1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 3 #include <linux/bpf_trace.h> 4 #include <linux/dma-mapping.h> 5 #include <linux/etherdevice.h> 6 #include <linux/filter.h> 7 #include <linux/irq.h> 8 #include <linux/pci.h> 9 #include <linux/skbuff.h> 10 #include "funeth_txrx.h" 11 #include "funeth.h" 12 #include "fun_queue.h" 13 14 #define CREATE_TRACE_POINTS 15 #include "funeth_trace.h" 16 17 /* Given the device's max supported MTU and pages of at least 4KB a packet can 18 * be scattered into at most 4 buffers. 19 */ 20 #define RX_MAX_FRAGS 4 21 22 /* Per packet headroom in non-XDP mode. Present only for 1-frag packets. */ 23 #define FUN_RX_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) 24 25 /* We try to reuse pages for our buffers. To avoid frequent page ref writes we 26 * take EXTRA_PAGE_REFS references at once and then hand them out one per packet 27 * occupying the buffer. 28 */ 29 #define EXTRA_PAGE_REFS 1000000 30 #define MIN_PAGE_REFS 1000 31 32 enum { 33 FUN_XDP_FLUSH_REDIR = 1, 34 FUN_XDP_FLUSH_TX = 2, 35 }; 36 37 /* See if a page is running low on refs we are holding and if so take more. */ 38 static void refresh_refs(struct funeth_rxbuf *buf) 39 { 40 if (unlikely(buf->pg_refs < MIN_PAGE_REFS)) { 41 buf->pg_refs += EXTRA_PAGE_REFS; 42 page_ref_add(buf->page, EXTRA_PAGE_REFS); 43 } 44 } 45 46 /* Offer a buffer to the Rx buffer cache. The cache will hold the buffer if its 47 * page is worth retaining and there's room for it. Otherwise the page is 48 * unmapped and our references released. 49 */ 50 static void cache_offer(struct funeth_rxq *q, const struct funeth_rxbuf *buf) 51 { 52 struct funeth_rx_cache *c = &q->cache; 53 54 if (c->prod_cnt - c->cons_cnt <= c->mask && buf->node == numa_mem_id()) { 55 c->bufs[c->prod_cnt & c->mask] = *buf; 56 c->prod_cnt++; 57 } else { 58 dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE, 59 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); 60 __page_frag_cache_drain(buf->page, buf->pg_refs); 61 } 62 } 63 64 /* Get a page from the Rx buffer cache. We only consider the next available 65 * page and return it if we own all its references. 66 */ 67 static bool cache_get(struct funeth_rxq *q, struct funeth_rxbuf *rb) 68 { 69 struct funeth_rx_cache *c = &q->cache; 70 struct funeth_rxbuf *buf; 71 72 if (c->prod_cnt == c->cons_cnt) 73 return false; /* empty cache */ 74 75 buf = &c->bufs[c->cons_cnt & c->mask]; 76 if (page_ref_count(buf->page) == buf->pg_refs) { 77 dma_sync_single_for_device(q->dma_dev, buf->dma_addr, 78 PAGE_SIZE, DMA_FROM_DEVICE); 79 *rb = *buf; 80 buf->page = NULL; 81 refresh_refs(rb); 82 c->cons_cnt++; 83 return true; 84 } 85 86 /* Page can't be reused. If the cache is full drop this page. */ 87 if (c->prod_cnt - c->cons_cnt > c->mask) { 88 dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE, 89 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); 90 __page_frag_cache_drain(buf->page, buf->pg_refs); 91 buf->page = NULL; 92 c->cons_cnt++; 93 } 94 return false; 95 } 96 97 /* Allocate and DMA-map a page for receive. */ 98 static int funeth_alloc_page(struct funeth_rxq *q, struct funeth_rxbuf *rb, 99 int node, gfp_t gfp) 100 { 101 struct page *p; 102 103 if (cache_get(q, rb)) 104 return 0; 105 106 p = __alloc_pages_node(node, gfp | __GFP_NOWARN, 0); 107 if (unlikely(!p)) 108 return -ENOMEM; 109 110 rb->dma_addr = dma_map_page(q->dma_dev, p, 0, PAGE_SIZE, 111 DMA_FROM_DEVICE); 112 if (unlikely(dma_mapping_error(q->dma_dev, rb->dma_addr))) { 113 FUN_QSTAT_INC(q, rx_map_err); 114 __free_page(p); 115 return -ENOMEM; 116 } 117 118 FUN_QSTAT_INC(q, rx_page_alloc); 119 120 rb->page = p; 121 rb->pg_refs = 1; 122 refresh_refs(rb); 123 rb->node = page_is_pfmemalloc(p) ? -1 : page_to_nid(p); 124 return 0; 125 } 126 127 static void funeth_free_page(struct funeth_rxq *q, struct funeth_rxbuf *rb) 128 { 129 if (rb->page) { 130 dma_unmap_page(q->dma_dev, rb->dma_addr, PAGE_SIZE, 131 DMA_FROM_DEVICE); 132 __page_frag_cache_drain(rb->page, rb->pg_refs); 133 rb->page = NULL; 134 } 135 } 136 137 /* Run the XDP program assigned to an Rx queue. 138 * Return %NULL if the buffer is consumed, or the virtual address of the packet 139 * to turn into an skb. 140 */ 141 static void *fun_run_xdp(struct funeth_rxq *q, skb_frag_t *frags, void *buf_va, 142 int ref_ok, struct funeth_txq *xdp_q) 143 { 144 struct bpf_prog *xdp_prog; 145 struct xdp_buff xdp; 146 u32 act; 147 148 /* VA includes the headroom, frag size includes headroom + tailroom */ 149 xdp_init_buff(&xdp, ALIGN(skb_frag_size(frags), FUN_EPRQ_PKT_ALIGN), 150 &q->xdp_rxq); 151 xdp_prepare_buff(&xdp, buf_va, FUN_XDP_HEADROOM, skb_frag_size(frags) - 152 (FUN_RX_TAILROOM + FUN_XDP_HEADROOM), false); 153 154 xdp_prog = READ_ONCE(q->xdp_prog); 155 act = bpf_prog_run_xdp(xdp_prog, &xdp); 156 157 switch (act) { 158 case XDP_PASS: 159 /* remove headroom, which may not be FUN_XDP_HEADROOM now */ 160 skb_frag_size_set(frags, xdp.data_end - xdp.data); 161 skb_frag_off_add(frags, xdp.data - xdp.data_hard_start); 162 goto pass; 163 case XDP_TX: 164 if (unlikely(!ref_ok)) 165 goto pass; 166 if (!fun_xdp_tx(xdp_q, xdp.data, xdp.data_end - xdp.data)) 167 goto xdp_error; 168 FUN_QSTAT_INC(q, xdp_tx); 169 q->xdp_flush |= FUN_XDP_FLUSH_TX; 170 break; 171 case XDP_REDIRECT: 172 if (unlikely(!ref_ok)) 173 goto pass; 174 if (unlikely(xdp_do_redirect(q->netdev, &xdp, xdp_prog))) 175 goto xdp_error; 176 FUN_QSTAT_INC(q, xdp_redir); 177 q->xdp_flush |= FUN_XDP_FLUSH_REDIR; 178 break; 179 default: 180 bpf_warn_invalid_xdp_action(q->netdev, xdp_prog, act); 181 fallthrough; 182 case XDP_ABORTED: 183 trace_xdp_exception(q->netdev, xdp_prog, act); 184 xdp_error: 185 q->cur_buf->pg_refs++; /* return frags' page reference */ 186 FUN_QSTAT_INC(q, xdp_err); 187 break; 188 case XDP_DROP: 189 q->cur_buf->pg_refs++; 190 FUN_QSTAT_INC(q, xdp_drops); 191 break; 192 } 193 return NULL; 194 195 pass: 196 return xdp.data; 197 } 198 199 /* A CQE contains a fixed completion structure along with optional metadata and 200 * even packet data. Given the start address of a CQE return the start of the 201 * contained fixed structure, which lies at the end. 202 */ 203 static const void *cqe_to_info(const void *cqe) 204 { 205 return cqe + FUNETH_CQE_INFO_OFFSET; 206 } 207 208 /* The inverse of cqe_to_info(). */ 209 static const void *info_to_cqe(const void *cqe_info) 210 { 211 return cqe_info - FUNETH_CQE_INFO_OFFSET; 212 } 213 214 /* Return the type of hash provided by the device based on the L3 and L4 215 * protocols it parsed for the packet. 216 */ 217 static enum pkt_hash_types cqe_to_pkt_hash_type(u16 pkt_parse) 218 { 219 static const enum pkt_hash_types htype_map[] = { 220 PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3, 221 PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L4, 222 PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3, 223 PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3 224 }; 225 u16 key; 226 227 /* Build the key from the TCP/UDP and IP/IPv6 bits */ 228 key = ((pkt_parse >> FUN_ETH_RX_CV_OL4_PROT_S) & 6) | 229 ((pkt_parse >> (FUN_ETH_RX_CV_OL3_PROT_S + 1)) & 1); 230 231 return htype_map[key]; 232 } 233 234 /* Each received packet can be scattered across several Rx buffers or can 235 * share a buffer with previously received packets depending on the buffer 236 * and packet sizes and the room available in the most recently used buffer. 237 * 238 * The rules are: 239 * - If the buffer at the head of an RQ has not been used it gets (part of) the 240 * next incoming packet. 241 * - Otherwise, if the packet fully fits in the buffer's remaining space the 242 * packet is written there. 243 * - Otherwise, the packet goes into the next Rx buffer. 244 * 245 * This function returns the Rx buffer for a packet or fragment thereof of the 246 * given length. If it isn't @buf it either recycles or frees that buffer 247 * before advancing the queue to the next buffer. 248 * 249 * If called repeatedly with the remaining length of a packet it will walk 250 * through all the buffers containing the packet. 251 */ 252 static struct funeth_rxbuf * 253 get_buf(struct funeth_rxq *q, struct funeth_rxbuf *buf, unsigned int len) 254 { 255 if (q->buf_offset + len <= PAGE_SIZE || !q->buf_offset) 256 return buf; /* @buf holds (part of) the packet */ 257 258 /* The packet occupies part of the next buffer. Move there after 259 * replenishing the current buffer slot either with the spare page or 260 * by reusing the slot's existing page. Note that if a spare page isn't 261 * available and the current packet occupies @buf it is a multi-frag 262 * packet that will be dropped leaving @buf available for reuse. 263 */ 264 if ((page_ref_count(buf->page) == buf->pg_refs && 265 buf->node == numa_mem_id()) || !q->spare_buf.page) { 266 dma_sync_single_for_device(q->dma_dev, buf->dma_addr, 267 PAGE_SIZE, DMA_FROM_DEVICE); 268 refresh_refs(buf); 269 } else { 270 cache_offer(q, buf); 271 *buf = q->spare_buf; 272 q->spare_buf.page = NULL; 273 q->rqes[q->rq_cons & q->rq_mask] = 274 FUN_EPRQ_RQBUF_INIT(buf->dma_addr); 275 } 276 q->buf_offset = 0; 277 q->rq_cons++; 278 return &q->bufs[q->rq_cons & q->rq_mask]; 279 } 280 281 /* Gather the page fragments making up the first Rx packet on @q. Its total 282 * length @tot_len includes optional head- and tail-rooms. 283 * 284 * Return 0 if the device retains ownership of at least some of the pages. 285 * In this case the caller may only copy the packet. 286 * 287 * A non-zero return value gives the caller permission to use references to the 288 * pages, e.g., attach them to skbs. Additionally, if the value is <0 at least 289 * one of the pages is PF_MEMALLOC. 290 * 291 * Regardless of outcome the caller is granted a reference to each of the pages. 292 */ 293 static int fun_gather_pkt(struct funeth_rxq *q, unsigned int tot_len, 294 skb_frag_t *frags) 295 { 296 struct funeth_rxbuf *buf = q->cur_buf; 297 unsigned int frag_len; 298 int ref_ok = 1; 299 300 for (;;) { 301 buf = get_buf(q, buf, tot_len); 302 303 /* We always keep the RQ full of buffers so before we can give 304 * one of our pages to the stack we require that we can obtain 305 * a replacement page. If we can't the packet will either be 306 * copied or dropped so we can retain ownership of the page and 307 * reuse it. 308 */ 309 if (!q->spare_buf.page && 310 funeth_alloc_page(q, &q->spare_buf, numa_mem_id(), 311 GFP_ATOMIC | __GFP_MEMALLOC)) 312 ref_ok = 0; 313 314 frag_len = min_t(unsigned int, tot_len, 315 PAGE_SIZE - q->buf_offset); 316 dma_sync_single_for_cpu(q->dma_dev, 317 buf->dma_addr + q->buf_offset, 318 frag_len, DMA_FROM_DEVICE); 319 buf->pg_refs--; 320 if (ref_ok) 321 ref_ok |= buf->node; 322 323 __skb_frag_set_page(frags, buf->page); 324 skb_frag_off_set(frags, q->buf_offset); 325 skb_frag_size_set(frags++, frag_len); 326 327 tot_len -= frag_len; 328 if (!tot_len) 329 break; 330 331 q->buf_offset = PAGE_SIZE; 332 } 333 q->buf_offset = ALIGN(q->buf_offset + frag_len, FUN_EPRQ_PKT_ALIGN); 334 q->cur_buf = buf; 335 return ref_ok; 336 } 337 338 static bool rx_hwtstamp_enabled(const struct net_device *dev) 339 { 340 const struct funeth_priv *d = netdev_priv(dev); 341 342 return d->hwtstamp_cfg.rx_filter == HWTSTAMP_FILTER_ALL; 343 } 344 345 /* Advance the CQ pointers and phase tag to the next CQE. */ 346 static void advance_cq(struct funeth_rxq *q) 347 { 348 if (unlikely(q->cq_head == q->cq_mask)) { 349 q->cq_head = 0; 350 q->phase ^= 1; 351 q->next_cqe_info = cqe_to_info(q->cqes); 352 } else { 353 q->cq_head++; 354 q->next_cqe_info += FUNETH_CQE_SIZE; 355 } 356 prefetch(q->next_cqe_info); 357 } 358 359 /* Process the packet represented by the head CQE of @q. Gather the packet's 360 * fragments, run it through the optional XDP program, and if needed construct 361 * an skb and pass it to the stack. 362 */ 363 static void fun_handle_cqe_pkt(struct funeth_rxq *q, struct funeth_txq *xdp_q) 364 { 365 const struct fun_eth_cqe *rxreq = info_to_cqe(q->next_cqe_info); 366 unsigned int i, tot_len, pkt_len = be32_to_cpu(rxreq->pkt_len); 367 struct net_device *ndev = q->netdev; 368 skb_frag_t frags[RX_MAX_FRAGS]; 369 struct skb_shared_info *si; 370 unsigned int headroom; 371 gro_result_t gro_res; 372 struct sk_buff *skb; 373 int ref_ok; 374 void *va; 375 u16 cv; 376 377 u64_stats_update_begin(&q->syncp); 378 q->stats.rx_pkts++; 379 q->stats.rx_bytes += pkt_len; 380 u64_stats_update_end(&q->syncp); 381 382 advance_cq(q); 383 384 /* account for head- and tail-room, present only for 1-buffer packets */ 385 tot_len = pkt_len; 386 headroom = be16_to_cpu(rxreq->headroom); 387 if (likely(headroom)) 388 tot_len += FUN_RX_TAILROOM + headroom; 389 390 ref_ok = fun_gather_pkt(q, tot_len, frags); 391 va = skb_frag_address(frags); 392 if (xdp_q && headroom == FUN_XDP_HEADROOM) { 393 va = fun_run_xdp(q, frags, va, ref_ok, xdp_q); 394 if (!va) 395 return; 396 headroom = 0; /* XDP_PASS trims it */ 397 } 398 if (unlikely(!ref_ok)) 399 goto no_mem; 400 401 if (likely(headroom)) { 402 /* headroom is either FUN_RX_HEADROOM or FUN_XDP_HEADROOM */ 403 prefetch(va + headroom); 404 skb = napi_build_skb(va, ALIGN(tot_len, FUN_EPRQ_PKT_ALIGN)); 405 if (unlikely(!skb)) 406 goto no_mem; 407 408 skb_reserve(skb, headroom); 409 __skb_put(skb, pkt_len); 410 skb->protocol = eth_type_trans(skb, ndev); 411 } else { 412 prefetch(va); 413 skb = napi_get_frags(q->napi); 414 if (unlikely(!skb)) 415 goto no_mem; 416 417 if (ref_ok < 0) 418 skb->pfmemalloc = 1; 419 420 si = skb_shinfo(skb); 421 si->nr_frags = rxreq->nsgl; 422 for (i = 0; i < si->nr_frags; i++) 423 si->frags[i] = frags[i]; 424 425 skb->len = pkt_len; 426 skb->data_len = pkt_len; 427 skb->truesize += round_up(pkt_len, FUN_EPRQ_PKT_ALIGN); 428 } 429 430 skb_record_rx_queue(skb, q->qidx); 431 cv = be16_to_cpu(rxreq->pkt_cv); 432 if (likely((q->netdev->features & NETIF_F_RXHASH) && rxreq->hash)) 433 skb_set_hash(skb, be32_to_cpu(rxreq->hash), 434 cqe_to_pkt_hash_type(cv)); 435 if (likely((q->netdev->features & NETIF_F_RXCSUM) && rxreq->csum)) { 436 FUN_QSTAT_INC(q, rx_cso); 437 skb->ip_summed = CHECKSUM_UNNECESSARY; 438 skb->csum_level = be16_to_cpu(rxreq->csum) - 1; 439 } 440 if (unlikely(rx_hwtstamp_enabled(q->netdev))) 441 skb_hwtstamps(skb)->hwtstamp = be64_to_cpu(rxreq->timestamp); 442 443 trace_funeth_rx(q, rxreq->nsgl, pkt_len, skb->hash, cv); 444 445 gro_res = skb->data_len ? napi_gro_frags(q->napi) : 446 napi_gro_receive(q->napi, skb); 447 if (gro_res == GRO_MERGED || gro_res == GRO_MERGED_FREE) 448 FUN_QSTAT_INC(q, gro_merged); 449 else if (gro_res == GRO_HELD) 450 FUN_QSTAT_INC(q, gro_pkts); 451 return; 452 453 no_mem: 454 FUN_QSTAT_INC(q, rx_mem_drops); 455 456 /* Release the references we've been granted for the frag pages. 457 * We return the ref of the last frag and free the rest. 458 */ 459 q->cur_buf->pg_refs++; 460 for (i = 0; i < rxreq->nsgl - 1; i++) 461 __free_page(skb_frag_page(frags + i)); 462 } 463 464 /* Return 0 if the phase tag of the CQE at the CQ's head matches expectations 465 * indicating the CQE is new. 466 */ 467 static u16 cqe_phase_mismatch(const struct fun_cqe_info *ci, u16 phase) 468 { 469 u16 sf_p = be16_to_cpu(ci->sf_p); 470 471 return (sf_p & 1) ^ phase; 472 } 473 474 /* Walk through a CQ identifying and processing fresh CQEs up to the given 475 * budget. Return the remaining budget. 476 */ 477 static int fun_process_cqes(struct funeth_rxq *q, int budget) 478 { 479 struct funeth_priv *fp = netdev_priv(q->netdev); 480 struct funeth_txq **xdpqs, *xdp_q = NULL; 481 482 xdpqs = rcu_dereference_bh(fp->xdpqs); 483 if (xdpqs) 484 xdp_q = xdpqs[smp_processor_id()]; 485 486 while (budget && !cqe_phase_mismatch(q->next_cqe_info, q->phase)) { 487 /* access other descriptor fields after the phase check */ 488 dma_rmb(); 489 490 fun_handle_cqe_pkt(q, xdp_q); 491 budget--; 492 } 493 494 if (unlikely(q->xdp_flush)) { 495 if (q->xdp_flush & FUN_XDP_FLUSH_TX) 496 fun_txq_wr_db(xdp_q); 497 if (q->xdp_flush & FUN_XDP_FLUSH_REDIR) 498 xdp_do_flush(); 499 q->xdp_flush = 0; 500 } 501 502 return budget; 503 } 504 505 /* NAPI handler for Rx queues. Calls the CQE processing loop and writes RQ/CQ 506 * doorbells as needed. 507 */ 508 int fun_rxq_napi_poll(struct napi_struct *napi, int budget) 509 { 510 struct fun_irq *irq = container_of(napi, struct fun_irq, napi); 511 struct funeth_rxq *q = irq->rxq; 512 int work_done = budget - fun_process_cqes(q, budget); 513 u32 cq_db_val = q->cq_head; 514 515 if (unlikely(work_done >= budget)) 516 FUN_QSTAT_INC(q, rx_budget); 517 else if (napi_complete_done(napi, work_done)) 518 cq_db_val |= q->irq_db_val; 519 520 /* check whether to post new Rx buffers */ 521 if (q->rq_cons - q->rq_cons_db >= q->rq_db_thres) { 522 u64_stats_update_begin(&q->syncp); 523 q->stats.rx_bufs += q->rq_cons - q->rq_cons_db; 524 u64_stats_update_end(&q->syncp); 525 q->rq_cons_db = q->rq_cons; 526 writel((q->rq_cons - 1) & q->rq_mask, q->rq_db); 527 } 528 529 writel(cq_db_val, q->cq_db); 530 return work_done; 531 } 532 533 /* Free the Rx buffers of an Rx queue. */ 534 static void fun_rxq_free_bufs(struct funeth_rxq *q) 535 { 536 struct funeth_rxbuf *b = q->bufs; 537 unsigned int i; 538 539 for (i = 0; i <= q->rq_mask; i++, b++) 540 funeth_free_page(q, b); 541 542 funeth_free_page(q, &q->spare_buf); 543 q->cur_buf = NULL; 544 } 545 546 /* Initially provision an Rx queue with Rx buffers. */ 547 static int fun_rxq_alloc_bufs(struct funeth_rxq *q, int node) 548 { 549 struct funeth_rxbuf *b = q->bufs; 550 unsigned int i; 551 552 for (i = 0; i <= q->rq_mask; i++, b++) { 553 if (funeth_alloc_page(q, b, node, GFP_KERNEL)) { 554 fun_rxq_free_bufs(q); 555 return -ENOMEM; 556 } 557 q->rqes[i] = FUN_EPRQ_RQBUF_INIT(b->dma_addr); 558 } 559 q->cur_buf = q->bufs; 560 return 0; 561 } 562 563 /* Initialize a used-buffer cache of the given depth. */ 564 static int fun_rxq_init_cache(struct funeth_rx_cache *c, unsigned int depth, 565 int node) 566 { 567 c->mask = depth - 1; 568 c->bufs = kvzalloc_node(depth * sizeof(*c->bufs), GFP_KERNEL, node); 569 return c->bufs ? 0 : -ENOMEM; 570 } 571 572 /* Deallocate an Rx queue's used-buffer cache and its contents. */ 573 static void fun_rxq_free_cache(struct funeth_rxq *q) 574 { 575 struct funeth_rxbuf *b = q->cache.bufs; 576 unsigned int i; 577 578 for (i = 0; i <= q->cache.mask; i++, b++) 579 funeth_free_page(q, b); 580 581 kvfree(q->cache.bufs); 582 q->cache.bufs = NULL; 583 } 584 585 int fun_rxq_set_bpf(struct funeth_rxq *q, struct bpf_prog *prog) 586 { 587 struct funeth_priv *fp = netdev_priv(q->netdev); 588 struct fun_admin_epcq_req cmd; 589 u16 headroom; 590 int err; 591 592 headroom = prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM; 593 if (headroom != q->headroom) { 594 cmd.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_EPCQ, 595 sizeof(cmd)); 596 cmd.u.modify = 597 FUN_ADMIN_EPCQ_MODIFY_REQ_INIT(FUN_ADMIN_SUBOP_MODIFY, 598 0, q->hw_cqid, headroom); 599 err = fun_submit_admin_sync_cmd(fp->fdev, &cmd.common, NULL, 0, 600 0); 601 if (err) 602 return err; 603 q->headroom = headroom; 604 } 605 606 WRITE_ONCE(q->xdp_prog, prog); 607 return 0; 608 } 609 610 /* Create an Rx queue, allocating the host memory it needs. */ 611 static struct funeth_rxq *fun_rxq_create_sw(struct net_device *dev, 612 unsigned int qidx, 613 unsigned int ncqe, 614 unsigned int nrqe, 615 struct fun_irq *irq) 616 { 617 struct funeth_priv *fp = netdev_priv(dev); 618 struct funeth_rxq *q; 619 int err = -ENOMEM; 620 int numa_node; 621 622 numa_node = fun_irq_node(irq); 623 q = kzalloc_node(sizeof(*q), GFP_KERNEL, numa_node); 624 if (!q) 625 goto err; 626 627 q->qidx = qidx; 628 q->netdev = dev; 629 q->cq_mask = ncqe - 1; 630 q->rq_mask = nrqe - 1; 631 q->numa_node = numa_node; 632 q->rq_db_thres = nrqe / 4; 633 u64_stats_init(&q->syncp); 634 q->dma_dev = &fp->pdev->dev; 635 636 q->rqes = fun_alloc_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes), 637 sizeof(*q->bufs), false, numa_node, 638 &q->rq_dma_addr, (void **)&q->bufs, NULL); 639 if (!q->rqes) 640 goto free_q; 641 642 q->cqes = fun_alloc_ring_mem(q->dma_dev, ncqe, FUNETH_CQE_SIZE, 0, 643 false, numa_node, &q->cq_dma_addr, NULL, 644 NULL); 645 if (!q->cqes) 646 goto free_rqes; 647 648 err = fun_rxq_init_cache(&q->cache, nrqe, numa_node); 649 if (err) 650 goto free_cqes; 651 652 err = fun_rxq_alloc_bufs(q, numa_node); 653 if (err) 654 goto free_cache; 655 656 q->stats.rx_bufs = q->rq_mask; 657 q->init_state = FUN_QSTATE_INIT_SW; 658 return q; 659 660 free_cache: 661 fun_rxq_free_cache(q); 662 free_cqes: 663 dma_free_coherent(q->dma_dev, ncqe * FUNETH_CQE_SIZE, q->cqes, 664 q->cq_dma_addr); 665 free_rqes: 666 fun_free_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes), false, q->rqes, 667 q->rq_dma_addr, q->bufs); 668 free_q: 669 kfree(q); 670 err: 671 netdev_err(dev, "Unable to allocate memory for Rx queue %u\n", qidx); 672 return ERR_PTR(err); 673 } 674 675 static void fun_rxq_free_sw(struct funeth_rxq *q) 676 { 677 struct funeth_priv *fp = netdev_priv(q->netdev); 678 679 fun_rxq_free_cache(q); 680 fun_rxq_free_bufs(q); 681 fun_free_ring_mem(q->dma_dev, q->rq_mask + 1, sizeof(*q->rqes), false, 682 q->rqes, q->rq_dma_addr, q->bufs); 683 dma_free_coherent(q->dma_dev, (q->cq_mask + 1) * FUNETH_CQE_SIZE, 684 q->cqes, q->cq_dma_addr); 685 686 /* Before freeing the queue transfer key counters to the device. */ 687 fp->rx_packets += q->stats.rx_pkts; 688 fp->rx_bytes += q->stats.rx_bytes; 689 fp->rx_dropped += q->stats.rx_map_err + q->stats.rx_mem_drops; 690 691 kfree(q); 692 } 693 694 /* Create an Rx queue's resources on the device. */ 695 int fun_rxq_create_dev(struct funeth_rxq *q, struct fun_irq *irq) 696 { 697 struct funeth_priv *fp = netdev_priv(q->netdev); 698 unsigned int ncqe = q->cq_mask + 1; 699 unsigned int nrqe = q->rq_mask + 1; 700 int err; 701 702 err = xdp_rxq_info_reg(&q->xdp_rxq, q->netdev, q->qidx, 703 irq->napi.napi_id); 704 if (err) 705 goto out; 706 707 err = xdp_rxq_info_reg_mem_model(&q->xdp_rxq, MEM_TYPE_PAGE_SHARED, 708 NULL); 709 if (err) 710 goto xdp_unreg; 711 712 q->phase = 1; 713 q->irq_cnt = 0; 714 q->cq_head = 0; 715 q->rq_cons = 0; 716 q->rq_cons_db = 0; 717 q->buf_offset = 0; 718 q->napi = &irq->napi; 719 q->irq_db_val = fp->cq_irq_db; 720 q->next_cqe_info = cqe_to_info(q->cqes); 721 722 q->xdp_prog = fp->xdp_prog; 723 q->headroom = fp->xdp_prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM; 724 725 err = fun_sq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR | 726 FUN_ADMIN_EPSQ_CREATE_FLAG_RQ, 0, 727 FUN_HCI_ID_INVALID, 0, nrqe, q->rq_dma_addr, 0, 0, 728 0, 0, fp->fdev->kern_end_qid, PAGE_SHIFT, 729 &q->hw_sqid, &q->rq_db); 730 if (err) 731 goto xdp_unreg; 732 733 err = fun_cq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR | 734 FUN_ADMIN_EPCQ_CREATE_FLAG_RQ, 0, 735 q->hw_sqid, ilog2(FUNETH_CQE_SIZE), ncqe, 736 q->cq_dma_addr, q->headroom, FUN_RX_TAILROOM, 0, 0, 737 irq->irq_idx, 0, fp->fdev->kern_end_qid, 738 &q->hw_cqid, &q->cq_db); 739 if (err) 740 goto free_rq; 741 742 irq->rxq = q; 743 writel(q->rq_mask, q->rq_db); 744 q->init_state = FUN_QSTATE_INIT_FULL; 745 746 netif_info(fp, ifup, q->netdev, 747 "Rx queue %u, depth %u/%u, HW qid %u/%u, IRQ idx %u, node %d, headroom %u\n", 748 q->qidx, ncqe, nrqe, q->hw_cqid, q->hw_sqid, irq->irq_idx, 749 q->numa_node, q->headroom); 750 return 0; 751 752 free_rq: 753 fun_destroy_sq(fp->fdev, q->hw_sqid); 754 xdp_unreg: 755 xdp_rxq_info_unreg(&q->xdp_rxq); 756 out: 757 netdev_err(q->netdev, 758 "Failed to create Rx queue %u on device, error %d\n", 759 q->qidx, err); 760 return err; 761 } 762 763 static void fun_rxq_free_dev(struct funeth_rxq *q) 764 { 765 struct funeth_priv *fp = netdev_priv(q->netdev); 766 struct fun_irq *irq; 767 768 if (q->init_state < FUN_QSTATE_INIT_FULL) 769 return; 770 771 irq = container_of(q->napi, struct fun_irq, napi); 772 netif_info(fp, ifdown, q->netdev, 773 "Freeing Rx queue %u (id %u/%u), IRQ %u\n", 774 q->qidx, q->hw_cqid, q->hw_sqid, irq->irq_idx); 775 776 irq->rxq = NULL; 777 xdp_rxq_info_unreg(&q->xdp_rxq); 778 fun_destroy_sq(fp->fdev, q->hw_sqid); 779 fun_destroy_cq(fp->fdev, q->hw_cqid); 780 q->init_state = FUN_QSTATE_INIT_SW; 781 } 782 783 /* Create or advance an Rx queue, allocating all the host and device resources 784 * needed to reach the target state. 785 */ 786 int funeth_rxq_create(struct net_device *dev, unsigned int qidx, 787 unsigned int ncqe, unsigned int nrqe, struct fun_irq *irq, 788 int state, struct funeth_rxq **qp) 789 { 790 struct funeth_rxq *q = *qp; 791 int err; 792 793 if (!q) { 794 q = fun_rxq_create_sw(dev, qidx, ncqe, nrqe, irq); 795 if (IS_ERR(q)) 796 return PTR_ERR(q); 797 } 798 799 if (q->init_state >= state) 800 goto out; 801 802 err = fun_rxq_create_dev(q, irq); 803 if (err) { 804 if (!*qp) 805 fun_rxq_free_sw(q); 806 return err; 807 } 808 809 out: 810 *qp = q; 811 return 0; 812 } 813 814 /* Free Rx queue resources until it reaches the target state. */ 815 struct funeth_rxq *funeth_rxq_free(struct funeth_rxq *q, int state) 816 { 817 if (state < FUN_QSTATE_INIT_FULL) 818 fun_rxq_free_dev(q); 819 820 if (state == FUN_QSTATE_DESTROYED) { 821 fun_rxq_free_sw(q); 822 q = NULL; 823 } 824 825 return q; 826 } 827