1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 3 #include <linux/bpf.h> 4 #include <linux/crash_dump.h> 5 #include <linux/etherdevice.h> 6 #include <linux/ethtool.h> 7 #include <linux/filter.h> 8 #include <linux/idr.h> 9 #include <linux/if_vlan.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/pci.h> 13 #include <linux/rtnetlink.h> 14 #include <linux/inetdevice.h> 15 16 #include "funeth.h" 17 #include "funeth_devlink.h" 18 #include "funeth_ktls.h" 19 #include "fun_port.h" 20 #include "fun_queue.h" 21 #include "funeth_txrx.h" 22 23 #define ADMIN_SQ_DEPTH 32 24 #define ADMIN_CQ_DEPTH 64 25 #define ADMIN_RQ_DEPTH 16 26 27 /* Default number of Tx/Rx queues. */ 28 #define FUN_DFLT_QUEUES 16U 29 30 enum { 31 FUN_SERV_RES_CHANGE = FUN_SERV_FIRST_AVAIL, 32 FUN_SERV_DEL_PORTS, 33 }; 34 35 static const struct pci_device_id funeth_id_table[] = { 36 { PCI_VDEVICE(FUNGIBLE, 0x0101) }, 37 { PCI_VDEVICE(FUNGIBLE, 0x0181) }, 38 { 0, } 39 }; 40 41 /* Issue a port write admin command with @n key/value pairs. */ 42 static int fun_port_write_cmds(struct funeth_priv *fp, unsigned int n, 43 const int *keys, const u64 *data) 44 { 45 unsigned int cmd_size, i; 46 union { 47 struct fun_admin_port_req req; 48 struct fun_admin_port_rsp rsp; 49 u8 v[ADMIN_SQE_SIZE]; 50 } cmd; 51 52 cmd_size = offsetof(struct fun_admin_port_req, u.write.write48) + 53 n * sizeof(struct fun_admin_write48_req); 54 if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN) 55 return -EINVAL; 56 57 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT, 58 cmd_size); 59 cmd.req.u.write = 60 FUN_ADMIN_PORT_WRITE_REQ_INIT(FUN_ADMIN_SUBOP_WRITE, 0, 61 fp->netdev->dev_port); 62 for (i = 0; i < n; i++) 63 cmd.req.u.write.write48[i] = 64 FUN_ADMIN_WRITE48_REQ_INIT(keys[i], data[i]); 65 66 return fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, 67 &cmd.rsp, cmd_size, 0); 68 } 69 70 int fun_port_write_cmd(struct funeth_priv *fp, int key, u64 data) 71 { 72 return fun_port_write_cmds(fp, 1, &key, &data); 73 } 74 75 /* Issue a port read admin command with @n key/value pairs. */ 76 static int fun_port_read_cmds(struct funeth_priv *fp, unsigned int n, 77 const int *keys, u64 *data) 78 { 79 const struct fun_admin_read48_rsp *r48rsp; 80 unsigned int cmd_size, i; 81 int rc; 82 union { 83 struct fun_admin_port_req req; 84 struct fun_admin_port_rsp rsp; 85 u8 v[ADMIN_SQE_SIZE]; 86 } cmd; 87 88 cmd_size = offsetof(struct fun_admin_port_req, u.read.read48) + 89 n * sizeof(struct fun_admin_read48_req); 90 if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN) 91 return -EINVAL; 92 93 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT, 94 cmd_size); 95 cmd.req.u.read = 96 FUN_ADMIN_PORT_READ_REQ_INIT(FUN_ADMIN_SUBOP_READ, 0, 97 fp->netdev->dev_port); 98 for (i = 0; i < n; i++) 99 cmd.req.u.read.read48[i] = FUN_ADMIN_READ48_REQ_INIT(keys[i]); 100 101 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, 102 &cmd.rsp, cmd_size, 0); 103 if (rc) 104 return rc; 105 106 for (r48rsp = cmd.rsp.u.read.read48, i = 0; i < n; i++, r48rsp++) { 107 data[i] = FUN_ADMIN_READ48_RSP_DATA_G(r48rsp->key_to_data); 108 dev_dbg(fp->fdev->dev, 109 "port_read_rsp lport=%u (key_to_data=0x%llx) key=%d data:%lld retval:%lld", 110 fp->lport, r48rsp->key_to_data, keys[i], data[i], 111 FUN_ADMIN_READ48_RSP_RET_G(r48rsp->key_to_data)); 112 } 113 return 0; 114 } 115 116 int fun_port_read_cmd(struct funeth_priv *fp, int key, u64 *data) 117 { 118 return fun_port_read_cmds(fp, 1, &key, data); 119 } 120 121 static void fun_report_link(struct net_device *netdev) 122 { 123 if (netif_carrier_ok(netdev)) { 124 const struct funeth_priv *fp = netdev_priv(netdev); 125 const char *fec = "", *pause = ""; 126 int speed = fp->link_speed; 127 char unit = 'M'; 128 129 if (fp->link_speed >= SPEED_1000) { 130 speed /= 1000; 131 unit = 'G'; 132 } 133 134 if (fp->active_fec & FUN_PORT_FEC_RS) 135 fec = ", RS-FEC"; 136 else if (fp->active_fec & FUN_PORT_FEC_FC) 137 fec = ", BASER-FEC"; 138 139 if ((fp->active_fc & FUN_PORT_CAP_PAUSE_MASK) == FUN_PORT_CAP_PAUSE_MASK) 140 pause = ", Tx/Rx PAUSE"; 141 else if (fp->active_fc & FUN_PORT_CAP_RX_PAUSE) 142 pause = ", Rx PAUSE"; 143 else if (fp->active_fc & FUN_PORT_CAP_TX_PAUSE) 144 pause = ", Tx PAUSE"; 145 146 netdev_info(netdev, "Link up at %d %cb/s full-duplex%s%s\n", 147 speed, unit, pause, fec); 148 } else { 149 netdev_info(netdev, "Link down\n"); 150 } 151 } 152 153 static int fun_adi_write(struct fun_dev *fdev, enum fun_admin_adi_attr attr, 154 unsigned int adi_id, const struct fun_adi_param *param) 155 { 156 struct fun_admin_adi_req req = { 157 .common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ADI, 158 sizeof(req)), 159 .u.write.subop = FUN_ADMIN_SUBOP_WRITE, 160 .u.write.attribute = attr, 161 .u.write.id = cpu_to_be32(adi_id), 162 .u.write.param = *param 163 }; 164 165 return fun_submit_admin_sync_cmd(fdev, &req.common, NULL, 0, 0); 166 } 167 168 /* Configure RSS for the given port. @op determines whether a new RSS context 169 * is to be created or whether an existing one should be reconfigured. The 170 * remaining parameters specify the hashing algorithm, key, and indirection 171 * table. 172 * 173 * This initiates packet delivery to the Rx queues set in the indirection 174 * table. 175 */ 176 int fun_config_rss(struct net_device *dev, int algo, const u8 *key, 177 const u32 *qtable, u8 op) 178 { 179 struct funeth_priv *fp = netdev_priv(dev); 180 unsigned int table_len = fp->indir_table_nentries; 181 unsigned int len = FUN_ETH_RSS_MAX_KEY_SIZE + sizeof(u32) * table_len; 182 struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs); 183 union { 184 struct { 185 struct fun_admin_rss_req req; 186 struct fun_dataop_gl gl; 187 }; 188 struct fun_admin_generic_create_rsp rsp; 189 } cmd; 190 __be32 *indir_tab; 191 u16 flags; 192 int rc; 193 194 if (op != FUN_ADMIN_SUBOP_CREATE && fp->rss_hw_id == FUN_HCI_ID_INVALID) 195 return -EINVAL; 196 197 flags = op == FUN_ADMIN_SUBOP_CREATE ? 198 FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR : 0; 199 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_RSS, 200 sizeof(cmd)); 201 cmd.req.u.create = 202 FUN_ADMIN_RSS_CREATE_REQ_INIT(op, flags, fp->rss_hw_id, 203 dev->dev_port, algo, 204 FUN_ETH_RSS_MAX_KEY_SIZE, 205 table_len, 0, 206 FUN_ETH_RSS_MAX_KEY_SIZE); 207 cmd.req.u.create.dataop = FUN_DATAOP_HDR_INIT(1, 0, 1, 0, len); 208 fun_dataop_gl_init(&cmd.gl, 0, 0, len, fp->rss_dma_addr); 209 210 /* write the key and indirection table into the RSS DMA area */ 211 memcpy(fp->rss_cfg, key, FUN_ETH_RSS_MAX_KEY_SIZE); 212 indir_tab = fp->rss_cfg + FUN_ETH_RSS_MAX_KEY_SIZE; 213 for (rc = 0; rc < table_len; rc++) 214 *indir_tab++ = cpu_to_be32(rxqs[*qtable++]->hw_cqid); 215 216 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, 217 &cmd.rsp, sizeof(cmd.rsp), 0); 218 if (!rc && op == FUN_ADMIN_SUBOP_CREATE) 219 fp->rss_hw_id = be32_to_cpu(cmd.rsp.id); 220 return rc; 221 } 222 223 /* Destroy the HW RSS conntext associated with the given port. This also stops 224 * all packet delivery to our Rx queues. 225 */ 226 static void fun_destroy_rss(struct funeth_priv *fp) 227 { 228 if (fp->rss_hw_id != FUN_HCI_ID_INVALID) { 229 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_RSS, 0, fp->rss_hw_id); 230 fp->rss_hw_id = FUN_HCI_ID_INVALID; 231 } 232 } 233 234 static void fun_irq_aff_notify(struct irq_affinity_notify *notify, 235 const cpumask_t *mask) 236 { 237 struct fun_irq *p = container_of(notify, struct fun_irq, aff_notify); 238 239 cpumask_copy(&p->affinity_mask, mask); 240 } 241 242 static void fun_irq_aff_release(struct kref __always_unused *ref) 243 { 244 } 245 246 /* Allocate an IRQ structure, assign an MSI-X index and initial affinity to it, 247 * and add it to the IRQ XArray. 248 */ 249 static struct fun_irq *fun_alloc_qirq(struct funeth_priv *fp, unsigned int idx, 250 int node, unsigned int xa_idx_offset) 251 { 252 struct fun_irq *irq; 253 int cpu, res; 254 255 cpu = cpumask_local_spread(idx, node); 256 node = cpu_to_mem(cpu); 257 258 irq = kzalloc_node(sizeof(*irq), GFP_KERNEL, node); 259 if (!irq) 260 return ERR_PTR(-ENOMEM); 261 262 res = fun_reserve_irqs(fp->fdev, 1, &irq->irq_idx); 263 if (res != 1) 264 goto free_irq; 265 266 res = xa_insert(&fp->irqs, idx + xa_idx_offset, irq, GFP_KERNEL); 267 if (res) 268 goto release_irq; 269 270 irq->irq = pci_irq_vector(fp->pdev, irq->irq_idx); 271 cpumask_set_cpu(cpu, &irq->affinity_mask); 272 irq->aff_notify.notify = fun_irq_aff_notify; 273 irq->aff_notify.release = fun_irq_aff_release; 274 irq->state = FUN_IRQ_INIT; 275 return irq; 276 277 release_irq: 278 fun_release_irqs(fp->fdev, 1, &irq->irq_idx); 279 free_irq: 280 kfree(irq); 281 return ERR_PTR(res); 282 } 283 284 static void fun_free_qirq(struct funeth_priv *fp, struct fun_irq *irq) 285 { 286 netif_napi_del(&irq->napi); 287 fun_release_irqs(fp->fdev, 1, &irq->irq_idx); 288 kfree(irq); 289 } 290 291 /* Release the IRQs reserved for Tx/Rx queues that aren't being used. */ 292 static void fun_prune_queue_irqs(struct net_device *dev) 293 { 294 struct funeth_priv *fp = netdev_priv(dev); 295 unsigned int nreleased = 0; 296 struct fun_irq *irq; 297 unsigned long idx; 298 299 xa_for_each(&fp->irqs, idx, irq) { 300 if (irq->txq || irq->rxq) /* skip those in use */ 301 continue; 302 303 xa_erase(&fp->irqs, idx); 304 fun_free_qirq(fp, irq); 305 nreleased++; 306 if (idx < fp->rx_irq_ofst) 307 fp->num_tx_irqs--; 308 else 309 fp->num_rx_irqs--; 310 } 311 netif_info(fp, intr, dev, "Released %u queue IRQs\n", nreleased); 312 } 313 314 /* Reserve IRQs, one per queue, to acommodate the requested queue numbers @ntx 315 * and @nrx. IRQs are added incrementally to those we already have. 316 * We hold on to allocated IRQs until garbage collection of unused IRQs is 317 * separately requested. 318 */ 319 static int fun_alloc_queue_irqs(struct net_device *dev, unsigned int ntx, 320 unsigned int nrx) 321 { 322 struct funeth_priv *fp = netdev_priv(dev); 323 int node = dev_to_node(&fp->pdev->dev); 324 struct fun_irq *irq; 325 unsigned int i; 326 327 for (i = fp->num_tx_irqs; i < ntx; i++) { 328 irq = fun_alloc_qirq(fp, i, node, 0); 329 if (IS_ERR(irq)) 330 return PTR_ERR(irq); 331 332 fp->num_tx_irqs++; 333 netif_tx_napi_add(dev, &irq->napi, fun_txq_napi_poll, 334 NAPI_POLL_WEIGHT); 335 } 336 337 for (i = fp->num_rx_irqs; i < nrx; i++) { 338 irq = fun_alloc_qirq(fp, i, node, fp->rx_irq_ofst); 339 if (IS_ERR(irq)) 340 return PTR_ERR(irq); 341 342 fp->num_rx_irqs++; 343 netif_napi_add(dev, &irq->napi, fun_rxq_napi_poll, 344 NAPI_POLL_WEIGHT); 345 } 346 347 netif_info(fp, intr, dev, "Reserved %u/%u IRQs for Tx/Rx queues\n", 348 ntx, nrx); 349 return 0; 350 } 351 352 static void free_txqs(struct funeth_txq **txqs, unsigned int nqs, 353 unsigned int start, int state) 354 { 355 unsigned int i; 356 357 for (i = start; i < nqs && txqs[i]; i++) 358 txqs[i] = funeth_txq_free(txqs[i], state); 359 } 360 361 static int alloc_txqs(struct net_device *dev, struct funeth_txq **txqs, 362 unsigned int nqs, unsigned int depth, unsigned int start, 363 int state) 364 { 365 struct funeth_priv *fp = netdev_priv(dev); 366 unsigned int i; 367 int err; 368 369 for (i = start; i < nqs; i++) { 370 err = funeth_txq_create(dev, i, depth, xa_load(&fp->irqs, i), 371 state, &txqs[i]); 372 if (err) { 373 free_txqs(txqs, nqs, start, FUN_QSTATE_DESTROYED); 374 return err; 375 } 376 } 377 return 0; 378 } 379 380 static void free_rxqs(struct funeth_rxq **rxqs, unsigned int nqs, 381 unsigned int start, int state) 382 { 383 unsigned int i; 384 385 for (i = start; i < nqs && rxqs[i]; i++) 386 rxqs[i] = funeth_rxq_free(rxqs[i], state); 387 } 388 389 static int alloc_rxqs(struct net_device *dev, struct funeth_rxq **rxqs, 390 unsigned int nqs, unsigned int ncqe, unsigned int nrqe, 391 unsigned int start, int state) 392 { 393 struct funeth_priv *fp = netdev_priv(dev); 394 unsigned int i; 395 int err; 396 397 for (i = start; i < nqs; i++) { 398 err = funeth_rxq_create(dev, i, ncqe, nrqe, 399 xa_load(&fp->irqs, i + fp->rx_irq_ofst), 400 state, &rxqs[i]); 401 if (err) { 402 free_rxqs(rxqs, nqs, start, FUN_QSTATE_DESTROYED); 403 return err; 404 } 405 } 406 return 0; 407 } 408 409 static void free_xdpqs(struct funeth_txq **xdpqs, unsigned int nqs, 410 unsigned int start, int state) 411 { 412 unsigned int i; 413 414 for (i = start; i < nqs && xdpqs[i]; i++) 415 xdpqs[i] = funeth_txq_free(xdpqs[i], state); 416 417 if (state == FUN_QSTATE_DESTROYED) 418 kfree(xdpqs); 419 } 420 421 static struct funeth_txq **alloc_xdpqs(struct net_device *dev, unsigned int nqs, 422 unsigned int depth, unsigned int start, 423 int state) 424 { 425 struct funeth_txq **xdpqs; 426 unsigned int i; 427 int err; 428 429 xdpqs = kcalloc(nqs, sizeof(*xdpqs), GFP_KERNEL); 430 if (!xdpqs) 431 return ERR_PTR(-ENOMEM); 432 433 for (i = start; i < nqs; i++) { 434 err = funeth_txq_create(dev, i, depth, NULL, state, &xdpqs[i]); 435 if (err) { 436 free_xdpqs(xdpqs, nqs, start, FUN_QSTATE_DESTROYED); 437 return ERR_PTR(err); 438 } 439 } 440 return xdpqs; 441 } 442 443 static void fun_free_rings(struct net_device *netdev, struct fun_qset *qset) 444 { 445 struct funeth_priv *fp = netdev_priv(netdev); 446 struct funeth_txq **xdpqs = qset->xdpqs; 447 struct funeth_rxq **rxqs = qset->rxqs; 448 449 /* qset may not specify any queues to operate on. In that case the 450 * currently installed queues are implied. 451 */ 452 if (!rxqs) { 453 rxqs = rtnl_dereference(fp->rxqs); 454 xdpqs = rtnl_dereference(fp->xdpqs); 455 qset->txqs = fp->txqs; 456 qset->nrxqs = netdev->real_num_rx_queues; 457 qset->ntxqs = netdev->real_num_tx_queues; 458 qset->nxdpqs = fp->num_xdpqs; 459 } 460 if (!rxqs) 461 return; 462 463 if (rxqs == rtnl_dereference(fp->rxqs)) { 464 rcu_assign_pointer(fp->rxqs, NULL); 465 rcu_assign_pointer(fp->xdpqs, NULL); 466 synchronize_net(); 467 fp->txqs = NULL; 468 } 469 470 free_rxqs(rxqs, qset->nrxqs, qset->rxq_start, qset->state); 471 free_txqs(qset->txqs, qset->ntxqs, qset->txq_start, qset->state); 472 free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, qset->state); 473 if (qset->state == FUN_QSTATE_DESTROYED) 474 kfree(rxqs); 475 476 /* Tell the caller which queues were operated on. */ 477 qset->rxqs = rxqs; 478 qset->xdpqs = xdpqs; 479 } 480 481 static int fun_alloc_rings(struct net_device *netdev, struct fun_qset *qset) 482 { 483 struct funeth_txq **xdpqs = NULL, **txqs; 484 struct funeth_rxq **rxqs; 485 int err; 486 487 err = fun_alloc_queue_irqs(netdev, qset->ntxqs, qset->nrxqs); 488 if (err) 489 return err; 490 491 rxqs = kcalloc(qset->ntxqs + qset->nrxqs, sizeof(*rxqs), GFP_KERNEL); 492 if (!rxqs) 493 return -ENOMEM; 494 495 if (qset->nxdpqs) { 496 xdpqs = alloc_xdpqs(netdev, qset->nxdpqs, qset->sq_depth, 497 qset->xdpq_start, qset->state); 498 if (IS_ERR(xdpqs)) { 499 err = PTR_ERR(xdpqs); 500 goto free_qvec; 501 } 502 } 503 504 txqs = (struct funeth_txq **)&rxqs[qset->nrxqs]; 505 err = alloc_txqs(netdev, txqs, qset->ntxqs, qset->sq_depth, 506 qset->txq_start, qset->state); 507 if (err) 508 goto free_xdpqs; 509 510 err = alloc_rxqs(netdev, rxqs, qset->nrxqs, qset->cq_depth, 511 qset->rq_depth, qset->rxq_start, qset->state); 512 if (err) 513 goto free_txqs; 514 515 qset->rxqs = rxqs; 516 qset->txqs = txqs; 517 qset->xdpqs = xdpqs; 518 return 0; 519 520 free_txqs: 521 free_txqs(txqs, qset->ntxqs, qset->txq_start, FUN_QSTATE_DESTROYED); 522 free_xdpqs: 523 free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, FUN_QSTATE_DESTROYED); 524 free_qvec: 525 kfree(rxqs); 526 return err; 527 } 528 529 /* Take queues to the next level. Presently this means creating them on the 530 * device. 531 */ 532 static int fun_advance_ring_state(struct net_device *dev, struct fun_qset *qset) 533 { 534 struct funeth_priv *fp = netdev_priv(dev); 535 int i, err; 536 537 for (i = 0; i < qset->nrxqs; i++) { 538 err = fun_rxq_create_dev(qset->rxqs[i], 539 xa_load(&fp->irqs, 540 i + fp->rx_irq_ofst)); 541 if (err) 542 goto out; 543 } 544 545 for (i = 0; i < qset->ntxqs; i++) { 546 err = fun_txq_create_dev(qset->txqs[i], xa_load(&fp->irqs, i)); 547 if (err) 548 goto out; 549 } 550 551 for (i = 0; i < qset->nxdpqs; i++) { 552 err = fun_txq_create_dev(qset->xdpqs[i], NULL); 553 if (err) 554 goto out; 555 } 556 557 return 0; 558 559 out: 560 fun_free_rings(dev, qset); 561 return err; 562 } 563 564 static int fun_port_create(struct net_device *netdev) 565 { 566 struct funeth_priv *fp = netdev_priv(netdev); 567 union { 568 struct fun_admin_port_req req; 569 struct fun_admin_port_rsp rsp; 570 } cmd; 571 int rc; 572 573 if (fp->lport != INVALID_LPORT) 574 return 0; 575 576 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT, 577 sizeof(cmd.req)); 578 cmd.req.u.create = 579 FUN_ADMIN_PORT_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE, 0, 580 netdev->dev_port); 581 582 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp, 583 sizeof(cmd.rsp), 0); 584 585 if (!rc) 586 fp->lport = be16_to_cpu(cmd.rsp.u.create.lport); 587 return rc; 588 } 589 590 static int fun_port_destroy(struct net_device *netdev) 591 { 592 struct funeth_priv *fp = netdev_priv(netdev); 593 594 if (fp->lport == INVALID_LPORT) 595 return 0; 596 597 fp->lport = INVALID_LPORT; 598 return fun_res_destroy(fp->fdev, FUN_ADMIN_OP_PORT, 0, 599 netdev->dev_port); 600 } 601 602 static int fun_eth_create(struct funeth_priv *fp) 603 { 604 union { 605 struct fun_admin_eth_req req; 606 struct fun_admin_generic_create_rsp rsp; 607 } cmd; 608 int rc; 609 610 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ETH, 611 sizeof(cmd.req)); 612 cmd.req.u.create = FUN_ADMIN_ETH_CREATE_REQ_INIT( 613 FUN_ADMIN_SUBOP_CREATE, 614 FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR, 615 0, fp->netdev->dev_port); 616 617 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp, 618 sizeof(cmd.rsp), 0); 619 return rc ? rc : be32_to_cpu(cmd.rsp.id); 620 } 621 622 static int fun_vi_create(struct funeth_priv *fp) 623 { 624 struct fun_admin_vi_req req = { 625 .common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_VI, 626 sizeof(req)), 627 .u.create = FUN_ADMIN_VI_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE, 628 0, 629 fp->netdev->dev_port, 630 fp->netdev->dev_port) 631 }; 632 633 return fun_submit_admin_sync_cmd(fp->fdev, &req.common, NULL, 0, 0); 634 } 635 636 /* Helper to create an ETH flow and bind an SQ to it. 637 * Returns the ETH id (>= 0) on success or a negative error. 638 */ 639 int fun_create_and_bind_tx(struct funeth_priv *fp, u32 sqid) 640 { 641 int rc, ethid; 642 643 ethid = fun_eth_create(fp); 644 if (ethid >= 0) { 645 rc = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_EPSQ, sqid, 646 FUN_ADMIN_BIND_TYPE_ETH, ethid); 647 if (rc) { 648 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_ETH, 0, ethid); 649 ethid = rc; 650 } 651 } 652 return ethid; 653 } 654 655 static irqreturn_t fun_queue_irq_handler(int irq, void *data) 656 { 657 struct fun_irq *p = data; 658 659 if (p->rxq) { 660 prefetch(p->rxq->next_cqe_info); 661 p->rxq->irq_cnt++; 662 } 663 napi_schedule_irqoff(&p->napi); 664 return IRQ_HANDLED; 665 } 666 667 static int fun_enable_irqs(struct net_device *dev) 668 { 669 struct funeth_priv *fp = netdev_priv(dev); 670 unsigned long idx, last; 671 unsigned int qidx; 672 struct fun_irq *p; 673 const char *qtype; 674 int err; 675 676 xa_for_each(&fp->irqs, idx, p) { 677 if (p->txq) { 678 qtype = "tx"; 679 qidx = p->txq->qidx; 680 } else if (p->rxq) { 681 qtype = "rx"; 682 qidx = p->rxq->qidx; 683 } else { 684 continue; 685 } 686 687 if (p->state != FUN_IRQ_INIT) 688 continue; 689 690 snprintf(p->name, sizeof(p->name) - 1, "%s-%s-%u", dev->name, 691 qtype, qidx); 692 err = request_irq(p->irq, fun_queue_irq_handler, 0, p->name, p); 693 if (err) { 694 netdev_err(dev, "Failed to allocate IRQ %u, err %d\n", 695 p->irq, err); 696 goto unroll; 697 } 698 p->state = FUN_IRQ_REQUESTED; 699 } 700 701 xa_for_each(&fp->irqs, idx, p) { 702 if (p->state != FUN_IRQ_REQUESTED) 703 continue; 704 irq_set_affinity_notifier(p->irq, &p->aff_notify); 705 irq_set_affinity_and_hint(p->irq, &p->affinity_mask); 706 napi_enable(&p->napi); 707 p->state = FUN_IRQ_ENABLED; 708 } 709 710 return 0; 711 712 unroll: 713 last = idx - 1; 714 xa_for_each_range(&fp->irqs, idx, p, 0, last) 715 if (p->state == FUN_IRQ_REQUESTED) { 716 free_irq(p->irq, p); 717 p->state = FUN_IRQ_INIT; 718 } 719 720 return err; 721 } 722 723 static void fun_disable_one_irq(struct fun_irq *irq) 724 { 725 napi_disable(&irq->napi); 726 irq_set_affinity_notifier(irq->irq, NULL); 727 irq_update_affinity_hint(irq->irq, NULL); 728 free_irq(irq->irq, irq); 729 irq->state = FUN_IRQ_INIT; 730 } 731 732 static void fun_disable_irqs(struct net_device *dev) 733 { 734 struct funeth_priv *fp = netdev_priv(dev); 735 struct fun_irq *p; 736 unsigned long idx; 737 738 xa_for_each(&fp->irqs, idx, p) 739 if (p->state == FUN_IRQ_ENABLED) 740 fun_disable_one_irq(p); 741 } 742 743 static void fun_down(struct net_device *dev, struct fun_qset *qset) 744 { 745 struct funeth_priv *fp = netdev_priv(dev); 746 747 /* If we don't have queues the data path is already down. 748 * Note netif_running(dev) may be true. 749 */ 750 if (!rcu_access_pointer(fp->rxqs)) 751 return; 752 753 /* It is also down if the queues aren't on the device. */ 754 if (fp->txqs[0]->init_state >= FUN_QSTATE_INIT_FULL) { 755 netif_info(fp, ifdown, dev, 756 "Tearing down data path on device\n"); 757 fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_DISABLE, 0); 758 759 netif_carrier_off(dev); 760 netif_tx_disable(dev); 761 762 fun_destroy_rss(fp); 763 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port); 764 fun_disable_irqs(dev); 765 } 766 767 fun_free_rings(dev, qset); 768 } 769 770 static int fun_up(struct net_device *dev, struct fun_qset *qset) 771 { 772 static const int port_keys[] = { 773 FUN_ADMIN_PORT_KEY_STATS_DMA_LOW, 774 FUN_ADMIN_PORT_KEY_STATS_DMA_HIGH, 775 FUN_ADMIN_PORT_KEY_ENABLE 776 }; 777 778 struct funeth_priv *fp = netdev_priv(dev); 779 u64 vals[] = { 780 lower_32_bits(fp->stats_dma_addr), 781 upper_32_bits(fp->stats_dma_addr), 782 FUN_PORT_FLAG_ENABLE_NOTIFY 783 }; 784 int err; 785 786 netif_info(fp, ifup, dev, "Setting up data path on device\n"); 787 788 if (qset->rxqs[0]->init_state < FUN_QSTATE_INIT_FULL) { 789 err = fun_advance_ring_state(dev, qset); 790 if (err) 791 return err; 792 } 793 794 err = fun_vi_create(fp); 795 if (err) 796 goto free_queues; 797 798 fp->txqs = qset->txqs; 799 rcu_assign_pointer(fp->rxqs, qset->rxqs); 800 rcu_assign_pointer(fp->xdpqs, qset->xdpqs); 801 802 err = fun_enable_irqs(dev); 803 if (err) 804 goto destroy_vi; 805 806 if (fp->rss_cfg) { 807 err = fun_config_rss(dev, fp->hash_algo, fp->rss_key, 808 fp->indir_table, FUN_ADMIN_SUBOP_CREATE); 809 } else { 810 /* The non-RSS case has only 1 queue. */ 811 err = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_VI, dev->dev_port, 812 FUN_ADMIN_BIND_TYPE_EPCQ, 813 qset->rxqs[0]->hw_cqid); 814 } 815 if (err) 816 goto disable_irqs; 817 818 err = fun_port_write_cmds(fp, 3, port_keys, vals); 819 if (err) 820 goto free_rss; 821 822 netif_tx_start_all_queues(dev); 823 return 0; 824 825 free_rss: 826 fun_destroy_rss(fp); 827 disable_irqs: 828 fun_disable_irqs(dev); 829 destroy_vi: 830 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port); 831 free_queues: 832 fun_free_rings(dev, qset); 833 return err; 834 } 835 836 static int funeth_open(struct net_device *netdev) 837 { 838 struct funeth_priv *fp = netdev_priv(netdev); 839 struct fun_qset qset = { 840 .nrxqs = netdev->real_num_rx_queues, 841 .ntxqs = netdev->real_num_tx_queues, 842 .nxdpqs = fp->num_xdpqs, 843 .cq_depth = fp->cq_depth, 844 .rq_depth = fp->rq_depth, 845 .sq_depth = fp->sq_depth, 846 .state = FUN_QSTATE_INIT_FULL, 847 }; 848 int rc; 849 850 rc = fun_alloc_rings(netdev, &qset); 851 if (rc) 852 return rc; 853 854 rc = fun_up(netdev, &qset); 855 if (rc) { 856 qset.state = FUN_QSTATE_DESTROYED; 857 fun_free_rings(netdev, &qset); 858 } 859 860 return rc; 861 } 862 863 static int funeth_close(struct net_device *netdev) 864 { 865 struct fun_qset qset = { .state = FUN_QSTATE_DESTROYED }; 866 867 fun_down(netdev, &qset); 868 return 0; 869 } 870 871 static void fun_get_stats64(struct net_device *netdev, 872 struct rtnl_link_stats64 *stats) 873 { 874 struct funeth_priv *fp = netdev_priv(netdev); 875 struct funeth_txq **xdpqs; 876 struct funeth_rxq **rxqs; 877 unsigned int i, start; 878 879 stats->tx_packets = fp->tx_packets; 880 stats->tx_bytes = fp->tx_bytes; 881 stats->tx_dropped = fp->tx_dropped; 882 883 stats->rx_packets = fp->rx_packets; 884 stats->rx_bytes = fp->rx_bytes; 885 stats->rx_dropped = fp->rx_dropped; 886 887 rcu_read_lock(); 888 rxqs = rcu_dereference(fp->rxqs); 889 if (!rxqs) 890 goto unlock; 891 892 for (i = 0; i < netdev->real_num_tx_queues; i++) { 893 struct funeth_txq_stats txs; 894 895 FUN_QSTAT_READ(fp->txqs[i], start, txs); 896 stats->tx_packets += txs.tx_pkts; 897 stats->tx_bytes += txs.tx_bytes; 898 stats->tx_dropped += txs.tx_map_err; 899 } 900 901 for (i = 0; i < netdev->real_num_rx_queues; i++) { 902 struct funeth_rxq_stats rxs; 903 904 FUN_QSTAT_READ(rxqs[i], start, rxs); 905 stats->rx_packets += rxs.rx_pkts; 906 stats->rx_bytes += rxs.rx_bytes; 907 stats->rx_dropped += rxs.rx_map_err + rxs.rx_mem_drops; 908 } 909 910 xdpqs = rcu_dereference(fp->xdpqs); 911 if (!xdpqs) 912 goto unlock; 913 914 for (i = 0; i < fp->num_xdpqs; i++) { 915 struct funeth_txq_stats txs; 916 917 FUN_QSTAT_READ(xdpqs[i], start, txs); 918 stats->tx_packets += txs.tx_pkts; 919 stats->tx_bytes += txs.tx_bytes; 920 } 921 unlock: 922 rcu_read_unlock(); 923 } 924 925 static int fun_change_mtu(struct net_device *netdev, int new_mtu) 926 { 927 struct funeth_priv *fp = netdev_priv(netdev); 928 int rc; 929 930 rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MTU, new_mtu); 931 if (!rc) 932 netdev->mtu = new_mtu; 933 return rc; 934 } 935 936 static int fun_set_macaddr(struct net_device *netdev, void *addr) 937 { 938 struct funeth_priv *fp = netdev_priv(netdev); 939 struct sockaddr *saddr = addr; 940 int rc; 941 942 if (!is_valid_ether_addr(saddr->sa_data)) 943 return -EADDRNOTAVAIL; 944 945 if (ether_addr_equal(netdev->dev_addr, saddr->sa_data)) 946 return 0; 947 948 rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR, 949 ether_addr_to_u64(saddr->sa_data)); 950 if (!rc) 951 eth_hw_addr_set(netdev, saddr->sa_data); 952 return rc; 953 } 954 955 static int fun_get_port_attributes(struct net_device *netdev) 956 { 957 static const int keys[] = { 958 FUN_ADMIN_PORT_KEY_MACADDR, FUN_ADMIN_PORT_KEY_CAPABILITIES, 959 FUN_ADMIN_PORT_KEY_ADVERT, FUN_ADMIN_PORT_KEY_MTU 960 }; 961 static const int phys_keys[] = { 962 FUN_ADMIN_PORT_KEY_LANE_ATTRS, 963 }; 964 965 struct funeth_priv *fp = netdev_priv(netdev); 966 u64 data[ARRAY_SIZE(keys)]; 967 u8 mac[ETH_ALEN]; 968 int i, rc; 969 970 rc = fun_port_read_cmds(fp, ARRAY_SIZE(keys), keys, data); 971 if (rc) 972 return rc; 973 974 for (i = 0; i < ARRAY_SIZE(keys); i++) { 975 switch (keys[i]) { 976 case FUN_ADMIN_PORT_KEY_MACADDR: 977 u64_to_ether_addr(data[i], mac); 978 if (is_zero_ether_addr(mac)) { 979 eth_hw_addr_random(netdev); 980 } else if (is_valid_ether_addr(mac)) { 981 eth_hw_addr_set(netdev, mac); 982 } else { 983 netdev_err(netdev, 984 "device provided a bad MAC address %pM\n", 985 mac); 986 return -EINVAL; 987 } 988 break; 989 990 case FUN_ADMIN_PORT_KEY_CAPABILITIES: 991 fp->port_caps = data[i]; 992 break; 993 994 case FUN_ADMIN_PORT_KEY_ADVERT: 995 fp->advertising = data[i]; 996 break; 997 998 case FUN_ADMIN_PORT_KEY_MTU: 999 netdev->mtu = data[i]; 1000 break; 1001 } 1002 } 1003 1004 if (!(fp->port_caps & FUN_PORT_CAP_VPORT)) { 1005 rc = fun_port_read_cmds(fp, ARRAY_SIZE(phys_keys), phys_keys, 1006 data); 1007 if (rc) 1008 return rc; 1009 1010 fp->lane_attrs = data[0]; 1011 } 1012 1013 if (netdev->addr_assign_type == NET_ADDR_RANDOM) 1014 return fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR, 1015 ether_addr_to_u64(netdev->dev_addr)); 1016 return 0; 1017 } 1018 1019 static int fun_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1020 { 1021 const struct funeth_priv *fp = netdev_priv(dev); 1022 1023 return copy_to_user(ifr->ifr_data, &fp->hwtstamp_cfg, 1024 sizeof(fp->hwtstamp_cfg)) ? -EFAULT : 0; 1025 } 1026 1027 static int fun_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1028 { 1029 struct funeth_priv *fp = netdev_priv(dev); 1030 struct hwtstamp_config cfg; 1031 1032 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1033 return -EFAULT; 1034 1035 /* no TX HW timestamps */ 1036 cfg.tx_type = HWTSTAMP_TX_OFF; 1037 1038 switch (cfg.rx_filter) { 1039 case HWTSTAMP_FILTER_NONE: 1040 break; 1041 case HWTSTAMP_FILTER_ALL: 1042 case HWTSTAMP_FILTER_SOME: 1043 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1044 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1045 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1046 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1047 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1048 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1049 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1050 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1051 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1052 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1053 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1054 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1055 case HWTSTAMP_FILTER_NTP_ALL: 1056 cfg.rx_filter = HWTSTAMP_FILTER_ALL; 1057 break; 1058 default: 1059 return -ERANGE; 1060 } 1061 1062 fp->hwtstamp_cfg = cfg; 1063 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1064 } 1065 1066 static int fun_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1067 { 1068 switch (cmd) { 1069 case SIOCSHWTSTAMP: 1070 return fun_hwtstamp_set(dev, ifr); 1071 case SIOCGHWTSTAMP: 1072 return fun_hwtstamp_get(dev, ifr); 1073 default: 1074 return -EOPNOTSUPP; 1075 } 1076 } 1077 1078 /* Prepare the queues for XDP. */ 1079 static int fun_enter_xdp(struct net_device *dev, struct bpf_prog *prog) 1080 { 1081 struct funeth_priv *fp = netdev_priv(dev); 1082 unsigned int i, nqs = num_online_cpus(); 1083 struct funeth_txq **xdpqs; 1084 struct funeth_rxq **rxqs; 1085 int err; 1086 1087 xdpqs = alloc_xdpqs(dev, nqs, fp->sq_depth, 0, FUN_QSTATE_INIT_FULL); 1088 if (IS_ERR(xdpqs)) 1089 return PTR_ERR(xdpqs); 1090 1091 rxqs = rtnl_dereference(fp->rxqs); 1092 for (i = 0; i < dev->real_num_rx_queues; i++) { 1093 err = fun_rxq_set_bpf(rxqs[i], prog); 1094 if (err) 1095 goto out; 1096 } 1097 1098 fp->num_xdpqs = nqs; 1099 rcu_assign_pointer(fp->xdpqs, xdpqs); 1100 return 0; 1101 out: 1102 while (i--) 1103 fun_rxq_set_bpf(rxqs[i], NULL); 1104 1105 free_xdpqs(xdpqs, nqs, 0, FUN_QSTATE_DESTROYED); 1106 return err; 1107 } 1108 1109 /* Set the queues for non-XDP operation. */ 1110 static void fun_end_xdp(struct net_device *dev) 1111 { 1112 struct funeth_priv *fp = netdev_priv(dev); 1113 struct funeth_txq **xdpqs; 1114 struct funeth_rxq **rxqs; 1115 unsigned int i; 1116 1117 xdpqs = rtnl_dereference(fp->xdpqs); 1118 rcu_assign_pointer(fp->xdpqs, NULL); 1119 synchronize_net(); 1120 /* at this point both Rx and Tx XDP processing has ended */ 1121 1122 free_xdpqs(xdpqs, fp->num_xdpqs, 0, FUN_QSTATE_DESTROYED); 1123 fp->num_xdpqs = 0; 1124 1125 rxqs = rtnl_dereference(fp->rxqs); 1126 for (i = 0; i < dev->real_num_rx_queues; i++) 1127 fun_rxq_set_bpf(rxqs[i], NULL); 1128 } 1129 1130 #define XDP_MAX_MTU \ 1131 (PAGE_SIZE - FUN_XDP_HEADROOM - VLAN_ETH_HLEN - FUN_RX_TAILROOM) 1132 1133 static int fun_xdp_setup(struct net_device *dev, struct netdev_bpf *xdp) 1134 { 1135 struct bpf_prog *old_prog, *prog = xdp->prog; 1136 struct funeth_priv *fp = netdev_priv(dev); 1137 int i, err; 1138 1139 /* XDP uses at most one buffer */ 1140 if (prog && dev->mtu > XDP_MAX_MTU) { 1141 netdev_err(dev, "device MTU %u too large for XDP\n", dev->mtu); 1142 NL_SET_ERR_MSG_MOD(xdp->extack, 1143 "Device MTU too large for XDP"); 1144 return -EINVAL; 1145 } 1146 1147 if (!netif_running(dev)) { 1148 fp->num_xdpqs = prog ? num_online_cpus() : 0; 1149 } else if (prog && !fp->xdp_prog) { 1150 err = fun_enter_xdp(dev, prog); 1151 if (err) { 1152 NL_SET_ERR_MSG_MOD(xdp->extack, 1153 "Failed to set queues for XDP."); 1154 return err; 1155 } 1156 } else if (!prog && fp->xdp_prog) { 1157 fun_end_xdp(dev); 1158 } else { 1159 struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs); 1160 1161 for (i = 0; i < dev->real_num_rx_queues; i++) 1162 WRITE_ONCE(rxqs[i]->xdp_prog, prog); 1163 } 1164 1165 dev->max_mtu = prog ? XDP_MAX_MTU : FUN_MAX_MTU; 1166 old_prog = xchg(&fp->xdp_prog, prog); 1167 if (old_prog) 1168 bpf_prog_put(old_prog); 1169 1170 return 0; 1171 } 1172 1173 static int fun_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1174 { 1175 switch (xdp->command) { 1176 case XDP_SETUP_PROG: 1177 return fun_xdp_setup(dev, xdp); 1178 default: 1179 return -EINVAL; 1180 } 1181 } 1182 1183 static struct devlink_port *fun_get_devlink_port(struct net_device *netdev) 1184 { 1185 struct funeth_priv *fp = netdev_priv(netdev); 1186 1187 return &fp->dl_port; 1188 } 1189 1190 static int fun_init_vports(struct fun_ethdev *ed, unsigned int n) 1191 { 1192 if (ed->num_vports) 1193 return -EINVAL; 1194 1195 ed->vport_info = kvcalloc(n, sizeof(*ed->vport_info), GFP_KERNEL); 1196 if (!ed->vport_info) 1197 return -ENOMEM; 1198 ed->num_vports = n; 1199 return 0; 1200 } 1201 1202 static void fun_free_vports(struct fun_ethdev *ed) 1203 { 1204 kvfree(ed->vport_info); 1205 ed->vport_info = NULL; 1206 ed->num_vports = 0; 1207 } 1208 1209 static struct fun_vport_info *fun_get_vport(struct fun_ethdev *ed, 1210 unsigned int vport) 1211 { 1212 if (!ed->vport_info || vport >= ed->num_vports) 1213 return NULL; 1214 1215 return ed->vport_info + vport; 1216 } 1217 1218 static int fun_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 1219 { 1220 struct funeth_priv *fp = netdev_priv(dev); 1221 struct fun_adi_param mac_param = {}; 1222 struct fun_dev *fdev = fp->fdev; 1223 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1224 struct fun_vport_info *vi; 1225 int rc = -EINVAL; 1226 1227 if (is_multicast_ether_addr(mac)) 1228 return -EINVAL; 1229 1230 mutex_lock(&ed->state_mutex); 1231 vi = fun_get_vport(ed, vf); 1232 if (!vi) 1233 goto unlock; 1234 1235 mac_param.u.mac = FUN_ADI_MAC_INIT(ether_addr_to_u64(mac)); 1236 rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_MACADDR, vf + 1, 1237 &mac_param); 1238 if (!rc) 1239 ether_addr_copy(vi->mac, mac); 1240 unlock: 1241 mutex_unlock(&ed->state_mutex); 1242 return rc; 1243 } 1244 1245 static int fun_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos, 1246 __be16 vlan_proto) 1247 { 1248 struct funeth_priv *fp = netdev_priv(dev); 1249 struct fun_adi_param vlan_param = {}; 1250 struct fun_dev *fdev = fp->fdev; 1251 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1252 struct fun_vport_info *vi; 1253 int rc = -EINVAL; 1254 1255 if (vlan > 4095 || qos > 7) 1256 return -EINVAL; 1257 if (vlan_proto && vlan_proto != htons(ETH_P_8021Q) && 1258 vlan_proto != htons(ETH_P_8021AD)) 1259 return -EINVAL; 1260 1261 mutex_lock(&ed->state_mutex); 1262 vi = fun_get_vport(ed, vf); 1263 if (!vi) 1264 goto unlock; 1265 1266 vlan_param.u.vlan = FUN_ADI_VLAN_INIT(be16_to_cpu(vlan_proto), 1267 ((u16)qos << VLAN_PRIO_SHIFT) | vlan); 1268 rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_VLAN, vf + 1, &vlan_param); 1269 if (!rc) { 1270 vi->vlan = vlan; 1271 vi->qos = qos; 1272 vi->vlan_proto = vlan_proto; 1273 } 1274 unlock: 1275 mutex_unlock(&ed->state_mutex); 1276 return rc; 1277 } 1278 1279 static int fun_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate, 1280 int max_tx_rate) 1281 { 1282 struct funeth_priv *fp = netdev_priv(dev); 1283 struct fun_adi_param rate_param = {}; 1284 struct fun_dev *fdev = fp->fdev; 1285 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1286 struct fun_vport_info *vi; 1287 int rc = -EINVAL; 1288 1289 if (min_tx_rate) 1290 return -EINVAL; 1291 1292 mutex_lock(&ed->state_mutex); 1293 vi = fun_get_vport(ed, vf); 1294 if (!vi) 1295 goto unlock; 1296 1297 rate_param.u.rate = FUN_ADI_RATE_INIT(max_tx_rate); 1298 rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_RATE, vf + 1, &rate_param); 1299 if (!rc) 1300 vi->max_rate = max_tx_rate; 1301 unlock: 1302 mutex_unlock(&ed->state_mutex); 1303 return rc; 1304 } 1305 1306 static int fun_get_vf_config(struct net_device *dev, int vf, 1307 struct ifla_vf_info *ivi) 1308 { 1309 struct funeth_priv *fp = netdev_priv(dev); 1310 struct fun_ethdev *ed = to_fun_ethdev(fp->fdev); 1311 const struct fun_vport_info *vi; 1312 1313 mutex_lock(&ed->state_mutex); 1314 vi = fun_get_vport(ed, vf); 1315 if (!vi) 1316 goto unlock; 1317 1318 memset(ivi, 0, sizeof(*ivi)); 1319 ivi->vf = vf; 1320 ether_addr_copy(ivi->mac, vi->mac); 1321 ivi->vlan = vi->vlan; 1322 ivi->qos = vi->qos; 1323 ivi->vlan_proto = vi->vlan_proto; 1324 ivi->max_tx_rate = vi->max_rate; 1325 ivi->spoofchk = vi->spoofchk; 1326 unlock: 1327 mutex_unlock(&ed->state_mutex); 1328 return vi ? 0 : -EINVAL; 1329 } 1330 1331 static void fun_uninit(struct net_device *dev) 1332 { 1333 struct funeth_priv *fp = netdev_priv(dev); 1334 1335 fun_prune_queue_irqs(dev); 1336 xa_destroy(&fp->irqs); 1337 } 1338 1339 static const struct net_device_ops fun_netdev_ops = { 1340 .ndo_open = funeth_open, 1341 .ndo_stop = funeth_close, 1342 .ndo_start_xmit = fun_start_xmit, 1343 .ndo_get_stats64 = fun_get_stats64, 1344 .ndo_change_mtu = fun_change_mtu, 1345 .ndo_set_mac_address = fun_set_macaddr, 1346 .ndo_validate_addr = eth_validate_addr, 1347 .ndo_eth_ioctl = fun_ioctl, 1348 .ndo_uninit = fun_uninit, 1349 .ndo_bpf = fun_xdp, 1350 .ndo_xdp_xmit = fun_xdp_xmit_frames, 1351 .ndo_set_vf_mac = fun_set_vf_mac, 1352 .ndo_set_vf_vlan = fun_set_vf_vlan, 1353 .ndo_set_vf_rate = fun_set_vf_rate, 1354 .ndo_get_vf_config = fun_get_vf_config, 1355 .ndo_get_devlink_port = fun_get_devlink_port, 1356 }; 1357 1358 #define GSO_ENCAP_FLAGS (NETIF_F_GSO_GRE | NETIF_F_GSO_IPXIP4 | \ 1359 NETIF_F_GSO_IPXIP6 | NETIF_F_GSO_UDP_TUNNEL | \ 1360 NETIF_F_GSO_UDP_TUNNEL_CSUM) 1361 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1362 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_HW_CSUM | TSO_FLAGS | \ 1363 GSO_ENCAP_FLAGS | NETIF_F_HIGHDMA) 1364 1365 static void fun_dflt_rss_indir(struct funeth_priv *fp, unsigned int nrx) 1366 { 1367 unsigned int i; 1368 1369 for (i = 0; i < fp->indir_table_nentries; i++) 1370 fp->indir_table[i] = ethtool_rxfh_indir_default(i, nrx); 1371 } 1372 1373 /* Reset the RSS indirection table to equal distribution across the current 1374 * number of Rx queues. Called at init time and whenever the number of Rx 1375 * queues changes subsequently. Note that this may also resize the indirection 1376 * table. 1377 */ 1378 static void fun_reset_rss_indir(struct net_device *dev, unsigned int nrx) 1379 { 1380 struct funeth_priv *fp = netdev_priv(dev); 1381 1382 if (!fp->rss_cfg) 1383 return; 1384 1385 /* Set the table size to the max possible that allows an equal number 1386 * of occurrences of each CQ. 1387 */ 1388 fp->indir_table_nentries = rounddown(FUN_ETH_RSS_MAX_INDIR_ENT, nrx); 1389 fun_dflt_rss_indir(fp, nrx); 1390 } 1391 1392 /* Update the RSS LUT to contain only queues in [0, nrx). Normally this will 1393 * update the LUT to an equal distribution among nrx queues, If @only_if_needed 1394 * is set the LUT is left unchanged if it already does not reference any queues 1395 * >= nrx. 1396 */ 1397 static int fun_rss_set_qnum(struct net_device *dev, unsigned int nrx, 1398 bool only_if_needed) 1399 { 1400 struct funeth_priv *fp = netdev_priv(dev); 1401 u32 old_lut[FUN_ETH_RSS_MAX_INDIR_ENT]; 1402 unsigned int i, oldsz; 1403 int err; 1404 1405 if (!fp->rss_cfg) 1406 return 0; 1407 1408 if (only_if_needed) { 1409 for (i = 0; i < fp->indir_table_nentries; i++) 1410 if (fp->indir_table[i] >= nrx) 1411 break; 1412 1413 if (i >= fp->indir_table_nentries) 1414 return 0; 1415 } 1416 1417 memcpy(old_lut, fp->indir_table, sizeof(old_lut)); 1418 oldsz = fp->indir_table_nentries; 1419 fun_reset_rss_indir(dev, nrx); 1420 1421 err = fun_config_rss(dev, fp->hash_algo, fp->rss_key, 1422 fp->indir_table, FUN_ADMIN_SUBOP_MODIFY); 1423 if (!err) 1424 return 0; 1425 1426 memcpy(fp->indir_table, old_lut, sizeof(old_lut)); 1427 fp->indir_table_nentries = oldsz; 1428 return err; 1429 } 1430 1431 /* Allocate the DMA area for the RSS configuration commands to the device, and 1432 * initialize the hash, hash key, indirection table size and its entries to 1433 * their defaults. The indirection table defaults to equal distribution across 1434 * the Rx queues. 1435 */ 1436 static int fun_init_rss(struct net_device *dev) 1437 { 1438 struct funeth_priv *fp = netdev_priv(dev); 1439 size_t size = sizeof(fp->rss_key) + sizeof(fp->indir_table); 1440 1441 fp->rss_hw_id = FUN_HCI_ID_INVALID; 1442 if (!(fp->port_caps & FUN_PORT_CAP_OFFLOADS)) 1443 return 0; 1444 1445 fp->rss_cfg = dma_alloc_coherent(&fp->pdev->dev, size, 1446 &fp->rss_dma_addr, GFP_KERNEL); 1447 if (!fp->rss_cfg) 1448 return -ENOMEM; 1449 1450 fp->hash_algo = FUN_ETH_RSS_ALG_TOEPLITZ; 1451 netdev_rss_key_fill(fp->rss_key, sizeof(fp->rss_key)); 1452 fun_reset_rss_indir(dev, dev->real_num_rx_queues); 1453 return 0; 1454 } 1455 1456 static void fun_free_rss(struct funeth_priv *fp) 1457 { 1458 if (fp->rss_cfg) { 1459 dma_free_coherent(&fp->pdev->dev, 1460 sizeof(fp->rss_key) + sizeof(fp->indir_table), 1461 fp->rss_cfg, fp->rss_dma_addr); 1462 fp->rss_cfg = NULL; 1463 } 1464 } 1465 1466 void fun_set_ring_count(struct net_device *netdev, unsigned int ntx, 1467 unsigned int nrx) 1468 { 1469 netif_set_real_num_tx_queues(netdev, ntx); 1470 if (nrx != netdev->real_num_rx_queues) { 1471 netif_set_real_num_rx_queues(netdev, nrx); 1472 fun_reset_rss_indir(netdev, nrx); 1473 } 1474 } 1475 1476 static int fun_init_stats_area(struct funeth_priv *fp) 1477 { 1478 unsigned int nstats; 1479 1480 if (!(fp->port_caps & FUN_PORT_CAP_STATS)) 1481 return 0; 1482 1483 nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX + 1484 PORT_MAC_FEC_STATS_MAX; 1485 1486 fp->stats = dma_alloc_coherent(&fp->pdev->dev, nstats * sizeof(u64), 1487 &fp->stats_dma_addr, GFP_KERNEL); 1488 if (!fp->stats) 1489 return -ENOMEM; 1490 return 0; 1491 } 1492 1493 static void fun_free_stats_area(struct funeth_priv *fp) 1494 { 1495 unsigned int nstats; 1496 1497 if (fp->stats) { 1498 nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX; 1499 dma_free_coherent(&fp->pdev->dev, nstats * sizeof(u64), 1500 fp->stats, fp->stats_dma_addr); 1501 fp->stats = NULL; 1502 } 1503 } 1504 1505 static int fun_dl_port_register(struct net_device *netdev) 1506 { 1507 struct funeth_priv *fp = netdev_priv(netdev); 1508 struct devlink *dl = priv_to_devlink(fp->fdev); 1509 struct devlink_port_attrs attrs = {}; 1510 unsigned int idx; 1511 1512 if (fp->port_caps & FUN_PORT_CAP_VPORT) { 1513 attrs.flavour = DEVLINK_PORT_FLAVOUR_VIRTUAL; 1514 idx = fp->lport; 1515 } else { 1516 idx = netdev->dev_port; 1517 attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL; 1518 attrs.lanes = fp->lane_attrs & 7; 1519 if (fp->lane_attrs & FUN_PORT_LANE_SPLIT) { 1520 attrs.split = 1; 1521 attrs.phys.port_number = fp->lport & ~3; 1522 attrs.phys.split_subport_number = fp->lport & 3; 1523 } else { 1524 attrs.phys.port_number = fp->lport; 1525 } 1526 } 1527 1528 devlink_port_attrs_set(&fp->dl_port, &attrs); 1529 1530 return devlink_port_register(dl, &fp->dl_port, idx); 1531 } 1532 1533 /* Determine the max Tx/Rx queues for a port. */ 1534 static int fun_max_qs(struct fun_ethdev *ed, unsigned int *ntx, 1535 unsigned int *nrx) 1536 { 1537 int neth; 1538 1539 if (ed->num_ports > 1 || is_kdump_kernel()) { 1540 *ntx = 1; 1541 *nrx = 1; 1542 return 0; 1543 } 1544 1545 neth = fun_get_res_count(&ed->fdev, FUN_ADMIN_OP_ETH); 1546 if (neth < 0) 1547 return neth; 1548 1549 /* We determine the max number of queues based on the CPU 1550 * cores, device interrupts and queues, RSS size, and device Tx flows. 1551 * 1552 * - At least 1 Rx and 1 Tx queues. 1553 * - At most 1 Rx/Tx queue per core. 1554 * - Each Rx/Tx queue needs 1 SQ. 1555 */ 1556 *ntx = min(ed->nsqs_per_port - 1, num_online_cpus()); 1557 *nrx = *ntx; 1558 if (*ntx > neth) 1559 *ntx = neth; 1560 if (*nrx > FUN_ETH_RSS_MAX_INDIR_ENT) 1561 *nrx = FUN_ETH_RSS_MAX_INDIR_ENT; 1562 return 0; 1563 } 1564 1565 static void fun_queue_defaults(struct net_device *dev, unsigned int nsqs) 1566 { 1567 unsigned int ntx, nrx; 1568 1569 ntx = min(dev->num_tx_queues, FUN_DFLT_QUEUES); 1570 nrx = min(dev->num_rx_queues, FUN_DFLT_QUEUES); 1571 if (ntx <= nrx) { 1572 ntx = min(ntx, nsqs / 2); 1573 nrx = min(nrx, nsqs - ntx); 1574 } else { 1575 nrx = min(nrx, nsqs / 2); 1576 ntx = min(ntx, nsqs - nrx); 1577 } 1578 1579 netif_set_real_num_tx_queues(dev, ntx); 1580 netif_set_real_num_rx_queues(dev, nrx); 1581 } 1582 1583 /* Replace the existing Rx/Tx/XDP queues with equal number of queues with 1584 * different settings, e.g. depth. This is a disruptive replacement that 1585 * temporarily shuts down the data path and should be limited to changes that 1586 * can't be applied to live queues. The old queues are always discarded. 1587 */ 1588 int fun_replace_queues(struct net_device *dev, struct fun_qset *newqs, 1589 struct netlink_ext_ack *extack) 1590 { 1591 struct fun_qset oldqs = { .state = FUN_QSTATE_DESTROYED }; 1592 struct funeth_priv *fp = netdev_priv(dev); 1593 int err; 1594 1595 newqs->nrxqs = dev->real_num_rx_queues; 1596 newqs->ntxqs = dev->real_num_tx_queues; 1597 newqs->nxdpqs = fp->num_xdpqs; 1598 newqs->state = FUN_QSTATE_INIT_SW; 1599 err = fun_alloc_rings(dev, newqs); 1600 if (err) { 1601 NL_SET_ERR_MSG_MOD(extack, 1602 "Unable to allocate memory for new queues, keeping current settings"); 1603 return err; 1604 } 1605 1606 fun_down(dev, &oldqs); 1607 1608 err = fun_up(dev, newqs); 1609 if (!err) 1610 return 0; 1611 1612 /* The new queues couldn't be installed. We do not retry the old queues 1613 * as they are the same to the device as the new queues and would 1614 * similarly fail. 1615 */ 1616 newqs->state = FUN_QSTATE_DESTROYED; 1617 fun_free_rings(dev, newqs); 1618 NL_SET_ERR_MSG_MOD(extack, "Unable to restore the data path with the new queues."); 1619 return err; 1620 } 1621 1622 /* Change the number of Rx/Tx queues of a device while it is up. This is done 1623 * by incrementally adding/removing queues to meet the new requirements while 1624 * handling ongoing traffic. 1625 */ 1626 int fun_change_num_queues(struct net_device *dev, unsigned int ntx, 1627 unsigned int nrx) 1628 { 1629 unsigned int keep_tx = min(dev->real_num_tx_queues, ntx); 1630 unsigned int keep_rx = min(dev->real_num_rx_queues, nrx); 1631 struct funeth_priv *fp = netdev_priv(dev); 1632 struct fun_qset oldqs = { 1633 .rxqs = rtnl_dereference(fp->rxqs), 1634 .txqs = fp->txqs, 1635 .nrxqs = dev->real_num_rx_queues, 1636 .ntxqs = dev->real_num_tx_queues, 1637 .rxq_start = keep_rx, 1638 .txq_start = keep_tx, 1639 .state = FUN_QSTATE_DESTROYED 1640 }; 1641 struct fun_qset newqs = { 1642 .nrxqs = nrx, 1643 .ntxqs = ntx, 1644 .rxq_start = keep_rx, 1645 .txq_start = keep_tx, 1646 .cq_depth = fp->cq_depth, 1647 .rq_depth = fp->rq_depth, 1648 .sq_depth = fp->sq_depth, 1649 .state = FUN_QSTATE_INIT_FULL 1650 }; 1651 int i, err; 1652 1653 err = fun_alloc_rings(dev, &newqs); 1654 if (err) 1655 goto free_irqs; 1656 1657 err = fun_enable_irqs(dev); /* of any newly added queues */ 1658 if (err) 1659 goto free_rings; 1660 1661 /* copy the queues we are keeping to the new set */ 1662 memcpy(newqs.rxqs, oldqs.rxqs, keep_rx * sizeof(*oldqs.rxqs)); 1663 memcpy(newqs.txqs, fp->txqs, keep_tx * sizeof(*fp->txqs)); 1664 1665 if (nrx < dev->real_num_rx_queues) { 1666 err = fun_rss_set_qnum(dev, nrx, true); 1667 if (err) 1668 goto disable_tx_irqs; 1669 1670 for (i = nrx; i < dev->real_num_rx_queues; i++) 1671 fun_disable_one_irq(container_of(oldqs.rxqs[i]->napi, 1672 struct fun_irq, napi)); 1673 1674 netif_set_real_num_rx_queues(dev, nrx); 1675 } 1676 1677 if (ntx < dev->real_num_tx_queues) 1678 netif_set_real_num_tx_queues(dev, ntx); 1679 1680 rcu_assign_pointer(fp->rxqs, newqs.rxqs); 1681 fp->txqs = newqs.txqs; 1682 synchronize_net(); 1683 1684 if (ntx > dev->real_num_tx_queues) 1685 netif_set_real_num_tx_queues(dev, ntx); 1686 1687 if (nrx > dev->real_num_rx_queues) { 1688 netif_set_real_num_rx_queues(dev, nrx); 1689 fun_rss_set_qnum(dev, nrx, false); 1690 } 1691 1692 /* disable interrupts of any excess Tx queues */ 1693 for (i = keep_tx; i < oldqs.ntxqs; i++) 1694 fun_disable_one_irq(oldqs.txqs[i]->irq); 1695 1696 fun_free_rings(dev, &oldqs); 1697 fun_prune_queue_irqs(dev); 1698 return 0; 1699 1700 disable_tx_irqs: 1701 for (i = oldqs.ntxqs; i < ntx; i++) 1702 fun_disable_one_irq(newqs.txqs[i]->irq); 1703 free_rings: 1704 newqs.state = FUN_QSTATE_DESTROYED; 1705 fun_free_rings(dev, &newqs); 1706 free_irqs: 1707 fun_prune_queue_irqs(dev); 1708 return err; 1709 } 1710 1711 static int fun_create_netdev(struct fun_ethdev *ed, unsigned int portid) 1712 { 1713 struct fun_dev *fdev = &ed->fdev; 1714 struct net_device *netdev; 1715 struct funeth_priv *fp; 1716 unsigned int ntx, nrx; 1717 int rc; 1718 1719 rc = fun_max_qs(ed, &ntx, &nrx); 1720 if (rc) 1721 return rc; 1722 1723 netdev = alloc_etherdev_mqs(sizeof(*fp), ntx, nrx); 1724 if (!netdev) { 1725 rc = -ENOMEM; 1726 goto done; 1727 } 1728 1729 netdev->dev_port = portid; 1730 fun_queue_defaults(netdev, ed->nsqs_per_port); 1731 1732 fp = netdev_priv(netdev); 1733 fp->fdev = fdev; 1734 fp->pdev = to_pci_dev(fdev->dev); 1735 fp->netdev = netdev; 1736 xa_init(&fp->irqs); 1737 fp->rx_irq_ofst = ntx; 1738 seqcount_init(&fp->link_seq); 1739 1740 fp->lport = INVALID_LPORT; 1741 rc = fun_port_create(netdev); 1742 if (rc) 1743 goto free_netdev; 1744 1745 /* bind port to admin CQ for async events */ 1746 rc = fun_bind(fdev, FUN_ADMIN_BIND_TYPE_PORT, portid, 1747 FUN_ADMIN_BIND_TYPE_EPCQ, 0); 1748 if (rc) 1749 goto destroy_port; 1750 1751 rc = fun_get_port_attributes(netdev); 1752 if (rc) 1753 goto destroy_port; 1754 1755 rc = fun_init_rss(netdev); 1756 if (rc) 1757 goto destroy_port; 1758 1759 rc = fun_init_stats_area(fp); 1760 if (rc) 1761 goto free_rss; 1762 1763 SET_NETDEV_DEV(netdev, fdev->dev); 1764 netdev->netdev_ops = &fun_netdev_ops; 1765 1766 netdev->hw_features = NETIF_F_SG | NETIF_F_RXHASH | NETIF_F_RXCSUM; 1767 if (fp->port_caps & FUN_PORT_CAP_OFFLOADS) 1768 netdev->hw_features |= NETIF_F_HW_CSUM | TSO_FLAGS; 1769 if (fp->port_caps & FUN_PORT_CAP_ENCAP_OFFLOADS) 1770 netdev->hw_features |= GSO_ENCAP_FLAGS; 1771 1772 netdev->features |= netdev->hw_features | NETIF_F_HIGHDMA; 1773 netdev->vlan_features = netdev->features & VLAN_FEAT; 1774 netdev->mpls_features = netdev->vlan_features; 1775 netdev->hw_enc_features = netdev->hw_features; 1776 1777 netdev->min_mtu = ETH_MIN_MTU; 1778 netdev->max_mtu = FUN_MAX_MTU; 1779 1780 fun_set_ethtool_ops(netdev); 1781 1782 /* configurable parameters */ 1783 fp->sq_depth = min(SQ_DEPTH, fdev->q_depth); 1784 fp->cq_depth = min(CQ_DEPTH, fdev->q_depth); 1785 fp->rq_depth = min_t(unsigned int, RQ_DEPTH, fdev->q_depth); 1786 fp->rx_coal_usec = CQ_INTCOAL_USEC; 1787 fp->rx_coal_count = CQ_INTCOAL_NPKT; 1788 fp->tx_coal_usec = SQ_INTCOAL_USEC; 1789 fp->tx_coal_count = SQ_INTCOAL_NPKT; 1790 fp->cq_irq_db = FUN_IRQ_CQ_DB(fp->rx_coal_usec, fp->rx_coal_count); 1791 1792 rc = fun_dl_port_register(netdev); 1793 if (rc) 1794 goto free_stats; 1795 1796 fp->ktls_id = FUN_HCI_ID_INVALID; 1797 fun_ktls_init(netdev); /* optional, failure OK */ 1798 1799 netif_carrier_off(netdev); 1800 ed->netdevs[portid] = netdev; 1801 rc = register_netdev(netdev); 1802 if (rc) 1803 goto unreg_devlink; 1804 1805 if (fp->dl_port.devlink) 1806 devlink_port_type_eth_set(&fp->dl_port, netdev); 1807 1808 return 0; 1809 1810 unreg_devlink: 1811 ed->netdevs[portid] = NULL; 1812 fun_ktls_cleanup(fp); 1813 if (fp->dl_port.devlink) 1814 devlink_port_unregister(&fp->dl_port); 1815 free_stats: 1816 fun_free_stats_area(fp); 1817 free_rss: 1818 fun_free_rss(fp); 1819 destroy_port: 1820 fun_port_destroy(netdev); 1821 free_netdev: 1822 free_netdev(netdev); 1823 done: 1824 dev_err(fdev->dev, "couldn't allocate port %u, error %d", portid, rc); 1825 return rc; 1826 } 1827 1828 static void fun_destroy_netdev(struct net_device *netdev) 1829 { 1830 struct funeth_priv *fp; 1831 1832 fp = netdev_priv(netdev); 1833 if (fp->dl_port.devlink) { 1834 devlink_port_type_clear(&fp->dl_port); 1835 devlink_port_unregister(&fp->dl_port); 1836 } 1837 unregister_netdev(netdev); 1838 fun_ktls_cleanup(fp); 1839 fun_free_stats_area(fp); 1840 fun_free_rss(fp); 1841 fun_port_destroy(netdev); 1842 free_netdev(netdev); 1843 } 1844 1845 static int fun_create_ports(struct fun_ethdev *ed, unsigned int nports) 1846 { 1847 struct fun_dev *fd = &ed->fdev; 1848 int i, rc; 1849 1850 /* The admin queue takes 1 IRQ and 2 SQs. */ 1851 ed->nsqs_per_port = min(fd->num_irqs - 1, 1852 fd->kern_end_qid - 2) / nports; 1853 if (ed->nsqs_per_port < 2) { 1854 dev_err(fd->dev, "Too few SQs for %u ports", nports); 1855 return -EINVAL; 1856 } 1857 1858 ed->netdevs = kcalloc(nports, sizeof(*ed->netdevs), GFP_KERNEL); 1859 if (!ed->netdevs) 1860 return -ENOMEM; 1861 1862 ed->num_ports = nports; 1863 for (i = 0; i < nports; i++) { 1864 rc = fun_create_netdev(ed, i); 1865 if (rc) 1866 goto free_netdevs; 1867 } 1868 1869 return 0; 1870 1871 free_netdevs: 1872 while (i) 1873 fun_destroy_netdev(ed->netdevs[--i]); 1874 kfree(ed->netdevs); 1875 ed->netdevs = NULL; 1876 ed->num_ports = 0; 1877 return rc; 1878 } 1879 1880 static void fun_destroy_ports(struct fun_ethdev *ed) 1881 { 1882 unsigned int i; 1883 1884 for (i = 0; i < ed->num_ports; i++) 1885 fun_destroy_netdev(ed->netdevs[i]); 1886 1887 kfree(ed->netdevs); 1888 ed->netdevs = NULL; 1889 ed->num_ports = 0; 1890 } 1891 1892 static void fun_update_link_state(const struct fun_ethdev *ed, 1893 const struct fun_admin_port_notif *notif) 1894 { 1895 unsigned int port_idx = be16_to_cpu(notif->id); 1896 struct net_device *netdev; 1897 struct funeth_priv *fp; 1898 1899 if (port_idx >= ed->num_ports) 1900 return; 1901 1902 netdev = ed->netdevs[port_idx]; 1903 fp = netdev_priv(netdev); 1904 1905 write_seqcount_begin(&fp->link_seq); 1906 fp->link_speed = be32_to_cpu(notif->speed) * 10; /* 10 Mbps->Mbps */ 1907 fp->active_fc = notif->flow_ctrl; 1908 fp->active_fec = notif->fec; 1909 fp->xcvr_type = notif->xcvr_type; 1910 fp->link_down_reason = notif->link_down_reason; 1911 fp->lp_advertising = be64_to_cpu(notif->lp_advertising); 1912 1913 if ((notif->link_state | notif->missed_events) & FUN_PORT_FLAG_MAC_DOWN) 1914 netif_carrier_off(netdev); 1915 if (notif->link_state & FUN_PORT_FLAG_MAC_UP) 1916 netif_carrier_on(netdev); 1917 1918 write_seqcount_end(&fp->link_seq); 1919 fun_report_link(netdev); 1920 } 1921 1922 /* handler for async events delivered through the admin CQ */ 1923 static void fun_event_cb(struct fun_dev *fdev, void *entry) 1924 { 1925 u8 op = ((struct fun_admin_rsp_common *)entry)->op; 1926 1927 if (op == FUN_ADMIN_OP_PORT) { 1928 const struct fun_admin_port_notif *rsp = entry; 1929 1930 if (rsp->subop == FUN_ADMIN_SUBOP_NOTIFY) { 1931 fun_update_link_state(to_fun_ethdev(fdev), rsp); 1932 } else if (rsp->subop == FUN_ADMIN_SUBOP_RES_COUNT) { 1933 const struct fun_admin_res_count_rsp *r = entry; 1934 1935 if (r->count.data) 1936 set_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags); 1937 else 1938 set_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags); 1939 fun_serv_sched(fdev); 1940 } else { 1941 dev_info(fdev->dev, "adminq event unexpected op %u subop %u", 1942 op, rsp->subop); 1943 } 1944 } else { 1945 dev_info(fdev->dev, "adminq event unexpected op %u", op); 1946 } 1947 } 1948 1949 /* handler for pending work managed by the service task */ 1950 static void fun_service_cb(struct fun_dev *fdev) 1951 { 1952 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1953 int rc; 1954 1955 if (test_and_clear_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags)) 1956 fun_destroy_ports(ed); 1957 1958 if (!test_and_clear_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags)) 1959 return; 1960 1961 rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT); 1962 if (rc < 0 || rc == ed->num_ports) 1963 return; 1964 1965 if (ed->num_ports) 1966 fun_destroy_ports(ed); 1967 if (rc) 1968 fun_create_ports(ed, rc); 1969 } 1970 1971 static int funeth_sriov_configure(struct pci_dev *pdev, int nvfs) 1972 { 1973 struct fun_dev *fdev = pci_get_drvdata(pdev); 1974 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1975 int rc; 1976 1977 if (nvfs == 0) { 1978 if (pci_vfs_assigned(pdev)) { 1979 dev_warn(&pdev->dev, 1980 "Cannot disable SR-IOV while VFs are assigned\n"); 1981 return -EPERM; 1982 } 1983 1984 mutex_lock(&ed->state_mutex); 1985 fun_free_vports(ed); 1986 mutex_unlock(&ed->state_mutex); 1987 pci_disable_sriov(pdev); 1988 return 0; 1989 } 1990 1991 rc = pci_enable_sriov(pdev, nvfs); 1992 if (rc) 1993 return rc; 1994 1995 mutex_lock(&ed->state_mutex); 1996 rc = fun_init_vports(ed, nvfs); 1997 mutex_unlock(&ed->state_mutex); 1998 if (rc) { 1999 pci_disable_sriov(pdev); 2000 return rc; 2001 } 2002 2003 return nvfs; 2004 } 2005 2006 static int funeth_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2007 { 2008 struct fun_dev_params aqreq = { 2009 .cqe_size_log2 = ilog2(ADMIN_CQE_SIZE), 2010 .sqe_size_log2 = ilog2(ADMIN_SQE_SIZE), 2011 .cq_depth = ADMIN_CQ_DEPTH, 2012 .sq_depth = ADMIN_SQ_DEPTH, 2013 .rq_depth = ADMIN_RQ_DEPTH, 2014 .min_msix = 2, /* 1 Rx + 1 Tx */ 2015 .event_cb = fun_event_cb, 2016 .serv_cb = fun_service_cb, 2017 }; 2018 struct devlink *devlink; 2019 struct fun_ethdev *ed; 2020 struct fun_dev *fdev; 2021 int rc; 2022 2023 devlink = fun_devlink_alloc(&pdev->dev); 2024 if (!devlink) { 2025 dev_err(&pdev->dev, "devlink alloc failed\n"); 2026 return -ENOMEM; 2027 } 2028 2029 ed = devlink_priv(devlink); 2030 mutex_init(&ed->state_mutex); 2031 2032 fdev = &ed->fdev; 2033 rc = fun_dev_enable(fdev, pdev, &aqreq, KBUILD_MODNAME); 2034 if (rc) 2035 goto free_devlink; 2036 2037 rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT); 2038 if (rc > 0) 2039 rc = fun_create_ports(ed, rc); 2040 if (rc < 0) 2041 goto disable_dev; 2042 2043 fun_serv_restart(fdev); 2044 fun_devlink_register(devlink); 2045 return 0; 2046 2047 disable_dev: 2048 fun_dev_disable(fdev); 2049 free_devlink: 2050 mutex_destroy(&ed->state_mutex); 2051 fun_devlink_free(devlink); 2052 return rc; 2053 } 2054 2055 static void funeth_remove(struct pci_dev *pdev) 2056 { 2057 struct fun_dev *fdev = pci_get_drvdata(pdev); 2058 struct devlink *devlink; 2059 struct fun_ethdev *ed; 2060 2061 ed = to_fun_ethdev(fdev); 2062 devlink = priv_to_devlink(ed); 2063 fun_devlink_unregister(devlink); 2064 2065 #ifdef CONFIG_PCI_IOV 2066 funeth_sriov_configure(pdev, 0); 2067 #endif 2068 2069 fun_serv_stop(fdev); 2070 fun_destroy_ports(ed); 2071 fun_dev_disable(fdev); 2072 mutex_destroy(&ed->state_mutex); 2073 2074 fun_devlink_free(devlink); 2075 } 2076 2077 static struct pci_driver funeth_driver = { 2078 .name = KBUILD_MODNAME, 2079 .id_table = funeth_id_table, 2080 .probe = funeth_probe, 2081 .remove = funeth_remove, 2082 .shutdown = funeth_remove, 2083 .sriov_configure = funeth_sriov_configure, 2084 }; 2085 2086 module_pci_driver(funeth_driver); 2087 2088 MODULE_AUTHOR("Dimitris Michailidis <dmichail@fungible.com>"); 2089 MODULE_DESCRIPTION("Fungible Ethernet Network Driver"); 2090 MODULE_LICENSE("Dual BSD/GPL"); 2091 MODULE_DEVICE_TABLE(pci, funeth_id_table); 2092