets = tx_pkts; 1652 stats->rx_bytes = rx_bytes; 1653 stats->rx_packets = rx_pkts; 1654 1655 stats->rx_errors = ndev->stats.rx_errors; 1656 stats->multicast = ndev->stats.multicast; 1657 stats->rx_length_errors = ndev->stats.rx_length_errors; 1658 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1659 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1660 1661 stats->tx_errors = ndev->stats.tx_errors; 1662 stats->rx_dropped = ndev->stats.rx_dropped; 1663 stats->tx_dropped = ndev->stats.tx_dropped; 1664 stats->collisions = ndev->stats.collisions; 1665 stats->rx_over_errors = ndev->stats.rx_over_errors; 1666 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1667 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1668 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1669 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1670 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1671 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1672 stats->tx_window_errors = ndev->stats.tx_window_errors; 1673 stats->rx_compressed = ndev->stats.rx_compressed; 1674 stats->tx_compressed = ndev->stats.tx_compressed; 1675 } 1676 1677 static u16 1678 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1679 void *accel_priv, select_queue_fallback_t fallback) 1680 { 1681 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1682 struct hns_nic_priv *priv = netdev_priv(ndev); 1683 1684 /* fix hardware broadcast/multicast packets queue loopback */ 1685 if (!AE_IS_VER1(priv->enet_ver) && 1686 is_multicast_ether_addr(eth_hdr->h_dest)) 1687 return 0; 1688 else 1689 return fallback(ndev, skb); 1690 } 1691 1692 static const struct net_device_ops hns_nic_netdev_ops = { 1693 .ndo_open = hns_nic_net_open, 1694 .ndo_stop = hns_nic_net_stop, 1695 .ndo_start_xmit = hns_nic_net_xmit, 1696 .ndo_tx_timeout = hns_nic_net_timeout, 1697 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1698 .ndo_change_mtu = hns_nic_change_mtu, 1699 .ndo_do_ioctl = hns_nic_do_ioctl, 1700 .ndo_set_features = hns_nic_set_features, 1701 .ndo_fix_features = hns_nic_fix_features, 1702 .ndo_get_stats64 = hns_nic_get_stats64, 1703 #ifdef CONFIG_NET_POLL_CONTROLLER 1704 .ndo_poll_controller = hns_nic_poll_controller, 1705 #endif 1706 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1707 .ndo_select_queue = hns_nic_select_queue, 1708 }; 1709 1710 static void hns_nic_update_link_status(struct net_device *netdev) 1711 { 1712 struct hns_nic_priv *priv = netdev_priv(netdev); 1713 1714 struct hnae_handle *h = priv->ae_handle; 1715 1716 if (h->phy_dev) { 1717 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1718 return; 1719 1720 (void)genphy_read_status(h->phy_dev); 1721 } 1722 hns_nic_adjust_link(netdev); 1723 } 1724 1725 /* for dumping key regs*/ 1726 static void hns_nic_dump(struct hns_nic_priv *priv) 1727 { 1728 struct hnae_handle *h = priv->ae_handle; 1729 struct hnae_ae_ops *ops = h->dev->ops; 1730 u32 *data, reg_num, i; 1731 1732 if (ops->get_regs_len && ops->get_regs) { 1733 reg_num = ops->get_regs_len(priv->ae_handle); 1734 reg_num = (reg_num + 3ul) & ~3ul; 1735 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 1736 if (data) { 1737 ops->get_regs(priv->ae_handle, data); 1738 for (i = 0; i < reg_num; i += 4) 1739 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 1740 i, data[i], data[i + 1], 1741 data[i + 2], data[i + 3]); 1742 kfree(data); 1743 } 1744 } 1745 1746 for (i = 0; i < h->q_num; i++) { 1747 pr_info("tx_queue%d_next_to_clean:%d\n", 1748 i, h->qs[i]->tx_ring.next_to_clean); 1749 pr_info("tx_queue%d_next_to_use:%d\n", 1750 i, h->qs[i]->tx_ring.next_to_use); 1751 pr_info("rx_queue%d_next_to_clean:%d\n", 1752 i, h->qs[i]->rx_ring.next_to_clean); 1753 pr_info("rx_queue%d_next_to_use:%d\n", 1754 i, h->qs[i]->rx_ring.next_to_use); 1755 } 1756 } 1757 1758 /* for resetting subtask */ 1759 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 1760 { 1761 enum hnae_port_type type = priv->ae_handle->port_type; 1762 1763 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 1764 return; 1765 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 1766 1767 /* If we're already down, removing or resetting, just bail */ 1768 if (test_bit(NIC_STATE_DOWN, &priv->state) || 1769 test_bit(NIC_STATE_REMOVING, &priv->state) || 1770 test_bit(NIC_STATE_RESETTING, &priv->state)) 1771 return; 1772 1773 hns_nic_dump(priv); 1774 netdev_info(priv->netdev, "try to reset %s port!\n", 1775 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 1776 1777 rtnl_lock(); 1778 /* put off any impending NetWatchDogTimeout */ 1779 netif_trans_update(priv->netdev); 1780 1781 if (type == HNAE_PORT_DEBUG) { 1782 hns_nic_net_reinit(priv->netdev); 1783 } else { 1784 netif_carrier_off(priv->netdev); 1785 netif_tx_disable(priv->netdev); 1786 } 1787 rtnl_unlock(); 1788 } 1789 1790 /* for doing service complete*/ 1791 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 1792 { 1793 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 1794 1795 smp_mb__before_atomic(); 1796 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 1797 } 1798 1799 static void hns_nic_service_task(struct work_struct *work) 1800 { 1801 struct hns_nic_priv *priv 1802 = container_of(work, struct hns_nic_priv, service_task); 1803 struct hnae_handle *h = priv->ae_handle; 1804 1805 hns_nic_update_link_status(priv->netdev); 1806 h->dev->ops->update_led_status(h); 1807 hns_nic_update_stats(priv->netdev); 1808 1809 hns_nic_reset_subtask(priv); 1810 hns_nic_service_event_complete(priv); 1811 } 1812 1813 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 1814 { 1815 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 1816 !test_bit(NIC_STATE_REMOVING, &priv->state) && 1817 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 1818 (void)schedule_work(&priv->service_task); 1819 } 1820 1821 static void hns_nic_service_timer(unsigned long data) 1822 { 1823 struct hns_nic_priv *priv = (struct hns_nic_priv *)data; 1824 1825 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1826 1827 hns_nic_task_schedule(priv); 1828 } 1829 1830 /** 1831 * hns_tx_timeout_reset - initiate reset due to Tx timeout 1832 * @priv: driver private struct 1833 **/ 1834 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 1835 { 1836 /* Do the reset outside of interrupt context */ 1837 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 1838 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 1839 netdev_warn(priv->netdev, 1840 "initiating reset due to tx timeout(%llu,0x%lx)\n", 1841 priv->tx_timeout_count, priv->state); 1842 priv->tx_timeout_count++; 1843 hns_nic_task_schedule(priv); 1844 } 1845 } 1846 1847 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 1848 { 1849 struct hnae_handle *h = priv->ae_handle; 1850 struct hns_nic_ring_data *rd; 1851 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 1852 int i; 1853 1854 if (h->q_num > NIC_MAX_Q_PER_VF) { 1855 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 1856 return -EINVAL; 1857 } 1858 1859 priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2, 1860 GFP_KERNEL); 1861 if (!priv->ring_data) 1862 return -ENOMEM; 1863 1864 for (i = 0; i < h->q_num; i++) { 1865 rd = &priv->ring_data[i]; 1866 rd->queue_index = i; 1867 rd->ring = &h->qs[i]->tx_ring; 1868 rd->poll_one = hns_nic_tx_poll_one; 1869 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 1870 hns_nic_tx_fini_pro_v2; 1871 1872 netif_napi_add(priv->netdev, &rd->napi, 1873 hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM); 1874 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 1875 } 1876 for (i = h->q_num; i < h->q_num * 2; i++) { 1877 rd = &priv->ring_data[i]; 1878 rd->queue_index = i - h->q_num; 1879 rd->ring = &h->qs[i - h->q_num]->rx_ring; 1880 rd->poll_one = hns_nic_rx_poll_one; 1881 rd->ex_process = hns_nic_rx_up_pro; 1882 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 1883 hns_nic_rx_fini_pro_v2; 1884 1885 netif_napi_add(priv->netdev, &rd->napi, 1886 hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM); 1887 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 1888 } 1889 1890 return 0; 1891 } 1892 1893 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 1894 { 1895 struct hnae_handle *h = priv->ae_handle; 1896 int i; 1897 1898 for (i = 0; i < h->q_num * 2; i++) { 1899 netif_napi_del(&priv->ring_data[i].napi); 1900 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 1901 (void)irq_set_affinity_hint( 1902 priv->ring_data[i].ring->irq, 1903 NULL); 1904 free_irq(priv->ring_data[i].ring->irq, 1905 &priv->ring_data[i]); 1906 } 1907 1908 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 1909 } 1910 kfree(priv->ring_data); 1911 } 1912 1913 static void hns_nic_set_priv_ops(struct net_device *netdev) 1914 { 1915 struct hns_nic_priv *priv = netdev_priv(netdev); 1916 struct hnae_handle *h = priv->ae_handle; 1917 1918 if (AE_IS_VER1(priv->enet_ver)) { 1919 priv->ops.fill_desc = fill_desc; 1920 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 1921 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1922 } else { 1923 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 1924 if ((netdev->features & NETIF_F_TSO) || 1925 (netdev->features & NETIF_F_TSO6)) { 1926 priv->ops.fill_desc = fill_tso_desc; 1927 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1928 /* This chip only support 7*4096 */ 1929 netif_set_gso_max_size(netdev, 7 * 4096); 1930 } else { 1931 priv->ops.fill_desc = fill_v2_desc; 1932 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1933 } 1934 /* enable tso when init 1935 * control tso on/off through TSE bit in bd 1936 */ 1937 h->dev->ops->set_tso_stats(h, 1); 1938 } 1939 } 1940 1941 static int hns_nic_try_get_ae(struct net_device *ndev) 1942 { 1943 struct hns_nic_priv *priv = netdev_priv(ndev); 1944 struct hnae_handle *h; 1945 int ret; 1946 1947 h = hnae_get_handle(&priv->netdev->dev, 1948 priv->fwnode, priv->port_id, NULL); 1949 if (IS_ERR_OR_NULL(h)) { 1950 ret = -ENODEV; 1951 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 1952 goto out; 1953 } 1954 priv->ae_handle = h; 1955 1956 ret = hns_nic_init_phy(ndev, h); 1957 if (ret) { 1958 dev_err(priv->dev, "probe phy device fail!\n"); 1959 goto out_init_phy; 1960 } 1961 1962 ret = hns_nic_init_ring_data(priv); 1963 if (ret) { 1964 ret = -ENOMEM; 1965 goto out_init_ring_data; 1966 } 1967 1968 hns_nic_set_priv_ops(ndev); 1969 1970 ret = register_netdev(ndev); 1971 if (ret) { 1972 dev_err(priv->dev, "probe register netdev fail!\n"); 1973 goto out_reg_ndev_fail; 1974 } 1975 return 0; 1976 1977 out_reg_ndev_fail: 1978 hns_nic_uninit_ring_data(priv); 1979 priv->ring_data = NULL; 1980 out_init_phy: 1981 out_init_ring_data: 1982 hnae_put_handle(priv->ae_handle); 1983 priv->ae_handle = NULL; 1984 out: 1985 return ret; 1986 } 1987 1988 static int hns_nic_notifier_action(struct notifier_block *nb, 1989 unsigned long action, void *data) 1990 { 1991 struct hns_nic_priv *priv = 1992 container_of(nb, struct hns_nic_priv, notifier_block); 1993 1994 assert(action == HNAE_AE_REGISTER); 1995 1996 if (!hns_nic_try_get_ae(priv->netdev)) { 1997 hnae_unregister_notifier(&priv->notifier_block); 1998 priv->notifier_block.notifier_call = NULL; 1999 } 2000 return 0; 2001 } 2002 2003 static int hns_nic_dev_probe(struct platform_device *pdev) 2004 { 2005 struct device *dev = &pdev->dev; 2006 struct net_device *ndev; 2007 struct hns_nic_priv *priv; 2008 u32 port_id; 2009 int ret; 2010 2011 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2012 if (!ndev) 2013 return -ENOMEM; 2014 2015 platform_set_drvdata(pdev, ndev); 2016 2017 priv = netdev_priv(ndev); 2018 priv->dev = dev; 2019 priv->netdev = ndev; 2020 2021 if (dev_of_node(dev)) { 2022 struct device_node *ae_node; 2023 2024 if (of_device_is_compatible(dev->of_node, 2025 "hisilicon,hns-nic-v1")) 2026 priv->enet_ver = AE_VERSION_1; 2027 else 2028 priv->enet_ver = AE_VERSION_2; 2029 2030 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2031 if (IS_ERR_OR_NULL(ae_node)) { 2032 ret = PTR_ERR(ae_node); 2033 dev_err(dev, "not find ae-handle\n"); 2034 goto out_read_prop_fail; 2035 } 2036 priv->fwnode = &ae_node->fwnode; 2037 } else if (is_acpi_node(dev->fwnode)) { 2038 struct acpi_reference_args args; 2039 2040 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2041 priv->enet_ver = AE_VERSION_1; 2042 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2043 priv->enet_ver = AE_VERSION_2; 2044 else 2045 return -ENXIO; 2046 2047 /* try to find port-idx-in-ae first */ 2048 ret = acpi_node_get_property_reference(dev->fwnode, 2049 "ae-handle", 0, &args); 2050 if (ret) { 2051 dev_err(dev, "not find ae-handle\n"); 2052 goto out_read_prop_fail; 2053 } 2054 priv->fwnode = acpi_fwnode_handle(args.adev); 2055 } else { 2056 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2057 return -ENXIO; 2058 } 2059 2060 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2061 if (ret) { 2062 /* only for old code compatible */ 2063 ret = device_property_read_u32(dev, "port-id", &port_id); 2064 if (ret) 2065 goto out_read_prop_fail; 2066 /* for old dts, we need to caculate the port offset */ 2067 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2068 : port_id - HNS_SRV_OFFSET; 2069 } 2070 priv->port_id = port_id; 2071 2072 hns_init_mac_addr(ndev); 2073 2074 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2075 ndev->priv_flags |= IFF_UNICAST_FLT; 2076 ndev->netdev_ops = &hns_nic_netdev_ops; 2077 hns_ethtool_set_ops(ndev); 2078 2079 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2080 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2081 NETIF_F_GRO; 2082 ndev->vlan_features |= 2083 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2084 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2085 2086 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2087 ndev->min_mtu = MAC_MIN_MTU; 2088 switch (priv->enet_ver) { 2089 case AE_VERSION_2: 2090 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6; 2091 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2092 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2093 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2094 ndev->max_mtu = MAC_MAX_MTU_V2 - 2095 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2096 break; 2097 default: 2098 ndev->max_mtu = MAC_MAX_MTU - 2099 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2100 break; 2101 } 2102 2103 SET_NETDEV_DEV(ndev, dev); 2104 2105 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2106 dev_dbg(dev, "set mask to 64bit\n"); 2107 else 2108 dev_err(dev, "set mask to 64bit fail!\n"); 2109 2110 /* carrier off reporting is important to ethtool even BEFORE open */ 2111 netif_carrier_off(ndev); 2112 2113 setup_timer(&priv->service_timer, hns_nic_service_timer, 2114 (unsigned long)priv); 2115 INIT_WORK(&priv->service_task, hns_nic_service_task); 2116 2117 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2118 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2119 set_bit(NIC_STATE_DOWN, &priv->state); 2120 2121 if (hns_nic_try_get_ae(priv->netdev)) { 2122 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2123 ret = hnae_register_notifier(&priv->notifier_block); 2124 if (ret) { 2125 dev_err(dev, "register notifier fail!\n"); 2126 goto out_notify_fail; 2127 } 2128 dev_dbg(dev, "has not handle, register notifier!\n"); 2129 } 2130 2131 return 0; 2132 2133 out_notify_fail: 2134 (void)cancel_work_sync(&priv->service_task); 2135 out_read_prop_fail: 2136 free_netdev(ndev); 2137 return ret; 2138 } 2139 2140 static int hns_nic_dev_remove(struct platform_device *pdev) 2141 { 2142 struct net_device *ndev = platform_get_drvdata(pdev); 2143 struct hns_nic_priv *priv = netdev_priv(ndev); 2144 2145 if (ndev->reg_state != NETREG_UNINITIALIZED) 2146 unregister_netdev(ndev); 2147 2148 if (priv->ring_data) 2149 hns_nic_uninit_ring_data(priv); 2150 priv->ring_data = NULL; 2151 2152 if (ndev->phydev) 2153 phy_disconnect(ndev->phydev); 2154 2155 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2156 hnae_put_handle(priv->ae_handle); 2157 priv->ae_handle = NULL; 2158 if (priv->notifier_block.notifier_call) 2159 hnae_unregister_notifier(&priv->notifier_block); 2160 priv->notifier_block.notifier_call = NULL; 2161 2162 set_bit(NIC_STATE_REMOVING, &priv->state); 2163 (void)cancel_work_sync(&priv->service_task); 2164 2165 free_netdev(ndev); 2166 return 0; 2167 } 2168 2169 static const struct of_device_id hns_enet_of_match[] = { 2170 {.compatible = "hisilicon,hns-nic-v1",}, 2171 {.compatible = "hisilicon,hns-nic-v2",}, 2172 {}, 2173 }; 2174 2175 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2176 2177 static struct platform_driver hns_nic_dev_driver = { 2178 .driver = { 2179 .name = "hns-nic", 2180 .of_match_table = hns_enet_of_match, 2181 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2182 }, 2183 .probe = hns_nic_dev_probe, 2184 .remove = hns_nic_dev_remove, 2185 }; 2186 2187 module_platform_driver(hns_nic_dev_driver); 2188 2189 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2190 MODULE_AUTHOR("Hisilicon, Inc."); 2191 MODULE_LICENSE("GPL"); 2192 MODULE_ALIAS("platform:hns-nic"); 2193