1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) 2014-2015 Hisilicon Limited. 4 */ 5 6 #include <linux/clk.h> 7 #include <linux/cpumask.h> 8 #include <linux/etherdevice.h> 9 #include <linux/if_vlan.h> 10 #include <linux/interrupt.h> 11 #include <linux/io.h> 12 #include <linux/ip.h> 13 #include <linux/ipv6.h> 14 #include <linux/module.h> 15 #include <linux/phy.h> 16 #include <linux/platform_device.h> 17 #include <linux/skbuff.h> 18 19 #include "hnae.h" 20 #include "hns_enet.h" 21 #include "hns_dsaf_mac.h" 22 23 #define NIC_MAX_Q_PER_VF 16 24 #define HNS_NIC_TX_TIMEOUT (5 * HZ) 25 26 #define SERVICE_TIMER_HZ (1 * HZ) 27 28 #define RCB_IRQ_NOT_INITED 0 29 #define RCB_IRQ_INITED 1 30 #define HNS_BUFFER_SIZE_2048 2048 31 32 #define BD_MAX_SEND_SIZE 8191 33 #define SKB_TMP_LEN(SKB) \ 34 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB)) 35 36 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size, 37 int send_sz, dma_addr_t dma, int frag_end, 38 int buf_num, enum hns_desc_type type, int mtu) 39 { 40 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 41 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 42 struct iphdr *iphdr; 43 struct ipv6hdr *ipv6hdr; 44 struct sk_buff *skb; 45 __be16 protocol; 46 u8 bn_pid = 0; 47 u8 rrcfv = 0; 48 u8 ip_offset = 0; 49 u8 tvsvsn = 0; 50 u16 mss = 0; 51 u8 l4_len = 0; 52 u16 paylen = 0; 53 54 desc_cb->priv = priv; 55 desc_cb->length = size; 56 desc_cb->dma = dma; 57 desc_cb->type = type; 58 59 desc->addr = cpu_to_le64(dma); 60 desc->tx.send_size = cpu_to_le16((u16)send_sz); 61 62 /* config bd buffer end */ 63 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1); 64 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1); 65 66 /* fill port_id in the tx bd for sending management pkts */ 67 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M, 68 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id); 69 70 if (type == DESC_TYPE_SKB) { 71 skb = (struct sk_buff *)priv; 72 73 if (skb->ip_summed == CHECKSUM_PARTIAL) { 74 skb_reset_mac_len(skb); 75 protocol = skb->protocol; 76 ip_offset = ETH_HLEN; 77 78 if (protocol == htons(ETH_P_8021Q)) { 79 ip_offset += VLAN_HLEN; 80 protocol = vlan_get_protocol(skb); 81 skb->protocol = protocol; 82 } 83 84 if (skb->protocol == htons(ETH_P_IP)) { 85 iphdr = ip_hdr(skb); 86 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1); 87 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 88 89 /* check for tcp/udp header */ 90 if (iphdr->protocol == IPPROTO_TCP && 91 skb_is_gso(skb)) { 92 hnae_set_bit(tvsvsn, 93 HNSV2_TXD_TSE_B, 1); 94 l4_len = tcp_hdrlen(skb); 95 mss = skb_shinfo(skb)->gso_size; 96 paylen = skb->len - SKB_TMP_LEN(skb); 97 } 98 } else if (skb->protocol == htons(ETH_P_IPV6)) { 99 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1); 100 ipv6hdr = ipv6_hdr(skb); 101 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1); 102 103 /* check for tcp/udp header */ 104 if (ipv6hdr->nexthdr == IPPROTO_TCP && 105 skb_is_gso(skb) && skb_is_gso_v6(skb)) { 106 hnae_set_bit(tvsvsn, 107 HNSV2_TXD_TSE_B, 1); 108 l4_len = tcp_hdrlen(skb); 109 mss = skb_shinfo(skb)->gso_size; 110 paylen = skb->len - SKB_TMP_LEN(skb); 111 } 112 } 113 desc->tx.ip_offset = ip_offset; 114 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn; 115 desc->tx.mss = cpu_to_le16(mss); 116 desc->tx.l4_len = l4_len; 117 desc->tx.paylen = cpu_to_le16(paylen); 118 } 119 } 120 121 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end); 122 123 desc->tx.bn_pid = bn_pid; 124 desc->tx.ra_ri_cs_fe_vld = rrcfv; 125 126 ring_ptr_move_fw(ring, next_to_use); 127 } 128 129 static void fill_v2_desc(struct hnae_ring *ring, void *priv, 130 int size, dma_addr_t dma, int frag_end, 131 int buf_num, enum hns_desc_type type, int mtu) 132 { 133 fill_v2_desc_hw(ring, priv, size, size, dma, frag_end, 134 buf_num, type, mtu); 135 } 136 137 static const struct acpi_device_id hns_enet_acpi_match[] = { 138 { "HISI00C1", 0 }, 139 { "HISI00C2", 0 }, 140 { }, 141 }; 142 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match); 143 144 static void fill_desc(struct hnae_ring *ring, void *priv, 145 int size, dma_addr_t dma, int frag_end, 146 int buf_num, enum hns_desc_type type, int mtu) 147 { 148 struct hnae_desc *desc = &ring->desc[ring->next_to_use]; 149 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use]; 150 struct sk_buff *skb; 151 __be16 protocol; 152 u32 ip_offset; 153 u32 asid_bufnum_pid = 0; 154 u32 flag_ipoffset = 0; 155 156 desc_cb->priv = priv; 157 desc_cb->length = size; 158 desc_cb->dma = dma; 159 desc_cb->type = type; 160 161 desc->addr = cpu_to_le64(dma); 162 desc->tx.send_size = cpu_to_le16((u16)size); 163 164 /*config bd buffer end */ 165 flag_ipoffset |= 1 << HNS_TXD_VLD_B; 166 167 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S; 168 169 if (type == DESC_TYPE_SKB) { 170 skb = (struct sk_buff *)priv; 171 172 if (skb->ip_summed == CHECKSUM_PARTIAL) { 173 protocol = skb->protocol; 174 ip_offset = ETH_HLEN; 175 176 /*if it is a SW VLAN check the next protocol*/ 177 if (protocol == htons(ETH_P_8021Q)) { 178 ip_offset += VLAN_HLEN; 179 protocol = vlan_get_protocol(skb); 180 skb->protocol = protocol; 181 } 182 183 if (skb->protocol == htons(ETH_P_IP)) { 184 flag_ipoffset |= 1 << HNS_TXD_L3CS_B; 185 /* check for tcp/udp header */ 186 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 187 188 } else if (skb->protocol == htons(ETH_P_IPV6)) { 189 /* ipv6 has not l3 cs, check for L4 header */ 190 flag_ipoffset |= 1 << HNS_TXD_L4CS_B; 191 } 192 193 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S; 194 } 195 } 196 197 flag_ipoffset |= frag_end << HNS_TXD_FE_B; 198 199 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid); 200 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset); 201 202 ring_ptr_move_fw(ring, next_to_use); 203 } 204 205 static void unfill_desc(struct hnae_ring *ring) 206 { 207 ring_ptr_move_bw(ring, next_to_use); 208 } 209 210 static int hns_nic_maybe_stop_tx( 211 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 212 { 213 struct sk_buff *skb = *out_skb; 214 struct sk_buff *new_skb = NULL; 215 int buf_num; 216 217 /* no. of segments (plus a header) */ 218 buf_num = skb_shinfo(skb)->nr_frags + 1; 219 220 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 221 if (ring_space(ring) < 1) 222 return -EBUSY; 223 224 new_skb = skb_copy(skb, GFP_ATOMIC); 225 if (!new_skb) 226 return -ENOMEM; 227 228 dev_kfree_skb_any(skb); 229 *out_skb = new_skb; 230 buf_num = 1; 231 } else if (buf_num > ring_space(ring)) { 232 return -EBUSY; 233 } 234 235 *bnum = buf_num; 236 return 0; 237 } 238 239 static int hns_nic_maybe_stop_tso( 240 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring) 241 { 242 int i; 243 int size; 244 int buf_num; 245 int frag_num; 246 struct sk_buff *skb = *out_skb; 247 struct sk_buff *new_skb = NULL; 248 skb_frag_t *frag; 249 250 size = skb_headlen(skb); 251 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 252 253 frag_num = skb_shinfo(skb)->nr_frags; 254 for (i = 0; i < frag_num; i++) { 255 frag = &skb_shinfo(skb)->frags[i]; 256 size = skb_frag_size(frag); 257 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 258 } 259 260 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) { 261 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 262 if (ring_space(ring) < buf_num) 263 return -EBUSY; 264 /* manual split the send packet */ 265 new_skb = skb_copy(skb, GFP_ATOMIC); 266 if (!new_skb) 267 return -ENOMEM; 268 dev_kfree_skb_any(skb); 269 *out_skb = new_skb; 270 271 } else if (ring_space(ring) < buf_num) { 272 return -EBUSY; 273 } 274 275 *bnum = buf_num; 276 return 0; 277 } 278 279 static void fill_tso_desc(struct hnae_ring *ring, void *priv, 280 int size, dma_addr_t dma, int frag_end, 281 int buf_num, enum hns_desc_type type, int mtu) 282 { 283 int frag_buf_num; 284 int sizeoflast; 285 int k; 286 287 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE; 288 sizeoflast = size % BD_MAX_SEND_SIZE; 289 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE; 290 291 /* when the frag size is bigger than hardware, split this frag */ 292 for (k = 0; k < frag_buf_num; k++) 293 fill_v2_desc_hw(ring, priv, k == 0 ? size : 0, 294 (k == frag_buf_num - 1) ? 295 sizeoflast : BD_MAX_SEND_SIZE, 296 dma + BD_MAX_SEND_SIZE * k, 297 frag_end && (k == frag_buf_num - 1) ? 1 : 0, 298 buf_num, 299 (type == DESC_TYPE_SKB && !k) ? 300 DESC_TYPE_SKB : DESC_TYPE_PAGE, 301 mtu); 302 } 303 304 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev, 305 struct sk_buff *skb, 306 struct hns_nic_ring_data *ring_data) 307 { 308 struct hns_nic_priv *priv = netdev_priv(ndev); 309 struct hnae_ring *ring = ring_data->ring; 310 struct device *dev = ring_to_dev(ring); 311 struct netdev_queue *dev_queue; 312 skb_frag_t *frag; 313 int buf_num; 314 int seg_num; 315 dma_addr_t dma; 316 int size, next_to_use; 317 int i; 318 319 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) { 320 case -EBUSY: 321 ring->stats.tx_busy++; 322 goto out_net_tx_busy; 323 case -ENOMEM: 324 ring->stats.sw_err_cnt++; 325 netdev_err(ndev, "no memory to xmit!\n"); 326 goto out_err_tx_ok; 327 default: 328 break; 329 } 330 331 /* no. of segments (plus a header) */ 332 seg_num = skb_shinfo(skb)->nr_frags + 1; 333 next_to_use = ring->next_to_use; 334 335 /* fill the first part */ 336 size = skb_headlen(skb); 337 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE); 338 if (dma_mapping_error(dev, dma)) { 339 netdev_err(ndev, "TX head DMA map failed\n"); 340 ring->stats.sw_err_cnt++; 341 goto out_err_tx_ok; 342 } 343 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0, 344 buf_num, DESC_TYPE_SKB, ndev->mtu); 345 346 /* fill the fragments */ 347 for (i = 1; i < seg_num; i++) { 348 frag = &skb_shinfo(skb)->frags[i - 1]; 349 size = skb_frag_size(frag); 350 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE); 351 if (dma_mapping_error(dev, dma)) { 352 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i); 353 ring->stats.sw_err_cnt++; 354 goto out_map_frag_fail; 355 } 356 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma, 357 seg_num - 1 == i ? 1 : 0, buf_num, 358 DESC_TYPE_PAGE, ndev->mtu); 359 } 360 361 /*complete translate all packets*/ 362 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping); 363 netdev_tx_sent_queue(dev_queue, skb->len); 364 365 netif_trans_update(ndev); 366 ndev->stats.tx_bytes += skb->len; 367 ndev->stats.tx_packets++; 368 369 wmb(); /* commit all data before submit */ 370 assert(skb->queue_mapping < priv->ae_handle->q_num); 371 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num); 372 373 return NETDEV_TX_OK; 374 375 out_map_frag_fail: 376 377 while (ring->next_to_use != next_to_use) { 378 unfill_desc(ring); 379 if (ring->next_to_use != next_to_use) 380 dma_unmap_page(dev, 381 ring->desc_cb[ring->next_to_use].dma, 382 ring->desc_cb[ring->next_to_use].length, 383 DMA_TO_DEVICE); 384 else 385 dma_unmap_single(dev, 386 ring->desc_cb[next_to_use].dma, 387 ring->desc_cb[next_to_use].length, 388 DMA_TO_DEVICE); 389 } 390 391 out_err_tx_ok: 392 393 dev_kfree_skb_any(skb); 394 return NETDEV_TX_OK; 395 396 out_net_tx_busy: 397 398 netif_stop_subqueue(ndev, skb->queue_mapping); 399 400 /* Herbert's original patch had: 401 * smp_mb__after_netif_stop_queue(); 402 * but since that doesn't exist yet, just open code it. 403 */ 404 smp_mb(); 405 return NETDEV_TX_BUSY; 406 } 407 408 static void hns_nic_reuse_page(struct sk_buff *skb, int i, 409 struct hnae_ring *ring, int pull_len, 410 struct hnae_desc_cb *desc_cb) 411 { 412 struct hnae_desc *desc; 413 u32 truesize; 414 int size; 415 int last_offset; 416 bool twobufs; 417 418 twobufs = ((PAGE_SIZE < 8192) && 419 hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048); 420 421 desc = &ring->desc[ring->next_to_clean]; 422 size = le16_to_cpu(desc->rx.size); 423 424 if (twobufs) { 425 truesize = hnae_buf_size(ring); 426 } else { 427 truesize = ALIGN(size, L1_CACHE_BYTES); 428 last_offset = hnae_page_size(ring) - hnae_buf_size(ring); 429 } 430 431 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len, 432 size - pull_len, truesize); 433 434 /* avoid re-using remote pages,flag default unreuse */ 435 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id())) 436 return; 437 438 if (twobufs) { 439 /* if we are only owner of page we can reuse it */ 440 if (likely(page_count(desc_cb->priv) == 1)) { 441 /* flip page offset to other buffer */ 442 desc_cb->page_offset ^= truesize; 443 444 desc_cb->reuse_flag = 1; 445 /* bump ref count on page before it is given*/ 446 get_page(desc_cb->priv); 447 } 448 return; 449 } 450 451 /* move offset up to the next cache line */ 452 desc_cb->page_offset += truesize; 453 454 if (desc_cb->page_offset <= last_offset) { 455 desc_cb->reuse_flag = 1; 456 /* bump ref count on page before it is given*/ 457 get_page(desc_cb->priv); 458 } 459 } 460 461 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum) 462 { 463 *out_bnum = hnae_get_field(bnum_flag, 464 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1; 465 } 466 467 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum) 468 { 469 *out_bnum = hnae_get_field(bnum_flag, 470 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S); 471 } 472 473 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data, 474 struct sk_buff *skb, u32 flag) 475 { 476 struct net_device *netdev = ring_data->napi.dev; 477 u32 l3id; 478 u32 l4id; 479 480 /* check if RX checksum offload is enabled */ 481 if (unlikely(!(netdev->features & NETIF_F_RXCSUM))) 482 return; 483 484 /* In hardware, we only support checksum for the following protocols: 485 * 1) IPv4, 486 * 2) TCP(over IPv4 or IPv6), 487 * 3) UDP(over IPv4 or IPv6), 488 * 4) SCTP(over IPv4 or IPv6) 489 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP, 490 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols. 491 * 492 * Hardware limitation: 493 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status & 494 * Error" bit (which usually can be used to indicate whether checksum 495 * was calculated by the hardware and if there was any error encountered 496 * during checksum calculation). 497 * 498 * Software workaround: 499 * We do get info within the RX descriptor about the kind of L3/L4 500 * protocol coming in the packet and the error status. These errors 501 * might not just be checksum errors but could be related to version, 502 * length of IPv4, UDP, TCP etc. 503 * Because there is no-way of knowing if it is a L3/L4 error due to bad 504 * checksum or any other L3/L4 error, we will not (cannot) convey 505 * checksum status for such cases to upper stack and will not maintain 506 * the RX L3/L4 checksum counters as well. 507 */ 508 509 l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S); 510 l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S); 511 512 /* check L3 protocol for which checksum is supported */ 513 if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6)) 514 return; 515 516 /* check for any(not just checksum)flagged L3 protocol errors */ 517 if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B))) 518 return; 519 520 /* we do not support checksum of fragmented packets */ 521 if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B))) 522 return; 523 524 /* check L4 protocol for which checksum is supported */ 525 if ((l4id != HNS_RX_FLAG_L4ID_TCP) && 526 (l4id != HNS_RX_FLAG_L4ID_UDP) && 527 (l4id != HNS_RX_FLAG_L4ID_SCTP)) 528 return; 529 530 /* check for any(not just checksum)flagged L4 protocol errors */ 531 if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B))) 532 return; 533 534 /* now, this has to be a packet with valid RX checksum */ 535 skb->ip_summed = CHECKSUM_UNNECESSARY; 536 } 537 538 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data, 539 struct sk_buff **out_skb, int *out_bnum) 540 { 541 struct hnae_ring *ring = ring_data->ring; 542 struct net_device *ndev = ring_data->napi.dev; 543 struct hns_nic_priv *priv = netdev_priv(ndev); 544 struct sk_buff *skb; 545 struct hnae_desc *desc; 546 struct hnae_desc_cb *desc_cb; 547 unsigned char *va; 548 int bnum, length, i; 549 int pull_len; 550 u32 bnum_flag; 551 552 desc = &ring->desc[ring->next_to_clean]; 553 desc_cb = &ring->desc_cb[ring->next_to_clean]; 554 555 prefetch(desc); 556 557 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset; 558 559 /* prefetch first cache line of first page */ 560 net_prefetch(va); 561 562 skb = *out_skb = napi_alloc_skb(&ring_data->napi, 563 HNS_RX_HEAD_SIZE); 564 if (unlikely(!skb)) { 565 ring->stats.sw_err_cnt++; 566 return -ENOMEM; 567 } 568 569 prefetchw(skb->data); 570 length = le16_to_cpu(desc->rx.pkt_len); 571 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 572 priv->ops.get_rxd_bnum(bnum_flag, &bnum); 573 *out_bnum = bnum; 574 575 if (length <= HNS_RX_HEAD_SIZE) { 576 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long))); 577 578 /* we can reuse buffer as-is, just make sure it is local */ 579 if (likely(page_to_nid(desc_cb->priv) == numa_node_id())) 580 desc_cb->reuse_flag = 1; 581 else /* this page cannot be reused so discard it */ 582 put_page(desc_cb->priv); 583 584 ring_ptr_move_fw(ring, next_to_clean); 585 586 if (unlikely(bnum != 1)) { /* check err*/ 587 *out_bnum = 1; 588 goto out_bnum_err; 589 } 590 } else { 591 ring->stats.seg_pkt_cnt++; 592 593 pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE); 594 memcpy(__skb_put(skb, pull_len), va, 595 ALIGN(pull_len, sizeof(long))); 596 597 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb); 598 ring_ptr_move_fw(ring, next_to_clean); 599 600 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/ 601 *out_bnum = 1; 602 goto out_bnum_err; 603 } 604 for (i = 1; i < bnum; i++) { 605 desc = &ring->desc[ring->next_to_clean]; 606 desc_cb = &ring->desc_cb[ring->next_to_clean]; 607 608 hns_nic_reuse_page(skb, i, ring, 0, desc_cb); 609 ring_ptr_move_fw(ring, next_to_clean); 610 } 611 } 612 613 /* check except process, free skb and jump the desc */ 614 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) { 615 out_bnum_err: 616 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/ 617 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n", 618 bnum, ring->max_desc_num_per_pkt, 619 length, (int)MAX_SKB_FRAGS, 620 ((u64 *)desc)[0], ((u64 *)desc)[1]); 621 ring->stats.err_bd_num++; 622 dev_kfree_skb_any(skb); 623 return -EDOM; 624 } 625 626 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag); 627 628 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) { 629 netdev_err(ndev, "no valid bd,%016llx,%016llx\n", 630 ((u64 *)desc)[0], ((u64 *)desc)[1]); 631 ring->stats.non_vld_descs++; 632 dev_kfree_skb_any(skb); 633 return -EINVAL; 634 } 635 636 if (unlikely((!desc->rx.pkt_len) || 637 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) { 638 ring->stats.err_pkt_len++; 639 dev_kfree_skb_any(skb); 640 return -EFAULT; 641 } 642 643 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) { 644 ring->stats.l2_err++; 645 dev_kfree_skb_any(skb); 646 return -EFAULT; 647 } 648 649 ring->stats.rx_pkts++; 650 ring->stats.rx_bytes += skb->len; 651 652 /* indicate to upper stack if our hardware has already calculated 653 * the RX checksum 654 */ 655 hns_nic_rx_checksum(ring_data, skb, bnum_flag); 656 657 return 0; 658 } 659 660 static void 661 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count) 662 { 663 int i, ret; 664 struct hnae_desc_cb res_cbs; 665 struct hnae_desc_cb *desc_cb; 666 struct hnae_ring *ring = ring_data->ring; 667 struct net_device *ndev = ring_data->napi.dev; 668 669 for (i = 0; i < cleand_count; i++) { 670 desc_cb = &ring->desc_cb[ring->next_to_use]; 671 if (desc_cb->reuse_flag) { 672 ring->stats.reuse_pg_cnt++; 673 hnae_reuse_buffer(ring, ring->next_to_use); 674 } else { 675 ret = hnae_reserve_buffer_map(ring, &res_cbs); 676 if (ret) { 677 ring->stats.sw_err_cnt++; 678 netdev_err(ndev, "hnae reserve buffer map failed.\n"); 679 break; 680 } 681 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs); 682 } 683 684 ring_ptr_move_fw(ring, next_to_use); 685 } 686 687 wmb(); /* make all data has been write before submit */ 688 writel_relaxed(i, ring->io_base + RCB_REG_HEAD); 689 } 690 691 /* return error number for error or number of desc left to take 692 */ 693 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data, 694 struct sk_buff *skb) 695 { 696 struct net_device *ndev = ring_data->napi.dev; 697 698 skb->protocol = eth_type_trans(skb, ndev); 699 napi_gro_receive(&ring_data->napi, skb); 700 } 701 702 static int hns_desc_unused(struct hnae_ring *ring) 703 { 704 int ntc = ring->next_to_clean; 705 int ntu = ring->next_to_use; 706 707 return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu; 708 } 709 710 #define HNS_LOWEST_LATENCY_RATE 27 /* 27 MB/s */ 711 #define HNS_LOW_LATENCY_RATE 80 /* 80 MB/s */ 712 713 #define HNS_COAL_BDNUM 3 714 715 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring) 716 { 717 bool coal_enable = ring->q->handle->coal_adapt_en; 718 719 if (coal_enable && 720 ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE) 721 return HNS_COAL_BDNUM; 722 else 723 return 0; 724 } 725 726 static void hns_update_rx_rate(struct hnae_ring *ring) 727 { 728 bool coal_enable = ring->q->handle->coal_adapt_en; 729 u32 time_passed_ms; 730 u64 total_bytes; 731 732 if (!coal_enable || 733 time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4))) 734 return; 735 736 /* ring->stats.rx_bytes overflowed */ 737 if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) { 738 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 739 ring->coal_last_jiffies = jiffies; 740 return; 741 } 742 743 total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes; 744 time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies); 745 do_div(total_bytes, time_passed_ms); 746 ring->coal_rx_rate = total_bytes >> 10; 747 748 ring->coal_last_rx_bytes = ring->stats.rx_bytes; 749 ring->coal_last_jiffies = jiffies; 750 } 751 752 /** 753 * smooth_alg - smoothing algrithm for adjusting coalesce parameter 754 **/ 755 static u32 smooth_alg(u32 new_param, u32 old_param) 756 { 757 u32 gap = (new_param > old_param) ? new_param - old_param 758 : old_param - new_param; 759 760 if (gap > 8) 761 gap >>= 3; 762 763 if (new_param > old_param) 764 return old_param + gap; 765 else 766 return old_param - gap; 767 } 768 769 /** 770 * hns_nic_adp_coalesce - self adapte coalesce according to rx rate 771 * @ring_data: pointer to hns_nic_ring_data 772 **/ 773 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data) 774 { 775 struct hnae_ring *ring = ring_data->ring; 776 struct hnae_handle *handle = ring->q->handle; 777 u32 new_coal_param, old_coal_param = ring->coal_param; 778 779 if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE) 780 new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM; 781 else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE) 782 new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM; 783 else 784 new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM; 785 786 if (new_coal_param == old_coal_param && 787 new_coal_param == handle->coal_param) 788 return; 789 790 new_coal_param = smooth_alg(new_coal_param, old_coal_param); 791 ring->coal_param = new_coal_param; 792 793 /** 794 * Because all ring in one port has one coalesce param, when one ring 795 * calculate its own coalesce param, it cannot write to hardware at 796 * once. There are three conditions as follows: 797 * 1. current ring's coalesce param is larger than the hardware. 798 * 2. or ring which adapt last time can change again. 799 * 3. timeout. 800 */ 801 if (new_coal_param == handle->coal_param) { 802 handle->coal_last_jiffies = jiffies; 803 handle->coal_ring_idx = ring_data->queue_index; 804 } else if (new_coal_param > handle->coal_param || 805 handle->coal_ring_idx == ring_data->queue_index || 806 time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) { 807 handle->dev->ops->set_coalesce_usecs(handle, 808 new_coal_param); 809 handle->dev->ops->set_coalesce_frames(handle, 810 1, new_coal_param); 811 handle->coal_param = new_coal_param; 812 handle->coal_ring_idx = ring_data->queue_index; 813 handle->coal_last_jiffies = jiffies; 814 } 815 } 816 817 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data, 818 int budget, void *v) 819 { 820 struct hnae_ring *ring = ring_data->ring; 821 struct sk_buff *skb; 822 int num, bnum; 823 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16 824 int recv_pkts, recv_bds, clean_count, err; 825 int unused_count = hns_desc_unused(ring); 826 827 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 828 rmb(); /* make sure num taken effect before the other data is touched */ 829 830 recv_pkts = 0, recv_bds = 0, clean_count = 0; 831 num -= unused_count; 832 833 while (recv_pkts < budget && recv_bds < num) { 834 /* reuse or realloc buffers */ 835 if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) { 836 hns_nic_alloc_rx_buffers(ring_data, 837 clean_count + unused_count); 838 clean_count = 0; 839 unused_count = hns_desc_unused(ring); 840 } 841 842 /* poll one pkt */ 843 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum); 844 if (unlikely(!skb)) /* this fault cannot be repaired */ 845 goto out; 846 847 recv_bds += bnum; 848 clean_count += bnum; 849 if (unlikely(err)) { /* do jump the err */ 850 recv_pkts++; 851 continue; 852 } 853 854 /* do update ip stack process*/ 855 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)( 856 ring_data, skb); 857 recv_pkts++; 858 } 859 860 out: 861 /* make all data has been write before submit */ 862 if (clean_count + unused_count > 0) 863 hns_nic_alloc_rx_buffers(ring_data, 864 clean_count + unused_count); 865 866 return recv_pkts; 867 } 868 869 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data) 870 { 871 struct hnae_ring *ring = ring_data->ring; 872 int num = 0; 873 bool rx_stopped; 874 875 hns_update_rx_rate(ring); 876 877 /* for hardware bug fixed */ 878 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 879 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 880 881 if (num <= hns_coal_rx_bdnum(ring)) { 882 if (ring->q->handle->coal_adapt_en) 883 hns_nic_adpt_coalesce(ring_data); 884 885 rx_stopped = true; 886 } else { 887 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 888 ring_data->ring, 1); 889 890 rx_stopped = false; 891 } 892 893 return rx_stopped; 894 } 895 896 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 897 { 898 struct hnae_ring *ring = ring_data->ring; 899 int num; 900 901 hns_update_rx_rate(ring); 902 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM); 903 904 if (num <= hns_coal_rx_bdnum(ring)) { 905 if (ring->q->handle->coal_adapt_en) 906 hns_nic_adpt_coalesce(ring_data); 907 908 return true; 909 } 910 911 return false; 912 } 913 914 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring, 915 int *bytes, int *pkts) 916 { 917 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean]; 918 919 (*pkts) += (desc_cb->type == DESC_TYPE_SKB); 920 (*bytes) += desc_cb->length; 921 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/ 922 hnae_free_buffer_detach(ring, ring->next_to_clean); 923 924 ring_ptr_move_fw(ring, next_to_clean); 925 } 926 927 static int is_valid_clean_head(struct hnae_ring *ring, int h) 928 { 929 int u = ring->next_to_use; 930 int c = ring->next_to_clean; 931 932 if (unlikely(h > ring->desc_num)) 933 return 0; 934 935 assert(u > 0 && u < ring->desc_num); 936 assert(c > 0 && c < ring->desc_num); 937 assert(u != c && h != c); /* must be checked before call this func */ 938 939 return u > c ? (h > c && h <= u) : (h > c || h <= u); 940 } 941 942 /* reclaim all desc in one budget 943 * return error or number of desc left 944 */ 945 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data, 946 int budget, void *v) 947 { 948 struct hnae_ring *ring = ring_data->ring; 949 struct net_device *ndev = ring_data->napi.dev; 950 struct netdev_queue *dev_queue; 951 struct hns_nic_priv *priv = netdev_priv(ndev); 952 int head; 953 int bytes, pkts; 954 955 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 956 rmb(); /* make sure head is ready before touch any data */ 957 958 if (is_ring_empty(ring) || head == ring->next_to_clean) 959 return 0; /* no data to poll */ 960 961 if (!is_valid_clean_head(ring, head)) { 962 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head, 963 ring->next_to_use, ring->next_to_clean); 964 ring->stats.io_err_cnt++; 965 return -EIO; 966 } 967 968 bytes = 0; 969 pkts = 0; 970 while (head != ring->next_to_clean) { 971 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 972 /* issue prefetch for next Tx descriptor */ 973 prefetch(&ring->desc_cb[ring->next_to_clean]); 974 } 975 /* update tx ring statistics. */ 976 ring->stats.tx_pkts += pkts; 977 ring->stats.tx_bytes += bytes; 978 979 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 980 netdev_tx_completed_queue(dev_queue, pkts, bytes); 981 982 if (unlikely(priv->link && !netif_carrier_ok(ndev))) 983 netif_carrier_on(ndev); 984 985 if (unlikely(pkts && netif_carrier_ok(ndev) && 986 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) { 987 /* Make sure that anybody stopping the queue after this 988 * sees the new next_to_clean. 989 */ 990 smp_mb(); 991 if (netif_tx_queue_stopped(dev_queue) && 992 !test_bit(NIC_STATE_DOWN, &priv->state)) { 993 netif_tx_wake_queue(dev_queue); 994 ring->stats.restart_queue++; 995 } 996 } 997 return 0; 998 } 999 1000 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data) 1001 { 1002 struct hnae_ring *ring = ring_data->ring; 1003 int head; 1004 1005 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1006 1007 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1008 1009 if (head != ring->next_to_clean) { 1010 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1011 ring_data->ring, 1); 1012 1013 return false; 1014 } else { 1015 return true; 1016 } 1017 } 1018 1019 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data) 1020 { 1021 struct hnae_ring *ring = ring_data->ring; 1022 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1023 1024 if (head == ring->next_to_clean) 1025 return true; 1026 else 1027 return false; 1028 } 1029 1030 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data) 1031 { 1032 struct hnae_ring *ring = ring_data->ring; 1033 struct net_device *ndev = ring_data->napi.dev; 1034 struct netdev_queue *dev_queue; 1035 int head; 1036 int bytes, pkts; 1037 1038 head = ring->next_to_use; /* ntu :soft setted ring position*/ 1039 bytes = 0; 1040 pkts = 0; 1041 while (head != ring->next_to_clean) 1042 hns_nic_reclaim_one_desc(ring, &bytes, &pkts); 1043 1044 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index); 1045 netdev_tx_reset_queue(dev_queue); 1046 } 1047 1048 static int hns_nic_common_poll(struct napi_struct *napi, int budget) 1049 { 1050 int clean_complete = 0; 1051 struct hns_nic_ring_data *ring_data = 1052 container_of(napi, struct hns_nic_ring_data, napi); 1053 struct hnae_ring *ring = ring_data->ring; 1054 1055 clean_complete += ring_data->poll_one( 1056 ring_data, budget - clean_complete, 1057 ring_data->ex_process); 1058 1059 if (clean_complete < budget) { 1060 if (ring_data->fini_process(ring_data)) { 1061 napi_complete(napi); 1062 ring->q->handle->dev->ops->toggle_ring_irq(ring, 0); 1063 } else { 1064 return budget; 1065 } 1066 } 1067 1068 return clean_complete; 1069 } 1070 1071 static irqreturn_t hns_irq_handle(int irq, void *dev) 1072 { 1073 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev; 1074 1075 ring_data->ring->q->handle->dev->ops->toggle_ring_irq( 1076 ring_data->ring, 1); 1077 napi_schedule(&ring_data->napi); 1078 1079 return IRQ_HANDLED; 1080 } 1081 1082 /** 1083 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param 1084 *@ndev: net device 1085 */ 1086 static void hns_nic_adjust_link(struct net_device *ndev) 1087 { 1088 struct hns_nic_priv *priv = netdev_priv(ndev); 1089 struct hnae_handle *h = priv->ae_handle; 1090 int state = 1; 1091 1092 /* If there is no phy, do not need adjust link */ 1093 if (ndev->phydev) { 1094 /* When phy link down, do nothing */ 1095 if (ndev->phydev->link == 0) 1096 return; 1097 1098 if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed, 1099 ndev->phydev->duplex)) { 1100 /* because Hi161X chip don't support to change gmac 1101 * speed and duplex with traffic. Delay 200ms to 1102 * make sure there is no more data in chip FIFO. 1103 */ 1104 netif_carrier_off(ndev); 1105 msleep(200); 1106 h->dev->ops->adjust_link(h, ndev->phydev->speed, 1107 ndev->phydev->duplex); 1108 netif_carrier_on(ndev); 1109 } 1110 } 1111 1112 state = state && h->dev->ops->get_status(h); 1113 1114 if (state != priv->link) { 1115 if (state) { 1116 netif_carrier_on(ndev); 1117 netif_tx_wake_all_queues(ndev); 1118 netdev_info(ndev, "link up\n"); 1119 } else { 1120 netif_carrier_off(ndev); 1121 netdev_info(ndev, "link down\n"); 1122 } 1123 priv->link = state; 1124 } 1125 } 1126 1127 /** 1128 *hns_nic_init_phy - init phy 1129 *@ndev: net device 1130 *@h: ae handle 1131 * Return 0 on success, negative on failure 1132 */ 1133 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h) 1134 { 1135 __ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, }; 1136 struct phy_device *phy_dev = h->phy_dev; 1137 int ret; 1138 1139 if (!h->phy_dev) 1140 return 0; 1141 1142 ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support); 1143 linkmode_and(phy_dev->supported, phy_dev->supported, supported); 1144 linkmode_copy(phy_dev->advertising, phy_dev->supported); 1145 1146 if (h->phy_if == PHY_INTERFACE_MODE_XGMII) 1147 phy_dev->autoneg = false; 1148 1149 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) { 1150 phy_dev->dev_flags = 0; 1151 1152 ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link, 1153 h->phy_if); 1154 } else { 1155 ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if); 1156 } 1157 if (unlikely(ret)) 1158 return -ENODEV; 1159 1160 phy_attached_info(phy_dev); 1161 1162 return 0; 1163 } 1164 1165 static int hns_nic_ring_open(struct net_device *netdev, int idx) 1166 { 1167 struct hns_nic_priv *priv = netdev_priv(netdev); 1168 struct hnae_handle *h = priv->ae_handle; 1169 1170 napi_enable(&priv->ring_data[idx].napi); 1171 1172 enable_irq(priv->ring_data[idx].ring->irq); 1173 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0); 1174 1175 return 0; 1176 } 1177 1178 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p) 1179 { 1180 struct hns_nic_priv *priv = netdev_priv(ndev); 1181 struct hnae_handle *h = priv->ae_handle; 1182 struct sockaddr *mac_addr = p; 1183 int ret; 1184 1185 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data)) 1186 return -EADDRNOTAVAIL; 1187 1188 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data); 1189 if (ret) { 1190 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret); 1191 return ret; 1192 } 1193 1194 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len); 1195 1196 return 0; 1197 } 1198 1199 static void hns_nic_update_stats(struct net_device *netdev) 1200 { 1201 struct hns_nic_priv *priv = netdev_priv(netdev); 1202 struct hnae_handle *h = priv->ae_handle; 1203 1204 h->dev->ops->update_stats(h, &netdev->stats); 1205 } 1206 1207 /* set mac addr if it is configed. or leave it to the AE driver */ 1208 static void hns_init_mac_addr(struct net_device *ndev) 1209 { 1210 struct hns_nic_priv *priv = netdev_priv(ndev); 1211 1212 if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) { 1213 eth_hw_addr_random(ndev); 1214 dev_warn(priv->dev, "No valid mac, use random mac %pM", 1215 ndev->dev_addr); 1216 } 1217 } 1218 1219 static void hns_nic_ring_close(struct net_device *netdev, int idx) 1220 { 1221 struct hns_nic_priv *priv = netdev_priv(netdev); 1222 struct hnae_handle *h = priv->ae_handle; 1223 1224 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1); 1225 disable_irq(priv->ring_data[idx].ring->irq); 1226 1227 napi_disable(&priv->ring_data[idx].napi); 1228 } 1229 1230 static int hns_nic_init_affinity_mask(int q_num, int ring_idx, 1231 struct hnae_ring *ring, cpumask_t *mask) 1232 { 1233 int cpu; 1234 1235 /* Diffrent irq banlance between 16core and 32core. 1236 * The cpu mask set by ring index according to the ring flag 1237 * which indicate the ring is tx or rx. 1238 */ 1239 if (q_num == num_possible_cpus()) { 1240 if (is_tx_ring(ring)) 1241 cpu = ring_idx; 1242 else 1243 cpu = ring_idx - q_num; 1244 } else { 1245 if (is_tx_ring(ring)) 1246 cpu = ring_idx * 2; 1247 else 1248 cpu = (ring_idx - q_num) * 2 + 1; 1249 } 1250 1251 cpumask_clear(mask); 1252 cpumask_set_cpu(cpu, mask); 1253 1254 return cpu; 1255 } 1256 1257 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv) 1258 { 1259 int i; 1260 1261 for (i = 0; i < q_num * 2; i++) { 1262 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 1263 irq_set_affinity_hint(priv->ring_data[i].ring->irq, 1264 NULL); 1265 free_irq(priv->ring_data[i].ring->irq, 1266 &priv->ring_data[i]); 1267 priv->ring_data[i].ring->irq_init_flag = 1268 RCB_IRQ_NOT_INITED; 1269 } 1270 } 1271 } 1272 1273 static int hns_nic_init_irq(struct hns_nic_priv *priv) 1274 { 1275 struct hnae_handle *h = priv->ae_handle; 1276 struct hns_nic_ring_data *rd; 1277 int i; 1278 int ret; 1279 int cpu; 1280 1281 for (i = 0; i < h->q_num * 2; i++) { 1282 rd = &priv->ring_data[i]; 1283 1284 if (rd->ring->irq_init_flag == RCB_IRQ_INITED) 1285 break; 1286 1287 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN, 1288 "%s-%s%d", priv->netdev->name, 1289 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index); 1290 1291 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0'; 1292 1293 ret = request_irq(rd->ring->irq, 1294 hns_irq_handle, 0, rd->ring->ring_name, rd); 1295 if (ret) { 1296 netdev_err(priv->netdev, "request irq(%d) fail\n", 1297 rd->ring->irq); 1298 goto out_free_irq; 1299 } 1300 disable_irq(rd->ring->irq); 1301 1302 cpu = hns_nic_init_affinity_mask(h->q_num, i, 1303 rd->ring, &rd->mask); 1304 1305 if (cpu_online(cpu)) 1306 irq_set_affinity_hint(rd->ring->irq, 1307 &rd->mask); 1308 1309 rd->ring->irq_init_flag = RCB_IRQ_INITED; 1310 } 1311 1312 return 0; 1313 1314 out_free_irq: 1315 hns_nic_free_irq(h->q_num, priv); 1316 return ret; 1317 } 1318 1319 static int hns_nic_net_up(struct net_device *ndev) 1320 { 1321 struct hns_nic_priv *priv = netdev_priv(ndev); 1322 struct hnae_handle *h = priv->ae_handle; 1323 int i, j; 1324 int ret; 1325 1326 if (!test_bit(NIC_STATE_DOWN, &priv->state)) 1327 return 0; 1328 1329 ret = hns_nic_init_irq(priv); 1330 if (ret != 0) { 1331 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret); 1332 return ret; 1333 } 1334 1335 for (i = 0; i < h->q_num * 2; i++) { 1336 ret = hns_nic_ring_open(ndev, i); 1337 if (ret) 1338 goto out_has_some_queues; 1339 } 1340 1341 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr); 1342 if (ret) 1343 goto out_set_mac_addr_err; 1344 1345 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0; 1346 if (ret) 1347 goto out_start_err; 1348 1349 if (ndev->phydev) 1350 phy_start(ndev->phydev); 1351 1352 clear_bit(NIC_STATE_DOWN, &priv->state); 1353 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 1354 1355 return 0; 1356 1357 out_start_err: 1358 netif_stop_queue(ndev); 1359 out_set_mac_addr_err: 1360 out_has_some_queues: 1361 for (j = i - 1; j >= 0; j--) 1362 hns_nic_ring_close(ndev, j); 1363 1364 hns_nic_free_irq(h->q_num, priv); 1365 set_bit(NIC_STATE_DOWN, &priv->state); 1366 1367 return ret; 1368 } 1369 1370 static void hns_nic_net_down(struct net_device *ndev) 1371 { 1372 int i; 1373 struct hnae_ae_ops *ops; 1374 struct hns_nic_priv *priv = netdev_priv(ndev); 1375 1376 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state)) 1377 return; 1378 1379 (void)del_timer_sync(&priv->service_timer); 1380 netif_tx_stop_all_queues(ndev); 1381 netif_carrier_off(ndev); 1382 netif_tx_disable(ndev); 1383 priv->link = 0; 1384 1385 if (ndev->phydev) 1386 phy_stop(ndev->phydev); 1387 1388 ops = priv->ae_handle->dev->ops; 1389 1390 if (ops->stop) 1391 ops->stop(priv->ae_handle); 1392 1393 netif_tx_stop_all_queues(ndev); 1394 1395 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) { 1396 hns_nic_ring_close(ndev, i); 1397 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num); 1398 1399 /* clean tx buffers*/ 1400 hns_nic_tx_clr_all_bufs(priv->ring_data + i); 1401 } 1402 } 1403 1404 void hns_nic_net_reset(struct net_device *ndev) 1405 { 1406 struct hns_nic_priv *priv = netdev_priv(ndev); 1407 struct hnae_handle *handle = priv->ae_handle; 1408 1409 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state)) 1410 usleep_range(1000, 2000); 1411 1412 (void)hnae_reinit_handle(handle); 1413 1414 clear_bit(NIC_STATE_RESETTING, &priv->state); 1415 } 1416 1417 void hns_nic_net_reinit(struct net_device *netdev) 1418 { 1419 struct hns_nic_priv *priv = netdev_priv(netdev); 1420 enum hnae_port_type type = priv->ae_handle->port_type; 1421 1422 netif_trans_update(priv->netdev); 1423 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state)) 1424 usleep_range(1000, 2000); 1425 1426 hns_nic_net_down(netdev); 1427 1428 /* Only do hns_nic_net_reset in debug mode 1429 * because of hardware limitation. 1430 */ 1431 if (type == HNAE_PORT_DEBUG) 1432 hns_nic_net_reset(netdev); 1433 1434 (void)hns_nic_net_up(netdev); 1435 clear_bit(NIC_STATE_REINITING, &priv->state); 1436 } 1437 1438 static int hns_nic_net_open(struct net_device *ndev) 1439 { 1440 struct hns_nic_priv *priv = netdev_priv(ndev); 1441 struct hnae_handle *h = priv->ae_handle; 1442 int ret; 1443 1444 if (test_bit(NIC_STATE_TESTING, &priv->state)) 1445 return -EBUSY; 1446 1447 priv->link = 0; 1448 netif_carrier_off(ndev); 1449 1450 ret = netif_set_real_num_tx_queues(ndev, h->q_num); 1451 if (ret < 0) { 1452 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n", 1453 ret); 1454 return ret; 1455 } 1456 1457 ret = netif_set_real_num_rx_queues(ndev, h->q_num); 1458 if (ret < 0) { 1459 netdev_err(ndev, 1460 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret); 1461 return ret; 1462 } 1463 1464 ret = hns_nic_net_up(ndev); 1465 if (ret) { 1466 netdev_err(ndev, 1467 "hns net up fail, ret=%d!\n", ret); 1468 return ret; 1469 } 1470 1471 return 0; 1472 } 1473 1474 static int hns_nic_net_stop(struct net_device *ndev) 1475 { 1476 hns_nic_net_down(ndev); 1477 1478 return 0; 1479 } 1480 1481 static void hns_tx_timeout_reset(struct hns_nic_priv *priv); 1482 #define HNS_TX_TIMEO_LIMIT (40 * HZ) 1483 static void hns_nic_net_timeout(struct net_device *ndev, unsigned int txqueue) 1484 { 1485 struct hns_nic_priv *priv = netdev_priv(ndev); 1486 1487 if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) { 1488 ndev->watchdog_timeo *= 2; 1489 netdev_info(ndev, "watchdog_timo changed to %d.\n", 1490 ndev->watchdog_timeo); 1491 } else { 1492 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 1493 hns_tx_timeout_reset(priv); 1494 } 1495 } 1496 1497 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb, 1498 struct net_device *ndev) 1499 { 1500 struct hns_nic_priv *priv = netdev_priv(ndev); 1501 1502 assert(skb->queue_mapping < ndev->ae_handle->q_num); 1503 1504 return hns_nic_net_xmit_hw(ndev, skb, 1505 &tx_ring_data(priv, skb->queue_mapping)); 1506 } 1507 1508 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data, 1509 struct sk_buff *skb) 1510 { 1511 dev_kfree_skb_any(skb); 1512 } 1513 1514 #define HNS_LB_TX_RING 0 1515 static struct sk_buff *hns_assemble_skb(struct net_device *ndev) 1516 { 1517 struct sk_buff *skb; 1518 struct ethhdr *ethhdr; 1519 int frame_len; 1520 1521 /* allocate test skb */ 1522 skb = alloc_skb(64, GFP_KERNEL); 1523 if (!skb) 1524 return NULL; 1525 1526 skb_put(skb, 64); 1527 skb->dev = ndev; 1528 memset(skb->data, 0xFF, skb->len); 1529 1530 /* must be tcp/ip package */ 1531 ethhdr = (struct ethhdr *)skb->data; 1532 ethhdr->h_proto = htons(ETH_P_IP); 1533 1534 frame_len = skb->len & (~1ul); 1535 memset(&skb->data[frame_len / 2], 0xAA, 1536 frame_len / 2 - 1); 1537 1538 skb->queue_mapping = HNS_LB_TX_RING; 1539 1540 return skb; 1541 } 1542 1543 static int hns_enable_serdes_lb(struct net_device *ndev) 1544 { 1545 struct hns_nic_priv *priv = netdev_priv(ndev); 1546 struct hnae_handle *h = priv->ae_handle; 1547 struct hnae_ae_ops *ops = h->dev->ops; 1548 int speed, duplex; 1549 int ret; 1550 1551 ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1); 1552 if (ret) 1553 return ret; 1554 1555 ret = ops->start ? ops->start(h) : 0; 1556 if (ret) 1557 return ret; 1558 1559 /* link adjust duplex*/ 1560 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1561 speed = 1000; 1562 else 1563 speed = 10000; 1564 duplex = 1; 1565 1566 ops->adjust_link(h, speed, duplex); 1567 1568 /* wait h/w ready */ 1569 mdelay(300); 1570 1571 return 0; 1572 } 1573 1574 static void hns_disable_serdes_lb(struct net_device *ndev) 1575 { 1576 struct hns_nic_priv *priv = netdev_priv(ndev); 1577 struct hnae_handle *h = priv->ae_handle; 1578 struct hnae_ae_ops *ops = h->dev->ops; 1579 1580 ops->stop(h); 1581 ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0); 1582 } 1583 1584 /** 1585 *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The 1586 *function as follows: 1587 * 1. if one rx ring has found the page_offset is not equal 0 between head 1588 * and tail, it means that the chip fetched the wrong descs for the ring 1589 * which buffer size is 4096. 1590 * 2. we set the chip serdes loopback and set rss indirection to the ring. 1591 * 3. construct 64-bytes ip broadcast packages, wait the associated rx ring 1592 * recieving all packages and it will fetch new descriptions. 1593 * 4. recover to the original state. 1594 * 1595 *@ndev: net device 1596 */ 1597 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev) 1598 { 1599 struct hns_nic_priv *priv = netdev_priv(ndev); 1600 struct hnae_handle *h = priv->ae_handle; 1601 struct hnae_ae_ops *ops = h->dev->ops; 1602 struct hns_nic_ring_data *rd; 1603 struct hnae_ring *ring; 1604 struct sk_buff *skb; 1605 u32 *org_indir; 1606 u32 *cur_indir; 1607 int indir_size; 1608 int head, tail; 1609 int fetch_num; 1610 int i, j; 1611 bool found; 1612 int retry_times; 1613 int ret = 0; 1614 1615 /* alloc indir memory */ 1616 indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir); 1617 org_indir = kzalloc(indir_size, GFP_KERNEL); 1618 if (!org_indir) 1619 return -ENOMEM; 1620 1621 /* store the orginal indirection */ 1622 ops->get_rss(h, org_indir, NULL, NULL); 1623 1624 cur_indir = kzalloc(indir_size, GFP_KERNEL); 1625 if (!cur_indir) { 1626 ret = -ENOMEM; 1627 goto cur_indir_alloc_err; 1628 } 1629 1630 /* set loopback */ 1631 if (hns_enable_serdes_lb(ndev)) { 1632 ret = -EINVAL; 1633 goto enable_serdes_lb_err; 1634 } 1635 1636 /* foreach every rx ring to clear fetch desc */ 1637 for (i = 0; i < h->q_num; i++) { 1638 ring = &h->qs[i]->rx_ring; 1639 head = readl_relaxed(ring->io_base + RCB_REG_HEAD); 1640 tail = readl_relaxed(ring->io_base + RCB_REG_TAIL); 1641 found = false; 1642 fetch_num = ring_dist(ring, head, tail); 1643 1644 while (head != tail) { 1645 if (ring->desc_cb[head].page_offset != 0) { 1646 found = true; 1647 break; 1648 } 1649 1650 head++; 1651 if (head == ring->desc_num) 1652 head = 0; 1653 } 1654 1655 if (found) { 1656 for (j = 0; j < indir_size / sizeof(*org_indir); j++) 1657 cur_indir[j] = i; 1658 ops->set_rss(h, cur_indir, NULL, 0); 1659 1660 for (j = 0; j < fetch_num; j++) { 1661 /* alloc one skb and init */ 1662 skb = hns_assemble_skb(ndev); 1663 if (!skb) 1664 goto out; 1665 rd = &tx_ring_data(priv, skb->queue_mapping); 1666 hns_nic_net_xmit_hw(ndev, skb, rd); 1667 1668 retry_times = 0; 1669 while (retry_times++ < 10) { 1670 mdelay(10); 1671 /* clean rx */ 1672 rd = &rx_ring_data(priv, i); 1673 if (rd->poll_one(rd, fetch_num, 1674 hns_nic_drop_rx_fetch)) 1675 break; 1676 } 1677 1678 retry_times = 0; 1679 while (retry_times++ < 10) { 1680 mdelay(10); 1681 /* clean tx ring 0 send package */ 1682 rd = &tx_ring_data(priv, 1683 HNS_LB_TX_RING); 1684 if (rd->poll_one(rd, fetch_num, NULL)) 1685 break; 1686 } 1687 } 1688 } 1689 } 1690 1691 out: 1692 /* restore everything */ 1693 ops->set_rss(h, org_indir, NULL, 0); 1694 hns_disable_serdes_lb(ndev); 1695 enable_serdes_lb_err: 1696 kfree(cur_indir); 1697 cur_indir_alloc_err: 1698 kfree(org_indir); 1699 1700 return ret; 1701 } 1702 1703 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu) 1704 { 1705 struct hns_nic_priv *priv = netdev_priv(ndev); 1706 struct hnae_handle *h = priv->ae_handle; 1707 bool if_running = netif_running(ndev); 1708 int ret; 1709 1710 /* MTU < 68 is an error and causes problems on some kernels */ 1711 if (new_mtu < 68) 1712 return -EINVAL; 1713 1714 /* MTU no change */ 1715 if (new_mtu == ndev->mtu) 1716 return 0; 1717 1718 if (!h->dev->ops->set_mtu) 1719 return -ENOTSUPP; 1720 1721 if (if_running) { 1722 (void)hns_nic_net_stop(ndev); 1723 msleep(100); 1724 } 1725 1726 if (priv->enet_ver != AE_VERSION_1 && 1727 ndev->mtu <= BD_SIZE_2048_MAX_MTU && 1728 new_mtu > BD_SIZE_2048_MAX_MTU) { 1729 /* update desc */ 1730 hnae_reinit_all_ring_desc(h); 1731 1732 /* clear the package which the chip has fetched */ 1733 ret = hns_nic_clear_all_rx_fetch(ndev); 1734 1735 /* the page offset must be consist with desc */ 1736 hnae_reinit_all_ring_page_off(h); 1737 1738 if (ret) { 1739 netdev_err(ndev, "clear the fetched desc fail\n"); 1740 goto out; 1741 } 1742 } 1743 1744 ret = h->dev->ops->set_mtu(h, new_mtu); 1745 if (ret) { 1746 netdev_err(ndev, "set mtu fail, return value %d\n", 1747 ret); 1748 goto out; 1749 } 1750 1751 /* finally, set new mtu to netdevice */ 1752 ndev->mtu = new_mtu; 1753 1754 out: 1755 if (if_running) { 1756 if (hns_nic_net_open(ndev)) { 1757 netdev_err(ndev, "hns net open fail\n"); 1758 ret = -EINVAL; 1759 } 1760 } 1761 1762 return ret; 1763 } 1764 1765 static int hns_nic_set_features(struct net_device *netdev, 1766 netdev_features_t features) 1767 { 1768 struct hns_nic_priv *priv = netdev_priv(netdev); 1769 1770 switch (priv->enet_ver) { 1771 case AE_VERSION_1: 1772 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) 1773 netdev_info(netdev, "enet v1 do not support tso!\n"); 1774 break; 1775 default: 1776 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) { 1777 priv->ops.fill_desc = fill_tso_desc; 1778 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 1779 /* The chip only support 7*4096 */ 1780 netif_set_gso_max_size(netdev, 7 * 4096); 1781 } else { 1782 priv->ops.fill_desc = fill_v2_desc; 1783 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 1784 } 1785 break; 1786 } 1787 netdev->features = features; 1788 return 0; 1789 } 1790 1791 static netdev_features_t hns_nic_fix_features( 1792 struct net_device *netdev, netdev_features_t features) 1793 { 1794 struct hns_nic_priv *priv = netdev_priv(netdev); 1795 1796 switch (priv->enet_ver) { 1797 case AE_VERSION_1: 1798 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 | 1799 NETIF_F_HW_VLAN_CTAG_FILTER); 1800 break; 1801 default: 1802 break; 1803 } 1804 return features; 1805 } 1806 1807 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr) 1808 { 1809 struct hns_nic_priv *priv = netdev_priv(netdev); 1810 struct hnae_handle *h = priv->ae_handle; 1811 1812 if (h->dev->ops->add_uc_addr) 1813 return h->dev->ops->add_uc_addr(h, addr); 1814 1815 return 0; 1816 } 1817 1818 static int hns_nic_uc_unsync(struct net_device *netdev, 1819 const unsigned char *addr) 1820 { 1821 struct hns_nic_priv *priv = netdev_priv(netdev); 1822 struct hnae_handle *h = priv->ae_handle; 1823 1824 if (h->dev->ops->rm_uc_addr) 1825 return h->dev->ops->rm_uc_addr(h, addr); 1826 1827 return 0; 1828 } 1829 1830 /** 1831 * nic_set_multicast_list - set mutl mac address 1832 * @ndev: net device 1833 * 1834 * return void 1835 */ 1836 static void hns_set_multicast_list(struct net_device *ndev) 1837 { 1838 struct hns_nic_priv *priv = netdev_priv(ndev); 1839 struct hnae_handle *h = priv->ae_handle; 1840 struct netdev_hw_addr *ha = NULL; 1841 1842 if (!h) { 1843 netdev_err(ndev, "hnae handle is null\n"); 1844 return; 1845 } 1846 1847 if (h->dev->ops->clr_mc_addr) 1848 if (h->dev->ops->clr_mc_addr(h)) 1849 netdev_err(ndev, "clear multicast address fail\n"); 1850 1851 if (h->dev->ops->set_mc_addr) { 1852 netdev_for_each_mc_addr(ha, ndev) 1853 if (h->dev->ops->set_mc_addr(h, ha->addr)) 1854 netdev_err(ndev, "set multicast fail\n"); 1855 } 1856 } 1857 1858 static void hns_nic_set_rx_mode(struct net_device *ndev) 1859 { 1860 struct hns_nic_priv *priv = netdev_priv(ndev); 1861 struct hnae_handle *h = priv->ae_handle; 1862 1863 if (h->dev->ops->set_promisc_mode) { 1864 if (ndev->flags & IFF_PROMISC) 1865 h->dev->ops->set_promisc_mode(h, 1); 1866 else 1867 h->dev->ops->set_promisc_mode(h, 0); 1868 } 1869 1870 hns_set_multicast_list(ndev); 1871 1872 if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync)) 1873 netdev_err(ndev, "sync uc address fail\n"); 1874 } 1875 1876 static void hns_nic_get_stats64(struct net_device *ndev, 1877 struct rtnl_link_stats64 *stats) 1878 { 1879 int idx = 0; 1880 u64 tx_bytes = 0; 1881 u64 rx_bytes = 0; 1882 u64 tx_pkts = 0; 1883 u64 rx_pkts = 0; 1884 struct hns_nic_priv *priv = netdev_priv(ndev); 1885 struct hnae_handle *h = priv->ae_handle; 1886 1887 for (idx = 0; idx < h->q_num; idx++) { 1888 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes; 1889 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts; 1890 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes; 1891 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts; 1892 } 1893 1894 stats->tx_bytes = tx_bytes; 1895 stats->tx_packets = tx_pkts; 1896 stats->rx_bytes = rx_bytes; 1897 stats->rx_packets = rx_pkts; 1898 1899 stats->rx_errors = ndev->stats.rx_errors; 1900 stats->multicast = ndev->stats.multicast; 1901 stats->rx_length_errors = ndev->stats.rx_length_errors; 1902 stats->rx_crc_errors = ndev->stats.rx_crc_errors; 1903 stats->rx_missed_errors = ndev->stats.rx_missed_errors; 1904 1905 stats->tx_errors = ndev->stats.tx_errors; 1906 stats->rx_dropped = ndev->stats.rx_dropped; 1907 stats->tx_dropped = ndev->stats.tx_dropped; 1908 stats->collisions = ndev->stats.collisions; 1909 stats->rx_over_errors = ndev->stats.rx_over_errors; 1910 stats->rx_frame_errors = ndev->stats.rx_frame_errors; 1911 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors; 1912 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors; 1913 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors; 1914 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors; 1915 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors; 1916 stats->tx_window_errors = ndev->stats.tx_window_errors; 1917 stats->rx_compressed = ndev->stats.rx_compressed; 1918 stats->tx_compressed = ndev->stats.tx_compressed; 1919 } 1920 1921 static u16 1922 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb, 1923 struct net_device *sb_dev) 1924 { 1925 struct ethhdr *eth_hdr = (struct ethhdr *)skb->data; 1926 struct hns_nic_priv *priv = netdev_priv(ndev); 1927 1928 /* fix hardware broadcast/multicast packets queue loopback */ 1929 if (!AE_IS_VER1(priv->enet_ver) && 1930 is_multicast_ether_addr(eth_hdr->h_dest)) 1931 return 0; 1932 else 1933 return netdev_pick_tx(ndev, skb, NULL); 1934 } 1935 1936 static const struct net_device_ops hns_nic_netdev_ops = { 1937 .ndo_open = hns_nic_net_open, 1938 .ndo_stop = hns_nic_net_stop, 1939 .ndo_start_xmit = hns_nic_net_xmit, 1940 .ndo_tx_timeout = hns_nic_net_timeout, 1941 .ndo_set_mac_address = hns_nic_net_set_mac_address, 1942 .ndo_change_mtu = hns_nic_change_mtu, 1943 .ndo_do_ioctl = phy_do_ioctl_running, 1944 .ndo_set_features = hns_nic_set_features, 1945 .ndo_fix_features = hns_nic_fix_features, 1946 .ndo_get_stats64 = hns_nic_get_stats64, 1947 .ndo_set_rx_mode = hns_nic_set_rx_mode, 1948 .ndo_select_queue = hns_nic_select_queue, 1949 }; 1950 1951 static void hns_nic_update_link_status(struct net_device *netdev) 1952 { 1953 struct hns_nic_priv *priv = netdev_priv(netdev); 1954 1955 struct hnae_handle *h = priv->ae_handle; 1956 1957 if (h->phy_dev) { 1958 if (h->phy_if != PHY_INTERFACE_MODE_XGMII) 1959 return; 1960 1961 (void)genphy_read_status(h->phy_dev); 1962 } 1963 hns_nic_adjust_link(netdev); 1964 } 1965 1966 /* for dumping key regs*/ 1967 static void hns_nic_dump(struct hns_nic_priv *priv) 1968 { 1969 struct hnae_handle *h = priv->ae_handle; 1970 struct hnae_ae_ops *ops = h->dev->ops; 1971 u32 *data, reg_num, i; 1972 1973 if (ops->get_regs_len && ops->get_regs) { 1974 reg_num = ops->get_regs_len(priv->ae_handle); 1975 reg_num = (reg_num + 3ul) & ~3ul; 1976 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL); 1977 if (data) { 1978 ops->get_regs(priv->ae_handle, data); 1979 for (i = 0; i < reg_num; i += 4) 1980 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n", 1981 i, data[i], data[i + 1], 1982 data[i + 2], data[i + 3]); 1983 kfree(data); 1984 } 1985 } 1986 1987 for (i = 0; i < h->q_num; i++) { 1988 pr_info("tx_queue%d_next_to_clean:%d\n", 1989 i, h->qs[i]->tx_ring.next_to_clean); 1990 pr_info("tx_queue%d_next_to_use:%d\n", 1991 i, h->qs[i]->tx_ring.next_to_use); 1992 pr_info("rx_queue%d_next_to_clean:%d\n", 1993 i, h->qs[i]->rx_ring.next_to_clean); 1994 pr_info("rx_queue%d_next_to_use:%d\n", 1995 i, h->qs[i]->rx_ring.next_to_use); 1996 } 1997 } 1998 1999 /* for resetting subtask */ 2000 static void hns_nic_reset_subtask(struct hns_nic_priv *priv) 2001 { 2002 enum hnae_port_type type = priv->ae_handle->port_type; 2003 2004 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state)) 2005 return; 2006 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2007 2008 /* If we're already down, removing or resetting, just bail */ 2009 if (test_bit(NIC_STATE_DOWN, &priv->state) || 2010 test_bit(NIC_STATE_REMOVING, &priv->state) || 2011 test_bit(NIC_STATE_RESETTING, &priv->state)) 2012 return; 2013 2014 hns_nic_dump(priv); 2015 netdev_info(priv->netdev, "try to reset %s port!\n", 2016 (type == HNAE_PORT_DEBUG ? "debug" : "service")); 2017 2018 rtnl_lock(); 2019 /* put off any impending NetWatchDogTimeout */ 2020 netif_trans_update(priv->netdev); 2021 hns_nic_net_reinit(priv->netdev); 2022 2023 rtnl_unlock(); 2024 } 2025 2026 /* for doing service complete*/ 2027 static void hns_nic_service_event_complete(struct hns_nic_priv *priv) 2028 { 2029 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state)); 2030 /* make sure to commit the things */ 2031 smp_mb__before_atomic(); 2032 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2033 } 2034 2035 static void hns_nic_service_task(struct work_struct *work) 2036 { 2037 struct hns_nic_priv *priv 2038 = container_of(work, struct hns_nic_priv, service_task); 2039 struct hnae_handle *h = priv->ae_handle; 2040 2041 hns_nic_reset_subtask(priv); 2042 hns_nic_update_link_status(priv->netdev); 2043 h->dev->ops->update_led_status(h); 2044 hns_nic_update_stats(priv->netdev); 2045 2046 hns_nic_service_event_complete(priv); 2047 } 2048 2049 static void hns_nic_task_schedule(struct hns_nic_priv *priv) 2050 { 2051 if (!test_bit(NIC_STATE_DOWN, &priv->state) && 2052 !test_bit(NIC_STATE_REMOVING, &priv->state) && 2053 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state)) 2054 (void)schedule_work(&priv->service_task); 2055 } 2056 2057 static void hns_nic_service_timer(struct timer_list *t) 2058 { 2059 struct hns_nic_priv *priv = from_timer(priv, t, service_timer); 2060 2061 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ); 2062 2063 hns_nic_task_schedule(priv); 2064 } 2065 2066 /** 2067 * hns_tx_timeout_reset - initiate reset due to Tx timeout 2068 * @priv: driver private struct 2069 **/ 2070 static void hns_tx_timeout_reset(struct hns_nic_priv *priv) 2071 { 2072 /* Do the reset outside of interrupt context */ 2073 if (!test_bit(NIC_STATE_DOWN, &priv->state)) { 2074 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state); 2075 netdev_warn(priv->netdev, 2076 "initiating reset due to tx timeout(%llu,0x%lx)\n", 2077 priv->tx_timeout_count, priv->state); 2078 priv->tx_timeout_count++; 2079 hns_nic_task_schedule(priv); 2080 } 2081 } 2082 2083 static int hns_nic_init_ring_data(struct hns_nic_priv *priv) 2084 { 2085 struct hnae_handle *h = priv->ae_handle; 2086 struct hns_nic_ring_data *rd; 2087 bool is_ver1 = AE_IS_VER1(priv->enet_ver); 2088 int i; 2089 2090 if (h->q_num > NIC_MAX_Q_PER_VF) { 2091 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num); 2092 return -EINVAL; 2093 } 2094 2095 priv->ring_data = kzalloc(array3_size(h->q_num, 2096 sizeof(*priv->ring_data), 2), 2097 GFP_KERNEL); 2098 if (!priv->ring_data) 2099 return -ENOMEM; 2100 2101 for (i = 0; i < h->q_num; i++) { 2102 rd = &priv->ring_data[i]; 2103 rd->queue_index = i; 2104 rd->ring = &h->qs[i]->tx_ring; 2105 rd->poll_one = hns_nic_tx_poll_one; 2106 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : 2107 hns_nic_tx_fini_pro_v2; 2108 2109 netif_napi_add(priv->netdev, &rd->napi, 2110 hns_nic_common_poll, NAPI_POLL_WEIGHT); 2111 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2112 } 2113 for (i = h->q_num; i < h->q_num * 2; i++) { 2114 rd = &priv->ring_data[i]; 2115 rd->queue_index = i - h->q_num; 2116 rd->ring = &h->qs[i - h->q_num]->rx_ring; 2117 rd->poll_one = hns_nic_rx_poll_one; 2118 rd->ex_process = hns_nic_rx_up_pro; 2119 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : 2120 hns_nic_rx_fini_pro_v2; 2121 2122 netif_napi_add(priv->netdev, &rd->napi, 2123 hns_nic_common_poll, NAPI_POLL_WEIGHT); 2124 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2125 } 2126 2127 return 0; 2128 } 2129 2130 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv) 2131 { 2132 struct hnae_handle *h = priv->ae_handle; 2133 int i; 2134 2135 for (i = 0; i < h->q_num * 2; i++) { 2136 netif_napi_del(&priv->ring_data[i].napi); 2137 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) { 2138 (void)irq_set_affinity_hint( 2139 priv->ring_data[i].ring->irq, 2140 NULL); 2141 free_irq(priv->ring_data[i].ring->irq, 2142 &priv->ring_data[i]); 2143 } 2144 2145 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED; 2146 } 2147 kfree(priv->ring_data); 2148 } 2149 2150 static void hns_nic_set_priv_ops(struct net_device *netdev) 2151 { 2152 struct hns_nic_priv *priv = netdev_priv(netdev); 2153 struct hnae_handle *h = priv->ae_handle; 2154 2155 if (AE_IS_VER1(priv->enet_ver)) { 2156 priv->ops.fill_desc = fill_desc; 2157 priv->ops.get_rxd_bnum = get_rx_desc_bnum; 2158 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2159 } else { 2160 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum; 2161 if ((netdev->features & NETIF_F_TSO) || 2162 (netdev->features & NETIF_F_TSO6)) { 2163 priv->ops.fill_desc = fill_tso_desc; 2164 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso; 2165 /* This chip only support 7*4096 */ 2166 netif_set_gso_max_size(netdev, 7 * 4096); 2167 } else { 2168 priv->ops.fill_desc = fill_v2_desc; 2169 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx; 2170 } 2171 /* enable tso when init 2172 * control tso on/off through TSE bit in bd 2173 */ 2174 h->dev->ops->set_tso_stats(h, 1); 2175 } 2176 } 2177 2178 static int hns_nic_try_get_ae(struct net_device *ndev) 2179 { 2180 struct hns_nic_priv *priv = netdev_priv(ndev); 2181 struct hnae_handle *h; 2182 int ret; 2183 2184 h = hnae_get_handle(&priv->netdev->dev, 2185 priv->fwnode, priv->port_id, NULL); 2186 if (IS_ERR_OR_NULL(h)) { 2187 ret = -ENODEV; 2188 dev_dbg(priv->dev, "has not handle, register notifier!\n"); 2189 goto out; 2190 } 2191 priv->ae_handle = h; 2192 2193 ret = hns_nic_init_phy(ndev, h); 2194 if (ret) { 2195 dev_err(priv->dev, "probe phy device fail!\n"); 2196 goto out_init_phy; 2197 } 2198 2199 ret = hns_nic_init_ring_data(priv); 2200 if (ret) { 2201 ret = -ENOMEM; 2202 goto out_init_ring_data; 2203 } 2204 2205 hns_nic_set_priv_ops(ndev); 2206 2207 ret = register_netdev(ndev); 2208 if (ret) { 2209 dev_err(priv->dev, "probe register netdev fail!\n"); 2210 goto out_reg_ndev_fail; 2211 } 2212 return 0; 2213 2214 out_reg_ndev_fail: 2215 hns_nic_uninit_ring_data(priv); 2216 priv->ring_data = NULL; 2217 out_init_phy: 2218 out_init_ring_data: 2219 hnae_put_handle(priv->ae_handle); 2220 priv->ae_handle = NULL; 2221 out: 2222 return ret; 2223 } 2224 2225 static int hns_nic_notifier_action(struct notifier_block *nb, 2226 unsigned long action, void *data) 2227 { 2228 struct hns_nic_priv *priv = 2229 container_of(nb, struct hns_nic_priv, notifier_block); 2230 2231 assert(action == HNAE_AE_REGISTER); 2232 2233 if (!hns_nic_try_get_ae(priv->netdev)) { 2234 hnae_unregister_notifier(&priv->notifier_block); 2235 priv->notifier_block.notifier_call = NULL; 2236 } 2237 return 0; 2238 } 2239 2240 static int hns_nic_dev_probe(struct platform_device *pdev) 2241 { 2242 struct device *dev = &pdev->dev; 2243 struct net_device *ndev; 2244 struct hns_nic_priv *priv; 2245 u32 port_id; 2246 int ret; 2247 2248 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF); 2249 if (!ndev) 2250 return -ENOMEM; 2251 2252 platform_set_drvdata(pdev, ndev); 2253 2254 priv = netdev_priv(ndev); 2255 priv->dev = dev; 2256 priv->netdev = ndev; 2257 2258 if (dev_of_node(dev)) { 2259 struct device_node *ae_node; 2260 2261 if (of_device_is_compatible(dev->of_node, 2262 "hisilicon,hns-nic-v1")) 2263 priv->enet_ver = AE_VERSION_1; 2264 else 2265 priv->enet_ver = AE_VERSION_2; 2266 2267 ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0); 2268 if (!ae_node) { 2269 ret = -ENODEV; 2270 dev_err(dev, "not find ae-handle\n"); 2271 goto out_read_prop_fail; 2272 } 2273 priv->fwnode = &ae_node->fwnode; 2274 } else if (is_acpi_node(dev->fwnode)) { 2275 struct fwnode_reference_args args; 2276 2277 if (acpi_dev_found(hns_enet_acpi_match[0].id)) 2278 priv->enet_ver = AE_VERSION_1; 2279 else if (acpi_dev_found(hns_enet_acpi_match[1].id)) 2280 priv->enet_ver = AE_VERSION_2; 2281 else { 2282 ret = -ENXIO; 2283 goto out_read_prop_fail; 2284 } 2285 2286 /* try to find port-idx-in-ae first */ 2287 ret = acpi_node_get_property_reference(dev->fwnode, 2288 "ae-handle", 0, &args); 2289 if (ret) { 2290 dev_err(dev, "not find ae-handle\n"); 2291 goto out_read_prop_fail; 2292 } 2293 if (!is_acpi_device_node(args.fwnode)) { 2294 ret = -EINVAL; 2295 goto out_read_prop_fail; 2296 } 2297 priv->fwnode = args.fwnode; 2298 } else { 2299 dev_err(dev, "cannot read cfg data from OF or acpi\n"); 2300 ret = -ENXIO; 2301 goto out_read_prop_fail; 2302 } 2303 2304 ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id); 2305 if (ret) { 2306 /* only for old code compatible */ 2307 ret = device_property_read_u32(dev, "port-id", &port_id); 2308 if (ret) 2309 goto out_read_prop_fail; 2310 /* for old dts, we need to caculate the port offset */ 2311 port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET 2312 : port_id - HNS_SRV_OFFSET; 2313 } 2314 priv->port_id = port_id; 2315 2316 hns_init_mac_addr(ndev); 2317 2318 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT; 2319 ndev->priv_flags |= IFF_UNICAST_FLT; 2320 ndev->netdev_ops = &hns_nic_netdev_ops; 2321 hns_ethtool_set_ops(ndev); 2322 2323 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2324 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2325 NETIF_F_GRO; 2326 ndev->vlan_features |= 2327 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM; 2328 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO; 2329 2330 /* MTU range: 68 - 9578 (v1) or 9706 (v2) */ 2331 ndev->min_mtu = MAC_MIN_MTU; 2332 switch (priv->enet_ver) { 2333 case AE_VERSION_2: 2334 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE; 2335 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 2336 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO | 2337 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6; 2338 ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6; 2339 ndev->max_mtu = MAC_MAX_MTU_V2 - 2340 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2341 break; 2342 default: 2343 ndev->max_mtu = MAC_MAX_MTU - 2344 (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); 2345 break; 2346 } 2347 2348 SET_NETDEV_DEV(ndev, dev); 2349 2350 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64))) 2351 dev_dbg(dev, "set mask to 64bit\n"); 2352 else 2353 dev_err(dev, "set mask to 64bit fail!\n"); 2354 2355 /* carrier off reporting is important to ethtool even BEFORE open */ 2356 netif_carrier_off(ndev); 2357 2358 timer_setup(&priv->service_timer, hns_nic_service_timer, 0); 2359 INIT_WORK(&priv->service_task, hns_nic_service_task); 2360 2361 set_bit(NIC_STATE_SERVICE_INITED, &priv->state); 2362 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state); 2363 set_bit(NIC_STATE_DOWN, &priv->state); 2364 2365 if (hns_nic_try_get_ae(priv->netdev)) { 2366 priv->notifier_block.notifier_call = hns_nic_notifier_action; 2367 ret = hnae_register_notifier(&priv->notifier_block); 2368 if (ret) { 2369 dev_err(dev, "register notifier fail!\n"); 2370 goto out_notify_fail; 2371 } 2372 dev_dbg(dev, "has not handle, register notifier!\n"); 2373 } 2374 2375 return 0; 2376 2377 out_notify_fail: 2378 (void)cancel_work_sync(&priv->service_task); 2379 out_read_prop_fail: 2380 /* safe for ACPI FW */ 2381 of_node_put(to_of_node(priv->fwnode)); 2382 free_netdev(ndev); 2383 return ret; 2384 } 2385 2386 static int hns_nic_dev_remove(struct platform_device *pdev) 2387 { 2388 struct net_device *ndev = platform_get_drvdata(pdev); 2389 struct hns_nic_priv *priv = netdev_priv(ndev); 2390 2391 if (ndev->reg_state != NETREG_UNINITIALIZED) 2392 unregister_netdev(ndev); 2393 2394 if (priv->ring_data) 2395 hns_nic_uninit_ring_data(priv); 2396 priv->ring_data = NULL; 2397 2398 if (ndev->phydev) 2399 phy_disconnect(ndev->phydev); 2400 2401 if (!IS_ERR_OR_NULL(priv->ae_handle)) 2402 hnae_put_handle(priv->ae_handle); 2403 priv->ae_handle = NULL; 2404 if (priv->notifier_block.notifier_call) 2405 hnae_unregister_notifier(&priv->notifier_block); 2406 priv->notifier_block.notifier_call = NULL; 2407 2408 set_bit(NIC_STATE_REMOVING, &priv->state); 2409 (void)cancel_work_sync(&priv->service_task); 2410 2411 /* safe for ACPI FW */ 2412 of_node_put(to_of_node(priv->fwnode)); 2413 2414 free_netdev(ndev); 2415 return 0; 2416 } 2417 2418 static const struct of_device_id hns_enet_of_match[] = { 2419 {.compatible = "hisilicon,hns-nic-v1",}, 2420 {.compatible = "hisilicon,hns-nic-v2",}, 2421 {}, 2422 }; 2423 2424 MODULE_DEVICE_TABLE(of, hns_enet_of_match); 2425 2426 static struct platform_driver hns_nic_dev_driver = { 2427 .driver = { 2428 .name = "hns-nic", 2429 .of_match_table = hns_enet_of_match, 2430 .acpi_match_table = ACPI_PTR(hns_enet_acpi_match), 2431 }, 2432 .probe = hns_nic_dev_probe, 2433 .remove = hns_nic_dev_remove, 2434 }; 2435 2436 module_platform_driver(hns_nic_dev_driver); 2437 2438 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver"); 2439 MODULE_AUTHOR("Hisilicon, Inc."); 2440 MODULE_LICENSE("GPL"); 2441 MODULE_ALIAS("platform:hns-nic"); 2442