xref: /openbmc/linux/drivers/net/ethernet/google/gve/gve_tx.c (revision 6b6c2ebd83f2bf97e8f221479372aaca97a4a9b2)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /* Google virtual Ethernet (gve) driver
3  *
4  * Copyright (C) 2015-2021 Google, Inc.
5  */
6 
7 #include "gve.h"
8 #include "gve_adminq.h"
9 #include "gve_utils.h"
10 #include <linux/ip.h>
11 #include <linux/tcp.h>
12 #include <linux/vmalloc.h>
13 #include <linux/skbuff.h>
14 #include <net/xdp_sock_drv.h>
15 
16 static inline void gve_tx_put_doorbell(struct gve_priv *priv,
17 				       struct gve_queue_resources *q_resources,
18 				       u32 val)
19 {
20 	iowrite32be(val, &priv->db_bar2[be32_to_cpu(q_resources->db_index)]);
21 }
22 
23 void gve_xdp_tx_flush(struct gve_priv *priv, u32 xdp_qid)
24 {
25 	u32 tx_qid = gve_xdp_tx_queue_id(priv, xdp_qid);
26 	struct gve_tx_ring *tx = &priv->tx[tx_qid];
27 
28 	gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
29 }
30 
31 /* gvnic can only transmit from a Registered Segment.
32  * We copy skb payloads into the registered segment before writing Tx
33  * descriptors and ringing the Tx doorbell.
34  *
35  * gve_tx_fifo_* manages the Registered Segment as a FIFO - clients must
36  * free allocations in the order they were allocated.
37  */
38 
39 static int gve_tx_fifo_init(struct gve_priv *priv, struct gve_tx_fifo *fifo)
40 {
41 	fifo->base = vmap(fifo->qpl->pages, fifo->qpl->num_entries, VM_MAP,
42 			  PAGE_KERNEL);
43 	if (unlikely(!fifo->base)) {
44 		netif_err(priv, drv, priv->dev, "Failed to vmap fifo, qpl_id = %d\n",
45 			  fifo->qpl->id);
46 		return -ENOMEM;
47 	}
48 
49 	fifo->size = fifo->qpl->num_entries * PAGE_SIZE;
50 	atomic_set(&fifo->available, fifo->size);
51 	fifo->head = 0;
52 	return 0;
53 }
54 
55 static void gve_tx_fifo_release(struct gve_priv *priv, struct gve_tx_fifo *fifo)
56 {
57 	WARN(atomic_read(&fifo->available) != fifo->size,
58 	     "Releasing non-empty fifo");
59 
60 	vunmap(fifo->base);
61 }
62 
63 static int gve_tx_fifo_pad_alloc_one_frag(struct gve_tx_fifo *fifo,
64 					  size_t bytes)
65 {
66 	return (fifo->head + bytes < fifo->size) ? 0 : fifo->size - fifo->head;
67 }
68 
69 static bool gve_tx_fifo_can_alloc(struct gve_tx_fifo *fifo, size_t bytes)
70 {
71 	return (atomic_read(&fifo->available) <= bytes) ? false : true;
72 }
73 
74 /* gve_tx_alloc_fifo - Allocate fragment(s) from Tx FIFO
75  * @fifo: FIFO to allocate from
76  * @bytes: Allocation size
77  * @iov: Scatter-gather elements to fill with allocation fragment base/len
78  *
79  * Returns number of valid elements in iov[] or negative on error.
80  *
81  * Allocations from a given FIFO must be externally synchronized but concurrent
82  * allocation and frees are allowed.
83  */
84 static int gve_tx_alloc_fifo(struct gve_tx_fifo *fifo, size_t bytes,
85 			     struct gve_tx_iovec iov[2])
86 {
87 	size_t overflow, padding;
88 	u32 aligned_head;
89 	int nfrags = 0;
90 
91 	if (!bytes)
92 		return 0;
93 
94 	/* This check happens before we know how much padding is needed to
95 	 * align to a cacheline boundary for the payload, but that is fine,
96 	 * because the FIFO head always start aligned, and the FIFO's boundaries
97 	 * are aligned, so if there is space for the data, there is space for
98 	 * the padding to the next alignment.
99 	 */
100 	WARN(!gve_tx_fifo_can_alloc(fifo, bytes),
101 	     "Reached %s when there's not enough space in the fifo", __func__);
102 
103 	nfrags++;
104 
105 	iov[0].iov_offset = fifo->head;
106 	iov[0].iov_len = bytes;
107 	fifo->head += bytes;
108 
109 	if (fifo->head > fifo->size) {
110 		/* If the allocation did not fit in the tail fragment of the
111 		 * FIFO, also use the head fragment.
112 		 */
113 		nfrags++;
114 		overflow = fifo->head - fifo->size;
115 		iov[0].iov_len -= overflow;
116 		iov[1].iov_offset = 0;	/* Start of fifo*/
117 		iov[1].iov_len = overflow;
118 
119 		fifo->head = overflow;
120 	}
121 
122 	/* Re-align to a cacheline boundary */
123 	aligned_head = L1_CACHE_ALIGN(fifo->head);
124 	padding = aligned_head - fifo->head;
125 	iov[nfrags - 1].iov_padding = padding;
126 	atomic_sub(bytes + padding, &fifo->available);
127 	fifo->head = aligned_head;
128 
129 	if (fifo->head == fifo->size)
130 		fifo->head = 0;
131 
132 	return nfrags;
133 }
134 
135 /* gve_tx_free_fifo - Return space to Tx FIFO
136  * @fifo: FIFO to return fragments to
137  * @bytes: Bytes to free
138  */
139 static void gve_tx_free_fifo(struct gve_tx_fifo *fifo, size_t bytes)
140 {
141 	atomic_add(bytes, &fifo->available);
142 }
143 
144 static size_t gve_tx_clear_buffer_state(struct gve_tx_buffer_state *info)
145 {
146 	size_t space_freed = 0;
147 	int i;
148 
149 	for (i = 0; i < ARRAY_SIZE(info->iov); i++) {
150 		space_freed += info->iov[i].iov_len + info->iov[i].iov_padding;
151 		info->iov[i].iov_len = 0;
152 		info->iov[i].iov_padding = 0;
153 	}
154 	return space_freed;
155 }
156 
157 static int gve_clean_xdp_done(struct gve_priv *priv, struct gve_tx_ring *tx,
158 			      u32 to_do)
159 {
160 	struct gve_tx_buffer_state *info;
161 	u64 pkts = 0, bytes = 0;
162 	size_t space_freed = 0;
163 	u32 xsk_complete = 0;
164 	u32 idx;
165 	int i;
166 
167 	for (i = 0; i < to_do; i++) {
168 		idx = tx->done & tx->mask;
169 		info = &tx->info[idx];
170 		tx->done++;
171 
172 		if (unlikely(!info->xdp.size))
173 			continue;
174 
175 		bytes += info->xdp.size;
176 		pkts++;
177 		xsk_complete += info->xdp.is_xsk;
178 
179 		info->xdp.size = 0;
180 		if (info->xdp_frame) {
181 			xdp_return_frame(info->xdp_frame);
182 			info->xdp_frame = NULL;
183 		}
184 		space_freed += gve_tx_clear_buffer_state(info);
185 	}
186 
187 	gve_tx_free_fifo(&tx->tx_fifo, space_freed);
188 	if (xsk_complete > 0 && tx->xsk_pool)
189 		xsk_tx_completed(tx->xsk_pool, xsk_complete);
190 	u64_stats_update_begin(&tx->statss);
191 	tx->bytes_done += bytes;
192 	tx->pkt_done += pkts;
193 	u64_stats_update_end(&tx->statss);
194 	return pkts;
195 }
196 
197 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
198 			     u32 to_do, bool try_to_wake);
199 
200 static void gve_tx_free_ring(struct gve_priv *priv, int idx)
201 {
202 	struct gve_tx_ring *tx = &priv->tx[idx];
203 	struct device *hdev = &priv->pdev->dev;
204 	size_t bytes;
205 	u32 slots;
206 
207 	gve_tx_remove_from_block(priv, idx);
208 	slots = tx->mask + 1;
209 	if (tx->q_num < priv->tx_cfg.num_queues) {
210 		gve_clean_tx_done(priv, tx, priv->tx_desc_cnt, false);
211 		netdev_tx_reset_queue(tx->netdev_txq);
212 	} else {
213 		gve_clean_xdp_done(priv, tx, priv->tx_desc_cnt);
214 	}
215 
216 	dma_free_coherent(hdev, sizeof(*tx->q_resources),
217 			  tx->q_resources, tx->q_resources_bus);
218 	tx->q_resources = NULL;
219 
220 	if (!tx->raw_addressing) {
221 		gve_tx_fifo_release(priv, &tx->tx_fifo);
222 		gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
223 		tx->tx_fifo.qpl = NULL;
224 	}
225 
226 	bytes = sizeof(*tx->desc) * slots;
227 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
228 	tx->desc = NULL;
229 
230 	vfree(tx->info);
231 	tx->info = NULL;
232 
233 	netif_dbg(priv, drv, priv->dev, "freed tx queue %d\n", idx);
234 }
235 
236 static int gve_tx_alloc_ring(struct gve_priv *priv, int idx)
237 {
238 	struct gve_tx_ring *tx = &priv->tx[idx];
239 	struct device *hdev = &priv->pdev->dev;
240 	u32 slots = priv->tx_desc_cnt;
241 	size_t bytes;
242 
243 	/* Make sure everything is zeroed to start */
244 	memset(tx, 0, sizeof(*tx));
245 	spin_lock_init(&tx->clean_lock);
246 	spin_lock_init(&tx->xdp_lock);
247 	tx->q_num = idx;
248 
249 	tx->mask = slots - 1;
250 
251 	/* alloc metadata */
252 	tx->info = vcalloc(slots, sizeof(*tx->info));
253 	if (!tx->info)
254 		return -ENOMEM;
255 
256 	/* alloc tx queue */
257 	bytes = sizeof(*tx->desc) * slots;
258 	tx->desc = dma_alloc_coherent(hdev, bytes, &tx->bus, GFP_KERNEL);
259 	if (!tx->desc)
260 		goto abort_with_info;
261 
262 	tx->raw_addressing = priv->queue_format == GVE_GQI_RDA_FORMAT;
263 	tx->dev = &priv->pdev->dev;
264 	if (!tx->raw_addressing) {
265 		tx->tx_fifo.qpl = gve_assign_tx_qpl(priv, idx);
266 		if (!tx->tx_fifo.qpl)
267 			goto abort_with_desc;
268 		/* map Tx FIFO */
269 		if (gve_tx_fifo_init(priv, &tx->tx_fifo))
270 			goto abort_with_qpl;
271 	}
272 
273 	tx->q_resources =
274 		dma_alloc_coherent(hdev,
275 				   sizeof(*tx->q_resources),
276 				   &tx->q_resources_bus,
277 				   GFP_KERNEL);
278 	if (!tx->q_resources)
279 		goto abort_with_fifo;
280 
281 	netif_dbg(priv, drv, priv->dev, "tx[%d]->bus=%lx\n", idx,
282 		  (unsigned long)tx->bus);
283 	if (idx < priv->tx_cfg.num_queues)
284 		tx->netdev_txq = netdev_get_tx_queue(priv->dev, idx);
285 	gve_tx_add_to_block(priv, idx);
286 
287 	return 0;
288 
289 abort_with_fifo:
290 	if (!tx->raw_addressing)
291 		gve_tx_fifo_release(priv, &tx->tx_fifo);
292 abort_with_qpl:
293 	if (!tx->raw_addressing)
294 		gve_unassign_qpl(priv, tx->tx_fifo.qpl->id);
295 abort_with_desc:
296 	dma_free_coherent(hdev, bytes, tx->desc, tx->bus);
297 	tx->desc = NULL;
298 abort_with_info:
299 	vfree(tx->info);
300 	tx->info = NULL;
301 	return -ENOMEM;
302 }
303 
304 int gve_tx_alloc_rings(struct gve_priv *priv, int start_id, int num_rings)
305 {
306 	int err = 0;
307 	int i;
308 
309 	for (i = start_id; i < start_id + num_rings; i++) {
310 		err = gve_tx_alloc_ring(priv, i);
311 		if (err) {
312 			netif_err(priv, drv, priv->dev,
313 				  "Failed to alloc tx ring=%d: err=%d\n",
314 				  i, err);
315 			break;
316 		}
317 	}
318 	/* Unallocate if there was an error */
319 	if (err) {
320 		int j;
321 
322 		for (j = start_id; j < i; j++)
323 			gve_tx_free_ring(priv, j);
324 	}
325 	return err;
326 }
327 
328 void gve_tx_free_rings_gqi(struct gve_priv *priv, int start_id, int num_rings)
329 {
330 	int i;
331 
332 	for (i = start_id; i < start_id + num_rings; i++)
333 		gve_tx_free_ring(priv, i);
334 }
335 
336 /* gve_tx_avail - Calculates the number of slots available in the ring
337  * @tx: tx ring to check
338  *
339  * Returns the number of slots available
340  *
341  * The capacity of the queue is mask + 1. We don't need to reserve an entry.
342  **/
343 static inline u32 gve_tx_avail(struct gve_tx_ring *tx)
344 {
345 	return tx->mask + 1 - (tx->req - tx->done);
346 }
347 
348 static inline int gve_skb_fifo_bytes_required(struct gve_tx_ring *tx,
349 					      struct sk_buff *skb)
350 {
351 	int pad_bytes, align_hdr_pad;
352 	int bytes;
353 	int hlen;
354 
355 	hlen = skb_is_gso(skb) ? skb_checksum_start_offset(skb) + tcp_hdrlen(skb) :
356 				 min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
357 
358 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo,
359 						   hlen);
360 	/* We need to take into account the header alignment padding. */
361 	align_hdr_pad = L1_CACHE_ALIGN(hlen) - hlen;
362 	bytes = align_hdr_pad + pad_bytes + skb->len;
363 
364 	return bytes;
365 }
366 
367 /* The most descriptors we could need is MAX_SKB_FRAGS + 4 :
368  * 1 for each skb frag
369  * 1 for the skb linear portion
370  * 1 for when tcp hdr needs to be in separate descriptor
371  * 1 if the payload wraps to the beginning of the FIFO
372  * 1 for metadata descriptor
373  */
374 #define MAX_TX_DESC_NEEDED	(MAX_SKB_FRAGS + 4)
375 static void gve_tx_unmap_buf(struct device *dev, struct gve_tx_buffer_state *info)
376 {
377 	if (info->skb) {
378 		dma_unmap_single(dev, dma_unmap_addr(info, dma),
379 				 dma_unmap_len(info, len),
380 				 DMA_TO_DEVICE);
381 		dma_unmap_len_set(info, len, 0);
382 	} else {
383 		dma_unmap_page(dev, dma_unmap_addr(info, dma),
384 			       dma_unmap_len(info, len),
385 			       DMA_TO_DEVICE);
386 		dma_unmap_len_set(info, len, 0);
387 	}
388 }
389 
390 /* Check if sufficient resources (descriptor ring space, FIFO space) are
391  * available to transmit the given number of bytes.
392  */
393 static inline bool gve_can_tx(struct gve_tx_ring *tx, int bytes_required)
394 {
395 	bool can_alloc = true;
396 
397 	if (!tx->raw_addressing)
398 		can_alloc = gve_tx_fifo_can_alloc(&tx->tx_fifo, bytes_required);
399 
400 	return (gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED && can_alloc);
401 }
402 
403 static_assert(NAPI_POLL_WEIGHT >= MAX_TX_DESC_NEEDED);
404 
405 /* Stops the queue if the skb cannot be transmitted. */
406 static int gve_maybe_stop_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
407 			     struct sk_buff *skb)
408 {
409 	int bytes_required = 0;
410 	u32 nic_done;
411 	u32 to_do;
412 	int ret;
413 
414 	if (!tx->raw_addressing)
415 		bytes_required = gve_skb_fifo_bytes_required(tx, skb);
416 
417 	if (likely(gve_can_tx(tx, bytes_required)))
418 		return 0;
419 
420 	ret = -EBUSY;
421 	spin_lock(&tx->clean_lock);
422 	nic_done = gve_tx_load_event_counter(priv, tx);
423 	to_do = nic_done - tx->done;
424 
425 	/* Only try to clean if there is hope for TX */
426 	if (to_do + gve_tx_avail(tx) >= MAX_TX_DESC_NEEDED) {
427 		if (to_do > 0) {
428 			to_do = min_t(u32, to_do, NAPI_POLL_WEIGHT);
429 			gve_clean_tx_done(priv, tx, to_do, false);
430 		}
431 		if (likely(gve_can_tx(tx, bytes_required)))
432 			ret = 0;
433 	}
434 	if (ret) {
435 		/* No space, so stop the queue */
436 		tx->stop_queue++;
437 		netif_tx_stop_queue(tx->netdev_txq);
438 	}
439 	spin_unlock(&tx->clean_lock);
440 
441 	return ret;
442 }
443 
444 static void gve_tx_fill_pkt_desc(union gve_tx_desc *pkt_desc,
445 				 u16 csum_offset, u8 ip_summed, bool is_gso,
446 				 int l4_hdr_offset, u32 desc_cnt,
447 				 u16 hlen, u64 addr, u16 pkt_len)
448 {
449 	/* l4_hdr_offset and csum_offset are in units of 16-bit words */
450 	if (is_gso) {
451 		pkt_desc->pkt.type_flags = GVE_TXD_TSO | GVE_TXF_L4CSUM;
452 		pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
453 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
454 	} else if (likely(ip_summed == CHECKSUM_PARTIAL)) {
455 		pkt_desc->pkt.type_flags = GVE_TXD_STD | GVE_TXF_L4CSUM;
456 		pkt_desc->pkt.l4_csum_offset = csum_offset >> 1;
457 		pkt_desc->pkt.l4_hdr_offset = l4_hdr_offset >> 1;
458 	} else {
459 		pkt_desc->pkt.type_flags = GVE_TXD_STD;
460 		pkt_desc->pkt.l4_csum_offset = 0;
461 		pkt_desc->pkt.l4_hdr_offset = 0;
462 	}
463 	pkt_desc->pkt.desc_cnt = desc_cnt;
464 	pkt_desc->pkt.len = cpu_to_be16(pkt_len);
465 	pkt_desc->pkt.seg_len = cpu_to_be16(hlen);
466 	pkt_desc->pkt.seg_addr = cpu_to_be64(addr);
467 }
468 
469 static void gve_tx_fill_mtd_desc(union gve_tx_desc *mtd_desc,
470 				 struct sk_buff *skb)
471 {
472 	BUILD_BUG_ON(sizeof(mtd_desc->mtd) != sizeof(mtd_desc->pkt));
473 
474 	mtd_desc->mtd.type_flags = GVE_TXD_MTD | GVE_MTD_SUBTYPE_PATH;
475 	mtd_desc->mtd.path_state = GVE_MTD_PATH_STATE_DEFAULT |
476 				   GVE_MTD_PATH_HASH_L4;
477 	mtd_desc->mtd.path_hash = cpu_to_be32(skb->hash);
478 	mtd_desc->mtd.reserved0 = 0;
479 	mtd_desc->mtd.reserved1 = 0;
480 }
481 
482 static void gve_tx_fill_seg_desc(union gve_tx_desc *seg_desc,
483 				 u16 l3_offset, u16 gso_size,
484 				 bool is_gso_v6, bool is_gso,
485 				 u16 len, u64 addr)
486 {
487 	seg_desc->seg.type_flags = GVE_TXD_SEG;
488 	if (is_gso) {
489 		if (is_gso_v6)
490 			seg_desc->seg.type_flags |= GVE_TXSF_IPV6;
491 		seg_desc->seg.l3_offset = l3_offset >> 1;
492 		seg_desc->seg.mss = cpu_to_be16(gso_size);
493 	}
494 	seg_desc->seg.seg_len = cpu_to_be16(len);
495 	seg_desc->seg.seg_addr = cpu_to_be64(addr);
496 }
497 
498 static void gve_dma_sync_for_device(struct device *dev, dma_addr_t *page_buses,
499 				    u64 iov_offset, u64 iov_len)
500 {
501 	u64 last_page = (iov_offset + iov_len - 1) / PAGE_SIZE;
502 	u64 first_page = iov_offset / PAGE_SIZE;
503 	u64 page;
504 
505 	for (page = first_page; page <= last_page; page++)
506 		dma_sync_single_for_device(dev, page_buses[page], PAGE_SIZE, DMA_TO_DEVICE);
507 }
508 
509 static int gve_tx_add_skb_copy(struct gve_priv *priv, struct gve_tx_ring *tx, struct sk_buff *skb)
510 {
511 	int pad_bytes, hlen, hdr_nfrags, payload_nfrags, l4_hdr_offset;
512 	union gve_tx_desc *pkt_desc, *seg_desc;
513 	struct gve_tx_buffer_state *info;
514 	int mtd_desc_nr = !!skb->l4_hash;
515 	bool is_gso = skb_is_gso(skb);
516 	u32 idx = tx->req & tx->mask;
517 	int payload_iov = 2;
518 	int copy_offset;
519 	u32 next_idx;
520 	int i;
521 
522 	info = &tx->info[idx];
523 	pkt_desc = &tx->desc[idx];
524 
525 	l4_hdr_offset = skb_checksum_start_offset(skb);
526 	/* If the skb is gso, then we want the tcp header alone in the first segment
527 	 * otherwise we want the minimum required by the gVNIC spec.
528 	 */
529 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) :
530 			min_t(int, GVE_GQ_TX_MIN_PKT_DESC_BYTES, skb->len);
531 
532 	info->skb =  skb;
533 	/* We don't want to split the header, so if necessary, pad to the end
534 	 * of the fifo and then put the header at the beginning of the fifo.
535 	 */
536 	pad_bytes = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, hlen);
537 	hdr_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, hlen + pad_bytes,
538 				       &info->iov[0]);
539 	WARN(!hdr_nfrags, "hdr_nfrags should never be 0!");
540 	payload_nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, skb->len - hlen,
541 					   &info->iov[payload_iov]);
542 
543 	gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
544 			     is_gso, l4_hdr_offset,
545 			     1 + mtd_desc_nr + payload_nfrags, hlen,
546 			     info->iov[hdr_nfrags - 1].iov_offset, skb->len);
547 
548 	skb_copy_bits(skb, 0,
549 		      tx->tx_fifo.base + info->iov[hdr_nfrags - 1].iov_offset,
550 		      hlen);
551 	gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
552 				info->iov[hdr_nfrags - 1].iov_offset,
553 				info->iov[hdr_nfrags - 1].iov_len);
554 	copy_offset = hlen;
555 
556 	if (mtd_desc_nr) {
557 		next_idx = (tx->req + 1) & tx->mask;
558 		gve_tx_fill_mtd_desc(&tx->desc[next_idx], skb);
559 	}
560 
561 	for (i = payload_iov; i < payload_nfrags + payload_iov; i++) {
562 		next_idx = (tx->req + 1 + mtd_desc_nr + i - payload_iov) & tx->mask;
563 		seg_desc = &tx->desc[next_idx];
564 
565 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
566 				     skb_shinfo(skb)->gso_size,
567 				     skb_is_gso_v6(skb), is_gso,
568 				     info->iov[i].iov_len,
569 				     info->iov[i].iov_offset);
570 
571 		skb_copy_bits(skb, copy_offset,
572 			      tx->tx_fifo.base + info->iov[i].iov_offset,
573 			      info->iov[i].iov_len);
574 		gve_dma_sync_for_device(&priv->pdev->dev, tx->tx_fifo.qpl->page_buses,
575 					info->iov[i].iov_offset,
576 					info->iov[i].iov_len);
577 		copy_offset += info->iov[i].iov_len;
578 	}
579 
580 	return 1 + mtd_desc_nr + payload_nfrags;
581 }
582 
583 static int gve_tx_add_skb_no_copy(struct gve_priv *priv, struct gve_tx_ring *tx,
584 				  struct sk_buff *skb)
585 {
586 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
587 	int hlen, num_descriptors, l4_hdr_offset;
588 	union gve_tx_desc *pkt_desc, *mtd_desc, *seg_desc;
589 	struct gve_tx_buffer_state *info;
590 	int mtd_desc_nr = !!skb->l4_hash;
591 	bool is_gso = skb_is_gso(skb);
592 	u32 idx = tx->req & tx->mask;
593 	u64 addr;
594 	u32 len;
595 	int i;
596 
597 	info = &tx->info[idx];
598 	pkt_desc = &tx->desc[idx];
599 
600 	l4_hdr_offset = skb_checksum_start_offset(skb);
601 	/* If the skb is gso, then we want only up to the tcp header in the first segment
602 	 * to efficiently replicate on each segment otherwise we want the linear portion
603 	 * of the skb (which will contain the checksum because skb->csum_start and
604 	 * skb->csum_offset are given relative to skb->head) in the first segment.
605 	 */
606 	hlen = is_gso ? l4_hdr_offset + tcp_hdrlen(skb) : skb_headlen(skb);
607 	len = skb_headlen(skb);
608 
609 	info->skb =  skb;
610 
611 	addr = dma_map_single(tx->dev, skb->data, len, DMA_TO_DEVICE);
612 	if (unlikely(dma_mapping_error(tx->dev, addr))) {
613 		tx->dma_mapping_error++;
614 		goto drop;
615 	}
616 	dma_unmap_len_set(info, len, len);
617 	dma_unmap_addr_set(info, dma, addr);
618 
619 	num_descriptors = 1 + shinfo->nr_frags;
620 	if (hlen < len)
621 		num_descriptors++;
622 	if (mtd_desc_nr)
623 		num_descriptors++;
624 
625 	gve_tx_fill_pkt_desc(pkt_desc, skb->csum_offset, skb->ip_summed,
626 			     is_gso, l4_hdr_offset,
627 			     num_descriptors, hlen, addr, skb->len);
628 
629 	if (mtd_desc_nr) {
630 		idx = (idx + 1) & tx->mask;
631 		mtd_desc = &tx->desc[idx];
632 		gve_tx_fill_mtd_desc(mtd_desc, skb);
633 	}
634 
635 	if (hlen < len) {
636 		/* For gso the rest of the linear portion of the skb needs to
637 		 * be in its own descriptor.
638 		 */
639 		len -= hlen;
640 		addr += hlen;
641 		idx = (idx + 1) & tx->mask;
642 		seg_desc = &tx->desc[idx];
643 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
644 				     skb_shinfo(skb)->gso_size,
645 				     skb_is_gso_v6(skb), is_gso, len, addr);
646 	}
647 
648 	for (i = 0; i < shinfo->nr_frags; i++) {
649 		const skb_frag_t *frag = &shinfo->frags[i];
650 
651 		idx = (idx + 1) & tx->mask;
652 		seg_desc = &tx->desc[idx];
653 		len = skb_frag_size(frag);
654 		addr = skb_frag_dma_map(tx->dev, frag, 0, len, DMA_TO_DEVICE);
655 		if (unlikely(dma_mapping_error(tx->dev, addr))) {
656 			tx->dma_mapping_error++;
657 			goto unmap_drop;
658 		}
659 		tx->info[idx].skb = NULL;
660 		dma_unmap_len_set(&tx->info[idx], len, len);
661 		dma_unmap_addr_set(&tx->info[idx], dma, addr);
662 
663 		gve_tx_fill_seg_desc(seg_desc, skb_network_offset(skb),
664 				     skb_shinfo(skb)->gso_size,
665 				     skb_is_gso_v6(skb), is_gso, len, addr);
666 	}
667 
668 	return num_descriptors;
669 
670 unmap_drop:
671 	i += num_descriptors - shinfo->nr_frags;
672 	while (i--) {
673 		/* Skip metadata descriptor, if set */
674 		if (i == 1 && mtd_desc_nr == 1)
675 			continue;
676 		idx--;
677 		gve_tx_unmap_buf(tx->dev, &tx->info[idx & tx->mask]);
678 	}
679 drop:
680 	tx->dropped_pkt++;
681 	return 0;
682 }
683 
684 netdev_tx_t gve_tx(struct sk_buff *skb, struct net_device *dev)
685 {
686 	struct gve_priv *priv = netdev_priv(dev);
687 	struct gve_tx_ring *tx;
688 	int nsegs;
689 
690 	WARN(skb_get_queue_mapping(skb) >= priv->tx_cfg.num_queues,
691 	     "skb queue index out of range");
692 	tx = &priv->tx[skb_get_queue_mapping(skb)];
693 	if (unlikely(gve_maybe_stop_tx(priv, tx, skb))) {
694 		/* We need to ring the txq doorbell -- we have stopped the Tx
695 		 * queue for want of resources, but prior calls to gve_tx()
696 		 * may have added descriptors without ringing the doorbell.
697 		 */
698 
699 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
700 		return NETDEV_TX_BUSY;
701 	}
702 	if (tx->raw_addressing)
703 		nsegs = gve_tx_add_skb_no_copy(priv, tx, skb);
704 	else
705 		nsegs = gve_tx_add_skb_copy(priv, tx, skb);
706 
707 	/* If the packet is getting sent, we need to update the skb */
708 	if (nsegs) {
709 		netdev_tx_sent_queue(tx->netdev_txq, skb->len);
710 		skb_tx_timestamp(skb);
711 		tx->req += nsegs;
712 	} else {
713 		dev_kfree_skb_any(skb);
714 	}
715 
716 	if (!netif_xmit_stopped(tx->netdev_txq) && netdev_xmit_more())
717 		return NETDEV_TX_OK;
718 
719 	/* Give packets to NIC. Even if this packet failed to send the doorbell
720 	 * might need to be rung because of xmit_more.
721 	 */
722 	gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
723 	return NETDEV_TX_OK;
724 }
725 
726 static int gve_tx_fill_xdp(struct gve_priv *priv, struct gve_tx_ring *tx,
727 			   void *data, int len, void *frame_p, bool is_xsk)
728 {
729 	int pad, nfrags, ndescs, iovi, offset;
730 	struct gve_tx_buffer_state *info;
731 	u32 reqi = tx->req;
732 
733 	pad = gve_tx_fifo_pad_alloc_one_frag(&tx->tx_fifo, len);
734 	if (pad >= GVE_GQ_TX_MIN_PKT_DESC_BYTES)
735 		pad = 0;
736 	info = &tx->info[reqi & tx->mask];
737 	info->xdp_frame = frame_p;
738 	info->xdp.size = len;
739 	info->xdp.is_xsk = is_xsk;
740 
741 	nfrags = gve_tx_alloc_fifo(&tx->tx_fifo, pad + len,
742 				   &info->iov[0]);
743 	iovi = pad > 0;
744 	ndescs = nfrags - iovi;
745 	offset = 0;
746 
747 	while (iovi < nfrags) {
748 		if (!offset)
749 			gve_tx_fill_pkt_desc(&tx->desc[reqi & tx->mask], 0,
750 					     CHECKSUM_NONE, false, 0, ndescs,
751 					     info->iov[iovi].iov_len,
752 					     info->iov[iovi].iov_offset, len);
753 		else
754 			gve_tx_fill_seg_desc(&tx->desc[reqi & tx->mask],
755 					     0, 0, false, false,
756 					     info->iov[iovi].iov_len,
757 					     info->iov[iovi].iov_offset);
758 
759 		memcpy(tx->tx_fifo.base + info->iov[iovi].iov_offset,
760 		       data + offset, info->iov[iovi].iov_len);
761 		gve_dma_sync_for_device(&priv->pdev->dev,
762 					tx->tx_fifo.qpl->page_buses,
763 					info->iov[iovi].iov_offset,
764 					info->iov[iovi].iov_len);
765 		offset += info->iov[iovi].iov_len;
766 		iovi++;
767 		reqi++;
768 	}
769 
770 	return ndescs;
771 }
772 
773 int gve_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
774 		 u32 flags)
775 {
776 	struct gve_priv *priv = netdev_priv(dev);
777 	struct gve_tx_ring *tx;
778 	int i, err = 0, qid;
779 
780 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
781 		return -EINVAL;
782 
783 	qid = gve_xdp_tx_queue_id(priv,
784 				  smp_processor_id() % priv->num_xdp_queues);
785 
786 	tx = &priv->tx[qid];
787 
788 	spin_lock(&tx->xdp_lock);
789 	for (i = 0; i < n; i++) {
790 		err = gve_xdp_xmit_one(priv, tx, frames[i]->data,
791 				       frames[i]->len, frames[i]);
792 		if (err)
793 			break;
794 	}
795 
796 	if (flags & XDP_XMIT_FLUSH)
797 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
798 
799 	spin_unlock(&tx->xdp_lock);
800 
801 	u64_stats_update_begin(&tx->statss);
802 	tx->xdp_xmit += n;
803 	tx->xdp_xmit_errors += n - i;
804 	u64_stats_update_end(&tx->statss);
805 
806 	return i ? i : err;
807 }
808 
809 int gve_xdp_xmit_one(struct gve_priv *priv, struct gve_tx_ring *tx,
810 		     void *data, int len, void *frame_p)
811 {
812 	int nsegs;
813 
814 	if (!gve_can_tx(tx, len + GVE_GQ_TX_MIN_PKT_DESC_BYTES - 1))
815 		return -EBUSY;
816 
817 	nsegs = gve_tx_fill_xdp(priv, tx, data, len, frame_p, false);
818 	tx->req += nsegs;
819 
820 	return 0;
821 }
822 
823 #define GVE_TX_START_THRESH	PAGE_SIZE
824 
825 static int gve_clean_tx_done(struct gve_priv *priv, struct gve_tx_ring *tx,
826 			     u32 to_do, bool try_to_wake)
827 {
828 	struct gve_tx_buffer_state *info;
829 	u64 pkts = 0, bytes = 0;
830 	size_t space_freed = 0;
831 	struct sk_buff *skb;
832 	u32 idx;
833 	int j;
834 
835 	for (j = 0; j < to_do; j++) {
836 		idx = tx->done & tx->mask;
837 		netif_info(priv, tx_done, priv->dev,
838 			   "[%d] %s: idx=%d (req=%u done=%u)\n",
839 			   tx->q_num, __func__, idx, tx->req, tx->done);
840 		info = &tx->info[idx];
841 		skb = info->skb;
842 
843 		/* Unmap the buffer */
844 		if (tx->raw_addressing)
845 			gve_tx_unmap_buf(tx->dev, info);
846 		tx->done++;
847 		/* Mark as free */
848 		if (skb) {
849 			info->skb = NULL;
850 			bytes += skb->len;
851 			pkts++;
852 			dev_consume_skb_any(skb);
853 			if (tx->raw_addressing)
854 				continue;
855 			space_freed += gve_tx_clear_buffer_state(info);
856 		}
857 	}
858 
859 	if (!tx->raw_addressing)
860 		gve_tx_free_fifo(&tx->tx_fifo, space_freed);
861 	u64_stats_update_begin(&tx->statss);
862 	tx->bytes_done += bytes;
863 	tx->pkt_done += pkts;
864 	u64_stats_update_end(&tx->statss);
865 	netdev_tx_completed_queue(tx->netdev_txq, pkts, bytes);
866 
867 	/* start the queue if we've stopped it */
868 #ifndef CONFIG_BQL
869 	/* Make sure that the doorbells are synced */
870 	smp_mb();
871 #endif
872 	if (try_to_wake && netif_tx_queue_stopped(tx->netdev_txq) &&
873 	    likely(gve_can_tx(tx, GVE_TX_START_THRESH))) {
874 		tx->wake_queue++;
875 		netif_tx_wake_queue(tx->netdev_txq);
876 	}
877 
878 	return pkts;
879 }
880 
881 u32 gve_tx_load_event_counter(struct gve_priv *priv,
882 			      struct gve_tx_ring *tx)
883 {
884 	u32 counter_index = be32_to_cpu(tx->q_resources->counter_index);
885 	__be32 counter = READ_ONCE(priv->counter_array[counter_index]);
886 
887 	return be32_to_cpu(counter);
888 }
889 
890 static int gve_xsk_tx(struct gve_priv *priv, struct gve_tx_ring *tx,
891 		      int budget)
892 {
893 	struct xdp_desc desc;
894 	int sent = 0, nsegs;
895 	void *data;
896 
897 	spin_lock(&tx->xdp_lock);
898 	while (sent < budget) {
899 		if (!gve_can_tx(tx, GVE_TX_START_THRESH))
900 			goto out;
901 
902 		if (!xsk_tx_peek_desc(tx->xsk_pool, &desc)) {
903 			tx->xdp_xsk_done = tx->xdp_xsk_wakeup;
904 			goto out;
905 		}
906 
907 		data = xsk_buff_raw_get_data(tx->xsk_pool, desc.addr);
908 		nsegs = gve_tx_fill_xdp(priv, tx, data, desc.len, NULL, true);
909 		tx->req += nsegs;
910 		sent++;
911 	}
912 out:
913 	if (sent > 0) {
914 		gve_tx_put_doorbell(priv, tx->q_resources, tx->req);
915 		xsk_tx_release(tx->xsk_pool);
916 	}
917 	spin_unlock(&tx->xdp_lock);
918 	return sent;
919 }
920 
921 bool gve_xdp_poll(struct gve_notify_block *block, int budget)
922 {
923 	struct gve_priv *priv = block->priv;
924 	struct gve_tx_ring *tx = block->tx;
925 	u32 nic_done;
926 	bool repoll;
927 	u32 to_do;
928 
929 	/* Find out how much work there is to be done */
930 	nic_done = gve_tx_load_event_counter(priv, tx);
931 	to_do = min_t(u32, (nic_done - tx->done), budget);
932 	gve_clean_xdp_done(priv, tx, to_do);
933 	repoll = nic_done != tx->done;
934 
935 	if (tx->xsk_pool) {
936 		int sent = gve_xsk_tx(priv, tx, budget);
937 
938 		u64_stats_update_begin(&tx->statss);
939 		tx->xdp_xsk_sent += sent;
940 		u64_stats_update_end(&tx->statss);
941 		repoll |= (sent == budget);
942 		if (xsk_uses_need_wakeup(tx->xsk_pool))
943 			xsk_set_tx_need_wakeup(tx->xsk_pool);
944 	}
945 
946 	/* If we still have work we want to repoll */
947 	return repoll;
948 }
949 
950 bool gve_tx_poll(struct gve_notify_block *block, int budget)
951 {
952 	struct gve_priv *priv = block->priv;
953 	struct gve_tx_ring *tx = block->tx;
954 	u32 nic_done;
955 	u32 to_do;
956 
957 	/* If budget is 0, do all the work */
958 	if (budget == 0)
959 		budget = INT_MAX;
960 
961 	/* In TX path, it may try to clean completed pkts in order to xmit,
962 	 * to avoid cleaning conflict, use spin_lock(), it yields better
963 	 * concurrency between xmit/clean than netif's lock.
964 	 */
965 	spin_lock(&tx->clean_lock);
966 	/* Find out how much work there is to be done */
967 	nic_done = gve_tx_load_event_counter(priv, tx);
968 	to_do = min_t(u32, (nic_done - tx->done), budget);
969 	gve_clean_tx_done(priv, tx, to_do, true);
970 	spin_unlock(&tx->clean_lock);
971 	/* If we still have work we want to repoll */
972 	return nic_done != tx->done;
973 }
974 
975 bool gve_tx_clean_pending(struct gve_priv *priv, struct gve_tx_ring *tx)
976 {
977 	u32 nic_done = gve_tx_load_event_counter(priv, tx);
978 
979 	return nic_done != tx->done;
980 }
981