1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) 2 3 #include <linux/bpf.h> 4 #include <linux/crash_dump.h> 5 #include <linux/etherdevice.h> 6 #include <linux/ethtool.h> 7 #include <linux/filter.h> 8 #include <linux/idr.h> 9 #include <linux/if_vlan.h> 10 #include <linux/module.h> 11 #include <linux/netdevice.h> 12 #include <linux/pci.h> 13 #include <linux/rtnetlink.h> 14 #include <linux/inetdevice.h> 15 16 #include "funeth.h" 17 #include "funeth_devlink.h" 18 #include "funeth_ktls.h" 19 #include "fun_port.h" 20 #include "fun_queue.h" 21 #include "funeth_txrx.h" 22 23 #define ADMIN_SQ_DEPTH 32 24 #define ADMIN_CQ_DEPTH 64 25 #define ADMIN_RQ_DEPTH 16 26 27 /* Default number of Tx/Rx queues. */ 28 #define FUN_DFLT_QUEUES 16U 29 30 enum { 31 FUN_SERV_RES_CHANGE = FUN_SERV_FIRST_AVAIL, 32 FUN_SERV_DEL_PORTS, 33 }; 34 35 static const struct pci_device_id funeth_id_table[] = { 36 { PCI_VDEVICE(FUNGIBLE, 0x0101) }, 37 { PCI_VDEVICE(FUNGIBLE, 0x0181) }, 38 { 0, } 39 }; 40 41 /* Issue a port write admin command with @n key/value pairs. */ 42 static int fun_port_write_cmds(struct funeth_priv *fp, unsigned int n, 43 const int *keys, const u64 *data) 44 { 45 unsigned int cmd_size, i; 46 union { 47 struct fun_admin_port_req req; 48 struct fun_admin_port_rsp rsp; 49 u8 v[ADMIN_SQE_SIZE]; 50 } cmd; 51 52 cmd_size = offsetof(struct fun_admin_port_req, u.write.write48) + 53 n * sizeof(struct fun_admin_write48_req); 54 if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN) 55 return -EINVAL; 56 57 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT, 58 cmd_size); 59 cmd.req.u.write = 60 FUN_ADMIN_PORT_WRITE_REQ_INIT(FUN_ADMIN_SUBOP_WRITE, 0, 61 fp->netdev->dev_port); 62 for (i = 0; i < n; i++) 63 cmd.req.u.write.write48[i] = 64 FUN_ADMIN_WRITE48_REQ_INIT(keys[i], data[i]); 65 66 return fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, 67 &cmd.rsp, cmd_size, 0); 68 } 69 70 int fun_port_write_cmd(struct funeth_priv *fp, int key, u64 data) 71 { 72 return fun_port_write_cmds(fp, 1, &key, &data); 73 } 74 75 /* Issue a port read admin command with @n key/value pairs. */ 76 static int fun_port_read_cmds(struct funeth_priv *fp, unsigned int n, 77 const int *keys, u64 *data) 78 { 79 const struct fun_admin_read48_rsp *r48rsp; 80 unsigned int cmd_size, i; 81 int rc; 82 union { 83 struct fun_admin_port_req req; 84 struct fun_admin_port_rsp rsp; 85 u8 v[ADMIN_SQE_SIZE]; 86 } cmd; 87 88 cmd_size = offsetof(struct fun_admin_port_req, u.read.read48) + 89 n * sizeof(struct fun_admin_read48_req); 90 if (cmd_size > sizeof(cmd) || cmd_size > ADMIN_RSP_MAX_LEN) 91 return -EINVAL; 92 93 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT, 94 cmd_size); 95 cmd.req.u.read = 96 FUN_ADMIN_PORT_READ_REQ_INIT(FUN_ADMIN_SUBOP_READ, 0, 97 fp->netdev->dev_port); 98 for (i = 0; i < n; i++) 99 cmd.req.u.read.read48[i] = FUN_ADMIN_READ48_REQ_INIT(keys[i]); 100 101 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, 102 &cmd.rsp, cmd_size, 0); 103 if (rc) 104 return rc; 105 106 for (r48rsp = cmd.rsp.u.read.read48, i = 0; i < n; i++, r48rsp++) { 107 data[i] = FUN_ADMIN_READ48_RSP_DATA_G(r48rsp->key_to_data); 108 dev_dbg(fp->fdev->dev, 109 "port_read_rsp lport=%u (key_to_data=0x%llx) key=%d data:%lld retval:%lld", 110 fp->lport, r48rsp->key_to_data, keys[i], data[i], 111 FUN_ADMIN_READ48_RSP_RET_G(r48rsp->key_to_data)); 112 } 113 return 0; 114 } 115 116 int fun_port_read_cmd(struct funeth_priv *fp, int key, u64 *data) 117 { 118 return fun_port_read_cmds(fp, 1, &key, data); 119 } 120 121 static void fun_report_link(struct net_device *netdev) 122 { 123 if (netif_carrier_ok(netdev)) { 124 const struct funeth_priv *fp = netdev_priv(netdev); 125 const char *fec = "", *pause = ""; 126 int speed = fp->link_speed; 127 char unit = 'M'; 128 129 if (fp->link_speed >= SPEED_1000) { 130 speed /= 1000; 131 unit = 'G'; 132 } 133 134 if (fp->active_fec & FUN_PORT_FEC_RS) 135 fec = ", RS-FEC"; 136 else if (fp->active_fec & FUN_PORT_FEC_FC) 137 fec = ", BASER-FEC"; 138 139 if ((fp->active_fc & FUN_PORT_CAP_PAUSE_MASK) == FUN_PORT_CAP_PAUSE_MASK) 140 pause = ", Tx/Rx PAUSE"; 141 else if (fp->active_fc & FUN_PORT_CAP_RX_PAUSE) 142 pause = ", Rx PAUSE"; 143 else if (fp->active_fc & FUN_PORT_CAP_TX_PAUSE) 144 pause = ", Tx PAUSE"; 145 146 netdev_info(netdev, "Link up at %d %cb/s full-duplex%s%s\n", 147 speed, unit, pause, fec); 148 } else { 149 netdev_info(netdev, "Link down\n"); 150 } 151 } 152 153 static int fun_adi_write(struct fun_dev *fdev, enum fun_admin_adi_attr attr, 154 unsigned int adi_id, const struct fun_adi_param *param) 155 { 156 struct fun_admin_adi_req req = { 157 .common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ADI, 158 sizeof(req)), 159 .u.write.subop = FUN_ADMIN_SUBOP_WRITE, 160 .u.write.attribute = attr, 161 .u.write.id = cpu_to_be32(adi_id), 162 .u.write.param = *param 163 }; 164 165 return fun_submit_admin_sync_cmd(fdev, &req.common, NULL, 0, 0); 166 } 167 168 /* Configure RSS for the given port. @op determines whether a new RSS context 169 * is to be created or whether an existing one should be reconfigured. The 170 * remaining parameters specify the hashing algorithm, key, and indirection 171 * table. 172 * 173 * This initiates packet delivery to the Rx queues set in the indirection 174 * table. 175 */ 176 int fun_config_rss(struct net_device *dev, int algo, const u8 *key, 177 const u32 *qtable, u8 op) 178 { 179 struct funeth_priv *fp = netdev_priv(dev); 180 unsigned int table_len = fp->indir_table_nentries; 181 unsigned int len = FUN_ETH_RSS_MAX_KEY_SIZE + sizeof(u32) * table_len; 182 struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs); 183 union { 184 struct { 185 struct fun_admin_rss_req req; 186 struct fun_dataop_gl gl; 187 }; 188 struct fun_admin_generic_create_rsp rsp; 189 } cmd; 190 __be32 *indir_tab; 191 u16 flags; 192 int rc; 193 194 if (op != FUN_ADMIN_SUBOP_CREATE && fp->rss_hw_id == FUN_HCI_ID_INVALID) 195 return -EINVAL; 196 197 flags = op == FUN_ADMIN_SUBOP_CREATE ? 198 FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR : 0; 199 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_RSS, 200 sizeof(cmd)); 201 cmd.req.u.create = 202 FUN_ADMIN_RSS_CREATE_REQ_INIT(op, flags, fp->rss_hw_id, 203 dev->dev_port, algo, 204 FUN_ETH_RSS_MAX_KEY_SIZE, 205 table_len, 0, 206 FUN_ETH_RSS_MAX_KEY_SIZE); 207 cmd.req.u.create.dataop = FUN_DATAOP_HDR_INIT(1, 0, 1, 0, len); 208 fun_dataop_gl_init(&cmd.gl, 0, 0, len, fp->rss_dma_addr); 209 210 /* write the key and indirection table into the RSS DMA area */ 211 memcpy(fp->rss_cfg, key, FUN_ETH_RSS_MAX_KEY_SIZE); 212 indir_tab = fp->rss_cfg + FUN_ETH_RSS_MAX_KEY_SIZE; 213 for (rc = 0; rc < table_len; rc++) 214 *indir_tab++ = cpu_to_be32(rxqs[*qtable++]->hw_cqid); 215 216 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, 217 &cmd.rsp, sizeof(cmd.rsp), 0); 218 if (!rc && op == FUN_ADMIN_SUBOP_CREATE) 219 fp->rss_hw_id = be32_to_cpu(cmd.rsp.id); 220 return rc; 221 } 222 223 /* Destroy the HW RSS conntext associated with the given port. This also stops 224 * all packet delivery to our Rx queues. 225 */ 226 static void fun_destroy_rss(struct funeth_priv *fp) 227 { 228 if (fp->rss_hw_id != FUN_HCI_ID_INVALID) { 229 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_RSS, 0, fp->rss_hw_id); 230 fp->rss_hw_id = FUN_HCI_ID_INVALID; 231 } 232 } 233 234 static void fun_irq_aff_notify(struct irq_affinity_notify *notify, 235 const cpumask_t *mask) 236 { 237 struct fun_irq *p = container_of(notify, struct fun_irq, aff_notify); 238 239 cpumask_copy(&p->affinity_mask, mask); 240 } 241 242 static void fun_irq_aff_release(struct kref __always_unused *ref) 243 { 244 } 245 246 /* Allocate an IRQ structure, assign an MSI-X index and initial affinity to it, 247 * and add it to the IRQ XArray. 248 */ 249 static struct fun_irq *fun_alloc_qirq(struct funeth_priv *fp, unsigned int idx, 250 int node, unsigned int xa_idx_offset) 251 { 252 struct fun_irq *irq; 253 int cpu, res; 254 255 cpu = cpumask_local_spread(idx, node); 256 node = cpu_to_mem(cpu); 257 258 irq = kzalloc_node(sizeof(*irq), GFP_KERNEL, node); 259 if (!irq) 260 return ERR_PTR(-ENOMEM); 261 262 res = fun_reserve_irqs(fp->fdev, 1, &irq->irq_idx); 263 if (res != 1) 264 goto free_irq; 265 266 res = xa_insert(&fp->irqs, idx + xa_idx_offset, irq, GFP_KERNEL); 267 if (res) 268 goto release_irq; 269 270 irq->irq = pci_irq_vector(fp->pdev, irq->irq_idx); 271 cpumask_set_cpu(cpu, &irq->affinity_mask); 272 irq->aff_notify.notify = fun_irq_aff_notify; 273 irq->aff_notify.release = fun_irq_aff_release; 274 irq->state = FUN_IRQ_INIT; 275 return irq; 276 277 release_irq: 278 fun_release_irqs(fp->fdev, 1, &irq->irq_idx); 279 free_irq: 280 kfree(irq); 281 return ERR_PTR(res); 282 } 283 284 static void fun_free_qirq(struct funeth_priv *fp, struct fun_irq *irq) 285 { 286 netif_napi_del(&irq->napi); 287 fun_release_irqs(fp->fdev, 1, &irq->irq_idx); 288 kfree(irq); 289 } 290 291 /* Release the IRQs reserved for Tx/Rx queues that aren't being used. */ 292 static void fun_prune_queue_irqs(struct net_device *dev) 293 { 294 struct funeth_priv *fp = netdev_priv(dev); 295 unsigned int nreleased = 0; 296 struct fun_irq *irq; 297 unsigned long idx; 298 299 xa_for_each(&fp->irqs, idx, irq) { 300 if (irq->txq || irq->rxq) /* skip those in use */ 301 continue; 302 303 xa_erase(&fp->irqs, idx); 304 fun_free_qirq(fp, irq); 305 nreleased++; 306 if (idx < fp->rx_irq_ofst) 307 fp->num_tx_irqs--; 308 else 309 fp->num_rx_irqs--; 310 } 311 netif_info(fp, intr, dev, "Released %u queue IRQs\n", nreleased); 312 } 313 314 /* Reserve IRQs, one per queue, to acommodate the requested queue numbers @ntx 315 * and @nrx. IRQs are added incrementally to those we already have. 316 * We hold on to allocated IRQs until garbage collection of unused IRQs is 317 * separately requested. 318 */ 319 static int fun_alloc_queue_irqs(struct net_device *dev, unsigned int ntx, 320 unsigned int nrx) 321 { 322 struct funeth_priv *fp = netdev_priv(dev); 323 int node = dev_to_node(&fp->pdev->dev); 324 struct fun_irq *irq; 325 unsigned int i; 326 327 for (i = fp->num_tx_irqs; i < ntx; i++) { 328 irq = fun_alloc_qirq(fp, i, node, 0); 329 if (IS_ERR(irq)) 330 return PTR_ERR(irq); 331 332 fp->num_tx_irqs++; 333 netif_napi_add_tx(dev, &irq->napi, fun_txq_napi_poll); 334 } 335 336 for (i = fp->num_rx_irqs; i < nrx; i++) { 337 irq = fun_alloc_qirq(fp, i, node, fp->rx_irq_ofst); 338 if (IS_ERR(irq)) 339 return PTR_ERR(irq); 340 341 fp->num_rx_irqs++; 342 netif_napi_add(dev, &irq->napi, fun_rxq_napi_poll, 343 NAPI_POLL_WEIGHT); 344 } 345 346 netif_info(fp, intr, dev, "Reserved %u/%u IRQs for Tx/Rx queues\n", 347 ntx, nrx); 348 return 0; 349 } 350 351 static void free_txqs(struct funeth_txq **txqs, unsigned int nqs, 352 unsigned int start, int state) 353 { 354 unsigned int i; 355 356 for (i = start; i < nqs && txqs[i]; i++) 357 txqs[i] = funeth_txq_free(txqs[i], state); 358 } 359 360 static int alloc_txqs(struct net_device *dev, struct funeth_txq **txqs, 361 unsigned int nqs, unsigned int depth, unsigned int start, 362 int state) 363 { 364 struct funeth_priv *fp = netdev_priv(dev); 365 unsigned int i; 366 int err; 367 368 for (i = start; i < nqs; i++) { 369 err = funeth_txq_create(dev, i, depth, xa_load(&fp->irqs, i), 370 state, &txqs[i]); 371 if (err) { 372 free_txqs(txqs, nqs, start, FUN_QSTATE_DESTROYED); 373 return err; 374 } 375 } 376 return 0; 377 } 378 379 static void free_rxqs(struct funeth_rxq **rxqs, unsigned int nqs, 380 unsigned int start, int state) 381 { 382 unsigned int i; 383 384 for (i = start; i < nqs && rxqs[i]; i++) 385 rxqs[i] = funeth_rxq_free(rxqs[i], state); 386 } 387 388 static int alloc_rxqs(struct net_device *dev, struct funeth_rxq **rxqs, 389 unsigned int nqs, unsigned int ncqe, unsigned int nrqe, 390 unsigned int start, int state) 391 { 392 struct funeth_priv *fp = netdev_priv(dev); 393 unsigned int i; 394 int err; 395 396 for (i = start; i < nqs; i++) { 397 err = funeth_rxq_create(dev, i, ncqe, nrqe, 398 xa_load(&fp->irqs, i + fp->rx_irq_ofst), 399 state, &rxqs[i]); 400 if (err) { 401 free_rxqs(rxqs, nqs, start, FUN_QSTATE_DESTROYED); 402 return err; 403 } 404 } 405 return 0; 406 } 407 408 static void free_xdpqs(struct funeth_txq **xdpqs, unsigned int nqs, 409 unsigned int start, int state) 410 { 411 unsigned int i; 412 413 for (i = start; i < nqs && xdpqs[i]; i++) 414 xdpqs[i] = funeth_txq_free(xdpqs[i], state); 415 416 if (state == FUN_QSTATE_DESTROYED) 417 kfree(xdpqs); 418 } 419 420 static struct funeth_txq **alloc_xdpqs(struct net_device *dev, unsigned int nqs, 421 unsigned int depth, unsigned int start, 422 int state) 423 { 424 struct funeth_txq **xdpqs; 425 unsigned int i; 426 int err; 427 428 xdpqs = kcalloc(nqs, sizeof(*xdpqs), GFP_KERNEL); 429 if (!xdpqs) 430 return ERR_PTR(-ENOMEM); 431 432 for (i = start; i < nqs; i++) { 433 err = funeth_txq_create(dev, i, depth, NULL, state, &xdpqs[i]); 434 if (err) { 435 free_xdpqs(xdpqs, nqs, start, FUN_QSTATE_DESTROYED); 436 return ERR_PTR(err); 437 } 438 } 439 return xdpqs; 440 } 441 442 static void fun_free_rings(struct net_device *netdev, struct fun_qset *qset) 443 { 444 struct funeth_priv *fp = netdev_priv(netdev); 445 struct funeth_txq **xdpqs = qset->xdpqs; 446 struct funeth_rxq **rxqs = qset->rxqs; 447 448 /* qset may not specify any queues to operate on. In that case the 449 * currently installed queues are implied. 450 */ 451 if (!rxqs) { 452 rxqs = rtnl_dereference(fp->rxqs); 453 xdpqs = rtnl_dereference(fp->xdpqs); 454 qset->txqs = fp->txqs; 455 qset->nrxqs = netdev->real_num_rx_queues; 456 qset->ntxqs = netdev->real_num_tx_queues; 457 qset->nxdpqs = fp->num_xdpqs; 458 } 459 if (!rxqs) 460 return; 461 462 if (rxqs == rtnl_dereference(fp->rxqs)) { 463 rcu_assign_pointer(fp->rxqs, NULL); 464 rcu_assign_pointer(fp->xdpqs, NULL); 465 synchronize_net(); 466 fp->txqs = NULL; 467 } 468 469 free_rxqs(rxqs, qset->nrxqs, qset->rxq_start, qset->state); 470 free_txqs(qset->txqs, qset->ntxqs, qset->txq_start, qset->state); 471 free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, qset->state); 472 if (qset->state == FUN_QSTATE_DESTROYED) 473 kfree(rxqs); 474 475 /* Tell the caller which queues were operated on. */ 476 qset->rxqs = rxqs; 477 qset->xdpqs = xdpqs; 478 } 479 480 static int fun_alloc_rings(struct net_device *netdev, struct fun_qset *qset) 481 { 482 struct funeth_txq **xdpqs = NULL, **txqs; 483 struct funeth_rxq **rxqs; 484 int err; 485 486 err = fun_alloc_queue_irqs(netdev, qset->ntxqs, qset->nrxqs); 487 if (err) 488 return err; 489 490 rxqs = kcalloc(qset->ntxqs + qset->nrxqs, sizeof(*rxqs), GFP_KERNEL); 491 if (!rxqs) 492 return -ENOMEM; 493 494 if (qset->nxdpqs) { 495 xdpqs = alloc_xdpqs(netdev, qset->nxdpqs, qset->sq_depth, 496 qset->xdpq_start, qset->state); 497 if (IS_ERR(xdpqs)) { 498 err = PTR_ERR(xdpqs); 499 goto free_qvec; 500 } 501 } 502 503 txqs = (struct funeth_txq **)&rxqs[qset->nrxqs]; 504 err = alloc_txqs(netdev, txqs, qset->ntxqs, qset->sq_depth, 505 qset->txq_start, qset->state); 506 if (err) 507 goto free_xdpqs; 508 509 err = alloc_rxqs(netdev, rxqs, qset->nrxqs, qset->cq_depth, 510 qset->rq_depth, qset->rxq_start, qset->state); 511 if (err) 512 goto free_txqs; 513 514 qset->rxqs = rxqs; 515 qset->txqs = txqs; 516 qset->xdpqs = xdpqs; 517 return 0; 518 519 free_txqs: 520 free_txqs(txqs, qset->ntxqs, qset->txq_start, FUN_QSTATE_DESTROYED); 521 free_xdpqs: 522 free_xdpqs(xdpqs, qset->nxdpqs, qset->xdpq_start, FUN_QSTATE_DESTROYED); 523 free_qvec: 524 kfree(rxqs); 525 return err; 526 } 527 528 /* Take queues to the next level. Presently this means creating them on the 529 * device. 530 */ 531 static int fun_advance_ring_state(struct net_device *dev, struct fun_qset *qset) 532 { 533 struct funeth_priv *fp = netdev_priv(dev); 534 int i, err; 535 536 for (i = 0; i < qset->nrxqs; i++) { 537 err = fun_rxq_create_dev(qset->rxqs[i], 538 xa_load(&fp->irqs, 539 i + fp->rx_irq_ofst)); 540 if (err) 541 goto out; 542 } 543 544 for (i = 0; i < qset->ntxqs; i++) { 545 err = fun_txq_create_dev(qset->txqs[i], xa_load(&fp->irqs, i)); 546 if (err) 547 goto out; 548 } 549 550 for (i = 0; i < qset->nxdpqs; i++) { 551 err = fun_txq_create_dev(qset->xdpqs[i], NULL); 552 if (err) 553 goto out; 554 } 555 556 return 0; 557 558 out: 559 fun_free_rings(dev, qset); 560 return err; 561 } 562 563 static int fun_port_create(struct net_device *netdev) 564 { 565 struct funeth_priv *fp = netdev_priv(netdev); 566 union { 567 struct fun_admin_port_req req; 568 struct fun_admin_port_rsp rsp; 569 } cmd; 570 int rc; 571 572 if (fp->lport != INVALID_LPORT) 573 return 0; 574 575 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_PORT, 576 sizeof(cmd.req)); 577 cmd.req.u.create = 578 FUN_ADMIN_PORT_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE, 0, 579 netdev->dev_port); 580 581 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp, 582 sizeof(cmd.rsp), 0); 583 584 if (!rc) 585 fp->lport = be16_to_cpu(cmd.rsp.u.create.lport); 586 return rc; 587 } 588 589 static int fun_port_destroy(struct net_device *netdev) 590 { 591 struct funeth_priv *fp = netdev_priv(netdev); 592 593 if (fp->lport == INVALID_LPORT) 594 return 0; 595 596 fp->lport = INVALID_LPORT; 597 return fun_res_destroy(fp->fdev, FUN_ADMIN_OP_PORT, 0, 598 netdev->dev_port); 599 } 600 601 static int fun_eth_create(struct funeth_priv *fp) 602 { 603 union { 604 struct fun_admin_eth_req req; 605 struct fun_admin_generic_create_rsp rsp; 606 } cmd; 607 int rc; 608 609 cmd.req.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_ETH, 610 sizeof(cmd.req)); 611 cmd.req.u.create = FUN_ADMIN_ETH_CREATE_REQ_INIT( 612 FUN_ADMIN_SUBOP_CREATE, 613 FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR, 614 0, fp->netdev->dev_port); 615 616 rc = fun_submit_admin_sync_cmd(fp->fdev, &cmd.req.common, &cmd.rsp, 617 sizeof(cmd.rsp), 0); 618 return rc ? rc : be32_to_cpu(cmd.rsp.id); 619 } 620 621 static int fun_vi_create(struct funeth_priv *fp) 622 { 623 struct fun_admin_vi_req req = { 624 .common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_VI, 625 sizeof(req)), 626 .u.create = FUN_ADMIN_VI_CREATE_REQ_INIT(FUN_ADMIN_SUBOP_CREATE, 627 0, 628 fp->netdev->dev_port, 629 fp->netdev->dev_port) 630 }; 631 632 return fun_submit_admin_sync_cmd(fp->fdev, &req.common, NULL, 0, 0); 633 } 634 635 /* Helper to create an ETH flow and bind an SQ to it. 636 * Returns the ETH id (>= 0) on success or a negative error. 637 */ 638 int fun_create_and_bind_tx(struct funeth_priv *fp, u32 sqid) 639 { 640 int rc, ethid; 641 642 ethid = fun_eth_create(fp); 643 if (ethid >= 0) { 644 rc = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_EPSQ, sqid, 645 FUN_ADMIN_BIND_TYPE_ETH, ethid); 646 if (rc) { 647 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_ETH, 0, ethid); 648 ethid = rc; 649 } 650 } 651 return ethid; 652 } 653 654 static irqreturn_t fun_queue_irq_handler(int irq, void *data) 655 { 656 struct fun_irq *p = data; 657 658 if (p->rxq) { 659 prefetch(p->rxq->next_cqe_info); 660 p->rxq->irq_cnt++; 661 } 662 napi_schedule_irqoff(&p->napi); 663 return IRQ_HANDLED; 664 } 665 666 static int fun_enable_irqs(struct net_device *dev) 667 { 668 struct funeth_priv *fp = netdev_priv(dev); 669 unsigned long idx, last; 670 unsigned int qidx; 671 struct fun_irq *p; 672 const char *qtype; 673 int err; 674 675 xa_for_each(&fp->irqs, idx, p) { 676 if (p->txq) { 677 qtype = "tx"; 678 qidx = p->txq->qidx; 679 } else if (p->rxq) { 680 qtype = "rx"; 681 qidx = p->rxq->qidx; 682 } else { 683 continue; 684 } 685 686 if (p->state != FUN_IRQ_INIT) 687 continue; 688 689 snprintf(p->name, sizeof(p->name) - 1, "%s-%s-%u", dev->name, 690 qtype, qidx); 691 err = request_irq(p->irq, fun_queue_irq_handler, 0, p->name, p); 692 if (err) { 693 netdev_err(dev, "Failed to allocate IRQ %u, err %d\n", 694 p->irq, err); 695 goto unroll; 696 } 697 p->state = FUN_IRQ_REQUESTED; 698 } 699 700 xa_for_each(&fp->irqs, idx, p) { 701 if (p->state != FUN_IRQ_REQUESTED) 702 continue; 703 irq_set_affinity_notifier(p->irq, &p->aff_notify); 704 irq_set_affinity_and_hint(p->irq, &p->affinity_mask); 705 napi_enable(&p->napi); 706 p->state = FUN_IRQ_ENABLED; 707 } 708 709 return 0; 710 711 unroll: 712 last = idx - 1; 713 xa_for_each_range(&fp->irqs, idx, p, 0, last) 714 if (p->state == FUN_IRQ_REQUESTED) { 715 free_irq(p->irq, p); 716 p->state = FUN_IRQ_INIT; 717 } 718 719 return err; 720 } 721 722 static void fun_disable_one_irq(struct fun_irq *irq) 723 { 724 napi_disable(&irq->napi); 725 irq_set_affinity_notifier(irq->irq, NULL); 726 irq_update_affinity_hint(irq->irq, NULL); 727 free_irq(irq->irq, irq); 728 irq->state = FUN_IRQ_INIT; 729 } 730 731 static void fun_disable_irqs(struct net_device *dev) 732 { 733 struct funeth_priv *fp = netdev_priv(dev); 734 struct fun_irq *p; 735 unsigned long idx; 736 737 xa_for_each(&fp->irqs, idx, p) 738 if (p->state == FUN_IRQ_ENABLED) 739 fun_disable_one_irq(p); 740 } 741 742 static void fun_down(struct net_device *dev, struct fun_qset *qset) 743 { 744 struct funeth_priv *fp = netdev_priv(dev); 745 746 /* If we don't have queues the data path is already down. 747 * Note netif_running(dev) may be true. 748 */ 749 if (!rcu_access_pointer(fp->rxqs)) 750 return; 751 752 /* It is also down if the queues aren't on the device. */ 753 if (fp->txqs[0]->init_state >= FUN_QSTATE_INIT_FULL) { 754 netif_info(fp, ifdown, dev, 755 "Tearing down data path on device\n"); 756 fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_DISABLE, 0); 757 758 netif_carrier_off(dev); 759 netif_tx_disable(dev); 760 761 fun_destroy_rss(fp); 762 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port); 763 fun_disable_irqs(dev); 764 } 765 766 fun_free_rings(dev, qset); 767 } 768 769 static int fun_up(struct net_device *dev, struct fun_qset *qset) 770 { 771 static const int port_keys[] = { 772 FUN_ADMIN_PORT_KEY_STATS_DMA_LOW, 773 FUN_ADMIN_PORT_KEY_STATS_DMA_HIGH, 774 FUN_ADMIN_PORT_KEY_ENABLE 775 }; 776 777 struct funeth_priv *fp = netdev_priv(dev); 778 u64 vals[] = { 779 lower_32_bits(fp->stats_dma_addr), 780 upper_32_bits(fp->stats_dma_addr), 781 FUN_PORT_FLAG_ENABLE_NOTIFY 782 }; 783 int err; 784 785 netif_info(fp, ifup, dev, "Setting up data path on device\n"); 786 787 if (qset->rxqs[0]->init_state < FUN_QSTATE_INIT_FULL) { 788 err = fun_advance_ring_state(dev, qset); 789 if (err) 790 return err; 791 } 792 793 err = fun_vi_create(fp); 794 if (err) 795 goto free_queues; 796 797 fp->txqs = qset->txqs; 798 rcu_assign_pointer(fp->rxqs, qset->rxqs); 799 rcu_assign_pointer(fp->xdpqs, qset->xdpqs); 800 801 err = fun_enable_irqs(dev); 802 if (err) 803 goto destroy_vi; 804 805 if (fp->rss_cfg) { 806 err = fun_config_rss(dev, fp->hash_algo, fp->rss_key, 807 fp->indir_table, FUN_ADMIN_SUBOP_CREATE); 808 } else { 809 /* The non-RSS case has only 1 queue. */ 810 err = fun_bind(fp->fdev, FUN_ADMIN_BIND_TYPE_VI, dev->dev_port, 811 FUN_ADMIN_BIND_TYPE_EPCQ, 812 qset->rxqs[0]->hw_cqid); 813 } 814 if (err) 815 goto disable_irqs; 816 817 err = fun_port_write_cmds(fp, 3, port_keys, vals); 818 if (err) 819 goto free_rss; 820 821 netif_tx_start_all_queues(dev); 822 return 0; 823 824 free_rss: 825 fun_destroy_rss(fp); 826 disable_irqs: 827 fun_disable_irqs(dev); 828 destroy_vi: 829 fun_res_destroy(fp->fdev, FUN_ADMIN_OP_VI, 0, dev->dev_port); 830 free_queues: 831 fun_free_rings(dev, qset); 832 return err; 833 } 834 835 static int funeth_open(struct net_device *netdev) 836 { 837 struct funeth_priv *fp = netdev_priv(netdev); 838 struct fun_qset qset = { 839 .nrxqs = netdev->real_num_rx_queues, 840 .ntxqs = netdev->real_num_tx_queues, 841 .nxdpqs = fp->num_xdpqs, 842 .cq_depth = fp->cq_depth, 843 .rq_depth = fp->rq_depth, 844 .sq_depth = fp->sq_depth, 845 .state = FUN_QSTATE_INIT_FULL, 846 }; 847 int rc; 848 849 rc = fun_alloc_rings(netdev, &qset); 850 if (rc) 851 return rc; 852 853 rc = fun_up(netdev, &qset); 854 if (rc) { 855 qset.state = FUN_QSTATE_DESTROYED; 856 fun_free_rings(netdev, &qset); 857 } 858 859 return rc; 860 } 861 862 static int funeth_close(struct net_device *netdev) 863 { 864 struct fun_qset qset = { .state = FUN_QSTATE_DESTROYED }; 865 866 fun_down(netdev, &qset); 867 return 0; 868 } 869 870 static void fun_get_stats64(struct net_device *netdev, 871 struct rtnl_link_stats64 *stats) 872 { 873 struct funeth_priv *fp = netdev_priv(netdev); 874 struct funeth_txq **xdpqs; 875 struct funeth_rxq **rxqs; 876 unsigned int i, start; 877 878 stats->tx_packets = fp->tx_packets; 879 stats->tx_bytes = fp->tx_bytes; 880 stats->tx_dropped = fp->tx_dropped; 881 882 stats->rx_packets = fp->rx_packets; 883 stats->rx_bytes = fp->rx_bytes; 884 stats->rx_dropped = fp->rx_dropped; 885 886 rcu_read_lock(); 887 rxqs = rcu_dereference(fp->rxqs); 888 if (!rxqs) 889 goto unlock; 890 891 for (i = 0; i < netdev->real_num_tx_queues; i++) { 892 struct funeth_txq_stats txs; 893 894 FUN_QSTAT_READ(fp->txqs[i], start, txs); 895 stats->tx_packets += txs.tx_pkts; 896 stats->tx_bytes += txs.tx_bytes; 897 stats->tx_dropped += txs.tx_map_err; 898 } 899 900 for (i = 0; i < netdev->real_num_rx_queues; i++) { 901 struct funeth_rxq_stats rxs; 902 903 FUN_QSTAT_READ(rxqs[i], start, rxs); 904 stats->rx_packets += rxs.rx_pkts; 905 stats->rx_bytes += rxs.rx_bytes; 906 stats->rx_dropped += rxs.rx_map_err + rxs.rx_mem_drops; 907 } 908 909 xdpqs = rcu_dereference(fp->xdpqs); 910 if (!xdpqs) 911 goto unlock; 912 913 for (i = 0; i < fp->num_xdpqs; i++) { 914 struct funeth_txq_stats txs; 915 916 FUN_QSTAT_READ(xdpqs[i], start, txs); 917 stats->tx_packets += txs.tx_pkts; 918 stats->tx_bytes += txs.tx_bytes; 919 } 920 unlock: 921 rcu_read_unlock(); 922 } 923 924 static int fun_change_mtu(struct net_device *netdev, int new_mtu) 925 { 926 struct funeth_priv *fp = netdev_priv(netdev); 927 int rc; 928 929 rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MTU, new_mtu); 930 if (!rc) 931 netdev->mtu = new_mtu; 932 return rc; 933 } 934 935 static int fun_set_macaddr(struct net_device *netdev, void *addr) 936 { 937 struct funeth_priv *fp = netdev_priv(netdev); 938 struct sockaddr *saddr = addr; 939 int rc; 940 941 if (!is_valid_ether_addr(saddr->sa_data)) 942 return -EADDRNOTAVAIL; 943 944 if (ether_addr_equal(netdev->dev_addr, saddr->sa_data)) 945 return 0; 946 947 rc = fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR, 948 ether_addr_to_u64(saddr->sa_data)); 949 if (!rc) 950 eth_hw_addr_set(netdev, saddr->sa_data); 951 return rc; 952 } 953 954 static int fun_get_port_attributes(struct net_device *netdev) 955 { 956 static const int keys[] = { 957 FUN_ADMIN_PORT_KEY_MACADDR, FUN_ADMIN_PORT_KEY_CAPABILITIES, 958 FUN_ADMIN_PORT_KEY_ADVERT, FUN_ADMIN_PORT_KEY_MTU 959 }; 960 static const int phys_keys[] = { 961 FUN_ADMIN_PORT_KEY_LANE_ATTRS, 962 }; 963 964 struct funeth_priv *fp = netdev_priv(netdev); 965 u64 data[ARRAY_SIZE(keys)]; 966 u8 mac[ETH_ALEN]; 967 int i, rc; 968 969 rc = fun_port_read_cmds(fp, ARRAY_SIZE(keys), keys, data); 970 if (rc) 971 return rc; 972 973 for (i = 0; i < ARRAY_SIZE(keys); i++) { 974 switch (keys[i]) { 975 case FUN_ADMIN_PORT_KEY_MACADDR: 976 u64_to_ether_addr(data[i], mac); 977 if (is_zero_ether_addr(mac)) { 978 eth_hw_addr_random(netdev); 979 } else if (is_valid_ether_addr(mac)) { 980 eth_hw_addr_set(netdev, mac); 981 } else { 982 netdev_err(netdev, 983 "device provided a bad MAC address %pM\n", 984 mac); 985 return -EINVAL; 986 } 987 break; 988 989 case FUN_ADMIN_PORT_KEY_CAPABILITIES: 990 fp->port_caps = data[i]; 991 break; 992 993 case FUN_ADMIN_PORT_KEY_ADVERT: 994 fp->advertising = data[i]; 995 break; 996 997 case FUN_ADMIN_PORT_KEY_MTU: 998 netdev->mtu = data[i]; 999 break; 1000 } 1001 } 1002 1003 if (!(fp->port_caps & FUN_PORT_CAP_VPORT)) { 1004 rc = fun_port_read_cmds(fp, ARRAY_SIZE(phys_keys), phys_keys, 1005 data); 1006 if (rc) 1007 return rc; 1008 1009 fp->lane_attrs = data[0]; 1010 } 1011 1012 if (netdev->addr_assign_type == NET_ADDR_RANDOM) 1013 return fun_port_write_cmd(fp, FUN_ADMIN_PORT_KEY_MACADDR, 1014 ether_addr_to_u64(netdev->dev_addr)); 1015 return 0; 1016 } 1017 1018 static int fun_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) 1019 { 1020 const struct funeth_priv *fp = netdev_priv(dev); 1021 1022 return copy_to_user(ifr->ifr_data, &fp->hwtstamp_cfg, 1023 sizeof(fp->hwtstamp_cfg)) ? -EFAULT : 0; 1024 } 1025 1026 static int fun_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) 1027 { 1028 struct funeth_priv *fp = netdev_priv(dev); 1029 struct hwtstamp_config cfg; 1030 1031 if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) 1032 return -EFAULT; 1033 1034 /* no TX HW timestamps */ 1035 cfg.tx_type = HWTSTAMP_TX_OFF; 1036 1037 switch (cfg.rx_filter) { 1038 case HWTSTAMP_FILTER_NONE: 1039 break; 1040 case HWTSTAMP_FILTER_ALL: 1041 case HWTSTAMP_FILTER_SOME: 1042 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 1043 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 1044 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 1045 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 1046 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 1047 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 1048 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 1049 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 1050 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 1051 case HWTSTAMP_FILTER_PTP_V2_EVENT: 1052 case HWTSTAMP_FILTER_PTP_V2_SYNC: 1053 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 1054 case HWTSTAMP_FILTER_NTP_ALL: 1055 cfg.rx_filter = HWTSTAMP_FILTER_ALL; 1056 break; 1057 default: 1058 return -ERANGE; 1059 } 1060 1061 fp->hwtstamp_cfg = cfg; 1062 return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; 1063 } 1064 1065 static int fun_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 1066 { 1067 switch (cmd) { 1068 case SIOCSHWTSTAMP: 1069 return fun_hwtstamp_set(dev, ifr); 1070 case SIOCGHWTSTAMP: 1071 return fun_hwtstamp_get(dev, ifr); 1072 default: 1073 return -EOPNOTSUPP; 1074 } 1075 } 1076 1077 /* Prepare the queues for XDP. */ 1078 static int fun_enter_xdp(struct net_device *dev, struct bpf_prog *prog) 1079 { 1080 struct funeth_priv *fp = netdev_priv(dev); 1081 unsigned int i, nqs = num_online_cpus(); 1082 struct funeth_txq **xdpqs; 1083 struct funeth_rxq **rxqs; 1084 int err; 1085 1086 xdpqs = alloc_xdpqs(dev, nqs, fp->sq_depth, 0, FUN_QSTATE_INIT_FULL); 1087 if (IS_ERR(xdpqs)) 1088 return PTR_ERR(xdpqs); 1089 1090 rxqs = rtnl_dereference(fp->rxqs); 1091 for (i = 0; i < dev->real_num_rx_queues; i++) { 1092 err = fun_rxq_set_bpf(rxqs[i], prog); 1093 if (err) 1094 goto out; 1095 } 1096 1097 fp->num_xdpqs = nqs; 1098 rcu_assign_pointer(fp->xdpqs, xdpqs); 1099 return 0; 1100 out: 1101 while (i--) 1102 fun_rxq_set_bpf(rxqs[i], NULL); 1103 1104 free_xdpqs(xdpqs, nqs, 0, FUN_QSTATE_DESTROYED); 1105 return err; 1106 } 1107 1108 /* Set the queues for non-XDP operation. */ 1109 static void fun_end_xdp(struct net_device *dev) 1110 { 1111 struct funeth_priv *fp = netdev_priv(dev); 1112 struct funeth_txq **xdpqs; 1113 struct funeth_rxq **rxqs; 1114 unsigned int i; 1115 1116 xdpqs = rtnl_dereference(fp->xdpqs); 1117 rcu_assign_pointer(fp->xdpqs, NULL); 1118 synchronize_net(); 1119 /* at this point both Rx and Tx XDP processing has ended */ 1120 1121 free_xdpqs(xdpqs, fp->num_xdpqs, 0, FUN_QSTATE_DESTROYED); 1122 fp->num_xdpqs = 0; 1123 1124 rxqs = rtnl_dereference(fp->rxqs); 1125 for (i = 0; i < dev->real_num_rx_queues; i++) 1126 fun_rxq_set_bpf(rxqs[i], NULL); 1127 } 1128 1129 #define XDP_MAX_MTU \ 1130 (PAGE_SIZE - FUN_XDP_HEADROOM - VLAN_ETH_HLEN - FUN_RX_TAILROOM) 1131 1132 static int fun_xdp_setup(struct net_device *dev, struct netdev_bpf *xdp) 1133 { 1134 struct bpf_prog *old_prog, *prog = xdp->prog; 1135 struct funeth_priv *fp = netdev_priv(dev); 1136 int i, err; 1137 1138 /* XDP uses at most one buffer */ 1139 if (prog && dev->mtu > XDP_MAX_MTU) { 1140 netdev_err(dev, "device MTU %u too large for XDP\n", dev->mtu); 1141 NL_SET_ERR_MSG_MOD(xdp->extack, 1142 "Device MTU too large for XDP"); 1143 return -EINVAL; 1144 } 1145 1146 if (!netif_running(dev)) { 1147 fp->num_xdpqs = prog ? num_online_cpus() : 0; 1148 } else if (prog && !fp->xdp_prog) { 1149 err = fun_enter_xdp(dev, prog); 1150 if (err) { 1151 NL_SET_ERR_MSG_MOD(xdp->extack, 1152 "Failed to set queues for XDP."); 1153 return err; 1154 } 1155 } else if (!prog && fp->xdp_prog) { 1156 fun_end_xdp(dev); 1157 } else { 1158 struct funeth_rxq **rxqs = rtnl_dereference(fp->rxqs); 1159 1160 for (i = 0; i < dev->real_num_rx_queues; i++) 1161 WRITE_ONCE(rxqs[i]->xdp_prog, prog); 1162 } 1163 1164 dev->max_mtu = prog ? XDP_MAX_MTU : FUN_MAX_MTU; 1165 old_prog = xchg(&fp->xdp_prog, prog); 1166 if (old_prog) 1167 bpf_prog_put(old_prog); 1168 1169 return 0; 1170 } 1171 1172 static int fun_xdp(struct net_device *dev, struct netdev_bpf *xdp) 1173 { 1174 switch (xdp->command) { 1175 case XDP_SETUP_PROG: 1176 return fun_xdp_setup(dev, xdp); 1177 default: 1178 return -EINVAL; 1179 } 1180 } 1181 1182 static struct devlink_port *fun_get_devlink_port(struct net_device *netdev) 1183 { 1184 struct funeth_priv *fp = netdev_priv(netdev); 1185 1186 return &fp->dl_port; 1187 } 1188 1189 static int fun_init_vports(struct fun_ethdev *ed, unsigned int n) 1190 { 1191 if (ed->num_vports) 1192 return -EINVAL; 1193 1194 ed->vport_info = kvcalloc(n, sizeof(*ed->vport_info), GFP_KERNEL); 1195 if (!ed->vport_info) 1196 return -ENOMEM; 1197 ed->num_vports = n; 1198 return 0; 1199 } 1200 1201 static void fun_free_vports(struct fun_ethdev *ed) 1202 { 1203 kvfree(ed->vport_info); 1204 ed->vport_info = NULL; 1205 ed->num_vports = 0; 1206 } 1207 1208 static struct fun_vport_info *fun_get_vport(struct fun_ethdev *ed, 1209 unsigned int vport) 1210 { 1211 if (!ed->vport_info || vport >= ed->num_vports) 1212 return NULL; 1213 1214 return ed->vport_info + vport; 1215 } 1216 1217 static int fun_set_vf_mac(struct net_device *dev, int vf, u8 *mac) 1218 { 1219 struct funeth_priv *fp = netdev_priv(dev); 1220 struct fun_adi_param mac_param = {}; 1221 struct fun_dev *fdev = fp->fdev; 1222 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1223 struct fun_vport_info *vi; 1224 int rc = -EINVAL; 1225 1226 if (is_multicast_ether_addr(mac)) 1227 return -EINVAL; 1228 1229 mutex_lock(&ed->state_mutex); 1230 vi = fun_get_vport(ed, vf); 1231 if (!vi) 1232 goto unlock; 1233 1234 mac_param.u.mac = FUN_ADI_MAC_INIT(ether_addr_to_u64(mac)); 1235 rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_MACADDR, vf + 1, 1236 &mac_param); 1237 if (!rc) 1238 ether_addr_copy(vi->mac, mac); 1239 unlock: 1240 mutex_unlock(&ed->state_mutex); 1241 return rc; 1242 } 1243 1244 static int fun_set_vf_vlan(struct net_device *dev, int vf, u16 vlan, u8 qos, 1245 __be16 vlan_proto) 1246 { 1247 struct funeth_priv *fp = netdev_priv(dev); 1248 struct fun_adi_param vlan_param = {}; 1249 struct fun_dev *fdev = fp->fdev; 1250 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1251 struct fun_vport_info *vi; 1252 int rc = -EINVAL; 1253 1254 if (vlan > 4095 || qos > 7) 1255 return -EINVAL; 1256 if (vlan_proto && vlan_proto != htons(ETH_P_8021Q) && 1257 vlan_proto != htons(ETH_P_8021AD)) 1258 return -EINVAL; 1259 1260 mutex_lock(&ed->state_mutex); 1261 vi = fun_get_vport(ed, vf); 1262 if (!vi) 1263 goto unlock; 1264 1265 vlan_param.u.vlan = FUN_ADI_VLAN_INIT(be16_to_cpu(vlan_proto), 1266 ((u16)qos << VLAN_PRIO_SHIFT) | vlan); 1267 rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_VLAN, vf + 1, &vlan_param); 1268 if (!rc) { 1269 vi->vlan = vlan; 1270 vi->qos = qos; 1271 vi->vlan_proto = vlan_proto; 1272 } 1273 unlock: 1274 mutex_unlock(&ed->state_mutex); 1275 return rc; 1276 } 1277 1278 static int fun_set_vf_rate(struct net_device *dev, int vf, int min_tx_rate, 1279 int max_tx_rate) 1280 { 1281 struct funeth_priv *fp = netdev_priv(dev); 1282 struct fun_adi_param rate_param = {}; 1283 struct fun_dev *fdev = fp->fdev; 1284 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1285 struct fun_vport_info *vi; 1286 int rc = -EINVAL; 1287 1288 if (min_tx_rate) 1289 return -EINVAL; 1290 1291 mutex_lock(&ed->state_mutex); 1292 vi = fun_get_vport(ed, vf); 1293 if (!vi) 1294 goto unlock; 1295 1296 rate_param.u.rate = FUN_ADI_RATE_INIT(max_tx_rate); 1297 rc = fun_adi_write(fdev, FUN_ADMIN_ADI_ATTR_RATE, vf + 1, &rate_param); 1298 if (!rc) 1299 vi->max_rate = max_tx_rate; 1300 unlock: 1301 mutex_unlock(&ed->state_mutex); 1302 return rc; 1303 } 1304 1305 static int fun_get_vf_config(struct net_device *dev, int vf, 1306 struct ifla_vf_info *ivi) 1307 { 1308 struct funeth_priv *fp = netdev_priv(dev); 1309 struct fun_ethdev *ed = to_fun_ethdev(fp->fdev); 1310 const struct fun_vport_info *vi; 1311 1312 mutex_lock(&ed->state_mutex); 1313 vi = fun_get_vport(ed, vf); 1314 if (!vi) 1315 goto unlock; 1316 1317 memset(ivi, 0, sizeof(*ivi)); 1318 ivi->vf = vf; 1319 ether_addr_copy(ivi->mac, vi->mac); 1320 ivi->vlan = vi->vlan; 1321 ivi->qos = vi->qos; 1322 ivi->vlan_proto = vi->vlan_proto; 1323 ivi->max_tx_rate = vi->max_rate; 1324 ivi->spoofchk = vi->spoofchk; 1325 unlock: 1326 mutex_unlock(&ed->state_mutex); 1327 return vi ? 0 : -EINVAL; 1328 } 1329 1330 static void fun_uninit(struct net_device *dev) 1331 { 1332 struct funeth_priv *fp = netdev_priv(dev); 1333 1334 fun_prune_queue_irqs(dev); 1335 xa_destroy(&fp->irqs); 1336 } 1337 1338 static const struct net_device_ops fun_netdev_ops = { 1339 .ndo_open = funeth_open, 1340 .ndo_stop = funeth_close, 1341 .ndo_start_xmit = fun_start_xmit, 1342 .ndo_get_stats64 = fun_get_stats64, 1343 .ndo_change_mtu = fun_change_mtu, 1344 .ndo_set_mac_address = fun_set_macaddr, 1345 .ndo_validate_addr = eth_validate_addr, 1346 .ndo_eth_ioctl = fun_ioctl, 1347 .ndo_uninit = fun_uninit, 1348 .ndo_bpf = fun_xdp, 1349 .ndo_xdp_xmit = fun_xdp_xmit_frames, 1350 .ndo_set_vf_mac = fun_set_vf_mac, 1351 .ndo_set_vf_vlan = fun_set_vf_vlan, 1352 .ndo_set_vf_rate = fun_set_vf_rate, 1353 .ndo_get_vf_config = fun_get_vf_config, 1354 .ndo_get_devlink_port = fun_get_devlink_port, 1355 }; 1356 1357 #define GSO_ENCAP_FLAGS (NETIF_F_GSO_GRE | NETIF_F_GSO_IPXIP4 | \ 1358 NETIF_F_GSO_IPXIP6 | NETIF_F_GSO_UDP_TUNNEL | \ 1359 NETIF_F_GSO_UDP_TUNNEL_CSUM) 1360 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN) 1361 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_HW_CSUM | TSO_FLAGS | \ 1362 GSO_ENCAP_FLAGS | NETIF_F_HIGHDMA) 1363 1364 static void fun_dflt_rss_indir(struct funeth_priv *fp, unsigned int nrx) 1365 { 1366 unsigned int i; 1367 1368 for (i = 0; i < fp->indir_table_nentries; i++) 1369 fp->indir_table[i] = ethtool_rxfh_indir_default(i, nrx); 1370 } 1371 1372 /* Reset the RSS indirection table to equal distribution across the current 1373 * number of Rx queues. Called at init time and whenever the number of Rx 1374 * queues changes subsequently. Note that this may also resize the indirection 1375 * table. 1376 */ 1377 static void fun_reset_rss_indir(struct net_device *dev, unsigned int nrx) 1378 { 1379 struct funeth_priv *fp = netdev_priv(dev); 1380 1381 if (!fp->rss_cfg) 1382 return; 1383 1384 /* Set the table size to the max possible that allows an equal number 1385 * of occurrences of each CQ. 1386 */ 1387 fp->indir_table_nentries = rounddown(FUN_ETH_RSS_MAX_INDIR_ENT, nrx); 1388 fun_dflt_rss_indir(fp, nrx); 1389 } 1390 1391 /* Update the RSS LUT to contain only queues in [0, nrx). Normally this will 1392 * update the LUT to an equal distribution among nrx queues, If @only_if_needed 1393 * is set the LUT is left unchanged if it already does not reference any queues 1394 * >= nrx. 1395 */ 1396 static int fun_rss_set_qnum(struct net_device *dev, unsigned int nrx, 1397 bool only_if_needed) 1398 { 1399 struct funeth_priv *fp = netdev_priv(dev); 1400 u32 old_lut[FUN_ETH_RSS_MAX_INDIR_ENT]; 1401 unsigned int i, oldsz; 1402 int err; 1403 1404 if (!fp->rss_cfg) 1405 return 0; 1406 1407 if (only_if_needed) { 1408 for (i = 0; i < fp->indir_table_nentries; i++) 1409 if (fp->indir_table[i] >= nrx) 1410 break; 1411 1412 if (i >= fp->indir_table_nentries) 1413 return 0; 1414 } 1415 1416 memcpy(old_lut, fp->indir_table, sizeof(old_lut)); 1417 oldsz = fp->indir_table_nentries; 1418 fun_reset_rss_indir(dev, nrx); 1419 1420 err = fun_config_rss(dev, fp->hash_algo, fp->rss_key, 1421 fp->indir_table, FUN_ADMIN_SUBOP_MODIFY); 1422 if (!err) 1423 return 0; 1424 1425 memcpy(fp->indir_table, old_lut, sizeof(old_lut)); 1426 fp->indir_table_nentries = oldsz; 1427 return err; 1428 } 1429 1430 /* Allocate the DMA area for the RSS configuration commands to the device, and 1431 * initialize the hash, hash key, indirection table size and its entries to 1432 * their defaults. The indirection table defaults to equal distribution across 1433 * the Rx queues. 1434 */ 1435 static int fun_init_rss(struct net_device *dev) 1436 { 1437 struct funeth_priv *fp = netdev_priv(dev); 1438 size_t size = sizeof(fp->rss_key) + sizeof(fp->indir_table); 1439 1440 fp->rss_hw_id = FUN_HCI_ID_INVALID; 1441 if (!(fp->port_caps & FUN_PORT_CAP_OFFLOADS)) 1442 return 0; 1443 1444 fp->rss_cfg = dma_alloc_coherent(&fp->pdev->dev, size, 1445 &fp->rss_dma_addr, GFP_KERNEL); 1446 if (!fp->rss_cfg) 1447 return -ENOMEM; 1448 1449 fp->hash_algo = FUN_ETH_RSS_ALG_TOEPLITZ; 1450 netdev_rss_key_fill(fp->rss_key, sizeof(fp->rss_key)); 1451 fun_reset_rss_indir(dev, dev->real_num_rx_queues); 1452 return 0; 1453 } 1454 1455 static void fun_free_rss(struct funeth_priv *fp) 1456 { 1457 if (fp->rss_cfg) { 1458 dma_free_coherent(&fp->pdev->dev, 1459 sizeof(fp->rss_key) + sizeof(fp->indir_table), 1460 fp->rss_cfg, fp->rss_dma_addr); 1461 fp->rss_cfg = NULL; 1462 } 1463 } 1464 1465 void fun_set_ring_count(struct net_device *netdev, unsigned int ntx, 1466 unsigned int nrx) 1467 { 1468 netif_set_real_num_tx_queues(netdev, ntx); 1469 if (nrx != netdev->real_num_rx_queues) { 1470 netif_set_real_num_rx_queues(netdev, nrx); 1471 fun_reset_rss_indir(netdev, nrx); 1472 } 1473 } 1474 1475 static int fun_init_stats_area(struct funeth_priv *fp) 1476 { 1477 unsigned int nstats; 1478 1479 if (!(fp->port_caps & FUN_PORT_CAP_STATS)) 1480 return 0; 1481 1482 nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX + 1483 PORT_MAC_FEC_STATS_MAX; 1484 1485 fp->stats = dma_alloc_coherent(&fp->pdev->dev, nstats * sizeof(u64), 1486 &fp->stats_dma_addr, GFP_KERNEL); 1487 if (!fp->stats) 1488 return -ENOMEM; 1489 return 0; 1490 } 1491 1492 static void fun_free_stats_area(struct funeth_priv *fp) 1493 { 1494 unsigned int nstats; 1495 1496 if (fp->stats) { 1497 nstats = PORT_MAC_RX_STATS_MAX + PORT_MAC_TX_STATS_MAX; 1498 dma_free_coherent(&fp->pdev->dev, nstats * sizeof(u64), 1499 fp->stats, fp->stats_dma_addr); 1500 fp->stats = NULL; 1501 } 1502 } 1503 1504 static int fun_dl_port_register(struct net_device *netdev) 1505 { 1506 struct funeth_priv *fp = netdev_priv(netdev); 1507 struct devlink *dl = priv_to_devlink(fp->fdev); 1508 struct devlink_port_attrs attrs = {}; 1509 unsigned int idx; 1510 1511 if (fp->port_caps & FUN_PORT_CAP_VPORT) { 1512 attrs.flavour = DEVLINK_PORT_FLAVOUR_VIRTUAL; 1513 idx = fp->lport; 1514 } else { 1515 idx = netdev->dev_port; 1516 attrs.flavour = DEVLINK_PORT_FLAVOUR_PHYSICAL; 1517 attrs.lanes = fp->lane_attrs & 7; 1518 if (fp->lane_attrs & FUN_PORT_LANE_SPLIT) { 1519 attrs.split = 1; 1520 attrs.phys.port_number = fp->lport & ~3; 1521 attrs.phys.split_subport_number = fp->lport & 3; 1522 } else { 1523 attrs.phys.port_number = fp->lport; 1524 } 1525 } 1526 1527 devlink_port_attrs_set(&fp->dl_port, &attrs); 1528 1529 return devlink_port_register(dl, &fp->dl_port, idx); 1530 } 1531 1532 /* Determine the max Tx/Rx queues for a port. */ 1533 static int fun_max_qs(struct fun_ethdev *ed, unsigned int *ntx, 1534 unsigned int *nrx) 1535 { 1536 int neth; 1537 1538 if (ed->num_ports > 1 || is_kdump_kernel()) { 1539 *ntx = 1; 1540 *nrx = 1; 1541 return 0; 1542 } 1543 1544 neth = fun_get_res_count(&ed->fdev, FUN_ADMIN_OP_ETH); 1545 if (neth < 0) 1546 return neth; 1547 1548 /* We determine the max number of queues based on the CPU 1549 * cores, device interrupts and queues, RSS size, and device Tx flows. 1550 * 1551 * - At least 1 Rx and 1 Tx queues. 1552 * - At most 1 Rx/Tx queue per core. 1553 * - Each Rx/Tx queue needs 1 SQ. 1554 */ 1555 *ntx = min(ed->nsqs_per_port - 1, num_online_cpus()); 1556 *nrx = *ntx; 1557 if (*ntx > neth) 1558 *ntx = neth; 1559 if (*nrx > FUN_ETH_RSS_MAX_INDIR_ENT) 1560 *nrx = FUN_ETH_RSS_MAX_INDIR_ENT; 1561 return 0; 1562 } 1563 1564 static void fun_queue_defaults(struct net_device *dev, unsigned int nsqs) 1565 { 1566 unsigned int ntx, nrx; 1567 1568 ntx = min(dev->num_tx_queues, FUN_DFLT_QUEUES); 1569 nrx = min(dev->num_rx_queues, FUN_DFLT_QUEUES); 1570 if (ntx <= nrx) { 1571 ntx = min(ntx, nsqs / 2); 1572 nrx = min(nrx, nsqs - ntx); 1573 } else { 1574 nrx = min(nrx, nsqs / 2); 1575 ntx = min(ntx, nsqs - nrx); 1576 } 1577 1578 netif_set_real_num_tx_queues(dev, ntx); 1579 netif_set_real_num_rx_queues(dev, nrx); 1580 } 1581 1582 /* Replace the existing Rx/Tx/XDP queues with equal number of queues with 1583 * different settings, e.g. depth. This is a disruptive replacement that 1584 * temporarily shuts down the data path and should be limited to changes that 1585 * can't be applied to live queues. The old queues are always discarded. 1586 */ 1587 int fun_replace_queues(struct net_device *dev, struct fun_qset *newqs, 1588 struct netlink_ext_ack *extack) 1589 { 1590 struct fun_qset oldqs = { .state = FUN_QSTATE_DESTROYED }; 1591 struct funeth_priv *fp = netdev_priv(dev); 1592 int err; 1593 1594 newqs->nrxqs = dev->real_num_rx_queues; 1595 newqs->ntxqs = dev->real_num_tx_queues; 1596 newqs->nxdpqs = fp->num_xdpqs; 1597 newqs->state = FUN_QSTATE_INIT_SW; 1598 err = fun_alloc_rings(dev, newqs); 1599 if (err) { 1600 NL_SET_ERR_MSG_MOD(extack, 1601 "Unable to allocate memory for new queues, keeping current settings"); 1602 return err; 1603 } 1604 1605 fun_down(dev, &oldqs); 1606 1607 err = fun_up(dev, newqs); 1608 if (!err) 1609 return 0; 1610 1611 /* The new queues couldn't be installed. We do not retry the old queues 1612 * as they are the same to the device as the new queues and would 1613 * similarly fail. 1614 */ 1615 newqs->state = FUN_QSTATE_DESTROYED; 1616 fun_free_rings(dev, newqs); 1617 NL_SET_ERR_MSG_MOD(extack, "Unable to restore the data path with the new queues."); 1618 return err; 1619 } 1620 1621 /* Change the number of Rx/Tx queues of a device while it is up. This is done 1622 * by incrementally adding/removing queues to meet the new requirements while 1623 * handling ongoing traffic. 1624 */ 1625 int fun_change_num_queues(struct net_device *dev, unsigned int ntx, 1626 unsigned int nrx) 1627 { 1628 unsigned int keep_tx = min(dev->real_num_tx_queues, ntx); 1629 unsigned int keep_rx = min(dev->real_num_rx_queues, nrx); 1630 struct funeth_priv *fp = netdev_priv(dev); 1631 struct fun_qset oldqs = { 1632 .rxqs = rtnl_dereference(fp->rxqs), 1633 .txqs = fp->txqs, 1634 .nrxqs = dev->real_num_rx_queues, 1635 .ntxqs = dev->real_num_tx_queues, 1636 .rxq_start = keep_rx, 1637 .txq_start = keep_tx, 1638 .state = FUN_QSTATE_DESTROYED 1639 }; 1640 struct fun_qset newqs = { 1641 .nrxqs = nrx, 1642 .ntxqs = ntx, 1643 .rxq_start = keep_rx, 1644 .txq_start = keep_tx, 1645 .cq_depth = fp->cq_depth, 1646 .rq_depth = fp->rq_depth, 1647 .sq_depth = fp->sq_depth, 1648 .state = FUN_QSTATE_INIT_FULL 1649 }; 1650 int i, err; 1651 1652 err = fun_alloc_rings(dev, &newqs); 1653 if (err) 1654 goto free_irqs; 1655 1656 err = fun_enable_irqs(dev); /* of any newly added queues */ 1657 if (err) 1658 goto free_rings; 1659 1660 /* copy the queues we are keeping to the new set */ 1661 memcpy(newqs.rxqs, oldqs.rxqs, keep_rx * sizeof(*oldqs.rxqs)); 1662 memcpy(newqs.txqs, fp->txqs, keep_tx * sizeof(*fp->txqs)); 1663 1664 if (nrx < dev->real_num_rx_queues) { 1665 err = fun_rss_set_qnum(dev, nrx, true); 1666 if (err) 1667 goto disable_tx_irqs; 1668 1669 for (i = nrx; i < dev->real_num_rx_queues; i++) 1670 fun_disable_one_irq(container_of(oldqs.rxqs[i]->napi, 1671 struct fun_irq, napi)); 1672 1673 netif_set_real_num_rx_queues(dev, nrx); 1674 } 1675 1676 if (ntx < dev->real_num_tx_queues) 1677 netif_set_real_num_tx_queues(dev, ntx); 1678 1679 rcu_assign_pointer(fp->rxqs, newqs.rxqs); 1680 fp->txqs = newqs.txqs; 1681 synchronize_net(); 1682 1683 if (ntx > dev->real_num_tx_queues) 1684 netif_set_real_num_tx_queues(dev, ntx); 1685 1686 if (nrx > dev->real_num_rx_queues) { 1687 netif_set_real_num_rx_queues(dev, nrx); 1688 fun_rss_set_qnum(dev, nrx, false); 1689 } 1690 1691 /* disable interrupts of any excess Tx queues */ 1692 for (i = keep_tx; i < oldqs.ntxqs; i++) 1693 fun_disable_one_irq(oldqs.txqs[i]->irq); 1694 1695 fun_free_rings(dev, &oldqs); 1696 fun_prune_queue_irqs(dev); 1697 return 0; 1698 1699 disable_tx_irqs: 1700 for (i = oldqs.ntxqs; i < ntx; i++) 1701 fun_disable_one_irq(newqs.txqs[i]->irq); 1702 free_rings: 1703 newqs.state = FUN_QSTATE_DESTROYED; 1704 fun_free_rings(dev, &newqs); 1705 free_irqs: 1706 fun_prune_queue_irqs(dev); 1707 return err; 1708 } 1709 1710 static int fun_create_netdev(struct fun_ethdev *ed, unsigned int portid) 1711 { 1712 struct fun_dev *fdev = &ed->fdev; 1713 struct net_device *netdev; 1714 struct funeth_priv *fp; 1715 unsigned int ntx, nrx; 1716 int rc; 1717 1718 rc = fun_max_qs(ed, &ntx, &nrx); 1719 if (rc) 1720 return rc; 1721 1722 netdev = alloc_etherdev_mqs(sizeof(*fp), ntx, nrx); 1723 if (!netdev) { 1724 rc = -ENOMEM; 1725 goto done; 1726 } 1727 1728 netdev->dev_port = portid; 1729 fun_queue_defaults(netdev, ed->nsqs_per_port); 1730 1731 fp = netdev_priv(netdev); 1732 fp->fdev = fdev; 1733 fp->pdev = to_pci_dev(fdev->dev); 1734 fp->netdev = netdev; 1735 xa_init(&fp->irqs); 1736 fp->rx_irq_ofst = ntx; 1737 seqcount_init(&fp->link_seq); 1738 1739 fp->lport = INVALID_LPORT; 1740 rc = fun_port_create(netdev); 1741 if (rc) 1742 goto free_netdev; 1743 1744 /* bind port to admin CQ for async events */ 1745 rc = fun_bind(fdev, FUN_ADMIN_BIND_TYPE_PORT, portid, 1746 FUN_ADMIN_BIND_TYPE_EPCQ, 0); 1747 if (rc) 1748 goto destroy_port; 1749 1750 rc = fun_get_port_attributes(netdev); 1751 if (rc) 1752 goto destroy_port; 1753 1754 rc = fun_init_rss(netdev); 1755 if (rc) 1756 goto destroy_port; 1757 1758 rc = fun_init_stats_area(fp); 1759 if (rc) 1760 goto free_rss; 1761 1762 SET_NETDEV_DEV(netdev, fdev->dev); 1763 netdev->netdev_ops = &fun_netdev_ops; 1764 1765 netdev->hw_features = NETIF_F_SG | NETIF_F_RXHASH | NETIF_F_RXCSUM; 1766 if (fp->port_caps & FUN_PORT_CAP_OFFLOADS) 1767 netdev->hw_features |= NETIF_F_HW_CSUM | TSO_FLAGS; 1768 if (fp->port_caps & FUN_PORT_CAP_ENCAP_OFFLOADS) 1769 netdev->hw_features |= GSO_ENCAP_FLAGS; 1770 1771 netdev->features |= netdev->hw_features | NETIF_F_HIGHDMA; 1772 netdev->vlan_features = netdev->features & VLAN_FEAT; 1773 netdev->mpls_features = netdev->vlan_features; 1774 netdev->hw_enc_features = netdev->hw_features; 1775 1776 netdev->min_mtu = ETH_MIN_MTU; 1777 netdev->max_mtu = FUN_MAX_MTU; 1778 1779 fun_set_ethtool_ops(netdev); 1780 1781 /* configurable parameters */ 1782 fp->sq_depth = min(SQ_DEPTH, fdev->q_depth); 1783 fp->cq_depth = min(CQ_DEPTH, fdev->q_depth); 1784 fp->rq_depth = min_t(unsigned int, RQ_DEPTH, fdev->q_depth); 1785 fp->rx_coal_usec = CQ_INTCOAL_USEC; 1786 fp->rx_coal_count = CQ_INTCOAL_NPKT; 1787 fp->tx_coal_usec = SQ_INTCOAL_USEC; 1788 fp->tx_coal_count = SQ_INTCOAL_NPKT; 1789 fp->cq_irq_db = FUN_IRQ_CQ_DB(fp->rx_coal_usec, fp->rx_coal_count); 1790 1791 rc = fun_dl_port_register(netdev); 1792 if (rc) 1793 goto free_stats; 1794 1795 fp->ktls_id = FUN_HCI_ID_INVALID; 1796 fun_ktls_init(netdev); /* optional, failure OK */ 1797 1798 netif_carrier_off(netdev); 1799 ed->netdevs[portid] = netdev; 1800 rc = register_netdev(netdev); 1801 if (rc) 1802 goto unreg_devlink; 1803 1804 if (fp->dl_port.devlink) 1805 devlink_port_type_eth_set(&fp->dl_port, netdev); 1806 1807 return 0; 1808 1809 unreg_devlink: 1810 ed->netdevs[portid] = NULL; 1811 fun_ktls_cleanup(fp); 1812 if (fp->dl_port.devlink) 1813 devlink_port_unregister(&fp->dl_port); 1814 free_stats: 1815 fun_free_stats_area(fp); 1816 free_rss: 1817 fun_free_rss(fp); 1818 destroy_port: 1819 fun_port_destroy(netdev); 1820 free_netdev: 1821 free_netdev(netdev); 1822 done: 1823 dev_err(fdev->dev, "couldn't allocate port %u, error %d", portid, rc); 1824 return rc; 1825 } 1826 1827 static void fun_destroy_netdev(struct net_device *netdev) 1828 { 1829 struct funeth_priv *fp; 1830 1831 fp = netdev_priv(netdev); 1832 if (fp->dl_port.devlink) { 1833 devlink_port_type_clear(&fp->dl_port); 1834 devlink_port_unregister(&fp->dl_port); 1835 } 1836 unregister_netdev(netdev); 1837 fun_ktls_cleanup(fp); 1838 fun_free_stats_area(fp); 1839 fun_free_rss(fp); 1840 fun_port_destroy(netdev); 1841 free_netdev(netdev); 1842 } 1843 1844 static int fun_create_ports(struct fun_ethdev *ed, unsigned int nports) 1845 { 1846 struct fun_dev *fd = &ed->fdev; 1847 int i, rc; 1848 1849 /* The admin queue takes 1 IRQ and 2 SQs. */ 1850 ed->nsqs_per_port = min(fd->num_irqs - 1, 1851 fd->kern_end_qid - 2) / nports; 1852 if (ed->nsqs_per_port < 2) { 1853 dev_err(fd->dev, "Too few SQs for %u ports", nports); 1854 return -EINVAL; 1855 } 1856 1857 ed->netdevs = kcalloc(nports, sizeof(*ed->netdevs), GFP_KERNEL); 1858 if (!ed->netdevs) 1859 return -ENOMEM; 1860 1861 ed->num_ports = nports; 1862 for (i = 0; i < nports; i++) { 1863 rc = fun_create_netdev(ed, i); 1864 if (rc) 1865 goto free_netdevs; 1866 } 1867 1868 return 0; 1869 1870 free_netdevs: 1871 while (i) 1872 fun_destroy_netdev(ed->netdevs[--i]); 1873 kfree(ed->netdevs); 1874 ed->netdevs = NULL; 1875 ed->num_ports = 0; 1876 return rc; 1877 } 1878 1879 static void fun_destroy_ports(struct fun_ethdev *ed) 1880 { 1881 unsigned int i; 1882 1883 for (i = 0; i < ed->num_ports; i++) 1884 fun_destroy_netdev(ed->netdevs[i]); 1885 1886 kfree(ed->netdevs); 1887 ed->netdevs = NULL; 1888 ed->num_ports = 0; 1889 } 1890 1891 static void fun_update_link_state(const struct fun_ethdev *ed, 1892 const struct fun_admin_port_notif *notif) 1893 { 1894 unsigned int port_idx = be16_to_cpu(notif->id); 1895 struct net_device *netdev; 1896 struct funeth_priv *fp; 1897 1898 if (port_idx >= ed->num_ports) 1899 return; 1900 1901 netdev = ed->netdevs[port_idx]; 1902 fp = netdev_priv(netdev); 1903 1904 write_seqcount_begin(&fp->link_seq); 1905 fp->link_speed = be32_to_cpu(notif->speed) * 10; /* 10 Mbps->Mbps */ 1906 fp->active_fc = notif->flow_ctrl; 1907 fp->active_fec = notif->fec; 1908 fp->xcvr_type = notif->xcvr_type; 1909 fp->link_down_reason = notif->link_down_reason; 1910 fp->lp_advertising = be64_to_cpu(notif->lp_advertising); 1911 1912 if ((notif->link_state | notif->missed_events) & FUN_PORT_FLAG_MAC_DOWN) 1913 netif_carrier_off(netdev); 1914 if (notif->link_state & FUN_PORT_FLAG_MAC_UP) 1915 netif_carrier_on(netdev); 1916 1917 write_seqcount_end(&fp->link_seq); 1918 fun_report_link(netdev); 1919 } 1920 1921 /* handler for async events delivered through the admin CQ */ 1922 static void fun_event_cb(struct fun_dev *fdev, void *entry) 1923 { 1924 u8 op = ((struct fun_admin_rsp_common *)entry)->op; 1925 1926 if (op == FUN_ADMIN_OP_PORT) { 1927 const struct fun_admin_port_notif *rsp = entry; 1928 1929 if (rsp->subop == FUN_ADMIN_SUBOP_NOTIFY) { 1930 fun_update_link_state(to_fun_ethdev(fdev), rsp); 1931 } else if (rsp->subop == FUN_ADMIN_SUBOP_RES_COUNT) { 1932 const struct fun_admin_res_count_rsp *r = entry; 1933 1934 if (r->count.data) 1935 set_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags); 1936 else 1937 set_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags); 1938 fun_serv_sched(fdev); 1939 } else { 1940 dev_info(fdev->dev, "adminq event unexpected op %u subop %u", 1941 op, rsp->subop); 1942 } 1943 } else { 1944 dev_info(fdev->dev, "adminq event unexpected op %u", op); 1945 } 1946 } 1947 1948 /* handler for pending work managed by the service task */ 1949 static void fun_service_cb(struct fun_dev *fdev) 1950 { 1951 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1952 int rc; 1953 1954 if (test_and_clear_bit(FUN_SERV_DEL_PORTS, &fdev->service_flags)) 1955 fun_destroy_ports(ed); 1956 1957 if (!test_and_clear_bit(FUN_SERV_RES_CHANGE, &fdev->service_flags)) 1958 return; 1959 1960 rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT); 1961 if (rc < 0 || rc == ed->num_ports) 1962 return; 1963 1964 if (ed->num_ports) 1965 fun_destroy_ports(ed); 1966 if (rc) 1967 fun_create_ports(ed, rc); 1968 } 1969 1970 static int funeth_sriov_configure(struct pci_dev *pdev, int nvfs) 1971 { 1972 struct fun_dev *fdev = pci_get_drvdata(pdev); 1973 struct fun_ethdev *ed = to_fun_ethdev(fdev); 1974 int rc; 1975 1976 if (nvfs == 0) { 1977 if (pci_vfs_assigned(pdev)) { 1978 dev_warn(&pdev->dev, 1979 "Cannot disable SR-IOV while VFs are assigned\n"); 1980 return -EPERM; 1981 } 1982 1983 mutex_lock(&ed->state_mutex); 1984 fun_free_vports(ed); 1985 mutex_unlock(&ed->state_mutex); 1986 pci_disable_sriov(pdev); 1987 return 0; 1988 } 1989 1990 rc = pci_enable_sriov(pdev, nvfs); 1991 if (rc) 1992 return rc; 1993 1994 mutex_lock(&ed->state_mutex); 1995 rc = fun_init_vports(ed, nvfs); 1996 mutex_unlock(&ed->state_mutex); 1997 if (rc) { 1998 pci_disable_sriov(pdev); 1999 return rc; 2000 } 2001 2002 return nvfs; 2003 } 2004 2005 static int funeth_probe(struct pci_dev *pdev, const struct pci_device_id *id) 2006 { 2007 struct fun_dev_params aqreq = { 2008 .cqe_size_log2 = ilog2(ADMIN_CQE_SIZE), 2009 .sqe_size_log2 = ilog2(ADMIN_SQE_SIZE), 2010 .cq_depth = ADMIN_CQ_DEPTH, 2011 .sq_depth = ADMIN_SQ_DEPTH, 2012 .rq_depth = ADMIN_RQ_DEPTH, 2013 .min_msix = 2, /* 1 Rx + 1 Tx */ 2014 .event_cb = fun_event_cb, 2015 .serv_cb = fun_service_cb, 2016 }; 2017 struct devlink *devlink; 2018 struct fun_ethdev *ed; 2019 struct fun_dev *fdev; 2020 int rc; 2021 2022 devlink = fun_devlink_alloc(&pdev->dev); 2023 if (!devlink) { 2024 dev_err(&pdev->dev, "devlink alloc failed\n"); 2025 return -ENOMEM; 2026 } 2027 2028 ed = devlink_priv(devlink); 2029 mutex_init(&ed->state_mutex); 2030 2031 fdev = &ed->fdev; 2032 rc = fun_dev_enable(fdev, pdev, &aqreq, KBUILD_MODNAME); 2033 if (rc) 2034 goto free_devlink; 2035 2036 rc = fun_get_res_count(fdev, FUN_ADMIN_OP_PORT); 2037 if (rc > 0) 2038 rc = fun_create_ports(ed, rc); 2039 if (rc < 0) 2040 goto disable_dev; 2041 2042 fun_serv_restart(fdev); 2043 fun_devlink_register(devlink); 2044 return 0; 2045 2046 disable_dev: 2047 fun_dev_disable(fdev); 2048 free_devlink: 2049 mutex_destroy(&ed->state_mutex); 2050 fun_devlink_free(devlink); 2051 return rc; 2052 } 2053 2054 static void funeth_remove(struct pci_dev *pdev) 2055 { 2056 struct fun_dev *fdev = pci_get_drvdata(pdev); 2057 struct devlink *devlink; 2058 struct fun_ethdev *ed; 2059 2060 ed = to_fun_ethdev(fdev); 2061 devlink = priv_to_devlink(ed); 2062 fun_devlink_unregister(devlink); 2063 2064 #ifdef CONFIG_PCI_IOV 2065 funeth_sriov_configure(pdev, 0); 2066 #endif 2067 2068 fun_serv_stop(fdev); 2069 fun_destroy_ports(ed); 2070 fun_dev_disable(fdev); 2071 mutex_destroy(&ed->state_mutex); 2072 2073 fun_devlink_free(devlink); 2074 } 2075 2076 static struct pci_driver funeth_driver = { 2077 .name = KBUILD_MODNAME, 2078 .id_table = funeth_id_table, 2079 .probe = funeth_probe, 2080 .remove = funeth_remove, 2081 .shutdown = funeth_remove, 2082 .sriov_configure = funeth_sriov_configure, 2083 }; 2084 2085 module_pci_driver(funeth_driver); 2086 2087 MODULE_AUTHOR("Dimitris Michailidis <dmichail@fungible.com>"); 2088 MODULE_DESCRIPTION("Fungible Ethernet Network Driver"); 2089 MODULE_LICENSE("Dual BSD/GPL"); 2090 MODULE_DEVICE_TABLE(pci, funeth_id_table); 2091