xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns/hns_enet.c (revision 0760aad038b5a032c31ea124feed63d88627d2f1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2014-2015 Hisilicon Limited.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/cpumask.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_vlan.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/skbuff.h>
18 
19 #include "hnae.h"
20 #include "hns_enet.h"
21 #include "hns_dsaf_mac.h"
22 
23 #define NIC_MAX_Q_PER_VF 16
24 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
25 
26 #define SERVICE_TIMER_HZ (1 * HZ)
27 
28 #define RCB_IRQ_NOT_INITED 0
29 #define RCB_IRQ_INITED 1
30 #define HNS_BUFFER_SIZE_2048 2048
31 
32 #define BD_MAX_SEND_SIZE 8191
33 #define SKB_TMP_LEN(SKB) \
34 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
35 
36 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
37 			    int send_sz, dma_addr_t dma, int frag_end,
38 			    int buf_num, enum hns_desc_type type, int mtu)
39 {
40 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
41 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
42 	struct iphdr *iphdr;
43 	struct ipv6hdr *ipv6hdr;
44 	struct sk_buff *skb;
45 	__be16 protocol;
46 	u8 bn_pid = 0;
47 	u8 rrcfv = 0;
48 	u8 ip_offset = 0;
49 	u8 tvsvsn = 0;
50 	u16 mss = 0;
51 	u8 l4_len = 0;
52 	u16 paylen = 0;
53 
54 	desc_cb->priv = priv;
55 	desc_cb->length = size;
56 	desc_cb->dma = dma;
57 	desc_cb->type = type;
58 
59 	desc->addr = cpu_to_le64(dma);
60 	desc->tx.send_size = cpu_to_le16((u16)send_sz);
61 
62 	/* config bd buffer end */
63 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
64 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
65 
66 	/* fill port_id in the tx bd for sending management pkts */
67 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
68 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
69 
70 	if (type == DESC_TYPE_SKB) {
71 		skb = (struct sk_buff *)priv;
72 
73 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
74 			skb_reset_mac_len(skb);
75 			protocol = skb->protocol;
76 			ip_offset = ETH_HLEN;
77 
78 			if (protocol == htons(ETH_P_8021Q)) {
79 				ip_offset += VLAN_HLEN;
80 				protocol = vlan_get_protocol(skb);
81 				skb->protocol = protocol;
82 			}
83 
84 			if (skb->protocol == htons(ETH_P_IP)) {
85 				iphdr = ip_hdr(skb);
86 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
87 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
88 
89 				/* check for tcp/udp header */
90 				if (iphdr->protocol == IPPROTO_TCP &&
91 				    skb_is_gso(skb)) {
92 					hnae_set_bit(tvsvsn,
93 						     HNSV2_TXD_TSE_B, 1);
94 					l4_len = tcp_hdrlen(skb);
95 					mss = skb_shinfo(skb)->gso_size;
96 					paylen = skb->len - SKB_TMP_LEN(skb);
97 				}
98 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
99 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
100 				ipv6hdr = ipv6_hdr(skb);
101 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
102 
103 				/* check for tcp/udp header */
104 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
105 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
106 					hnae_set_bit(tvsvsn,
107 						     HNSV2_TXD_TSE_B, 1);
108 					l4_len = tcp_hdrlen(skb);
109 					mss = skb_shinfo(skb)->gso_size;
110 					paylen = skb->len - SKB_TMP_LEN(skb);
111 				}
112 			}
113 			desc->tx.ip_offset = ip_offset;
114 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
115 			desc->tx.mss = cpu_to_le16(mss);
116 			desc->tx.l4_len = l4_len;
117 			desc->tx.paylen = cpu_to_le16(paylen);
118 		}
119 	}
120 
121 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
122 
123 	desc->tx.bn_pid = bn_pid;
124 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
125 
126 	ring_ptr_move_fw(ring, next_to_use);
127 }
128 
129 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
130 			 int size, dma_addr_t dma, int frag_end,
131 			 int buf_num, enum hns_desc_type type, int mtu)
132 {
133 	fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
134 			buf_num, type, mtu);
135 }
136 
137 static const struct acpi_device_id hns_enet_acpi_match[] = {
138 	{ "HISI00C1", 0 },
139 	{ "HISI00C2", 0 },
140 	{ },
141 };
142 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
143 
144 static void fill_desc(struct hnae_ring *ring, void *priv,
145 		      int size, dma_addr_t dma, int frag_end,
146 		      int buf_num, enum hns_desc_type type, int mtu)
147 {
148 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
149 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
150 	struct sk_buff *skb;
151 	__be16 protocol;
152 	u32 ip_offset;
153 	u32 asid_bufnum_pid = 0;
154 	u32 flag_ipoffset = 0;
155 
156 	desc_cb->priv = priv;
157 	desc_cb->length = size;
158 	desc_cb->dma = dma;
159 	desc_cb->type = type;
160 
161 	desc->addr = cpu_to_le64(dma);
162 	desc->tx.send_size = cpu_to_le16((u16)size);
163 
164 	/*config bd buffer end */
165 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
166 
167 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
168 
169 	if (type == DESC_TYPE_SKB) {
170 		skb = (struct sk_buff *)priv;
171 
172 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
173 			protocol = skb->protocol;
174 			ip_offset = ETH_HLEN;
175 
176 			/*if it is a SW VLAN check the next protocol*/
177 			if (protocol == htons(ETH_P_8021Q)) {
178 				ip_offset += VLAN_HLEN;
179 				protocol = vlan_get_protocol(skb);
180 				skb->protocol = protocol;
181 			}
182 
183 			if (skb->protocol == htons(ETH_P_IP)) {
184 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
185 				/* check for tcp/udp header */
186 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
187 
188 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
189 				/* ipv6 has not l3 cs, check for L4 header */
190 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191 			}
192 
193 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
194 		}
195 	}
196 
197 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
198 
199 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
200 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
201 
202 	ring_ptr_move_fw(ring, next_to_use);
203 }
204 
205 static void unfill_desc(struct hnae_ring *ring)
206 {
207 	ring_ptr_move_bw(ring, next_to_use);
208 }
209 
210 static int hns_nic_maybe_stop_tx(
211 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
212 {
213 	struct sk_buff *skb = *out_skb;
214 	struct sk_buff *new_skb = NULL;
215 	int buf_num;
216 
217 	/* no. of segments (plus a header) */
218 	buf_num = skb_shinfo(skb)->nr_frags + 1;
219 
220 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
221 		if (ring_space(ring) < 1)
222 			return -EBUSY;
223 
224 		new_skb = skb_copy(skb, GFP_ATOMIC);
225 		if (!new_skb)
226 			return -ENOMEM;
227 
228 		dev_kfree_skb_any(skb);
229 		*out_skb = new_skb;
230 		buf_num = 1;
231 	} else if (buf_num > ring_space(ring)) {
232 		return -EBUSY;
233 	}
234 
235 	*bnum = buf_num;
236 	return 0;
237 }
238 
239 static int hns_nic_maybe_stop_tso(
240 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
241 {
242 	int i;
243 	int size;
244 	int buf_num;
245 	int frag_num;
246 	struct sk_buff *skb = *out_skb;
247 	struct sk_buff *new_skb = NULL;
248 	skb_frag_t *frag;
249 
250 	size = skb_headlen(skb);
251 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
252 
253 	frag_num = skb_shinfo(skb)->nr_frags;
254 	for (i = 0; i < frag_num; i++) {
255 		frag = &skb_shinfo(skb)->frags[i];
256 		size = skb_frag_size(frag);
257 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
258 	}
259 
260 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
261 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262 		if (ring_space(ring) < buf_num)
263 			return -EBUSY;
264 		/* manual split the send packet */
265 		new_skb = skb_copy(skb, GFP_ATOMIC);
266 		if (!new_skb)
267 			return -ENOMEM;
268 		dev_kfree_skb_any(skb);
269 		*out_skb = new_skb;
270 
271 	} else if (ring_space(ring) < buf_num) {
272 		return -EBUSY;
273 	}
274 
275 	*bnum = buf_num;
276 	return 0;
277 }
278 
279 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
280 			  int size, dma_addr_t dma, int frag_end,
281 			  int buf_num, enum hns_desc_type type, int mtu)
282 {
283 	int frag_buf_num;
284 	int sizeoflast;
285 	int k;
286 
287 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
288 	sizeoflast = size % BD_MAX_SEND_SIZE;
289 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
290 
291 	/* when the frag size is bigger than hardware, split this frag */
292 	for (k = 0; k < frag_buf_num; k++)
293 		fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
294 				(k == frag_buf_num - 1) ?
295 					sizeoflast : BD_MAX_SEND_SIZE,
296 				dma + BD_MAX_SEND_SIZE * k,
297 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
298 				buf_num,
299 				(type == DESC_TYPE_SKB && !k) ?
300 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
301 				mtu);
302 }
303 
304 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
305 				struct sk_buff *skb,
306 				struct hns_nic_ring_data *ring_data)
307 {
308 	struct hns_nic_priv *priv = netdev_priv(ndev);
309 	struct hnae_ring *ring = ring_data->ring;
310 	struct device *dev = ring_to_dev(ring);
311 	struct netdev_queue *dev_queue;
312 	skb_frag_t *frag;
313 	int buf_num;
314 	int seg_num;
315 	dma_addr_t dma;
316 	int size, next_to_use;
317 	int i;
318 
319 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
320 	case -EBUSY:
321 		ring->stats.tx_busy++;
322 		goto out_net_tx_busy;
323 	case -ENOMEM:
324 		ring->stats.sw_err_cnt++;
325 		netdev_err(ndev, "no memory to xmit!\n");
326 		goto out_err_tx_ok;
327 	default:
328 		break;
329 	}
330 
331 	/* no. of segments (plus a header) */
332 	seg_num = skb_shinfo(skb)->nr_frags + 1;
333 	next_to_use = ring->next_to_use;
334 
335 	/* fill the first part */
336 	size = skb_headlen(skb);
337 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
338 	if (dma_mapping_error(dev, dma)) {
339 		netdev_err(ndev, "TX head DMA map failed\n");
340 		ring->stats.sw_err_cnt++;
341 		goto out_err_tx_ok;
342 	}
343 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
344 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
345 
346 	/* fill the fragments */
347 	for (i = 1; i < seg_num; i++) {
348 		frag = &skb_shinfo(skb)->frags[i - 1];
349 		size = skb_frag_size(frag);
350 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
351 		if (dma_mapping_error(dev, dma)) {
352 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
353 			ring->stats.sw_err_cnt++;
354 			goto out_map_frag_fail;
355 		}
356 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
357 				    seg_num - 1 == i ? 1 : 0, buf_num,
358 				    DESC_TYPE_PAGE, ndev->mtu);
359 	}
360 
361 	/*complete translate all packets*/
362 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
363 	netdev_tx_sent_queue(dev_queue, skb->len);
364 
365 	netif_trans_update(ndev);
366 	ndev->stats.tx_bytes += skb->len;
367 	ndev->stats.tx_packets++;
368 
369 	wmb(); /* commit all data before submit */
370 	assert(skb->queue_mapping < priv->ae_handle->q_num);
371 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
372 
373 	return NETDEV_TX_OK;
374 
375 out_map_frag_fail:
376 
377 	while (ring->next_to_use != next_to_use) {
378 		unfill_desc(ring);
379 		if (ring->next_to_use != next_to_use)
380 			dma_unmap_page(dev,
381 				       ring->desc_cb[ring->next_to_use].dma,
382 				       ring->desc_cb[ring->next_to_use].length,
383 				       DMA_TO_DEVICE);
384 		else
385 			dma_unmap_single(dev,
386 					 ring->desc_cb[next_to_use].dma,
387 					 ring->desc_cb[next_to_use].length,
388 					 DMA_TO_DEVICE);
389 	}
390 
391 out_err_tx_ok:
392 
393 	dev_kfree_skb_any(skb);
394 	return NETDEV_TX_OK;
395 
396 out_net_tx_busy:
397 
398 	netif_stop_subqueue(ndev, skb->queue_mapping);
399 
400 	/* Herbert's original patch had:
401 	 *  smp_mb__after_netif_stop_queue();
402 	 * but since that doesn't exist yet, just open code it.
403 	 */
404 	smp_mb();
405 	return NETDEV_TX_BUSY;
406 }
407 
408 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
409 			       struct hnae_ring *ring, int pull_len,
410 			       struct hnae_desc_cb *desc_cb)
411 {
412 	struct hnae_desc *desc;
413 	u32 truesize;
414 	int size;
415 	int last_offset;
416 	bool twobufs;
417 
418 	twobufs = ((PAGE_SIZE < 8192) &&
419 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
420 
421 	desc = &ring->desc[ring->next_to_clean];
422 	size = le16_to_cpu(desc->rx.size);
423 
424 	if (twobufs) {
425 		truesize = hnae_buf_size(ring);
426 	} else {
427 		truesize = ALIGN(size, L1_CACHE_BYTES);
428 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
429 	}
430 
431 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
432 			size - pull_len, truesize);
433 
434 	 /* avoid re-using remote pages,flag default unreuse */
435 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
436 		return;
437 
438 	if (twobufs) {
439 		/* if we are only owner of page we can reuse it */
440 		if (likely(page_count(desc_cb->priv) == 1)) {
441 			/* flip page offset to other buffer */
442 			desc_cb->page_offset ^= truesize;
443 
444 			desc_cb->reuse_flag = 1;
445 			/* bump ref count on page before it is given*/
446 			get_page(desc_cb->priv);
447 		}
448 		return;
449 	}
450 
451 	/* move offset up to the next cache line */
452 	desc_cb->page_offset += truesize;
453 
454 	if (desc_cb->page_offset <= last_offset) {
455 		desc_cb->reuse_flag = 1;
456 		/* bump ref count on page before it is given*/
457 		get_page(desc_cb->priv);
458 	}
459 }
460 
461 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
462 {
463 	*out_bnum = hnae_get_field(bnum_flag,
464 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
465 }
466 
467 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
468 {
469 	*out_bnum = hnae_get_field(bnum_flag,
470 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
471 }
472 
473 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
474 				struct sk_buff *skb, u32 flag)
475 {
476 	struct net_device *netdev = ring_data->napi.dev;
477 	u32 l3id;
478 	u32 l4id;
479 
480 	/* check if RX checksum offload is enabled */
481 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
482 		return;
483 
484 	/* In hardware, we only support checksum for the following protocols:
485 	 * 1) IPv4,
486 	 * 2) TCP(over IPv4 or IPv6),
487 	 * 3) UDP(over IPv4 or IPv6),
488 	 * 4) SCTP(over IPv4 or IPv6)
489 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
490 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
491 	 *
492 	 * Hardware limitation:
493 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
494 	 * Error" bit (which usually can be used to indicate whether checksum
495 	 * was calculated by the hardware and if there was any error encountered
496 	 * during checksum calculation).
497 	 *
498 	 * Software workaround:
499 	 * We do get info within the RX descriptor about the kind of L3/L4
500 	 * protocol coming in the packet and the error status. These errors
501 	 * might not just be checksum errors but could be related to version,
502 	 * length of IPv4, UDP, TCP etc.
503 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
504 	 * checksum or any other L3/L4 error, we will not (cannot) convey
505 	 * checksum status for such cases to upper stack and will not maintain
506 	 * the RX L3/L4 checksum counters as well.
507 	 */
508 
509 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
510 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
511 
512 	/*  check L3 protocol for which checksum is supported */
513 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
514 		return;
515 
516 	/* check for any(not just checksum)flagged L3 protocol errors */
517 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
518 		return;
519 
520 	/* we do not support checksum of fragmented packets */
521 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
522 		return;
523 
524 	/*  check L4 protocol for which checksum is supported */
525 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
526 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
527 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
528 		return;
529 
530 	/* check for any(not just checksum)flagged L4 protocol errors */
531 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
532 		return;
533 
534 	/* now, this has to be a packet with valid RX checksum */
535 	skb->ip_summed = CHECKSUM_UNNECESSARY;
536 }
537 
538 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
539 			       struct sk_buff **out_skb, int *out_bnum)
540 {
541 	struct hnae_ring *ring = ring_data->ring;
542 	struct net_device *ndev = ring_data->napi.dev;
543 	struct hns_nic_priv *priv = netdev_priv(ndev);
544 	struct sk_buff *skb;
545 	struct hnae_desc *desc;
546 	struct hnae_desc_cb *desc_cb;
547 	unsigned char *va;
548 	int bnum, length, i;
549 	int pull_len;
550 	u32 bnum_flag;
551 
552 	desc = &ring->desc[ring->next_to_clean];
553 	desc_cb = &ring->desc_cb[ring->next_to_clean];
554 
555 	prefetch(desc);
556 
557 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
558 
559 	/* prefetch first cache line of first page */
560 	net_prefetch(va);
561 
562 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
563 					HNS_RX_HEAD_SIZE);
564 	if (unlikely(!skb)) {
565 		ring->stats.sw_err_cnt++;
566 		return -ENOMEM;
567 	}
568 
569 	prefetchw(skb->data);
570 	length = le16_to_cpu(desc->rx.pkt_len);
571 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
572 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
573 	*out_bnum = bnum;
574 
575 	if (length <= HNS_RX_HEAD_SIZE) {
576 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
577 
578 		/* we can reuse buffer as-is, just make sure it is local */
579 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
580 			desc_cb->reuse_flag = 1;
581 		else /* this page cannot be reused so discard it */
582 			put_page(desc_cb->priv);
583 
584 		ring_ptr_move_fw(ring, next_to_clean);
585 
586 		if (unlikely(bnum != 1)) { /* check err*/
587 			*out_bnum = 1;
588 			goto out_bnum_err;
589 		}
590 	} else {
591 		ring->stats.seg_pkt_cnt++;
592 
593 		pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE);
594 		memcpy(__skb_put(skb, pull_len), va,
595 		       ALIGN(pull_len, sizeof(long)));
596 
597 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
598 		ring_ptr_move_fw(ring, next_to_clean);
599 
600 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
601 			*out_bnum = 1;
602 			goto out_bnum_err;
603 		}
604 		for (i = 1; i < bnum; i++) {
605 			desc = &ring->desc[ring->next_to_clean];
606 			desc_cb = &ring->desc_cb[ring->next_to_clean];
607 
608 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
609 			ring_ptr_move_fw(ring, next_to_clean);
610 		}
611 	}
612 
613 	/* check except process, free skb and jump the desc */
614 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
615 out_bnum_err:
616 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
617 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
618 			   bnum, ring->max_desc_num_per_pkt,
619 			   length, (int)MAX_SKB_FRAGS,
620 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
621 		ring->stats.err_bd_num++;
622 		dev_kfree_skb_any(skb);
623 		return -EDOM;
624 	}
625 
626 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
627 
628 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
629 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
630 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
631 		ring->stats.non_vld_descs++;
632 		dev_kfree_skb_any(skb);
633 		return -EINVAL;
634 	}
635 
636 	if (unlikely((!desc->rx.pkt_len) ||
637 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
638 		ring->stats.err_pkt_len++;
639 		dev_kfree_skb_any(skb);
640 		return -EFAULT;
641 	}
642 
643 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
644 		ring->stats.l2_err++;
645 		dev_kfree_skb_any(skb);
646 		return -EFAULT;
647 	}
648 
649 	ring->stats.rx_pkts++;
650 	ring->stats.rx_bytes += skb->len;
651 
652 	/* indicate to upper stack if our hardware has already calculated
653 	 * the RX checksum
654 	 */
655 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
656 
657 	return 0;
658 }
659 
660 static void
661 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
662 {
663 	int i, ret;
664 	struct hnae_desc_cb res_cbs;
665 	struct hnae_desc_cb *desc_cb;
666 	struct hnae_ring *ring = ring_data->ring;
667 	struct net_device *ndev = ring_data->napi.dev;
668 
669 	for (i = 0; i < cleand_count; i++) {
670 		desc_cb = &ring->desc_cb[ring->next_to_use];
671 		if (desc_cb->reuse_flag) {
672 			ring->stats.reuse_pg_cnt++;
673 			hnae_reuse_buffer(ring, ring->next_to_use);
674 		} else {
675 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
676 			if (ret) {
677 				ring->stats.sw_err_cnt++;
678 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
679 				break;
680 			}
681 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
682 		}
683 
684 		ring_ptr_move_fw(ring, next_to_use);
685 	}
686 
687 	wmb(); /* make all data has been write before submit */
688 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
689 }
690 
691 /* return error number for error or number of desc left to take
692  */
693 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
694 			      struct sk_buff *skb)
695 {
696 	struct net_device *ndev = ring_data->napi.dev;
697 
698 	skb->protocol = eth_type_trans(skb, ndev);
699 	napi_gro_receive(&ring_data->napi, skb);
700 }
701 
702 static int hns_desc_unused(struct hnae_ring *ring)
703 {
704 	int ntc = ring->next_to_clean;
705 	int ntu = ring->next_to_use;
706 
707 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
708 }
709 
710 #define HNS_LOWEST_LATENCY_RATE		27	/* 27 MB/s */
711 #define HNS_LOW_LATENCY_RATE			80	/* 80 MB/s */
712 
713 #define HNS_COAL_BDNUM			3
714 
715 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
716 {
717 	bool coal_enable = ring->q->handle->coal_adapt_en;
718 
719 	if (coal_enable &&
720 	    ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
721 		return HNS_COAL_BDNUM;
722 	else
723 		return 0;
724 }
725 
726 static void hns_update_rx_rate(struct hnae_ring *ring)
727 {
728 	bool coal_enable = ring->q->handle->coal_adapt_en;
729 	u32 time_passed_ms;
730 	u64 total_bytes;
731 
732 	if (!coal_enable ||
733 	    time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
734 		return;
735 
736 	/* ring->stats.rx_bytes overflowed */
737 	if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
738 		ring->coal_last_rx_bytes = ring->stats.rx_bytes;
739 		ring->coal_last_jiffies = jiffies;
740 		return;
741 	}
742 
743 	total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
744 	time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
745 	do_div(total_bytes, time_passed_ms);
746 	ring->coal_rx_rate = total_bytes >> 10;
747 
748 	ring->coal_last_rx_bytes = ring->stats.rx_bytes;
749 	ring->coal_last_jiffies = jiffies;
750 }
751 
752 /**
753  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
754  **/
755 static u32 smooth_alg(u32 new_param, u32 old_param)
756 {
757 	u32 gap = (new_param > old_param) ? new_param - old_param
758 					  : old_param - new_param;
759 
760 	if (gap > 8)
761 		gap >>= 3;
762 
763 	if (new_param > old_param)
764 		return old_param + gap;
765 	else
766 		return old_param - gap;
767 }
768 
769 /**
770  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
771  * @ring_data: pointer to hns_nic_ring_data
772  **/
773 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
774 {
775 	struct hnae_ring *ring = ring_data->ring;
776 	struct hnae_handle *handle = ring->q->handle;
777 	u32 new_coal_param, old_coal_param = ring->coal_param;
778 
779 	if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
780 		new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
781 	else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
782 		new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
783 	else
784 		new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
785 
786 	if (new_coal_param == old_coal_param &&
787 	    new_coal_param == handle->coal_param)
788 		return;
789 
790 	new_coal_param = smooth_alg(new_coal_param, old_coal_param);
791 	ring->coal_param = new_coal_param;
792 
793 	/**
794 	 * Because all ring in one port has one coalesce param, when one ring
795 	 * calculate its own coalesce param, it cannot write to hardware at
796 	 * once. There are three conditions as follows:
797 	 *       1. current ring's coalesce param is larger than the hardware.
798 	 *       2. or ring which adapt last time can change again.
799 	 *       3. timeout.
800 	 */
801 	if (new_coal_param == handle->coal_param) {
802 		handle->coal_last_jiffies = jiffies;
803 		handle->coal_ring_idx = ring_data->queue_index;
804 	} else if (new_coal_param > handle->coal_param ||
805 		   handle->coal_ring_idx == ring_data->queue_index ||
806 		   time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
807 		handle->dev->ops->set_coalesce_usecs(handle,
808 					new_coal_param);
809 		handle->dev->ops->set_coalesce_frames(handle,
810 					1, new_coal_param);
811 		handle->coal_param = new_coal_param;
812 		handle->coal_ring_idx = ring_data->queue_index;
813 		handle->coal_last_jiffies = jiffies;
814 	}
815 }
816 
817 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
818 			       int budget, void *v)
819 {
820 	struct hnae_ring *ring = ring_data->ring;
821 	struct sk_buff *skb;
822 	int num, bnum;
823 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
824 	int recv_pkts, recv_bds, clean_count, err;
825 	int unused_count = hns_desc_unused(ring);
826 
827 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
828 	rmb(); /* make sure num taken effect before the other data is touched */
829 
830 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
831 	num -= unused_count;
832 
833 	while (recv_pkts < budget && recv_bds < num) {
834 		/* reuse or realloc buffers */
835 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
836 			hns_nic_alloc_rx_buffers(ring_data,
837 						 clean_count + unused_count);
838 			clean_count = 0;
839 			unused_count = hns_desc_unused(ring);
840 		}
841 
842 		/* poll one pkt */
843 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
844 		if (unlikely(!skb)) /* this fault cannot be repaired */
845 			goto out;
846 
847 		recv_bds += bnum;
848 		clean_count += bnum;
849 		if (unlikely(err)) {  /* do jump the err */
850 			recv_pkts++;
851 			continue;
852 		}
853 
854 		/* do update ip stack process*/
855 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
856 							ring_data, skb);
857 		recv_pkts++;
858 	}
859 
860 out:
861 	/* make all data has been write before submit */
862 	if (clean_count + unused_count > 0)
863 		hns_nic_alloc_rx_buffers(ring_data,
864 					 clean_count + unused_count);
865 
866 	return recv_pkts;
867 }
868 
869 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
870 {
871 	struct hnae_ring *ring = ring_data->ring;
872 	int num = 0;
873 	bool rx_stopped;
874 
875 	hns_update_rx_rate(ring);
876 
877 	/* for hardware bug fixed */
878 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
879 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
880 
881 	if (num <= hns_coal_rx_bdnum(ring)) {
882 		if (ring->q->handle->coal_adapt_en)
883 			hns_nic_adpt_coalesce(ring_data);
884 
885 		rx_stopped = true;
886 	} else {
887 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
888 			ring_data->ring, 1);
889 
890 		rx_stopped = false;
891 	}
892 
893 	return rx_stopped;
894 }
895 
896 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
897 {
898 	struct hnae_ring *ring = ring_data->ring;
899 	int num;
900 
901 	hns_update_rx_rate(ring);
902 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
903 
904 	if (num <= hns_coal_rx_bdnum(ring)) {
905 		if (ring->q->handle->coal_adapt_en)
906 			hns_nic_adpt_coalesce(ring_data);
907 
908 		return true;
909 	}
910 
911 	return false;
912 }
913 
914 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
915 					    int *bytes, int *pkts)
916 {
917 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
918 
919 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
920 	(*bytes) += desc_cb->length;
921 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
922 	hnae_free_buffer_detach(ring, ring->next_to_clean);
923 
924 	ring_ptr_move_fw(ring, next_to_clean);
925 }
926 
927 static int is_valid_clean_head(struct hnae_ring *ring, int h)
928 {
929 	int u = ring->next_to_use;
930 	int c = ring->next_to_clean;
931 
932 	if (unlikely(h > ring->desc_num))
933 		return 0;
934 
935 	assert(u > 0 && u < ring->desc_num);
936 	assert(c > 0 && c < ring->desc_num);
937 	assert(u != c && h != c); /* must be checked before call this func */
938 
939 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
940 }
941 
942 /* reclaim all desc in one budget
943  * return error or number of desc left
944  */
945 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
946 			       int budget, void *v)
947 {
948 	struct hnae_ring *ring = ring_data->ring;
949 	struct net_device *ndev = ring_data->napi.dev;
950 	struct netdev_queue *dev_queue;
951 	struct hns_nic_priv *priv = netdev_priv(ndev);
952 	int head;
953 	int bytes, pkts;
954 
955 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
956 	rmb(); /* make sure head is ready before touch any data */
957 
958 	if (is_ring_empty(ring) || head == ring->next_to_clean)
959 		return 0; /* no data to poll */
960 
961 	if (!is_valid_clean_head(ring, head)) {
962 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
963 			   ring->next_to_use, ring->next_to_clean);
964 		ring->stats.io_err_cnt++;
965 		return -EIO;
966 	}
967 
968 	bytes = 0;
969 	pkts = 0;
970 	while (head != ring->next_to_clean) {
971 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
972 		/* issue prefetch for next Tx descriptor */
973 		prefetch(&ring->desc_cb[ring->next_to_clean]);
974 	}
975 	/* update tx ring statistics. */
976 	ring->stats.tx_pkts += pkts;
977 	ring->stats.tx_bytes += bytes;
978 
979 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
980 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
981 
982 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
983 		netif_carrier_on(ndev);
984 
985 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
986 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
987 		/* Make sure that anybody stopping the queue after this
988 		 * sees the new next_to_clean.
989 		 */
990 		smp_mb();
991 		if (netif_tx_queue_stopped(dev_queue) &&
992 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
993 			netif_tx_wake_queue(dev_queue);
994 			ring->stats.restart_queue++;
995 		}
996 	}
997 	return 0;
998 }
999 
1000 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1001 {
1002 	struct hnae_ring *ring = ring_data->ring;
1003 	int head;
1004 
1005 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1006 
1007 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1008 
1009 	if (head != ring->next_to_clean) {
1010 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1011 			ring_data->ring, 1);
1012 
1013 		return false;
1014 	} else {
1015 		return true;
1016 	}
1017 }
1018 
1019 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1020 {
1021 	struct hnae_ring *ring = ring_data->ring;
1022 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1023 
1024 	if (head == ring->next_to_clean)
1025 		return true;
1026 	else
1027 		return false;
1028 }
1029 
1030 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1031 {
1032 	struct hnae_ring *ring = ring_data->ring;
1033 	struct net_device *ndev = ring_data->napi.dev;
1034 	struct netdev_queue *dev_queue;
1035 	int head;
1036 	int bytes, pkts;
1037 
1038 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1039 	bytes = 0;
1040 	pkts = 0;
1041 	while (head != ring->next_to_clean)
1042 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1043 
1044 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1045 	netdev_tx_reset_queue(dev_queue);
1046 }
1047 
1048 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1049 {
1050 	int clean_complete = 0;
1051 	struct hns_nic_ring_data *ring_data =
1052 		container_of(napi, struct hns_nic_ring_data, napi);
1053 	struct hnae_ring *ring = ring_data->ring;
1054 
1055 	clean_complete += ring_data->poll_one(
1056 				ring_data, budget - clean_complete,
1057 				ring_data->ex_process);
1058 
1059 	if (clean_complete < budget) {
1060 		if (ring_data->fini_process(ring_data)) {
1061 			napi_complete(napi);
1062 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1063 		} else {
1064 			return budget;
1065 		}
1066 	}
1067 
1068 	return clean_complete;
1069 }
1070 
1071 static irqreturn_t hns_irq_handle(int irq, void *dev)
1072 {
1073 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1074 
1075 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1076 		ring_data->ring, 1);
1077 	napi_schedule(&ring_data->napi);
1078 
1079 	return IRQ_HANDLED;
1080 }
1081 
1082 /**
1083  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1084  *@ndev: net device
1085  */
1086 static void hns_nic_adjust_link(struct net_device *ndev)
1087 {
1088 	struct hns_nic_priv *priv = netdev_priv(ndev);
1089 	struct hnae_handle *h = priv->ae_handle;
1090 	int state = 1;
1091 
1092 	/* If there is no phy, do not need adjust link */
1093 	if (ndev->phydev) {
1094 		/* When phy link down, do nothing */
1095 		if (ndev->phydev->link == 0)
1096 			return;
1097 
1098 		if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1099 						  ndev->phydev->duplex)) {
1100 			/* because Hi161X chip don't support to change gmac
1101 			 * speed and duplex with traffic. Delay 200ms to
1102 			 * make sure there is no more data in chip FIFO.
1103 			 */
1104 			netif_carrier_off(ndev);
1105 			msleep(200);
1106 			h->dev->ops->adjust_link(h, ndev->phydev->speed,
1107 						 ndev->phydev->duplex);
1108 			netif_carrier_on(ndev);
1109 		}
1110 	}
1111 
1112 	state = state && h->dev->ops->get_status(h);
1113 
1114 	if (state != priv->link) {
1115 		if (state) {
1116 			netif_carrier_on(ndev);
1117 			netif_tx_wake_all_queues(ndev);
1118 			netdev_info(ndev, "link up\n");
1119 		} else {
1120 			netif_carrier_off(ndev);
1121 			netdev_info(ndev, "link down\n");
1122 		}
1123 		priv->link = state;
1124 	}
1125 }
1126 
1127 /**
1128  *hns_nic_init_phy - init phy
1129  *@ndev: net device
1130  *@h: ae handle
1131  * Return 0 on success, negative on failure
1132  */
1133 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1134 {
1135 	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1136 	struct phy_device *phy_dev = h->phy_dev;
1137 	int ret;
1138 
1139 	if (!h->phy_dev)
1140 		return 0;
1141 
1142 	ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1143 	linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1144 	linkmode_copy(phy_dev->advertising, phy_dev->supported);
1145 
1146 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1147 		phy_dev->autoneg = false;
1148 
1149 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1150 		phy_dev->dev_flags = 0;
1151 
1152 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1153 					 h->phy_if);
1154 	} else {
1155 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1156 	}
1157 	if (unlikely(ret))
1158 		return -ENODEV;
1159 
1160 	phy_attached_info(phy_dev);
1161 
1162 	return 0;
1163 }
1164 
1165 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1166 {
1167 	struct hns_nic_priv *priv = netdev_priv(netdev);
1168 	struct hnae_handle *h = priv->ae_handle;
1169 
1170 	napi_enable(&priv->ring_data[idx].napi);
1171 
1172 	enable_irq(priv->ring_data[idx].ring->irq);
1173 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1174 
1175 	return 0;
1176 }
1177 
1178 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1179 {
1180 	struct hns_nic_priv *priv = netdev_priv(ndev);
1181 	struct hnae_handle *h = priv->ae_handle;
1182 	struct sockaddr *mac_addr = p;
1183 	int ret;
1184 
1185 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1186 		return -EADDRNOTAVAIL;
1187 
1188 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1189 	if (ret) {
1190 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1191 		return ret;
1192 	}
1193 
1194 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1195 
1196 	return 0;
1197 }
1198 
1199 static void hns_nic_update_stats(struct net_device *netdev)
1200 {
1201 	struct hns_nic_priv *priv = netdev_priv(netdev);
1202 	struct hnae_handle *h = priv->ae_handle;
1203 
1204 	h->dev->ops->update_stats(h, &netdev->stats);
1205 }
1206 
1207 /* set mac addr if it is configed. or leave it to the AE driver */
1208 static void hns_init_mac_addr(struct net_device *ndev)
1209 {
1210 	struct hns_nic_priv *priv = netdev_priv(ndev);
1211 
1212 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1213 		eth_hw_addr_random(ndev);
1214 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1215 			 ndev->dev_addr);
1216 	}
1217 }
1218 
1219 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1220 {
1221 	struct hns_nic_priv *priv = netdev_priv(netdev);
1222 	struct hnae_handle *h = priv->ae_handle;
1223 
1224 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1225 	disable_irq(priv->ring_data[idx].ring->irq);
1226 
1227 	napi_disable(&priv->ring_data[idx].napi);
1228 }
1229 
1230 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1231 				      struct hnae_ring *ring, cpumask_t *mask)
1232 {
1233 	int cpu;
1234 
1235 	/* Diffrent irq banlance between 16core and 32core.
1236 	 * The cpu mask set by ring index according to the ring flag
1237 	 * which indicate the ring is tx or rx.
1238 	 */
1239 	if (q_num == num_possible_cpus()) {
1240 		if (is_tx_ring(ring))
1241 			cpu = ring_idx;
1242 		else
1243 			cpu = ring_idx - q_num;
1244 	} else {
1245 		if (is_tx_ring(ring))
1246 			cpu = ring_idx * 2;
1247 		else
1248 			cpu = (ring_idx - q_num) * 2 + 1;
1249 	}
1250 
1251 	cpumask_clear(mask);
1252 	cpumask_set_cpu(cpu, mask);
1253 
1254 	return cpu;
1255 }
1256 
1257 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1258 {
1259 	int i;
1260 
1261 	for (i = 0; i < q_num * 2; i++) {
1262 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1263 			irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1264 					      NULL);
1265 			free_irq(priv->ring_data[i].ring->irq,
1266 				 &priv->ring_data[i]);
1267 			priv->ring_data[i].ring->irq_init_flag =
1268 				RCB_IRQ_NOT_INITED;
1269 		}
1270 	}
1271 }
1272 
1273 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1274 {
1275 	struct hnae_handle *h = priv->ae_handle;
1276 	struct hns_nic_ring_data *rd;
1277 	int i;
1278 	int ret;
1279 	int cpu;
1280 
1281 	for (i = 0; i < h->q_num * 2; i++) {
1282 		rd = &priv->ring_data[i];
1283 
1284 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1285 			break;
1286 
1287 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1288 			 "%s-%s%d", priv->netdev->name,
1289 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1290 
1291 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1292 
1293 		ret = request_irq(rd->ring->irq,
1294 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1295 		if (ret) {
1296 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1297 				   rd->ring->irq);
1298 			goto out_free_irq;
1299 		}
1300 		disable_irq(rd->ring->irq);
1301 
1302 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1303 						 rd->ring, &rd->mask);
1304 
1305 		if (cpu_online(cpu))
1306 			irq_set_affinity_hint(rd->ring->irq,
1307 					      &rd->mask);
1308 
1309 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1310 	}
1311 
1312 	return 0;
1313 
1314 out_free_irq:
1315 	hns_nic_free_irq(h->q_num, priv);
1316 	return ret;
1317 }
1318 
1319 static int hns_nic_net_up(struct net_device *ndev)
1320 {
1321 	struct hns_nic_priv *priv = netdev_priv(ndev);
1322 	struct hnae_handle *h = priv->ae_handle;
1323 	int i, j;
1324 	int ret;
1325 
1326 	if (!test_bit(NIC_STATE_DOWN, &priv->state))
1327 		return 0;
1328 
1329 	ret = hns_nic_init_irq(priv);
1330 	if (ret != 0) {
1331 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1332 		return ret;
1333 	}
1334 
1335 	for (i = 0; i < h->q_num * 2; i++) {
1336 		ret = hns_nic_ring_open(ndev, i);
1337 		if (ret)
1338 			goto out_has_some_queues;
1339 	}
1340 
1341 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1342 	if (ret)
1343 		goto out_set_mac_addr_err;
1344 
1345 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1346 	if (ret)
1347 		goto out_start_err;
1348 
1349 	if (ndev->phydev)
1350 		phy_start(ndev->phydev);
1351 
1352 	clear_bit(NIC_STATE_DOWN, &priv->state);
1353 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1354 
1355 	return 0;
1356 
1357 out_start_err:
1358 	netif_stop_queue(ndev);
1359 out_set_mac_addr_err:
1360 out_has_some_queues:
1361 	for (j = i - 1; j >= 0; j--)
1362 		hns_nic_ring_close(ndev, j);
1363 
1364 	hns_nic_free_irq(h->q_num, priv);
1365 	set_bit(NIC_STATE_DOWN, &priv->state);
1366 
1367 	return ret;
1368 }
1369 
1370 static void hns_nic_net_down(struct net_device *ndev)
1371 {
1372 	int i;
1373 	struct hnae_ae_ops *ops;
1374 	struct hns_nic_priv *priv = netdev_priv(ndev);
1375 
1376 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1377 		return;
1378 
1379 	(void)del_timer_sync(&priv->service_timer);
1380 	netif_tx_stop_all_queues(ndev);
1381 	netif_carrier_off(ndev);
1382 	netif_tx_disable(ndev);
1383 	priv->link = 0;
1384 
1385 	if (ndev->phydev)
1386 		phy_stop(ndev->phydev);
1387 
1388 	ops = priv->ae_handle->dev->ops;
1389 
1390 	if (ops->stop)
1391 		ops->stop(priv->ae_handle);
1392 
1393 	netif_tx_stop_all_queues(ndev);
1394 
1395 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1396 		hns_nic_ring_close(ndev, i);
1397 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1398 
1399 		/* clean tx buffers*/
1400 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1401 	}
1402 }
1403 
1404 void hns_nic_net_reset(struct net_device *ndev)
1405 {
1406 	struct hns_nic_priv *priv = netdev_priv(ndev);
1407 	struct hnae_handle *handle = priv->ae_handle;
1408 
1409 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1410 		usleep_range(1000, 2000);
1411 
1412 	(void)hnae_reinit_handle(handle);
1413 
1414 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1415 }
1416 
1417 void hns_nic_net_reinit(struct net_device *netdev)
1418 {
1419 	struct hns_nic_priv *priv = netdev_priv(netdev);
1420 	enum hnae_port_type type = priv->ae_handle->port_type;
1421 
1422 	netif_trans_update(priv->netdev);
1423 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1424 		usleep_range(1000, 2000);
1425 
1426 	hns_nic_net_down(netdev);
1427 
1428 	/* Only do hns_nic_net_reset in debug mode
1429 	 * because of hardware limitation.
1430 	 */
1431 	if (type == HNAE_PORT_DEBUG)
1432 		hns_nic_net_reset(netdev);
1433 
1434 	(void)hns_nic_net_up(netdev);
1435 	clear_bit(NIC_STATE_REINITING, &priv->state);
1436 }
1437 
1438 static int hns_nic_net_open(struct net_device *ndev)
1439 {
1440 	struct hns_nic_priv *priv = netdev_priv(ndev);
1441 	struct hnae_handle *h = priv->ae_handle;
1442 	int ret;
1443 
1444 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1445 		return -EBUSY;
1446 
1447 	priv->link = 0;
1448 	netif_carrier_off(ndev);
1449 
1450 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1451 	if (ret < 0) {
1452 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1453 			   ret);
1454 		return ret;
1455 	}
1456 
1457 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1458 	if (ret < 0) {
1459 		netdev_err(ndev,
1460 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1461 		return ret;
1462 	}
1463 
1464 	ret = hns_nic_net_up(ndev);
1465 	if (ret) {
1466 		netdev_err(ndev,
1467 			   "hns net up fail, ret=%d!\n", ret);
1468 		return ret;
1469 	}
1470 
1471 	return 0;
1472 }
1473 
1474 static int hns_nic_net_stop(struct net_device *ndev)
1475 {
1476 	hns_nic_net_down(ndev);
1477 
1478 	return 0;
1479 }
1480 
1481 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1482 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1483 static void hns_nic_net_timeout(struct net_device *ndev, unsigned int txqueue)
1484 {
1485 	struct hns_nic_priv *priv = netdev_priv(ndev);
1486 
1487 	if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1488 		ndev->watchdog_timeo *= 2;
1489 		netdev_info(ndev, "watchdog_timo changed to %d.\n",
1490 			    ndev->watchdog_timeo);
1491 	} else {
1492 		ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1493 		hns_tx_timeout_reset(priv);
1494 	}
1495 }
1496 
1497 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1498 				    struct net_device *ndev)
1499 {
1500 	struct hns_nic_priv *priv = netdev_priv(ndev);
1501 
1502 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1503 
1504 	return hns_nic_net_xmit_hw(ndev, skb,
1505 				   &tx_ring_data(priv, skb->queue_mapping));
1506 }
1507 
1508 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1509 				  struct sk_buff *skb)
1510 {
1511 	dev_kfree_skb_any(skb);
1512 }
1513 
1514 #define HNS_LB_TX_RING	0
1515 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1516 {
1517 	struct sk_buff *skb;
1518 	struct ethhdr *ethhdr;
1519 	int frame_len;
1520 
1521 	/* allocate test skb */
1522 	skb = alloc_skb(64, GFP_KERNEL);
1523 	if (!skb)
1524 		return NULL;
1525 
1526 	skb_put(skb, 64);
1527 	skb->dev = ndev;
1528 	memset(skb->data, 0xFF, skb->len);
1529 
1530 	/* must be tcp/ip package */
1531 	ethhdr = (struct ethhdr *)skb->data;
1532 	ethhdr->h_proto = htons(ETH_P_IP);
1533 
1534 	frame_len = skb->len & (~1ul);
1535 	memset(&skb->data[frame_len / 2], 0xAA,
1536 	       frame_len / 2 - 1);
1537 
1538 	skb->queue_mapping = HNS_LB_TX_RING;
1539 
1540 	return skb;
1541 }
1542 
1543 static int hns_enable_serdes_lb(struct net_device *ndev)
1544 {
1545 	struct hns_nic_priv *priv = netdev_priv(ndev);
1546 	struct hnae_handle *h = priv->ae_handle;
1547 	struct hnae_ae_ops *ops = h->dev->ops;
1548 	int speed, duplex;
1549 	int ret;
1550 
1551 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1552 	if (ret)
1553 		return ret;
1554 
1555 	ret = ops->start ? ops->start(h) : 0;
1556 	if (ret)
1557 		return ret;
1558 
1559 	/* link adjust duplex*/
1560 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1561 		speed = 1000;
1562 	else
1563 		speed = 10000;
1564 	duplex = 1;
1565 
1566 	ops->adjust_link(h, speed, duplex);
1567 
1568 	/* wait h/w ready */
1569 	mdelay(300);
1570 
1571 	return 0;
1572 }
1573 
1574 static void hns_disable_serdes_lb(struct net_device *ndev)
1575 {
1576 	struct hns_nic_priv *priv = netdev_priv(ndev);
1577 	struct hnae_handle *h = priv->ae_handle;
1578 	struct hnae_ae_ops *ops = h->dev->ops;
1579 
1580 	ops->stop(h);
1581 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1582 }
1583 
1584 /**
1585  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1586  *function as follows:
1587  *    1. if one rx ring has found the page_offset is not equal 0 between head
1588  *       and tail, it means that the chip fetched the wrong descs for the ring
1589  *       which buffer size is 4096.
1590  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1591  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1592  *       recieving all packages and it will fetch new descriptions.
1593  *    4. recover to the original state.
1594  *
1595  *@ndev: net device
1596  */
1597 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1598 {
1599 	struct hns_nic_priv *priv = netdev_priv(ndev);
1600 	struct hnae_handle *h = priv->ae_handle;
1601 	struct hnae_ae_ops *ops = h->dev->ops;
1602 	struct hns_nic_ring_data *rd;
1603 	struct hnae_ring *ring;
1604 	struct sk_buff *skb;
1605 	u32 *org_indir;
1606 	u32 *cur_indir;
1607 	int indir_size;
1608 	int head, tail;
1609 	int fetch_num;
1610 	int i, j;
1611 	bool found;
1612 	int retry_times;
1613 	int ret = 0;
1614 
1615 	/* alloc indir memory */
1616 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1617 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1618 	if (!org_indir)
1619 		return -ENOMEM;
1620 
1621 	/* store the orginal indirection */
1622 	ops->get_rss(h, org_indir, NULL, NULL);
1623 
1624 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1625 	if (!cur_indir) {
1626 		ret = -ENOMEM;
1627 		goto cur_indir_alloc_err;
1628 	}
1629 
1630 	/* set loopback */
1631 	if (hns_enable_serdes_lb(ndev)) {
1632 		ret = -EINVAL;
1633 		goto enable_serdes_lb_err;
1634 	}
1635 
1636 	/* foreach every rx ring to clear fetch desc */
1637 	for (i = 0; i < h->q_num; i++) {
1638 		ring = &h->qs[i]->rx_ring;
1639 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1640 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1641 		found = false;
1642 		fetch_num = ring_dist(ring, head, tail);
1643 
1644 		while (head != tail) {
1645 			if (ring->desc_cb[head].page_offset != 0) {
1646 				found = true;
1647 				break;
1648 			}
1649 
1650 			head++;
1651 			if (head == ring->desc_num)
1652 				head = 0;
1653 		}
1654 
1655 		if (found) {
1656 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1657 				cur_indir[j] = i;
1658 			ops->set_rss(h, cur_indir, NULL, 0);
1659 
1660 			for (j = 0; j < fetch_num; j++) {
1661 				/* alloc one skb and init */
1662 				skb = hns_assemble_skb(ndev);
1663 				if (!skb)
1664 					goto out;
1665 				rd = &tx_ring_data(priv, skb->queue_mapping);
1666 				hns_nic_net_xmit_hw(ndev, skb, rd);
1667 
1668 				retry_times = 0;
1669 				while (retry_times++ < 10) {
1670 					mdelay(10);
1671 					/* clean rx */
1672 					rd = &rx_ring_data(priv, i);
1673 					if (rd->poll_one(rd, fetch_num,
1674 							 hns_nic_drop_rx_fetch))
1675 						break;
1676 				}
1677 
1678 				retry_times = 0;
1679 				while (retry_times++ < 10) {
1680 					mdelay(10);
1681 					/* clean tx ring 0 send package */
1682 					rd = &tx_ring_data(priv,
1683 							   HNS_LB_TX_RING);
1684 					if (rd->poll_one(rd, fetch_num, NULL))
1685 						break;
1686 				}
1687 			}
1688 		}
1689 	}
1690 
1691 out:
1692 	/* restore everything */
1693 	ops->set_rss(h, org_indir, NULL, 0);
1694 	hns_disable_serdes_lb(ndev);
1695 enable_serdes_lb_err:
1696 	kfree(cur_indir);
1697 cur_indir_alloc_err:
1698 	kfree(org_indir);
1699 
1700 	return ret;
1701 }
1702 
1703 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1704 {
1705 	struct hns_nic_priv *priv = netdev_priv(ndev);
1706 	struct hnae_handle *h = priv->ae_handle;
1707 	bool if_running = netif_running(ndev);
1708 	int ret;
1709 
1710 	/* MTU < 68 is an error and causes problems on some kernels */
1711 	if (new_mtu < 68)
1712 		return -EINVAL;
1713 
1714 	/* MTU no change */
1715 	if (new_mtu == ndev->mtu)
1716 		return 0;
1717 
1718 	if (!h->dev->ops->set_mtu)
1719 		return -ENOTSUPP;
1720 
1721 	if (if_running) {
1722 		(void)hns_nic_net_stop(ndev);
1723 		msleep(100);
1724 	}
1725 
1726 	if (priv->enet_ver != AE_VERSION_1 &&
1727 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1728 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1729 		/* update desc */
1730 		hnae_reinit_all_ring_desc(h);
1731 
1732 		/* clear the package which the chip has fetched */
1733 		ret = hns_nic_clear_all_rx_fetch(ndev);
1734 
1735 		/* the page offset must be consist with desc */
1736 		hnae_reinit_all_ring_page_off(h);
1737 
1738 		if (ret) {
1739 			netdev_err(ndev, "clear the fetched desc fail\n");
1740 			goto out;
1741 		}
1742 	}
1743 
1744 	ret = h->dev->ops->set_mtu(h, new_mtu);
1745 	if (ret) {
1746 		netdev_err(ndev, "set mtu fail, return value %d\n",
1747 			   ret);
1748 		goto out;
1749 	}
1750 
1751 	/* finally, set new mtu to netdevice */
1752 	ndev->mtu = new_mtu;
1753 
1754 out:
1755 	if (if_running) {
1756 		if (hns_nic_net_open(ndev)) {
1757 			netdev_err(ndev, "hns net open fail\n");
1758 			ret = -EINVAL;
1759 		}
1760 	}
1761 
1762 	return ret;
1763 }
1764 
1765 static int hns_nic_set_features(struct net_device *netdev,
1766 				netdev_features_t features)
1767 {
1768 	struct hns_nic_priv *priv = netdev_priv(netdev);
1769 
1770 	switch (priv->enet_ver) {
1771 	case AE_VERSION_1:
1772 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1773 			netdev_info(netdev, "enet v1 do not support tso!\n");
1774 		break;
1775 	default:
1776 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1777 			priv->ops.fill_desc = fill_tso_desc;
1778 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1779 			/* The chip only support 7*4096 */
1780 			netif_set_gso_max_size(netdev, 7 * 4096);
1781 		} else {
1782 			priv->ops.fill_desc = fill_v2_desc;
1783 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1784 		}
1785 		break;
1786 	}
1787 	netdev->features = features;
1788 	return 0;
1789 }
1790 
1791 static netdev_features_t hns_nic_fix_features(
1792 		struct net_device *netdev, netdev_features_t features)
1793 {
1794 	struct hns_nic_priv *priv = netdev_priv(netdev);
1795 
1796 	switch (priv->enet_ver) {
1797 	case AE_VERSION_1:
1798 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1799 				NETIF_F_HW_VLAN_CTAG_FILTER);
1800 		break;
1801 	default:
1802 		break;
1803 	}
1804 	return features;
1805 }
1806 
1807 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1808 {
1809 	struct hns_nic_priv *priv = netdev_priv(netdev);
1810 	struct hnae_handle *h = priv->ae_handle;
1811 
1812 	if (h->dev->ops->add_uc_addr)
1813 		return h->dev->ops->add_uc_addr(h, addr);
1814 
1815 	return 0;
1816 }
1817 
1818 static int hns_nic_uc_unsync(struct net_device *netdev,
1819 			     const unsigned char *addr)
1820 {
1821 	struct hns_nic_priv *priv = netdev_priv(netdev);
1822 	struct hnae_handle *h = priv->ae_handle;
1823 
1824 	if (h->dev->ops->rm_uc_addr)
1825 		return h->dev->ops->rm_uc_addr(h, addr);
1826 
1827 	return 0;
1828 }
1829 
1830 /**
1831  * nic_set_multicast_list - set mutl mac address
1832  * @ndev: net device
1833  *
1834  * return void
1835  */
1836 static void hns_set_multicast_list(struct net_device *ndev)
1837 {
1838 	struct hns_nic_priv *priv = netdev_priv(ndev);
1839 	struct hnae_handle *h = priv->ae_handle;
1840 	struct netdev_hw_addr *ha = NULL;
1841 
1842 	if (!h)	{
1843 		netdev_err(ndev, "hnae handle is null\n");
1844 		return;
1845 	}
1846 
1847 	if (h->dev->ops->clr_mc_addr)
1848 		if (h->dev->ops->clr_mc_addr(h))
1849 			netdev_err(ndev, "clear multicast address fail\n");
1850 
1851 	if (h->dev->ops->set_mc_addr) {
1852 		netdev_for_each_mc_addr(ha, ndev)
1853 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1854 				netdev_err(ndev, "set multicast fail\n");
1855 	}
1856 }
1857 
1858 static void hns_nic_set_rx_mode(struct net_device *ndev)
1859 {
1860 	struct hns_nic_priv *priv = netdev_priv(ndev);
1861 	struct hnae_handle *h = priv->ae_handle;
1862 
1863 	if (h->dev->ops->set_promisc_mode) {
1864 		if (ndev->flags & IFF_PROMISC)
1865 			h->dev->ops->set_promisc_mode(h, 1);
1866 		else
1867 			h->dev->ops->set_promisc_mode(h, 0);
1868 	}
1869 
1870 	hns_set_multicast_list(ndev);
1871 
1872 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1873 		netdev_err(ndev, "sync uc address fail\n");
1874 }
1875 
1876 static void hns_nic_get_stats64(struct net_device *ndev,
1877 				struct rtnl_link_stats64 *stats)
1878 {
1879 	int idx = 0;
1880 	u64 tx_bytes = 0;
1881 	u64 rx_bytes = 0;
1882 	u64 tx_pkts = 0;
1883 	u64 rx_pkts = 0;
1884 	struct hns_nic_priv *priv = netdev_priv(ndev);
1885 	struct hnae_handle *h = priv->ae_handle;
1886 
1887 	for (idx = 0; idx < h->q_num; idx++) {
1888 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1889 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1890 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1891 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1892 	}
1893 
1894 	stats->tx_bytes = tx_bytes;
1895 	stats->tx_packets = tx_pkts;
1896 	stats->rx_bytes = rx_bytes;
1897 	stats->rx_packets = rx_pkts;
1898 
1899 	stats->rx_errors = ndev->stats.rx_errors;
1900 	stats->multicast = ndev->stats.multicast;
1901 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1902 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1903 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1904 
1905 	stats->tx_errors = ndev->stats.tx_errors;
1906 	stats->rx_dropped = ndev->stats.rx_dropped;
1907 	stats->tx_dropped = ndev->stats.tx_dropped;
1908 	stats->collisions = ndev->stats.collisions;
1909 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1910 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1911 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1912 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1913 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1914 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1915 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1916 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1917 	stats->rx_compressed = ndev->stats.rx_compressed;
1918 	stats->tx_compressed = ndev->stats.tx_compressed;
1919 }
1920 
1921 static u16
1922 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1923 		     struct net_device *sb_dev)
1924 {
1925 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1926 	struct hns_nic_priv *priv = netdev_priv(ndev);
1927 
1928 	/* fix hardware broadcast/multicast packets queue loopback */
1929 	if (!AE_IS_VER1(priv->enet_ver) &&
1930 	    is_multicast_ether_addr(eth_hdr->h_dest))
1931 		return 0;
1932 	else
1933 		return netdev_pick_tx(ndev, skb, NULL);
1934 }
1935 
1936 static const struct net_device_ops hns_nic_netdev_ops = {
1937 	.ndo_open = hns_nic_net_open,
1938 	.ndo_stop = hns_nic_net_stop,
1939 	.ndo_start_xmit = hns_nic_net_xmit,
1940 	.ndo_tx_timeout = hns_nic_net_timeout,
1941 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1942 	.ndo_change_mtu = hns_nic_change_mtu,
1943 	.ndo_do_ioctl = phy_do_ioctl_running,
1944 	.ndo_set_features = hns_nic_set_features,
1945 	.ndo_fix_features = hns_nic_fix_features,
1946 	.ndo_get_stats64 = hns_nic_get_stats64,
1947 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1948 	.ndo_select_queue = hns_nic_select_queue,
1949 };
1950 
1951 static void hns_nic_update_link_status(struct net_device *netdev)
1952 {
1953 	struct hns_nic_priv *priv = netdev_priv(netdev);
1954 
1955 	struct hnae_handle *h = priv->ae_handle;
1956 
1957 	if (h->phy_dev) {
1958 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1959 			return;
1960 
1961 		(void)genphy_read_status(h->phy_dev);
1962 	}
1963 	hns_nic_adjust_link(netdev);
1964 }
1965 
1966 /* for dumping key regs*/
1967 static void hns_nic_dump(struct hns_nic_priv *priv)
1968 {
1969 	struct hnae_handle *h = priv->ae_handle;
1970 	struct hnae_ae_ops *ops = h->dev->ops;
1971 	u32 *data, reg_num, i;
1972 
1973 	if (ops->get_regs_len && ops->get_regs) {
1974 		reg_num = ops->get_regs_len(priv->ae_handle);
1975 		reg_num = (reg_num + 3ul) & ~3ul;
1976 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1977 		if (data) {
1978 			ops->get_regs(priv->ae_handle, data);
1979 			for (i = 0; i < reg_num; i += 4)
1980 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1981 					i, data[i], data[i + 1],
1982 					data[i + 2], data[i + 3]);
1983 			kfree(data);
1984 		}
1985 	}
1986 
1987 	for (i = 0; i < h->q_num; i++) {
1988 		pr_info("tx_queue%d_next_to_clean:%d\n",
1989 			i, h->qs[i]->tx_ring.next_to_clean);
1990 		pr_info("tx_queue%d_next_to_use:%d\n",
1991 			i, h->qs[i]->tx_ring.next_to_use);
1992 		pr_info("rx_queue%d_next_to_clean:%d\n",
1993 			i, h->qs[i]->rx_ring.next_to_clean);
1994 		pr_info("rx_queue%d_next_to_use:%d\n",
1995 			i, h->qs[i]->rx_ring.next_to_use);
1996 	}
1997 }
1998 
1999 /* for resetting subtask */
2000 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2001 {
2002 	enum hnae_port_type type = priv->ae_handle->port_type;
2003 
2004 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2005 		return;
2006 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2007 
2008 	/* If we're already down, removing or resetting, just bail */
2009 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2010 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
2011 	    test_bit(NIC_STATE_RESETTING, &priv->state))
2012 		return;
2013 
2014 	hns_nic_dump(priv);
2015 	netdev_info(priv->netdev, "try to reset %s port!\n",
2016 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2017 
2018 	rtnl_lock();
2019 	/* put off any impending NetWatchDogTimeout */
2020 	netif_trans_update(priv->netdev);
2021 	hns_nic_net_reinit(priv->netdev);
2022 
2023 	rtnl_unlock();
2024 }
2025 
2026 /* for doing service complete*/
2027 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2028 {
2029 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2030 	/* make sure to commit the things */
2031 	smp_mb__before_atomic();
2032 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2033 }
2034 
2035 static void hns_nic_service_task(struct work_struct *work)
2036 {
2037 	struct hns_nic_priv *priv
2038 		= container_of(work, struct hns_nic_priv, service_task);
2039 	struct hnae_handle *h = priv->ae_handle;
2040 
2041 	hns_nic_reset_subtask(priv);
2042 	hns_nic_update_link_status(priv->netdev);
2043 	h->dev->ops->update_led_status(h);
2044 	hns_nic_update_stats(priv->netdev);
2045 
2046 	hns_nic_service_event_complete(priv);
2047 }
2048 
2049 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2050 {
2051 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2052 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2053 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2054 		(void)schedule_work(&priv->service_task);
2055 }
2056 
2057 static void hns_nic_service_timer(struct timer_list *t)
2058 {
2059 	struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2060 
2061 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2062 
2063 	hns_nic_task_schedule(priv);
2064 }
2065 
2066 /**
2067  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2068  * @priv: driver private struct
2069  **/
2070 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2071 {
2072 	/* Do the reset outside of interrupt context */
2073 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2074 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2075 		netdev_warn(priv->netdev,
2076 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2077 			    priv->tx_timeout_count, priv->state);
2078 		priv->tx_timeout_count++;
2079 		hns_nic_task_schedule(priv);
2080 	}
2081 }
2082 
2083 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2084 {
2085 	struct hnae_handle *h = priv->ae_handle;
2086 	struct hns_nic_ring_data *rd;
2087 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2088 	int i;
2089 
2090 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2091 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2092 		return -EINVAL;
2093 	}
2094 
2095 	priv->ring_data = kzalloc(array3_size(h->q_num,
2096 					      sizeof(*priv->ring_data), 2),
2097 				  GFP_KERNEL);
2098 	if (!priv->ring_data)
2099 		return -ENOMEM;
2100 
2101 	for (i = 0; i < h->q_num; i++) {
2102 		rd = &priv->ring_data[i];
2103 		rd->queue_index = i;
2104 		rd->ring = &h->qs[i]->tx_ring;
2105 		rd->poll_one = hns_nic_tx_poll_one;
2106 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2107 			hns_nic_tx_fini_pro_v2;
2108 
2109 		netif_napi_add(priv->netdev, &rd->napi,
2110 			       hns_nic_common_poll, NAPI_POLL_WEIGHT);
2111 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2112 	}
2113 	for (i = h->q_num; i < h->q_num * 2; i++) {
2114 		rd = &priv->ring_data[i];
2115 		rd->queue_index = i - h->q_num;
2116 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2117 		rd->poll_one = hns_nic_rx_poll_one;
2118 		rd->ex_process = hns_nic_rx_up_pro;
2119 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2120 			hns_nic_rx_fini_pro_v2;
2121 
2122 		netif_napi_add(priv->netdev, &rd->napi,
2123 			       hns_nic_common_poll, NAPI_POLL_WEIGHT);
2124 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2125 	}
2126 
2127 	return 0;
2128 }
2129 
2130 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2131 {
2132 	struct hnae_handle *h = priv->ae_handle;
2133 	int i;
2134 
2135 	for (i = 0; i < h->q_num * 2; i++) {
2136 		netif_napi_del(&priv->ring_data[i].napi);
2137 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2138 			(void)irq_set_affinity_hint(
2139 				priv->ring_data[i].ring->irq,
2140 				NULL);
2141 			free_irq(priv->ring_data[i].ring->irq,
2142 				 &priv->ring_data[i]);
2143 		}
2144 
2145 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2146 	}
2147 	kfree(priv->ring_data);
2148 }
2149 
2150 static void hns_nic_set_priv_ops(struct net_device *netdev)
2151 {
2152 	struct hns_nic_priv *priv = netdev_priv(netdev);
2153 	struct hnae_handle *h = priv->ae_handle;
2154 
2155 	if (AE_IS_VER1(priv->enet_ver)) {
2156 		priv->ops.fill_desc = fill_desc;
2157 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2158 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2159 	} else {
2160 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2161 		if ((netdev->features & NETIF_F_TSO) ||
2162 		    (netdev->features & NETIF_F_TSO6)) {
2163 			priv->ops.fill_desc = fill_tso_desc;
2164 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2165 			/* This chip only support 7*4096 */
2166 			netif_set_gso_max_size(netdev, 7 * 4096);
2167 		} else {
2168 			priv->ops.fill_desc = fill_v2_desc;
2169 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2170 		}
2171 		/* enable tso when init
2172 		 * control tso on/off through TSE bit in bd
2173 		 */
2174 		h->dev->ops->set_tso_stats(h, 1);
2175 	}
2176 }
2177 
2178 static int hns_nic_try_get_ae(struct net_device *ndev)
2179 {
2180 	struct hns_nic_priv *priv = netdev_priv(ndev);
2181 	struct hnae_handle *h;
2182 	int ret;
2183 
2184 	h = hnae_get_handle(&priv->netdev->dev,
2185 			    priv->fwnode, priv->port_id, NULL);
2186 	if (IS_ERR_OR_NULL(h)) {
2187 		ret = -ENODEV;
2188 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2189 		goto out;
2190 	}
2191 	priv->ae_handle = h;
2192 
2193 	ret = hns_nic_init_phy(ndev, h);
2194 	if (ret) {
2195 		dev_err(priv->dev, "probe phy device fail!\n");
2196 		goto out_init_phy;
2197 	}
2198 
2199 	ret = hns_nic_init_ring_data(priv);
2200 	if (ret) {
2201 		ret = -ENOMEM;
2202 		goto out_init_ring_data;
2203 	}
2204 
2205 	hns_nic_set_priv_ops(ndev);
2206 
2207 	ret = register_netdev(ndev);
2208 	if (ret) {
2209 		dev_err(priv->dev, "probe register netdev fail!\n");
2210 		goto out_reg_ndev_fail;
2211 	}
2212 	return 0;
2213 
2214 out_reg_ndev_fail:
2215 	hns_nic_uninit_ring_data(priv);
2216 	priv->ring_data = NULL;
2217 out_init_phy:
2218 out_init_ring_data:
2219 	hnae_put_handle(priv->ae_handle);
2220 	priv->ae_handle = NULL;
2221 out:
2222 	return ret;
2223 }
2224 
2225 static int hns_nic_notifier_action(struct notifier_block *nb,
2226 				   unsigned long action, void *data)
2227 {
2228 	struct hns_nic_priv *priv =
2229 		container_of(nb, struct hns_nic_priv, notifier_block);
2230 
2231 	assert(action == HNAE_AE_REGISTER);
2232 
2233 	if (!hns_nic_try_get_ae(priv->netdev)) {
2234 		hnae_unregister_notifier(&priv->notifier_block);
2235 		priv->notifier_block.notifier_call = NULL;
2236 	}
2237 	return 0;
2238 }
2239 
2240 static int hns_nic_dev_probe(struct platform_device *pdev)
2241 {
2242 	struct device *dev = &pdev->dev;
2243 	struct net_device *ndev;
2244 	struct hns_nic_priv *priv;
2245 	u32 port_id;
2246 	int ret;
2247 
2248 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2249 	if (!ndev)
2250 		return -ENOMEM;
2251 
2252 	platform_set_drvdata(pdev, ndev);
2253 
2254 	priv = netdev_priv(ndev);
2255 	priv->dev = dev;
2256 	priv->netdev = ndev;
2257 
2258 	if (dev_of_node(dev)) {
2259 		struct device_node *ae_node;
2260 
2261 		if (of_device_is_compatible(dev->of_node,
2262 					    "hisilicon,hns-nic-v1"))
2263 			priv->enet_ver = AE_VERSION_1;
2264 		else
2265 			priv->enet_ver = AE_VERSION_2;
2266 
2267 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2268 		if (!ae_node) {
2269 			ret = -ENODEV;
2270 			dev_err(dev, "not find ae-handle\n");
2271 			goto out_read_prop_fail;
2272 		}
2273 		priv->fwnode = &ae_node->fwnode;
2274 	} else if (is_acpi_node(dev->fwnode)) {
2275 		struct fwnode_reference_args args;
2276 
2277 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2278 			priv->enet_ver = AE_VERSION_1;
2279 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2280 			priv->enet_ver = AE_VERSION_2;
2281 		else {
2282 			ret = -ENXIO;
2283 			goto out_read_prop_fail;
2284 		}
2285 
2286 		/* try to find port-idx-in-ae first */
2287 		ret = acpi_node_get_property_reference(dev->fwnode,
2288 						       "ae-handle", 0, &args);
2289 		if (ret) {
2290 			dev_err(dev, "not find ae-handle\n");
2291 			goto out_read_prop_fail;
2292 		}
2293 		if (!is_acpi_device_node(args.fwnode)) {
2294 			ret = -EINVAL;
2295 			goto out_read_prop_fail;
2296 		}
2297 		priv->fwnode = args.fwnode;
2298 	} else {
2299 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2300 		ret = -ENXIO;
2301 		goto out_read_prop_fail;
2302 	}
2303 
2304 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2305 	if (ret) {
2306 		/* only for old code compatible */
2307 		ret = device_property_read_u32(dev, "port-id", &port_id);
2308 		if (ret)
2309 			goto out_read_prop_fail;
2310 		/* for old dts, we need to caculate the port offset */
2311 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2312 			: port_id - HNS_SRV_OFFSET;
2313 	}
2314 	priv->port_id = port_id;
2315 
2316 	hns_init_mac_addr(ndev);
2317 
2318 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2319 	ndev->priv_flags |= IFF_UNICAST_FLT;
2320 	ndev->netdev_ops = &hns_nic_netdev_ops;
2321 	hns_ethtool_set_ops(ndev);
2322 
2323 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2324 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2325 		NETIF_F_GRO;
2326 	ndev->vlan_features |=
2327 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2328 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2329 
2330 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2331 	ndev->min_mtu = MAC_MIN_MTU;
2332 	switch (priv->enet_ver) {
2333 	case AE_VERSION_2:
2334 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2335 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2336 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2337 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2338 		ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2339 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2340 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2341 		break;
2342 	default:
2343 		ndev->max_mtu = MAC_MAX_MTU -
2344 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2345 		break;
2346 	}
2347 
2348 	SET_NETDEV_DEV(ndev, dev);
2349 
2350 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2351 		dev_dbg(dev, "set mask to 64bit\n");
2352 	else
2353 		dev_err(dev, "set mask to 64bit fail!\n");
2354 
2355 	/* carrier off reporting is important to ethtool even BEFORE open */
2356 	netif_carrier_off(ndev);
2357 
2358 	timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2359 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2360 
2361 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2362 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2363 	set_bit(NIC_STATE_DOWN, &priv->state);
2364 
2365 	if (hns_nic_try_get_ae(priv->netdev)) {
2366 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2367 		ret = hnae_register_notifier(&priv->notifier_block);
2368 		if (ret) {
2369 			dev_err(dev, "register notifier fail!\n");
2370 			goto out_notify_fail;
2371 		}
2372 		dev_dbg(dev, "has not handle, register notifier!\n");
2373 	}
2374 
2375 	return 0;
2376 
2377 out_notify_fail:
2378 	(void)cancel_work_sync(&priv->service_task);
2379 out_read_prop_fail:
2380 	/* safe for ACPI FW */
2381 	of_node_put(to_of_node(priv->fwnode));
2382 	free_netdev(ndev);
2383 	return ret;
2384 }
2385 
2386 static int hns_nic_dev_remove(struct platform_device *pdev)
2387 {
2388 	struct net_device *ndev = platform_get_drvdata(pdev);
2389 	struct hns_nic_priv *priv = netdev_priv(ndev);
2390 
2391 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2392 		unregister_netdev(ndev);
2393 
2394 	if (priv->ring_data)
2395 		hns_nic_uninit_ring_data(priv);
2396 	priv->ring_data = NULL;
2397 
2398 	if (ndev->phydev)
2399 		phy_disconnect(ndev->phydev);
2400 
2401 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2402 		hnae_put_handle(priv->ae_handle);
2403 	priv->ae_handle = NULL;
2404 	if (priv->notifier_block.notifier_call)
2405 		hnae_unregister_notifier(&priv->notifier_block);
2406 	priv->notifier_block.notifier_call = NULL;
2407 
2408 	set_bit(NIC_STATE_REMOVING, &priv->state);
2409 	(void)cancel_work_sync(&priv->service_task);
2410 
2411 	/* safe for ACPI FW */
2412 	of_node_put(to_of_node(priv->fwnode));
2413 
2414 	free_netdev(ndev);
2415 	return 0;
2416 }
2417 
2418 static const struct of_device_id hns_enet_of_match[] = {
2419 	{.compatible = "hisilicon,hns-nic-v1",},
2420 	{.compatible = "hisilicon,hns-nic-v2",},
2421 	{},
2422 };
2423 
2424 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2425 
2426 static struct platform_driver hns_nic_dev_driver = {
2427 	.driver = {
2428 		.name = "hns-nic",
2429 		.of_match_table = hns_enet_of_match,
2430 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2431 	},
2432 	.probe = hns_nic_dev_probe,
2433 	.remove = hns_nic_dev_remove,
2434 };
2435 
2436 module_platform_driver(hns_nic_dev_driver);
2437 
2438 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2439 MODULE_AUTHOR("Hisilicon, Inc.");
2440 MODULE_LICENSE("GPL");
2441 MODULE_ALIAS("platform:hns-nic");
2442