xref: /openbmc/linux/drivers/net/ethernet/hisilicon/hns/hns_enet.c (revision 04eb94d526423ff082efce61f4f26b0369d0bfdd)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) 2014-2015 Hisilicon Limited.
4  */
5 
6 #include <linux/clk.h>
7 #include <linux/cpumask.h>
8 #include <linux/etherdevice.h>
9 #include <linux/if_vlan.h>
10 #include <linux/interrupt.h>
11 #include <linux/io.h>
12 #include <linux/ip.h>
13 #include <linux/ipv6.h>
14 #include <linux/module.h>
15 #include <linux/phy.h>
16 #include <linux/platform_device.h>
17 #include <linux/skbuff.h>
18 
19 #include "hnae.h"
20 #include "hns_enet.h"
21 #include "hns_dsaf_mac.h"
22 
23 #define NIC_MAX_Q_PER_VF 16
24 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
25 
26 #define SERVICE_TIMER_HZ (1 * HZ)
27 
28 #define RCB_IRQ_NOT_INITED 0
29 #define RCB_IRQ_INITED 1
30 #define HNS_BUFFER_SIZE_2048 2048
31 
32 #define BD_MAX_SEND_SIZE 8191
33 #define SKB_TMP_LEN(SKB) \
34 	(((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
35 
36 static void fill_v2_desc_hw(struct hnae_ring *ring, void *priv, int size,
37 			    int send_sz, dma_addr_t dma, int frag_end,
38 			    int buf_num, enum hns_desc_type type, int mtu)
39 {
40 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
41 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
42 	struct iphdr *iphdr;
43 	struct ipv6hdr *ipv6hdr;
44 	struct sk_buff *skb;
45 	__be16 protocol;
46 	u8 bn_pid = 0;
47 	u8 rrcfv = 0;
48 	u8 ip_offset = 0;
49 	u8 tvsvsn = 0;
50 	u16 mss = 0;
51 	u8 l4_len = 0;
52 	u16 paylen = 0;
53 
54 	desc_cb->priv = priv;
55 	desc_cb->length = size;
56 	desc_cb->dma = dma;
57 	desc_cb->type = type;
58 
59 	desc->addr = cpu_to_le64(dma);
60 	desc->tx.send_size = cpu_to_le16((u16)send_sz);
61 
62 	/* config bd buffer end */
63 	hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
64 	hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
65 
66 	/* fill port_id in the tx bd for sending management pkts */
67 	hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
68 		       HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
69 
70 	if (type == DESC_TYPE_SKB) {
71 		skb = (struct sk_buff *)priv;
72 
73 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
74 			skb_reset_mac_len(skb);
75 			protocol = skb->protocol;
76 			ip_offset = ETH_HLEN;
77 
78 			if (protocol == htons(ETH_P_8021Q)) {
79 				ip_offset += VLAN_HLEN;
80 				protocol = vlan_get_protocol(skb);
81 				skb->protocol = protocol;
82 			}
83 
84 			if (skb->protocol == htons(ETH_P_IP)) {
85 				iphdr = ip_hdr(skb);
86 				hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
87 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
88 
89 				/* check for tcp/udp header */
90 				if (iphdr->protocol == IPPROTO_TCP &&
91 				    skb_is_gso(skb)) {
92 					hnae_set_bit(tvsvsn,
93 						     HNSV2_TXD_TSE_B, 1);
94 					l4_len = tcp_hdrlen(skb);
95 					mss = skb_shinfo(skb)->gso_size;
96 					paylen = skb->len - SKB_TMP_LEN(skb);
97 				}
98 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
99 				hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
100 				ipv6hdr = ipv6_hdr(skb);
101 				hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
102 
103 				/* check for tcp/udp header */
104 				if (ipv6hdr->nexthdr == IPPROTO_TCP &&
105 				    skb_is_gso(skb) && skb_is_gso_v6(skb)) {
106 					hnae_set_bit(tvsvsn,
107 						     HNSV2_TXD_TSE_B, 1);
108 					l4_len = tcp_hdrlen(skb);
109 					mss = skb_shinfo(skb)->gso_size;
110 					paylen = skb->len - SKB_TMP_LEN(skb);
111 				}
112 			}
113 			desc->tx.ip_offset = ip_offset;
114 			desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
115 			desc->tx.mss = cpu_to_le16(mss);
116 			desc->tx.l4_len = l4_len;
117 			desc->tx.paylen = cpu_to_le16(paylen);
118 		}
119 	}
120 
121 	hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
122 
123 	desc->tx.bn_pid = bn_pid;
124 	desc->tx.ra_ri_cs_fe_vld = rrcfv;
125 
126 	ring_ptr_move_fw(ring, next_to_use);
127 }
128 
129 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
130 			 int size, dma_addr_t dma, int frag_end,
131 			 int buf_num, enum hns_desc_type type, int mtu)
132 {
133 	fill_v2_desc_hw(ring, priv, size, size, dma, frag_end,
134 			buf_num, type, mtu);
135 }
136 
137 static const struct acpi_device_id hns_enet_acpi_match[] = {
138 	{ "HISI00C1", 0 },
139 	{ "HISI00C2", 0 },
140 	{ },
141 };
142 MODULE_DEVICE_TABLE(acpi, hns_enet_acpi_match);
143 
144 static void fill_desc(struct hnae_ring *ring, void *priv,
145 		      int size, dma_addr_t dma, int frag_end,
146 		      int buf_num, enum hns_desc_type type, int mtu)
147 {
148 	struct hnae_desc *desc = &ring->desc[ring->next_to_use];
149 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
150 	struct sk_buff *skb;
151 	__be16 protocol;
152 	u32 ip_offset;
153 	u32 asid_bufnum_pid = 0;
154 	u32 flag_ipoffset = 0;
155 
156 	desc_cb->priv = priv;
157 	desc_cb->length = size;
158 	desc_cb->dma = dma;
159 	desc_cb->type = type;
160 
161 	desc->addr = cpu_to_le64(dma);
162 	desc->tx.send_size = cpu_to_le16((u16)size);
163 
164 	/*config bd buffer end */
165 	flag_ipoffset |= 1 << HNS_TXD_VLD_B;
166 
167 	asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
168 
169 	if (type == DESC_TYPE_SKB) {
170 		skb = (struct sk_buff *)priv;
171 
172 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
173 			protocol = skb->protocol;
174 			ip_offset = ETH_HLEN;
175 
176 			/*if it is a SW VLAN check the next protocol*/
177 			if (protocol == htons(ETH_P_8021Q)) {
178 				ip_offset += VLAN_HLEN;
179 				protocol = vlan_get_protocol(skb);
180 				skb->protocol = protocol;
181 			}
182 
183 			if (skb->protocol == htons(ETH_P_IP)) {
184 				flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
185 				/* check for tcp/udp header */
186 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
187 
188 			} else if (skb->protocol == htons(ETH_P_IPV6)) {
189 				/* ipv6 has not l3 cs, check for L4 header */
190 				flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
191 			}
192 
193 			flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
194 		}
195 	}
196 
197 	flag_ipoffset |= frag_end << HNS_TXD_FE_B;
198 
199 	desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
200 	desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
201 
202 	ring_ptr_move_fw(ring, next_to_use);
203 }
204 
205 static void unfill_desc(struct hnae_ring *ring)
206 {
207 	ring_ptr_move_bw(ring, next_to_use);
208 }
209 
210 static int hns_nic_maybe_stop_tx(
211 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
212 {
213 	struct sk_buff *skb = *out_skb;
214 	struct sk_buff *new_skb = NULL;
215 	int buf_num;
216 
217 	/* no. of segments (plus a header) */
218 	buf_num = skb_shinfo(skb)->nr_frags + 1;
219 
220 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
221 		if (ring_space(ring) < 1)
222 			return -EBUSY;
223 
224 		new_skb = skb_copy(skb, GFP_ATOMIC);
225 		if (!new_skb)
226 			return -ENOMEM;
227 
228 		dev_kfree_skb_any(skb);
229 		*out_skb = new_skb;
230 		buf_num = 1;
231 	} else if (buf_num > ring_space(ring)) {
232 		return -EBUSY;
233 	}
234 
235 	*bnum = buf_num;
236 	return 0;
237 }
238 
239 static int hns_nic_maybe_stop_tso(
240 	struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
241 {
242 	int i;
243 	int size;
244 	int buf_num;
245 	int frag_num;
246 	struct sk_buff *skb = *out_skb;
247 	struct sk_buff *new_skb = NULL;
248 	struct skb_frag_struct *frag;
249 
250 	size = skb_headlen(skb);
251 	buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
252 
253 	frag_num = skb_shinfo(skb)->nr_frags;
254 	for (i = 0; i < frag_num; i++) {
255 		frag = &skb_shinfo(skb)->frags[i];
256 		size = skb_frag_size(frag);
257 		buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
258 	}
259 
260 	if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
261 		buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
262 		if (ring_space(ring) < buf_num)
263 			return -EBUSY;
264 		/* manual split the send packet */
265 		new_skb = skb_copy(skb, GFP_ATOMIC);
266 		if (!new_skb)
267 			return -ENOMEM;
268 		dev_kfree_skb_any(skb);
269 		*out_skb = new_skb;
270 
271 	} else if (ring_space(ring) < buf_num) {
272 		return -EBUSY;
273 	}
274 
275 	*bnum = buf_num;
276 	return 0;
277 }
278 
279 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
280 			  int size, dma_addr_t dma, int frag_end,
281 			  int buf_num, enum hns_desc_type type, int mtu)
282 {
283 	int frag_buf_num;
284 	int sizeoflast;
285 	int k;
286 
287 	frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
288 	sizeoflast = size % BD_MAX_SEND_SIZE;
289 	sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
290 
291 	/* when the frag size is bigger than hardware, split this frag */
292 	for (k = 0; k < frag_buf_num; k++)
293 		fill_v2_desc_hw(ring, priv, k == 0 ? size : 0,
294 				(k == frag_buf_num - 1) ?
295 					sizeoflast : BD_MAX_SEND_SIZE,
296 				dma + BD_MAX_SEND_SIZE * k,
297 				frag_end && (k == frag_buf_num - 1) ? 1 : 0,
298 				buf_num,
299 				(type == DESC_TYPE_SKB && !k) ?
300 					DESC_TYPE_SKB : DESC_TYPE_PAGE,
301 				mtu);
302 }
303 
304 netdev_tx_t hns_nic_net_xmit_hw(struct net_device *ndev,
305 				struct sk_buff *skb,
306 				struct hns_nic_ring_data *ring_data)
307 {
308 	struct hns_nic_priv *priv = netdev_priv(ndev);
309 	struct hnae_ring *ring = ring_data->ring;
310 	struct device *dev = ring_to_dev(ring);
311 	struct netdev_queue *dev_queue;
312 	struct skb_frag_struct *frag;
313 	int buf_num;
314 	int seg_num;
315 	dma_addr_t dma;
316 	int size, next_to_use;
317 	int i;
318 
319 	switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
320 	case -EBUSY:
321 		ring->stats.tx_busy++;
322 		goto out_net_tx_busy;
323 	case -ENOMEM:
324 		ring->stats.sw_err_cnt++;
325 		netdev_err(ndev, "no memory to xmit!\n");
326 		goto out_err_tx_ok;
327 	default:
328 		break;
329 	}
330 
331 	/* no. of segments (plus a header) */
332 	seg_num = skb_shinfo(skb)->nr_frags + 1;
333 	next_to_use = ring->next_to_use;
334 
335 	/* fill the first part */
336 	size = skb_headlen(skb);
337 	dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
338 	if (dma_mapping_error(dev, dma)) {
339 		netdev_err(ndev, "TX head DMA map failed\n");
340 		ring->stats.sw_err_cnt++;
341 		goto out_err_tx_ok;
342 	}
343 	priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
344 			    buf_num, DESC_TYPE_SKB, ndev->mtu);
345 
346 	/* fill the fragments */
347 	for (i = 1; i < seg_num; i++) {
348 		frag = &skb_shinfo(skb)->frags[i - 1];
349 		size = skb_frag_size(frag);
350 		dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
351 		if (dma_mapping_error(dev, dma)) {
352 			netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
353 			ring->stats.sw_err_cnt++;
354 			goto out_map_frag_fail;
355 		}
356 		priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
357 				    seg_num - 1 == i ? 1 : 0, buf_num,
358 				    DESC_TYPE_PAGE, ndev->mtu);
359 	}
360 
361 	/*complete translate all packets*/
362 	dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
363 	netdev_tx_sent_queue(dev_queue, skb->len);
364 
365 	netif_trans_update(ndev);
366 	ndev->stats.tx_bytes += skb->len;
367 	ndev->stats.tx_packets++;
368 
369 	wmb(); /* commit all data before submit */
370 	assert(skb->queue_mapping < priv->ae_handle->q_num);
371 	hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
372 
373 	return NETDEV_TX_OK;
374 
375 out_map_frag_fail:
376 
377 	while (ring->next_to_use != next_to_use) {
378 		unfill_desc(ring);
379 		if (ring->next_to_use != next_to_use)
380 			dma_unmap_page(dev,
381 				       ring->desc_cb[ring->next_to_use].dma,
382 				       ring->desc_cb[ring->next_to_use].length,
383 				       DMA_TO_DEVICE);
384 		else
385 			dma_unmap_single(dev,
386 					 ring->desc_cb[next_to_use].dma,
387 					 ring->desc_cb[next_to_use].length,
388 					 DMA_TO_DEVICE);
389 	}
390 
391 out_err_tx_ok:
392 
393 	dev_kfree_skb_any(skb);
394 	return NETDEV_TX_OK;
395 
396 out_net_tx_busy:
397 
398 	netif_stop_subqueue(ndev, skb->queue_mapping);
399 
400 	/* Herbert's original patch had:
401 	 *  smp_mb__after_netif_stop_queue();
402 	 * but since that doesn't exist yet, just open code it.
403 	 */
404 	smp_mb();
405 	return NETDEV_TX_BUSY;
406 }
407 
408 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
409 			       struct hnae_ring *ring, int pull_len,
410 			       struct hnae_desc_cb *desc_cb)
411 {
412 	struct hnae_desc *desc;
413 	u32 truesize;
414 	int size;
415 	int last_offset;
416 	bool twobufs;
417 
418 	twobufs = ((PAGE_SIZE < 8192) &&
419 		hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
420 
421 	desc = &ring->desc[ring->next_to_clean];
422 	size = le16_to_cpu(desc->rx.size);
423 
424 	if (twobufs) {
425 		truesize = hnae_buf_size(ring);
426 	} else {
427 		truesize = ALIGN(size, L1_CACHE_BYTES);
428 		last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
429 	}
430 
431 	skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
432 			size - pull_len, truesize);
433 
434 	 /* avoid re-using remote pages,flag default unreuse */
435 	if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
436 		return;
437 
438 	if (twobufs) {
439 		/* if we are only owner of page we can reuse it */
440 		if (likely(page_count(desc_cb->priv) == 1)) {
441 			/* flip page offset to other buffer */
442 			desc_cb->page_offset ^= truesize;
443 
444 			desc_cb->reuse_flag = 1;
445 			/* bump ref count on page before it is given*/
446 			get_page(desc_cb->priv);
447 		}
448 		return;
449 	}
450 
451 	/* move offset up to the next cache line */
452 	desc_cb->page_offset += truesize;
453 
454 	if (desc_cb->page_offset <= last_offset) {
455 		desc_cb->reuse_flag = 1;
456 		/* bump ref count on page before it is given*/
457 		get_page(desc_cb->priv);
458 	}
459 }
460 
461 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
462 {
463 	*out_bnum = hnae_get_field(bnum_flag,
464 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
465 }
466 
467 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
468 {
469 	*out_bnum = hnae_get_field(bnum_flag,
470 				   HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
471 }
472 
473 static void hns_nic_rx_checksum(struct hns_nic_ring_data *ring_data,
474 				struct sk_buff *skb, u32 flag)
475 {
476 	struct net_device *netdev = ring_data->napi.dev;
477 	u32 l3id;
478 	u32 l4id;
479 
480 	/* check if RX checksum offload is enabled */
481 	if (unlikely(!(netdev->features & NETIF_F_RXCSUM)))
482 		return;
483 
484 	/* In hardware, we only support checksum for the following protocols:
485 	 * 1) IPv4,
486 	 * 2) TCP(over IPv4 or IPv6),
487 	 * 3) UDP(over IPv4 or IPv6),
488 	 * 4) SCTP(over IPv4 or IPv6)
489 	 * but we support many L3(IPv4, IPv6, MPLS, PPPoE etc) and L4(TCP,
490 	 * UDP, GRE, SCTP, IGMP, ICMP etc.) protocols.
491 	 *
492 	 * Hardware limitation:
493 	 * Our present hardware RX Descriptor lacks L3/L4 checksum "Status &
494 	 * Error" bit (which usually can be used to indicate whether checksum
495 	 * was calculated by the hardware and if there was any error encountered
496 	 * during checksum calculation).
497 	 *
498 	 * Software workaround:
499 	 * We do get info within the RX descriptor about the kind of L3/L4
500 	 * protocol coming in the packet and the error status. These errors
501 	 * might not just be checksum errors but could be related to version,
502 	 * length of IPv4, UDP, TCP etc.
503 	 * Because there is no-way of knowing if it is a L3/L4 error due to bad
504 	 * checksum or any other L3/L4 error, we will not (cannot) convey
505 	 * checksum status for such cases to upper stack and will not maintain
506 	 * the RX L3/L4 checksum counters as well.
507 	 */
508 
509 	l3id = hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S);
510 	l4id = hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S);
511 
512 	/*  check L3 protocol for which checksum is supported */
513 	if ((l3id != HNS_RX_FLAG_L3ID_IPV4) && (l3id != HNS_RX_FLAG_L3ID_IPV6))
514 		return;
515 
516 	/* check for any(not just checksum)flagged L3 protocol errors */
517 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L3E_B)))
518 		return;
519 
520 	/* we do not support checksum of fragmented packets */
521 	if (unlikely(hnae_get_bit(flag, HNS_RXD_FRAG_B)))
522 		return;
523 
524 	/*  check L4 protocol for which checksum is supported */
525 	if ((l4id != HNS_RX_FLAG_L4ID_TCP) &&
526 	    (l4id != HNS_RX_FLAG_L4ID_UDP) &&
527 	    (l4id != HNS_RX_FLAG_L4ID_SCTP))
528 		return;
529 
530 	/* check for any(not just checksum)flagged L4 protocol errors */
531 	if (unlikely(hnae_get_bit(flag, HNS_RXD_L4E_B)))
532 		return;
533 
534 	/* now, this has to be a packet with valid RX checksum */
535 	skb->ip_summed = CHECKSUM_UNNECESSARY;
536 }
537 
538 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
539 			       struct sk_buff **out_skb, int *out_bnum)
540 {
541 	struct hnae_ring *ring = ring_data->ring;
542 	struct net_device *ndev = ring_data->napi.dev;
543 	struct hns_nic_priv *priv = netdev_priv(ndev);
544 	struct sk_buff *skb;
545 	struct hnae_desc *desc;
546 	struct hnae_desc_cb *desc_cb;
547 	unsigned char *va;
548 	int bnum, length, i;
549 	int pull_len;
550 	u32 bnum_flag;
551 
552 	desc = &ring->desc[ring->next_to_clean];
553 	desc_cb = &ring->desc_cb[ring->next_to_clean];
554 
555 	prefetch(desc);
556 
557 	va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
558 
559 	/* prefetch first cache line of first page */
560 	prefetch(va);
561 #if L1_CACHE_BYTES < 128
562 	prefetch(va + L1_CACHE_BYTES);
563 #endif
564 
565 	skb = *out_skb = napi_alloc_skb(&ring_data->napi,
566 					HNS_RX_HEAD_SIZE);
567 	if (unlikely(!skb)) {
568 		netdev_err(ndev, "alloc rx skb fail\n");
569 		ring->stats.sw_err_cnt++;
570 		return -ENOMEM;
571 	}
572 
573 	prefetchw(skb->data);
574 	length = le16_to_cpu(desc->rx.pkt_len);
575 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
576 	priv->ops.get_rxd_bnum(bnum_flag, &bnum);
577 	*out_bnum = bnum;
578 
579 	if (length <= HNS_RX_HEAD_SIZE) {
580 		memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
581 
582 		/* we can reuse buffer as-is, just make sure it is local */
583 		if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
584 			desc_cb->reuse_flag = 1;
585 		else /* this page cannot be reused so discard it */
586 			put_page(desc_cb->priv);
587 
588 		ring_ptr_move_fw(ring, next_to_clean);
589 
590 		if (unlikely(bnum != 1)) { /* check err*/
591 			*out_bnum = 1;
592 			goto out_bnum_err;
593 		}
594 	} else {
595 		ring->stats.seg_pkt_cnt++;
596 
597 		pull_len = eth_get_headlen(ndev, va, HNS_RX_HEAD_SIZE);
598 		memcpy(__skb_put(skb, pull_len), va,
599 		       ALIGN(pull_len, sizeof(long)));
600 
601 		hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
602 		ring_ptr_move_fw(ring, next_to_clean);
603 
604 		if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
605 			*out_bnum = 1;
606 			goto out_bnum_err;
607 		}
608 		for (i = 1; i < bnum; i++) {
609 			desc = &ring->desc[ring->next_to_clean];
610 			desc_cb = &ring->desc_cb[ring->next_to_clean];
611 
612 			hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
613 			ring_ptr_move_fw(ring, next_to_clean);
614 		}
615 	}
616 
617 	/* check except process, free skb and jump the desc */
618 	if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
619 out_bnum_err:
620 		*out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
621 		netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
622 			   bnum, ring->max_desc_num_per_pkt,
623 			   length, (int)MAX_SKB_FRAGS,
624 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
625 		ring->stats.err_bd_num++;
626 		dev_kfree_skb_any(skb);
627 		return -EDOM;
628 	}
629 
630 	bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
631 
632 	if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
633 		netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
634 			   ((u64 *)desc)[0], ((u64 *)desc)[1]);
635 		ring->stats.non_vld_descs++;
636 		dev_kfree_skb_any(skb);
637 		return -EINVAL;
638 	}
639 
640 	if (unlikely((!desc->rx.pkt_len) ||
641 		     hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
642 		ring->stats.err_pkt_len++;
643 		dev_kfree_skb_any(skb);
644 		return -EFAULT;
645 	}
646 
647 	if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
648 		ring->stats.l2_err++;
649 		dev_kfree_skb_any(skb);
650 		return -EFAULT;
651 	}
652 
653 	ring->stats.rx_pkts++;
654 	ring->stats.rx_bytes += skb->len;
655 
656 	/* indicate to upper stack if our hardware has already calculated
657 	 * the RX checksum
658 	 */
659 	hns_nic_rx_checksum(ring_data, skb, bnum_flag);
660 
661 	return 0;
662 }
663 
664 static void
665 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
666 {
667 	int i, ret;
668 	struct hnae_desc_cb res_cbs;
669 	struct hnae_desc_cb *desc_cb;
670 	struct hnae_ring *ring = ring_data->ring;
671 	struct net_device *ndev = ring_data->napi.dev;
672 
673 	for (i = 0; i < cleand_count; i++) {
674 		desc_cb = &ring->desc_cb[ring->next_to_use];
675 		if (desc_cb->reuse_flag) {
676 			ring->stats.reuse_pg_cnt++;
677 			hnae_reuse_buffer(ring, ring->next_to_use);
678 		} else {
679 			ret = hnae_reserve_buffer_map(ring, &res_cbs);
680 			if (ret) {
681 				ring->stats.sw_err_cnt++;
682 				netdev_err(ndev, "hnae reserve buffer map failed.\n");
683 				break;
684 			}
685 			hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
686 		}
687 
688 		ring_ptr_move_fw(ring, next_to_use);
689 	}
690 
691 	wmb(); /* make all data has been write before submit */
692 	writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
693 }
694 
695 /* return error number for error or number of desc left to take
696  */
697 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
698 			      struct sk_buff *skb)
699 {
700 	struct net_device *ndev = ring_data->napi.dev;
701 
702 	skb->protocol = eth_type_trans(skb, ndev);
703 	(void)napi_gro_receive(&ring_data->napi, skb);
704 }
705 
706 static int hns_desc_unused(struct hnae_ring *ring)
707 {
708 	int ntc = ring->next_to_clean;
709 	int ntu = ring->next_to_use;
710 
711 	return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
712 }
713 
714 #define HNS_LOWEST_LATENCY_RATE		27	/* 27 MB/s */
715 #define HNS_LOW_LATENCY_RATE			80	/* 80 MB/s */
716 
717 #define HNS_COAL_BDNUM			3
718 
719 static u32 hns_coal_rx_bdnum(struct hnae_ring *ring)
720 {
721 	bool coal_enable = ring->q->handle->coal_adapt_en;
722 
723 	if (coal_enable &&
724 	    ring->coal_last_rx_bytes > HNS_LOWEST_LATENCY_RATE)
725 		return HNS_COAL_BDNUM;
726 	else
727 		return 0;
728 }
729 
730 static void hns_update_rx_rate(struct hnae_ring *ring)
731 {
732 	bool coal_enable = ring->q->handle->coal_adapt_en;
733 	u32 time_passed_ms;
734 	u64 total_bytes;
735 
736 	if (!coal_enable ||
737 	    time_before(jiffies, ring->coal_last_jiffies + (HZ >> 4)))
738 		return;
739 
740 	/* ring->stats.rx_bytes overflowed */
741 	if (ring->coal_last_rx_bytes > ring->stats.rx_bytes) {
742 		ring->coal_last_rx_bytes = ring->stats.rx_bytes;
743 		ring->coal_last_jiffies = jiffies;
744 		return;
745 	}
746 
747 	total_bytes = ring->stats.rx_bytes - ring->coal_last_rx_bytes;
748 	time_passed_ms = jiffies_to_msecs(jiffies - ring->coal_last_jiffies);
749 	do_div(total_bytes, time_passed_ms);
750 	ring->coal_rx_rate = total_bytes >> 10;
751 
752 	ring->coal_last_rx_bytes = ring->stats.rx_bytes;
753 	ring->coal_last_jiffies = jiffies;
754 }
755 
756 /**
757  * smooth_alg - smoothing algrithm for adjusting coalesce parameter
758  **/
759 static u32 smooth_alg(u32 new_param, u32 old_param)
760 {
761 	u32 gap = (new_param > old_param) ? new_param - old_param
762 					  : old_param - new_param;
763 
764 	if (gap > 8)
765 		gap >>= 3;
766 
767 	if (new_param > old_param)
768 		return old_param + gap;
769 	else
770 		return old_param - gap;
771 }
772 
773 /**
774  * hns_nic_adp_coalesce - self adapte coalesce according to rx rate
775  * @ring_data: pointer to hns_nic_ring_data
776  **/
777 static void hns_nic_adpt_coalesce(struct hns_nic_ring_data *ring_data)
778 {
779 	struct hnae_ring *ring = ring_data->ring;
780 	struct hnae_handle *handle = ring->q->handle;
781 	u32 new_coal_param, old_coal_param = ring->coal_param;
782 
783 	if (ring->coal_rx_rate < HNS_LOWEST_LATENCY_RATE)
784 		new_coal_param = HNAE_LOWEST_LATENCY_COAL_PARAM;
785 	else if (ring->coal_rx_rate < HNS_LOW_LATENCY_RATE)
786 		new_coal_param = HNAE_LOW_LATENCY_COAL_PARAM;
787 	else
788 		new_coal_param = HNAE_BULK_LATENCY_COAL_PARAM;
789 
790 	if (new_coal_param == old_coal_param &&
791 	    new_coal_param == handle->coal_param)
792 		return;
793 
794 	new_coal_param = smooth_alg(new_coal_param, old_coal_param);
795 	ring->coal_param = new_coal_param;
796 
797 	/**
798 	 * Because all ring in one port has one coalesce param, when one ring
799 	 * calculate its own coalesce param, it cannot write to hardware at
800 	 * once. There are three conditions as follows:
801 	 *       1. current ring's coalesce param is larger than the hardware.
802 	 *       2. or ring which adapt last time can change again.
803 	 *       3. timeout.
804 	 */
805 	if (new_coal_param == handle->coal_param) {
806 		handle->coal_last_jiffies = jiffies;
807 		handle->coal_ring_idx = ring_data->queue_index;
808 	} else if (new_coal_param > handle->coal_param ||
809 		   handle->coal_ring_idx == ring_data->queue_index ||
810 		   time_after(jiffies, handle->coal_last_jiffies + (HZ >> 4))) {
811 		handle->dev->ops->set_coalesce_usecs(handle,
812 					new_coal_param);
813 		handle->dev->ops->set_coalesce_frames(handle,
814 					1, new_coal_param);
815 		handle->coal_param = new_coal_param;
816 		handle->coal_ring_idx = ring_data->queue_index;
817 		handle->coal_last_jiffies = jiffies;
818 	}
819 }
820 
821 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
822 			       int budget, void *v)
823 {
824 	struct hnae_ring *ring = ring_data->ring;
825 	struct sk_buff *skb;
826 	int num, bnum;
827 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
828 	int recv_pkts, recv_bds, clean_count, err;
829 	int unused_count = hns_desc_unused(ring);
830 
831 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
832 	rmb(); /* make sure num taken effect before the other data is touched */
833 
834 	recv_pkts = 0, recv_bds = 0, clean_count = 0;
835 	num -= unused_count;
836 
837 	while (recv_pkts < budget && recv_bds < num) {
838 		/* reuse or realloc buffers */
839 		if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
840 			hns_nic_alloc_rx_buffers(ring_data,
841 						 clean_count + unused_count);
842 			clean_count = 0;
843 			unused_count = hns_desc_unused(ring);
844 		}
845 
846 		/* poll one pkt */
847 		err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
848 		if (unlikely(!skb)) /* this fault cannot be repaired */
849 			goto out;
850 
851 		recv_bds += bnum;
852 		clean_count += bnum;
853 		if (unlikely(err)) {  /* do jump the err */
854 			recv_pkts++;
855 			continue;
856 		}
857 
858 		/* do update ip stack process*/
859 		((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
860 							ring_data, skb);
861 		recv_pkts++;
862 	}
863 
864 out:
865 	/* make all data has been write before submit */
866 	if (clean_count + unused_count > 0)
867 		hns_nic_alloc_rx_buffers(ring_data,
868 					 clean_count + unused_count);
869 
870 	return recv_pkts;
871 }
872 
873 static bool hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
874 {
875 	struct hnae_ring *ring = ring_data->ring;
876 	int num = 0;
877 	bool rx_stopped;
878 
879 	hns_update_rx_rate(ring);
880 
881 	/* for hardware bug fixed */
882 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
883 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
884 
885 	if (num <= hns_coal_rx_bdnum(ring)) {
886 		if (ring->q->handle->coal_adapt_en)
887 			hns_nic_adpt_coalesce(ring_data);
888 
889 		rx_stopped = true;
890 	} else {
891 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
892 			ring_data->ring, 1);
893 
894 		rx_stopped = false;
895 	}
896 
897 	return rx_stopped;
898 }
899 
900 static bool hns_nic_rx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
901 {
902 	struct hnae_ring *ring = ring_data->ring;
903 	int num;
904 
905 	hns_update_rx_rate(ring);
906 	num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
907 
908 	if (num <= hns_coal_rx_bdnum(ring)) {
909 		if (ring->q->handle->coal_adapt_en)
910 			hns_nic_adpt_coalesce(ring_data);
911 
912 		return true;
913 	}
914 
915 	return false;
916 }
917 
918 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
919 					    int *bytes, int *pkts)
920 {
921 	struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
922 
923 	(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
924 	(*bytes) += desc_cb->length;
925 	/* desc_cb will be cleaned, after hnae_free_buffer_detach*/
926 	hnae_free_buffer_detach(ring, ring->next_to_clean);
927 
928 	ring_ptr_move_fw(ring, next_to_clean);
929 }
930 
931 static int is_valid_clean_head(struct hnae_ring *ring, int h)
932 {
933 	int u = ring->next_to_use;
934 	int c = ring->next_to_clean;
935 
936 	if (unlikely(h > ring->desc_num))
937 		return 0;
938 
939 	assert(u > 0 && u < ring->desc_num);
940 	assert(c > 0 && c < ring->desc_num);
941 	assert(u != c && h != c); /* must be checked before call this func */
942 
943 	return u > c ? (h > c && h <= u) : (h > c || h <= u);
944 }
945 
946 /* netif_tx_lock will turn down the performance, set only when necessary */
947 #ifdef CONFIG_NET_POLL_CONTROLLER
948 #define NETIF_TX_LOCK(ring) spin_lock(&(ring)->lock)
949 #define NETIF_TX_UNLOCK(ring) spin_unlock(&(ring)->lock)
950 #else
951 #define NETIF_TX_LOCK(ring)
952 #define NETIF_TX_UNLOCK(ring)
953 #endif
954 
955 /* reclaim all desc in one budget
956  * return error or number of desc left
957  */
958 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
959 			       int budget, void *v)
960 {
961 	struct hnae_ring *ring = ring_data->ring;
962 	struct net_device *ndev = ring_data->napi.dev;
963 	struct netdev_queue *dev_queue;
964 	struct hns_nic_priv *priv = netdev_priv(ndev);
965 	int head;
966 	int bytes, pkts;
967 
968 	NETIF_TX_LOCK(ring);
969 
970 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
971 	rmb(); /* make sure head is ready before touch any data */
972 
973 	if (is_ring_empty(ring) || head == ring->next_to_clean) {
974 		NETIF_TX_UNLOCK(ring);
975 		return 0; /* no data to poll */
976 	}
977 
978 	if (!is_valid_clean_head(ring, head)) {
979 		netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
980 			   ring->next_to_use, ring->next_to_clean);
981 		ring->stats.io_err_cnt++;
982 		NETIF_TX_UNLOCK(ring);
983 		return -EIO;
984 	}
985 
986 	bytes = 0;
987 	pkts = 0;
988 	while (head != ring->next_to_clean) {
989 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
990 		/* issue prefetch for next Tx descriptor */
991 		prefetch(&ring->desc_cb[ring->next_to_clean]);
992 	}
993 	/* update tx ring statistics. */
994 	ring->stats.tx_pkts += pkts;
995 	ring->stats.tx_bytes += bytes;
996 
997 	NETIF_TX_UNLOCK(ring);
998 
999 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1000 	netdev_tx_completed_queue(dev_queue, pkts, bytes);
1001 
1002 	if (unlikely(priv->link && !netif_carrier_ok(ndev)))
1003 		netif_carrier_on(ndev);
1004 
1005 	if (unlikely(pkts && netif_carrier_ok(ndev) &&
1006 		     (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
1007 		/* Make sure that anybody stopping the queue after this
1008 		 * sees the new next_to_clean.
1009 		 */
1010 		smp_mb();
1011 		if (netif_tx_queue_stopped(dev_queue) &&
1012 		    !test_bit(NIC_STATE_DOWN, &priv->state)) {
1013 			netif_tx_wake_queue(dev_queue);
1014 			ring->stats.restart_queue++;
1015 		}
1016 	}
1017 	return 0;
1018 }
1019 
1020 static bool hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
1021 {
1022 	struct hnae_ring *ring = ring_data->ring;
1023 	int head;
1024 
1025 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1026 
1027 	head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1028 
1029 	if (head != ring->next_to_clean) {
1030 		ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1031 			ring_data->ring, 1);
1032 
1033 		return false;
1034 	} else {
1035 		return true;
1036 	}
1037 }
1038 
1039 static bool hns_nic_tx_fini_pro_v2(struct hns_nic_ring_data *ring_data)
1040 {
1041 	struct hnae_ring *ring = ring_data->ring;
1042 	int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1043 
1044 	if (head == ring->next_to_clean)
1045 		return true;
1046 	else
1047 		return false;
1048 }
1049 
1050 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
1051 {
1052 	struct hnae_ring *ring = ring_data->ring;
1053 	struct net_device *ndev = ring_data->napi.dev;
1054 	struct netdev_queue *dev_queue;
1055 	int head;
1056 	int bytes, pkts;
1057 
1058 	NETIF_TX_LOCK(ring);
1059 
1060 	head = ring->next_to_use; /* ntu :soft setted ring position*/
1061 	bytes = 0;
1062 	pkts = 0;
1063 	while (head != ring->next_to_clean)
1064 		hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
1065 
1066 	NETIF_TX_UNLOCK(ring);
1067 
1068 	dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
1069 	netdev_tx_reset_queue(dev_queue);
1070 }
1071 
1072 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
1073 {
1074 	int clean_complete = 0;
1075 	struct hns_nic_ring_data *ring_data =
1076 		container_of(napi, struct hns_nic_ring_data, napi);
1077 	struct hnae_ring *ring = ring_data->ring;
1078 
1079 try_again:
1080 	clean_complete += ring_data->poll_one(
1081 				ring_data, budget - clean_complete,
1082 				ring_data->ex_process);
1083 
1084 	if (clean_complete < budget) {
1085 		if (ring_data->fini_process(ring_data)) {
1086 			napi_complete(napi);
1087 			ring->q->handle->dev->ops->toggle_ring_irq(ring, 0);
1088 		} else {
1089 			goto try_again;
1090 		}
1091 	}
1092 
1093 	return clean_complete;
1094 }
1095 
1096 static irqreturn_t hns_irq_handle(int irq, void *dev)
1097 {
1098 	struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
1099 
1100 	ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
1101 		ring_data->ring, 1);
1102 	napi_schedule(&ring_data->napi);
1103 
1104 	return IRQ_HANDLED;
1105 }
1106 
1107 /**
1108  *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
1109  *@ndev: net device
1110  */
1111 static void hns_nic_adjust_link(struct net_device *ndev)
1112 {
1113 	struct hns_nic_priv *priv = netdev_priv(ndev);
1114 	struct hnae_handle *h = priv->ae_handle;
1115 	int state = 1;
1116 
1117 	/* If there is no phy, do not need adjust link */
1118 	if (ndev->phydev) {
1119 		/* When phy link down, do nothing */
1120 		if (ndev->phydev->link == 0)
1121 			return;
1122 
1123 		if (h->dev->ops->need_adjust_link(h, ndev->phydev->speed,
1124 						  ndev->phydev->duplex)) {
1125 			/* because Hi161X chip don't support to change gmac
1126 			 * speed and duplex with traffic. Delay 200ms to
1127 			 * make sure there is no more data in chip FIFO.
1128 			 */
1129 			netif_carrier_off(ndev);
1130 			msleep(200);
1131 			h->dev->ops->adjust_link(h, ndev->phydev->speed,
1132 						 ndev->phydev->duplex);
1133 			netif_carrier_on(ndev);
1134 		}
1135 	}
1136 
1137 	state = state && h->dev->ops->get_status(h);
1138 
1139 	if (state != priv->link) {
1140 		if (state) {
1141 			netif_carrier_on(ndev);
1142 			netif_tx_wake_all_queues(ndev);
1143 			netdev_info(ndev, "link up\n");
1144 		} else {
1145 			netif_carrier_off(ndev);
1146 			netdev_info(ndev, "link down\n");
1147 		}
1148 		priv->link = state;
1149 	}
1150 }
1151 
1152 /**
1153  *hns_nic_init_phy - init phy
1154  *@ndev: net device
1155  *@h: ae handle
1156  * Return 0 on success, negative on failure
1157  */
1158 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1159 {
1160 	__ETHTOOL_DECLARE_LINK_MODE_MASK(supported) = { 0, };
1161 	struct phy_device *phy_dev = h->phy_dev;
1162 	int ret;
1163 
1164 	if (!h->phy_dev)
1165 		return 0;
1166 
1167 	ethtool_convert_legacy_u32_to_link_mode(supported, h->if_support);
1168 	linkmode_and(phy_dev->supported, phy_dev->supported, supported);
1169 	linkmode_copy(phy_dev->advertising, phy_dev->supported);
1170 
1171 	if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1172 		phy_dev->autoneg = false;
1173 
1174 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII) {
1175 		phy_dev->dev_flags = 0;
1176 
1177 		ret = phy_connect_direct(ndev, phy_dev, hns_nic_adjust_link,
1178 					 h->phy_if);
1179 	} else {
1180 		ret = phy_attach_direct(ndev, phy_dev, 0, h->phy_if);
1181 	}
1182 	if (unlikely(ret))
1183 		return -ENODEV;
1184 
1185 	return 0;
1186 }
1187 
1188 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1189 {
1190 	struct hns_nic_priv *priv = netdev_priv(netdev);
1191 	struct hnae_handle *h = priv->ae_handle;
1192 
1193 	napi_enable(&priv->ring_data[idx].napi);
1194 
1195 	enable_irq(priv->ring_data[idx].ring->irq);
1196 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1197 
1198 	return 0;
1199 }
1200 
1201 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1202 {
1203 	struct hns_nic_priv *priv = netdev_priv(ndev);
1204 	struct hnae_handle *h = priv->ae_handle;
1205 	struct sockaddr *mac_addr = p;
1206 	int ret;
1207 
1208 	if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1209 		return -EADDRNOTAVAIL;
1210 
1211 	ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1212 	if (ret) {
1213 		netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1214 		return ret;
1215 	}
1216 
1217 	memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1218 
1219 	return 0;
1220 }
1221 
1222 static void hns_nic_update_stats(struct net_device *netdev)
1223 {
1224 	struct hns_nic_priv *priv = netdev_priv(netdev);
1225 	struct hnae_handle *h = priv->ae_handle;
1226 
1227 	h->dev->ops->update_stats(h, &netdev->stats);
1228 }
1229 
1230 /* set mac addr if it is configed. or leave it to the AE driver */
1231 static void hns_init_mac_addr(struct net_device *ndev)
1232 {
1233 	struct hns_nic_priv *priv = netdev_priv(ndev);
1234 
1235 	if (!device_get_mac_address(priv->dev, ndev->dev_addr, ETH_ALEN)) {
1236 		eth_hw_addr_random(ndev);
1237 		dev_warn(priv->dev, "No valid mac, use random mac %pM",
1238 			 ndev->dev_addr);
1239 	}
1240 }
1241 
1242 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1243 {
1244 	struct hns_nic_priv *priv = netdev_priv(netdev);
1245 	struct hnae_handle *h = priv->ae_handle;
1246 
1247 	h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1248 	disable_irq(priv->ring_data[idx].ring->irq);
1249 
1250 	napi_disable(&priv->ring_data[idx].napi);
1251 }
1252 
1253 static int hns_nic_init_affinity_mask(int q_num, int ring_idx,
1254 				      struct hnae_ring *ring, cpumask_t *mask)
1255 {
1256 	int cpu;
1257 
1258 	/* Diffrent irq banlance between 16core and 32core.
1259 	 * The cpu mask set by ring index according to the ring flag
1260 	 * which indicate the ring is tx or rx.
1261 	 */
1262 	if (q_num == num_possible_cpus()) {
1263 		if (is_tx_ring(ring))
1264 			cpu = ring_idx;
1265 		else
1266 			cpu = ring_idx - q_num;
1267 	} else {
1268 		if (is_tx_ring(ring))
1269 			cpu = ring_idx * 2;
1270 		else
1271 			cpu = (ring_idx - q_num) * 2 + 1;
1272 	}
1273 
1274 	cpumask_clear(mask);
1275 	cpumask_set_cpu(cpu, mask);
1276 
1277 	return cpu;
1278 }
1279 
1280 static void hns_nic_free_irq(int q_num, struct hns_nic_priv *priv)
1281 {
1282 	int i;
1283 
1284 	for (i = 0; i < q_num * 2; i++) {
1285 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1286 			irq_set_affinity_hint(priv->ring_data[i].ring->irq,
1287 					      NULL);
1288 			free_irq(priv->ring_data[i].ring->irq,
1289 				 &priv->ring_data[i]);
1290 			priv->ring_data[i].ring->irq_init_flag =
1291 				RCB_IRQ_NOT_INITED;
1292 		}
1293 	}
1294 }
1295 
1296 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1297 {
1298 	struct hnae_handle *h = priv->ae_handle;
1299 	struct hns_nic_ring_data *rd;
1300 	int i;
1301 	int ret;
1302 	int cpu;
1303 
1304 	for (i = 0; i < h->q_num * 2; i++) {
1305 		rd = &priv->ring_data[i];
1306 
1307 		if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1308 			break;
1309 
1310 		snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1311 			 "%s-%s%d", priv->netdev->name,
1312 			 (is_tx_ring(rd->ring) ? "tx" : "rx"), rd->queue_index);
1313 
1314 		rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1315 
1316 		ret = request_irq(rd->ring->irq,
1317 				  hns_irq_handle, 0, rd->ring->ring_name, rd);
1318 		if (ret) {
1319 			netdev_err(priv->netdev, "request irq(%d) fail\n",
1320 				   rd->ring->irq);
1321 			goto out_free_irq;
1322 		}
1323 		disable_irq(rd->ring->irq);
1324 
1325 		cpu = hns_nic_init_affinity_mask(h->q_num, i,
1326 						 rd->ring, &rd->mask);
1327 
1328 		if (cpu_online(cpu))
1329 			irq_set_affinity_hint(rd->ring->irq,
1330 					      &rd->mask);
1331 
1332 		rd->ring->irq_init_flag = RCB_IRQ_INITED;
1333 	}
1334 
1335 	return 0;
1336 
1337 out_free_irq:
1338 	hns_nic_free_irq(h->q_num, priv);
1339 	return ret;
1340 }
1341 
1342 static int hns_nic_net_up(struct net_device *ndev)
1343 {
1344 	struct hns_nic_priv *priv = netdev_priv(ndev);
1345 	struct hnae_handle *h = priv->ae_handle;
1346 	int i, j;
1347 	int ret;
1348 
1349 	if (!test_bit(NIC_STATE_DOWN, &priv->state))
1350 		return 0;
1351 
1352 	ret = hns_nic_init_irq(priv);
1353 	if (ret != 0) {
1354 		netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1355 		return ret;
1356 	}
1357 
1358 	for (i = 0; i < h->q_num * 2; i++) {
1359 		ret = hns_nic_ring_open(ndev, i);
1360 		if (ret)
1361 			goto out_has_some_queues;
1362 	}
1363 
1364 	ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1365 	if (ret)
1366 		goto out_set_mac_addr_err;
1367 
1368 	ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1369 	if (ret)
1370 		goto out_start_err;
1371 
1372 	if (ndev->phydev)
1373 		phy_start(ndev->phydev);
1374 
1375 	clear_bit(NIC_STATE_DOWN, &priv->state);
1376 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1377 
1378 	return 0;
1379 
1380 out_start_err:
1381 	netif_stop_queue(ndev);
1382 out_set_mac_addr_err:
1383 out_has_some_queues:
1384 	for (j = i - 1; j >= 0; j--)
1385 		hns_nic_ring_close(ndev, j);
1386 
1387 	hns_nic_free_irq(h->q_num, priv);
1388 	set_bit(NIC_STATE_DOWN, &priv->state);
1389 
1390 	return ret;
1391 }
1392 
1393 static void hns_nic_net_down(struct net_device *ndev)
1394 {
1395 	int i;
1396 	struct hnae_ae_ops *ops;
1397 	struct hns_nic_priv *priv = netdev_priv(ndev);
1398 
1399 	if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1400 		return;
1401 
1402 	(void)del_timer_sync(&priv->service_timer);
1403 	netif_tx_stop_all_queues(ndev);
1404 	netif_carrier_off(ndev);
1405 	netif_tx_disable(ndev);
1406 	priv->link = 0;
1407 
1408 	if (ndev->phydev)
1409 		phy_stop(ndev->phydev);
1410 
1411 	ops = priv->ae_handle->dev->ops;
1412 
1413 	if (ops->stop)
1414 		ops->stop(priv->ae_handle);
1415 
1416 	netif_tx_stop_all_queues(ndev);
1417 
1418 	for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1419 		hns_nic_ring_close(ndev, i);
1420 		hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1421 
1422 		/* clean tx buffers*/
1423 		hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1424 	}
1425 }
1426 
1427 void hns_nic_net_reset(struct net_device *ndev)
1428 {
1429 	struct hns_nic_priv *priv = netdev_priv(ndev);
1430 	struct hnae_handle *handle = priv->ae_handle;
1431 
1432 	while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1433 		usleep_range(1000, 2000);
1434 
1435 	(void)hnae_reinit_handle(handle);
1436 
1437 	clear_bit(NIC_STATE_RESETTING, &priv->state);
1438 }
1439 
1440 void hns_nic_net_reinit(struct net_device *netdev)
1441 {
1442 	struct hns_nic_priv *priv = netdev_priv(netdev);
1443 	enum hnae_port_type type = priv->ae_handle->port_type;
1444 
1445 	netif_trans_update(priv->netdev);
1446 	while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1447 		usleep_range(1000, 2000);
1448 
1449 	hns_nic_net_down(netdev);
1450 
1451 	/* Only do hns_nic_net_reset in debug mode
1452 	 * because of hardware limitation.
1453 	 */
1454 	if (type == HNAE_PORT_DEBUG)
1455 		hns_nic_net_reset(netdev);
1456 
1457 	(void)hns_nic_net_up(netdev);
1458 	clear_bit(NIC_STATE_REINITING, &priv->state);
1459 }
1460 
1461 static int hns_nic_net_open(struct net_device *ndev)
1462 {
1463 	struct hns_nic_priv *priv = netdev_priv(ndev);
1464 	struct hnae_handle *h = priv->ae_handle;
1465 	int ret;
1466 
1467 	if (test_bit(NIC_STATE_TESTING, &priv->state))
1468 		return -EBUSY;
1469 
1470 	priv->link = 0;
1471 	netif_carrier_off(ndev);
1472 
1473 	ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1474 	if (ret < 0) {
1475 		netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1476 			   ret);
1477 		return ret;
1478 	}
1479 
1480 	ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1481 	if (ret < 0) {
1482 		netdev_err(ndev,
1483 			   "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1484 		return ret;
1485 	}
1486 
1487 	ret = hns_nic_net_up(ndev);
1488 	if (ret) {
1489 		netdev_err(ndev,
1490 			   "hns net up fail, ret=%d!\n", ret);
1491 		return ret;
1492 	}
1493 
1494 	return 0;
1495 }
1496 
1497 static int hns_nic_net_stop(struct net_device *ndev)
1498 {
1499 	hns_nic_net_down(ndev);
1500 
1501 	return 0;
1502 }
1503 
1504 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1505 #define HNS_TX_TIMEO_LIMIT (40 * HZ)
1506 static void hns_nic_net_timeout(struct net_device *ndev)
1507 {
1508 	struct hns_nic_priv *priv = netdev_priv(ndev);
1509 
1510 	if (ndev->watchdog_timeo < HNS_TX_TIMEO_LIMIT) {
1511 		ndev->watchdog_timeo *= 2;
1512 		netdev_info(ndev, "watchdog_timo changed to %d.\n",
1513 			    ndev->watchdog_timeo);
1514 	} else {
1515 		ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1516 		hns_tx_timeout_reset(priv);
1517 	}
1518 }
1519 
1520 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1521 			    int cmd)
1522 {
1523 	struct phy_device *phy_dev = netdev->phydev;
1524 
1525 	if (!netif_running(netdev))
1526 		return -EINVAL;
1527 
1528 	if (!phy_dev)
1529 		return -ENOTSUPP;
1530 
1531 	return phy_mii_ioctl(phy_dev, ifr, cmd);
1532 }
1533 
1534 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1535 				    struct net_device *ndev)
1536 {
1537 	struct hns_nic_priv *priv = netdev_priv(ndev);
1538 
1539 	assert(skb->queue_mapping < ndev->ae_handle->q_num);
1540 
1541 	return hns_nic_net_xmit_hw(ndev, skb,
1542 				   &tx_ring_data(priv, skb->queue_mapping));
1543 }
1544 
1545 static void hns_nic_drop_rx_fetch(struct hns_nic_ring_data *ring_data,
1546 				  struct sk_buff *skb)
1547 {
1548 	dev_kfree_skb_any(skb);
1549 }
1550 
1551 #define HNS_LB_TX_RING	0
1552 static struct sk_buff *hns_assemble_skb(struct net_device *ndev)
1553 {
1554 	struct sk_buff *skb;
1555 	struct ethhdr *ethhdr;
1556 	int frame_len;
1557 
1558 	/* allocate test skb */
1559 	skb = alloc_skb(64, GFP_KERNEL);
1560 	if (!skb)
1561 		return NULL;
1562 
1563 	skb_put(skb, 64);
1564 	skb->dev = ndev;
1565 	memset(skb->data, 0xFF, skb->len);
1566 
1567 	/* must be tcp/ip package */
1568 	ethhdr = (struct ethhdr *)skb->data;
1569 	ethhdr->h_proto = htons(ETH_P_IP);
1570 
1571 	frame_len = skb->len & (~1ul);
1572 	memset(&skb->data[frame_len / 2], 0xAA,
1573 	       frame_len / 2 - 1);
1574 
1575 	skb->queue_mapping = HNS_LB_TX_RING;
1576 
1577 	return skb;
1578 }
1579 
1580 static int hns_enable_serdes_lb(struct net_device *ndev)
1581 {
1582 	struct hns_nic_priv *priv = netdev_priv(ndev);
1583 	struct hnae_handle *h = priv->ae_handle;
1584 	struct hnae_ae_ops *ops = h->dev->ops;
1585 	int speed, duplex;
1586 	int ret;
1587 
1588 	ret = ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 1);
1589 	if (ret)
1590 		return ret;
1591 
1592 	ret = ops->start ? ops->start(h) : 0;
1593 	if (ret)
1594 		return ret;
1595 
1596 	/* link adjust duplex*/
1597 	if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1598 		speed = 1000;
1599 	else
1600 		speed = 10000;
1601 	duplex = 1;
1602 
1603 	ops->adjust_link(h, speed, duplex);
1604 
1605 	/* wait h/w ready */
1606 	mdelay(300);
1607 
1608 	return 0;
1609 }
1610 
1611 static void hns_disable_serdes_lb(struct net_device *ndev)
1612 {
1613 	struct hns_nic_priv *priv = netdev_priv(ndev);
1614 	struct hnae_handle *h = priv->ae_handle;
1615 	struct hnae_ae_ops *ops = h->dev->ops;
1616 
1617 	ops->stop(h);
1618 	ops->set_loopback(h, MAC_INTERNALLOOP_SERDES, 0);
1619 }
1620 
1621 /**
1622  *hns_nic_clear_all_rx_fetch - clear the chip fetched descriptions. The
1623  *function as follows:
1624  *    1. if one rx ring has found the page_offset is not equal 0 between head
1625  *       and tail, it means that the chip fetched the wrong descs for the ring
1626  *       which buffer size is 4096.
1627  *    2. we set the chip serdes loopback and set rss indirection to the ring.
1628  *    3. construct 64-bytes ip broadcast packages, wait the associated rx ring
1629  *       recieving all packages and it will fetch new descriptions.
1630  *    4. recover to the original state.
1631  *
1632  *@ndev: net device
1633  */
1634 static int hns_nic_clear_all_rx_fetch(struct net_device *ndev)
1635 {
1636 	struct hns_nic_priv *priv = netdev_priv(ndev);
1637 	struct hnae_handle *h = priv->ae_handle;
1638 	struct hnae_ae_ops *ops = h->dev->ops;
1639 	struct hns_nic_ring_data *rd;
1640 	struct hnae_ring *ring;
1641 	struct sk_buff *skb;
1642 	u32 *org_indir;
1643 	u32 *cur_indir;
1644 	int indir_size;
1645 	int head, tail;
1646 	int fetch_num;
1647 	int i, j;
1648 	bool found;
1649 	int retry_times;
1650 	int ret = 0;
1651 
1652 	/* alloc indir memory */
1653 	indir_size = ops->get_rss_indir_size(h) * sizeof(*org_indir);
1654 	org_indir = kzalloc(indir_size, GFP_KERNEL);
1655 	if (!org_indir)
1656 		return -ENOMEM;
1657 
1658 	/* store the orginal indirection */
1659 	ops->get_rss(h, org_indir, NULL, NULL);
1660 
1661 	cur_indir = kzalloc(indir_size, GFP_KERNEL);
1662 	if (!cur_indir) {
1663 		ret = -ENOMEM;
1664 		goto cur_indir_alloc_err;
1665 	}
1666 
1667 	/* set loopback */
1668 	if (hns_enable_serdes_lb(ndev)) {
1669 		ret = -EINVAL;
1670 		goto enable_serdes_lb_err;
1671 	}
1672 
1673 	/* foreach every rx ring to clear fetch desc */
1674 	for (i = 0; i < h->q_num; i++) {
1675 		ring = &h->qs[i]->rx_ring;
1676 		head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
1677 		tail = readl_relaxed(ring->io_base + RCB_REG_TAIL);
1678 		found = false;
1679 		fetch_num = ring_dist(ring, head, tail);
1680 
1681 		while (head != tail) {
1682 			if (ring->desc_cb[head].page_offset != 0) {
1683 				found = true;
1684 				break;
1685 			}
1686 
1687 			head++;
1688 			if (head == ring->desc_num)
1689 				head = 0;
1690 		}
1691 
1692 		if (found) {
1693 			for (j = 0; j < indir_size / sizeof(*org_indir); j++)
1694 				cur_indir[j] = i;
1695 			ops->set_rss(h, cur_indir, NULL, 0);
1696 
1697 			for (j = 0; j < fetch_num; j++) {
1698 				/* alloc one skb and init */
1699 				skb = hns_assemble_skb(ndev);
1700 				if (!skb)
1701 					goto out;
1702 				rd = &tx_ring_data(priv, skb->queue_mapping);
1703 				hns_nic_net_xmit_hw(ndev, skb, rd);
1704 
1705 				retry_times = 0;
1706 				while (retry_times++ < 10) {
1707 					mdelay(10);
1708 					/* clean rx */
1709 					rd = &rx_ring_data(priv, i);
1710 					if (rd->poll_one(rd, fetch_num,
1711 							 hns_nic_drop_rx_fetch))
1712 						break;
1713 				}
1714 
1715 				retry_times = 0;
1716 				while (retry_times++ < 10) {
1717 					mdelay(10);
1718 					/* clean tx ring 0 send package */
1719 					rd = &tx_ring_data(priv,
1720 							   HNS_LB_TX_RING);
1721 					if (rd->poll_one(rd, fetch_num, NULL))
1722 						break;
1723 				}
1724 			}
1725 		}
1726 	}
1727 
1728 out:
1729 	/* restore everything */
1730 	ops->set_rss(h, org_indir, NULL, 0);
1731 	hns_disable_serdes_lb(ndev);
1732 enable_serdes_lb_err:
1733 	kfree(cur_indir);
1734 cur_indir_alloc_err:
1735 	kfree(org_indir);
1736 
1737 	return ret;
1738 }
1739 
1740 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1741 {
1742 	struct hns_nic_priv *priv = netdev_priv(ndev);
1743 	struct hnae_handle *h = priv->ae_handle;
1744 	bool if_running = netif_running(ndev);
1745 	int ret;
1746 
1747 	/* MTU < 68 is an error and causes problems on some kernels */
1748 	if (new_mtu < 68)
1749 		return -EINVAL;
1750 
1751 	/* MTU no change */
1752 	if (new_mtu == ndev->mtu)
1753 		return 0;
1754 
1755 	if (!h->dev->ops->set_mtu)
1756 		return -ENOTSUPP;
1757 
1758 	if (if_running) {
1759 		(void)hns_nic_net_stop(ndev);
1760 		msleep(100);
1761 	}
1762 
1763 	if (priv->enet_ver != AE_VERSION_1 &&
1764 	    ndev->mtu <= BD_SIZE_2048_MAX_MTU &&
1765 	    new_mtu > BD_SIZE_2048_MAX_MTU) {
1766 		/* update desc */
1767 		hnae_reinit_all_ring_desc(h);
1768 
1769 		/* clear the package which the chip has fetched */
1770 		ret = hns_nic_clear_all_rx_fetch(ndev);
1771 
1772 		/* the page offset must be consist with desc */
1773 		hnae_reinit_all_ring_page_off(h);
1774 
1775 		if (ret) {
1776 			netdev_err(ndev, "clear the fetched desc fail\n");
1777 			goto out;
1778 		}
1779 	}
1780 
1781 	ret = h->dev->ops->set_mtu(h, new_mtu);
1782 	if (ret) {
1783 		netdev_err(ndev, "set mtu fail, return value %d\n",
1784 			   ret);
1785 		goto out;
1786 	}
1787 
1788 	/* finally, set new mtu to netdevice */
1789 	ndev->mtu = new_mtu;
1790 
1791 out:
1792 	if (if_running) {
1793 		if (hns_nic_net_open(ndev)) {
1794 			netdev_err(ndev, "hns net open fail\n");
1795 			ret = -EINVAL;
1796 		}
1797 	}
1798 
1799 	return ret;
1800 }
1801 
1802 static int hns_nic_set_features(struct net_device *netdev,
1803 				netdev_features_t features)
1804 {
1805 	struct hns_nic_priv *priv = netdev_priv(netdev);
1806 
1807 	switch (priv->enet_ver) {
1808 	case AE_VERSION_1:
1809 		if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1810 			netdev_info(netdev, "enet v1 do not support tso!\n");
1811 		break;
1812 	default:
1813 		if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1814 			priv->ops.fill_desc = fill_tso_desc;
1815 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1816 			/* The chip only support 7*4096 */
1817 			netif_set_gso_max_size(netdev, 7 * 4096);
1818 		} else {
1819 			priv->ops.fill_desc = fill_v2_desc;
1820 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1821 		}
1822 		break;
1823 	}
1824 	netdev->features = features;
1825 	return 0;
1826 }
1827 
1828 static netdev_features_t hns_nic_fix_features(
1829 		struct net_device *netdev, netdev_features_t features)
1830 {
1831 	struct hns_nic_priv *priv = netdev_priv(netdev);
1832 
1833 	switch (priv->enet_ver) {
1834 	case AE_VERSION_1:
1835 		features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1836 				NETIF_F_HW_VLAN_CTAG_FILTER);
1837 		break;
1838 	default:
1839 		break;
1840 	}
1841 	return features;
1842 }
1843 
1844 static int hns_nic_uc_sync(struct net_device *netdev, const unsigned char *addr)
1845 {
1846 	struct hns_nic_priv *priv = netdev_priv(netdev);
1847 	struct hnae_handle *h = priv->ae_handle;
1848 
1849 	if (h->dev->ops->add_uc_addr)
1850 		return h->dev->ops->add_uc_addr(h, addr);
1851 
1852 	return 0;
1853 }
1854 
1855 static int hns_nic_uc_unsync(struct net_device *netdev,
1856 			     const unsigned char *addr)
1857 {
1858 	struct hns_nic_priv *priv = netdev_priv(netdev);
1859 	struct hnae_handle *h = priv->ae_handle;
1860 
1861 	if (h->dev->ops->rm_uc_addr)
1862 		return h->dev->ops->rm_uc_addr(h, addr);
1863 
1864 	return 0;
1865 }
1866 
1867 /**
1868  * nic_set_multicast_list - set mutl mac address
1869  * @netdev: net device
1870  * @p: mac address
1871  *
1872  * return void
1873  */
1874 static void hns_set_multicast_list(struct net_device *ndev)
1875 {
1876 	struct hns_nic_priv *priv = netdev_priv(ndev);
1877 	struct hnae_handle *h = priv->ae_handle;
1878 	struct netdev_hw_addr *ha = NULL;
1879 
1880 	if (!h)	{
1881 		netdev_err(ndev, "hnae handle is null\n");
1882 		return;
1883 	}
1884 
1885 	if (h->dev->ops->clr_mc_addr)
1886 		if (h->dev->ops->clr_mc_addr(h))
1887 			netdev_err(ndev, "clear multicast address fail\n");
1888 
1889 	if (h->dev->ops->set_mc_addr) {
1890 		netdev_for_each_mc_addr(ha, ndev)
1891 			if (h->dev->ops->set_mc_addr(h, ha->addr))
1892 				netdev_err(ndev, "set multicast fail\n");
1893 	}
1894 }
1895 
1896 static void hns_nic_set_rx_mode(struct net_device *ndev)
1897 {
1898 	struct hns_nic_priv *priv = netdev_priv(ndev);
1899 	struct hnae_handle *h = priv->ae_handle;
1900 
1901 	if (h->dev->ops->set_promisc_mode) {
1902 		if (ndev->flags & IFF_PROMISC)
1903 			h->dev->ops->set_promisc_mode(h, 1);
1904 		else
1905 			h->dev->ops->set_promisc_mode(h, 0);
1906 	}
1907 
1908 	hns_set_multicast_list(ndev);
1909 
1910 	if (__dev_uc_sync(ndev, hns_nic_uc_sync, hns_nic_uc_unsync))
1911 		netdev_err(ndev, "sync uc address fail\n");
1912 }
1913 
1914 static void hns_nic_get_stats64(struct net_device *ndev,
1915 				struct rtnl_link_stats64 *stats)
1916 {
1917 	int idx = 0;
1918 	u64 tx_bytes = 0;
1919 	u64 rx_bytes = 0;
1920 	u64 tx_pkts = 0;
1921 	u64 rx_pkts = 0;
1922 	struct hns_nic_priv *priv = netdev_priv(ndev);
1923 	struct hnae_handle *h = priv->ae_handle;
1924 
1925 	for (idx = 0; idx < h->q_num; idx++) {
1926 		tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1927 		tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1928 		rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1929 		rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1930 	}
1931 
1932 	stats->tx_bytes = tx_bytes;
1933 	stats->tx_packets = tx_pkts;
1934 	stats->rx_bytes = rx_bytes;
1935 	stats->rx_packets = rx_pkts;
1936 
1937 	stats->rx_errors = ndev->stats.rx_errors;
1938 	stats->multicast = ndev->stats.multicast;
1939 	stats->rx_length_errors = ndev->stats.rx_length_errors;
1940 	stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1941 	stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1942 
1943 	stats->tx_errors = ndev->stats.tx_errors;
1944 	stats->rx_dropped = ndev->stats.rx_dropped;
1945 	stats->tx_dropped = ndev->stats.tx_dropped;
1946 	stats->collisions = ndev->stats.collisions;
1947 	stats->rx_over_errors = ndev->stats.rx_over_errors;
1948 	stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1949 	stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1950 	stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1951 	stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1952 	stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1953 	stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1954 	stats->tx_window_errors = ndev->stats.tx_window_errors;
1955 	stats->rx_compressed = ndev->stats.rx_compressed;
1956 	stats->tx_compressed = ndev->stats.tx_compressed;
1957 }
1958 
1959 static u16
1960 hns_nic_select_queue(struct net_device *ndev, struct sk_buff *skb,
1961 		     struct net_device *sb_dev)
1962 {
1963 	struct ethhdr *eth_hdr = (struct ethhdr *)skb->data;
1964 	struct hns_nic_priv *priv = netdev_priv(ndev);
1965 
1966 	/* fix hardware broadcast/multicast packets queue loopback */
1967 	if (!AE_IS_VER1(priv->enet_ver) &&
1968 	    is_multicast_ether_addr(eth_hdr->h_dest))
1969 		return 0;
1970 	else
1971 		return netdev_pick_tx(ndev, skb, NULL);
1972 }
1973 
1974 static const struct net_device_ops hns_nic_netdev_ops = {
1975 	.ndo_open = hns_nic_net_open,
1976 	.ndo_stop = hns_nic_net_stop,
1977 	.ndo_start_xmit = hns_nic_net_xmit,
1978 	.ndo_tx_timeout = hns_nic_net_timeout,
1979 	.ndo_set_mac_address = hns_nic_net_set_mac_address,
1980 	.ndo_change_mtu = hns_nic_change_mtu,
1981 	.ndo_do_ioctl = hns_nic_do_ioctl,
1982 	.ndo_set_features = hns_nic_set_features,
1983 	.ndo_fix_features = hns_nic_fix_features,
1984 	.ndo_get_stats64 = hns_nic_get_stats64,
1985 	.ndo_set_rx_mode = hns_nic_set_rx_mode,
1986 	.ndo_select_queue = hns_nic_select_queue,
1987 };
1988 
1989 static void hns_nic_update_link_status(struct net_device *netdev)
1990 {
1991 	struct hns_nic_priv *priv = netdev_priv(netdev);
1992 
1993 	struct hnae_handle *h = priv->ae_handle;
1994 
1995 	if (h->phy_dev) {
1996 		if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1997 			return;
1998 
1999 		(void)genphy_read_status(h->phy_dev);
2000 	}
2001 	hns_nic_adjust_link(netdev);
2002 }
2003 
2004 /* for dumping key regs*/
2005 static void hns_nic_dump(struct hns_nic_priv *priv)
2006 {
2007 	struct hnae_handle *h = priv->ae_handle;
2008 	struct hnae_ae_ops *ops = h->dev->ops;
2009 	u32 *data, reg_num, i;
2010 
2011 	if (ops->get_regs_len && ops->get_regs) {
2012 		reg_num = ops->get_regs_len(priv->ae_handle);
2013 		reg_num = (reg_num + 3ul) & ~3ul;
2014 		data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
2015 		if (data) {
2016 			ops->get_regs(priv->ae_handle, data);
2017 			for (i = 0; i < reg_num; i += 4)
2018 				pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
2019 					i, data[i], data[i + 1],
2020 					data[i + 2], data[i + 3]);
2021 			kfree(data);
2022 		}
2023 	}
2024 
2025 	for (i = 0; i < h->q_num; i++) {
2026 		pr_info("tx_queue%d_next_to_clean:%d\n",
2027 			i, h->qs[i]->tx_ring.next_to_clean);
2028 		pr_info("tx_queue%d_next_to_use:%d\n",
2029 			i, h->qs[i]->tx_ring.next_to_use);
2030 		pr_info("rx_queue%d_next_to_clean:%d\n",
2031 			i, h->qs[i]->rx_ring.next_to_clean);
2032 		pr_info("rx_queue%d_next_to_use:%d\n",
2033 			i, h->qs[i]->rx_ring.next_to_use);
2034 	}
2035 }
2036 
2037 /* for resetting subtask */
2038 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
2039 {
2040 	enum hnae_port_type type = priv->ae_handle->port_type;
2041 
2042 	if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
2043 		return;
2044 	clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2045 
2046 	/* If we're already down, removing or resetting, just bail */
2047 	if (test_bit(NIC_STATE_DOWN, &priv->state) ||
2048 	    test_bit(NIC_STATE_REMOVING, &priv->state) ||
2049 	    test_bit(NIC_STATE_RESETTING, &priv->state))
2050 		return;
2051 
2052 	hns_nic_dump(priv);
2053 	netdev_info(priv->netdev, "try to reset %s port!\n",
2054 		    (type == HNAE_PORT_DEBUG ? "debug" : "service"));
2055 
2056 	rtnl_lock();
2057 	/* put off any impending NetWatchDogTimeout */
2058 	netif_trans_update(priv->netdev);
2059 	hns_nic_net_reinit(priv->netdev);
2060 
2061 	rtnl_unlock();
2062 }
2063 
2064 /* for doing service complete*/
2065 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
2066 {
2067 	WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
2068 	/* make sure to commit the things */
2069 	smp_mb__before_atomic();
2070 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2071 }
2072 
2073 static void hns_nic_service_task(struct work_struct *work)
2074 {
2075 	struct hns_nic_priv *priv
2076 		= container_of(work, struct hns_nic_priv, service_task);
2077 	struct hnae_handle *h = priv->ae_handle;
2078 
2079 	hns_nic_reset_subtask(priv);
2080 	hns_nic_update_link_status(priv->netdev);
2081 	h->dev->ops->update_led_status(h);
2082 	hns_nic_update_stats(priv->netdev);
2083 
2084 	hns_nic_service_event_complete(priv);
2085 }
2086 
2087 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
2088 {
2089 	if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
2090 	    !test_bit(NIC_STATE_REMOVING, &priv->state) &&
2091 	    !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
2092 		(void)schedule_work(&priv->service_task);
2093 }
2094 
2095 static void hns_nic_service_timer(struct timer_list *t)
2096 {
2097 	struct hns_nic_priv *priv = from_timer(priv, t, service_timer);
2098 
2099 	(void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
2100 
2101 	hns_nic_task_schedule(priv);
2102 }
2103 
2104 /**
2105  * hns_tx_timeout_reset - initiate reset due to Tx timeout
2106  * @priv: driver private struct
2107  **/
2108 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
2109 {
2110 	/* Do the reset outside of interrupt context */
2111 	if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
2112 		set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
2113 		netdev_warn(priv->netdev,
2114 			    "initiating reset due to tx timeout(%llu,0x%lx)\n",
2115 			    priv->tx_timeout_count, priv->state);
2116 		priv->tx_timeout_count++;
2117 		hns_nic_task_schedule(priv);
2118 	}
2119 }
2120 
2121 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
2122 {
2123 	struct hnae_handle *h = priv->ae_handle;
2124 	struct hns_nic_ring_data *rd;
2125 	bool is_ver1 = AE_IS_VER1(priv->enet_ver);
2126 	int i;
2127 
2128 	if (h->q_num > NIC_MAX_Q_PER_VF) {
2129 		netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
2130 		return -EINVAL;
2131 	}
2132 
2133 	priv->ring_data = kzalloc(array3_size(h->q_num,
2134 					      sizeof(*priv->ring_data), 2),
2135 				  GFP_KERNEL);
2136 	if (!priv->ring_data)
2137 		return -ENOMEM;
2138 
2139 	for (i = 0; i < h->q_num; i++) {
2140 		rd = &priv->ring_data[i];
2141 		rd->queue_index = i;
2142 		rd->ring = &h->qs[i]->tx_ring;
2143 		rd->poll_one = hns_nic_tx_poll_one;
2144 		rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro :
2145 			hns_nic_tx_fini_pro_v2;
2146 
2147 		netif_napi_add(priv->netdev, &rd->napi,
2148 			       hns_nic_common_poll, NAPI_POLL_WEIGHT);
2149 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2150 	}
2151 	for (i = h->q_num; i < h->q_num * 2; i++) {
2152 		rd = &priv->ring_data[i];
2153 		rd->queue_index = i - h->q_num;
2154 		rd->ring = &h->qs[i - h->q_num]->rx_ring;
2155 		rd->poll_one = hns_nic_rx_poll_one;
2156 		rd->ex_process = hns_nic_rx_up_pro;
2157 		rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro :
2158 			hns_nic_rx_fini_pro_v2;
2159 
2160 		netif_napi_add(priv->netdev, &rd->napi,
2161 			       hns_nic_common_poll, NAPI_POLL_WEIGHT);
2162 		rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2163 	}
2164 
2165 	return 0;
2166 }
2167 
2168 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
2169 {
2170 	struct hnae_handle *h = priv->ae_handle;
2171 	int i;
2172 
2173 	for (i = 0; i < h->q_num * 2; i++) {
2174 		netif_napi_del(&priv->ring_data[i].napi);
2175 		if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
2176 			(void)irq_set_affinity_hint(
2177 				priv->ring_data[i].ring->irq,
2178 				NULL);
2179 			free_irq(priv->ring_data[i].ring->irq,
2180 				 &priv->ring_data[i]);
2181 		}
2182 
2183 		priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
2184 	}
2185 	kfree(priv->ring_data);
2186 }
2187 
2188 static void hns_nic_set_priv_ops(struct net_device *netdev)
2189 {
2190 	struct hns_nic_priv *priv = netdev_priv(netdev);
2191 	struct hnae_handle *h = priv->ae_handle;
2192 
2193 	if (AE_IS_VER1(priv->enet_ver)) {
2194 		priv->ops.fill_desc = fill_desc;
2195 		priv->ops.get_rxd_bnum = get_rx_desc_bnum;
2196 		priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2197 	} else {
2198 		priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
2199 		if ((netdev->features & NETIF_F_TSO) ||
2200 		    (netdev->features & NETIF_F_TSO6)) {
2201 			priv->ops.fill_desc = fill_tso_desc;
2202 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
2203 			/* This chip only support 7*4096 */
2204 			netif_set_gso_max_size(netdev, 7 * 4096);
2205 		} else {
2206 			priv->ops.fill_desc = fill_v2_desc;
2207 			priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
2208 		}
2209 		/* enable tso when init
2210 		 * control tso on/off through TSE bit in bd
2211 		 */
2212 		h->dev->ops->set_tso_stats(h, 1);
2213 	}
2214 }
2215 
2216 static int hns_nic_try_get_ae(struct net_device *ndev)
2217 {
2218 	struct hns_nic_priv *priv = netdev_priv(ndev);
2219 	struct hnae_handle *h;
2220 	int ret;
2221 
2222 	h = hnae_get_handle(&priv->netdev->dev,
2223 			    priv->fwnode, priv->port_id, NULL);
2224 	if (IS_ERR_OR_NULL(h)) {
2225 		ret = -ENODEV;
2226 		dev_dbg(priv->dev, "has not handle, register notifier!\n");
2227 		goto out;
2228 	}
2229 	priv->ae_handle = h;
2230 
2231 	ret = hns_nic_init_phy(ndev, h);
2232 	if (ret) {
2233 		dev_err(priv->dev, "probe phy device fail!\n");
2234 		goto out_init_phy;
2235 	}
2236 
2237 	ret = hns_nic_init_ring_data(priv);
2238 	if (ret) {
2239 		ret = -ENOMEM;
2240 		goto out_init_ring_data;
2241 	}
2242 
2243 	hns_nic_set_priv_ops(ndev);
2244 
2245 	ret = register_netdev(ndev);
2246 	if (ret) {
2247 		dev_err(priv->dev, "probe register netdev fail!\n");
2248 		goto out_reg_ndev_fail;
2249 	}
2250 	return 0;
2251 
2252 out_reg_ndev_fail:
2253 	hns_nic_uninit_ring_data(priv);
2254 	priv->ring_data = NULL;
2255 out_init_phy:
2256 out_init_ring_data:
2257 	hnae_put_handle(priv->ae_handle);
2258 	priv->ae_handle = NULL;
2259 out:
2260 	return ret;
2261 }
2262 
2263 static int hns_nic_notifier_action(struct notifier_block *nb,
2264 				   unsigned long action, void *data)
2265 {
2266 	struct hns_nic_priv *priv =
2267 		container_of(nb, struct hns_nic_priv, notifier_block);
2268 
2269 	assert(action == HNAE_AE_REGISTER);
2270 
2271 	if (!hns_nic_try_get_ae(priv->netdev)) {
2272 		hnae_unregister_notifier(&priv->notifier_block);
2273 		priv->notifier_block.notifier_call = NULL;
2274 	}
2275 	return 0;
2276 }
2277 
2278 static int hns_nic_dev_probe(struct platform_device *pdev)
2279 {
2280 	struct device *dev = &pdev->dev;
2281 	struct net_device *ndev;
2282 	struct hns_nic_priv *priv;
2283 	u32 port_id;
2284 	int ret;
2285 
2286 	ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
2287 	if (!ndev)
2288 		return -ENOMEM;
2289 
2290 	platform_set_drvdata(pdev, ndev);
2291 
2292 	priv = netdev_priv(ndev);
2293 	priv->dev = dev;
2294 	priv->netdev = ndev;
2295 
2296 	if (dev_of_node(dev)) {
2297 		struct device_node *ae_node;
2298 
2299 		if (of_device_is_compatible(dev->of_node,
2300 					    "hisilicon,hns-nic-v1"))
2301 			priv->enet_ver = AE_VERSION_1;
2302 		else
2303 			priv->enet_ver = AE_VERSION_2;
2304 
2305 		ae_node = of_parse_phandle(dev->of_node, "ae-handle", 0);
2306 		if (!ae_node) {
2307 			ret = -ENODEV;
2308 			dev_err(dev, "not find ae-handle\n");
2309 			goto out_read_prop_fail;
2310 		}
2311 		priv->fwnode = &ae_node->fwnode;
2312 	} else if (is_acpi_node(dev->fwnode)) {
2313 		struct fwnode_reference_args args;
2314 
2315 		if (acpi_dev_found(hns_enet_acpi_match[0].id))
2316 			priv->enet_ver = AE_VERSION_1;
2317 		else if (acpi_dev_found(hns_enet_acpi_match[1].id))
2318 			priv->enet_ver = AE_VERSION_2;
2319 		else
2320 			return -ENXIO;
2321 
2322 		/* try to find port-idx-in-ae first */
2323 		ret = acpi_node_get_property_reference(dev->fwnode,
2324 						       "ae-handle", 0, &args);
2325 		if (ret) {
2326 			dev_err(dev, "not find ae-handle\n");
2327 			goto out_read_prop_fail;
2328 		}
2329 		if (!is_acpi_device_node(args.fwnode)) {
2330 			ret = -EINVAL;
2331 			goto out_read_prop_fail;
2332 		}
2333 		priv->fwnode = args.fwnode;
2334 	} else {
2335 		dev_err(dev, "cannot read cfg data from OF or acpi\n");
2336 		return -ENXIO;
2337 	}
2338 
2339 	ret = device_property_read_u32(dev, "port-idx-in-ae", &port_id);
2340 	if (ret) {
2341 		/* only for old code compatible */
2342 		ret = device_property_read_u32(dev, "port-id", &port_id);
2343 		if (ret)
2344 			goto out_read_prop_fail;
2345 		/* for old dts, we need to caculate the port offset */
2346 		port_id = port_id < HNS_SRV_OFFSET ? port_id + HNS_DEBUG_OFFSET
2347 			: port_id - HNS_SRV_OFFSET;
2348 	}
2349 	priv->port_id = port_id;
2350 
2351 	hns_init_mac_addr(ndev);
2352 
2353 	ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
2354 	ndev->priv_flags |= IFF_UNICAST_FLT;
2355 	ndev->netdev_ops = &hns_nic_netdev_ops;
2356 	hns_ethtool_set_ops(ndev);
2357 
2358 	ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2359 		NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2360 		NETIF_F_GRO;
2361 	ndev->vlan_features |=
2362 		NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2363 	ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
2364 
2365 	/* MTU range: 68 - 9578 (v1) or 9706 (v2) */
2366 	ndev->min_mtu = MAC_MIN_MTU;
2367 	switch (priv->enet_ver) {
2368 	case AE_VERSION_2:
2369 		ndev->features |= NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_NTUPLE;
2370 		ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2371 			NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
2372 			NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
2373 		ndev->vlan_features |= NETIF_F_TSO | NETIF_F_TSO6;
2374 		ndev->max_mtu = MAC_MAX_MTU_V2 -
2375 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2376 		break;
2377 	default:
2378 		ndev->max_mtu = MAC_MAX_MTU -
2379 				(ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
2380 		break;
2381 	}
2382 
2383 	SET_NETDEV_DEV(ndev, dev);
2384 
2385 	if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
2386 		dev_dbg(dev, "set mask to 64bit\n");
2387 	else
2388 		dev_err(dev, "set mask to 64bit fail!\n");
2389 
2390 	/* carrier off reporting is important to ethtool even BEFORE open */
2391 	netif_carrier_off(ndev);
2392 
2393 	timer_setup(&priv->service_timer, hns_nic_service_timer, 0);
2394 	INIT_WORK(&priv->service_task, hns_nic_service_task);
2395 
2396 	set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
2397 	clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
2398 	set_bit(NIC_STATE_DOWN, &priv->state);
2399 
2400 	if (hns_nic_try_get_ae(priv->netdev)) {
2401 		priv->notifier_block.notifier_call = hns_nic_notifier_action;
2402 		ret = hnae_register_notifier(&priv->notifier_block);
2403 		if (ret) {
2404 			dev_err(dev, "register notifier fail!\n");
2405 			goto out_notify_fail;
2406 		}
2407 		dev_dbg(dev, "has not handle, register notifier!\n");
2408 	}
2409 
2410 	return 0;
2411 
2412 out_notify_fail:
2413 	(void)cancel_work_sync(&priv->service_task);
2414 out_read_prop_fail:
2415 	/* safe for ACPI FW */
2416 	of_node_put(to_of_node(priv->fwnode));
2417 	free_netdev(ndev);
2418 	return ret;
2419 }
2420 
2421 static int hns_nic_dev_remove(struct platform_device *pdev)
2422 {
2423 	struct net_device *ndev = platform_get_drvdata(pdev);
2424 	struct hns_nic_priv *priv = netdev_priv(ndev);
2425 
2426 	if (ndev->reg_state != NETREG_UNINITIALIZED)
2427 		unregister_netdev(ndev);
2428 
2429 	if (priv->ring_data)
2430 		hns_nic_uninit_ring_data(priv);
2431 	priv->ring_data = NULL;
2432 
2433 	if (ndev->phydev)
2434 		phy_disconnect(ndev->phydev);
2435 
2436 	if (!IS_ERR_OR_NULL(priv->ae_handle))
2437 		hnae_put_handle(priv->ae_handle);
2438 	priv->ae_handle = NULL;
2439 	if (priv->notifier_block.notifier_call)
2440 		hnae_unregister_notifier(&priv->notifier_block);
2441 	priv->notifier_block.notifier_call = NULL;
2442 
2443 	set_bit(NIC_STATE_REMOVING, &priv->state);
2444 	(void)cancel_work_sync(&priv->service_task);
2445 
2446 	/* safe for ACPI FW */
2447 	of_node_put(to_of_node(priv->fwnode));
2448 
2449 	free_netdev(ndev);
2450 	return 0;
2451 }
2452 
2453 static const struct of_device_id hns_enet_of_match[] = {
2454 	{.compatible = "hisilicon,hns-nic-v1",},
2455 	{.compatible = "hisilicon,hns-nic-v2",},
2456 	{},
2457 };
2458 
2459 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2460 
2461 static struct platform_driver hns_nic_dev_driver = {
2462 	.driver = {
2463 		.name = "hns-nic",
2464 		.of_match_table = hns_enet_of_match,
2465 		.acpi_match_table = ACPI_PTR(hns_enet_acpi_match),
2466 	},
2467 	.probe = hns_nic_dev_probe,
2468 	.remove = hns_nic_dev_remove,
2469 };
2470 
2471 module_platform_driver(hns_nic_dev_driver);
2472 
2473 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2474 MODULE_AUTHOR("Hisilicon, Inc.");
2475 MODULE_LICENSE("GPL");
2476 MODULE_ALIAS("platform:hns-nic");
2477