1 // SPDX-License-Identifier: (GPL-2.0 OR MIT) 2 /* Google virtual Ethernet (gve) driver 3 * 4 * Copyright (C) 2015-2019 Google, Inc. 5 */ 6 7 #include "gve.h" 8 #include "gve_adminq.h" 9 #include <linux/ip.h> 10 #include <linux/tcp.h> 11 #include <linux/vmalloc.h> 12 #include <linux/skbuff.h> 13 14 static inline void gve_tx_put_doorbell(struct gve_priv *priv, 15 struct gve_queue_resources *q_resources, 16 u32 val) 17 { 18 iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]); 19 } 20 21 /* gvnic can only transmit from a Registered Segment. 22 * We copy skb payloads into the registered segment before writing Tx 23 * descriptors and ringing the Tx doorbell. 24 * 25 * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must 26 * free allocations in the order they were allocated. 27 */ 28 29 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo) 30 { 31 fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP, 32 PAGE_KERNEL); 33 if (unlikely(!fifo->base)) { 34 netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n", 35 fifo->qpl->id); 36 return -ENOMEM; 37 } 38 39 fifo->size = fifo->qpl->num_entries * PAGE_SIZE; 40 atomic_set(&fifo->available, fifo->size); 41 fifo->head = 0; 42 return 0; 43 } 44 45 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo) 46 { 47 WARN(atomic_read(&fifo->available) != fifo->size, 48 "Releasing non-empty fifo"); 49 50 vunmap(fifo->base); 51 } 52 53 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo, 54 size_t bytes) 55 { 56 return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head; 57 } 58 59 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes) 60 { 61 return (atomic_read(&fifo->available) <= bytes) ? false : true; 62 } 63 64 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO 65 * @fifo: FIFO to allocate from 66 * @bytes: Allocation size 67 * @iov: Scatter-gather elements to fill with allocation fragment base/len 68 * 69 * Returns number of valid elements in iov[] or negative on error. 70 * 71 * Allocations from a given FIFO must be externally synchronized but concurrent 72 * allocation and frees are allowed. 73 */ 74 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes, 75 struct gve_tx_iovec iov[2]) 76 { 77 size_t overflow, padding; 78 u32 aligned_head; 79 int nfrags = 0; 80 81 if (!bytes) 82 return 0; 83 84 /* This check happens before we know how much padding is needed to 85 * align to a cacheline boundary for the payload, but that is fine, 86 * because the FIFO head always start aligned, and the FIFO's boundaries 87 * are aligned, so if there is space for the data, there is space for 88 * the padding to the next alignment. 89 */ 90 WARN(!gve_tx_fifo_can_alloc(fifo, bytes), 91 "Reached %s when there's not enough space in the fifo", __func__); 92 93 nfrags++; 94 95 iov[0].iov_offset = fifo->head; 96 iov[0].iov_len = bytes; 97 fifo->head += bytes; 98 99 if (fifo->head > fifo->size) { 100 /* If the allocation did not fit in the tail fragment of the 101 * FIFO, also use the head fragment. 102 */ 103 nfrags++; 104 overflow = fifo->head - fifo->size; 105 iov[0].iov_len -= overflow; 106 iov[1].iov_offset = 0; /* Start of fifo*/ 107 iov[1].iov_len = overflow; 108 109 fifo->head = overflow; 110 } 111 112 /* Re-align to a cacheline boundary */ 113 aligned_head = L1_CACHE_ALIGN(fifo->head); 114 padding = aligned_head - fifo->head; 115 iov[nfrags - 1].iov_padding = padding; 116 atomic_sub(bytes + padding, &fifo->available); 117 fifo->head = aligned_head; 118 119 if (fifo->head == fifo->size) 120 fifo->head = 0; 121 122 return nfrags; 123 } 124 125 /* gve_tx_free_fifo - Return space to Tx FIFO 126 * @fifo: FIFO to return fragments to 127 * @bytes: Bytes to free 128 */ 129 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes) 130 { 131 atomic_add(bytes, &fifo->available); 132 } 133 134 static void gve_tx_remove_from_block(struct gve_priv *priv, int queue_idx) 135 { 136 struct gve_notify_block *block = 137 &priv->ntfy_blocks[gve_tx_idx_to_ntfy(priv, queue_idx)]; 138 139 block->tx = NULL; 140 } 141 142 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, 143 u32 to_do, bool try_to_wake); 144 145 static void gve_tx_free_ring(struct gve_priv *priv, int idx) 146 { 147 struct gve_tx_ring *tx = &priv->tx[idx]; 148 struct device *hdev = &priv->pdev->dev; 149 size_t bytes; 150 u32 slots; 151 152 gve_tx_remove_from_block(priv, idx); 153 slots = tx->mask + 1; 154 gve_clean_tx_done(priv, tx, tx->req, false); 155 netdev_tx_reset_queue(tx->netdev_txq); 156 157 dma_free_coherent(hdev, sizeof(*tx->q_resources), 158 tx->q_resources, tx->q_resources_bus); 159 tx->q_resources = NULL; 160 161 if (!tx->raw_addressing) { 162 gve_tx_fifo_release(priv, &tx->tx_fifo); 163 gve_unassign_qpl(priv, tx->tx_fifo.qpl->id); 164 tx->tx_fifo.qpl = NULL; 165 } 166 167 bytes = sizeof(*tx->desc) * slots; 168 dma_free_coherent(hdev, bytes, tx->desc, tx->bus); 169 tx->desc = NULL; 170 171 vfree(tx->info); 172 tx->info = NULL; 173 174 netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx); 175 } 176 177 static void gve_tx_add_to_block(struct gve_priv *priv, int queue_idx) 178 { 179 int ntfy_idx = gve_tx_idx_to_ntfy(priv, queue_idx); 180 struct gve_notify_block *block = &priv->ntfy_blocks[ntfy_idx]; 181 struct gve_tx_ring *tx = &priv->tx[queue_idx]; 182 183 block->tx = tx; 184 tx->ntfy_id = ntfy_idx; 185 } 186 187 static int gve_tx_alloc_ring(struct gve_priv *priv, int idx) 188 { 189 struct gve_tx_ring *tx = &priv->tx[idx]; 190 struct device *hdev = &priv->pdev->dev; 191 u32 slots = priv->tx_desc_cnt; 192 size_t bytes; 193 194 /* Make sure everything is zeroed to start */ 195 memset(tx, 0, sizeof(*tx)); 196 tx->q_num = idx; 197 198 tx->mask = slots - 1; 199 200 /* alloc metadata */ 201 tx->info = vzalloc(sizeof(*tx->info) * slots); 202 if (!tx->info) 203 return -ENOMEM; 204 205 /* alloc tx queue */ 206 bytes = sizeof(*tx->desc) * slots; 207 tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL); 208 if (!tx->desc) 209 goto abort_with_info; 210 211 tx->raw_addressing = priv->raw_addressing; 212 tx->dev = &priv->pdev->dev; 213 if (!tx->raw_addressing) { 214 tx->tx_fifo.qpl = gve_assign_tx_qpl(priv); 215 216 /* map Tx FIFO */ 217 if (gve_tx_fifo_init(priv, &tx->tx_fifo)) 218 goto abort_with_desc; 219 } 220 221 tx->q_resources = 222 dma_alloc_coherent(hdev, 223 sizeof(*tx->q_resources), 224 &tx->q_resources_bus, 225 GFP_KERNEL); 226 if (!tx->q_resources) 227 goto abort_with_fifo; 228 229 netif_dbg(priv, drv, priv->dev, "tx[%d]->bus=%lx\n", idx, 230 (unsigned long)tx->bus); 231 tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx); 232 gve_tx_add_to_block(priv, idx); 233 234 return 0; 235 236 abort_with_fifo: 237 if (!tx->raw_addressing) 238 gve_tx_fifo_release(priv, &tx->tx_fifo); 239 abort_with_desc: 240 dma_free_coherent(hdev, bytes, tx->desc, tx->bus); 241 tx->desc = NULL; 242 abort_with_info: 243 vfree(tx->info); 244 tx->info = NULL; 245 return -ENOMEM; 246 } 247 248 int gve_tx_alloc_rings(struct gve_priv *priv) 249 { 250 int err = 0; 251 int i; 252 253 for (i = 0; i < priv->tx_cfg.num_queues; i++) { 254 err = gve_tx_alloc_ring(priv, i); 255 if (err) { 256 netif_err(priv, drv, priv->dev, 257 "Failed to alloc tx ring=%d: err=%d\n", 258 i, err); 259 break; 260 } 261 } 262 /* Unallocate if there was an error */ 263 if (err) { 264 int j; 265 266 for (j = 0; j < i; j++) 267 gve_tx_free_ring(priv, j); 268 } 269 return err; 270 } 271 272 void gve_tx_free_rings(struct gve_priv *priv) 273 { 274 int i; 275 276 for (i = 0; i < priv->tx_cfg.num_queues; i++) 277 gve_tx_free_ring(priv, i); 278 } 279 280 /* gve_tx_avail - Calculates the number of slots available in the ring 281 * @tx: tx ring to check 282 * 283 * Returns the number of slots available 284 * 285 * The capacity of the queue is mask + 1. We don't need to reserve an entry. 286 **/ 287 static inline u32 gve_tx_avail(struct gve_tx_ring *tx) 288 { 289 return tx->mask + 1 - (tx->req - tx->done); 290 } 291 292 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx, 293 struct sk_buff *skb) 294 { 295 int pad_bytes, align_hdr_pad; 296 int bytes; 297 int hlen; 298 299 hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + 300 tcp_hdrlen(skb) : skb_headlen(skb); 301 302 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, 303 hlen); 304 /* We need to take into account the header alignment padding. */ 305 align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen; 306 bytes = align_hdr_pad + pad_bytes + skb->len; 307 308 return bytes; 309 } 310 311 /* The most descriptors we could need is MAX_SKB_FRAGS + 3 : 1 for each skb frag, 312 * +1 for the skb linear portion, +1 for when tcp hdr needs to be in separate descriptor, 313 * and +1 if the payload wraps to the beginning of the FIFO. 314 */ 315 #define MAX_TX_DESC_NEEDED (MAX_SKB_FRAGS + 3) 316 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info) 317 { 318 if (info->skb) { 319 dma_unmap_single(dev, dma_unmap_addr(&info->buf, dma), 320 dma_unmap_len(&info->buf, len), 321 DMA_TO_DEVICE); 322 dma_unmap_len_set(&info->buf, len, 0); 323 } else { 324 dma_unmap_page(dev, dma_unmap_addr(&info->buf, dma), 325 dma_unmap_len(&info->buf, len), 326 DMA_TO_DEVICE); 327 dma_unmap_len_set(&info->buf, len, 0); 328 } 329 } 330 331 /* Check if sufficient resources (descriptor ring space, FIFO space) are 332 * available to transmit the given number of bytes. 333 */ 334 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required) 335 { 336 bool can_alloc = true; 337 338 if (!tx->raw_addressing) 339 can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required); 340 341 return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc); 342 } 343 344 /* Stops the queue if the skb cannot be transmitted. */ 345 static int gve_maybe_stop_tx(struct gve_tx_ring *tx, struct sk_buff *skb) 346 { 347 int bytes_required = 0; 348 349 if (!tx->raw_addressing) 350 bytes_required = gve_skb_fifo_bytes_required(tx, skb); 351 352 if (likely(gve_can_tx(tx, bytes_required))) 353 return 0; 354 355 /* No space, so stop the queue */ 356 tx->stop_queue++; 357 netif_tx_stop_queue(tx->netdev_txq); 358 smp_mb(); /* sync with restarting queue in gve_clean_tx_done() */ 359 360 /* Now check for resources again, in case gve_clean_tx_done() freed 361 * resources after we checked and we stopped the queue after 362 * gve_clean_tx_done() checked. 363 * 364 * gve_maybe_stop_tx() gve_clean_tx_done() 365 * nsegs/can_alloc test failed 366 * gve_tx_free_fifo() 367 * if (tx queue stopped) 368 * netif_tx_queue_wake() 369 * netif_tx_stop_queue() 370 * Need to check again for space here! 371 */ 372 if (likely(!gve_can_tx(tx, bytes_required))) 373 return -EBUSY; 374 375 netif_tx_start_queue(tx->netdev_txq); 376 tx->wake_queue++; 377 return 0; 378 } 379 380 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc, 381 struct sk_buff *skb, bool is_gso, 382 int l4_hdr_offset, u32 desc_cnt, 383 u16 hlen, u64 addr) 384 { 385 /* l4_hdr_offset and csum_offset are in units of 16-bit words */ 386 if (is_gso) { 387 pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM; 388 pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1; 389 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; 390 } else if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { 391 pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM; 392 pkt_desc->pkt.l4_csum_offset = skb->csum_offset >> 1; 393 pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1; 394 } else { 395 pkt_desc->pkt.type_flags = GVE_TXD_STD; 396 pkt_desc->pkt.l4_csum_offset = 0; 397 pkt_desc->pkt.l4_hdr_offset = 0; 398 } 399 pkt_desc->pkt.desc_cnt = desc_cnt; 400 pkt_desc->pkt.len = cpu_to_be16(skb->len); 401 pkt_desc->pkt.seg_len = cpu_to_be16(hlen); 402 pkt_desc->pkt.seg_addr = cpu_to_be64(addr); 403 } 404 405 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc, 406 struct sk_buff *skb, bool is_gso, 407 u16 len, u64 addr) 408 { 409 seg_desc->seg.type_flags = GVE_TXD_SEG; 410 if (is_gso) { 411 if (skb_is_gso_v6(skb)) 412 seg_desc->seg.type_flags |= GVE_TXSF_IPV6; 413 seg_desc->seg.l3_offset = skb_network_offset(skb) >> 1; 414 seg_desc->seg.mss = cpu_to_be16(skb_shinfo(skb)->gso_size); 415 } 416 seg_desc->seg.seg_len = cpu_to_be16(len); 417 seg_desc->seg.seg_addr = cpu_to_be64(addr); 418 } 419 420 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses, 421 u64 iov_offset, u64 iov_len) 422 { 423 u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE; 424 u64 first_page = iov_offset / PAGE_SIZE; 425 u64 page; 426 427 for (page = first_page; page <= last_page; page++) 428 dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE); 429 } 430 431 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb) 432 { 433 int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset; 434 union gve_tx_desc *pkt_desc, *seg_desc; 435 struct gve_tx_buffer_state *info; 436 bool is_gso = skb_is_gso(skb); 437 u32 idx = tx->req & tx->mask; 438 int payload_iov = 2; 439 int copy_offset; 440 u32 next_idx; 441 int i; 442 443 info = &tx->info[idx]; 444 pkt_desc = &tx->desc[idx]; 445 446 l4_hdr_offset = skb_checksum_start_offset(skb); 447 /* If the skb is gso, then we want the tcp header in the first segment 448 * otherwise we want the linear portion of the skb (which will contain 449 * the checksum because skb->csum_start and skb->csum_offset are given 450 * relative to skb->head) in the first segment. 451 */ 452 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : 453 skb_headlen(skb); 454 455 info->skb = skb; 456 /* We don't want to split the header, so if necessary, pad to the end 457 * of the fifo and then put the header at the beginning of the fifo. 458 */ 459 pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen); 460 hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes, 461 &info->iov[0]); 462 WARN(!hdr_nfrags, "hdr_nfrags should never be 0!"); 463 payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen, 464 &info->iov[payload_iov]); 465 466 gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset, 467 1 + payload_nfrags, hlen, 468 info->iov[hdr_nfrags - 1].iov_offset); 469 470 skb_copy_bits(skb, 0, 471 tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset, 472 hlen); 473 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, 474 info->iov[hdr_nfrags - 1].iov_offset, 475 info->iov[hdr_nfrags - 1].iov_len); 476 copy_offset = hlen; 477 478 for (i = payload_iov; i < payload_nfrags + payload_iov; i++) { 479 next_idx = (tx->req + 1 + i - payload_iov) & tx->mask; 480 seg_desc = &tx->desc[next_idx]; 481 482 gve_tx_fill_seg_desc(seg_desc, skb, is_gso, 483 info->iov[i].iov_len, 484 info->iov[i].iov_offset); 485 486 skb_copy_bits(skb, copy_offset, 487 tx->tx_fifo.base + info->iov[i].iov_offset, 488 info->iov[i].iov_len); 489 gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses, 490 info->iov[i].iov_offset, 491 info->iov[i].iov_len); 492 copy_offset += info->iov[i].iov_len; 493 } 494 495 return 1 + payload_nfrags; 496 } 497 498 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx, 499 struct sk_buff *skb) 500 { 501 const struct skb_shared_info *shinfo = skb_shinfo(skb); 502 int hlen, payload_nfrags, l4_hdr_offset; 503 union gve_tx_desc *pkt_desc, *seg_desc; 504 struct gve_tx_buffer_state *info; 505 bool is_gso = skb_is_gso(skb); 506 u32 idx = tx->req & tx->mask; 507 struct gve_tx_dma_buf *buf; 508 u64 addr; 509 u32 len; 510 int i; 511 512 info = &tx->info[idx]; 513 pkt_desc = &tx->desc[idx]; 514 515 l4_hdr_offset = skb_checksum_start_offset(skb); 516 /* If the skb is gso, then we want only up to the tcp header in the first segment 517 * to efficiently replicate on each segment otherwise we want the linear portion 518 * of the skb (which will contain the checksum because skb->csum_start and 519 * skb->csum_offset are given relative to skb->head) in the first segment. 520 */ 521 hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb); 522 len = skb_headlen(skb); 523 524 info->skb = skb; 525 526 addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE); 527 if (unlikely(dma_mapping_error(tx->dev, addr))) { 528 tx->dma_mapping_error++; 529 goto drop; 530 } 531 buf = &info->buf; 532 dma_unmap_len_set(buf, len, len); 533 dma_unmap_addr_set(buf, dma, addr); 534 535 payload_nfrags = shinfo->nr_frags; 536 if (hlen < len) { 537 /* For gso the rest of the linear portion of the skb needs to 538 * be in its own descriptor. 539 */ 540 payload_nfrags++; 541 gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset, 542 1 + payload_nfrags, hlen, addr); 543 544 len -= hlen; 545 addr += hlen; 546 idx = (tx->req + 1) & tx->mask; 547 seg_desc = &tx->desc[idx]; 548 gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr); 549 } else { 550 gve_tx_fill_pkt_desc(pkt_desc, skb, is_gso, l4_hdr_offset, 551 1 + payload_nfrags, hlen, addr); 552 } 553 554 for (i = 0; i < shinfo->nr_frags; i++) { 555 const skb_frag_t *frag = &shinfo->frags[i]; 556 557 idx = (idx + 1) & tx->mask; 558 seg_desc = &tx->desc[idx]; 559 len = skb_frag_size(frag); 560 addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE); 561 if (unlikely(dma_mapping_error(tx->dev, addr))) { 562 tx->dma_mapping_error++; 563 goto unmap_drop; 564 } 565 buf = &tx->info[idx].buf; 566 tx->info[idx].skb = NULL; 567 dma_unmap_len_set(buf, len, len); 568 dma_unmap_addr_set(buf, dma, addr); 569 570 gve_tx_fill_seg_desc(seg_desc, skb, is_gso, len, addr); 571 } 572 573 return 1 + payload_nfrags; 574 575 unmap_drop: 576 i += (payload_nfrags == shinfo->nr_frags ? 1 : 2); 577 while (i--) { 578 idx--; 579 gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]); 580 } 581 drop: 582 tx->dropped_pkt++; 583 return 0; 584 } 585 586 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev) 587 { 588 struct gve_priv *priv = netdev_priv(dev); 589 struct gve_tx_ring *tx; 590 int nsegs; 591 592 WARN(skb_get_queue_mapping(skb) > priv->tx_cfg.num_queues, 593 "skb queue index out of range"); 594 tx = &priv->tx[skb_get_queue_mapping(skb)]; 595 if (unlikely(gve_maybe_stop_tx(tx, skb))) { 596 /* We need to ring the txq doorbell -- we have stopped the Tx 597 * queue for want of resources, but prior calls to gve_tx() 598 * may have added descriptors without ringing the doorbell. 599 */ 600 601 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 602 return NETDEV_TX_BUSY; 603 } 604 if (tx->raw_addressing) 605 nsegs = gve_tx_add_skb_no_copy(priv, tx, skb); 606 else 607 nsegs = gve_tx_add_skb_copy(priv, tx, skb); 608 609 /* If the packet is getting sent, we need to update the skb */ 610 if (nsegs) { 611 netdev_tx_sent_queue(tx->netdev_txq, skb->len); 612 skb_tx_timestamp(skb); 613 tx->req += nsegs; 614 } else { 615 dev_kfree_skb_any(skb); 616 } 617 618 if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more()) 619 return NETDEV_TX_OK; 620 621 /* Give packets to NIC. Even if this packet failed to send the doorbell 622 * might need to be rung because of xmit_more. 623 */ 624 gve_tx_put_doorbell(priv, tx->q_resources, tx->req); 625 return NETDEV_TX_OK; 626 } 627 628 #define GVE_TX_START_THRESH PAGE_SIZE 629 630 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx, 631 u32 to_do, bool try_to_wake) 632 { 633 struct gve_tx_buffer_state *info; 634 u64 pkts = 0, bytes = 0; 635 size_t space_freed = 0; 636 struct sk_buff *skb; 637 int i, j; 638 u32 idx; 639 640 for (j = 0; j < to_do; j++) { 641 idx = tx->done & tx->mask; 642 netif_info(priv, tx_done, priv->dev, 643 "[%d] %s: idx=%d (req=%u done=%u)\n", 644 tx->q_num, __func__, idx, tx->req, tx->done); 645 info = &tx->info[idx]; 646 skb = info->skb; 647 648 /* Unmap the buffer */ 649 if (tx->raw_addressing) 650 gve_tx_unmap_buf(tx->dev, info); 651 tx->done++; 652 /* Mark as free */ 653 if (skb) { 654 info->skb = NULL; 655 bytes += skb->len; 656 pkts++; 657 dev_consume_skb_any(skb); 658 if (tx->raw_addressing) 659 continue; 660 /* FIFO free */ 661 for (i = 0; i < ARRAY_SIZE(info->iov); i++) { 662 space_freed += info->iov[i].iov_len + info->iov[i].iov_padding; 663 info->iov[i].iov_len = 0; 664 info->iov[i].iov_padding = 0; 665 } 666 } 667 } 668 669 if (!tx->raw_addressing) 670 gve_tx_free_fifo(&tx->tx_fifo, space_freed); 671 u64_stats_update_begin(&tx->statss); 672 tx->bytes_done += bytes; 673 tx->pkt_done += pkts; 674 u64_stats_update_end(&tx->statss); 675 netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes); 676 677 /* start the queue if we've stopped it */ 678 #ifndef CONFIG_BQL 679 /* Make sure that the doorbells are synced */ 680 smp_mb(); 681 #endif 682 if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) && 683 likely(gve_can_tx(tx, GVE_TX_START_THRESH))) { 684 tx->wake_queue++; 685 netif_tx_wake_queue(tx->netdev_txq); 686 } 687 688 return pkts; 689 } 690 691 __be32 gve_tx_load_event_counter(struct gve_priv *priv, 692 struct gve_tx_ring *tx) 693 { 694 u32 counter_index = be32_to_cpu((tx->q_resources->counter_index)); 695 696 return READ_ONCE(priv->counter_array[counter_index]); 697 } 698 699 bool gve_tx_poll(struct gve_notify_block *block, int budget) 700 { 701 struct gve_priv *priv = block->priv; 702 struct gve_tx_ring *tx = block->tx; 703 bool repoll = false; 704 u32 nic_done; 705 u32 to_do; 706 707 /* If budget is 0, do all the work */ 708 if (budget == 0) 709 budget = INT_MAX; 710 711 /* Find out how much work there is to be done */ 712 tx->last_nic_done = gve_tx_load_event_counter(priv, tx); 713 nic_done = be32_to_cpu(tx->last_nic_done); 714 if (budget > 0) { 715 /* Do as much work as we have that the budget will 716 * allow 717 */ 718 to_do = min_t(u32, (nic_done - tx->done), budget); 719 gve_clean_tx_done(priv, tx, to_do, true); 720 } 721 /* If we still have work we want to repoll */ 722 repoll |= (nic_done != tx->done); 723 return repoll; 724 } 725