xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns/hns_enet.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Copyright (c) 2014-2015 Hisilicon Limited.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  */
9 
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22 
23 #include "hnae.h"
24 #include "hns_enet.h"
25 #include "hns_dsaf_mac.h"
26 
27 #define NIC_MAX_Q_PER_VF 16
28 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
29 
30 #define SERVICE_TIMER_HZ (1 * HZ)
31 
32 #define NIC_TX_CLEAN_MAX_NUM 256
33 #define NIC_RX_CLEAN_MAX_NUM 64
34 
35 #define RCB_IRQ_NOT_INITED 0
36 #define RCB_IRQ_INITED 1
37 #define HNS_BUFFER_SIZE_2048 2048
38 
39 #define BD_MAX_SEND_SIZE 8191
40 #define SKB_TMP_LEN(SKB) \
41 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
42 
43 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
44 			    int send_sz, dma_addr_t dma, int frag_end,
45 			    int buf_num, enum hns_desc_type type, int mtu)
46 {
47 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
48 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
49 	struct iphdr *iphdr;
50 	struct ipv6hdr *ipv6hdr;
51 	struct sk_buff *skb;
52 	__be16 protocol;
53 	u8 bn_pid = 0;
54 	u8 rrcfv = 0;
55 	u8 ip_offset = 0;
56 	u8 tvsvsn = 0;
57 	u16 mss = 0;
58 	u8 l4_len = 0;
59 	u16 paylen = 0;
60 
61 	desc_cb->priv = priv;
62 	desc_cb->length = size;
63 	desc_cb->dma = dma;
64 	desc_cb->type = type;
65 
66 	desc->addr = cpu_to_le64(dma);
67 	desc->tx.send_size = cpu_to_le16((u16)send_sz);
68 
69 	/* config bd buffer end */
70 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
71 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
72 
73 	/* fill port_id in the tx bd for sending management pkts */
74 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
75 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
76 
77 	if (type == DESC_TYPE_SKB) {
78 		skb = (struct sk_buff *)priv;
79 
80 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
81 			skb_reset_mac_len(skb);
82 			protocol = skb->protocol;
83 			ip_offset = ETH_HLEN;
84 
85 			if (protocol == htons(ETH_P_8021Q)) {
86 				ip_offset += VLAN_HLEN;
87 				protocol = vlan_get_protocol(skb);
88 				skb->protocol = protocol;
89 			}
90 
91 			if (skb->protocol == htons(ETH_P_IP)) {
92 				iphdr = ip_hdr(skb);
93 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
94 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
95 
96 				/* check for tcp/udp header */
97 				if (iphdr->protocol == IPPROTO_TCP &&
98 				    skb_is_gso(skb)) {
99 					hnae_set_bit(tvsvsn,
100 						     HNSV2_TXD_TSE_B, 1);
101 					l4_len = tcp_hdrlen(skb);
102 					mss = skb_shinfo(skb)->gso_size;
103 					paylen = skb->len - SKB_TMP_LEN(skb);
104 				}
105 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
106 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
107 				ipv6hdr = ipv6_hdr(skb);
108 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
109 
110 				/* check for tcp/udp header */
111 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
112 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
113 					hnae_set_bit(tvsvsn,
114 						     HNSV2_TXD_TSE_B, 1);
115 					l4_len = tcp_hdrlen(skb);
116 					mss = skb_shinfo(skb)->gso_size;
117 					paylen = skb->len - SKB_TMP_LEN(skb);
118 				}
119 			}
120 			desc->tx.ip_offset = ip_offset;
121 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
122 			desc->tx.mss = cpu_to_le16(mss);
123 			desc->tx.l4_len = l4_len;
124 			desc->tx.paylen = cpu_to_le16(paylen);
125 		}
126 	}
127 
128 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
129 
130 	desc->tx.bn_pid = bn_pid;
131 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
132 
133 	ring_ptr_move_fw(ring, next_to_use);
134 }
135 
136 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
137 			 int size, dma_addr_t dma, int frag_end,
138 			 int buf_num, enum hns_desc_type type, int mtu)
139 {
140 	fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
141 			buf_num, type, mtu);
142 }
143 
144 static const struct acpi_device_id hns_enet_acpi_match[] = {
145 	{ "HISI00C1", 0 },
146 	{ "HISI00C2", 0 },
147 	{ },
148 };
149 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
150 
151 static void fill_desc(struct hnae_ring *ring, void *priv,
152 		      int size, dma_addr_t dma, int frag_end,
153 		      int buf_num, enum hns_desc_type type, int mtu)
154 {
155 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
156 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
157 	struct sk_buff *skb;
158 	__be16 protocol;
159 	u32 ip_offset;
160 	u32 asid_bufnum_pid = 0;
161 	u32 flag_ipoffset = 0;
162 
163 	desc_cb->priv = priv;
164 	desc_cb->length = size;
165 	desc_cb->dma = dma;
166 	desc_cb->type = type;
167 
168 	desc->addr = cpu_to_le64(dma);
169 	desc->tx.send_size = cpu_to_le16((u16)size);
170 
171 	/*config bd buffer end */
172 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
173 
174 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
175 
176 	if (type == DESC_TYPE_SKB) {
177 		skb = (struct sk_buff *)priv;
178 
179 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
180 			protocol = skb->protocol;
181 			ip_offset = ETH_HLEN;
182 
183 			/*if it is a SW VLAN check the next protocol*/
184 			if (protocol == htons(ETH_P_8021Q)) {
185 				ip_offset += VLAN_HLEN;
186 				protocol = vlan_get_protocol(skb);
187 				skb->protocol = protocol;
188 			}
189 
190 			if (skb->protocol == htons(ETH_P_IP)) {
191 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
192 				/* check for tcp/udp header */
193 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
194 
195 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
196 				/* ipv6 has not l3 cs, check for L4 header */
197 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
198 			}
199 
200 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
201 		}
202 	}
203 
204 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
205 
206 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
207 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
208 
209 	ring_ptr_move_fw(ring, next_to_use);
210 }
211 
212 static void unfill_desc(struct hnae_ring *ring)
213 {
214 	ring_ptr_move_bw(ring, next_to_use);
215 }
216 
217 static int hns_nic_maybe_stop_tx(
218 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
219 {
220 	struct sk_buff *skb = *out_skb;
221 	struct sk_buff *new_skb = NULL;
222 	int buf_num;
223 
224 	/* no. of segments (plus a header) */
225 	buf_num = skb_shinfo(skb)->nr_frags + 1;
226 
227 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
228 		if (ring_space(ring) < 1)
229 			return -EBUSY;
230 
231 		new_skb = skb_copy(skb, GFP_ATOMIC);
232 		if (!new_skb)
233 			return -ENOMEM;
234 
235 		dev_kfree_skb_any(skb);
236 		*out_skb = new_skb;
237 		buf_num = 1;
238 	} else if (buf_num > ring_space(ring)) {
239 		return -EBUSY;
240 	}
241 
242 	*bnum = buf_num;
243 	return 0;
244 }
245 
246 static int hns_nic_maybe_stop_tso(
247 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
248 {
249 	int i;
250 	int size;
251 	int buf_num;
252 	int frag_num;
253 	struct sk_buff *skb = *out_skb;
254 	struct sk_buff *new_skb = NULL;
255 	struct skb_frag_struct *frag;
256 
257 	size = skb_headlen(skb);
258 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
259 
260 	frag_num = skb_shinfo(skb)->nr_frags;
261 	for (i = 0; i < frag_num; i++) {
262 		frag = &skb_shinfo(skb)->frags[i];
263 		size = skb_frag_size(frag);
264 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
265 	}
266 
267 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
268 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
269 		if (ring_space(ring) < buf_num)
270 			return -EBUSY;
271 		/* manual split the send packet */
272 		new_skb = skb_copy(skb, GFP_ATOMIC);
273 		if (!new_skb)
274 			return -ENOMEM;
275 		dev_kfree_skb_any(skb);
276 		*out_skb = new_skb;
277 
278 	} else if (ring_space(ring) < buf_num) {
279 		return -EBUSY;
280 	}
281 
282 	*bnum = buf_num;
283 	return 0;
284 }
285 
286 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
287 			  int size, dma_addr_t dma, int frag_end,
288 			  int buf_num, enum hns_desc_type type, int mtu)
289 {
290 	int frag_buf_num;
291 	int sizeoflast;
292 	int k;
293 
294 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
295 	sizeoflast = size % BD_MAX_SEND_SIZE;
296 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
297 
298 	/* when the frag size is bigger than hardware, split this frag */
299 	for (k = 0; k < frag_buf_num; k++)
300 		fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
301 				(k == frag_buf_num - 1) ?
302 					sizeoflast : BD_MAX_SEND_SIZE,
303 				dma + BD_MAX_SEND_SIZE * k,
304 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
305 				buf_num,
306 				(type == DESC_TYPE_SKB && !k) ?
307 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
308 				mtu);
309 }
310 
311 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
312 				struct sk_buff *skb,
313 				struct hns_nic_ring_data *ring_data)
314 {
315 	struct hns_nic_priv *priv = netdev_priv(ndev);
316 	struct hnae_ring *ring = ring_data->ring;
317 	struct device *dev = ring_to_dev(ring);
318 	struct netdev_queue *dev_queue;
319 	struct skb_frag_struct *frag;
320 	int buf_num;
321 	int seg_num;
322 	dma_addr_t dma;
323 	int size, next_to_use;
324 	int i;
325 
326 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
327 	case -EBUSY:
328 		ring->stats.tx_busy++;
329 		goto out_net_tx_busy;
330 	case -ENOMEM:
331 		ring->stats.sw_err_cnt++;
332 		netdev_err(ndev, "no memory to xmit!\n");
333 		goto out_err_tx_ok;
334 	default:
335 		break;
336 	}
337 
338 	/* no. of segments (plus a header) */
339 	seg_num = skb_shinfo(skb)->nr_frags + 1;
340 	next_to_use = ring->next_to_use;
341 
342 	/* fill the first part */
343 	size = skb_headlen(skb);
344 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
345 	if (dma_mapping_error(dev, dma)) {
346 		netdev_err(ndev, "TX head DMA map failed\n");
347 		ring->stats.sw_err_cnt++;
348 		goto out_err_tx_ok;
349 	}
350 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
351 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
352 
353 	/* fill the fragments */
354 	for (i = 1; i < seg_num; i++) {
355 		frag = &skb_shinfo(skb)->frags[i - 1];
356 		size = skb_frag_size(frag);
357 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
358 		if (dma_mapping_error(dev, dma)) {
359 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
360 			ring->stats.sw_err_cnt++;
361 			goto out_map_frag_fail;
362 		}
363 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
364 				    seg_num - 1 == i ? 1 : 0, buf_num,
365 				    DESC_TYPE_PAGE, ndev->mtu);
366 	}
367 
368 	/*complete translate all packets*/
369 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
370 	netdev_tx_sent_queue(dev_queue, skb->len);
371 
372 	netif_trans_update(ndev);
373 	ndev->stats.tx_bytes += skb->len;
374 	ndev->stats.tx_packets++;
375 
376 	wmb(); /* commit all data before submit */
377 	assert(skb->queue_mapping < priv->ae_handle->q_num);
378 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
379 	ring->stats.tx_pkts++;
380 	ring->stats.tx_bytes += skb->len;
381 
382 	return NETDEV_TX_OK;
383 
384 out_map_frag_fail:
385 
386 	while (ring->next_to_use != next_to_use) {
387 		unfill_desc(ring);
388 		if (ring->next_to_use != next_to_use)
389 			dma_unmap_page(dev,
390 				       ring->desc_cb[ring->next_to_use].dma,
391 				       ring->desc_cb[ring->next_to_use].length,
392 				       DMA_TO_DEVICE);
393 		else
394 			dma_unmap_single(dev,
395 					 ring->desc_cb[next_to_use].dma,
396 					 ring->desc_cb[next_to_use].length,
397 					 DMA_TO_DEVICE);
398 	}
399 
400 out_err_tx_ok:
401 
402 	dev_kfree_skb_any(skb);
403 	return NETDEV_TX_OK;
404 
405 out_net_tx_busy:
406 
407 	netif_stop_subqueue(ndev, skb->queue_mapping);
408 
409 	/* Herbert's original patch had:
410 	 *  smp_mb__after_netif_stop_queue();
411 	 * but since that doesn't exist yet, just open code it.
412 	 */
413 	smp_mb();
414 	return NETDEV_TX_BUSY;
415 }
416 
417 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
418 			       struct hnae_ring *ring, int pull_len,
419 			       struct hnae_desc_cb *desc_cb)
420 {
421 	struct hnae_desc *desc;
422 	u32 truesize;
423 	int size;
424 	int last_offset;
425 	bool twobufs;
426 
427 	twobufs = ((PAGE_SIZE < 8192) &&
428 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
429 
430 	desc = &ring->desc[ring->next_to_clean];
431 	size = le16_to_cpu(desc->rx.size);
432 
433 	if (twobufs) {
434 		truesize = hnae_buf_size(ring);
435 	} else {
436 		truesize = ALIGN(size, L1_CACHE_BYTES);
437 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
438 	}
439 
440 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
441 			size - pull_len, truesize);
442 
443 	 /* avoid re-using remote pages,flag default unreuse */
444 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
445 		return;
446 
447 	if (twobufs) {
448 		/* if we are only owner of page we can reuse it */
449 		if (likely(page_count(desc_cb->priv) == 1)) {
450 			/* flip page offset to other buffer */
451 			desc_cb->page_offset ^= truesize;
452 
453 			desc_cb->reuse_flag = 1;
454 			/* bump ref count on page before it is given*/
455 			get_page(desc_cb->priv);
456 		}
457 		return;
458 	}
459 
460 	/* move offset up to the next cache line */
461 	desc_cb->page_offset += truesize;
462 
463 	if (desc_cb->page_offset <= last_offset) {
464 		desc_cb->reuse_flag = 1;
465 		/* bump ref count on page before it is given*/
466 		get_page(desc_cb->priv);
467 	}
468 }
469 
470 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
471 {
472 	*out_bnum = hnae_get_field(bnum_flag,
473 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
474 }
475 
476 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
477 {
478 	*out_bnum = hnae_get_field(bnum_flag,
479 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
480 }
481 
482 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
483 				struct sk_buff *skb, u32 flag)
484 {
485 	struct net_device *netdev = ring_data->napi.dev;
486 	u32 l3id;
487 	u32 l4id;
488 
489 	/* check if RX checksum offload is enabled */
490 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
491 		return;
492 
493 	/* In hardware, we only support checksum for the following protocols:
494 	 * 1) IPv4,
495 	 * 2) TCP(over IPv4 or IPv6),
496 	 * 3) UDP(over IPv4 or IPv6),
497 	 * 4) SCTP(over IPv4 or IPv6)
498 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
499 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
500 	 *
501 	 * Hardware limitation:
502 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
503 	 * Error" bit (which usually can be used to indicate whether checksum
504 	 * was calculated by the hardware and if there was any error encountered
505 	 * during checksum calculation).
506 	 *
507 	 * Software workaround:
508 	 * We do get info within the RX descriptor about the kind of L3/L4
509 	 * protocol coming in the packet and the error status. These errors
510 	 * might not just be checksum errors but could be related to version,
511 	 * length of IPv4, UDP, TCP etc.
512 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
513 	 * checksum or any other L3/L4 error, we will not (cannot) convey
514 	 * checksum status for such cases to upper stack and will not maintain
515 	 * the RX L3/L4 checksum counters as well.
516 	 */
517 
518 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
519 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
520 
521 	/*  check L3 protocol for which checksum is supported */
522 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
523 		return;
524 
525 	/* check for any(not just checksum)flagged L3 protocol errors */
526 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
527 		return;
528 
529 	/* we do not support checksum of fragmented packets */
530 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
531 		return;
532 
533 	/*  check L4 protocol for which checksum is supported */
534 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
535 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
536 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
537 		return;
538 
539 	/* check for any(not just checksum)flagged L4 protocol errors */
540 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
541 		return;
542 
543 	/* now, this has to be a packet with valid RX checksum */
544 	skb->ip_summed = CHECKSUM_UNNECESSARY;
545 }
546 
547 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
548 			       struct sk_buff **out_skb, int *out_bnum)
549 {
550 	struct hnae_ring *ring = ring_data->ring;
551 	struct net_device *ndev = ring_data->napi.dev;
552 	struct hns_nic_priv *priv = netdev_priv(ndev);
553 	struct sk_buff *skb;
554 	struct hnae_desc *desc;
555 	struct hnae_desc_cb *desc_cb;
556 	unsigned char *va;
557 	int bnum, length, i;
558 	int pull_len;
559 	u32 bnum_flag;
560 
561 	desc = &ring->desc[ring->next_to_clean];
562 	desc_cb = &ring->desc_cb[ring->next_to_clean];
563 
564 	prefetch(desc);
565 
566 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
567 
568 	/* prefetch first cache line of first page */
569 	prefetch(va);
570 #if L1_CACHE_BYTES < 128
571 	prefetch(va + L1_CACHE_BYTES);
572 #endif
573 
574 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
575 					HNS_RX_HEAD_SIZE);
576 	if (unlikely(!skb)) {
577 		netdev_err(ndev, "alloc rx skb fail\n");
578 		ring->stats.sw_err_cnt++;
579 		return -ENOMEM;
580 	}
581 
582 	prefetchw(skb->data);
583 	length = le16_to_cpu(desc->rx.pkt_len);
584 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
585 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
586 	*out_bnum = bnum;
587 
588 	if (length <= HNS_RX_HEAD_SIZE) {
589 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
590 
591 		/* we can reuse buffer as-is, just make sure it is local */
592 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
593 			desc_cb->reuse_flag = 1;
594 		else /* this page cannot be reused so discard it */
595 			put_page(desc_cb->priv);
596 
597 		ring_ptr_move_fw(ring, next_to_clean);
598 
599 		if (unlikely(bnum != 1)) { /* check err*/
600 			*out_bnum = 1;
601 			goto out_bnum_err;
602 		}
603 	} else {
604 		ring->stats.seg_pkt_cnt++;
605 
606 		pull_len = eth_get_headlen(va, HNS_RX_HEAD_SIZE);
607 		memcpy(__skb_put(skb, pull_len), va,
608 		       ALIGN(pull_len, sizeof(long)));
609 
610 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
611 		ring_ptr_move_fw(ring, next_to_clean);
612 
613 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
614 			*out_bnum = 1;
615 			goto out_bnum_err;
616 		}
617 		for (i = 1; i < bnum; i++) {
618 			desc = &ring->desc[ring->next_to_clean];
619 			desc_cb = &ring->desc_cb[ring->next_to_clean];
620 
621 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
622 			ring_ptr_move_fw(ring, next_to_clean);
623 		}
624 	}
625 
626 	/* check except process, free skb and jump the desc */
627 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
628 out_bnum_err:
629 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
630 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
631 			   bnum, ring->max_desc_num_per_pkt,
632 			   length, (int)MAX_SKB_FRAGS,
633 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
634 		ring->stats.err_bd_num++;
635 		dev_kfree_skb_any(skb);
636 		return -EDOM;
637 	}
638 
639 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
640 
641 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
642 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
643 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
644 		ring->stats.non_vld_descs++;
645 		dev_kfree_skb_any(skb);
646 		return -EINVAL;
647 	}
648 
649 	if (unlikely((!desc->rx.pkt_len) ||
650 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
651 		ring->stats.err_pkt_len++;
652 		dev_kfree_skb_any(skb);
653 		return -EFAULT;
654 	}
655 
656 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
657 		ring->stats.l2_err++;
658 		dev_kfree_skb_any(skb);
659 		return -EFAULT;
660 	}
661 
662 	ring->stats.rx_pkts++;
663 	ring->stats.rx_bytes += skb->len;
664 
665 	/* indicate to upper stack if our hardware has already calculated
666 	 * the RX checksum
667 	 */
668 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
669 
670 	return 0;
671 }
672 
673 static void
674 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
675 {
676 	int i, ret;
677 	struct hnae_desc_cb res_cbs;
678 	struct hnae_desc_cb *desc_cb;
679 	struct hnae_ring *ring = ring_data->ring;
680 	struct net_device *ndev = ring_data->napi.dev;
681 
682 	for (i = 0; i < cleand_count; i++) {
683 		desc_cb = &ring->desc_cb[ring->next_to_use];
684 		if (desc_cb->reuse_flag) {
685 			ring->stats.reuse_pg_cnt++;
686 			hnae_reuse_buffer(ring, ring->next_to_use);
687 		} else {
688 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
689 			if (ret) {
690 				ring->stats.sw_err_cnt++;
691 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
692 				break;
693 			}
694 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
695 		}
696 
697 		ring_ptr_move_fw(ring, next_to_use);
698 	}
699 
700 	wmb(); /* make all data has been write before submit */
701 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
702 }
703 
704 /* return error number for error or number of desc left to take
705  */
706 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
707 			      struct sk_buff *skb)
708 {
709 	struct net_device *ndev = ring_data->napi.dev;
710 
711 	skb->protocol = eth_type_trans(skb, ndev);
712 	(void)napi_gro_receive(&ring_data->napi, skb);
713 }
714 
715 static int hns_desc_unused(struct hnae_ring *ring)
716 {
717 	int ntc = ring->next_to_clean;
718 	int ntu = ring->next_to_use;
719 
720 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
721 }
722 
723 #define HNS_LOWEST_LATENCY_RATE		27	/* 27 MB/s */
724 #define HNS_LOW_LATENCY_RATE			80	/* 80 MB/s */
725 
726 #define HNS_COAL_BDNUM			3
727 
728 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
729 {
730 	bool coal_enable = ring->q->handle->coal_adapt_en;
731 
732 	if (coal_enable &&
733 	    ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
734 		return HNS_COAL_BDNUM;
735 	else
736 		return 0;
737 }
738 
739 static void hns_update_rx_rate(struct hnae_ring *ring)
740 {
741 	bool coal_enable = ring->q->handle->coal_adapt_en;
742 	u32 time_passed_ms;
743 	u64 total_bytes;
744 
745 	if (!coal_enable ||
746 	    time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
747 		return;
748 
749 	/* ring->stats.rx_bytes overflowed */
750 	if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
751 		ring->coal_last_rx_bytes = ring->stats.rx_bytes;
752 		ring->coal_last_jiffies = jiffies;
753 		return;
754 	}
755 
756 	total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
757 	time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
758 	do_div(total_bytes, time_passed_ms);
759 	ring->coal_rx_rate = total_bytes >> 10;
760 
761 	ring->coal_last_rx_bytes = ring->stats.rx_bytes;
762 	ring->coal_last_jiffies = jiffies;
763 }
764 
765 /**
766  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
767  **/
768 static u32 smooth_alg(u32 new_param, u32 old_param)
769 {
770 	u32 gap = (new_param > old_param) ? new_param - old_param
771 					  : old_param - new_param;
772 
773 	if (gap > 8)
774 		gap >>= 3;
775 
776 	if (new_param > old_param)
777 		return old_param + gap;
778 	else
779 		return old_param - gap;
780 }
781 
782 /**
783  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
784  * @ring_data: pointer to hns_nic_ring_data
785  **/
786 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
787 {
788 	struct hnae_ring *ring = ring_data->ring;
789 	struct hnae_handle *handle = ring->q->handle;
790 	u32 new_coal_param, old_coal_param = ring->coal_param;
791 
792 	if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
793 		new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
794 	else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
795 		new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
796 	else
797 		new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
798 
799 	if (new_coal_param == old_coal_param &&
800 	    new_coal_param == handle->coal_param)
801 		return;
802 
803 	new_coal_param = smooth_alg(new_coal_param, old_coal_param);
804 	ring->coal_param = new_coal_param;
805 
806 	/**
807 	 * Because all ring in one port has one coalesce param, when one ring
808 	 * calculate its own coalesce param, it cannot write to hardware at
809 	 * once. There are three conditions as follows:
810 	 *       1. current ring's coalesce param is larger than the hardware.
811 	 *       2. or ring which adapt last time can change again.
812 	 *       3. timeout.
813 	 */
814 	if (new_coal_param == handle->coal_param) {
815 		handle->coal_last_jiffies = jiffies;
816 		handle->coal_ring_idx = ring_data->queue_index;
817 	} else if (new_coal_param > handle->coal_param ||
818 		   handle->coal_ring_idx == ring_data->queue_index ||
819 		   time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
820 		handle->dev->ops->set_coalesce_usecs(handle,
821 					new_coal_param);
822 		handle->dev->ops->set_coalesce_frames(handle,
823 					1, new_coal_param);
824 		handle->coal_param = new_coal_param;
825 		handle->coal_ring_idx = ring_data->queue_index;
826 		handle->coal_last_jiffies = jiffies;
827 	}
828 }
829 
830 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
831 			       int budget, void *v)
832 {
833 	struct hnae_ring *ring = ring_data->ring;
834 	struct sk_buff *skb;
835 	int num, bnum;
836 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
837 	int recv_pkts, recv_bds, clean_count, err;
838 	int unused_count = hns_desc_unused(ring);
839 
840 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
841 	rmb(); /* make sure num taken effect before the other data is touched */
842 
843 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
844 	num -= unused_count;
845 
846 	while (recv_pkts < budget && recv_bds < num) {
847 		/* reuse or realloc buffers */
848 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
849 			hns_nic_alloc_rx_buffers(ring_data,
850 						 clean_count + unused_count);
851 			clean_count = 0;
852 			unused_count = hns_desc_unused(ring);
853 		}
854 
855 		/* poll one pkt */
856 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
857 		if (unlikely(!skb)) /* this fault cannot be repaired */
858 			goto out;
859 
860 		recv_bds += bnum;
861 		clean_count += bnum;
862 		if (unlikely(err)) {  /* do jump the err */
863 			recv_pkts++;
864 			continue;
865 		}
866 
867 		/* do update ip stack process*/
868 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
869 							ring_data, skb);
870 		recv_pkts++;
871 	}
872 
873 out:
874 	/* make all data has been write before submit */
875 	if (clean_count + unused_count > 0)
876 		hns_nic_alloc_rx_buffers(ring_data,
877 					 clean_count + unused_count);
878 
879 	return recv_pkts;
880 }
881 
882 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
883 {
884 	struct hnae_ring *ring = ring_data->ring;
885 	int num = 0;
886 	bool rx_stopped;
887 
888 	hns_update_rx_rate(ring);
889 
890 	/* for hardware bug fixed */
891 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
892 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
893 
894 	if (num <= hns_coal_rx_bdnum(ring)) {
895 		if (ring->q->handle->coal_adapt_en)
896 			hns_nic_adpt_coalesce(ring_data);
897 
898 		rx_stopped = true;
899 	} else {
900 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
901 			ring_data->ring, 1);
902 
903 		rx_stopped = false;
904 	}
905 
906 	return rx_stopped;
907 }
908 
909 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
910 {
911 	struct hnae_ring *ring = ring_data->ring;
912 	int num;
913 
914 	hns_update_rx_rate(ring);
915 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
916 
917 	if (num <= hns_coal_rx_bdnum(ring)) {
918 		if (ring->q->handle->coal_adapt_en)
919 			hns_nic_adpt_coalesce(ring_data);
920 
921 		return true;
922 	}
923 
924 	return false;
925 }
926 
927 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
928 					    int *bytes, int *pkts)
929 {
930 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
931 
932 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
933 	(*bytes) += desc_cb->length;
934 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
935 	hnae_free_buffer_detach(ring, ring->next_to_clean);
936 
937 	ring_ptr_move_fw(ring, next_to_clean);
938 }
939 
940 static int is_valid_clean_head(struct hnae_ring *ring, int h)
941 {
942 	int u = ring->next_to_use;
943 	int c = ring->next_to_clean;
944 
945 	if (unlikely(h > ring->desc_num))
946 		return 0;
947 
948 	assert(u > 0 && u < ring->desc_num);
949 	assert(c > 0 && c < ring->desc_num);
950 	assert(u != c && h != c); /* must be checked before call this func */
951 
952 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
953 }
954 
955 /* netif_tx_lock will turn down the performance, set only when necessary */
956 #ifdef CONFIG_NET_POLL_CONTROLLER
957 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
958 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
959 #else
960 #define NETIF_TX_LOCK(ring)
961 #define NETIF_TX_UNLOCK(ring)
962 #endif
963 
964 /* reclaim all desc in one budget
965  * return error or number of desc left
966  */
967 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
968 			       int budget, void *v)
969 {
970 	struct hnae_ring *ring = ring_data->ring;
971 	struct net_device *ndev = ring_data->napi.dev;
972 	struct netdev_queue *dev_queue;
973 	struct hns_nic_priv *priv = netdev_priv(ndev);
974 	int head;
975 	int bytes, pkts;
976 
977 	NETIF_TX_LOCK(ring);
978 
979 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
980 	rmb(); /* make sure head is ready before touch any data */
981 
982 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
983 		NETIF_TX_UNLOCK(ring);
984 		return 0; /* no data to poll */
985 	}
986 
987 	if (!is_valid_clean_head(ring, head)) {
988 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
989 			   ring->next_to_use, ring->next_to_clean);
990 		ring->stats.io_err_cnt++;
991 		NETIF_TX_UNLOCK(ring);
992 		return -EIO;
993 	}
994 
995 	bytes = 0;
996 	pkts = 0;
997 	while (head != ring->next_to_clean) {
998 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
999 		/* issue prefetch for next Tx descriptor */
1000 		prefetch(&ring->desc_cb[ring->next_to_clean]);
1001 	}
1002 
1003 	NETIF_TX_UNLOCK(ring);
1004 
1005 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1006 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
1007 
1008 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1009 		netif_carrier_on(ndev);
1010 
1011 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
1012 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1013 		/* Make sure that anybody stopping the queue after this
1014 		 * sees the new next_to_clean.
1015 		 */
1016 		smp_mb();
1017 		if (netif_tx_queue_stopped(dev_queue) &&
1018 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
1019 			netif_tx_wake_queue(dev_queue);
1020 			ring->stats.restart_queue++;
1021 		}
1022 	}
1023 	return 0;
1024 }
1025 
1026 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1027 {
1028 	struct hnae_ring *ring = ring_data->ring;
1029 	int head;
1030 
1031 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1032 
1033 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1034 
1035 	if (head != ring->next_to_clean) {
1036 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1037 			ring_data->ring, 1);
1038 
1039 		return false;
1040 	} else {
1041 		return true;
1042 	}
1043 }
1044 
1045 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1046 {
1047 	struct hnae_ring *ring = ring_data->ring;
1048 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1049 
1050 	if (head == ring->next_to_clean)
1051 		return true;
1052 	else
1053 		return false;
1054 }
1055 
1056 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1057 {
1058 	struct hnae_ring *ring = ring_data->ring;
1059 	struct net_device *ndev = ring_data->napi.dev;
1060 	struct netdev_queue *dev_queue;
1061 	int head;
1062 	int bytes, pkts;
1063 
1064 	NETIF_TX_LOCK(ring);
1065 
1066 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1067 	bytes = 0;
1068 	pkts = 0;
1069 	while (head != ring->next_to_clean)
1070 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1071 
1072 	NETIF_TX_UNLOCK(ring);
1073 
1074 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1075 	netdev_tx_reset_queue(dev_queue);
1076 }
1077 
1078 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1079 {
1080 	int clean_complete = 0;
1081 	struct hns_nic_ring_data *ring_data =
1082 		container_of(napi, struct hns_nic_ring_data, napi);
1083 	struct hnae_ring *ring = ring_data->ring;
1084 
1085 try_again:
1086 	clean_complete += ring_data->poll_one(
1087 				ring_data, budget - clean_complete,
1088 				ring_data->ex_process);
1089 
1090 	if (clean_complete < budget) {
1091 		if (ring_data->fini_process(ring_data)) {
1092 			napi_complete(napi);
1093 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1094 		} else {
1095 			goto try_again;
1096 		}
1097 	}
1098 
1099 	return clean_complete;
1100 }
1101 
1102 static irqreturn_t hns_irq_handle(int irq, void *dev)
1103 {
1104 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1105 
1106 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1107 		ring_data->ring, 1);
1108 	napi_schedule(&ring_data->napi);
1109 
1110 	return IRQ_HANDLED;
1111 }
1112 
1113 /**
1114  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1115  *@ndev: net device
1116  */
1117 static void hns_nic_adjust_link(struct net_device *ndev)
1118 {
1119 	struct hns_nic_priv *priv = netdev_priv(ndev);
1120 	struct hnae_handle *h = priv->ae_handle;
1121 	int state = 1;
1122 
1123 	/* If there is no phy, do not need adjust link */
1124 	if (ndev->phydev) {
1125 		/* When phy link down, do nothing */
1126 		if (ndev->phydev->link == 0)
1127 			return;
1128 
1129 		if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1130 						  ndev->phydev->duplex)) {
1131 			/* because Hi161X chip don't support to change gmac
1132 			 * speed and duplex with traffic. Delay 200ms to
1133 			 * make sure there is no more data in chip FIFO.
1134 			 */
1135 			netif_carrier_off(ndev);
1136 			msleep(200);
1137 			h->dev->ops->adjust_link(h, ndev->phydev->speed,
1138 						 ndev->phydev->duplex);
1139 			netif_carrier_on(ndev);
1140 		}
1141 	}
1142 
1143 	state = state && h->dev->ops->get_status(h);
1144 
1145 	if (state != priv->link) {
1146 		if (state) {
1147 			netif_carrier_on(ndev);
1148 			netif_tx_wake_all_queues(ndev);
1149 			netdev_info(ndev, "link up\n");
1150 		} else {
1151 			netif_carrier_off(ndev);
1152 			netdev_info(ndev, "link down\n");
1153 		}
1154 		priv->link = state;
1155 	}
1156 }
1157 
1158 /**
1159  *hns_nic_init_phy - init phy
1160  *@ndev: net device
1161  *@h: ae handle
1162  * Return 0 on success, negative on failure
1163  */
1164 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1165 {
1166 	struct phy_device *phy_dev = h->phy_dev;
1167 	int ret;
1168 
1169 	if (!h->phy_dev)
1170 		return 0;
1171 
1172 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1173 		phy_dev->dev_flags = 0;
1174 
1175 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1176 					 h->phy_if);
1177 	} else {
1178 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1179 	}
1180 	if (unlikely(ret))
1181 		return -ENODEV;
1182 
1183 	phy_dev->supported &= h->if_support;
1184 	phy_dev->advertising = phy_dev->supported;
1185 
1186 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1187 		phy_dev->autoneg = false;
1188 
1189 	return 0;
1190 }
1191 
1192 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1193 {
1194 	struct hns_nic_priv *priv = netdev_priv(netdev);
1195 	struct hnae_handle *h = priv->ae_handle;
1196 
1197 	napi_enable(&priv->ring_data[idx].napi);
1198 
1199 	enable_irq(priv->ring_data[idx].ring->irq);
1200 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1201 
1202 	return 0;
1203 }
1204 
1205 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1206 {
1207 	struct hns_nic_priv *priv = netdev_priv(ndev);
1208 	struct hnae_handle *h = priv->ae_handle;
1209 	struct sockaddr *mac_addr = p;
1210 	int ret;
1211 
1212 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1213 		return -EADDRNOTAVAIL;
1214 
1215 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1216 	if (ret) {
1217 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1218 		return ret;
1219 	}
1220 
1221 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1222 
1223 	return 0;
1224 }
1225 
1226 static void hns_nic_update_stats(struct net_device *netdev)
1227 {
1228 	struct hns_nic_priv *priv = netdev_priv(netdev);
1229 	struct hnae_handle *h = priv->ae_handle;
1230 
1231 	h->dev->ops->update_stats(h, &netdev->stats);
1232 }
1233 
1234 /* set mac addr if it is configed. or leave it to the AE driver */
1235 static void hns_init_mac_addr(struct net_device *ndev)
1236 {
1237 	struct hns_nic_priv *priv = netdev_priv(ndev);
1238 
1239 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1240 		eth_hw_addr_random(ndev);
1241 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1242 			 ndev->dev_addr);
1243 	}
1244 }
1245 
1246 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1247 {
1248 	struct hns_nic_priv *priv = netdev_priv(netdev);
1249 	struct hnae_handle *h = priv->ae_handle;
1250 
1251 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1252 	disable_irq(priv->ring_data[idx].ring->irq);
1253 
1254 	napi_disable(&priv->ring_data[idx].napi);
1255 }
1256 
1257 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1258 				      struct hnae_ring *ring, cpumask_t *mask)
1259 {
1260 	int cpu;
1261 
1262 	/* Diffrent irq banlance between 16core and 32core.
1263 	 * The cpu mask set by ring index according to the ring flag
1264 	 * which indicate the ring is tx or rx.
1265 	 */
1266 	if (q_num == num_possible_cpus()) {
1267 		if (is_tx_ring(ring))
1268 			cpu = ring_idx;
1269 		else
1270 			cpu = ring_idx - q_num;
1271 	} else {
1272 		if (is_tx_ring(ring))
1273 			cpu = ring_idx * 2;
1274 		else
1275 			cpu = (ring_idx - q_num) * 2 + 1;
1276 	}
1277 
1278 	cpumask_clear(mask);
1279 	cpumask_set_cpu(cpu, mask);
1280 
1281 	return cpu;
1282 }
1283 
1284 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1285 {
1286 	struct hnae_handle *h = priv->ae_handle;
1287 	struct hns_nic_ring_data *rd;
1288 	int i;
1289 	int ret;
1290 	int cpu;
1291 
1292 	for (i = 0; i < h->q_num * 2; i++) {
1293 		rd = &priv->ring_data[i];
1294 
1295 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1296 			break;
1297 
1298 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1299 			 "%s-%s%d", priv->netdev->name,
1300 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1301 
1302 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1303 
1304 		ret = request_irq(rd->ring->irq,
1305 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1306 		if (ret) {
1307 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1308 				   rd->ring->irq);
1309 			return ret;
1310 		}
1311 		disable_irq(rd->ring->irq);
1312 
1313 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1314 						 rd->ring, &rd->mask);
1315 
1316 		if (cpu_online(cpu))
1317 			irq_set_affinity_hint(rd->ring->irq,
1318 					      &rd->mask);
1319 
1320 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1321 	}
1322 
1323 	return 0;
1324 }
1325 
1326 static int hns_nic_net_up(struct net_device *ndev)
1327 {
1328 	struct hns_nic_priv *priv = netdev_priv(ndev);
1329 	struct hnae_handle *h = priv->ae_handle;
1330 	int i, j;
1331 	int ret;
1332 
1333 	ret = hns_nic_init_irq(priv);
1334 	if (ret != 0) {
1335 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1336 		return ret;
1337 	}
1338 
1339 	for (i = 0; i < h->q_num * 2; i++) {
1340 		ret = hns_nic_ring_open(ndev, i);
1341 		if (ret)
1342 			goto out_has_some_queues;
1343 	}
1344 
1345 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1346 	if (ret)
1347 		goto out_set_mac_addr_err;
1348 
1349 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1350 	if (ret)
1351 		goto out_start_err;
1352 
1353 	if (ndev->phydev)
1354 		phy_start(ndev->phydev);
1355 
1356 	clear_bit(NIC_STATE_DOWN, &priv->state);
1357 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1358 
1359 	return 0;
1360 
1361 out_start_err:
1362 	netif_stop_queue(ndev);
1363 out_set_mac_addr_err:
1364 out_has_some_queues:
1365 	for (j = i - 1; j >= 0; j--)
1366 		hns_nic_ring_close(ndev, j);
1367 
1368 	set_bit(NIC_STATE_DOWN, &priv->state);
1369 
1370 	return ret;
1371 }
1372 
1373 static void hns_nic_net_down(struct net_device *ndev)
1374 {
1375 	int i;
1376 	struct hnae_ae_ops *ops;
1377 	struct hns_nic_priv *priv = netdev_priv(ndev);
1378 
1379 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1380 		return;
1381 
1382 	(void)del_timer_sync(&priv->service_timer);
1383 	netif_tx_stop_all_queues(ndev);
1384 	netif_carrier_off(ndev);
1385 	netif_tx_disable(ndev);
1386 	priv->link = 0;
1387 
1388 	if (ndev->phydev)
1389 		phy_stop(ndev->phydev);
1390 
1391 	ops = priv->ae_handle->dev->ops;
1392 
1393 	if (ops->stop)
1394 		ops->stop(priv->ae_handle);
1395 
1396 	netif_tx_stop_all_queues(ndev);
1397 
1398 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1399 		hns_nic_ring_close(ndev, i);
1400 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1401 
1402 		/* clean tx buffers*/
1403 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1404 	}
1405 }
1406 
1407 void hns_nic_net_reset(struct net_device *ndev)
1408 {
1409 	struct hns_nic_priv *priv = netdev_priv(ndev);
1410 	struct hnae_handle *handle = priv->ae_handle;
1411 
1412 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1413 		usleep_range(1000, 2000);
1414 
1415 	(void)hnae_reinit_handle(handle);
1416 
1417 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1418 }
1419 
1420 void hns_nic_net_reinit(struct net_device *netdev)
1421 {
1422 	struct hns_nic_priv *priv = netdev_priv(netdev);
1423 	enum hnae_port_type type = priv->ae_handle->port_type;
1424 
1425 	netif_trans_update(priv->netdev);
1426 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1427 		usleep_range(1000, 2000);
1428 
1429 	hns_nic_net_down(netdev);
1430 
1431 	/* Only do hns_nic_net_reset in debug mode
1432 	 * because of hardware limitation.
1433 	 */
1434 	if (type == HNAE_PORT_DEBUG)
1435 		hns_nic_net_reset(netdev);
1436 
1437 	(void)hns_nic_net_up(netdev);
1438 	clear_bit(NIC_STATE_REINITING, &priv->state);
1439 }
1440 
1441 static int hns_nic_net_open(struct net_device *ndev)
1442 {
1443 	struct hns_nic_priv *priv = netdev_priv(ndev);
1444 	struct hnae_handle *h = priv->ae_handle;
1445 	int ret;
1446 
1447 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1448 		return -EBUSY;
1449 
1450 	priv->link = 0;
1451 	netif_carrier_off(ndev);
1452 
1453 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1454 	if (ret < 0) {
1455 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1456 			   ret);
1457 		return ret;
1458 	}
1459 
1460 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1461 	if (ret < 0) {
1462 		netdev_err(ndev,
1463 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1464 		return ret;
1465 	}
1466 
1467 	ret = hns_nic_net_up(ndev);
1468 	if (ret) {
1469 		netdev_err(ndev,
1470 			   "hns net up fail, ret=%d!\n", ret);
1471 		return ret;
1472 	}
1473 
1474 	return 0;
1475 }
1476 
1477 static int hns_nic_net_stop(struct net_device *ndev)
1478 {
1479 	hns_nic_net_down(ndev);
1480 
1481 	return 0;
1482 }
1483 
1484 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1485 static void hns_nic_net_timeout(struct net_device *ndev)
1486 {
1487 	struct hns_nic_priv *priv = netdev_priv(ndev);
1488 
1489 	hns_tx_timeout_reset(priv);
1490 }
1491 
1492 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1493 			    int cmd)
1494 {
1495 	struct phy_device *phy_dev = netdev->phydev;
1496 
1497 	if (!netif_running(netdev))
1498 		return -EINVAL;
1499 
1500 	if (!phy_dev)
1501 		return -ENOTSUPP;
1502 
1503 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1504 }
1505 
1506 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1507 				    struct net_device *ndev)
1508 {
1509 	struct hns_nic_priv *priv = netdev_priv(ndev);
1510 
1511 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1512 
1513 	return hns_nic_net_xmit_hw(ndev, skb,
1514 				   &tx_ring_data(priv, skb->queue_mapping));
1515 }
1516 
1517 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1518 				  struct sk_buff *skb)
1519 {
1520 	dev_kfree_skb_any(skb);
1521 }
1522 
1523 #define HNS_LB_TX_RING	0
1524 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1525 {
1526 	struct sk_buff *skb;
1527 	struct ethhdr *ethhdr;
1528 	int frame_len;
1529 
1530 	/* allocate test skb */
1531 	skb = alloc_skb(64, GFP_KERNEL);
1532 	if (!skb)
1533 		return NULL;
1534 
1535 	skb_put(skb, 64);
1536 	skb->dev = ndev;
1537 	memset(skb->data, 0xFF, skb->len);
1538 
1539 	/* must be tcp/ip package */
1540 	ethhdr = (struct ethhdr *)skb->data;
1541 	ethhdr->h_proto = htons(ETH_P_IP);
1542 
1543 	frame_len = skb->len & (~1ul);
1544 	memset(&skb->data[frame_len / 2], 0xAA,
1545 	       frame_len / 2 - 1);
1546 
1547 	skb->queue_mapping = HNS_LB_TX_RING;
1548 
1549 	return skb;
1550 }
1551 
1552 static int hns_enable_serdes_lb(struct net_device *ndev)
1553 {
1554 	struct hns_nic_priv *priv = netdev_priv(ndev);
1555 	struct hnae_handle *h = priv->ae_handle;
1556 	struct hnae_ae_ops *ops = h->dev->ops;
1557 	int speed, duplex;
1558 	int ret;
1559 
1560 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1561 	if (ret)
1562 		return ret;
1563 
1564 	ret = ops->start ? ops->start(h) : 0;
1565 	if (ret)
1566 		return ret;
1567 
1568 	/* link adjust duplex*/
1569 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1570 		speed = 1000;
1571 	else
1572 		speed = 10000;
1573 	duplex = 1;
1574 
1575 	ops->adjust_link(h, speed, duplex);
1576 
1577 	/* wait h/w ready */
1578 	mdelay(300);
1579 
1580 	return 0;
1581 }
1582 
1583 static void hns_disable_serdes_lb(struct net_device *ndev)
1584 {
1585 	struct hns_nic_priv *priv = netdev_priv(ndev);
1586 	struct hnae_handle *h = priv->ae_handle;
1587 	struct hnae_ae_ops *ops = h->dev->ops;
1588 
1589 	ops->stop(h);
1590 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1591 }
1592 
1593 /**
1594  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1595  *function as follows:
1596  *    1. if one rx ring has found the page_offset is not equal 0 between head
1597  *       and tail, it means that the chip fetched the wrong descs for the ring
1598  *       which buffer size is 4096.
1599  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1600  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1601  *       recieving all packages and it will fetch new descriptions.
1602  *    4. recover to the original state.
1603  *
1604  *@ndev: net device
1605  */
1606 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1607 {
1608 	struct hns_nic_priv *priv = netdev_priv(ndev);
1609 	struct hnae_handle *h = priv->ae_handle;
1610 	struct hnae_ae_ops *ops = h->dev->ops;
1611 	struct hns_nic_ring_data *rd;
1612 	struct hnae_ring *ring;
1613 	struct sk_buff *skb;
1614 	u32 *org_indir;
1615 	u32 *cur_indir;
1616 	int indir_size;
1617 	int head, tail;
1618 	int fetch_num;
1619 	int i, j;
1620 	bool found;
1621 	int retry_times;
1622 	int ret = 0;
1623 
1624 	/* alloc indir memory */
1625 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1626 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1627 	if (!org_indir)
1628 		return -ENOMEM;
1629 
1630 	/* store the orginal indirection */
1631 	ops->get_rss(h, org_indir, NULL, NULL);
1632 
1633 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1634 	if (!cur_indir) {
1635 		ret = -ENOMEM;
1636 		goto cur_indir_alloc_err;
1637 	}
1638 
1639 	/* set loopback */
1640 	if (hns_enable_serdes_lb(ndev)) {
1641 		ret = -EINVAL;
1642 		goto enable_serdes_lb_err;
1643 	}
1644 
1645 	/* foreach every rx ring to clear fetch desc */
1646 	for (i = 0; i < h->q_num; i++) {
1647 		ring = &h->qs[i]->rx_ring;
1648 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1649 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1650 		found = false;
1651 		fetch_num = ring_dist(ring, head, tail);
1652 
1653 		while (head != tail) {
1654 			if (ring->desc_cb[head].page_offset != 0) {
1655 				found = true;
1656 				break;
1657 			}
1658 
1659 			head++;
1660 			if (head == ring->desc_num)
1661 				head = 0;
1662 		}
1663 
1664 		if (found) {
1665 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1666 				cur_indir[j] = i;
1667 			ops->set_rss(h, cur_indir, NULL, 0);
1668 
1669 			for (j = 0; j < fetch_num; j++) {
1670 				/* alloc one skb and init */
1671 				skb = hns_assemble_skb(ndev);
1672 				if (!skb)
1673 					goto out;
1674 				rd = &tx_ring_data(priv, skb->queue_mapping);
1675 				hns_nic_net_xmit_hw(ndev, skb, rd);
1676 
1677 				retry_times = 0;
1678 				while (retry_times++ < 10) {
1679 					mdelay(10);
1680 					/* clean rx */
1681 					rd = &rx_ring_data(priv, i);
1682 					if (rd->poll_one(rd, fetch_num,
1683 							 hns_nic_drop_rx_fetch))
1684 						break;
1685 				}
1686 
1687 				retry_times = 0;
1688 				while (retry_times++ < 10) {
1689 					mdelay(10);
1690 					/* clean tx ring 0 send package */
1691 					rd = &tx_ring_data(priv,
1692 							   HNS_LB_TX_RING);
1693 					if (rd->poll_one(rd, fetch_num, NULL))
1694 						break;
1695 				}
1696 			}
1697 		}
1698 	}
1699 
1700 out:
1701 	/* restore everything */
1702 	ops->set_rss(h, org_indir, NULL, 0);
1703 	hns_disable_serdes_lb(ndev);
1704 enable_serdes_lb_err:
1705 	kfree(cur_indir);
1706 cur_indir_alloc_err:
1707 	kfree(org_indir);
1708 
1709 	return ret;
1710 }
1711 
1712 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1713 {
1714 	struct hns_nic_priv *priv = netdev_priv(ndev);
1715 	struct hnae_handle *h = priv->ae_handle;
1716 	bool if_running = netif_running(ndev);
1717 	int ret;
1718 
1719 	/* MTU < 68 is an error and causes problems on some kernels */
1720 	if (new_mtu < 68)
1721 		return -EINVAL;
1722 
1723 	/* MTU no change */
1724 	if (new_mtu == ndev->mtu)
1725 		return 0;
1726 
1727 	if (!h->dev->ops->set_mtu)
1728 		return -ENOTSUPP;
1729 
1730 	if (if_running) {
1731 		(void)hns_nic_net_stop(ndev);
1732 		msleep(100);
1733 	}
1734 
1735 	if (priv->enet_ver != AE_VERSION_1 &&
1736 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1737 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1738 		/* update desc */
1739 		hnae_reinit_all_ring_desc(h);
1740 
1741 		/* clear the package which the chip has fetched */
1742 		ret = hns_nic_clear_all_rx_fetch(ndev);
1743 
1744 		/* the page offset must be consist with desc */
1745 		hnae_reinit_all_ring_page_off(h);
1746 
1747 		if (ret) {
1748 			netdev_err(ndev, "clear the fetched desc fail\n");
1749 			goto out;
1750 		}
1751 	}
1752 
1753 	ret = h->dev->ops->set_mtu(h, new_mtu);
1754 	if (ret) {
1755 		netdev_err(ndev, "set mtu fail, return value %d\n",
1756 			   ret);
1757 		goto out;
1758 	}
1759 
1760 	/* finally, set new mtu to netdevice */
1761 	ndev->mtu = new_mtu;
1762 
1763 out:
1764 	if (if_running) {
1765 		if (hns_nic_net_open(ndev)) {
1766 			netdev_err(ndev, "hns net open fail\n");
1767 			ret = -EINVAL;
1768 		}
1769 	}
1770 
1771 	return ret;
1772 }
1773 
1774 static int hns_nic_set_features(struct net_device *netdev,
1775 				netdev_features_t features)
1776 {
1777 	struct hns_nic_priv *priv = netdev_priv(netdev);
1778 
1779 	switch (priv->enet_ver) {
1780 	case AE_VERSION_1:
1781 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1782 			netdev_info(netdev, "enet v1 do not support tso!\n");
1783 		break;
1784 	default:
1785 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1786 			priv->ops.fill_desc = fill_tso_desc;
1787 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1788 			/* The chip only support 7*4096 */
1789 			netif_set_gso_max_size(netdev, 7 * 4096);
1790 		} else {
1791 			priv->ops.fill_desc = fill_v2_desc;
1792 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1793 		}
1794 		break;
1795 	}
1796 	netdev->features = features;
1797 	return 0;
1798 }
1799 
1800 static netdev_features_t hns_nic_fix_features(
1801 		struct net_device *netdev, netdev_features_t features)
1802 {
1803 	struct hns_nic_priv *priv = netdev_priv(netdev);
1804 
1805 	switch (priv->enet_ver) {
1806 	case AE_VERSION_1:
1807 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1808 				NETIF_F_HW_VLAN_CTAG_FILTER);
1809 		break;
1810 	default:
1811 		break;
1812 	}
1813 	return features;
1814 }
1815 
1816 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1817 {
1818 	struct hns_nic_priv *priv = netdev_priv(netdev);
1819 	struct hnae_handle *h = priv->ae_handle;
1820 
1821 	if (h->dev->ops->add_uc_addr)
1822 		return h->dev->ops->add_uc_addr(h, addr);
1823 
1824 	return 0;
1825 }
1826 
1827 static int hns_nic_uc_unsync(struct net_device *netdev,
1828 			     const unsigned char *addr)
1829 {
1830 	struct hns_nic_priv *priv = netdev_priv(netdev);
1831 	struct hnae_handle *h = priv->ae_handle;
1832 
1833 	if (h->dev->ops->rm_uc_addr)
1834 		return h->dev->ops->rm_uc_addr(h, addr);
1835 
1836 	return 0;
1837 }
1838 
1839 /**
1840  * nic_set_multicast_list - set mutl mac address
1841  * @netdev: net device
1842  * @p: mac address
1843  *
1844  * return void
1845  */
1846 static void hns_set_multicast_list(struct net_device *ndev)
1847 {
1848 	struct hns_nic_priv *priv = netdev_priv(ndev);
1849 	struct hnae_handle *h = priv->ae_handle;
1850 	struct netdev_hw_addr *ha = NULL;
1851 
1852 	if (!h)	{
1853 		netdev_err(ndev, "hnae handle is null\n");
1854 		return;
1855 	}
1856 
1857 	if (h->dev->ops->clr_mc_addr)
1858 		if (h->dev->ops->clr_mc_addr(h))
1859 			netdev_err(ndev, "clear multicast address fail\n");
1860 
1861 	if (h->dev->ops->set_mc_addr) {
1862 		netdev_for_each_mc_addr(ha, ndev)
1863 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1864 				netdev_err(ndev, "set multicast fail\n");
1865 	}
1866 }
1867 
1868 static void hns_nic_set_rx_mode(struct net_device *ndev)
1869 {
1870 	struct hns_nic_priv *priv = netdev_priv(ndev);
1871 	struct hnae_handle *h = priv->ae_handle;
1872 
1873 	if (h->dev->ops->set_promisc_mode) {
1874 		if (ndev->flags & IFF_PROMISC)
1875 			h->dev->ops->set_promisc_mode(h, 1);
1876 		else
1877 			h->dev->ops->set_promisc_mode(h, 0);
1878 	}
1879 
1880 	hns_set_multicast_list(ndev);
1881 
1882 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1883 		netdev_err(ndev, "sync uc address fail\n");
1884 }
1885 
1886 static void hns_nic_get_stats64(struct net_device *ndev,
1887 				struct rtnl_link_stats64 *stats)
1888 {
1889 	int idx = 0;
1890 	u64 tx_bytes = 0;
1891 	u64 rx_bytes = 0;
1892 	u64 tx_pkts = 0;
1893 	u64 rx_pkts = 0;
1894 	struct hns_nic_priv *priv = netdev_priv(ndev);
1895 	struct hnae_handle *h = priv->ae_handle;
1896 
1897 	for (idx = 0; idx < h->q_num; idx++) {
1898 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1899 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1900 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1901 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1902 	}
1903 
1904 	stats->tx_bytes = tx_bytes;
1905 	stats->tx_packets = tx_pkts;
1906 	stats->rx_bytes = rx_bytes;
1907 	stats->rx_packets = rx_pkts;
1908 
1909 	stats->rx_errors = ndev->stats.rx_errors;
1910 	stats->multicast = ndev->stats.multicast;
1911 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1912 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1913 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1914 
1915 	stats->tx_errors = ndev->stats.tx_errors;
1916 	stats->rx_dropped = ndev->stats.rx_dropped;
1917 	stats->tx_dropped = ndev->stats.tx_dropped;
1918 	stats->collisions = ndev->stats.collisions;
1919 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1920 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1921 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1922 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1923 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1924 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1925 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1926 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1927 	stats->rx_compressed = ndev->stats.rx_compressed;
1928 	stats->tx_compressed = ndev->stats.tx_compressed;
1929 }
1930 
1931 static u16
1932 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1933 		     struct net_device *sb_dev,
1934 		     select_queue_fallback_t fallback)
1935 {
1936 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1937 	struct hns_nic_priv *priv = netdev_priv(ndev);
1938 
1939 	/* fix hardware broadcast/multicast packets queue loopback */
1940 	if (!AE_IS_VER1(priv->enet_ver) &&
1941 	    is_multicast_ether_addr(eth_hdr->h_dest))
1942 		return 0;
1943 	else
1944 		return fallback(ndev, skb, NULL);
1945 }
1946 
1947 static const struct net_device_ops hns_nic_netdev_ops = {
1948 	.ndo_open = hns_nic_net_open,
1949 	.ndo_stop = hns_nic_net_stop,
1950 	.ndo_start_xmit = hns_nic_net_xmit,
1951 	.ndo_tx_timeout = hns_nic_net_timeout,
1952 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1953 	.ndo_change_mtu = hns_nic_change_mtu,
1954 	.ndo_do_ioctl = hns_nic_do_ioctl,
1955 	.ndo_set_features = hns_nic_set_features,
1956 	.ndo_fix_features = hns_nic_fix_features,
1957 	.ndo_get_stats64 = hns_nic_get_stats64,
1958 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1959 	.ndo_select_queue = hns_nic_select_queue,
1960 };
1961 
1962 static void hns_nic_update_link_status(struct net_device *netdev)
1963 {
1964 	struct hns_nic_priv *priv = netdev_priv(netdev);
1965 
1966 	struct hnae_handle *h = priv->ae_handle;
1967 
1968 	if (h->phy_dev) {
1969 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1970 			return;
1971 
1972 		(void)genphy_read_status(h->phy_dev);
1973 	}
1974 	hns_nic_adjust_link(netdev);
1975 }
1976 
1977 /* for dumping key regs*/
1978 static void hns_nic_dump(struct hns_nic_priv *priv)
1979 {
1980 	struct hnae_handle *h = priv->ae_handle;
1981 	struct hnae_ae_ops *ops = h->dev->ops;
1982 	u32 *data, reg_num, i;
1983 
1984 	if (ops->get_regs_len && ops->get_regs) {
1985 		reg_num = ops->get_regs_len(priv->ae_handle);
1986 		reg_num = (reg_num + 3ul) & ~3ul;
1987 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1988 		if (data) {
1989 			ops->get_regs(priv->ae_handle, data);
1990 			for (i = 0; i < reg_num; i += 4)
1991 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1992 					i, data[i], data[i + 1],
1993 					data[i + 2], data[i + 3]);
1994 			kfree(data);
1995 		}
1996 	}
1997 
1998 	for (i = 0; i < h->q_num; i++) {
1999 		pr_info("tx_queue%d_next_to_clean:%d\n",
2000 			i, h->qs[i]->tx_ring.next_to_clean);
2001 		pr_info("tx_queue%d_next_to_use:%d\n",
2002 			i, h->qs[i]->tx_ring.next_to_use);
2003 		pr_info("rx_queue%d_next_to_clean:%d\n",
2004 			i, h->qs[i]->rx_ring.next_to_clean);
2005 		pr_info("rx_queue%d_next_to_use:%d\n",
2006 			i, h->qs[i]->rx_ring.next_to_use);
2007 	}
2008 }
2009 
2010 /* for resetting subtask */
2011 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2012 {
2013 	enum hnae_port_type type = priv->ae_handle->port_type;
2014 
2015 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2016 		return;
2017 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2018 
2019 	/* If we're already down, removing or resetting, just bail */
2020 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2021 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
2022 	    test_bit(NIC_STATE_RESETTING, &priv->state))
2023 		return;
2024 
2025 	hns_nic_dump(priv);
2026 	netdev_info(priv->netdev, "try to reset %s port!\n",
2027 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2028 
2029 	rtnl_lock();
2030 	/* put off any impending NetWatchDogTimeout */
2031 	netif_trans_update(priv->netdev);
2032 	hns_nic_net_reinit(priv->netdev);
2033 
2034 	rtnl_unlock();
2035 }
2036 
2037 /* for doing service complete*/
2038 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2039 {
2040 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2041 	/* make sure to commit the things */
2042 	smp_mb__before_atomic();
2043 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2044 }
2045 
2046 static void hns_nic_service_task(struct work_struct *work)
2047 {
2048 	struct hns_nic_priv *priv
2049 		= container_of(work, struct hns_nic_priv, service_task);
2050 	struct hnae_handle *h = priv->ae_handle;
2051 
2052 	hns_nic_update_link_status(priv->netdev);
2053 	h->dev->ops->update_led_status(h);
2054 	hns_nic_update_stats(priv->netdev);
2055 
2056 	hns_nic_reset_subtask(priv);
2057 	hns_nic_service_event_complete(priv);
2058 }
2059 
2060 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2061 {
2062 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2063 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2064 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2065 		(void)schedule_work(&priv->service_task);
2066 }
2067 
2068 static void hns_nic_service_timer(struct timer_list *t)
2069 {
2070 	struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2071 
2072 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2073 
2074 	hns_nic_task_schedule(priv);
2075 }
2076 
2077 /**
2078  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2079  * @priv: driver private struct
2080  **/
2081 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2082 {
2083 	/* Do the reset outside of interrupt context */
2084 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2085 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2086 		netdev_warn(priv->netdev,
2087 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2088 			    priv->tx_timeout_count, priv->state);
2089 		priv->tx_timeout_count++;
2090 		hns_nic_task_schedule(priv);
2091 	}
2092 }
2093 
2094 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2095 {
2096 	struct hnae_handle *h = priv->ae_handle;
2097 	struct hns_nic_ring_data *rd;
2098 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2099 	int i;
2100 
2101 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2102 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2103 		return -EINVAL;
2104 	}
2105 
2106 	priv->ring_data = kzalloc(array3_size(h->q_num,
2107 					      sizeof(*priv->ring_data), 2),
2108 				  GFP_KERNEL);
2109 	if (!priv->ring_data)
2110 		return -ENOMEM;
2111 
2112 	for (i = 0; i < h->q_num; i++) {
2113 		rd = &priv->ring_data[i];
2114 		rd->queue_index = i;
2115 		rd->ring = &h->qs[i]->tx_ring;
2116 		rd->poll_one = hns_nic_tx_poll_one;
2117 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2118 			hns_nic_tx_fini_pro_v2;
2119 
2120 		netif_napi_add(priv->netdev, &rd->napi,
2121 			       hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
2122 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2123 	}
2124 	for (i = h->q_num; i < h->q_num * 2; i++) {
2125 		rd = &priv->ring_data[i];
2126 		rd->queue_index = i - h->q_num;
2127 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2128 		rd->poll_one = hns_nic_rx_poll_one;
2129 		rd->ex_process = hns_nic_rx_up_pro;
2130 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2131 			hns_nic_rx_fini_pro_v2;
2132 
2133 		netif_napi_add(priv->netdev, &rd->napi,
2134 			       hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
2135 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2136 	}
2137 
2138 	return 0;
2139 }
2140 
2141 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2142 {
2143 	struct hnae_handle *h = priv->ae_handle;
2144 	int i;
2145 
2146 	for (i = 0; i < h->q_num * 2; i++) {
2147 		netif_napi_del(&priv->ring_data[i].napi);
2148 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2149 			(void)irq_set_affinity_hint(
2150 				priv->ring_data[i].ring->irq,
2151 				NULL);
2152 			free_irq(priv->ring_data[i].ring->irq,
2153 				 &priv->ring_data[i]);
2154 		}
2155 
2156 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2157 	}
2158 	kfree(priv->ring_data);
2159 }
2160 
2161 static void hns_nic_set_priv_ops(struct net_device *netdev)
2162 {
2163 	struct hns_nic_priv *priv = netdev_priv(netdev);
2164 	struct hnae_handle *h = priv->ae_handle;
2165 
2166 	if (AE_IS_VER1(priv->enet_ver)) {
2167 		priv->ops.fill_desc = fill_desc;
2168 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2169 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2170 	} else {
2171 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2172 		if ((netdev->features & NETIF_F_TSO) ||
2173 		    (netdev->features & NETIF_F_TSO6)) {
2174 			priv->ops.fill_desc = fill_tso_desc;
2175 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2176 			/* This chip only support 7*4096 */
2177 			netif_set_gso_max_size(netdev, 7 * 4096);
2178 		} else {
2179 			priv->ops.fill_desc = fill_v2_desc;
2180 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2181 		}
2182 		/* enable tso when init
2183 		 * control tso on/off through TSE bit in bd
2184 		 */
2185 		h->dev->ops->set_tso_stats(h, 1);
2186 	}
2187 }
2188 
2189 static int hns_nic_try_get_ae(struct net_device *ndev)
2190 {
2191 	struct hns_nic_priv *priv = netdev_priv(ndev);
2192 	struct hnae_handle *h;
2193 	int ret;
2194 
2195 	h = hnae_get_handle(&priv->netdev->dev,
2196 			    priv->fwnode, priv->port_id, NULL);
2197 	if (IS_ERR_OR_NULL(h)) {
2198 		ret = -ENODEV;
2199 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2200 		goto out;
2201 	}
2202 	priv->ae_handle = h;
2203 
2204 	ret = hns_nic_init_phy(ndev, h);
2205 	if (ret) {
2206 		dev_err(priv->dev, "probe phy device fail!\n");
2207 		goto out_init_phy;
2208 	}
2209 
2210 	ret = hns_nic_init_ring_data(priv);
2211 	if (ret) {
2212 		ret = -ENOMEM;
2213 		goto out_init_ring_data;
2214 	}
2215 
2216 	hns_nic_set_priv_ops(ndev);
2217 
2218 	ret = register_netdev(ndev);
2219 	if (ret) {
2220 		dev_err(priv->dev, "probe register netdev fail!\n");
2221 		goto out_reg_ndev_fail;
2222 	}
2223 	return 0;
2224 
2225 out_reg_ndev_fail:
2226 	hns_nic_uninit_ring_data(priv);
2227 	priv->ring_data = NULL;
2228 out_init_phy:
2229 out_init_ring_data:
2230 	hnae_put_handle(priv->ae_handle);
2231 	priv->ae_handle = NULL;
2232 out:
2233 	return ret;
2234 }
2235 
2236 static int hns_nic_notifier_action(struct notifier_block *nb,
2237 				   unsigned long action, void *data)
2238 {
2239 	struct hns_nic_priv *priv =
2240 		container_of(nb, struct hns_nic_priv, notifier_block);
2241 
2242 	assert(action == HNAE_AE_REGISTER);
2243 
2244 	if (!hns_nic_try_get_ae(priv->netdev)) {
2245 		hnae_unregister_notifier(&priv->notifier_block);
2246 		priv->notifier_block.notifier_call = NULL;
2247 	}
2248 	return 0;
2249 }
2250 
2251 static int hns_nic_dev_probe(struct platform_device *pdev)
2252 {
2253 	struct device *dev = &pdev->dev;
2254 	struct net_device *ndev;
2255 	struct hns_nic_priv *priv;
2256 	u32 port_id;
2257 	int ret;
2258 
2259 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2260 	if (!ndev)
2261 		return -ENOMEM;
2262 
2263 	platform_set_drvdata(pdev, ndev);
2264 
2265 	priv = netdev_priv(ndev);
2266 	priv->dev = dev;
2267 	priv->netdev = ndev;
2268 
2269 	if (dev_of_node(dev)) {
2270 		struct device_node *ae_node;
2271 
2272 		if (of_device_is_compatible(dev->of_node,
2273 					    "hisilicon,hns-nic-v1"))
2274 			priv->enet_ver = AE_VERSION_1;
2275 		else
2276 			priv->enet_ver = AE_VERSION_2;
2277 
2278 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2279 		if (!ae_node) {
2280 			ret = -ENODEV;
2281 			dev_err(dev, "not find ae-handle\n");
2282 			goto out_read_prop_fail;
2283 		}
2284 		priv->fwnode = &ae_node->fwnode;
2285 	} else if (is_acpi_node(dev->fwnode)) {
2286 		struct fwnode_reference_args args;
2287 
2288 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2289 			priv->enet_ver = AE_VERSION_1;
2290 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2291 			priv->enet_ver = AE_VERSION_2;
2292 		else
2293 			return -ENXIO;
2294 
2295 		/* try to find port-idx-in-ae first */
2296 		ret = acpi_node_get_property_reference(dev->fwnode,
2297 						       "ae-handle", 0, &args);
2298 		if (ret) {
2299 			dev_err(dev, "not find ae-handle\n");
2300 			goto out_read_prop_fail;
2301 		}
2302 		if (!is_acpi_device_node(args.fwnode)) {
2303 			ret = -EINVAL;
2304 			goto out_read_prop_fail;
2305 		}
2306 		priv->fwnode = args.fwnode;
2307 	} else {
2308 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2309 		return -ENXIO;
2310 	}
2311 
2312 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2313 	if (ret) {
2314 		/* only for old code compatible */
2315 		ret = device_property_read_u32(dev, "port-id", &port_id);
2316 		if (ret)
2317 			goto out_read_prop_fail;
2318 		/* for old dts, we need to caculate the port offset */
2319 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2320 			: port_id - HNS_SRV_OFFSET;
2321 	}
2322 	priv->port_id = port_id;
2323 
2324 	hns_init_mac_addr(ndev);
2325 
2326 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2327 	ndev->priv_flags |= IFF_UNICAST_FLT;
2328 	ndev->netdev_ops = &hns_nic_netdev_ops;
2329 	hns_ethtool_set_ops(ndev);
2330 
2331 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2332 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2333 		NETIF_F_GRO;
2334 	ndev->vlan_features |=
2335 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2336 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2337 
2338 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2339 	ndev->min_mtu = MAC_MIN_MTU;
2340 	switch (priv->enet_ver) {
2341 	case AE_VERSION_2:
2342 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
2343 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2344 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2345 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2346 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2347 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2348 		break;
2349 	default:
2350 		ndev->max_mtu = MAC_MAX_MTU -
2351 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2352 		break;
2353 	}
2354 
2355 	SET_NETDEV_DEV(ndev, dev);
2356 
2357 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2358 		dev_dbg(dev, "set mask to 64bit\n");
2359 	else
2360 		dev_err(dev, "set mask to 64bit fail!\n");
2361 
2362 	/* carrier off reporting is important to ethtool even BEFORE open */
2363 	netif_carrier_off(ndev);
2364 
2365 	timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2366 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2367 
2368 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2369 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2370 	set_bit(NIC_STATE_DOWN, &priv->state);
2371 
2372 	if (hns_nic_try_get_ae(priv->netdev)) {
2373 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2374 		ret = hnae_register_notifier(&priv->notifier_block);
2375 		if (ret) {
2376 			dev_err(dev, "register notifier fail!\n");
2377 			goto out_notify_fail;
2378 		}
2379 		dev_dbg(dev, "has not handle, register notifier!\n");
2380 	}
2381 
2382 	return 0;
2383 
2384 out_notify_fail:
2385 	(void)cancel_work_sync(&priv->service_task);
2386 out_read_prop_fail:
2387 	free_netdev(ndev);
2388 	return ret;
2389 }
2390 
2391 static int hns_nic_dev_remove(struct platform_device *pdev)
2392 {
2393 	struct net_device *ndev = platform_get_drvdata(pdev);
2394 	struct hns_nic_priv *priv = netdev_priv(ndev);
2395 
2396 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2397 		unregister_netdev(ndev);
2398 
2399 	if (priv->ring_data)
2400 		hns_nic_uninit_ring_data(priv);
2401 	priv->ring_data = NULL;
2402 
2403 	if (ndev->phydev)
2404 		phy_disconnect(ndev->phydev);
2405 
2406 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2407 		hnae_put_handle(priv->ae_handle);
2408 	priv->ae_handle = NULL;
2409 	if (priv->notifier_block.notifier_call)
2410 		hnae_unregister_notifier(&priv->notifier_block);
2411 	priv->notifier_block.notifier_call = NULL;
2412 
2413 	set_bit(NIC_STATE_REMOVING, &priv->state);
2414 	(void)cancel_work_sync(&priv->service_task);
2415 
2416 	free_netdev(ndev);
2417 	return 0;
2418 }
2419 
2420 static const struct of_device_id hns_enet_of_match[] = {
2421 	{.compatible = "hisilicon,hns-nic-v1",},
2422 	{.compatible = "hisilicon,hns-nic-v2",},
2423 	{},
2424 };
2425 
2426 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2427 
2428 static struct platform_driver hns_nic_dev_driver = {
2429 	.driver = {
2430 		.name = "hns-nic",
2431 		.of_match_table = hns_enet_of_match,
2432 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2433 	},
2434 	.probe = hns_nic_dev_probe,
2435 	.remove = hns_nic_dev_remove,
2436 };
2437 
2438 module_platform_driver(hns_nic_dev_driver);
2439 
2440 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2441 MODULE_AUTHOR("Hisilicon, Inc.");
2442 MODULE_LICENSE("GPL");
2443 MODULE_ALIAS("platform:hns-nic");
2444