xref: /openbmc/linux/drivers/net/ethernet/google/gve/gve_tx.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2019 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include <linux/ip.h>
10 #include <linux/tcp.h>
11 #include <linux/vmalloc.h>
12 #include <linux/skbuff.h>
13 
14 static inline void gve_tx_put_doorbell(struct gve_priv *priv,
15 				       struct gve_queue_resources *q_resources,
16 				       u32 val)
17 {
18 	iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]);
19 }
20 
21 /* gvnic can only transmit from a Registered Segment.
22  * We copy skb payloads into the registered segment before writing Tx
23  * descriptors and ringing the Tx doorbell.
24  *
25  * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must
26  * free allocations in the order they were allocated.
27  */
28 
29 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo)
30 {
31 	fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP,
32 			  PAGE_KERNEL);
33 	if (unlikely(!fifo->base)) {
34 		netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n",
35 			  fifo->qpl->id);
36 		return -ENOMEM;
37 	}
38 
39 	fifo->size = fifo->qpl->num_entries * PAGE_SIZE;
40 	atomic_set(&fifo->available, fifo->size);
41 	fifo->head = 0;
42 	return 0;
43 }
44 
45 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo)
46 {
47 	WARN(atomic_read(&fifo->available) != fifo->size,
48 	     "Releasing non-empty fifo");
49 
50 	vunmap(fifo->base);
51 }
52 
53 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo,
54 					  size_t bytes)
55 {
56 	return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head;
57 }
58 
59 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes)
60 {
61 	return (atomic_read(&fifo->available) <= bytes) ? false : true;
62 }
63 
64 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO
65  * @fifo: FIFO to allocate from
66  * @bytes: Allocation size
67  * @iov: Scatter-gather elements to fill with allocation fragment base/len
68  *
69  * Returns number of valid elements in iov[] or negative on error.
70  *
71  * Allocations from a given FIFO must be externally synchronized but concurrent
72  * allocation and frees are allowed.
73  */
74 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes,
75 			     struct gve_tx_iovec iov[2])
76 {
77 	size_t overflow, padding;
78 	u32 aligned_head;
79 	int nfrags = 0;
80 
81 	if (!bytes)
82 		return 0;
83 
84 	/* This check happens before we know how much padding is needed to
85 	 * align to a cacheline boundary for the payload, but that is fine,
86 	 * because the FIFO head always start aligned, and the FIFO's boundaries
87 	 * are aligned, so if there is space for the data, there is space for
88 	 * the padding to the next alignment.
89 	 */
90 	WARN(!gve_tx_fifo_can_alloc(fifo, bytes),
91 	     "Reached %s when there's not enough space in the fifo", __func__);
92 
93 	nfrags++;
94 
95 	iov[0].iov_offset = fifo->head;
96 	iov[0].iov_len = bytes;
97 	fifo->head += bytes;
98 
99 	if (fifo->head > fifo->size) {
100 		/* If the allocation did not fit in the tail fragment of the
101 		 * FIFO, also use the head fragment.
102 		 */
103 		nfrags++;
104 		overflow = fifo->head - fifo->size;
105 		iov[0].iov_len -= overflow;
106 		iov[1].iov_offset = 0;	/* Start of fifo*/
107 		iov[1].iov_len = overflow;
108 
109 		fifo->head = overflow;
110 	}
111 
112 	/* Re-align to a cacheline boundary */
113 	aligned_head = L1_CACHE_ALIGN(fifo->head);
114 	padding = aligned_head - fifo->head;
115 	iov[nfrags - 1].iov_padding = padding;
116 	atomic_sub(bytes + padding, &fifo->available);
117 	fifo->head = aligned_head;
118 
119 	if (fifo->head == fifo->size)
120 		fifo->head = 0;
121 
122 	return nfrags;
123 }
124 
125 /* gve_tx_free_fifo - Return space to Tx FIFO
126  * @fifo: FIFO to return fragments to
127  * @bytes: Bytes to free
128  */
129 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes)
130 {
131 	atomic_add(bytes, &fifo->available);
132 }
133 
134 static void gve_tx_remove_from_block(struct gve_priv *priv, int queue_idx)
135 {
136 	struct gve_notify_block *block =
137 			&priv->ntfy_blocks[gve_tx_idx_to_ntfy(priv, queue_idx)];
138 
139 	block->tx = NULL;
140 }
141 
142 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
143 			     u32 to_do, bool try_to_wake);
144 
145 static void gve_tx_free_ring(struct gve_priv *priv, int idx)
146 {
147 	struct gve_tx_ring *tx = &priv->tx[idx];
148 	struct device *hdev = &priv->pdev->dev;
149 	size_t bytes;
150 	u32 slots;
151 
152 	gve_tx_remove_from_block(priv, idx);
153 	slots = tx->mask + 1;
154 	gve_clean_tx_done(priv, tx, tx->req, false);
155 	netdev_tx_reset_queue(tx->netdev_txq);
156 
157 	dma_free_coherent(hdev, sizeof(*tx->q_resources),
158 			  tx->q_resources, tx->q_resources_bus);
159 	tx->q_resources = NULL;
160 
161 	if (!tx->raw_addressing) {
162 		gve_tx_fifo_release(priv, &tx->tx_fifo);
163 		gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
164 		tx->tx_fifo.qpl = NULL;
165 	}
166 
167 	bytes = sizeof(*tx->desc) * slots;
168 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
169 	tx->desc = NULL;
170 
171 	vfree(tx->info);
172 	tx->info = NULL;
173 
174 	netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
175 }
176 
177 static void gve_tx_add_to_block(struct gve_priv *priv, int queue_idx)
178 {
179 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, queue_idx);
180 	struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
181 	struct gve_tx_ring *tx = &priv->tx[queue_idx];
182 
183 	block->tx = tx;
184 	tx->ntfy_id = ntfy_idx;
185 }
186 
187 static int gve_tx_alloc_ring(struct gve_priv *priv, int idx)
188 {
189 	struct gve_tx_ring *tx = &priv->tx[idx];
190 	struct device *hdev = &priv->pdev->dev;
191 	u32 slots = priv->tx_desc_cnt;
192 	size_t bytes;
193 
194 	/* Make sure everything is zeroed to start */
195 	memset(tx, 0, sizeof(*tx));
196 	tx->q_num = idx;
197 
198 	tx->mask = slots - 1;
199 
200 	/* alloc metadata */
201 	tx->info = vzalloc(sizeof(*tx->info) * slots);
202 	if (!tx->info)
203 		return -ENOMEM;
204 
205 	/* alloc tx queue */
206 	bytes = sizeof(*tx->desc) * slots;
207 	tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
208 	if (!tx->desc)
209 		goto abort_with_info;
210 
211 	tx->raw_addressing = priv->raw_addressing;
212 	tx->dev = &priv->pdev->dev;
213 	if (!tx->raw_addressing) {
214 		tx->tx_fifo.qpl = gve_assign_tx_qpl(priv);
215 		if (!tx->tx_fifo.qpl)
216 			goto abort_with_desc;
217 		/* map Tx FIFO */
218 		if (gve_tx_fifo_init(priv, &tx->tx_fifo))
219 			goto abort_with_qpl;
220 	}
221 
222 	tx->q_resources =
223 		dma_alloc_coherent(hdev,
224 				   sizeof(*tx->q_resources),
225 				   &tx->q_resources_bus,
226 				   GFP_KERNEL);
227 	if (!tx->q_resources)
228 		goto abort_with_fifo;
229 
230 	netif_dbg(priv, drv, priv->dev, "tx[%d]->bus=%lx\n", idx,
231 		  (unsigned long)tx->bus);
232 	tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
233 	gve_tx_add_to_block(priv, idx);
234 
235 	return 0;
236 
237 abort_with_fifo:
238 	if (!tx->raw_addressing)
239 		gve_tx_fifo_release(priv, &tx->tx_fifo);
240 abort_with_qpl:
241 	if (!tx->raw_addressing)
242 		gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
243 abort_with_desc:
244 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
245 	tx->desc = NULL;
246 abort_with_info:
247 	vfree(tx->info);
248 	tx->info = NULL;
249 	return -ENOMEM;
250 }
251 
252 int gve_tx_alloc_rings(struct gve_priv *priv)
253 {
254 	int err = 0;
255 	int i;
256 
257 	for (i = 0; i < priv->tx_cfg.num_queues; i++) {
258 		err = gve_tx_alloc_ring(priv, i);
259 		if (err) {
260 			netif_err(priv, drv, priv->dev,
261 				  "Failed to alloc tx ring=%d: err=%d\n",
262 				  i, err);
263 			break;
264 		}
265 	}
266 	/* Unallocate if there was an error */
267 	if (err) {
268 		int j;
269 
270 		for (j = 0; j < i; j++)
271 			gve_tx_free_ring(priv, j);
272 	}
273 	return err;
274 }
275 
276 void gve_tx_free_rings(struct gve_priv *priv)
277 {
278 	int i;
279 
280 	for (i = 0; i < priv->tx_cfg.num_queues; i++)
281 		gve_tx_free_ring(priv, i);
282 }
283 
284 /* gve_tx_avail - Calculates the number of slots available in the ring
285  * @tx: tx ring to check
286  *
287  * Returns the number of slots available
288  *
289  * The capacity of the queue is mask + 1. We don't need to reserve an entry.
290  **/
291 static inline u32 gve_tx_avail(struct gve_tx_ring *tx)
292 {
293 	return tx->mask + 1 - (tx->req - tx->done);
294 }
295 
296 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx,
297 					      struct sk_buff *skb)
298 {
299 	int pad_bytes, align_hdr_pad;
300 	int bytes;
301 	int hlen;
302 
303 	hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) +
304 				 tcp_hdrlen(skb) : skb_headlen(skb);
305 
306 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo,
307 						   hlen);
308 	/* We need to take into account the header alignment padding. */
309 	align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen;
310 	bytes = align_hdr_pad + pad_bytes + skb->len;
311 
312 	return bytes;
313 }
314 
315 /* The most descriptors we could need is MAX_SKB_FRAGS + 3 : 1 for each skb frag,
316  * +1 for the skb linear portion, +1 for when tcp hdr needs to be in separate descriptor,
317  * and +1 if the payload wraps to the beginning of the FIFO.
318  */
319 #define MAX_TX_DESC_NEEDED	(MAX_SKB_FRAGS + 3)
320 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info)
321 {
322 	if (info->skb) {
323 		dma_unmap_single(dev, dma_unmap_addr(&info->buf, dma),
324 				 dma_unmap_len(&info->buf, len),
325 				 DMA_TO_DEVICE);
326 		dma_unmap_len_set(&info->buf, len, 0);
327 	} else {
328 		dma_unmap_page(dev, dma_unmap_addr(&info->buf, dma),
329 			       dma_unmap_len(&info->buf, len),
330 			       DMA_TO_DEVICE);
331 		dma_unmap_len_set(&info->buf, len, 0);
332 	}
333 }
334 
335 /* Check if sufficient resources (descriptor ring space, FIFO space) are
336  * available to transmit the given number of bytes.
337  */
338 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required)
339 {
340 	bool can_alloc = true;
341 
342 	if (!tx->raw_addressing)
343 		can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required);
344 
345 	return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc);
346 }
347 
348 /* Stops the queue if the skb cannot be transmitted. */
349 static int gve_maybe_stop_tx(struct gve_tx_ring *tx, struct sk_buff *skb)
350 {
351 	int bytes_required = 0;
352 
353 	if (!tx->raw_addressing)
354 		bytes_required = gve_skb_fifo_bytes_required(tx, skb);
355 
356 	if (likely(gve_can_tx(tx, bytes_required)))
357 		return 0;
358 
359 	/* No space, so stop the queue */
360 	tx->stop_queue++;
361 	netif_tx_stop_queue(tx->netdev_txq);
362 	smp_mb();	/* sync with restarting queue in gve_clean_tx_done() */
363 
364 	/* Now check for resources again, in case gve_clean_tx_done() freed
365 	 * resources after we checked and we stopped the queue after
366 	 * gve_clean_tx_done() checked.
367 	 *
368 	 * gve_maybe_stop_tx()			gve_clean_tx_done()
369 	 *   nsegs/can_alloc test failed
370 	 *					  gve_tx_free_fifo()
371 	 *					  if (tx queue stopped)
372 	 *					    netif_tx_queue_wake()
373 	 *   netif_tx_stop_queue()
374 	 *   Need to check again for space here!
375 	 */
376 	if (likely(!gve_can_tx(tx, bytes_required)))
377 		return -EBUSY;
378 
379 	netif_tx_start_queue(tx->netdev_txq);
380 	tx->wake_queue++;
381 	return 0;
382 }
383 
384 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc,
385 				 struct sk_buff *skb, bool is_gso,
386 				 int l4_hdr_offset, u32 desc_cnt,
387 				 u16 hlen, u64 addr)
388 {
389 	/* l4_hdr_offset and csum_offset are in units of 16-bit words */
390 	if (is_gso) {
391 		pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM;
392 		pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1;
393 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
394 	} else if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
395 		pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM;
396 		pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1;
397 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
398 	} else {
399 		pkt_desc->pkt.type_flags = GVE_TXD_STD;
400 		pkt_desc->pkt.l4_csum_offset = 0;
401 		pkt_desc->pkt.l4_hdr_offset = 0;
402 	}
403 	pkt_desc->pkt.desc_cnt = desc_cnt;
404 	pkt_desc->pkt.len = cpu_to_be16(skb->len);
405 	pkt_desc->pkt.seg_len = cpu_to_be16(hlen);
406 	pkt_desc->pkt.seg_addr = cpu_to_be64(addr);
407 }
408 
409 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc,
410 				 struct sk_buff *skb, bool is_gso,
411 				 u16 len, u64 addr)
412 {
413 	seg_desc->seg.type_flags = GVE_TXD_SEG;
414 	if (is_gso) {
415 		if (skb_is_gso_v6(skb))
416 			seg_desc->seg.type_flags |= GVE_TXSF_IPV6;
417 		seg_desc->seg.l3_offset = skb_network_offset(skb) >> 1;
418 		seg_desc->seg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
419 	}
420 	seg_desc->seg.seg_len = cpu_to_be16(len);
421 	seg_desc->seg.seg_addr = cpu_to_be64(addr);
422 }
423 
424 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses,
425 				    u64 iov_offset, u64 iov_len)
426 {
427 	u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE;
428 	u64 first_page = iov_offset / PAGE_SIZE;
429 	u64 page;
430 
431 	for (page = first_page; page <= last_page; page++)
432 		dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE);
433 }
434 
435 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb)
436 {
437 	int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset;
438 	union gve_tx_desc *pkt_desc, *seg_desc;
439 	struct gve_tx_buffer_state *info;
440 	bool is_gso = skb_is_gso(skb);
441 	u32 idx = tx->req & tx->mask;
442 	int payload_iov = 2;
443 	int copy_offset;
444 	u32 next_idx;
445 	int i;
446 
447 	info = &tx->info[idx];
448 	pkt_desc = &tx->desc[idx];
449 
450 	l4_hdr_offset = skb_checksum_start_offset(skb);
451 	/* If the skb is gso, then we want the tcp header in the first segment
452 	 * otherwise we want the linear portion of the skb (which will contain
453 	 * the checksum because skb->csum_start and skb->csum_offset are given
454 	 * relative to skb->head) in the first segment.
455 	 */
456 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) :
457 			skb_headlen(skb);
458 
459 	info->skb =  skb;
460 	/* We don't want to split the header, so if necessary, pad to the end
461 	 * of the fifo and then put the header at the beginning of the fifo.
462 	 */
463 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen);
464 	hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes,
465 				       &info->iov[0]);
466 	WARN(!hdr_nfrags, "hdr_nfrags should never be 0!");
467 	payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen,
468 					   &info->iov[payload_iov]);
469 
470 	gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset,
471 			     1 + payload_nfrags, hlen,
472 			     info->iov[hdr_nfrags - 1].iov_offset);
473 
474 	skb_copy_bits(skb, 0,
475 		      tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset,
476 		      hlen);
477 	gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
478 				info->iov[hdr_nfrags - 1].iov_offset,
479 				info->iov[hdr_nfrags - 1].iov_len);
480 	copy_offset = hlen;
481 
482 	for (i = payload_iov; i < payload_nfrags + payload_iov; i++) {
483 		next_idx = (tx->req + 1 + i - payload_iov) & tx->mask;
484 		seg_desc = &tx->desc[next_idx];
485 
486 		gve_tx_fill_seg_desc(seg_desc, skb, is_gso,
487 				     info->iov[i].iov_len,
488 				     info->iov[i].iov_offset);
489 
490 		skb_copy_bits(skb, copy_offset,
491 			      tx->tx_fifo.base + info->iov[i].iov_offset,
492 			      info->iov[i].iov_len);
493 		gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
494 					info->iov[i].iov_offset,
495 					info->iov[i].iov_len);
496 		copy_offset += info->iov[i].iov_len;
497 	}
498 
499 	return 1 + payload_nfrags;
500 }
501 
502 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx,
503 				  struct sk_buff *skb)
504 {
505 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
506 	int hlen, payload_nfrags, l4_hdr_offset;
507 	union gve_tx_desc *pkt_desc, *seg_desc;
508 	struct gve_tx_buffer_state *info;
509 	bool is_gso = skb_is_gso(skb);
510 	u32 idx = tx->req & tx->mask;
511 	struct gve_tx_dma_buf *buf;
512 	u64 addr;
513 	u32 len;
514 	int i;
515 
516 	info = &tx->info[idx];
517 	pkt_desc = &tx->desc[idx];
518 
519 	l4_hdr_offset = skb_checksum_start_offset(skb);
520 	/* If the skb is gso, then we want only up to the tcp header in the first segment
521 	 * to efficiently replicate on each segment otherwise we want the linear portion
522 	 * of the skb (which will contain the checksum because skb->csum_start and
523 	 * skb->csum_offset are given relative to skb->head) in the first segment.
524 	 */
525 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb);
526 	len = skb_headlen(skb);
527 
528 	info->skb =  skb;
529 
530 	addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
531 	if (unlikely(dma_mapping_error(tx->dev, addr))) {
532 		tx->dma_mapping_error++;
533 		goto drop;
534 	}
535 	buf = &info->buf;
536 	dma_unmap_len_set(buf, len, len);
537 	dma_unmap_addr_set(buf, dma, addr);
538 
539 	payload_nfrags = shinfo->nr_frags;
540 	if (hlen < len) {
541 		/* For gso the rest of the linear portion of the skb needs to
542 		 * be in its own descriptor.
543 		 */
544 		payload_nfrags++;
545 		gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset,
546 				     1 + payload_nfrags, hlen, addr);
547 
548 		len -= hlen;
549 		addr += hlen;
550 		idx = (tx->req + 1) & tx->mask;
551 		seg_desc = &tx->desc[idx];
552 		gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr);
553 	} else {
554 		gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset,
555 				     1 + payload_nfrags, hlen, addr);
556 	}
557 
558 	for (i = 0; i < shinfo->nr_frags; i++) {
559 		const skb_frag_t *frag = &shinfo->frags[i];
560 
561 		idx = (idx + 1) & tx->mask;
562 		seg_desc = &tx->desc[idx];
563 		len = skb_frag_size(frag);
564 		addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
565 		if (unlikely(dma_mapping_error(tx->dev, addr))) {
566 			tx->dma_mapping_error++;
567 			goto unmap_drop;
568 		}
569 		buf = &tx->info[idx].buf;
570 		tx->info[idx].skb = NULL;
571 		dma_unmap_len_set(buf, len, len);
572 		dma_unmap_addr_set(buf, dma, addr);
573 
574 		gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr);
575 	}
576 
577 	return 1 + payload_nfrags;
578 
579 unmap_drop:
580 	i += (payload_nfrags == shinfo->nr_frags ? 1 : 2);
581 	while (i--) {
582 		idx--;
583 		gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]);
584 	}
585 drop:
586 	tx->dropped_pkt++;
587 	return 0;
588 }
589 
590 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
591 {
592 	struct gve_priv *priv = netdev_priv(dev);
593 	struct gve_tx_ring *tx;
594 	int nsegs;
595 
596 	WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues,
597 	     "skb queue index out of range");
598 	tx = &priv->tx[skb_get_queue_mapping(skb)];
599 	if (unlikely(gve_maybe_stop_tx(tx, skb))) {
600 		/* We need to ring the txq doorbell -- we have stopped the Tx
601 		 * queue for want of resources, but prior calls to gve_tx()
602 		 * may have added descriptors without ringing the doorbell.
603 		 */
604 
605 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
606 		return NETDEV_TX_BUSY;
607 	}
608 	if (tx->raw_addressing)
609 		nsegs = gve_tx_add_skb_no_copy(priv, tx, skb);
610 	else
611 		nsegs = gve_tx_add_skb_copy(priv, tx, skb);
612 
613 	/* If the packet is getting sent, we need to update the skb */
614 	if (nsegs) {
615 		netdev_tx_sent_queue(tx->netdev_txq, skb->len);
616 		skb_tx_timestamp(skb);
617 		tx->req += nsegs;
618 	} else {
619 		dev_kfree_skb_any(skb);
620 	}
621 
622 	if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
623 		return NETDEV_TX_OK;
624 
625 	/* Give packets to NIC. Even if this packet failed to send the doorbell
626 	 * might need to be rung because of xmit_more.
627 	 */
628 	gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
629 	return NETDEV_TX_OK;
630 }
631 
632 #define GVE_TX_START_THRESH	PAGE_SIZE
633 
634 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
635 			     u32 to_do, bool try_to_wake)
636 {
637 	struct gve_tx_buffer_state *info;
638 	u64 pkts = 0, bytes = 0;
639 	size_t space_freed = 0;
640 	struct sk_buff *skb;
641 	int i, j;
642 	u32 idx;
643 
644 	for (j = 0; j < to_do; j++) {
645 		idx = tx->done & tx->mask;
646 		netif_info(priv, tx_done, priv->dev,
647 			   "[%d] %s: idx=%d (req=%u done=%u)\n",
648 			   tx->q_num, __func__, idx, tx->req, tx->done);
649 		info = &tx->info[idx];
650 		skb = info->skb;
651 
652 		/* Unmap the buffer */
653 		if (tx->raw_addressing)
654 			gve_tx_unmap_buf(tx->dev, info);
655 		tx->done++;
656 		/* Mark as free */
657 		if (skb) {
658 			info->skb = NULL;
659 			bytes += skb->len;
660 			pkts++;
661 			dev_consume_skb_any(skb);
662 			if (tx->raw_addressing)
663 				continue;
664 			/* FIFO free */
665 			for (i = 0; i < ARRAY_SIZE(info->iov); i++) {
666 				space_freed += info->iov[i].iov_len + info->iov[i].iov_padding;
667 				info->iov[i].iov_len = 0;
668 				info->iov[i].iov_padding = 0;
669 			}
670 		}
671 	}
672 
673 	if (!tx->raw_addressing)
674 		gve_tx_free_fifo(&tx->tx_fifo, space_freed);
675 	u64_stats_update_begin(&tx->statss);
676 	tx->bytes_done += bytes;
677 	tx->pkt_done += pkts;
678 	u64_stats_update_end(&tx->statss);
679 	netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes);
680 
681 	/* start the queue if we've stopped it */
682 #ifndef CONFIG_BQL
683 	/* Make sure that the doorbells are synced */
684 	smp_mb();
685 #endif
686 	if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) &&
687 	    likely(gve_can_tx(tx, GVE_TX_START_THRESH))) {
688 		tx->wake_queue++;
689 		netif_tx_wake_queue(tx->netdev_txq);
690 	}
691 
692 	return pkts;
693 }
694 
695 __be32 gve_tx_load_event_counter(struct gve_priv *priv,
696 				 struct gve_tx_ring *tx)
697 {
698 	u32 counter_index = be32_to_cpu((tx->q_resources->counter_index));
699 
700 	return READ_ONCE(priv->counter_array[counter_index]);
701 }
702 
703 bool gve_tx_poll(struct gve_notify_block *block, int budget)
704 {
705 	struct gve_priv *priv = block->priv;
706 	struct gve_tx_ring *tx = block->tx;
707 	bool repoll = false;
708 	u32 nic_done;
709 	u32 to_do;
710 
711 	/* If budget is 0, do all the work */
712 	if (budget == 0)
713 		budget = INT_MAX;
714 
715 	/* Find out how much work there is to be done */
716 	tx->last_nic_done = gve_tx_load_event_counter(priv, tx);
717 	nic_done = be32_to_cpu(tx->last_nic_done);
718 	if (budget > 0) {
719 		/* Do as much work as we have that the budget will
720 		 * allow
721 		 */
722 		to_do = min_t(u32, (nic_done - tx->done), budget);
723 		gve_clean_tx_done(priv, tx, to_do, true);
724 	}
725 	/* If we still have work we want to repoll */
726 	repoll |= (nic_done != tx->done);
727 	return repoll;
728 }
729