1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2019 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include <linux/ip.h>
10 #include <linux/tcp.h>
11 #include <linux/vmalloc.h>
12 #include <linux/skbuff.h>
13 
14 static inline void gve_tx_put_doorbell(struct gve_priv *priv,
15 				       struct gve_queue_resources *q_resources,
16 				       u32 val)
17 {
18 	iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]);
19 }
20 
21 /* gvnic can only transmit from a Registered Segment.
22  * We copy skb payloads into the registered segment before writing Tx
23  * descriptors and ringing the Tx doorbell.
24  *
25  * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must
26  * free allocations in the order they were allocated.
27  */
28 
29 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo)
30 {
31 	fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP,
32 			  PAGE_KERNEL);
33 	if (unlikely(!fifo->base)) {
34 		netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n",
35 			  fifo->qpl->id);
36 		return -ENOMEM;
37 	}
38 
39 	fifo->size = fifo->qpl->num_entries * PAGE_SIZE;
40 	atomic_set(&fifo->available, fifo->size);
41 	fifo->head = 0;
42 	return 0;
43 }
44 
45 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo)
46 {
47 	WARN(atomic_read(&fifo->available) != fifo->size,
48 	     "Releasing non-empty fifo");
49 
50 	vunmap(fifo->base);
51 }
52 
53 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo,
54 					  size_t bytes)
55 {
56 	return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head;
57 }
58 
59 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes)
60 {
61 	return (atomic_read(&fifo->available) <= bytes) ? false : true;
62 }
63 
64 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO
65  * @fifo: FIFO to allocate from
66  * @bytes: Allocation size
67  * @iov: Scatter-gather elements to fill with allocation fragment base/len
68  *
69  * Returns number of valid elements in iov[] or negative on error.
70  *
71  * Allocations from a given FIFO must be externally synchronized but concurrent
72  * allocation and frees are allowed.
73  */
74 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes,
75 			     struct gve_tx_iovec iov[2])
76 {
77 	size_t overflow, padding;
78 	u32 aligned_head;
79 	int nfrags = 0;
80 
81 	if (!bytes)
82 		return 0;
83 
84 	/* This check happens before we know how much padding is needed to
85 	 * align to a cacheline boundary for the payload, but that is fine,
86 	 * because the FIFO head always start aligned, and the FIFO's boundaries
87 	 * are aligned, so if there is space for the data, there is space for
88 	 * the padding to the next alignment.
89 	 */
90 	WARN(!gve_tx_fifo_can_alloc(fifo, bytes),
91 	     "Reached %s when there's not enough space in the fifo", __func__);
92 
93 	nfrags++;
94 
95 	iov[0].iov_offset = fifo->head;
96 	iov[0].iov_len = bytes;
97 	fifo->head += bytes;
98 
99 	if (fifo->head > fifo->size) {
100 		/* If the allocation did not fit in the tail fragment of the
101 		 * FIFO, also use the head fragment.
102 		 */
103 		nfrags++;
104 		overflow = fifo->head - fifo->size;
105 		iov[0].iov_len -= overflow;
106 		iov[1].iov_offset = 0;	/* Start of fifo*/
107 		iov[1].iov_len = overflow;
108 
109 		fifo->head = overflow;
110 	}
111 
112 	/* Re-align to a cacheline boundary */
113 	aligned_head = L1_CACHE_ALIGN(fifo->head);
114 	padding = aligned_head - fifo->head;
115 	iov[nfrags - 1].iov_padding = padding;
116 	atomic_sub(bytes + padding, &fifo->available);
117 	fifo->head = aligned_head;
118 
119 	if (fifo->head == fifo->size)
120 		fifo->head = 0;
121 
122 	return nfrags;
123 }
124 
125 /* gve_tx_free_fifo - Return space to Tx FIFO
126  * @fifo: FIFO to return fragments to
127  * @bytes: Bytes to free
128  */
129 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes)
130 {
131 	atomic_add(bytes, &fifo->available);
132 }
133 
134 static void gve_tx_remove_from_block(struct gve_priv *priv, int queue_idx)
135 {
136 	struct gve_notify_block *block =
137 			&priv->ntfy_blocks[gve_tx_idx_to_ntfy(priv, queue_idx)];
138 
139 	block->tx = NULL;
140 }
141 
142 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
143 			     u32 to_do, bool try_to_wake);
144 
145 static void gve_tx_free_ring(struct gve_priv *priv, int idx)
146 {
147 	struct gve_tx_ring *tx = &priv->tx[idx];
148 	struct device *hdev = &priv->pdev->dev;
149 	size_t bytes;
150 	u32 slots;
151 
152 	gve_tx_remove_from_block(priv, idx);
153 	slots = tx->mask + 1;
154 	gve_clean_tx_done(priv, tx, tx->req, false);
155 	netdev_tx_reset_queue(tx->netdev_txq);
156 
157 	dma_free_coherent(hdev, sizeof(*tx->q_resources),
158 			  tx->q_resources, tx->q_resources_bus);
159 	tx->q_resources = NULL;
160 
161 	if (!tx->raw_addressing) {
162 		gve_tx_fifo_release(priv, &tx->tx_fifo);
163 		gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
164 		tx->tx_fifo.qpl = NULL;
165 	}
166 
167 	bytes = sizeof(*tx->desc) * slots;
168 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
169 	tx->desc = NULL;
170 
171 	vfree(tx->info);
172 	tx->info = NULL;
173 
174 	netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
175 }
176 
177 static void gve_tx_add_to_block(struct gve_priv *priv, int queue_idx)
178 {
179 	int ntfy_idx = gve_tx_idx_to_ntfy(priv, queue_idx);
180 	struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx];
181 	struct gve_tx_ring *tx = &priv->tx[queue_idx];
182 
183 	block->tx = tx;
184 	tx->ntfy_id = ntfy_idx;
185 }
186 
187 static int gve_tx_alloc_ring(struct gve_priv *priv, int idx)
188 {
189 	struct gve_tx_ring *tx = &priv->tx[idx];
190 	struct device *hdev = &priv->pdev->dev;
191 	u32 slots = priv->tx_desc_cnt;
192 	size_t bytes;
193 
194 	/* Make sure everything is zeroed to start */
195 	memset(tx, 0, sizeof(*tx));
196 	tx->q_num = idx;
197 
198 	tx->mask = slots - 1;
199 
200 	/* alloc metadata */
201 	tx->info = vzalloc(sizeof(*tx->info) * slots);
202 	if (!tx->info)
203 		return -ENOMEM;
204 
205 	/* alloc tx queue */
206 	bytes = sizeof(*tx->desc) * slots;
207 	tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
208 	if (!tx->desc)
209 		goto abort_with_info;
210 
211 	tx->raw_addressing = priv->raw_addressing;
212 	tx->dev = &priv->pdev->dev;
213 	if (!tx->raw_addressing) {
214 		tx->tx_fifo.qpl = gve_assign_tx_qpl(priv);
215 
216 		/* map Tx FIFO */
217 		if (gve_tx_fifo_init(priv, &tx->tx_fifo))
218 			goto abort_with_desc;
219 	}
220 
221 	tx->q_resources =
222 		dma_alloc_coherent(hdev,
223 				   sizeof(*tx->q_resources),
224 				   &tx->q_resources_bus,
225 				   GFP_KERNEL);
226 	if (!tx->q_resources)
227 		goto abort_with_fifo;
228 
229 	netif_dbg(priv, drv, priv->dev, "tx[%d]->bus=%lx\n", idx,
230 		  (unsigned long)tx->bus);
231 	tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
232 	gve_tx_add_to_block(priv, idx);
233 
234 	return 0;
235 
236 abort_with_fifo:
237 	if (!tx->raw_addressing)
238 		gve_tx_fifo_release(priv, &tx->tx_fifo);
239 abort_with_desc:
240 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
241 	tx->desc = NULL;
242 abort_with_info:
243 	vfree(tx->info);
244 	tx->info = NULL;
245 	return -ENOMEM;
246 }
247 
248 int gve_tx_alloc_rings(struct gve_priv *priv)
249 {
250 	int err = 0;
251 	int i;
252 
253 	for (i = 0; i < priv->tx_cfg.num_queues; i++) {
254 		err = gve_tx_alloc_ring(priv, i);
255 		if (err) {
256 			netif_err(priv, drv, priv->dev,
257 				  "Failed to alloc tx ring=%d: err=%d\n",
258 				  i, err);
259 			break;
260 		}
261 	}
262 	/* Unallocate if there was an error */
263 	if (err) {
264 		int j;
265 
266 		for (j = 0; j < i; j++)
267 			gve_tx_free_ring(priv, j);
268 	}
269 	return err;
270 }
271 
272 void gve_tx_free_rings(struct gve_priv *priv)
273 {
274 	int i;
275 
276 	for (i = 0; i < priv->tx_cfg.num_queues; i++)
277 		gve_tx_free_ring(priv, i);
278 }
279 
280 /* gve_tx_avail - Calculates the number of slots available in the ring
281  * @tx: tx ring to check
282  *
283  * Returns the number of slots available
284  *
285  * The capacity of the queue is mask + 1. We don't need to reserve an entry.
286  **/
287 static inline u32 gve_tx_avail(struct gve_tx_ring *tx)
288 {
289 	return tx->mask + 1 - (tx->req - tx->done);
290 }
291 
292 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx,
293 					      struct sk_buff *skb)
294 {
295 	int pad_bytes, align_hdr_pad;
296 	int bytes;
297 	int hlen;
298 
299 	hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) +
300 				 tcp_hdrlen(skb) : skb_headlen(skb);
301 
302 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo,
303 						   hlen);
304 	/* We need to take into account the header alignment padding. */
305 	align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen;
306 	bytes = align_hdr_pad + pad_bytes + skb->len;
307 
308 	return bytes;
309 }
310 
311 /* The most descriptors we could need is MAX_SKB_FRAGS + 3 : 1 for each skb frag,
312  * +1 for the skb linear portion, +1 for when tcp hdr needs to be in separate descriptor,
313  * and +1 if the payload wraps to the beginning of the FIFO.
314  */
315 #define MAX_TX_DESC_NEEDED	(MAX_SKB_FRAGS + 3)
316 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info)
317 {
318 	if (info->skb) {
319 		dma_unmap_single(dev, dma_unmap_addr(&info->buf, dma),
320 				 dma_unmap_len(&info->buf, len),
321 				 DMA_TO_DEVICE);
322 		dma_unmap_len_set(&info->buf, len, 0);
323 	} else {
324 		dma_unmap_page(dev, dma_unmap_addr(&info->buf, dma),
325 			       dma_unmap_len(&info->buf, len),
326 			       DMA_TO_DEVICE);
327 		dma_unmap_len_set(&info->buf, len, 0);
328 	}
329 }
330 
331 /* Check if sufficient resources (descriptor ring space, FIFO space) are
332  * available to transmit the given number of bytes.
333  */
334 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required)
335 {
336 	bool can_alloc = true;
337 
338 	if (!tx->raw_addressing)
339 		can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required);
340 
341 	return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc);
342 }
343 
344 /* Stops the queue if the skb cannot be transmitted. */
345 static int gve_maybe_stop_tx(struct gve_tx_ring *tx, struct sk_buff *skb)
346 {
347 	int bytes_required = 0;
348 
349 	if (!tx->raw_addressing)
350 		bytes_required = gve_skb_fifo_bytes_required(tx, skb);
351 
352 	if (likely(gve_can_tx(tx, bytes_required)))
353 		return 0;
354 
355 	/* No space, so stop the queue */
356 	tx->stop_queue++;
357 	netif_tx_stop_queue(tx->netdev_txq);
358 	smp_mb();	/* sync with restarting queue in gve_clean_tx_done() */
359 
360 	/* Now check for resources again, in case gve_clean_tx_done() freed
361 	 * resources after we checked and we stopped the queue after
362 	 * gve_clean_tx_done() checked.
363 	 *
364 	 * gve_maybe_stop_tx()			gve_clean_tx_done()
365 	 *   nsegs/can_alloc test failed
366 	 *					  gve_tx_free_fifo()
367 	 *					  if (tx queue stopped)
368 	 *					    netif_tx_queue_wake()
369 	 *   netif_tx_stop_queue()
370 	 *   Need to check again for space here!
371 	 */
372 	if (likely(!gve_can_tx(tx, bytes_required)))
373 		return -EBUSY;
374 
375 	netif_tx_start_queue(tx->netdev_txq);
376 	tx->wake_queue++;
377 	return 0;
378 }
379 
380 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc,
381 				 struct sk_buff *skb, bool is_gso,
382 				 int l4_hdr_offset, u32 desc_cnt,
383 				 u16 hlen, u64 addr)
384 {
385 	/* l4_hdr_offset and csum_offset are in units of 16-bit words */
386 	if (is_gso) {
387 		pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM;
388 		pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1;
389 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
390 	} else if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
391 		pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM;
392 		pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1;
393 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
394 	} else {
395 		pkt_desc->pkt.type_flags = GVE_TXD_STD;
396 		pkt_desc->pkt.l4_csum_offset = 0;
397 		pkt_desc->pkt.l4_hdr_offset = 0;
398 	}
399 	pkt_desc->pkt.desc_cnt = desc_cnt;
400 	pkt_desc->pkt.len = cpu_to_be16(skb->len);
401 	pkt_desc->pkt.seg_len = cpu_to_be16(hlen);
402 	pkt_desc->pkt.seg_addr = cpu_to_be64(addr);
403 }
404 
405 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc,
406 				 struct sk_buff *skb, bool is_gso,
407 				 u16 len, u64 addr)
408 {
409 	seg_desc->seg.type_flags = GVE_TXD_SEG;
410 	if (is_gso) {
411 		if (skb_is_gso_v6(skb))
412 			seg_desc->seg.type_flags |= GVE_TXSF_IPV6;
413 		seg_desc->seg.l3_offset = skb_network_offset(skb) >> 1;
414 		seg_desc->seg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size);
415 	}
416 	seg_desc->seg.seg_len = cpu_to_be16(len);
417 	seg_desc->seg.seg_addr = cpu_to_be64(addr);
418 }
419 
420 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses,
421 				    u64 iov_offset, u64 iov_len)
422 {
423 	u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE;
424 	u64 first_page = iov_offset / PAGE_SIZE;
425 	u64 page;
426 
427 	for (page = first_page; page <= last_page; page++)
428 		dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE);
429 }
430 
431 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb)
432 {
433 	int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset;
434 	union gve_tx_desc *pkt_desc, *seg_desc;
435 	struct gve_tx_buffer_state *info;
436 	bool is_gso = skb_is_gso(skb);
437 	u32 idx = tx->req & tx->mask;
438 	int payload_iov = 2;
439 	int copy_offset;
440 	u32 next_idx;
441 	int i;
442 
443 	info = &tx->info[idx];
444 	pkt_desc = &tx->desc[idx];
445 
446 	l4_hdr_offset = skb_checksum_start_offset(skb);
447 	/* If the skb is gso, then we want the tcp header in the first segment
448 	 * otherwise we want the linear portion of the skb (which will contain
449 	 * the checksum because skb->csum_start and skb->csum_offset are given
450 	 * relative to skb->head) in the first segment.
451 	 */
452 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) :
453 			skb_headlen(skb);
454 
455 	info->skb =  skb;
456 	/* We don't want to split the header, so if necessary, pad to the end
457 	 * of the fifo and then put the header at the beginning of the fifo.
458 	 */
459 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen);
460 	hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes,
461 				       &info->iov[0]);
462 	WARN(!hdr_nfrags, "hdr_nfrags should never be 0!");
463 	payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen,
464 					   &info->iov[payload_iov]);
465 
466 	gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset,
467 			     1 + payload_nfrags, hlen,
468 			     info->iov[hdr_nfrags - 1].iov_offset);
469 
470 	skb_copy_bits(skb, 0,
471 		      tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset,
472 		      hlen);
473 	gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
474 				info->iov[hdr_nfrags - 1].iov_offset,
475 				info->iov[hdr_nfrags - 1].iov_len);
476 	copy_offset = hlen;
477 
478 	for (i = payload_iov; i < payload_nfrags + payload_iov; i++) {
479 		next_idx = (tx->req + 1 + i - payload_iov) & tx->mask;
480 		seg_desc = &tx->desc[next_idx];
481 
482 		gve_tx_fill_seg_desc(seg_desc, skb, is_gso,
483 				     info->iov[i].iov_len,
484 				     info->iov[i].iov_offset);
485 
486 		skb_copy_bits(skb, copy_offset,
487 			      tx->tx_fifo.base + info->iov[i].iov_offset,
488 			      info->iov[i].iov_len);
489 		gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
490 					info->iov[i].iov_offset,
491 					info->iov[i].iov_len);
492 		copy_offset += info->iov[i].iov_len;
493 	}
494 
495 	return 1 + payload_nfrags;
496 }
497 
498 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx,
499 				  struct sk_buff *skb)
500 {
501 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
502 	int hlen, payload_nfrags, l4_hdr_offset;
503 	union gve_tx_desc *pkt_desc, *seg_desc;
504 	struct gve_tx_buffer_state *info;
505 	bool is_gso = skb_is_gso(skb);
506 	u32 idx = tx->req & tx->mask;
507 	struct gve_tx_dma_buf *buf;
508 	u64 addr;
509 	u32 len;
510 	int i;
511 
512 	info = &tx->info[idx];
513 	pkt_desc = &tx->desc[idx];
514 
515 	l4_hdr_offset = skb_checksum_start_offset(skb);
516 	/* If the skb is gso, then we want only up to the tcp header in the first segment
517 	 * to efficiently replicate on each segment otherwise we want the linear portion
518 	 * of the skb (which will contain the checksum because skb->csum_start and
519 	 * skb->csum_offset are given relative to skb->head) in the first segment.
520 	 */
521 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb);
522 	len = skb_headlen(skb);
523 
524 	info->skb =  skb;
525 
526 	addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
527 	if (unlikely(dma_mapping_error(tx->dev, addr))) {
528 		tx->dma_mapping_error++;
529 		goto drop;
530 	}
531 	buf = &info->buf;
532 	dma_unmap_len_set(buf, len, len);
533 	dma_unmap_addr_set(buf, dma, addr);
534 
535 	payload_nfrags = shinfo->nr_frags;
536 	if (hlen < len) {
537 		/* For gso the rest of the linear portion of the skb needs to
538 		 * be in its own descriptor.
539 		 */
540 		payload_nfrags++;
541 		gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset,
542 				     1 + payload_nfrags, hlen, addr);
543 
544 		len -= hlen;
545 		addr += hlen;
546 		idx = (tx->req + 1) & tx->mask;
547 		seg_desc = &tx->desc[idx];
548 		gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr);
549 	} else {
550 		gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset,
551 				     1 + payload_nfrags, hlen, addr);
552 	}
553 
554 	for (i = 0; i < shinfo->nr_frags; i++) {
555 		const skb_frag_t *frag = &shinfo->frags[i];
556 
557 		idx = (idx + 1) & tx->mask;
558 		seg_desc = &tx->desc[idx];
559 		len = skb_frag_size(frag);
560 		addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
561 		if (unlikely(dma_mapping_error(tx->dev, addr))) {
562 			tx->dma_mapping_error++;
563 			goto unmap_drop;
564 		}
565 		buf = &tx->info[idx].buf;
566 		tx->info[idx].skb = NULL;
567 		dma_unmap_len_set(buf, len, len);
568 		dma_unmap_addr_set(buf, dma, addr);
569 
570 		gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr);
571 	}
572 
573 	return 1 + payload_nfrags;
574 
575 unmap_drop:
576 	i += (payload_nfrags == shinfo->nr_frags ? 1 : 2);
577 	while (i--) {
578 		idx--;
579 		gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]);
580 	}
581 drop:
582 	tx->dropped_pkt++;
583 	return 0;
584 }
585 
586 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
587 {
588 	struct gve_priv *priv = netdev_priv(dev);
589 	struct gve_tx_ring *tx;
590 	int nsegs;
591 
592 	WARN(skb_get_queue_mapping(skb) > priv->tx_cfg.num_queues,
593 	     "skb queue index out of range");
594 	tx = &priv->tx[skb_get_queue_mapping(skb)];
595 	if (unlikely(gve_maybe_stop_tx(tx, skb))) {
596 		/* We need to ring the txq doorbell -- we have stopped the Tx
597 		 * queue for want of resources, but prior calls to gve_tx()
598 		 * may have added descriptors without ringing the doorbell.
599 		 */
600 
601 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
602 		return NETDEV_TX_BUSY;
603 	}
604 	if (tx->raw_addressing)
605 		nsegs = gve_tx_add_skb_no_copy(priv, tx, skb);
606 	else
607 		nsegs = gve_tx_add_skb_copy(priv, tx, skb);
608 
609 	/* If the packet is getting sent, we need to update the skb */
610 	if (nsegs) {
611 		netdev_tx_sent_queue(tx->netdev_txq, skb->len);
612 		skb_tx_timestamp(skb);
613 		tx->req += nsegs;
614 	} else {
615 		dev_kfree_skb_any(skb);
616 	}
617 
618 	if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
619 		return NETDEV_TX_OK;
620 
621 	/* Give packets to NIC. Even if this packet failed to send the doorbell
622 	 * might need to be rung because of xmit_more.
623 	 */
624 	gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
625 	return NETDEV_TX_OK;
626 }
627 
628 #define GVE_TX_START_THRESH	PAGE_SIZE
629 
630 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
631 			     u32 to_do, bool try_to_wake)
632 {
633 	struct gve_tx_buffer_state *info;
634 	u64 pkts = 0, bytes = 0;
635 	size_t space_freed = 0;
636 	struct sk_buff *skb;
637 	int i, j;
638 	u32 idx;
639 
640 	for (j = 0; j < to_do; j++) {
641 		idx = tx->done & tx->mask;
642 		netif_info(priv, tx_done, priv->dev,
643 			   "[%d] %s: idx=%d (req=%u done=%u)\n",
644 			   tx->q_num, __func__, idx, tx->req, tx->done);
645 		info = &tx->info[idx];
646 		skb = info->skb;
647 
648 		/* Unmap the buffer */
649 		if (tx->raw_addressing)
650 			gve_tx_unmap_buf(tx->dev, info);
651 		tx->done++;
652 		/* Mark as free */
653 		if (skb) {
654 			info->skb = NULL;
655 			bytes += skb->len;
656 			pkts++;
657 			dev_consume_skb_any(skb);
658 			if (tx->raw_addressing)
659 				continue;
660 			/* FIFO free */
661 			for (i = 0; i < ARRAY_SIZE(info->iov); i++) {
662 				space_freed += info->iov[i].iov_len + info->iov[i].iov_padding;
663 				info->iov[i].iov_len = 0;
664 				info->iov[i].iov_padding = 0;
665 			}
666 		}
667 	}
668 
669 	if (!tx->raw_addressing)
670 		gve_tx_free_fifo(&tx->tx_fifo, space_freed);
671 	u64_stats_update_begin(&tx->statss);
672 	tx->bytes_done += bytes;
673 	tx->pkt_done += pkts;
674 	u64_stats_update_end(&tx->statss);
675 	netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes);
676 
677 	/* start the queue if we've stopped it */
678 #ifndef CONFIG_BQL
679 	/* Make sure that the doorbells are synced */
680 	smp_mb();
681 #endif
682 	if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) &&
683 	    likely(gve_can_tx(tx, GVE_TX_START_THRESH))) {
684 		tx->wake_queue++;
685 		netif_tx_wake_queue(tx->netdev_txq);
686 	}
687 
688 	return pkts;
689 }
690 
691 __be32 gve_tx_load_event_counter(struct gve_priv *priv,
692 				 struct gve_tx_ring *tx)
693 {
694 	u32 counter_index = be32_to_cpu((tx->q_resources->counter_index));
695 
696 	return READ_ONCE(priv->counter_array[counter_index]);
697 }
698 
699 bool gve_tx_poll(struct gve_notify_block *block, int budget)
700 {
701 	struct gve_priv *priv = block->priv;
702 	struct gve_tx_ring *tx = block->tx;
703 	bool repoll = false;
704 	u32 nic_done;
705 	u32 to_do;
706 
707 	/* If budget is 0, do all the work */
708 	if (budget == 0)
709 		budget = INT_MAX;
710 
711 	/* Find out how much work there is to be done */
712 	tx->last_nic_done = gve_tx_load_event_counter(priv, tx);
713 	nic_done = be32_to_cpu(tx->last_nic_done);
714 	if (budget > 0) {
715 		/* Do as much work as we have that the budget will
716 		 * allow
717 		 */
718 		to_do = min_t(u32, (nic_done - tx->done), budget);
719 		gve_clean_tx_done(priv, tx, to_do, true);
720 	}
721 	/* If we still have work we want to repoll */
722 	repoll |= (nic_done != tx->done);
723 	return repoll;
724 }
725