1 /*
2  * Copyright (C) 2006-2009 Freescale Semicondutor, Inc. All rights reserved.
3  *
4  * Author: Shlomi Gridish <gridish@freescale.com>
5  *	   Li Yang <leoli@freescale.com>
6  *
7  * Description:
8  * QE UCC Gigabit Ethernet Driver
9  *
10  * This program is free software; you can redistribute  it and/or modify it
11  * under  the terms of  the GNU General  Public License as published by the
12  * Free Software Foundation;  either version 2 of the  License, or (at your
13  * option) any later version.
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/stddef.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mm.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mii.h>
32 #include <linux/phy.h>
33 #include <linux/workqueue.h>
34 #include <linux/of_mdio.h>
35 #include <linux/of_net.h>
36 #include <linux/of_platform.h>
37 
38 #include <asm/uaccess.h>
39 #include <asm/irq.h>
40 #include <asm/io.h>
41 #include <asm/immap_qe.h>
42 #include <asm/qe.h>
43 #include <asm/ucc.h>
44 #include <asm/ucc_fast.h>
45 #include <asm/machdep.h>
46 
47 #include "ucc_geth.h"
48 
49 #undef DEBUG
50 
51 #define ugeth_printk(level, format, arg...)  \
52         printk(level format "\n", ## arg)
53 
54 #define ugeth_dbg(format, arg...)            \
55         ugeth_printk(KERN_DEBUG , format , ## arg)
56 
57 #ifdef UGETH_VERBOSE_DEBUG
58 #define ugeth_vdbg ugeth_dbg
59 #else
60 #define ugeth_vdbg(fmt, args...) do { } while (0)
61 #endif				/* UGETH_VERBOSE_DEBUG */
62 #define UGETH_MSG_DEFAULT	(NETIF_MSG_IFUP << 1 ) - 1
63 
64 
65 static DEFINE_SPINLOCK(ugeth_lock);
66 
67 static struct {
68 	u32 msg_enable;
69 } debug = { -1 };
70 
71 module_param_named(debug, debug.msg_enable, int, 0);
72 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 0xffff=all)");
73 
74 static struct ucc_geth_info ugeth_primary_info = {
75 	.uf_info = {
76 		    .bd_mem_part = MEM_PART_SYSTEM,
77 		    .rtsm = UCC_FAST_SEND_IDLES_BETWEEN_FRAMES,
78 		    .max_rx_buf_length = 1536,
79 		    /* adjusted at startup if max-speed 1000 */
80 		    .urfs = UCC_GETH_URFS_INIT,
81 		    .urfet = UCC_GETH_URFET_INIT,
82 		    .urfset = UCC_GETH_URFSET_INIT,
83 		    .utfs = UCC_GETH_UTFS_INIT,
84 		    .utfet = UCC_GETH_UTFET_INIT,
85 		    .utftt = UCC_GETH_UTFTT_INIT,
86 		    .ufpt = 256,
87 		    .mode = UCC_FAST_PROTOCOL_MODE_ETHERNET,
88 		    .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
89 		    .tenc = UCC_FAST_TX_ENCODING_NRZ,
90 		    .renc = UCC_FAST_RX_ENCODING_NRZ,
91 		    .tcrc = UCC_FAST_16_BIT_CRC,
92 		    .synl = UCC_FAST_SYNC_LEN_NOT_USED,
93 		    },
94 	.numQueuesTx = 1,
95 	.numQueuesRx = 1,
96 	.extendedFilteringChainPointer = ((uint32_t) NULL),
97 	.typeorlen = 3072 /*1536 */ ,
98 	.nonBackToBackIfgPart1 = 0x40,
99 	.nonBackToBackIfgPart2 = 0x60,
100 	.miminumInterFrameGapEnforcement = 0x50,
101 	.backToBackInterFrameGap = 0x60,
102 	.mblinterval = 128,
103 	.nortsrbytetime = 5,
104 	.fracsiz = 1,
105 	.strictpriorityq = 0xff,
106 	.altBebTruncation = 0xa,
107 	.excessDefer = 1,
108 	.maxRetransmission = 0xf,
109 	.collisionWindow = 0x37,
110 	.receiveFlowControl = 1,
111 	.transmitFlowControl = 1,
112 	.maxGroupAddrInHash = 4,
113 	.maxIndAddrInHash = 4,
114 	.prel = 7,
115 	.maxFrameLength = 1518+16, /* Add extra bytes for VLANs etc. */
116 	.minFrameLength = 64,
117 	.maxD1Length = 1520+16, /* Add extra bytes for VLANs etc. */
118 	.maxD2Length = 1520+16, /* Add extra bytes for VLANs etc. */
119 	.vlantype = 0x8100,
120 	.ecamptr = ((uint32_t) NULL),
121 	.eventRegMask = UCCE_OTHER,
122 	.pausePeriod = 0xf000,
123 	.interruptcoalescingmaxvalue = {1, 1, 1, 1, 1, 1, 1, 1},
124 	.bdRingLenTx = {
125 			TX_BD_RING_LEN,
126 			TX_BD_RING_LEN,
127 			TX_BD_RING_LEN,
128 			TX_BD_RING_LEN,
129 			TX_BD_RING_LEN,
130 			TX_BD_RING_LEN,
131 			TX_BD_RING_LEN,
132 			TX_BD_RING_LEN},
133 
134 	.bdRingLenRx = {
135 			RX_BD_RING_LEN,
136 			RX_BD_RING_LEN,
137 			RX_BD_RING_LEN,
138 			RX_BD_RING_LEN,
139 			RX_BD_RING_LEN,
140 			RX_BD_RING_LEN,
141 			RX_BD_RING_LEN,
142 			RX_BD_RING_LEN},
143 
144 	.numStationAddresses = UCC_GETH_NUM_OF_STATION_ADDRESSES_1,
145 	.largestexternallookupkeysize =
146 	    QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE,
147 	.statisticsMode = UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE |
148 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX |
149 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX,
150 	.vlanOperationTagged = UCC_GETH_VLAN_OPERATION_TAGGED_NOP,
151 	.vlanOperationNonTagged = UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP,
152 	.rxQoSMode = UCC_GETH_QOS_MODE_DEFAULT,
153 	.aufc = UPSMR_AUTOMATIC_FLOW_CONTROL_MODE_NONE,
154 	.padAndCrc = MACCFG2_PAD_AND_CRC_MODE_PAD_AND_CRC,
155 	.numThreadsTx = UCC_GETH_NUM_OF_THREADS_1,
156 	.numThreadsRx = UCC_GETH_NUM_OF_THREADS_1,
157 	.riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
158 	.riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
159 };
160 
161 static struct ucc_geth_info ugeth_info[8];
162 
163 #ifdef DEBUG
164 static void mem_disp(u8 *addr, int size)
165 {
166 	u8 *i;
167 	int size16Aling = (size >> 4) << 4;
168 	int size4Aling = (size >> 2) << 2;
169 	int notAlign = 0;
170 	if (size % 16)
171 		notAlign = 1;
172 
173 	for (i = addr; (u32) i < (u32) addr + size16Aling; i += 16)
174 		printk("0x%08x: %08x %08x %08x %08x\r\n",
175 		       (u32) i,
176 		       *((u32 *) (i)),
177 		       *((u32 *) (i + 4)),
178 		       *((u32 *) (i + 8)), *((u32 *) (i + 12)));
179 	if (notAlign == 1)
180 		printk("0x%08x: ", (u32) i);
181 	for (; (u32) i < (u32) addr + size4Aling; i += 4)
182 		printk("%08x ", *((u32 *) (i)));
183 	for (; (u32) i < (u32) addr + size; i++)
184 		printk("%02x", *((i)));
185 	if (notAlign == 1)
186 		printk("\r\n");
187 }
188 #endif /* DEBUG */
189 
190 static struct list_head *dequeue(struct list_head *lh)
191 {
192 	unsigned long flags;
193 
194 	spin_lock_irqsave(&ugeth_lock, flags);
195 	if (!list_empty(lh)) {
196 		struct list_head *node = lh->next;
197 		list_del(node);
198 		spin_unlock_irqrestore(&ugeth_lock, flags);
199 		return node;
200 	} else {
201 		spin_unlock_irqrestore(&ugeth_lock, flags);
202 		return NULL;
203 	}
204 }
205 
206 static struct sk_buff *get_new_skb(struct ucc_geth_private *ugeth,
207 		u8 __iomem *bd)
208 {
209 	struct sk_buff *skb;
210 
211 	skb = netdev_alloc_skb(ugeth->ndev,
212 			       ugeth->ug_info->uf_info.max_rx_buf_length +
213 			       UCC_GETH_RX_DATA_BUF_ALIGNMENT);
214 	if (!skb)
215 		return NULL;
216 
217 	/* We need the data buffer to be aligned properly.  We will reserve
218 	 * as many bytes as needed to align the data properly
219 	 */
220 	skb_reserve(skb,
221 		    UCC_GETH_RX_DATA_BUF_ALIGNMENT -
222 		    (((unsigned)skb->data) & (UCC_GETH_RX_DATA_BUF_ALIGNMENT -
223 					      1)));
224 
225 	out_be32(&((struct qe_bd __iomem *)bd)->buf,
226 		      dma_map_single(ugeth->dev,
227 				     skb->data,
228 				     ugeth->ug_info->uf_info.max_rx_buf_length +
229 				     UCC_GETH_RX_DATA_BUF_ALIGNMENT,
230 				     DMA_FROM_DEVICE));
231 
232 	out_be32((u32 __iomem *)bd,
233 			(R_E | R_I | (in_be32((u32 __iomem*)bd) & R_W)));
234 
235 	return skb;
236 }
237 
238 static int rx_bd_buffer_set(struct ucc_geth_private *ugeth, u8 rxQ)
239 {
240 	u8 __iomem *bd;
241 	u32 bd_status;
242 	struct sk_buff *skb;
243 	int i;
244 
245 	bd = ugeth->p_rx_bd_ring[rxQ];
246 	i = 0;
247 
248 	do {
249 		bd_status = in_be32((u32 __iomem *)bd);
250 		skb = get_new_skb(ugeth, bd);
251 
252 		if (!skb)	/* If can not allocate data buffer,
253 				abort. Cleanup will be elsewhere */
254 			return -ENOMEM;
255 
256 		ugeth->rx_skbuff[rxQ][i] = skb;
257 
258 		/* advance the BD pointer */
259 		bd += sizeof(struct qe_bd);
260 		i++;
261 	} while (!(bd_status & R_W));
262 
263 	return 0;
264 }
265 
266 static int fill_init_enet_entries(struct ucc_geth_private *ugeth,
267 				  u32 *p_start,
268 				  u8 num_entries,
269 				  u32 thread_size,
270 				  u32 thread_alignment,
271 				  unsigned int risc,
272 				  int skip_page_for_first_entry)
273 {
274 	u32 init_enet_offset;
275 	u8 i;
276 	int snum;
277 
278 	for (i = 0; i < num_entries; i++) {
279 		if ((snum = qe_get_snum()) < 0) {
280 			if (netif_msg_ifup(ugeth))
281 				pr_err("Can not get SNUM\n");
282 			return snum;
283 		}
284 		if ((i == 0) && skip_page_for_first_entry)
285 		/* First entry of Rx does not have page */
286 			init_enet_offset = 0;
287 		else {
288 			init_enet_offset =
289 			    qe_muram_alloc(thread_size, thread_alignment);
290 			if (IS_ERR_VALUE(init_enet_offset)) {
291 				if (netif_msg_ifup(ugeth))
292 					pr_err("Can not allocate DPRAM memory\n");
293 				qe_put_snum((u8) snum);
294 				return -ENOMEM;
295 			}
296 		}
297 		*(p_start++) =
298 		    ((u8) snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset
299 		    | risc;
300 	}
301 
302 	return 0;
303 }
304 
305 static int return_init_enet_entries(struct ucc_geth_private *ugeth,
306 				    u32 *p_start,
307 				    u8 num_entries,
308 				    unsigned int risc,
309 				    int skip_page_for_first_entry)
310 {
311 	u32 init_enet_offset;
312 	u8 i;
313 	int snum;
314 
315 	for (i = 0; i < num_entries; i++) {
316 		u32 val = *p_start;
317 
318 		/* Check that this entry was actually valid --
319 		needed in case failed in allocations */
320 		if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
321 			snum =
322 			    (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
323 			    ENET_INIT_PARAM_SNUM_SHIFT;
324 			qe_put_snum((u8) snum);
325 			if (!((i == 0) && skip_page_for_first_entry)) {
326 			/* First entry of Rx does not have page */
327 				init_enet_offset =
328 				    (val & ENET_INIT_PARAM_PTR_MASK);
329 				qe_muram_free(init_enet_offset);
330 			}
331 			*p_start++ = 0;
332 		}
333 	}
334 
335 	return 0;
336 }
337 
338 #ifdef DEBUG
339 static int dump_init_enet_entries(struct ucc_geth_private *ugeth,
340 				  u32 __iomem *p_start,
341 				  u8 num_entries,
342 				  u32 thread_size,
343 				  unsigned int risc,
344 				  int skip_page_for_first_entry)
345 {
346 	u32 init_enet_offset;
347 	u8 i;
348 	int snum;
349 
350 	for (i = 0; i < num_entries; i++) {
351 		u32 val = in_be32(p_start);
352 
353 		/* Check that this entry was actually valid --
354 		needed in case failed in allocations */
355 		if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
356 			snum =
357 			    (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
358 			    ENET_INIT_PARAM_SNUM_SHIFT;
359 			qe_put_snum((u8) snum);
360 			if (!((i == 0) && skip_page_for_first_entry)) {
361 			/* First entry of Rx does not have page */
362 				init_enet_offset =
363 				    (in_be32(p_start) &
364 				     ENET_INIT_PARAM_PTR_MASK);
365 				pr_info("Init enet entry %d:\n", i);
366 				pr_info("Base address: 0x%08x\n",
367 					(u32)qe_muram_addr(init_enet_offset));
368 				mem_disp(qe_muram_addr(init_enet_offset),
369 					 thread_size);
370 			}
371 			p_start++;
372 		}
373 	}
374 
375 	return 0;
376 }
377 #endif
378 
379 static void put_enet_addr_container(struct enet_addr_container *enet_addr_cont)
380 {
381 	kfree(enet_addr_cont);
382 }
383 
384 static void set_mac_addr(__be16 __iomem *reg, u8 *mac)
385 {
386 	out_be16(&reg[0], ((u16)mac[5] << 8) | mac[4]);
387 	out_be16(&reg[1], ((u16)mac[3] << 8) | mac[2]);
388 	out_be16(&reg[2], ((u16)mac[1] << 8) | mac[0]);
389 }
390 
391 static int hw_clear_addr_in_paddr(struct ucc_geth_private *ugeth, u8 paddr_num)
392 {
393 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
394 
395 	if (paddr_num >= NUM_OF_PADDRS) {
396 		pr_warn("%s: Invalid paddr_num: %u\n", __func__, paddr_num);
397 		return -EINVAL;
398 	}
399 
400 	p_82xx_addr_filt =
401 	    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
402 	    addressfiltering;
403 
404 	/* Writing address ff.ff.ff.ff.ff.ff disables address
405 	recognition for this register */
406 	out_be16(&p_82xx_addr_filt->paddr[paddr_num].h, 0xffff);
407 	out_be16(&p_82xx_addr_filt->paddr[paddr_num].m, 0xffff);
408 	out_be16(&p_82xx_addr_filt->paddr[paddr_num].l, 0xffff);
409 
410 	return 0;
411 }
412 
413 static void hw_add_addr_in_hash(struct ucc_geth_private *ugeth,
414                                 u8 *p_enet_addr)
415 {
416 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
417 	u32 cecr_subblock;
418 
419 	p_82xx_addr_filt =
420 	    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
421 	    addressfiltering;
422 
423 	cecr_subblock =
424 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
425 
426 	/* Ethernet frames are defined in Little Endian mode,
427 	therefore to insert */
428 	/* the address to the hash (Big Endian mode), we reverse the bytes.*/
429 
430 	set_mac_addr(&p_82xx_addr_filt->taddr.h, p_enet_addr);
431 
432 	qe_issue_cmd(QE_SET_GROUP_ADDRESS, cecr_subblock,
433 		     QE_CR_PROTOCOL_ETHERNET, 0);
434 }
435 
436 static inline int compare_addr(u8 **addr1, u8 **addr2)
437 {
438 	return memcmp(addr1, addr2, ETH_ALEN);
439 }
440 
441 #ifdef DEBUG
442 static void get_statistics(struct ucc_geth_private *ugeth,
443 			   struct ucc_geth_tx_firmware_statistics *
444 			   tx_firmware_statistics,
445 			   struct ucc_geth_rx_firmware_statistics *
446 			   rx_firmware_statistics,
447 			   struct ucc_geth_hardware_statistics *hardware_statistics)
448 {
449 	struct ucc_fast __iomem *uf_regs;
450 	struct ucc_geth __iomem *ug_regs;
451 	struct ucc_geth_tx_firmware_statistics_pram *p_tx_fw_statistics_pram;
452 	struct ucc_geth_rx_firmware_statistics_pram *p_rx_fw_statistics_pram;
453 
454 	ug_regs = ugeth->ug_regs;
455 	uf_regs = (struct ucc_fast __iomem *) ug_regs;
456 	p_tx_fw_statistics_pram = ugeth->p_tx_fw_statistics_pram;
457 	p_rx_fw_statistics_pram = ugeth->p_rx_fw_statistics_pram;
458 
459 	/* Tx firmware only if user handed pointer and driver actually
460 	gathers Tx firmware statistics */
461 	if (tx_firmware_statistics && p_tx_fw_statistics_pram) {
462 		tx_firmware_statistics->sicoltx =
463 		    in_be32(&p_tx_fw_statistics_pram->sicoltx);
464 		tx_firmware_statistics->mulcoltx =
465 		    in_be32(&p_tx_fw_statistics_pram->mulcoltx);
466 		tx_firmware_statistics->latecoltxfr =
467 		    in_be32(&p_tx_fw_statistics_pram->latecoltxfr);
468 		tx_firmware_statistics->frabortduecol =
469 		    in_be32(&p_tx_fw_statistics_pram->frabortduecol);
470 		tx_firmware_statistics->frlostinmactxer =
471 		    in_be32(&p_tx_fw_statistics_pram->frlostinmactxer);
472 		tx_firmware_statistics->carriersenseertx =
473 		    in_be32(&p_tx_fw_statistics_pram->carriersenseertx);
474 		tx_firmware_statistics->frtxok =
475 		    in_be32(&p_tx_fw_statistics_pram->frtxok);
476 		tx_firmware_statistics->txfrexcessivedefer =
477 		    in_be32(&p_tx_fw_statistics_pram->txfrexcessivedefer);
478 		tx_firmware_statistics->txpkts256 =
479 		    in_be32(&p_tx_fw_statistics_pram->txpkts256);
480 		tx_firmware_statistics->txpkts512 =
481 		    in_be32(&p_tx_fw_statistics_pram->txpkts512);
482 		tx_firmware_statistics->txpkts1024 =
483 		    in_be32(&p_tx_fw_statistics_pram->txpkts1024);
484 		tx_firmware_statistics->txpktsjumbo =
485 		    in_be32(&p_tx_fw_statistics_pram->txpktsjumbo);
486 	}
487 
488 	/* Rx firmware only if user handed pointer and driver actually
489 	 * gathers Rx firmware statistics */
490 	if (rx_firmware_statistics && p_rx_fw_statistics_pram) {
491 		int i;
492 		rx_firmware_statistics->frrxfcser =
493 		    in_be32(&p_rx_fw_statistics_pram->frrxfcser);
494 		rx_firmware_statistics->fraligner =
495 		    in_be32(&p_rx_fw_statistics_pram->fraligner);
496 		rx_firmware_statistics->inrangelenrxer =
497 		    in_be32(&p_rx_fw_statistics_pram->inrangelenrxer);
498 		rx_firmware_statistics->outrangelenrxer =
499 		    in_be32(&p_rx_fw_statistics_pram->outrangelenrxer);
500 		rx_firmware_statistics->frtoolong =
501 		    in_be32(&p_rx_fw_statistics_pram->frtoolong);
502 		rx_firmware_statistics->runt =
503 		    in_be32(&p_rx_fw_statistics_pram->runt);
504 		rx_firmware_statistics->verylongevent =
505 		    in_be32(&p_rx_fw_statistics_pram->verylongevent);
506 		rx_firmware_statistics->symbolerror =
507 		    in_be32(&p_rx_fw_statistics_pram->symbolerror);
508 		rx_firmware_statistics->dropbsy =
509 		    in_be32(&p_rx_fw_statistics_pram->dropbsy);
510 		for (i = 0; i < 0x8; i++)
511 			rx_firmware_statistics->res0[i] =
512 			    p_rx_fw_statistics_pram->res0[i];
513 		rx_firmware_statistics->mismatchdrop =
514 		    in_be32(&p_rx_fw_statistics_pram->mismatchdrop);
515 		rx_firmware_statistics->underpkts =
516 		    in_be32(&p_rx_fw_statistics_pram->underpkts);
517 		rx_firmware_statistics->pkts256 =
518 		    in_be32(&p_rx_fw_statistics_pram->pkts256);
519 		rx_firmware_statistics->pkts512 =
520 		    in_be32(&p_rx_fw_statistics_pram->pkts512);
521 		rx_firmware_statistics->pkts1024 =
522 		    in_be32(&p_rx_fw_statistics_pram->pkts1024);
523 		rx_firmware_statistics->pktsjumbo =
524 		    in_be32(&p_rx_fw_statistics_pram->pktsjumbo);
525 		rx_firmware_statistics->frlossinmacer =
526 		    in_be32(&p_rx_fw_statistics_pram->frlossinmacer);
527 		rx_firmware_statistics->pausefr =
528 		    in_be32(&p_rx_fw_statistics_pram->pausefr);
529 		for (i = 0; i < 0x4; i++)
530 			rx_firmware_statistics->res1[i] =
531 			    p_rx_fw_statistics_pram->res1[i];
532 		rx_firmware_statistics->removevlan =
533 		    in_be32(&p_rx_fw_statistics_pram->removevlan);
534 		rx_firmware_statistics->replacevlan =
535 		    in_be32(&p_rx_fw_statistics_pram->replacevlan);
536 		rx_firmware_statistics->insertvlan =
537 		    in_be32(&p_rx_fw_statistics_pram->insertvlan);
538 	}
539 
540 	/* Hardware only if user handed pointer and driver actually
541 	gathers hardware statistics */
542 	if (hardware_statistics &&
543 	    (in_be32(&uf_regs->upsmr) & UCC_GETH_UPSMR_HSE)) {
544 		hardware_statistics->tx64 = in_be32(&ug_regs->tx64);
545 		hardware_statistics->tx127 = in_be32(&ug_regs->tx127);
546 		hardware_statistics->tx255 = in_be32(&ug_regs->tx255);
547 		hardware_statistics->rx64 = in_be32(&ug_regs->rx64);
548 		hardware_statistics->rx127 = in_be32(&ug_regs->rx127);
549 		hardware_statistics->rx255 = in_be32(&ug_regs->rx255);
550 		hardware_statistics->txok = in_be32(&ug_regs->txok);
551 		hardware_statistics->txcf = in_be16(&ug_regs->txcf);
552 		hardware_statistics->tmca = in_be32(&ug_regs->tmca);
553 		hardware_statistics->tbca = in_be32(&ug_regs->tbca);
554 		hardware_statistics->rxfok = in_be32(&ug_regs->rxfok);
555 		hardware_statistics->rxbok = in_be32(&ug_regs->rxbok);
556 		hardware_statistics->rbyt = in_be32(&ug_regs->rbyt);
557 		hardware_statistics->rmca = in_be32(&ug_regs->rmca);
558 		hardware_statistics->rbca = in_be32(&ug_regs->rbca);
559 	}
560 }
561 
562 static void dump_bds(struct ucc_geth_private *ugeth)
563 {
564 	int i;
565 	int length;
566 
567 	for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
568 		if (ugeth->p_tx_bd_ring[i]) {
569 			length =
570 			    (ugeth->ug_info->bdRingLenTx[i] *
571 			     sizeof(struct qe_bd));
572 			pr_info("TX BDs[%d]\n", i);
573 			mem_disp(ugeth->p_tx_bd_ring[i], length);
574 		}
575 	}
576 	for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
577 		if (ugeth->p_rx_bd_ring[i]) {
578 			length =
579 			    (ugeth->ug_info->bdRingLenRx[i] *
580 			     sizeof(struct qe_bd));
581 			pr_info("RX BDs[%d]\n", i);
582 			mem_disp(ugeth->p_rx_bd_ring[i], length);
583 		}
584 	}
585 }
586 
587 static void dump_regs(struct ucc_geth_private *ugeth)
588 {
589 	int i;
590 
591 	pr_info("UCC%d Geth registers:\n", ugeth->ug_info->uf_info.ucc_num + 1);
592 	pr_info("Base address: 0x%08x\n", (u32)ugeth->ug_regs);
593 
594 	pr_info("maccfg1    : addr - 0x%08x, val - 0x%08x\n",
595 		(u32)&ugeth->ug_regs->maccfg1,
596 		in_be32(&ugeth->ug_regs->maccfg1));
597 	pr_info("maccfg2    : addr - 0x%08x, val - 0x%08x\n",
598 		(u32)&ugeth->ug_regs->maccfg2,
599 		in_be32(&ugeth->ug_regs->maccfg2));
600 	pr_info("ipgifg     : addr - 0x%08x, val - 0x%08x\n",
601 		(u32)&ugeth->ug_regs->ipgifg,
602 		in_be32(&ugeth->ug_regs->ipgifg));
603 	pr_info("hafdup     : addr - 0x%08x, val - 0x%08x\n",
604 		(u32)&ugeth->ug_regs->hafdup,
605 		in_be32(&ugeth->ug_regs->hafdup));
606 	pr_info("ifctl      : addr - 0x%08x, val - 0x%08x\n",
607 		(u32)&ugeth->ug_regs->ifctl,
608 		in_be32(&ugeth->ug_regs->ifctl));
609 	pr_info("ifstat     : addr - 0x%08x, val - 0x%08x\n",
610 		(u32)&ugeth->ug_regs->ifstat,
611 		in_be32(&ugeth->ug_regs->ifstat));
612 	pr_info("macstnaddr1: addr - 0x%08x, val - 0x%08x\n",
613 		(u32)&ugeth->ug_regs->macstnaddr1,
614 		in_be32(&ugeth->ug_regs->macstnaddr1));
615 	pr_info("macstnaddr2: addr - 0x%08x, val - 0x%08x\n",
616 		(u32)&ugeth->ug_regs->macstnaddr2,
617 		in_be32(&ugeth->ug_regs->macstnaddr2));
618 	pr_info("uempr      : addr - 0x%08x, val - 0x%08x\n",
619 		(u32)&ugeth->ug_regs->uempr,
620 		in_be32(&ugeth->ug_regs->uempr));
621 	pr_info("utbipar    : addr - 0x%08x, val - 0x%08x\n",
622 		(u32)&ugeth->ug_regs->utbipar,
623 		in_be32(&ugeth->ug_regs->utbipar));
624 	pr_info("uescr      : addr - 0x%08x, val - 0x%04x\n",
625 		(u32)&ugeth->ug_regs->uescr,
626 		in_be16(&ugeth->ug_regs->uescr));
627 	pr_info("tx64       : addr - 0x%08x, val - 0x%08x\n",
628 		(u32)&ugeth->ug_regs->tx64,
629 		in_be32(&ugeth->ug_regs->tx64));
630 	pr_info("tx127      : addr - 0x%08x, val - 0x%08x\n",
631 		(u32)&ugeth->ug_regs->tx127,
632 		in_be32(&ugeth->ug_regs->tx127));
633 	pr_info("tx255      : addr - 0x%08x, val - 0x%08x\n",
634 		(u32)&ugeth->ug_regs->tx255,
635 		in_be32(&ugeth->ug_regs->tx255));
636 	pr_info("rx64       : addr - 0x%08x, val - 0x%08x\n",
637 		(u32)&ugeth->ug_regs->rx64,
638 		in_be32(&ugeth->ug_regs->rx64));
639 	pr_info("rx127      : addr - 0x%08x, val - 0x%08x\n",
640 		(u32)&ugeth->ug_regs->rx127,
641 		in_be32(&ugeth->ug_regs->rx127));
642 	pr_info("rx255      : addr - 0x%08x, val - 0x%08x\n",
643 		(u32)&ugeth->ug_regs->rx255,
644 		in_be32(&ugeth->ug_regs->rx255));
645 	pr_info("txok       : addr - 0x%08x, val - 0x%08x\n",
646 		(u32)&ugeth->ug_regs->txok,
647 		in_be32(&ugeth->ug_regs->txok));
648 	pr_info("txcf       : addr - 0x%08x, val - 0x%04x\n",
649 		(u32)&ugeth->ug_regs->txcf,
650 		in_be16(&ugeth->ug_regs->txcf));
651 	pr_info("tmca       : addr - 0x%08x, val - 0x%08x\n",
652 		(u32)&ugeth->ug_regs->tmca,
653 		in_be32(&ugeth->ug_regs->tmca));
654 	pr_info("tbca       : addr - 0x%08x, val - 0x%08x\n",
655 		(u32)&ugeth->ug_regs->tbca,
656 		in_be32(&ugeth->ug_regs->tbca));
657 	pr_info("rxfok      : addr - 0x%08x, val - 0x%08x\n",
658 		(u32)&ugeth->ug_regs->rxfok,
659 		in_be32(&ugeth->ug_regs->rxfok));
660 	pr_info("rxbok      : addr - 0x%08x, val - 0x%08x\n",
661 		(u32)&ugeth->ug_regs->rxbok,
662 		in_be32(&ugeth->ug_regs->rxbok));
663 	pr_info("rbyt       : addr - 0x%08x, val - 0x%08x\n",
664 		(u32)&ugeth->ug_regs->rbyt,
665 		in_be32(&ugeth->ug_regs->rbyt));
666 	pr_info("rmca       : addr - 0x%08x, val - 0x%08x\n",
667 		(u32)&ugeth->ug_regs->rmca,
668 		in_be32(&ugeth->ug_regs->rmca));
669 	pr_info("rbca       : addr - 0x%08x, val - 0x%08x\n",
670 		(u32)&ugeth->ug_regs->rbca,
671 		in_be32(&ugeth->ug_regs->rbca));
672 	pr_info("scar       : addr - 0x%08x, val - 0x%08x\n",
673 		(u32)&ugeth->ug_regs->scar,
674 		in_be32(&ugeth->ug_regs->scar));
675 	pr_info("scam       : addr - 0x%08x, val - 0x%08x\n",
676 		(u32)&ugeth->ug_regs->scam,
677 		in_be32(&ugeth->ug_regs->scam));
678 
679 	if (ugeth->p_thread_data_tx) {
680 		int numThreadsTxNumerical;
681 		switch (ugeth->ug_info->numThreadsTx) {
682 		case UCC_GETH_NUM_OF_THREADS_1:
683 			numThreadsTxNumerical = 1;
684 			break;
685 		case UCC_GETH_NUM_OF_THREADS_2:
686 			numThreadsTxNumerical = 2;
687 			break;
688 		case UCC_GETH_NUM_OF_THREADS_4:
689 			numThreadsTxNumerical = 4;
690 			break;
691 		case UCC_GETH_NUM_OF_THREADS_6:
692 			numThreadsTxNumerical = 6;
693 			break;
694 		case UCC_GETH_NUM_OF_THREADS_8:
695 			numThreadsTxNumerical = 8;
696 			break;
697 		default:
698 			numThreadsTxNumerical = 0;
699 			break;
700 		}
701 
702 		pr_info("Thread data TXs:\n");
703 		pr_info("Base address: 0x%08x\n",
704 			(u32)ugeth->p_thread_data_tx);
705 		for (i = 0; i < numThreadsTxNumerical; i++) {
706 			pr_info("Thread data TX[%d]:\n", i);
707 			pr_info("Base address: 0x%08x\n",
708 				(u32)&ugeth->p_thread_data_tx[i]);
709 			mem_disp((u8 *) & ugeth->p_thread_data_tx[i],
710 				 sizeof(struct ucc_geth_thread_data_tx));
711 		}
712 	}
713 	if (ugeth->p_thread_data_rx) {
714 		int numThreadsRxNumerical;
715 		switch (ugeth->ug_info->numThreadsRx) {
716 		case UCC_GETH_NUM_OF_THREADS_1:
717 			numThreadsRxNumerical = 1;
718 			break;
719 		case UCC_GETH_NUM_OF_THREADS_2:
720 			numThreadsRxNumerical = 2;
721 			break;
722 		case UCC_GETH_NUM_OF_THREADS_4:
723 			numThreadsRxNumerical = 4;
724 			break;
725 		case UCC_GETH_NUM_OF_THREADS_6:
726 			numThreadsRxNumerical = 6;
727 			break;
728 		case UCC_GETH_NUM_OF_THREADS_8:
729 			numThreadsRxNumerical = 8;
730 			break;
731 		default:
732 			numThreadsRxNumerical = 0;
733 			break;
734 		}
735 
736 		pr_info("Thread data RX:\n");
737 		pr_info("Base address: 0x%08x\n",
738 			(u32)ugeth->p_thread_data_rx);
739 		for (i = 0; i < numThreadsRxNumerical; i++) {
740 			pr_info("Thread data RX[%d]:\n", i);
741 			pr_info("Base address: 0x%08x\n",
742 				(u32)&ugeth->p_thread_data_rx[i]);
743 			mem_disp((u8 *) & ugeth->p_thread_data_rx[i],
744 				 sizeof(struct ucc_geth_thread_data_rx));
745 		}
746 	}
747 	if (ugeth->p_exf_glbl_param) {
748 		pr_info("EXF global param:\n");
749 		pr_info("Base address: 0x%08x\n",
750 			(u32)ugeth->p_exf_glbl_param);
751 		mem_disp((u8 *) ugeth->p_exf_glbl_param,
752 			 sizeof(*ugeth->p_exf_glbl_param));
753 	}
754 	if (ugeth->p_tx_glbl_pram) {
755 		pr_info("TX global param:\n");
756 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_tx_glbl_pram);
757 		pr_info("temoder      : addr - 0x%08x, val - 0x%04x\n",
758 			(u32)&ugeth->p_tx_glbl_pram->temoder,
759 			in_be16(&ugeth->p_tx_glbl_pram->temoder));
760 	       pr_info("sqptr        : addr - 0x%08x, val - 0x%08x\n",
761 			(u32)&ugeth->p_tx_glbl_pram->sqptr,
762 			in_be32(&ugeth->p_tx_glbl_pram->sqptr));
763 		pr_info("schedulerbasepointer: addr - 0x%08x, val - 0x%08x\n",
764 			(u32)&ugeth->p_tx_glbl_pram->schedulerbasepointer,
765 			in_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer));
766 		pr_info("txrmonbaseptr: addr - 0x%08x, val - 0x%08x\n",
767 			(u32)&ugeth->p_tx_glbl_pram->txrmonbaseptr,
768 			in_be32(&ugeth->p_tx_glbl_pram->txrmonbaseptr));
769 		pr_info("tstate       : addr - 0x%08x, val - 0x%08x\n",
770 			(u32)&ugeth->p_tx_glbl_pram->tstate,
771 			in_be32(&ugeth->p_tx_glbl_pram->tstate));
772 		pr_info("iphoffset[0] : addr - 0x%08x, val - 0x%02x\n",
773 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[0],
774 			ugeth->p_tx_glbl_pram->iphoffset[0]);
775 		pr_info("iphoffset[1] : addr - 0x%08x, val - 0x%02x\n",
776 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[1],
777 			ugeth->p_tx_glbl_pram->iphoffset[1]);
778 		pr_info("iphoffset[2] : addr - 0x%08x, val - 0x%02x\n",
779 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[2],
780 			ugeth->p_tx_glbl_pram->iphoffset[2]);
781 		pr_info("iphoffset[3] : addr - 0x%08x, val - 0x%02x\n",
782 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[3],
783 			ugeth->p_tx_glbl_pram->iphoffset[3]);
784 		pr_info("iphoffset[4] : addr - 0x%08x, val - 0x%02x\n",
785 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[4],
786 			ugeth->p_tx_glbl_pram->iphoffset[4]);
787 		pr_info("iphoffset[5] : addr - 0x%08x, val - 0x%02x\n",
788 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[5],
789 			ugeth->p_tx_glbl_pram->iphoffset[5]);
790 		pr_info("iphoffset[6] : addr - 0x%08x, val - 0x%02x\n",
791 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[6],
792 			ugeth->p_tx_glbl_pram->iphoffset[6]);
793 		pr_info("iphoffset[7] : addr - 0x%08x, val - 0x%02x\n",
794 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[7],
795 			ugeth->p_tx_glbl_pram->iphoffset[7]);
796 		pr_info("vtagtable[0] : addr - 0x%08x, val - 0x%08x\n",
797 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[0],
798 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[0]));
799 		pr_info("vtagtable[1] : addr - 0x%08x, val - 0x%08x\n",
800 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[1],
801 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[1]));
802 		pr_info("vtagtable[2] : addr - 0x%08x, val - 0x%08x\n",
803 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[2],
804 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[2]));
805 		pr_info("vtagtable[3] : addr - 0x%08x, val - 0x%08x\n",
806 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[3],
807 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[3]));
808 		pr_info("vtagtable[4] : addr - 0x%08x, val - 0x%08x\n",
809 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[4],
810 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[4]));
811 		pr_info("vtagtable[5] : addr - 0x%08x, val - 0x%08x\n",
812 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[5],
813 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[5]));
814 		pr_info("vtagtable[6] : addr - 0x%08x, val - 0x%08x\n",
815 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[6],
816 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[6]));
817 		pr_info("vtagtable[7] : addr - 0x%08x, val - 0x%08x\n",
818 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[7],
819 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[7]));
820 		pr_info("tqptr        : addr - 0x%08x, val - 0x%08x\n",
821 			(u32)&ugeth->p_tx_glbl_pram->tqptr,
822 			in_be32(&ugeth->p_tx_glbl_pram->tqptr));
823 	}
824 	if (ugeth->p_rx_glbl_pram) {
825 		pr_info("RX global param:\n");
826 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_glbl_pram);
827 		pr_info("remoder         : addr - 0x%08x, val - 0x%08x\n",
828 			(u32)&ugeth->p_rx_glbl_pram->remoder,
829 			in_be32(&ugeth->p_rx_glbl_pram->remoder));
830 		pr_info("rqptr           : addr - 0x%08x, val - 0x%08x\n",
831 			(u32)&ugeth->p_rx_glbl_pram->rqptr,
832 			in_be32(&ugeth->p_rx_glbl_pram->rqptr));
833 		pr_info("typeorlen       : addr - 0x%08x, val - 0x%04x\n",
834 			(u32)&ugeth->p_rx_glbl_pram->typeorlen,
835 			in_be16(&ugeth->p_rx_glbl_pram->typeorlen));
836 		pr_info("rxgstpack       : addr - 0x%08x, val - 0x%02x\n",
837 			(u32)&ugeth->p_rx_glbl_pram->rxgstpack,
838 			ugeth->p_rx_glbl_pram->rxgstpack);
839 		pr_info("rxrmonbaseptr   : addr - 0x%08x, val - 0x%08x\n",
840 			(u32)&ugeth->p_rx_glbl_pram->rxrmonbaseptr,
841 			in_be32(&ugeth->p_rx_glbl_pram->rxrmonbaseptr));
842 		pr_info("intcoalescingptr: addr - 0x%08x, val - 0x%08x\n",
843 			(u32)&ugeth->p_rx_glbl_pram->intcoalescingptr,
844 			in_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr));
845 		pr_info("rstate          : addr - 0x%08x, val - 0x%02x\n",
846 			(u32)&ugeth->p_rx_glbl_pram->rstate,
847 			ugeth->p_rx_glbl_pram->rstate);
848 		pr_info("mrblr           : addr - 0x%08x, val - 0x%04x\n",
849 			(u32)&ugeth->p_rx_glbl_pram->mrblr,
850 			in_be16(&ugeth->p_rx_glbl_pram->mrblr));
851 		pr_info("rbdqptr         : addr - 0x%08x, val - 0x%08x\n",
852 			(u32)&ugeth->p_rx_glbl_pram->rbdqptr,
853 			in_be32(&ugeth->p_rx_glbl_pram->rbdqptr));
854 		pr_info("mflr            : addr - 0x%08x, val - 0x%04x\n",
855 			(u32)&ugeth->p_rx_glbl_pram->mflr,
856 			in_be16(&ugeth->p_rx_glbl_pram->mflr));
857 		pr_info("minflr          : addr - 0x%08x, val - 0x%04x\n",
858 			(u32)&ugeth->p_rx_glbl_pram->minflr,
859 			in_be16(&ugeth->p_rx_glbl_pram->minflr));
860 		pr_info("maxd1           : addr - 0x%08x, val - 0x%04x\n",
861 			(u32)&ugeth->p_rx_glbl_pram->maxd1,
862 			in_be16(&ugeth->p_rx_glbl_pram->maxd1));
863 		pr_info("maxd2           : addr - 0x%08x, val - 0x%04x\n",
864 			(u32)&ugeth->p_rx_glbl_pram->maxd2,
865 			in_be16(&ugeth->p_rx_glbl_pram->maxd2));
866 		pr_info("ecamptr         : addr - 0x%08x, val - 0x%08x\n",
867 			(u32)&ugeth->p_rx_glbl_pram->ecamptr,
868 			in_be32(&ugeth->p_rx_glbl_pram->ecamptr));
869 		pr_info("l2qt            : addr - 0x%08x, val - 0x%08x\n",
870 			(u32)&ugeth->p_rx_glbl_pram->l2qt,
871 			in_be32(&ugeth->p_rx_glbl_pram->l2qt));
872 		pr_info("l3qt[0]         : addr - 0x%08x, val - 0x%08x\n",
873 			(u32)&ugeth->p_rx_glbl_pram->l3qt[0],
874 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[0]));
875 		pr_info("l3qt[1]         : addr - 0x%08x, val - 0x%08x\n",
876 			(u32)&ugeth->p_rx_glbl_pram->l3qt[1],
877 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[1]));
878 		pr_info("l3qt[2]         : addr - 0x%08x, val - 0x%08x\n",
879 			(u32)&ugeth->p_rx_glbl_pram->l3qt[2],
880 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[2]));
881 		pr_info("l3qt[3]         : addr - 0x%08x, val - 0x%08x\n",
882 			(u32)&ugeth->p_rx_glbl_pram->l3qt[3],
883 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[3]));
884 		pr_info("l3qt[4]         : addr - 0x%08x, val - 0x%08x\n",
885 			(u32)&ugeth->p_rx_glbl_pram->l3qt[4],
886 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[4]));
887 		pr_info("l3qt[5]         : addr - 0x%08x, val - 0x%08x\n",
888 			(u32)&ugeth->p_rx_glbl_pram->l3qt[5],
889 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[5]));
890 		pr_info("l3qt[6]         : addr - 0x%08x, val - 0x%08x\n",
891 			(u32)&ugeth->p_rx_glbl_pram->l3qt[6],
892 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[6]));
893 		pr_info("l3qt[7]         : addr - 0x%08x, val - 0x%08x\n",
894 			(u32)&ugeth->p_rx_glbl_pram->l3qt[7],
895 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[7]));
896 		pr_info("vlantype        : addr - 0x%08x, val - 0x%04x\n",
897 			(u32)&ugeth->p_rx_glbl_pram->vlantype,
898 			in_be16(&ugeth->p_rx_glbl_pram->vlantype));
899 		pr_info("vlantci         : addr - 0x%08x, val - 0x%04x\n",
900 			(u32)&ugeth->p_rx_glbl_pram->vlantci,
901 			in_be16(&ugeth->p_rx_glbl_pram->vlantci));
902 		for (i = 0; i < 64; i++)
903 			pr_info("addressfiltering[%d]: addr - 0x%08x, val - 0x%02x\n",
904 				i,
905 				(u32)&ugeth->p_rx_glbl_pram->addressfiltering[i],
906 				ugeth->p_rx_glbl_pram->addressfiltering[i]);
907 		pr_info("exfGlobalParam  : addr - 0x%08x, val - 0x%08x\n",
908 			(u32)&ugeth->p_rx_glbl_pram->exfGlobalParam,
909 			in_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam));
910 	}
911 	if (ugeth->p_send_q_mem_reg) {
912 		pr_info("Send Q memory registers:\n");
913 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_send_q_mem_reg);
914 		for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
915 			pr_info("SQQD[%d]:\n", i);
916 			pr_info("Base address: 0x%08x\n",
917 				(u32)&ugeth->p_send_q_mem_reg->sqqd[i]);
918 			mem_disp((u8 *) & ugeth->p_send_q_mem_reg->sqqd[i],
919 				 sizeof(struct ucc_geth_send_queue_qd));
920 		}
921 	}
922 	if (ugeth->p_scheduler) {
923 		pr_info("Scheduler:\n");
924 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_scheduler);
925 		mem_disp((u8 *) ugeth->p_scheduler,
926 			 sizeof(*ugeth->p_scheduler));
927 	}
928 	if (ugeth->p_tx_fw_statistics_pram) {
929 		pr_info("TX FW statistics pram:\n");
930 		pr_info("Base address: 0x%08x\n",
931 			(u32)ugeth->p_tx_fw_statistics_pram);
932 		mem_disp((u8 *) ugeth->p_tx_fw_statistics_pram,
933 			 sizeof(*ugeth->p_tx_fw_statistics_pram));
934 	}
935 	if (ugeth->p_rx_fw_statistics_pram) {
936 		pr_info("RX FW statistics pram:\n");
937 		pr_info("Base address: 0x%08x\n",
938 			(u32)ugeth->p_rx_fw_statistics_pram);
939 		mem_disp((u8 *) ugeth->p_rx_fw_statistics_pram,
940 			 sizeof(*ugeth->p_rx_fw_statistics_pram));
941 	}
942 	if (ugeth->p_rx_irq_coalescing_tbl) {
943 		pr_info("RX IRQ coalescing tables:\n");
944 		pr_info("Base address: 0x%08x\n",
945 			(u32)ugeth->p_rx_irq_coalescing_tbl);
946 		for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
947 			pr_info("RX IRQ coalescing table entry[%d]:\n", i);
948 			pr_info("Base address: 0x%08x\n",
949 				(u32)&ugeth->p_rx_irq_coalescing_tbl->
950 				coalescingentry[i]);
951 			pr_info("interruptcoalescingmaxvalue: addr - 0x%08x, val - 0x%08x\n",
952 				(u32)&ugeth->p_rx_irq_coalescing_tbl->
953 				coalescingentry[i].interruptcoalescingmaxvalue,
954 				in_be32(&ugeth->p_rx_irq_coalescing_tbl->
955 					coalescingentry[i].
956 					interruptcoalescingmaxvalue));
957 			pr_info("interruptcoalescingcounter : addr - 0x%08x, val - 0x%08x\n",
958 				(u32)&ugeth->p_rx_irq_coalescing_tbl->
959 				coalescingentry[i].interruptcoalescingcounter,
960 				in_be32(&ugeth->p_rx_irq_coalescing_tbl->
961 					coalescingentry[i].
962 					interruptcoalescingcounter));
963 		}
964 	}
965 	if (ugeth->p_rx_bd_qs_tbl) {
966 		pr_info("RX BD QS tables:\n");
967 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_bd_qs_tbl);
968 		for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
969 			pr_info("RX BD QS table[%d]:\n", i);
970 			pr_info("Base address: 0x%08x\n",
971 				(u32)&ugeth->p_rx_bd_qs_tbl[i]);
972 			pr_info("bdbaseptr        : addr - 0x%08x, val - 0x%08x\n",
973 				(u32)&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr,
974 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr));
975 			pr_info("bdptr            : addr - 0x%08x, val - 0x%08x\n",
976 				(u32)&ugeth->p_rx_bd_qs_tbl[i].bdptr,
977 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdptr));
978 			pr_info("externalbdbaseptr: addr - 0x%08x, val - 0x%08x\n",
979 				(u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
980 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].
981 					externalbdbaseptr));
982 			pr_info("externalbdptr    : addr - 0x%08x, val - 0x%08x\n",
983 				(u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdptr,
984 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdptr));
985 			pr_info("ucode RX Prefetched BDs:\n");
986 			pr_info("Base address: 0x%08x\n",
987 				(u32)qe_muram_addr(in_be32
988 						   (&ugeth->p_rx_bd_qs_tbl[i].
989 						    bdbaseptr)));
990 			mem_disp((u8 *)
991 				 qe_muram_addr(in_be32
992 					       (&ugeth->p_rx_bd_qs_tbl[i].
993 						bdbaseptr)),
994 				 sizeof(struct ucc_geth_rx_prefetched_bds));
995 		}
996 	}
997 	if (ugeth->p_init_enet_param_shadow) {
998 		int size;
999 		pr_info("Init enet param shadow:\n");
1000 		pr_info("Base address: 0x%08x\n",
1001 			(u32) ugeth->p_init_enet_param_shadow);
1002 		mem_disp((u8 *) ugeth->p_init_enet_param_shadow,
1003 			 sizeof(*ugeth->p_init_enet_param_shadow));
1004 
1005 		size = sizeof(struct ucc_geth_thread_rx_pram);
1006 		if (ugeth->ug_info->rxExtendedFiltering) {
1007 			size +=
1008 			    THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
1009 			if (ugeth->ug_info->largestexternallookupkeysize ==
1010 			    QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
1011 				size +=
1012 			THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
1013 			if (ugeth->ug_info->largestexternallookupkeysize ==
1014 			    QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
1015 				size +=
1016 			THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
1017 		}
1018 
1019 		dump_init_enet_entries(ugeth,
1020 				       &(ugeth->p_init_enet_param_shadow->
1021 					 txthread[0]),
1022 				       ENET_INIT_PARAM_MAX_ENTRIES_TX,
1023 				       sizeof(struct ucc_geth_thread_tx_pram),
1024 				       ugeth->ug_info->riscTx, 0);
1025 		dump_init_enet_entries(ugeth,
1026 				       &(ugeth->p_init_enet_param_shadow->
1027 					 rxthread[0]),
1028 				       ENET_INIT_PARAM_MAX_ENTRIES_RX, size,
1029 				       ugeth->ug_info->riscRx, 1);
1030 	}
1031 }
1032 #endif /* DEBUG */
1033 
1034 static void init_default_reg_vals(u32 __iomem *upsmr_register,
1035 				  u32 __iomem *maccfg1_register,
1036 				  u32 __iomem *maccfg2_register)
1037 {
1038 	out_be32(upsmr_register, UCC_GETH_UPSMR_INIT);
1039 	out_be32(maccfg1_register, UCC_GETH_MACCFG1_INIT);
1040 	out_be32(maccfg2_register, UCC_GETH_MACCFG2_INIT);
1041 }
1042 
1043 static int init_half_duplex_params(int alt_beb,
1044 				   int back_pressure_no_backoff,
1045 				   int no_backoff,
1046 				   int excess_defer,
1047 				   u8 alt_beb_truncation,
1048 				   u8 max_retransmissions,
1049 				   u8 collision_window,
1050 				   u32 __iomem *hafdup_register)
1051 {
1052 	u32 value = 0;
1053 
1054 	if ((alt_beb_truncation > HALFDUP_ALT_BEB_TRUNCATION_MAX) ||
1055 	    (max_retransmissions > HALFDUP_MAX_RETRANSMISSION_MAX) ||
1056 	    (collision_window > HALFDUP_COLLISION_WINDOW_MAX))
1057 		return -EINVAL;
1058 
1059 	value = (u32) (alt_beb_truncation << HALFDUP_ALT_BEB_TRUNCATION_SHIFT);
1060 
1061 	if (alt_beb)
1062 		value |= HALFDUP_ALT_BEB;
1063 	if (back_pressure_no_backoff)
1064 		value |= HALFDUP_BACK_PRESSURE_NO_BACKOFF;
1065 	if (no_backoff)
1066 		value |= HALFDUP_NO_BACKOFF;
1067 	if (excess_defer)
1068 		value |= HALFDUP_EXCESSIVE_DEFER;
1069 
1070 	value |= (max_retransmissions << HALFDUP_MAX_RETRANSMISSION_SHIFT);
1071 
1072 	value |= collision_window;
1073 
1074 	out_be32(hafdup_register, value);
1075 	return 0;
1076 }
1077 
1078 static int init_inter_frame_gap_params(u8 non_btb_cs_ipg,
1079 				       u8 non_btb_ipg,
1080 				       u8 min_ifg,
1081 				       u8 btb_ipg,
1082 				       u32 __iomem *ipgifg_register)
1083 {
1084 	u32 value = 0;
1085 
1086 	/* Non-Back-to-back IPG part 1 should be <= Non-Back-to-back
1087 	IPG part 2 */
1088 	if (non_btb_cs_ipg > non_btb_ipg)
1089 		return -EINVAL;
1090 
1091 	if ((non_btb_cs_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART1_MAX) ||
1092 	    (non_btb_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART2_MAX) ||
1093 	    /*(min_ifg        > IPGIFG_MINIMUM_IFG_ENFORCEMENT_MAX) || */
1094 	    (btb_ipg > IPGIFG_BACK_TO_BACK_IFG_MAX))
1095 		return -EINVAL;
1096 
1097 	value |=
1098 	    ((non_btb_cs_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART1_SHIFT) &
1099 	     IPGIFG_NBTB_CS_IPG_MASK);
1100 	value |=
1101 	    ((non_btb_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART2_SHIFT) &
1102 	     IPGIFG_NBTB_IPG_MASK);
1103 	value |=
1104 	    ((min_ifg << IPGIFG_MINIMUM_IFG_ENFORCEMENT_SHIFT) &
1105 	     IPGIFG_MIN_IFG_MASK);
1106 	value |= (btb_ipg & IPGIFG_BTB_IPG_MASK);
1107 
1108 	out_be32(ipgifg_register, value);
1109 	return 0;
1110 }
1111 
1112 int init_flow_control_params(u32 automatic_flow_control_mode,
1113 				    int rx_flow_control_enable,
1114 				    int tx_flow_control_enable,
1115 				    u16 pause_period,
1116 				    u16 extension_field,
1117 				    u32 __iomem *upsmr_register,
1118 				    u32 __iomem *uempr_register,
1119 				    u32 __iomem *maccfg1_register)
1120 {
1121 	u32 value = 0;
1122 
1123 	/* Set UEMPR register */
1124 	value = (u32) pause_period << UEMPR_PAUSE_TIME_VALUE_SHIFT;
1125 	value |= (u32) extension_field << UEMPR_EXTENDED_PAUSE_TIME_VALUE_SHIFT;
1126 	out_be32(uempr_register, value);
1127 
1128 	/* Set UPSMR register */
1129 	setbits32(upsmr_register, automatic_flow_control_mode);
1130 
1131 	value = in_be32(maccfg1_register);
1132 	if (rx_flow_control_enable)
1133 		value |= MACCFG1_FLOW_RX;
1134 	if (tx_flow_control_enable)
1135 		value |= MACCFG1_FLOW_TX;
1136 	out_be32(maccfg1_register, value);
1137 
1138 	return 0;
1139 }
1140 
1141 static int init_hw_statistics_gathering_mode(int enable_hardware_statistics,
1142 					     int auto_zero_hardware_statistics,
1143 					     u32 __iomem *upsmr_register,
1144 					     u16 __iomem *uescr_register)
1145 {
1146 	u16 uescr_value = 0;
1147 
1148 	/* Enable hardware statistics gathering if requested */
1149 	if (enable_hardware_statistics)
1150 		setbits32(upsmr_register, UCC_GETH_UPSMR_HSE);
1151 
1152 	/* Clear hardware statistics counters */
1153 	uescr_value = in_be16(uescr_register);
1154 	uescr_value |= UESCR_CLRCNT;
1155 	/* Automatically zero hardware statistics counters on read,
1156 	if requested */
1157 	if (auto_zero_hardware_statistics)
1158 		uescr_value |= UESCR_AUTOZ;
1159 	out_be16(uescr_register, uescr_value);
1160 
1161 	return 0;
1162 }
1163 
1164 static int init_firmware_statistics_gathering_mode(int
1165 		enable_tx_firmware_statistics,
1166 		int enable_rx_firmware_statistics,
1167 		u32 __iomem *tx_rmon_base_ptr,
1168 		u32 tx_firmware_statistics_structure_address,
1169 		u32 __iomem *rx_rmon_base_ptr,
1170 		u32 rx_firmware_statistics_structure_address,
1171 		u16 __iomem *temoder_register,
1172 		u32 __iomem *remoder_register)
1173 {
1174 	/* Note: this function does not check if */
1175 	/* the parameters it receives are NULL   */
1176 
1177 	if (enable_tx_firmware_statistics) {
1178 		out_be32(tx_rmon_base_ptr,
1179 			 tx_firmware_statistics_structure_address);
1180 		setbits16(temoder_register, TEMODER_TX_RMON_STATISTICS_ENABLE);
1181 	}
1182 
1183 	if (enable_rx_firmware_statistics) {
1184 		out_be32(rx_rmon_base_ptr,
1185 			 rx_firmware_statistics_structure_address);
1186 		setbits32(remoder_register, REMODER_RX_RMON_STATISTICS_ENABLE);
1187 	}
1188 
1189 	return 0;
1190 }
1191 
1192 static int init_mac_station_addr_regs(u8 address_byte_0,
1193 				      u8 address_byte_1,
1194 				      u8 address_byte_2,
1195 				      u8 address_byte_3,
1196 				      u8 address_byte_4,
1197 				      u8 address_byte_5,
1198 				      u32 __iomem *macstnaddr1_register,
1199 				      u32 __iomem *macstnaddr2_register)
1200 {
1201 	u32 value = 0;
1202 
1203 	/* Example: for a station address of 0x12345678ABCD, */
1204 	/* 0x12 is byte 0, 0x34 is byte 1 and so on and 0xCD is byte 5 */
1205 
1206 	/* MACSTNADDR1 Register: */
1207 
1208 	/* 0                      7   8                      15  */
1209 	/* station address byte 5     station address byte 4     */
1210 	/* 16                     23  24                     31  */
1211 	/* station address byte 3     station address byte 2     */
1212 	value |= (u32) ((address_byte_2 << 0) & 0x000000FF);
1213 	value |= (u32) ((address_byte_3 << 8) & 0x0000FF00);
1214 	value |= (u32) ((address_byte_4 << 16) & 0x00FF0000);
1215 	value |= (u32) ((address_byte_5 << 24) & 0xFF000000);
1216 
1217 	out_be32(macstnaddr1_register, value);
1218 
1219 	/* MACSTNADDR2 Register: */
1220 
1221 	/* 0                      7   8                      15  */
1222 	/* station address byte 1     station address byte 0     */
1223 	/* 16                     23  24                     31  */
1224 	/*         reserved                   reserved           */
1225 	value = 0;
1226 	value |= (u32) ((address_byte_0 << 16) & 0x00FF0000);
1227 	value |= (u32) ((address_byte_1 << 24) & 0xFF000000);
1228 
1229 	out_be32(macstnaddr2_register, value);
1230 
1231 	return 0;
1232 }
1233 
1234 static int init_check_frame_length_mode(int length_check,
1235 					u32 __iomem *maccfg2_register)
1236 {
1237 	u32 value = 0;
1238 
1239 	value = in_be32(maccfg2_register);
1240 
1241 	if (length_check)
1242 		value |= MACCFG2_LC;
1243 	else
1244 		value &= ~MACCFG2_LC;
1245 
1246 	out_be32(maccfg2_register, value);
1247 	return 0;
1248 }
1249 
1250 static int init_preamble_length(u8 preamble_length,
1251 				u32 __iomem *maccfg2_register)
1252 {
1253 	if ((preamble_length < 3) || (preamble_length > 7))
1254 		return -EINVAL;
1255 
1256 	clrsetbits_be32(maccfg2_register, MACCFG2_PREL_MASK,
1257 			preamble_length << MACCFG2_PREL_SHIFT);
1258 
1259 	return 0;
1260 }
1261 
1262 static int init_rx_parameters(int reject_broadcast,
1263 			      int receive_short_frames,
1264 			      int promiscuous, u32 __iomem *upsmr_register)
1265 {
1266 	u32 value = 0;
1267 
1268 	value = in_be32(upsmr_register);
1269 
1270 	if (reject_broadcast)
1271 		value |= UCC_GETH_UPSMR_BRO;
1272 	else
1273 		value &= ~UCC_GETH_UPSMR_BRO;
1274 
1275 	if (receive_short_frames)
1276 		value |= UCC_GETH_UPSMR_RSH;
1277 	else
1278 		value &= ~UCC_GETH_UPSMR_RSH;
1279 
1280 	if (promiscuous)
1281 		value |= UCC_GETH_UPSMR_PRO;
1282 	else
1283 		value &= ~UCC_GETH_UPSMR_PRO;
1284 
1285 	out_be32(upsmr_register, value);
1286 
1287 	return 0;
1288 }
1289 
1290 static int init_max_rx_buff_len(u16 max_rx_buf_len,
1291 				u16 __iomem *mrblr_register)
1292 {
1293 	/* max_rx_buf_len value must be a multiple of 128 */
1294 	if ((max_rx_buf_len == 0) ||
1295 	    (max_rx_buf_len % UCC_GETH_MRBLR_ALIGNMENT))
1296 		return -EINVAL;
1297 
1298 	out_be16(mrblr_register, max_rx_buf_len);
1299 	return 0;
1300 }
1301 
1302 static int init_min_frame_len(u16 min_frame_length,
1303 			      u16 __iomem *minflr_register,
1304 			      u16 __iomem *mrblr_register)
1305 {
1306 	u16 mrblr_value = 0;
1307 
1308 	mrblr_value = in_be16(mrblr_register);
1309 	if (min_frame_length >= (mrblr_value - 4))
1310 		return -EINVAL;
1311 
1312 	out_be16(minflr_register, min_frame_length);
1313 	return 0;
1314 }
1315 
1316 static int adjust_enet_interface(struct ucc_geth_private *ugeth)
1317 {
1318 	struct ucc_geth_info *ug_info;
1319 	struct ucc_geth __iomem *ug_regs;
1320 	struct ucc_fast __iomem *uf_regs;
1321 	int ret_val;
1322 	u32 upsmr, maccfg2;
1323 	u16 value;
1324 
1325 	ugeth_vdbg("%s: IN", __func__);
1326 
1327 	ug_info = ugeth->ug_info;
1328 	ug_regs = ugeth->ug_regs;
1329 	uf_regs = ugeth->uccf->uf_regs;
1330 
1331 	/*                    Set MACCFG2                    */
1332 	maccfg2 = in_be32(&ug_regs->maccfg2);
1333 	maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
1334 	if ((ugeth->max_speed == SPEED_10) ||
1335 	    (ugeth->max_speed == SPEED_100))
1336 		maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
1337 	else if (ugeth->max_speed == SPEED_1000)
1338 		maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
1339 	maccfg2 |= ug_info->padAndCrc;
1340 	out_be32(&ug_regs->maccfg2, maccfg2);
1341 
1342 	/*                    Set UPSMR                      */
1343 	upsmr = in_be32(&uf_regs->upsmr);
1344 	upsmr &= ~(UCC_GETH_UPSMR_RPM | UCC_GETH_UPSMR_R10M |
1345 		   UCC_GETH_UPSMR_TBIM | UCC_GETH_UPSMR_RMM);
1346 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1347 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1348 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1349 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1350 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1351 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1352 		if (ugeth->phy_interface != PHY_INTERFACE_MODE_RMII)
1353 			upsmr |= UCC_GETH_UPSMR_RPM;
1354 		switch (ugeth->max_speed) {
1355 		case SPEED_10:
1356 			upsmr |= UCC_GETH_UPSMR_R10M;
1357 			/* FALLTHROUGH */
1358 		case SPEED_100:
1359 			if (ugeth->phy_interface != PHY_INTERFACE_MODE_RTBI)
1360 				upsmr |= UCC_GETH_UPSMR_RMM;
1361 		}
1362 	}
1363 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1364 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1365 		upsmr |= UCC_GETH_UPSMR_TBIM;
1366 	}
1367 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_SGMII))
1368 		upsmr |= UCC_GETH_UPSMR_SGMM;
1369 
1370 	out_be32(&uf_regs->upsmr, upsmr);
1371 
1372 	/* Disable autonegotiation in tbi mode, because by default it
1373 	comes up in autonegotiation mode. */
1374 	/* Note that this depends on proper setting in utbipar register. */
1375 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1376 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1377 		struct ucc_geth_info *ug_info = ugeth->ug_info;
1378 		struct phy_device *tbiphy;
1379 
1380 		if (!ug_info->tbi_node)
1381 			pr_warn("TBI mode requires that the device tree specify a tbi-handle\n");
1382 
1383 		tbiphy = of_phy_find_device(ug_info->tbi_node);
1384 		if (!tbiphy)
1385 			pr_warn("Could not get TBI device\n");
1386 
1387 		value = phy_read(tbiphy, ENET_TBI_MII_CR);
1388 		value &= ~0x1000;	/* Turn off autonegotiation */
1389 		phy_write(tbiphy, ENET_TBI_MII_CR, value);
1390 	}
1391 
1392 	init_check_frame_length_mode(ug_info->lengthCheckRx, &ug_regs->maccfg2);
1393 
1394 	ret_val = init_preamble_length(ug_info->prel, &ug_regs->maccfg2);
1395 	if (ret_val != 0) {
1396 		if (netif_msg_probe(ugeth))
1397 			pr_err("Preamble length must be between 3 and 7 inclusive\n");
1398 		return ret_val;
1399 	}
1400 
1401 	return 0;
1402 }
1403 
1404 static int ugeth_graceful_stop_tx(struct ucc_geth_private *ugeth)
1405 {
1406 	struct ucc_fast_private *uccf;
1407 	u32 cecr_subblock;
1408 	u32 temp;
1409 	int i = 10;
1410 
1411 	uccf = ugeth->uccf;
1412 
1413 	/* Mask GRACEFUL STOP TX interrupt bit and clear it */
1414 	clrbits32(uccf->p_uccm, UCC_GETH_UCCE_GRA);
1415 	out_be32(uccf->p_ucce, UCC_GETH_UCCE_GRA);  /* clear by writing 1 */
1416 
1417 	/* Issue host command */
1418 	cecr_subblock =
1419 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1420 	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
1421 		     QE_CR_PROTOCOL_ETHERNET, 0);
1422 
1423 	/* Wait for command to complete */
1424 	do {
1425 		msleep(10);
1426 		temp = in_be32(uccf->p_ucce);
1427 	} while (!(temp & UCC_GETH_UCCE_GRA) && --i);
1428 
1429 	uccf->stopped_tx = 1;
1430 
1431 	return 0;
1432 }
1433 
1434 static int ugeth_graceful_stop_rx(struct ucc_geth_private *ugeth)
1435 {
1436 	struct ucc_fast_private *uccf;
1437 	u32 cecr_subblock;
1438 	u8 temp;
1439 	int i = 10;
1440 
1441 	uccf = ugeth->uccf;
1442 
1443 	/* Clear acknowledge bit */
1444 	temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1445 	temp &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
1446 	out_8(&ugeth->p_rx_glbl_pram->rxgstpack, temp);
1447 
1448 	/* Keep issuing command and checking acknowledge bit until
1449 	it is asserted, according to spec */
1450 	do {
1451 		/* Issue host command */
1452 		cecr_subblock =
1453 		    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.
1454 						ucc_num);
1455 		qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
1456 			     QE_CR_PROTOCOL_ETHERNET, 0);
1457 		msleep(10);
1458 		temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1459 	} while (!(temp & GRACEFUL_STOP_ACKNOWLEDGE_RX) && --i);
1460 
1461 	uccf->stopped_rx = 1;
1462 
1463 	return 0;
1464 }
1465 
1466 static int ugeth_restart_tx(struct ucc_geth_private *ugeth)
1467 {
1468 	struct ucc_fast_private *uccf;
1469 	u32 cecr_subblock;
1470 
1471 	uccf = ugeth->uccf;
1472 
1473 	cecr_subblock =
1474 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1475 	qe_issue_cmd(QE_RESTART_TX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 0);
1476 	uccf->stopped_tx = 0;
1477 
1478 	return 0;
1479 }
1480 
1481 static int ugeth_restart_rx(struct ucc_geth_private *ugeth)
1482 {
1483 	struct ucc_fast_private *uccf;
1484 	u32 cecr_subblock;
1485 
1486 	uccf = ugeth->uccf;
1487 
1488 	cecr_subblock =
1489 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1490 	qe_issue_cmd(QE_RESTART_RX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
1491 		     0);
1492 	uccf->stopped_rx = 0;
1493 
1494 	return 0;
1495 }
1496 
1497 static int ugeth_enable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1498 {
1499 	struct ucc_fast_private *uccf;
1500 	int enabled_tx, enabled_rx;
1501 
1502 	uccf = ugeth->uccf;
1503 
1504 	/* check if the UCC number is in range. */
1505 	if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1506 		if (netif_msg_probe(ugeth))
1507 			pr_err("ucc_num out of range\n");
1508 		return -EINVAL;
1509 	}
1510 
1511 	enabled_tx = uccf->enabled_tx;
1512 	enabled_rx = uccf->enabled_rx;
1513 
1514 	/* Get Tx and Rx going again, in case this channel was actively
1515 	disabled. */
1516 	if ((mode & COMM_DIR_TX) && (!enabled_tx) && uccf->stopped_tx)
1517 		ugeth_restart_tx(ugeth);
1518 	if ((mode & COMM_DIR_RX) && (!enabled_rx) && uccf->stopped_rx)
1519 		ugeth_restart_rx(ugeth);
1520 
1521 	ucc_fast_enable(uccf, mode);	/* OK to do even if not disabled */
1522 
1523 	return 0;
1524 
1525 }
1526 
1527 static int ugeth_disable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1528 {
1529 	struct ucc_fast_private *uccf;
1530 
1531 	uccf = ugeth->uccf;
1532 
1533 	/* check if the UCC number is in range. */
1534 	if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1535 		if (netif_msg_probe(ugeth))
1536 			pr_err("ucc_num out of range\n");
1537 		return -EINVAL;
1538 	}
1539 
1540 	/* Stop any transmissions */
1541 	if ((mode & COMM_DIR_TX) && uccf->enabled_tx && !uccf->stopped_tx)
1542 		ugeth_graceful_stop_tx(ugeth);
1543 
1544 	/* Stop any receptions */
1545 	if ((mode & COMM_DIR_RX) && uccf->enabled_rx && !uccf->stopped_rx)
1546 		ugeth_graceful_stop_rx(ugeth);
1547 
1548 	ucc_fast_disable(ugeth->uccf, mode); /* OK to do even if not enabled */
1549 
1550 	return 0;
1551 }
1552 
1553 static void ugeth_quiesce(struct ucc_geth_private *ugeth)
1554 {
1555 	/* Prevent any further xmits, plus detach the device. */
1556 	netif_device_detach(ugeth->ndev);
1557 
1558 	/* Wait for any current xmits to finish. */
1559 	netif_tx_disable(ugeth->ndev);
1560 
1561 	/* Disable the interrupt to avoid NAPI rescheduling. */
1562 	disable_irq(ugeth->ug_info->uf_info.irq);
1563 
1564 	/* Stop NAPI, and possibly wait for its completion. */
1565 	napi_disable(&ugeth->napi);
1566 }
1567 
1568 static void ugeth_activate(struct ucc_geth_private *ugeth)
1569 {
1570 	napi_enable(&ugeth->napi);
1571 	enable_irq(ugeth->ug_info->uf_info.irq);
1572 	netif_device_attach(ugeth->ndev);
1573 }
1574 
1575 /* Called every time the controller might need to be made
1576  * aware of new link state.  The PHY code conveys this
1577  * information through variables in the ugeth structure, and this
1578  * function converts those variables into the appropriate
1579  * register values, and can bring down the device if needed.
1580  */
1581 
1582 static void adjust_link(struct net_device *dev)
1583 {
1584 	struct ucc_geth_private *ugeth = netdev_priv(dev);
1585 	struct ucc_geth __iomem *ug_regs;
1586 	struct ucc_fast __iomem *uf_regs;
1587 	struct phy_device *phydev = ugeth->phydev;
1588 	int new_state = 0;
1589 
1590 	ug_regs = ugeth->ug_regs;
1591 	uf_regs = ugeth->uccf->uf_regs;
1592 
1593 	if (phydev->link) {
1594 		u32 tempval = in_be32(&ug_regs->maccfg2);
1595 		u32 upsmr = in_be32(&uf_regs->upsmr);
1596 		/* Now we make sure that we can be in full duplex mode.
1597 		 * If not, we operate in half-duplex mode. */
1598 		if (phydev->duplex != ugeth->oldduplex) {
1599 			new_state = 1;
1600 			if (!(phydev->duplex))
1601 				tempval &= ~(MACCFG2_FDX);
1602 			else
1603 				tempval |= MACCFG2_FDX;
1604 			ugeth->oldduplex = phydev->duplex;
1605 		}
1606 
1607 		if (phydev->speed != ugeth->oldspeed) {
1608 			new_state = 1;
1609 			switch (phydev->speed) {
1610 			case SPEED_1000:
1611 				tempval = ((tempval &
1612 					    ~(MACCFG2_INTERFACE_MODE_MASK)) |
1613 					    MACCFG2_INTERFACE_MODE_BYTE);
1614 				break;
1615 			case SPEED_100:
1616 			case SPEED_10:
1617 				tempval = ((tempval &
1618 					    ~(MACCFG2_INTERFACE_MODE_MASK)) |
1619 					    MACCFG2_INTERFACE_MODE_NIBBLE);
1620 				/* if reduced mode, re-set UPSMR.R10M */
1621 				if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1622 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1623 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1624 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1625 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1626 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1627 					if (phydev->speed == SPEED_10)
1628 						upsmr |= UCC_GETH_UPSMR_R10M;
1629 					else
1630 						upsmr &= ~UCC_GETH_UPSMR_R10M;
1631 				}
1632 				break;
1633 			default:
1634 				if (netif_msg_link(ugeth))
1635 					pr_warn(
1636 						"%s: Ack!  Speed (%d) is not 10/100/1000!",
1637 						dev->name, phydev->speed);
1638 				break;
1639 			}
1640 			ugeth->oldspeed = phydev->speed;
1641 		}
1642 
1643 		if (!ugeth->oldlink) {
1644 			new_state = 1;
1645 			ugeth->oldlink = 1;
1646 		}
1647 
1648 		if (new_state) {
1649 			/*
1650 			 * To change the MAC configuration we need to disable
1651 			 * the controller. To do so, we have to either grab
1652 			 * ugeth->lock, which is a bad idea since 'graceful
1653 			 * stop' commands might take quite a while, or we can
1654 			 * quiesce driver's activity.
1655 			 */
1656 			ugeth_quiesce(ugeth);
1657 			ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
1658 
1659 			out_be32(&ug_regs->maccfg2, tempval);
1660 			out_be32(&uf_regs->upsmr, upsmr);
1661 
1662 			ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
1663 			ugeth_activate(ugeth);
1664 		}
1665 	} else if (ugeth->oldlink) {
1666 			new_state = 1;
1667 			ugeth->oldlink = 0;
1668 			ugeth->oldspeed = 0;
1669 			ugeth->oldduplex = -1;
1670 	}
1671 
1672 	if (new_state && netif_msg_link(ugeth))
1673 		phy_print_status(phydev);
1674 }
1675 
1676 /* Initialize TBI PHY interface for communicating with the
1677  * SERDES lynx PHY on the chip.  We communicate with this PHY
1678  * through the MDIO bus on each controller, treating it as a
1679  * "normal" PHY at the address found in the UTBIPA register.  We assume
1680  * that the UTBIPA register is valid.  Either the MDIO bus code will set
1681  * it to a value that doesn't conflict with other PHYs on the bus, or the
1682  * value doesn't matter, as there are no other PHYs on the bus.
1683  */
1684 static void uec_configure_serdes(struct net_device *dev)
1685 {
1686 	struct ucc_geth_private *ugeth = netdev_priv(dev);
1687 	struct ucc_geth_info *ug_info = ugeth->ug_info;
1688 	struct phy_device *tbiphy;
1689 
1690 	if (!ug_info->tbi_node) {
1691 		dev_warn(&dev->dev, "SGMII mode requires that the device "
1692 			"tree specify a tbi-handle\n");
1693 		return;
1694 	}
1695 
1696 	tbiphy = of_phy_find_device(ug_info->tbi_node);
1697 	if (!tbiphy) {
1698 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1699 		return;
1700 	}
1701 
1702 	/*
1703 	 * If the link is already up, we must already be ok, and don't need to
1704 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1705 	 * everything for us?  Resetting it takes the link down and requires
1706 	 * several seconds for it to come back.
1707 	 */
1708 	if (phy_read(tbiphy, ENET_TBI_MII_SR) & TBISR_LSTATUS)
1709 		return;
1710 
1711 	/* Single clk mode, mii mode off(for serdes communication) */
1712 	phy_write(tbiphy, ENET_TBI_MII_ANA, TBIANA_SETTINGS);
1713 
1714 	phy_write(tbiphy, ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
1715 
1716 	phy_write(tbiphy, ENET_TBI_MII_CR, TBICR_SETTINGS);
1717 }
1718 
1719 /* Configure the PHY for dev.
1720  * returns 0 if success.  -1 if failure
1721  */
1722 static int init_phy(struct net_device *dev)
1723 {
1724 	struct ucc_geth_private *priv = netdev_priv(dev);
1725 	struct ucc_geth_info *ug_info = priv->ug_info;
1726 	struct phy_device *phydev;
1727 
1728 	priv->oldlink = 0;
1729 	priv->oldspeed = 0;
1730 	priv->oldduplex = -1;
1731 
1732 	phydev = of_phy_connect(dev, ug_info->phy_node, &adjust_link, 0,
1733 				priv->phy_interface);
1734 	if (!phydev)
1735 		phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1736 						   priv->phy_interface);
1737 	if (!phydev) {
1738 		dev_err(&dev->dev, "Could not attach to PHY\n");
1739 		return -ENODEV;
1740 	}
1741 
1742 	if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII)
1743 		uec_configure_serdes(dev);
1744 
1745 	phydev->supported &= (SUPPORTED_MII |
1746 			      SUPPORTED_Autoneg |
1747 			      ADVERTISED_10baseT_Half |
1748 			      ADVERTISED_10baseT_Full |
1749 			      ADVERTISED_100baseT_Half |
1750 			      ADVERTISED_100baseT_Full);
1751 
1752 	if (priv->max_speed == SPEED_1000)
1753 		phydev->supported |= ADVERTISED_1000baseT_Full;
1754 
1755 	phydev->advertising = phydev->supported;
1756 
1757 	priv->phydev = phydev;
1758 
1759 	return 0;
1760 }
1761 
1762 static void ugeth_dump_regs(struct ucc_geth_private *ugeth)
1763 {
1764 #ifdef DEBUG
1765 	ucc_fast_dump_regs(ugeth->uccf);
1766 	dump_regs(ugeth);
1767 	dump_bds(ugeth);
1768 #endif
1769 }
1770 
1771 static int ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private *
1772 						       ugeth,
1773 						       enum enet_addr_type
1774 						       enet_addr_type)
1775 {
1776 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
1777 	struct ucc_fast_private *uccf;
1778 	enum comm_dir comm_dir;
1779 	struct list_head *p_lh;
1780 	u16 i, num;
1781 	u32 __iomem *addr_h;
1782 	u32 __iomem *addr_l;
1783 	u8 *p_counter;
1784 
1785 	uccf = ugeth->uccf;
1786 
1787 	p_82xx_addr_filt =
1788 	    (struct ucc_geth_82xx_address_filtering_pram __iomem *)
1789 	    ugeth->p_rx_glbl_pram->addressfiltering;
1790 
1791 	if (enet_addr_type == ENET_ADDR_TYPE_GROUP) {
1792 		addr_h = &(p_82xx_addr_filt->gaddr_h);
1793 		addr_l = &(p_82xx_addr_filt->gaddr_l);
1794 		p_lh = &ugeth->group_hash_q;
1795 		p_counter = &(ugeth->numGroupAddrInHash);
1796 	} else if (enet_addr_type == ENET_ADDR_TYPE_INDIVIDUAL) {
1797 		addr_h = &(p_82xx_addr_filt->iaddr_h);
1798 		addr_l = &(p_82xx_addr_filt->iaddr_l);
1799 		p_lh = &ugeth->ind_hash_q;
1800 		p_counter = &(ugeth->numIndAddrInHash);
1801 	} else
1802 		return -EINVAL;
1803 
1804 	comm_dir = 0;
1805 	if (uccf->enabled_tx)
1806 		comm_dir |= COMM_DIR_TX;
1807 	if (uccf->enabled_rx)
1808 		comm_dir |= COMM_DIR_RX;
1809 	if (comm_dir)
1810 		ugeth_disable(ugeth, comm_dir);
1811 
1812 	/* Clear the hash table. */
1813 	out_be32(addr_h, 0x00000000);
1814 	out_be32(addr_l, 0x00000000);
1815 
1816 	if (!p_lh)
1817 		return 0;
1818 
1819 	num = *p_counter;
1820 
1821 	/* Delete all remaining CQ elements */
1822 	for (i = 0; i < num; i++)
1823 		put_enet_addr_container(ENET_ADDR_CONT_ENTRY(dequeue(p_lh)));
1824 
1825 	*p_counter = 0;
1826 
1827 	if (comm_dir)
1828 		ugeth_enable(ugeth, comm_dir);
1829 
1830 	return 0;
1831 }
1832 
1833 static int ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private *ugeth,
1834 						    u8 paddr_num)
1835 {
1836 	ugeth->indAddrRegUsed[paddr_num] = 0; /* mark this paddr as not used */
1837 	return hw_clear_addr_in_paddr(ugeth, paddr_num);/* clear in hardware */
1838 }
1839 
1840 static void ucc_geth_free_rx(struct ucc_geth_private *ugeth)
1841 {
1842 	struct ucc_geth_info *ug_info;
1843 	struct ucc_fast_info *uf_info;
1844 	u16 i, j;
1845 	u8 __iomem *bd;
1846 
1847 
1848 	ug_info = ugeth->ug_info;
1849 	uf_info = &ug_info->uf_info;
1850 
1851 	for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
1852 		if (ugeth->p_rx_bd_ring[i]) {
1853 			/* Return existing data buffers in ring */
1854 			bd = ugeth->p_rx_bd_ring[i];
1855 			for (j = 0; j < ugeth->ug_info->bdRingLenRx[i]; j++) {
1856 				if (ugeth->rx_skbuff[i][j]) {
1857 					dma_unmap_single(ugeth->dev,
1858 						in_be32(&((struct qe_bd __iomem *)bd)->buf),
1859 						ugeth->ug_info->
1860 						uf_info.max_rx_buf_length +
1861 						UCC_GETH_RX_DATA_BUF_ALIGNMENT,
1862 						DMA_FROM_DEVICE);
1863 					dev_kfree_skb_any(
1864 						ugeth->rx_skbuff[i][j]);
1865 					ugeth->rx_skbuff[i][j] = NULL;
1866 				}
1867 				bd += sizeof(struct qe_bd);
1868 			}
1869 
1870 			kfree(ugeth->rx_skbuff[i]);
1871 
1872 			if (ugeth->ug_info->uf_info.bd_mem_part ==
1873 			    MEM_PART_SYSTEM)
1874 				kfree((void *)ugeth->rx_bd_ring_offset[i]);
1875 			else if (ugeth->ug_info->uf_info.bd_mem_part ==
1876 				 MEM_PART_MURAM)
1877 				qe_muram_free(ugeth->rx_bd_ring_offset[i]);
1878 			ugeth->p_rx_bd_ring[i] = NULL;
1879 		}
1880 	}
1881 
1882 }
1883 
1884 static void ucc_geth_free_tx(struct ucc_geth_private *ugeth)
1885 {
1886 	struct ucc_geth_info *ug_info;
1887 	struct ucc_fast_info *uf_info;
1888 	u16 i, j;
1889 	u8 __iomem *bd;
1890 
1891 	ug_info = ugeth->ug_info;
1892 	uf_info = &ug_info->uf_info;
1893 
1894 	for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
1895 		bd = ugeth->p_tx_bd_ring[i];
1896 		if (!bd)
1897 			continue;
1898 		for (j = 0; j < ugeth->ug_info->bdRingLenTx[i]; j++) {
1899 			if (ugeth->tx_skbuff[i][j]) {
1900 				dma_unmap_single(ugeth->dev,
1901 						 in_be32(&((struct qe_bd __iomem *)bd)->buf),
1902 						 (in_be32((u32 __iomem *)bd) &
1903 						  BD_LENGTH_MASK),
1904 						 DMA_TO_DEVICE);
1905 				dev_kfree_skb_any(ugeth->tx_skbuff[i][j]);
1906 				ugeth->tx_skbuff[i][j] = NULL;
1907 			}
1908 		}
1909 
1910 		kfree(ugeth->tx_skbuff[i]);
1911 
1912 		if (ugeth->p_tx_bd_ring[i]) {
1913 			if (ugeth->ug_info->uf_info.bd_mem_part ==
1914 			    MEM_PART_SYSTEM)
1915 				kfree((void *)ugeth->tx_bd_ring_offset[i]);
1916 			else if (ugeth->ug_info->uf_info.bd_mem_part ==
1917 				 MEM_PART_MURAM)
1918 				qe_muram_free(ugeth->tx_bd_ring_offset[i]);
1919 			ugeth->p_tx_bd_ring[i] = NULL;
1920 		}
1921 	}
1922 
1923 }
1924 
1925 static void ucc_geth_memclean(struct ucc_geth_private *ugeth)
1926 {
1927 	if (!ugeth)
1928 		return;
1929 
1930 	if (ugeth->uccf) {
1931 		ucc_fast_free(ugeth->uccf);
1932 		ugeth->uccf = NULL;
1933 	}
1934 
1935 	if (ugeth->p_thread_data_tx) {
1936 		qe_muram_free(ugeth->thread_dat_tx_offset);
1937 		ugeth->p_thread_data_tx = NULL;
1938 	}
1939 	if (ugeth->p_thread_data_rx) {
1940 		qe_muram_free(ugeth->thread_dat_rx_offset);
1941 		ugeth->p_thread_data_rx = NULL;
1942 	}
1943 	if (ugeth->p_exf_glbl_param) {
1944 		qe_muram_free(ugeth->exf_glbl_param_offset);
1945 		ugeth->p_exf_glbl_param = NULL;
1946 	}
1947 	if (ugeth->p_rx_glbl_pram) {
1948 		qe_muram_free(ugeth->rx_glbl_pram_offset);
1949 		ugeth->p_rx_glbl_pram = NULL;
1950 	}
1951 	if (ugeth->p_tx_glbl_pram) {
1952 		qe_muram_free(ugeth->tx_glbl_pram_offset);
1953 		ugeth->p_tx_glbl_pram = NULL;
1954 	}
1955 	if (ugeth->p_send_q_mem_reg) {
1956 		qe_muram_free(ugeth->send_q_mem_reg_offset);
1957 		ugeth->p_send_q_mem_reg = NULL;
1958 	}
1959 	if (ugeth->p_scheduler) {
1960 		qe_muram_free(ugeth->scheduler_offset);
1961 		ugeth->p_scheduler = NULL;
1962 	}
1963 	if (ugeth->p_tx_fw_statistics_pram) {
1964 		qe_muram_free(ugeth->tx_fw_statistics_pram_offset);
1965 		ugeth->p_tx_fw_statistics_pram = NULL;
1966 	}
1967 	if (ugeth->p_rx_fw_statistics_pram) {
1968 		qe_muram_free(ugeth->rx_fw_statistics_pram_offset);
1969 		ugeth->p_rx_fw_statistics_pram = NULL;
1970 	}
1971 	if (ugeth->p_rx_irq_coalescing_tbl) {
1972 		qe_muram_free(ugeth->rx_irq_coalescing_tbl_offset);
1973 		ugeth->p_rx_irq_coalescing_tbl = NULL;
1974 	}
1975 	if (ugeth->p_rx_bd_qs_tbl) {
1976 		qe_muram_free(ugeth->rx_bd_qs_tbl_offset);
1977 		ugeth->p_rx_bd_qs_tbl = NULL;
1978 	}
1979 	if (ugeth->p_init_enet_param_shadow) {
1980 		return_init_enet_entries(ugeth,
1981 					 &(ugeth->p_init_enet_param_shadow->
1982 					   rxthread[0]),
1983 					 ENET_INIT_PARAM_MAX_ENTRIES_RX,
1984 					 ugeth->ug_info->riscRx, 1);
1985 		return_init_enet_entries(ugeth,
1986 					 &(ugeth->p_init_enet_param_shadow->
1987 					   txthread[0]),
1988 					 ENET_INIT_PARAM_MAX_ENTRIES_TX,
1989 					 ugeth->ug_info->riscTx, 0);
1990 		kfree(ugeth->p_init_enet_param_shadow);
1991 		ugeth->p_init_enet_param_shadow = NULL;
1992 	}
1993 	ucc_geth_free_tx(ugeth);
1994 	ucc_geth_free_rx(ugeth);
1995 	while (!list_empty(&ugeth->group_hash_q))
1996 		put_enet_addr_container(ENET_ADDR_CONT_ENTRY
1997 					(dequeue(&ugeth->group_hash_q)));
1998 	while (!list_empty(&ugeth->ind_hash_q))
1999 		put_enet_addr_container(ENET_ADDR_CONT_ENTRY
2000 					(dequeue(&ugeth->ind_hash_q)));
2001 	if (ugeth->ug_regs) {
2002 		iounmap(ugeth->ug_regs);
2003 		ugeth->ug_regs = NULL;
2004 	}
2005 }
2006 
2007 static void ucc_geth_set_multi(struct net_device *dev)
2008 {
2009 	struct ucc_geth_private *ugeth;
2010 	struct netdev_hw_addr *ha;
2011 	struct ucc_fast __iomem *uf_regs;
2012 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2013 
2014 	ugeth = netdev_priv(dev);
2015 
2016 	uf_regs = ugeth->uccf->uf_regs;
2017 
2018 	if (dev->flags & IFF_PROMISC) {
2019 		setbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2020 	} else {
2021 		clrbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2022 
2023 		p_82xx_addr_filt =
2024 		    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2025 		    p_rx_glbl_pram->addressfiltering;
2026 
2027 		if (dev->flags & IFF_ALLMULTI) {
2028 			/* Catch all multicast addresses, so set the
2029 			 * filter to all 1's.
2030 			 */
2031 			out_be32(&p_82xx_addr_filt->gaddr_h, 0xffffffff);
2032 			out_be32(&p_82xx_addr_filt->gaddr_l, 0xffffffff);
2033 		} else {
2034 			/* Clear filter and add the addresses in the list.
2035 			 */
2036 			out_be32(&p_82xx_addr_filt->gaddr_h, 0x0);
2037 			out_be32(&p_82xx_addr_filt->gaddr_l, 0x0);
2038 
2039 			netdev_for_each_mc_addr(ha, dev) {
2040 				/* Ask CPM to run CRC and set bit in
2041 				 * filter mask.
2042 				 */
2043 				hw_add_addr_in_hash(ugeth, ha->addr);
2044 			}
2045 		}
2046 	}
2047 }
2048 
2049 static void ucc_geth_stop(struct ucc_geth_private *ugeth)
2050 {
2051 	struct ucc_geth __iomem *ug_regs = ugeth->ug_regs;
2052 	struct phy_device *phydev = ugeth->phydev;
2053 
2054 	ugeth_vdbg("%s: IN", __func__);
2055 
2056 	/*
2057 	 * Tell the kernel the link is down.
2058 	 * Must be done before disabling the controller
2059 	 * or deadlock may happen.
2060 	 */
2061 	phy_stop(phydev);
2062 
2063 	/* Disable the controller */
2064 	ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
2065 
2066 	/* Mask all interrupts */
2067 	out_be32(ugeth->uccf->p_uccm, 0x00000000);
2068 
2069 	/* Clear all interrupts */
2070 	out_be32(ugeth->uccf->p_ucce, 0xffffffff);
2071 
2072 	/* Disable Rx and Tx */
2073 	clrbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2074 
2075 	ucc_geth_memclean(ugeth);
2076 }
2077 
2078 static int ucc_struct_init(struct ucc_geth_private *ugeth)
2079 {
2080 	struct ucc_geth_info *ug_info;
2081 	struct ucc_fast_info *uf_info;
2082 	int i;
2083 
2084 	ug_info = ugeth->ug_info;
2085 	uf_info = &ug_info->uf_info;
2086 
2087 	if (!((uf_info->bd_mem_part == MEM_PART_SYSTEM) ||
2088 	      (uf_info->bd_mem_part == MEM_PART_MURAM))) {
2089 		if (netif_msg_probe(ugeth))
2090 			pr_err("Bad memory partition value\n");
2091 		return -EINVAL;
2092 	}
2093 
2094 	/* Rx BD lengths */
2095 	for (i = 0; i < ug_info->numQueuesRx; i++) {
2096 		if ((ug_info->bdRingLenRx[i] < UCC_GETH_RX_BD_RING_SIZE_MIN) ||
2097 		    (ug_info->bdRingLenRx[i] %
2098 		     UCC_GETH_RX_BD_RING_SIZE_ALIGNMENT)) {
2099 			if (netif_msg_probe(ugeth))
2100 				pr_err("Rx BD ring length must be multiple of 4, no smaller than 8\n");
2101 			return -EINVAL;
2102 		}
2103 	}
2104 
2105 	/* Tx BD lengths */
2106 	for (i = 0; i < ug_info->numQueuesTx; i++) {
2107 		if (ug_info->bdRingLenTx[i] < UCC_GETH_TX_BD_RING_SIZE_MIN) {
2108 			if (netif_msg_probe(ugeth))
2109 				pr_err("Tx BD ring length must be no smaller than 2\n");
2110 			return -EINVAL;
2111 		}
2112 	}
2113 
2114 	/* mrblr */
2115 	if ((uf_info->max_rx_buf_length == 0) ||
2116 	    (uf_info->max_rx_buf_length % UCC_GETH_MRBLR_ALIGNMENT)) {
2117 		if (netif_msg_probe(ugeth))
2118 			pr_err("max_rx_buf_length must be non-zero multiple of 128\n");
2119 		return -EINVAL;
2120 	}
2121 
2122 	/* num Tx queues */
2123 	if (ug_info->numQueuesTx > NUM_TX_QUEUES) {
2124 		if (netif_msg_probe(ugeth))
2125 			pr_err("number of tx queues too large\n");
2126 		return -EINVAL;
2127 	}
2128 
2129 	/* num Rx queues */
2130 	if (ug_info->numQueuesRx > NUM_RX_QUEUES) {
2131 		if (netif_msg_probe(ugeth))
2132 			pr_err("number of rx queues too large\n");
2133 		return -EINVAL;
2134 	}
2135 
2136 	/* l2qt */
2137 	for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) {
2138 		if (ug_info->l2qt[i] >= ug_info->numQueuesRx) {
2139 			if (netif_msg_probe(ugeth))
2140 				pr_err("VLAN priority table entry must not be larger than number of Rx queues\n");
2141 			return -EINVAL;
2142 		}
2143 	}
2144 
2145 	/* l3qt */
2146 	for (i = 0; i < UCC_GETH_IP_PRIORITY_MAX; i++) {
2147 		if (ug_info->l3qt[i] >= ug_info->numQueuesRx) {
2148 			if (netif_msg_probe(ugeth))
2149 				pr_err("IP priority table entry must not be larger than number of Rx queues\n");
2150 			return -EINVAL;
2151 		}
2152 	}
2153 
2154 	if (ug_info->cam && !ug_info->ecamptr) {
2155 		if (netif_msg_probe(ugeth))
2156 			pr_err("If cam mode is chosen, must supply cam ptr\n");
2157 		return -EINVAL;
2158 	}
2159 
2160 	if ((ug_info->numStationAddresses !=
2161 	     UCC_GETH_NUM_OF_STATION_ADDRESSES_1) &&
2162 	    ug_info->rxExtendedFiltering) {
2163 		if (netif_msg_probe(ugeth))
2164 			pr_err("Number of station addresses greater than 1 not allowed in extended parsing mode\n");
2165 		return -EINVAL;
2166 	}
2167 
2168 	/* Generate uccm_mask for receive */
2169 	uf_info->uccm_mask = ug_info->eventRegMask & UCCE_OTHER;/* Errors */
2170 	for (i = 0; i < ug_info->numQueuesRx; i++)
2171 		uf_info->uccm_mask |= (UCC_GETH_UCCE_RXF0 << i);
2172 
2173 	for (i = 0; i < ug_info->numQueuesTx; i++)
2174 		uf_info->uccm_mask |= (UCC_GETH_UCCE_TXB0 << i);
2175 	/* Initialize the general fast UCC block. */
2176 	if (ucc_fast_init(uf_info, &ugeth->uccf)) {
2177 		if (netif_msg_probe(ugeth))
2178 			pr_err("Failed to init uccf\n");
2179 		return -ENOMEM;
2180 	}
2181 
2182 	/* read the number of risc engines, update the riscTx and riscRx
2183 	 * if there are 4 riscs in QE
2184 	 */
2185 	if (qe_get_num_of_risc() == 4) {
2186 		ug_info->riscTx = QE_RISC_ALLOCATION_FOUR_RISCS;
2187 		ug_info->riscRx = QE_RISC_ALLOCATION_FOUR_RISCS;
2188 	}
2189 
2190 	ugeth->ug_regs = ioremap(uf_info->regs, sizeof(*ugeth->ug_regs));
2191 	if (!ugeth->ug_regs) {
2192 		if (netif_msg_probe(ugeth))
2193 			pr_err("Failed to ioremap regs\n");
2194 		return -ENOMEM;
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 static int ucc_geth_alloc_tx(struct ucc_geth_private *ugeth)
2201 {
2202 	struct ucc_geth_info *ug_info;
2203 	struct ucc_fast_info *uf_info;
2204 	int length;
2205 	u16 i, j;
2206 	u8 __iomem *bd;
2207 
2208 	ug_info = ugeth->ug_info;
2209 	uf_info = &ug_info->uf_info;
2210 
2211 	/* Allocate Tx bds */
2212 	for (j = 0; j < ug_info->numQueuesTx; j++) {
2213 		/* Allocate in multiple of
2214 		   UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT,
2215 		   according to spec */
2216 		length = ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd))
2217 			  / UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2218 		    * UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2219 		if ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) %
2220 		    UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2221 			length += UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2222 		if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2223 			u32 align = 4;
2224 			if (UCC_GETH_TX_BD_RING_ALIGNMENT > 4)
2225 				align = UCC_GETH_TX_BD_RING_ALIGNMENT;
2226 			ugeth->tx_bd_ring_offset[j] =
2227 				(u32) kmalloc((u32) (length + align), GFP_KERNEL);
2228 
2229 			if (ugeth->tx_bd_ring_offset[j] != 0)
2230 				ugeth->p_tx_bd_ring[j] =
2231 					(u8 __iomem *)((ugeth->tx_bd_ring_offset[j] +
2232 					align) & ~(align - 1));
2233 		} else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2234 			ugeth->tx_bd_ring_offset[j] =
2235 			    qe_muram_alloc(length,
2236 					   UCC_GETH_TX_BD_RING_ALIGNMENT);
2237 			if (!IS_ERR_VALUE(ugeth->tx_bd_ring_offset[j]))
2238 				ugeth->p_tx_bd_ring[j] =
2239 				    (u8 __iomem *) qe_muram_addr(ugeth->
2240 							 tx_bd_ring_offset[j]);
2241 		}
2242 		if (!ugeth->p_tx_bd_ring[j]) {
2243 			if (netif_msg_ifup(ugeth))
2244 				pr_err("Can not allocate memory for Tx bd rings\n");
2245 			return -ENOMEM;
2246 		}
2247 		/* Zero unused end of bd ring, according to spec */
2248 		memset_io((void __iomem *)(ugeth->p_tx_bd_ring[j] +
2249 		       ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)), 0,
2250 		       length - ug_info->bdRingLenTx[j] * sizeof(struct qe_bd));
2251 	}
2252 
2253 	/* Init Tx bds */
2254 	for (j = 0; j < ug_info->numQueuesTx; j++) {
2255 		/* Setup the skbuff rings */
2256 		ugeth->tx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2257 					      ugeth->ug_info->bdRingLenTx[j],
2258 					      GFP_KERNEL);
2259 
2260 		if (ugeth->tx_skbuff[j] == NULL) {
2261 			if (netif_msg_ifup(ugeth))
2262 				pr_err("Could not allocate tx_skbuff\n");
2263 			return -ENOMEM;
2264 		}
2265 
2266 		for (i = 0; i < ugeth->ug_info->bdRingLenTx[j]; i++)
2267 			ugeth->tx_skbuff[j][i] = NULL;
2268 
2269 		ugeth->skb_curtx[j] = ugeth->skb_dirtytx[j] = 0;
2270 		bd = ugeth->confBd[j] = ugeth->txBd[j] = ugeth->p_tx_bd_ring[j];
2271 		for (i = 0; i < ug_info->bdRingLenTx[j]; i++) {
2272 			/* clear bd buffer */
2273 			out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2274 			/* set bd status and length */
2275 			out_be32((u32 __iomem *)bd, 0);
2276 			bd += sizeof(struct qe_bd);
2277 		}
2278 		bd -= sizeof(struct qe_bd);
2279 		/* set bd status and length */
2280 		out_be32((u32 __iomem *)bd, T_W); /* for last BD set Wrap bit */
2281 	}
2282 
2283 	return 0;
2284 }
2285 
2286 static int ucc_geth_alloc_rx(struct ucc_geth_private *ugeth)
2287 {
2288 	struct ucc_geth_info *ug_info;
2289 	struct ucc_fast_info *uf_info;
2290 	int length;
2291 	u16 i, j;
2292 	u8 __iomem *bd;
2293 
2294 	ug_info = ugeth->ug_info;
2295 	uf_info = &ug_info->uf_info;
2296 
2297 	/* Allocate Rx bds */
2298 	for (j = 0; j < ug_info->numQueuesRx; j++) {
2299 		length = ug_info->bdRingLenRx[j] * sizeof(struct qe_bd);
2300 		if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2301 			u32 align = 4;
2302 			if (UCC_GETH_RX_BD_RING_ALIGNMENT > 4)
2303 				align = UCC_GETH_RX_BD_RING_ALIGNMENT;
2304 			ugeth->rx_bd_ring_offset[j] =
2305 				(u32) kmalloc((u32) (length + align), GFP_KERNEL);
2306 			if (ugeth->rx_bd_ring_offset[j] != 0)
2307 				ugeth->p_rx_bd_ring[j] =
2308 					(u8 __iomem *)((ugeth->rx_bd_ring_offset[j] +
2309 					align) & ~(align - 1));
2310 		} else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2311 			ugeth->rx_bd_ring_offset[j] =
2312 			    qe_muram_alloc(length,
2313 					   UCC_GETH_RX_BD_RING_ALIGNMENT);
2314 			if (!IS_ERR_VALUE(ugeth->rx_bd_ring_offset[j]))
2315 				ugeth->p_rx_bd_ring[j] =
2316 				    (u8 __iomem *) qe_muram_addr(ugeth->
2317 							 rx_bd_ring_offset[j]);
2318 		}
2319 		if (!ugeth->p_rx_bd_ring[j]) {
2320 			if (netif_msg_ifup(ugeth))
2321 				pr_err("Can not allocate memory for Rx bd rings\n");
2322 			return -ENOMEM;
2323 		}
2324 	}
2325 
2326 	/* Init Rx bds */
2327 	for (j = 0; j < ug_info->numQueuesRx; j++) {
2328 		/* Setup the skbuff rings */
2329 		ugeth->rx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2330 					      ugeth->ug_info->bdRingLenRx[j],
2331 					      GFP_KERNEL);
2332 
2333 		if (ugeth->rx_skbuff[j] == NULL) {
2334 			if (netif_msg_ifup(ugeth))
2335 				pr_err("Could not allocate rx_skbuff\n");
2336 			return -ENOMEM;
2337 		}
2338 
2339 		for (i = 0; i < ugeth->ug_info->bdRingLenRx[j]; i++)
2340 			ugeth->rx_skbuff[j][i] = NULL;
2341 
2342 		ugeth->skb_currx[j] = 0;
2343 		bd = ugeth->rxBd[j] = ugeth->p_rx_bd_ring[j];
2344 		for (i = 0; i < ug_info->bdRingLenRx[j]; i++) {
2345 			/* set bd status and length */
2346 			out_be32((u32 __iomem *)bd, R_I);
2347 			/* clear bd buffer */
2348 			out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2349 			bd += sizeof(struct qe_bd);
2350 		}
2351 		bd -= sizeof(struct qe_bd);
2352 		/* set bd status and length */
2353 		out_be32((u32 __iomem *)bd, R_W); /* for last BD set Wrap bit */
2354 	}
2355 
2356 	return 0;
2357 }
2358 
2359 static int ucc_geth_startup(struct ucc_geth_private *ugeth)
2360 {
2361 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2362 	struct ucc_geth_init_pram __iomem *p_init_enet_pram;
2363 	struct ucc_fast_private *uccf;
2364 	struct ucc_geth_info *ug_info;
2365 	struct ucc_fast_info *uf_info;
2366 	struct ucc_fast __iomem *uf_regs;
2367 	struct ucc_geth __iomem *ug_regs;
2368 	int ret_val = -EINVAL;
2369 	u32 remoder = UCC_GETH_REMODER_INIT;
2370 	u32 init_enet_pram_offset, cecr_subblock, command;
2371 	u32 ifstat, i, j, size, l2qt, l3qt;
2372 	u16 temoder = UCC_GETH_TEMODER_INIT;
2373 	u16 test;
2374 	u8 function_code = 0;
2375 	u8 __iomem *endOfRing;
2376 	u8 numThreadsRxNumerical, numThreadsTxNumerical;
2377 
2378 	ugeth_vdbg("%s: IN", __func__);
2379 	uccf = ugeth->uccf;
2380 	ug_info = ugeth->ug_info;
2381 	uf_info = &ug_info->uf_info;
2382 	uf_regs = uccf->uf_regs;
2383 	ug_regs = ugeth->ug_regs;
2384 
2385 	switch (ug_info->numThreadsRx) {
2386 	case UCC_GETH_NUM_OF_THREADS_1:
2387 		numThreadsRxNumerical = 1;
2388 		break;
2389 	case UCC_GETH_NUM_OF_THREADS_2:
2390 		numThreadsRxNumerical = 2;
2391 		break;
2392 	case UCC_GETH_NUM_OF_THREADS_4:
2393 		numThreadsRxNumerical = 4;
2394 		break;
2395 	case UCC_GETH_NUM_OF_THREADS_6:
2396 		numThreadsRxNumerical = 6;
2397 		break;
2398 	case UCC_GETH_NUM_OF_THREADS_8:
2399 		numThreadsRxNumerical = 8;
2400 		break;
2401 	default:
2402 		if (netif_msg_ifup(ugeth))
2403 			pr_err("Bad number of Rx threads value\n");
2404 		return -EINVAL;
2405 		break;
2406 	}
2407 
2408 	switch (ug_info->numThreadsTx) {
2409 	case UCC_GETH_NUM_OF_THREADS_1:
2410 		numThreadsTxNumerical = 1;
2411 		break;
2412 	case UCC_GETH_NUM_OF_THREADS_2:
2413 		numThreadsTxNumerical = 2;
2414 		break;
2415 	case UCC_GETH_NUM_OF_THREADS_4:
2416 		numThreadsTxNumerical = 4;
2417 		break;
2418 	case UCC_GETH_NUM_OF_THREADS_6:
2419 		numThreadsTxNumerical = 6;
2420 		break;
2421 	case UCC_GETH_NUM_OF_THREADS_8:
2422 		numThreadsTxNumerical = 8;
2423 		break;
2424 	default:
2425 		if (netif_msg_ifup(ugeth))
2426 			pr_err("Bad number of Tx threads value\n");
2427 		return -EINVAL;
2428 		break;
2429 	}
2430 
2431 	/* Calculate rx_extended_features */
2432 	ugeth->rx_non_dynamic_extended_features = ug_info->ipCheckSumCheck ||
2433 	    ug_info->ipAddressAlignment ||
2434 	    (ug_info->numStationAddresses !=
2435 	     UCC_GETH_NUM_OF_STATION_ADDRESSES_1);
2436 
2437 	ugeth->rx_extended_features = ugeth->rx_non_dynamic_extended_features ||
2438 		(ug_info->vlanOperationTagged != UCC_GETH_VLAN_OPERATION_TAGGED_NOP) ||
2439 		(ug_info->vlanOperationNonTagged !=
2440 		 UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP);
2441 
2442 	init_default_reg_vals(&uf_regs->upsmr,
2443 			      &ug_regs->maccfg1, &ug_regs->maccfg2);
2444 
2445 	/*                    Set UPSMR                      */
2446 	/* For more details see the hardware spec.           */
2447 	init_rx_parameters(ug_info->bro,
2448 			   ug_info->rsh, ug_info->pro, &uf_regs->upsmr);
2449 
2450 	/* We're going to ignore other registers for now, */
2451 	/* except as needed to get up and running         */
2452 
2453 	/*                    Set MACCFG1                    */
2454 	/* For more details see the hardware spec.           */
2455 	init_flow_control_params(ug_info->aufc,
2456 				 ug_info->receiveFlowControl,
2457 				 ug_info->transmitFlowControl,
2458 				 ug_info->pausePeriod,
2459 				 ug_info->extensionField,
2460 				 &uf_regs->upsmr,
2461 				 &ug_regs->uempr, &ug_regs->maccfg1);
2462 
2463 	setbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2464 
2465 	/*                    Set IPGIFG                     */
2466 	/* For more details see the hardware spec.           */
2467 	ret_val = init_inter_frame_gap_params(ug_info->nonBackToBackIfgPart1,
2468 					      ug_info->nonBackToBackIfgPart2,
2469 					      ug_info->
2470 					      miminumInterFrameGapEnforcement,
2471 					      ug_info->backToBackInterFrameGap,
2472 					      &ug_regs->ipgifg);
2473 	if (ret_val != 0) {
2474 		if (netif_msg_ifup(ugeth))
2475 			pr_err("IPGIFG initialization parameter too large\n");
2476 		return ret_val;
2477 	}
2478 
2479 	/*                    Set HAFDUP                     */
2480 	/* For more details see the hardware spec.           */
2481 	ret_val = init_half_duplex_params(ug_info->altBeb,
2482 					  ug_info->backPressureNoBackoff,
2483 					  ug_info->noBackoff,
2484 					  ug_info->excessDefer,
2485 					  ug_info->altBebTruncation,
2486 					  ug_info->maxRetransmission,
2487 					  ug_info->collisionWindow,
2488 					  &ug_regs->hafdup);
2489 	if (ret_val != 0) {
2490 		if (netif_msg_ifup(ugeth))
2491 			pr_err("Half Duplex initialization parameter too large\n");
2492 		return ret_val;
2493 	}
2494 
2495 	/*                    Set IFSTAT                     */
2496 	/* For more details see the hardware spec.           */
2497 	/* Read only - resets upon read                      */
2498 	ifstat = in_be32(&ug_regs->ifstat);
2499 
2500 	/*                    Clear UEMPR                    */
2501 	/* For more details see the hardware spec.           */
2502 	out_be32(&ug_regs->uempr, 0);
2503 
2504 	/*                    Set UESCR                      */
2505 	/* For more details see the hardware spec.           */
2506 	init_hw_statistics_gathering_mode((ug_info->statisticsMode &
2507 				UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE),
2508 				0, &uf_regs->upsmr, &ug_regs->uescr);
2509 
2510 	ret_val = ucc_geth_alloc_tx(ugeth);
2511 	if (ret_val != 0)
2512 		return ret_val;
2513 
2514 	ret_val = ucc_geth_alloc_rx(ugeth);
2515 	if (ret_val != 0)
2516 		return ret_val;
2517 
2518 	/*
2519 	 * Global PRAM
2520 	 */
2521 	/* Tx global PRAM */
2522 	/* Allocate global tx parameter RAM page */
2523 	ugeth->tx_glbl_pram_offset =
2524 	    qe_muram_alloc(sizeof(struct ucc_geth_tx_global_pram),
2525 			   UCC_GETH_TX_GLOBAL_PRAM_ALIGNMENT);
2526 	if (IS_ERR_VALUE(ugeth->tx_glbl_pram_offset)) {
2527 		if (netif_msg_ifup(ugeth))
2528 			pr_err("Can not allocate DPRAM memory for p_tx_glbl_pram\n");
2529 		return -ENOMEM;
2530 	}
2531 	ugeth->p_tx_glbl_pram =
2532 	    (struct ucc_geth_tx_global_pram __iomem *) qe_muram_addr(ugeth->
2533 							tx_glbl_pram_offset);
2534 	/* Zero out p_tx_glbl_pram */
2535 	memset_io((void __iomem *)ugeth->p_tx_glbl_pram, 0, sizeof(struct ucc_geth_tx_global_pram));
2536 
2537 	/* Fill global PRAM */
2538 
2539 	/* TQPTR */
2540 	/* Size varies with number of Tx threads */
2541 	ugeth->thread_dat_tx_offset =
2542 	    qe_muram_alloc(numThreadsTxNumerical *
2543 			   sizeof(struct ucc_geth_thread_data_tx) +
2544 			   32 * (numThreadsTxNumerical == 1),
2545 			   UCC_GETH_THREAD_DATA_ALIGNMENT);
2546 	if (IS_ERR_VALUE(ugeth->thread_dat_tx_offset)) {
2547 		if (netif_msg_ifup(ugeth))
2548 			pr_err("Can not allocate DPRAM memory for p_thread_data_tx\n");
2549 		return -ENOMEM;
2550 	}
2551 
2552 	ugeth->p_thread_data_tx =
2553 	    (struct ucc_geth_thread_data_tx __iomem *) qe_muram_addr(ugeth->
2554 							thread_dat_tx_offset);
2555 	out_be32(&ugeth->p_tx_glbl_pram->tqptr, ugeth->thread_dat_tx_offset);
2556 
2557 	/* vtagtable */
2558 	for (i = 0; i < UCC_GETH_TX_VTAG_TABLE_ENTRY_MAX; i++)
2559 		out_be32(&ugeth->p_tx_glbl_pram->vtagtable[i],
2560 			 ug_info->vtagtable[i]);
2561 
2562 	/* iphoffset */
2563 	for (i = 0; i < TX_IP_OFFSET_ENTRY_MAX; i++)
2564 		out_8(&ugeth->p_tx_glbl_pram->iphoffset[i],
2565 				ug_info->iphoffset[i]);
2566 
2567 	/* SQPTR */
2568 	/* Size varies with number of Tx queues */
2569 	ugeth->send_q_mem_reg_offset =
2570 	    qe_muram_alloc(ug_info->numQueuesTx *
2571 			   sizeof(struct ucc_geth_send_queue_qd),
2572 			   UCC_GETH_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
2573 	if (IS_ERR_VALUE(ugeth->send_q_mem_reg_offset)) {
2574 		if (netif_msg_ifup(ugeth))
2575 			pr_err("Can not allocate DPRAM memory for p_send_q_mem_reg\n");
2576 		return -ENOMEM;
2577 	}
2578 
2579 	ugeth->p_send_q_mem_reg =
2580 	    (struct ucc_geth_send_queue_mem_region __iomem *) qe_muram_addr(ugeth->
2581 			send_q_mem_reg_offset);
2582 	out_be32(&ugeth->p_tx_glbl_pram->sqptr, ugeth->send_q_mem_reg_offset);
2583 
2584 	/* Setup the table */
2585 	/* Assume BD rings are already established */
2586 	for (i = 0; i < ug_info->numQueuesTx; i++) {
2587 		endOfRing =
2588 		    ugeth->p_tx_bd_ring[i] + (ug_info->bdRingLenTx[i] -
2589 					      1) * sizeof(struct qe_bd);
2590 		if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2591 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2592 				 (u32) virt_to_phys(ugeth->p_tx_bd_ring[i]));
2593 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2594 				 last_bd_completed_address,
2595 				 (u32) virt_to_phys(endOfRing));
2596 		} else if (ugeth->ug_info->uf_info.bd_mem_part ==
2597 			   MEM_PART_MURAM) {
2598 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2599 				 (u32) immrbar_virt_to_phys(ugeth->
2600 							    p_tx_bd_ring[i]));
2601 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2602 				 last_bd_completed_address,
2603 				 (u32) immrbar_virt_to_phys(endOfRing));
2604 		}
2605 	}
2606 
2607 	/* schedulerbasepointer */
2608 
2609 	if (ug_info->numQueuesTx > 1) {
2610 	/* scheduler exists only if more than 1 tx queue */
2611 		ugeth->scheduler_offset =
2612 		    qe_muram_alloc(sizeof(struct ucc_geth_scheduler),
2613 				   UCC_GETH_SCHEDULER_ALIGNMENT);
2614 		if (IS_ERR_VALUE(ugeth->scheduler_offset)) {
2615 			if (netif_msg_ifup(ugeth))
2616 				pr_err("Can not allocate DPRAM memory for p_scheduler\n");
2617 			return -ENOMEM;
2618 		}
2619 
2620 		ugeth->p_scheduler =
2621 		    (struct ucc_geth_scheduler __iomem *) qe_muram_addr(ugeth->
2622 							   scheduler_offset);
2623 		out_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer,
2624 			 ugeth->scheduler_offset);
2625 		/* Zero out p_scheduler */
2626 		memset_io((void __iomem *)ugeth->p_scheduler, 0, sizeof(struct ucc_geth_scheduler));
2627 
2628 		/* Set values in scheduler */
2629 		out_be32(&ugeth->p_scheduler->mblinterval,
2630 			 ug_info->mblinterval);
2631 		out_be16(&ugeth->p_scheduler->nortsrbytetime,
2632 			 ug_info->nortsrbytetime);
2633 		out_8(&ugeth->p_scheduler->fracsiz, ug_info->fracsiz);
2634 		out_8(&ugeth->p_scheduler->strictpriorityq,
2635 				ug_info->strictpriorityq);
2636 		out_8(&ugeth->p_scheduler->txasap, ug_info->txasap);
2637 		out_8(&ugeth->p_scheduler->extrabw, ug_info->extrabw);
2638 		for (i = 0; i < NUM_TX_QUEUES; i++)
2639 			out_8(&ugeth->p_scheduler->weightfactor[i],
2640 			    ug_info->weightfactor[i]);
2641 
2642 		/* Set pointers to cpucount registers in scheduler */
2643 		ugeth->p_cpucount[0] = &(ugeth->p_scheduler->cpucount0);
2644 		ugeth->p_cpucount[1] = &(ugeth->p_scheduler->cpucount1);
2645 		ugeth->p_cpucount[2] = &(ugeth->p_scheduler->cpucount2);
2646 		ugeth->p_cpucount[3] = &(ugeth->p_scheduler->cpucount3);
2647 		ugeth->p_cpucount[4] = &(ugeth->p_scheduler->cpucount4);
2648 		ugeth->p_cpucount[5] = &(ugeth->p_scheduler->cpucount5);
2649 		ugeth->p_cpucount[6] = &(ugeth->p_scheduler->cpucount6);
2650 		ugeth->p_cpucount[7] = &(ugeth->p_scheduler->cpucount7);
2651 	}
2652 
2653 	/* schedulerbasepointer */
2654 	/* TxRMON_PTR (statistics) */
2655 	if (ug_info->
2656 	    statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX) {
2657 		ugeth->tx_fw_statistics_pram_offset =
2658 		    qe_muram_alloc(sizeof
2659 				   (struct ucc_geth_tx_firmware_statistics_pram),
2660 				   UCC_GETH_TX_STATISTICS_ALIGNMENT);
2661 		if (IS_ERR_VALUE(ugeth->tx_fw_statistics_pram_offset)) {
2662 			if (netif_msg_ifup(ugeth))
2663 				pr_err("Can not allocate DPRAM memory for p_tx_fw_statistics_pram\n");
2664 			return -ENOMEM;
2665 		}
2666 		ugeth->p_tx_fw_statistics_pram =
2667 		    (struct ucc_geth_tx_firmware_statistics_pram __iomem *)
2668 		    qe_muram_addr(ugeth->tx_fw_statistics_pram_offset);
2669 		/* Zero out p_tx_fw_statistics_pram */
2670 		memset_io((void __iomem *)ugeth->p_tx_fw_statistics_pram,
2671 		       0, sizeof(struct ucc_geth_tx_firmware_statistics_pram));
2672 	}
2673 
2674 	/* temoder */
2675 	/* Already has speed set */
2676 
2677 	if (ug_info->numQueuesTx > 1)
2678 		temoder |= TEMODER_SCHEDULER_ENABLE;
2679 	if (ug_info->ipCheckSumGenerate)
2680 		temoder |= TEMODER_IP_CHECKSUM_GENERATE;
2681 	temoder |= ((ug_info->numQueuesTx - 1) << TEMODER_NUM_OF_QUEUES_SHIFT);
2682 	out_be16(&ugeth->p_tx_glbl_pram->temoder, temoder);
2683 
2684 	test = in_be16(&ugeth->p_tx_glbl_pram->temoder);
2685 
2686 	/* Function code register value to be used later */
2687 	function_code = UCC_BMR_BO_BE | UCC_BMR_GBL;
2688 	/* Required for QE */
2689 
2690 	/* function code register */
2691 	out_be32(&ugeth->p_tx_glbl_pram->tstate, ((u32) function_code) << 24);
2692 
2693 	/* Rx global PRAM */
2694 	/* Allocate global rx parameter RAM page */
2695 	ugeth->rx_glbl_pram_offset =
2696 	    qe_muram_alloc(sizeof(struct ucc_geth_rx_global_pram),
2697 			   UCC_GETH_RX_GLOBAL_PRAM_ALIGNMENT);
2698 	if (IS_ERR_VALUE(ugeth->rx_glbl_pram_offset)) {
2699 		if (netif_msg_ifup(ugeth))
2700 			pr_err("Can not allocate DPRAM memory for p_rx_glbl_pram\n");
2701 		return -ENOMEM;
2702 	}
2703 	ugeth->p_rx_glbl_pram =
2704 	    (struct ucc_geth_rx_global_pram __iomem *) qe_muram_addr(ugeth->
2705 							rx_glbl_pram_offset);
2706 	/* Zero out p_rx_glbl_pram */
2707 	memset_io((void __iomem *)ugeth->p_rx_glbl_pram, 0, sizeof(struct ucc_geth_rx_global_pram));
2708 
2709 	/* Fill global PRAM */
2710 
2711 	/* RQPTR */
2712 	/* Size varies with number of Rx threads */
2713 	ugeth->thread_dat_rx_offset =
2714 	    qe_muram_alloc(numThreadsRxNumerical *
2715 			   sizeof(struct ucc_geth_thread_data_rx),
2716 			   UCC_GETH_THREAD_DATA_ALIGNMENT);
2717 	if (IS_ERR_VALUE(ugeth->thread_dat_rx_offset)) {
2718 		if (netif_msg_ifup(ugeth))
2719 			pr_err("Can not allocate DPRAM memory for p_thread_data_rx\n");
2720 		return -ENOMEM;
2721 	}
2722 
2723 	ugeth->p_thread_data_rx =
2724 	    (struct ucc_geth_thread_data_rx __iomem *) qe_muram_addr(ugeth->
2725 							thread_dat_rx_offset);
2726 	out_be32(&ugeth->p_rx_glbl_pram->rqptr, ugeth->thread_dat_rx_offset);
2727 
2728 	/* typeorlen */
2729 	out_be16(&ugeth->p_rx_glbl_pram->typeorlen, ug_info->typeorlen);
2730 
2731 	/* rxrmonbaseptr (statistics) */
2732 	if (ug_info->
2733 	    statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX) {
2734 		ugeth->rx_fw_statistics_pram_offset =
2735 		    qe_muram_alloc(sizeof
2736 				   (struct ucc_geth_rx_firmware_statistics_pram),
2737 				   UCC_GETH_RX_STATISTICS_ALIGNMENT);
2738 		if (IS_ERR_VALUE(ugeth->rx_fw_statistics_pram_offset)) {
2739 			if (netif_msg_ifup(ugeth))
2740 				pr_err("Can not allocate DPRAM memory for p_rx_fw_statistics_pram\n");
2741 			return -ENOMEM;
2742 		}
2743 		ugeth->p_rx_fw_statistics_pram =
2744 		    (struct ucc_geth_rx_firmware_statistics_pram __iomem *)
2745 		    qe_muram_addr(ugeth->rx_fw_statistics_pram_offset);
2746 		/* Zero out p_rx_fw_statistics_pram */
2747 		memset_io((void __iomem *)ugeth->p_rx_fw_statistics_pram, 0,
2748 		       sizeof(struct ucc_geth_rx_firmware_statistics_pram));
2749 	}
2750 
2751 	/* intCoalescingPtr */
2752 
2753 	/* Size varies with number of Rx queues */
2754 	ugeth->rx_irq_coalescing_tbl_offset =
2755 	    qe_muram_alloc(ug_info->numQueuesRx *
2756 			   sizeof(struct ucc_geth_rx_interrupt_coalescing_entry)
2757 			   + 4, UCC_GETH_RX_INTERRUPT_COALESCING_ALIGNMENT);
2758 	if (IS_ERR_VALUE(ugeth->rx_irq_coalescing_tbl_offset)) {
2759 		if (netif_msg_ifup(ugeth))
2760 			pr_err("Can not allocate DPRAM memory for p_rx_irq_coalescing_tbl\n");
2761 		return -ENOMEM;
2762 	}
2763 
2764 	ugeth->p_rx_irq_coalescing_tbl =
2765 	    (struct ucc_geth_rx_interrupt_coalescing_table __iomem *)
2766 	    qe_muram_addr(ugeth->rx_irq_coalescing_tbl_offset);
2767 	out_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr,
2768 		 ugeth->rx_irq_coalescing_tbl_offset);
2769 
2770 	/* Fill interrupt coalescing table */
2771 	for (i = 0; i < ug_info->numQueuesRx; i++) {
2772 		out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2773 			 interruptcoalescingmaxvalue,
2774 			 ug_info->interruptcoalescingmaxvalue[i]);
2775 		out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2776 			 interruptcoalescingcounter,
2777 			 ug_info->interruptcoalescingmaxvalue[i]);
2778 	}
2779 
2780 	/* MRBLR */
2781 	init_max_rx_buff_len(uf_info->max_rx_buf_length,
2782 			     &ugeth->p_rx_glbl_pram->mrblr);
2783 	/* MFLR */
2784 	out_be16(&ugeth->p_rx_glbl_pram->mflr, ug_info->maxFrameLength);
2785 	/* MINFLR */
2786 	init_min_frame_len(ug_info->minFrameLength,
2787 			   &ugeth->p_rx_glbl_pram->minflr,
2788 			   &ugeth->p_rx_glbl_pram->mrblr);
2789 	/* MAXD1 */
2790 	out_be16(&ugeth->p_rx_glbl_pram->maxd1, ug_info->maxD1Length);
2791 	/* MAXD2 */
2792 	out_be16(&ugeth->p_rx_glbl_pram->maxd2, ug_info->maxD2Length);
2793 
2794 	/* l2qt */
2795 	l2qt = 0;
2796 	for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++)
2797 		l2qt |= (ug_info->l2qt[i] << (28 - 4 * i));
2798 	out_be32(&ugeth->p_rx_glbl_pram->l2qt, l2qt);
2799 
2800 	/* l3qt */
2801 	for (j = 0; j < UCC_GETH_IP_PRIORITY_MAX; j += 8) {
2802 		l3qt = 0;
2803 		for (i = 0; i < 8; i++)
2804 			l3qt |= (ug_info->l3qt[j + i] << (28 - 4 * i));
2805 		out_be32(&ugeth->p_rx_glbl_pram->l3qt[j/8], l3qt);
2806 	}
2807 
2808 	/* vlantype */
2809 	out_be16(&ugeth->p_rx_glbl_pram->vlantype, ug_info->vlantype);
2810 
2811 	/* vlantci */
2812 	out_be16(&ugeth->p_rx_glbl_pram->vlantci, ug_info->vlantci);
2813 
2814 	/* ecamptr */
2815 	out_be32(&ugeth->p_rx_glbl_pram->ecamptr, ug_info->ecamptr);
2816 
2817 	/* RBDQPTR */
2818 	/* Size varies with number of Rx queues */
2819 	ugeth->rx_bd_qs_tbl_offset =
2820 	    qe_muram_alloc(ug_info->numQueuesRx *
2821 			   (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2822 			    sizeof(struct ucc_geth_rx_prefetched_bds)),
2823 			   UCC_GETH_RX_BD_QUEUES_ALIGNMENT);
2824 	if (IS_ERR_VALUE(ugeth->rx_bd_qs_tbl_offset)) {
2825 		if (netif_msg_ifup(ugeth))
2826 			pr_err("Can not allocate DPRAM memory for p_rx_bd_qs_tbl\n");
2827 		return -ENOMEM;
2828 	}
2829 
2830 	ugeth->p_rx_bd_qs_tbl =
2831 	    (struct ucc_geth_rx_bd_queues_entry __iomem *) qe_muram_addr(ugeth->
2832 				    rx_bd_qs_tbl_offset);
2833 	out_be32(&ugeth->p_rx_glbl_pram->rbdqptr, ugeth->rx_bd_qs_tbl_offset);
2834 	/* Zero out p_rx_bd_qs_tbl */
2835 	memset_io((void __iomem *)ugeth->p_rx_bd_qs_tbl,
2836 	       0,
2837 	       ug_info->numQueuesRx * (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2838 				       sizeof(struct ucc_geth_rx_prefetched_bds)));
2839 
2840 	/* Setup the table */
2841 	/* Assume BD rings are already established */
2842 	for (i = 0; i < ug_info->numQueuesRx; i++) {
2843 		if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2844 			out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2845 				 (u32) virt_to_phys(ugeth->p_rx_bd_ring[i]));
2846 		} else if (ugeth->ug_info->uf_info.bd_mem_part ==
2847 			   MEM_PART_MURAM) {
2848 			out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2849 				 (u32) immrbar_virt_to_phys(ugeth->
2850 							    p_rx_bd_ring[i]));
2851 		}
2852 		/* rest of fields handled by QE */
2853 	}
2854 
2855 	/* remoder */
2856 	/* Already has speed set */
2857 
2858 	if (ugeth->rx_extended_features)
2859 		remoder |= REMODER_RX_EXTENDED_FEATURES;
2860 	if (ug_info->rxExtendedFiltering)
2861 		remoder |= REMODER_RX_EXTENDED_FILTERING;
2862 	if (ug_info->dynamicMaxFrameLength)
2863 		remoder |= REMODER_DYNAMIC_MAX_FRAME_LENGTH;
2864 	if (ug_info->dynamicMinFrameLength)
2865 		remoder |= REMODER_DYNAMIC_MIN_FRAME_LENGTH;
2866 	remoder |=
2867 	    ug_info->vlanOperationTagged << REMODER_VLAN_OPERATION_TAGGED_SHIFT;
2868 	remoder |=
2869 	    ug_info->
2870 	    vlanOperationNonTagged << REMODER_VLAN_OPERATION_NON_TAGGED_SHIFT;
2871 	remoder |= ug_info->rxQoSMode << REMODER_RX_QOS_MODE_SHIFT;
2872 	remoder |= ((ug_info->numQueuesRx - 1) << REMODER_NUM_OF_QUEUES_SHIFT);
2873 	if (ug_info->ipCheckSumCheck)
2874 		remoder |= REMODER_IP_CHECKSUM_CHECK;
2875 	if (ug_info->ipAddressAlignment)
2876 		remoder |= REMODER_IP_ADDRESS_ALIGNMENT;
2877 	out_be32(&ugeth->p_rx_glbl_pram->remoder, remoder);
2878 
2879 	/* Note that this function must be called */
2880 	/* ONLY AFTER p_tx_fw_statistics_pram */
2881 	/* andp_UccGethRxFirmwareStatisticsPram are allocated ! */
2882 	init_firmware_statistics_gathering_mode((ug_info->
2883 		statisticsMode &
2884 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX),
2885 		(ug_info->statisticsMode &
2886 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX),
2887 		&ugeth->p_tx_glbl_pram->txrmonbaseptr,
2888 		ugeth->tx_fw_statistics_pram_offset,
2889 		&ugeth->p_rx_glbl_pram->rxrmonbaseptr,
2890 		ugeth->rx_fw_statistics_pram_offset,
2891 		&ugeth->p_tx_glbl_pram->temoder,
2892 		&ugeth->p_rx_glbl_pram->remoder);
2893 
2894 	/* function code register */
2895 	out_8(&ugeth->p_rx_glbl_pram->rstate, function_code);
2896 
2897 	/* initialize extended filtering */
2898 	if (ug_info->rxExtendedFiltering) {
2899 		if (!ug_info->extendedFilteringChainPointer) {
2900 			if (netif_msg_ifup(ugeth))
2901 				pr_err("Null Extended Filtering Chain Pointer\n");
2902 			return -EINVAL;
2903 		}
2904 
2905 		/* Allocate memory for extended filtering Mode Global
2906 		Parameters */
2907 		ugeth->exf_glbl_param_offset =
2908 		    qe_muram_alloc(sizeof(struct ucc_geth_exf_global_pram),
2909 		UCC_GETH_RX_EXTENDED_FILTERING_GLOBAL_PARAMETERS_ALIGNMENT);
2910 		if (IS_ERR_VALUE(ugeth->exf_glbl_param_offset)) {
2911 			if (netif_msg_ifup(ugeth))
2912 				pr_err("Can not allocate DPRAM memory for p_exf_glbl_param\n");
2913 			return -ENOMEM;
2914 		}
2915 
2916 		ugeth->p_exf_glbl_param =
2917 		    (struct ucc_geth_exf_global_pram __iomem *) qe_muram_addr(ugeth->
2918 				 exf_glbl_param_offset);
2919 		out_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam,
2920 			 ugeth->exf_glbl_param_offset);
2921 		out_be32(&ugeth->p_exf_glbl_param->l2pcdptr,
2922 			 (u32) ug_info->extendedFilteringChainPointer);
2923 
2924 	} else {		/* initialize 82xx style address filtering */
2925 
2926 		/* Init individual address recognition registers to disabled */
2927 
2928 		for (j = 0; j < NUM_OF_PADDRS; j++)
2929 			ugeth_82xx_filtering_clear_addr_in_paddr(ugeth, (u8) j);
2930 
2931 		p_82xx_addr_filt =
2932 		    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2933 		    p_rx_glbl_pram->addressfiltering;
2934 
2935 		ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2936 			ENET_ADDR_TYPE_GROUP);
2937 		ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2938 			ENET_ADDR_TYPE_INDIVIDUAL);
2939 	}
2940 
2941 	/*
2942 	 * Initialize UCC at QE level
2943 	 */
2944 
2945 	command = QE_INIT_TX_RX;
2946 
2947 	/* Allocate shadow InitEnet command parameter structure.
2948 	 * This is needed because after the InitEnet command is executed,
2949 	 * the structure in DPRAM is released, because DPRAM is a premium
2950 	 * resource.
2951 	 * This shadow structure keeps a copy of what was done so that the
2952 	 * allocated resources can be released when the channel is freed.
2953 	 */
2954 	if (!(ugeth->p_init_enet_param_shadow =
2955 	      kmalloc(sizeof(struct ucc_geth_init_pram), GFP_KERNEL))) {
2956 		if (netif_msg_ifup(ugeth))
2957 			pr_err("Can not allocate memory for p_UccInitEnetParamShadows\n");
2958 		return -ENOMEM;
2959 	}
2960 	/* Zero out *p_init_enet_param_shadow */
2961 	memset((char *)ugeth->p_init_enet_param_shadow,
2962 	       0, sizeof(struct ucc_geth_init_pram));
2963 
2964 	/* Fill shadow InitEnet command parameter structure */
2965 
2966 	ugeth->p_init_enet_param_shadow->resinit1 =
2967 	    ENET_INIT_PARAM_MAGIC_RES_INIT1;
2968 	ugeth->p_init_enet_param_shadow->resinit2 =
2969 	    ENET_INIT_PARAM_MAGIC_RES_INIT2;
2970 	ugeth->p_init_enet_param_shadow->resinit3 =
2971 	    ENET_INIT_PARAM_MAGIC_RES_INIT3;
2972 	ugeth->p_init_enet_param_shadow->resinit4 =
2973 	    ENET_INIT_PARAM_MAGIC_RES_INIT4;
2974 	ugeth->p_init_enet_param_shadow->resinit5 =
2975 	    ENET_INIT_PARAM_MAGIC_RES_INIT5;
2976 	ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2977 	    ((u32) ug_info->numThreadsRx) << ENET_INIT_PARAM_RGF_SHIFT;
2978 	ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2979 	    ((u32) ug_info->numThreadsTx) << ENET_INIT_PARAM_TGF_SHIFT;
2980 
2981 	ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2982 	    ugeth->rx_glbl_pram_offset | ug_info->riscRx;
2983 	if ((ug_info->largestexternallookupkeysize !=
2984 	     QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE) &&
2985 	    (ug_info->largestexternallookupkeysize !=
2986 	     QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) &&
2987 	    (ug_info->largestexternallookupkeysize !=
2988 	     QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)) {
2989 		if (netif_msg_ifup(ugeth))
2990 			pr_err("Invalid largest External Lookup Key Size\n");
2991 		return -EINVAL;
2992 	}
2993 	ugeth->p_init_enet_param_shadow->largestexternallookupkeysize =
2994 	    ug_info->largestexternallookupkeysize;
2995 	size = sizeof(struct ucc_geth_thread_rx_pram);
2996 	if (ug_info->rxExtendedFiltering) {
2997 		size += THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
2998 		if (ug_info->largestexternallookupkeysize ==
2999 		    QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
3000 			size +=
3001 			    THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
3002 		if (ug_info->largestexternallookupkeysize ==
3003 		    QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
3004 			size +=
3005 			    THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
3006 	}
3007 
3008 	if ((ret_val = fill_init_enet_entries(ugeth, &(ugeth->
3009 		p_init_enet_param_shadow->rxthread[0]),
3010 		(u8) (numThreadsRxNumerical + 1)
3011 		/* Rx needs one extra for terminator */
3012 		, size, UCC_GETH_THREAD_RX_PRAM_ALIGNMENT,
3013 		ug_info->riscRx, 1)) != 0) {
3014 		if (netif_msg_ifup(ugeth))
3015 			pr_err("Can not fill p_init_enet_param_shadow\n");
3016 		return ret_val;
3017 	}
3018 
3019 	ugeth->p_init_enet_param_shadow->txglobal =
3020 	    ugeth->tx_glbl_pram_offset | ug_info->riscTx;
3021 	if ((ret_val =
3022 	     fill_init_enet_entries(ugeth,
3023 				    &(ugeth->p_init_enet_param_shadow->
3024 				      txthread[0]), numThreadsTxNumerical,
3025 				    sizeof(struct ucc_geth_thread_tx_pram),
3026 				    UCC_GETH_THREAD_TX_PRAM_ALIGNMENT,
3027 				    ug_info->riscTx, 0)) != 0) {
3028 		if (netif_msg_ifup(ugeth))
3029 			pr_err("Can not fill p_init_enet_param_shadow\n");
3030 		return ret_val;
3031 	}
3032 
3033 	/* Load Rx bds with buffers */
3034 	for (i = 0; i < ug_info->numQueuesRx; i++) {
3035 		if ((ret_val = rx_bd_buffer_set(ugeth, (u8) i)) != 0) {
3036 			if (netif_msg_ifup(ugeth))
3037 				pr_err("Can not fill Rx bds with buffers\n");
3038 			return ret_val;
3039 		}
3040 	}
3041 
3042 	/* Allocate InitEnet command parameter structure */
3043 	init_enet_pram_offset = qe_muram_alloc(sizeof(struct ucc_geth_init_pram), 4);
3044 	if (IS_ERR_VALUE(init_enet_pram_offset)) {
3045 		if (netif_msg_ifup(ugeth))
3046 			pr_err("Can not allocate DPRAM memory for p_init_enet_pram\n");
3047 		return -ENOMEM;
3048 	}
3049 	p_init_enet_pram =
3050 	    (struct ucc_geth_init_pram __iomem *) qe_muram_addr(init_enet_pram_offset);
3051 
3052 	/* Copy shadow InitEnet command parameter structure into PRAM */
3053 	out_8(&p_init_enet_pram->resinit1,
3054 			ugeth->p_init_enet_param_shadow->resinit1);
3055 	out_8(&p_init_enet_pram->resinit2,
3056 			ugeth->p_init_enet_param_shadow->resinit2);
3057 	out_8(&p_init_enet_pram->resinit3,
3058 			ugeth->p_init_enet_param_shadow->resinit3);
3059 	out_8(&p_init_enet_pram->resinit4,
3060 			ugeth->p_init_enet_param_shadow->resinit4);
3061 	out_be16(&p_init_enet_pram->resinit5,
3062 		 ugeth->p_init_enet_param_shadow->resinit5);
3063 	out_8(&p_init_enet_pram->largestexternallookupkeysize,
3064 	    ugeth->p_init_enet_param_shadow->largestexternallookupkeysize);
3065 	out_be32(&p_init_enet_pram->rgftgfrxglobal,
3066 		 ugeth->p_init_enet_param_shadow->rgftgfrxglobal);
3067 	for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_RX; i++)
3068 		out_be32(&p_init_enet_pram->rxthread[i],
3069 			 ugeth->p_init_enet_param_shadow->rxthread[i]);
3070 	out_be32(&p_init_enet_pram->txglobal,
3071 		 ugeth->p_init_enet_param_shadow->txglobal);
3072 	for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_TX; i++)
3073 		out_be32(&p_init_enet_pram->txthread[i],
3074 			 ugeth->p_init_enet_param_shadow->txthread[i]);
3075 
3076 	/* Issue QE command */
3077 	cecr_subblock =
3078 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
3079 	qe_issue_cmd(command, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
3080 		     init_enet_pram_offset);
3081 
3082 	/* Free InitEnet command parameter */
3083 	qe_muram_free(init_enet_pram_offset);
3084 
3085 	return 0;
3086 }
3087 
3088 /* This is called by the kernel when a frame is ready for transmission. */
3089 /* It is pointed to by the dev->hard_start_xmit function pointer */
3090 static int ucc_geth_start_xmit(struct sk_buff *skb, struct net_device *dev)
3091 {
3092 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3093 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3094 	struct ucc_fast_private *uccf;
3095 #endif
3096 	u8 __iomem *bd;			/* BD pointer */
3097 	u32 bd_status;
3098 	u8 txQ = 0;
3099 	unsigned long flags;
3100 
3101 	ugeth_vdbg("%s: IN", __func__);
3102 
3103 	spin_lock_irqsave(&ugeth->lock, flags);
3104 
3105 	dev->stats.tx_bytes += skb->len;
3106 
3107 	/* Start from the next BD that should be filled */
3108 	bd = ugeth->txBd[txQ];
3109 	bd_status = in_be32((u32 __iomem *)bd);
3110 	/* Save the skb pointer so we can free it later */
3111 	ugeth->tx_skbuff[txQ][ugeth->skb_curtx[txQ]] = skb;
3112 
3113 	/* Update the current skb pointer (wrapping if this was the last) */
3114 	ugeth->skb_curtx[txQ] =
3115 	    (ugeth->skb_curtx[txQ] +
3116 	     1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3117 
3118 	/* set up the buffer descriptor */
3119 	out_be32(&((struct qe_bd __iomem *)bd)->buf,
3120 		      dma_map_single(ugeth->dev, skb->data,
3121 			      skb->len, DMA_TO_DEVICE));
3122 
3123 	/* printk(KERN_DEBUG"skb->data is 0x%x\n",skb->data); */
3124 
3125 	bd_status = (bd_status & T_W) | T_R | T_I | T_L | skb->len;
3126 
3127 	/* set bd status and length */
3128 	out_be32((u32 __iomem *)bd, bd_status);
3129 
3130 	/* Move to next BD in the ring */
3131 	if (!(bd_status & T_W))
3132 		bd += sizeof(struct qe_bd);
3133 	else
3134 		bd = ugeth->p_tx_bd_ring[txQ];
3135 
3136 	/* If the next BD still needs to be cleaned up, then the bds
3137 	   are full.  We need to tell the kernel to stop sending us stuff. */
3138 	if (bd == ugeth->confBd[txQ]) {
3139 		if (!netif_queue_stopped(dev))
3140 			netif_stop_queue(dev);
3141 	}
3142 
3143 	ugeth->txBd[txQ] = bd;
3144 
3145 	skb_tx_timestamp(skb);
3146 
3147 	if (ugeth->p_scheduler) {
3148 		ugeth->cpucount[txQ]++;
3149 		/* Indicate to QE that there are more Tx bds ready for
3150 		transmission */
3151 		/* This is done by writing a running counter of the bd
3152 		count to the scheduler PRAM. */
3153 		out_be16(ugeth->p_cpucount[txQ], ugeth->cpucount[txQ]);
3154 	}
3155 
3156 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3157 	uccf = ugeth->uccf;
3158 	out_be16(uccf->p_utodr, UCC_FAST_TOD);
3159 #endif
3160 	spin_unlock_irqrestore(&ugeth->lock, flags);
3161 
3162 	return NETDEV_TX_OK;
3163 }
3164 
3165 static int ucc_geth_rx(struct ucc_geth_private *ugeth, u8 rxQ, int rx_work_limit)
3166 {
3167 	struct sk_buff *skb;
3168 	u8 __iomem *bd;
3169 	u16 length, howmany = 0;
3170 	u32 bd_status;
3171 	u8 *bdBuffer;
3172 	struct net_device *dev;
3173 
3174 	ugeth_vdbg("%s: IN", __func__);
3175 
3176 	dev = ugeth->ndev;
3177 
3178 	/* collect received buffers */
3179 	bd = ugeth->rxBd[rxQ];
3180 
3181 	bd_status = in_be32((u32 __iomem *)bd);
3182 
3183 	/* while there are received buffers and BD is full (~R_E) */
3184 	while (!((bd_status & (R_E)) || (--rx_work_limit < 0))) {
3185 		bdBuffer = (u8 *) in_be32(&((struct qe_bd __iomem *)bd)->buf);
3186 		length = (u16) ((bd_status & BD_LENGTH_MASK) - 4);
3187 		skb = ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]];
3188 
3189 		/* determine whether buffer is first, last, first and last
3190 		(single buffer frame) or middle (not first and not last) */
3191 		if (!skb ||
3192 		    (!(bd_status & (R_F | R_L))) ||
3193 		    (bd_status & R_ERRORS_FATAL)) {
3194 			if (netif_msg_rx_err(ugeth))
3195 				pr_err("%d: ERROR!!! skb - 0x%08x\n",
3196 				       __LINE__, (u32)skb);
3197 			dev_kfree_skb(skb);
3198 
3199 			ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = NULL;
3200 			dev->stats.rx_dropped++;
3201 		} else {
3202 			dev->stats.rx_packets++;
3203 			howmany++;
3204 
3205 			/* Prep the skb for the packet */
3206 			skb_put(skb, length);
3207 
3208 			/* Tell the skb what kind of packet this is */
3209 			skb->protocol = eth_type_trans(skb, ugeth->ndev);
3210 
3211 			dev->stats.rx_bytes += length;
3212 			/* Send the packet up the stack */
3213 			netif_receive_skb(skb);
3214 		}
3215 
3216 		skb = get_new_skb(ugeth, bd);
3217 		if (!skb) {
3218 			if (netif_msg_rx_err(ugeth))
3219 				pr_warn("No Rx Data Buffer\n");
3220 			dev->stats.rx_dropped++;
3221 			break;
3222 		}
3223 
3224 		ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = skb;
3225 
3226 		/* update to point at the next skb */
3227 		ugeth->skb_currx[rxQ] =
3228 		    (ugeth->skb_currx[rxQ] +
3229 		     1) & RX_RING_MOD_MASK(ugeth->ug_info->bdRingLenRx[rxQ]);
3230 
3231 		if (bd_status & R_W)
3232 			bd = ugeth->p_rx_bd_ring[rxQ];
3233 		else
3234 			bd += sizeof(struct qe_bd);
3235 
3236 		bd_status = in_be32((u32 __iomem *)bd);
3237 	}
3238 
3239 	ugeth->rxBd[rxQ] = bd;
3240 	return howmany;
3241 }
3242 
3243 static int ucc_geth_tx(struct net_device *dev, u8 txQ)
3244 {
3245 	/* Start from the next BD that should be filled */
3246 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3247 	u8 __iomem *bd;		/* BD pointer */
3248 	u32 bd_status;
3249 
3250 	bd = ugeth->confBd[txQ];
3251 	bd_status = in_be32((u32 __iomem *)bd);
3252 
3253 	/* Normal processing. */
3254 	while ((bd_status & T_R) == 0) {
3255 		struct sk_buff *skb;
3256 
3257 		/* BD contains already transmitted buffer.   */
3258 		/* Handle the transmitted buffer and release */
3259 		/* the BD to be used with the current frame  */
3260 
3261 		skb = ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]];
3262 		if (!skb)
3263 			break;
3264 
3265 		dev->stats.tx_packets++;
3266 
3267 		dev_kfree_skb(skb);
3268 
3269 		ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]] = NULL;
3270 		ugeth->skb_dirtytx[txQ] =
3271 		    (ugeth->skb_dirtytx[txQ] +
3272 		     1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3273 
3274 		/* We freed a buffer, so now we can restart transmission */
3275 		if (netif_queue_stopped(dev))
3276 			netif_wake_queue(dev);
3277 
3278 		/* Advance the confirmation BD pointer */
3279 		if (!(bd_status & T_W))
3280 			bd += sizeof(struct qe_bd);
3281 		else
3282 			bd = ugeth->p_tx_bd_ring[txQ];
3283 		bd_status = in_be32((u32 __iomem *)bd);
3284 	}
3285 	ugeth->confBd[txQ] = bd;
3286 	return 0;
3287 }
3288 
3289 static int ucc_geth_poll(struct napi_struct *napi, int budget)
3290 {
3291 	struct ucc_geth_private *ugeth = container_of(napi, struct ucc_geth_private, napi);
3292 	struct ucc_geth_info *ug_info;
3293 	int howmany, i;
3294 
3295 	ug_info = ugeth->ug_info;
3296 
3297 	/* Tx event processing */
3298 	spin_lock(&ugeth->lock);
3299 	for (i = 0; i < ug_info->numQueuesTx; i++)
3300 		ucc_geth_tx(ugeth->ndev, i);
3301 	spin_unlock(&ugeth->lock);
3302 
3303 	howmany = 0;
3304 	for (i = 0; i < ug_info->numQueuesRx; i++)
3305 		howmany += ucc_geth_rx(ugeth, i, budget - howmany);
3306 
3307 	if (howmany < budget) {
3308 		napi_complete(napi);
3309 		setbits32(ugeth->uccf->p_uccm, UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3310 	}
3311 
3312 	return howmany;
3313 }
3314 
3315 static irqreturn_t ucc_geth_irq_handler(int irq, void *info)
3316 {
3317 	struct net_device *dev = info;
3318 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3319 	struct ucc_fast_private *uccf;
3320 	struct ucc_geth_info *ug_info;
3321 	register u32 ucce;
3322 	register u32 uccm;
3323 
3324 	ugeth_vdbg("%s: IN", __func__);
3325 
3326 	uccf = ugeth->uccf;
3327 	ug_info = ugeth->ug_info;
3328 
3329 	/* read and clear events */
3330 	ucce = (u32) in_be32(uccf->p_ucce);
3331 	uccm = (u32) in_be32(uccf->p_uccm);
3332 	ucce &= uccm;
3333 	out_be32(uccf->p_ucce, ucce);
3334 
3335 	/* check for receive events that require processing */
3336 	if (ucce & (UCCE_RX_EVENTS | UCCE_TX_EVENTS)) {
3337 		if (napi_schedule_prep(&ugeth->napi)) {
3338 			uccm &= ~(UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3339 			out_be32(uccf->p_uccm, uccm);
3340 			__napi_schedule(&ugeth->napi);
3341 		}
3342 	}
3343 
3344 	/* Errors and other events */
3345 	if (ucce & UCCE_OTHER) {
3346 		if (ucce & UCC_GETH_UCCE_BSY)
3347 			dev->stats.rx_errors++;
3348 		if (ucce & UCC_GETH_UCCE_TXE)
3349 			dev->stats.tx_errors++;
3350 	}
3351 
3352 	return IRQ_HANDLED;
3353 }
3354 
3355 #ifdef CONFIG_NET_POLL_CONTROLLER
3356 /*
3357  * Polling 'interrupt' - used by things like netconsole to send skbs
3358  * without having to re-enable interrupts. It's not called while
3359  * the interrupt routine is executing.
3360  */
3361 static void ucc_netpoll(struct net_device *dev)
3362 {
3363 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3364 	int irq = ugeth->ug_info->uf_info.irq;
3365 
3366 	disable_irq(irq);
3367 	ucc_geth_irq_handler(irq, dev);
3368 	enable_irq(irq);
3369 }
3370 #endif /* CONFIG_NET_POLL_CONTROLLER */
3371 
3372 static int ucc_geth_set_mac_addr(struct net_device *dev, void *p)
3373 {
3374 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3375 	struct sockaddr *addr = p;
3376 
3377 	if (!is_valid_ether_addr(addr->sa_data))
3378 		return -EADDRNOTAVAIL;
3379 
3380 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3381 
3382 	/*
3383 	 * If device is not running, we will set mac addr register
3384 	 * when opening the device.
3385 	 */
3386 	if (!netif_running(dev))
3387 		return 0;
3388 
3389 	spin_lock_irq(&ugeth->lock);
3390 	init_mac_station_addr_regs(dev->dev_addr[0],
3391 				   dev->dev_addr[1],
3392 				   dev->dev_addr[2],
3393 				   dev->dev_addr[3],
3394 				   dev->dev_addr[4],
3395 				   dev->dev_addr[5],
3396 				   &ugeth->ug_regs->macstnaddr1,
3397 				   &ugeth->ug_regs->macstnaddr2);
3398 	spin_unlock_irq(&ugeth->lock);
3399 
3400 	return 0;
3401 }
3402 
3403 static int ucc_geth_init_mac(struct ucc_geth_private *ugeth)
3404 {
3405 	struct net_device *dev = ugeth->ndev;
3406 	int err;
3407 
3408 	err = ucc_struct_init(ugeth);
3409 	if (err) {
3410 		netif_err(ugeth, ifup, dev, "Cannot configure internal struct, aborting\n");
3411 		goto err;
3412 	}
3413 
3414 	err = ucc_geth_startup(ugeth);
3415 	if (err) {
3416 		netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3417 		goto err;
3418 	}
3419 
3420 	err = adjust_enet_interface(ugeth);
3421 	if (err) {
3422 		netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3423 		goto err;
3424 	}
3425 
3426 	/*       Set MACSTNADDR1, MACSTNADDR2                */
3427 	/* For more details see the hardware spec.           */
3428 	init_mac_station_addr_regs(dev->dev_addr[0],
3429 				   dev->dev_addr[1],
3430 				   dev->dev_addr[2],
3431 				   dev->dev_addr[3],
3432 				   dev->dev_addr[4],
3433 				   dev->dev_addr[5],
3434 				   &ugeth->ug_regs->macstnaddr1,
3435 				   &ugeth->ug_regs->macstnaddr2);
3436 
3437 	err = ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3438 	if (err) {
3439 		netif_err(ugeth, ifup, dev, "Cannot enable net device, aborting\n");
3440 		goto err;
3441 	}
3442 
3443 	return 0;
3444 err:
3445 	ucc_geth_stop(ugeth);
3446 	return err;
3447 }
3448 
3449 /* Called when something needs to use the ethernet device */
3450 /* Returns 0 for success. */
3451 static int ucc_geth_open(struct net_device *dev)
3452 {
3453 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3454 	int err;
3455 
3456 	ugeth_vdbg("%s: IN", __func__);
3457 
3458 	/* Test station address */
3459 	if (dev->dev_addr[0] & ENET_GROUP_ADDR) {
3460 		netif_err(ugeth, ifup, dev,
3461 			  "Multicast address used for station address - is this what you wanted?\n");
3462 		return -EINVAL;
3463 	}
3464 
3465 	err = init_phy(dev);
3466 	if (err) {
3467 		netif_err(ugeth, ifup, dev, "Cannot initialize PHY, aborting\n");
3468 		return err;
3469 	}
3470 
3471 	err = ucc_geth_init_mac(ugeth);
3472 	if (err) {
3473 		netif_err(ugeth, ifup, dev, "Cannot initialize MAC, aborting\n");
3474 		goto err;
3475 	}
3476 
3477 	err = request_irq(ugeth->ug_info->uf_info.irq, ucc_geth_irq_handler,
3478 			  0, "UCC Geth", dev);
3479 	if (err) {
3480 		netif_err(ugeth, ifup, dev, "Cannot get IRQ for net device, aborting\n");
3481 		goto err;
3482 	}
3483 
3484 	phy_start(ugeth->phydev);
3485 	napi_enable(&ugeth->napi);
3486 	netif_start_queue(dev);
3487 
3488 	device_set_wakeup_capable(&dev->dev,
3489 			qe_alive_during_sleep() || ugeth->phydev->irq);
3490 	device_set_wakeup_enable(&dev->dev, ugeth->wol_en);
3491 
3492 	return err;
3493 
3494 err:
3495 	ucc_geth_stop(ugeth);
3496 	return err;
3497 }
3498 
3499 /* Stops the kernel queue, and halts the controller */
3500 static int ucc_geth_close(struct net_device *dev)
3501 {
3502 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3503 
3504 	ugeth_vdbg("%s: IN", __func__);
3505 
3506 	napi_disable(&ugeth->napi);
3507 
3508 	cancel_work_sync(&ugeth->timeout_work);
3509 	ucc_geth_stop(ugeth);
3510 	phy_disconnect(ugeth->phydev);
3511 	ugeth->phydev = NULL;
3512 
3513 	free_irq(ugeth->ug_info->uf_info.irq, ugeth->ndev);
3514 
3515 	netif_stop_queue(dev);
3516 
3517 	return 0;
3518 }
3519 
3520 /* Reopen device. This will reset the MAC and PHY. */
3521 static void ucc_geth_timeout_work(struct work_struct *work)
3522 {
3523 	struct ucc_geth_private *ugeth;
3524 	struct net_device *dev;
3525 
3526 	ugeth = container_of(work, struct ucc_geth_private, timeout_work);
3527 	dev = ugeth->ndev;
3528 
3529 	ugeth_vdbg("%s: IN", __func__);
3530 
3531 	dev->stats.tx_errors++;
3532 
3533 	ugeth_dump_regs(ugeth);
3534 
3535 	if (dev->flags & IFF_UP) {
3536 		/*
3537 		 * Must reset MAC *and* PHY. This is done by reopening
3538 		 * the device.
3539 		 */
3540 		netif_tx_stop_all_queues(dev);
3541 		ucc_geth_stop(ugeth);
3542 		ucc_geth_init_mac(ugeth);
3543 		/* Must start PHY here */
3544 		phy_start(ugeth->phydev);
3545 		netif_tx_start_all_queues(dev);
3546 	}
3547 
3548 	netif_tx_schedule_all(dev);
3549 }
3550 
3551 /*
3552  * ucc_geth_timeout gets called when a packet has not been
3553  * transmitted after a set amount of time.
3554  */
3555 static void ucc_geth_timeout(struct net_device *dev)
3556 {
3557 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3558 
3559 	schedule_work(&ugeth->timeout_work);
3560 }
3561 
3562 
3563 #ifdef CONFIG_PM
3564 
3565 static int ucc_geth_suspend(struct platform_device *ofdev, pm_message_t state)
3566 {
3567 	struct net_device *ndev = platform_get_drvdata(ofdev);
3568 	struct ucc_geth_private *ugeth = netdev_priv(ndev);
3569 
3570 	if (!netif_running(ndev))
3571 		return 0;
3572 
3573 	netif_device_detach(ndev);
3574 	napi_disable(&ugeth->napi);
3575 
3576 	/*
3577 	 * Disable the controller, otherwise we'll wakeup on any network
3578 	 * activity.
3579 	 */
3580 	ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
3581 
3582 	if (ugeth->wol_en & WAKE_MAGIC) {
3583 		setbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3584 		setbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3585 		ucc_fast_enable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3586 	} else if (!(ugeth->wol_en & WAKE_PHY)) {
3587 		phy_stop(ugeth->phydev);
3588 	}
3589 
3590 	return 0;
3591 }
3592 
3593 static int ucc_geth_resume(struct platform_device *ofdev)
3594 {
3595 	struct net_device *ndev = platform_get_drvdata(ofdev);
3596 	struct ucc_geth_private *ugeth = netdev_priv(ndev);
3597 	int err;
3598 
3599 	if (!netif_running(ndev))
3600 		return 0;
3601 
3602 	if (qe_alive_during_sleep()) {
3603 		if (ugeth->wol_en & WAKE_MAGIC) {
3604 			ucc_fast_disable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3605 			clrbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3606 			clrbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3607 		}
3608 		ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3609 	} else {
3610 		/*
3611 		 * Full reinitialization is required if QE shuts down
3612 		 * during sleep.
3613 		 */
3614 		ucc_geth_memclean(ugeth);
3615 
3616 		err = ucc_geth_init_mac(ugeth);
3617 		if (err) {
3618 			netdev_err(ndev, "Cannot initialize MAC, aborting\n");
3619 			return err;
3620 		}
3621 	}
3622 
3623 	ugeth->oldlink = 0;
3624 	ugeth->oldspeed = 0;
3625 	ugeth->oldduplex = -1;
3626 
3627 	phy_stop(ugeth->phydev);
3628 	phy_start(ugeth->phydev);
3629 
3630 	napi_enable(&ugeth->napi);
3631 	netif_device_attach(ndev);
3632 
3633 	return 0;
3634 }
3635 
3636 #else
3637 #define ucc_geth_suspend NULL
3638 #define ucc_geth_resume NULL
3639 #endif
3640 
3641 static phy_interface_t to_phy_interface(const char *phy_connection_type)
3642 {
3643 	if (strcasecmp(phy_connection_type, "mii") == 0)
3644 		return PHY_INTERFACE_MODE_MII;
3645 	if (strcasecmp(phy_connection_type, "gmii") == 0)
3646 		return PHY_INTERFACE_MODE_GMII;
3647 	if (strcasecmp(phy_connection_type, "tbi") == 0)
3648 		return PHY_INTERFACE_MODE_TBI;
3649 	if (strcasecmp(phy_connection_type, "rmii") == 0)
3650 		return PHY_INTERFACE_MODE_RMII;
3651 	if (strcasecmp(phy_connection_type, "rgmii") == 0)
3652 		return PHY_INTERFACE_MODE_RGMII;
3653 	if (strcasecmp(phy_connection_type, "rgmii-id") == 0)
3654 		return PHY_INTERFACE_MODE_RGMII_ID;
3655 	if (strcasecmp(phy_connection_type, "rgmii-txid") == 0)
3656 		return PHY_INTERFACE_MODE_RGMII_TXID;
3657 	if (strcasecmp(phy_connection_type, "rgmii-rxid") == 0)
3658 		return PHY_INTERFACE_MODE_RGMII_RXID;
3659 	if (strcasecmp(phy_connection_type, "rtbi") == 0)
3660 		return PHY_INTERFACE_MODE_RTBI;
3661 	if (strcasecmp(phy_connection_type, "sgmii") == 0)
3662 		return PHY_INTERFACE_MODE_SGMII;
3663 
3664 	return PHY_INTERFACE_MODE_MII;
3665 }
3666 
3667 static int ucc_geth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3668 {
3669 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3670 
3671 	if (!netif_running(dev))
3672 		return -EINVAL;
3673 
3674 	if (!ugeth->phydev)
3675 		return -ENODEV;
3676 
3677 	return phy_mii_ioctl(ugeth->phydev, rq, cmd);
3678 }
3679 
3680 static const struct net_device_ops ucc_geth_netdev_ops = {
3681 	.ndo_open		= ucc_geth_open,
3682 	.ndo_stop		= ucc_geth_close,
3683 	.ndo_start_xmit		= ucc_geth_start_xmit,
3684 	.ndo_validate_addr	= eth_validate_addr,
3685 	.ndo_set_mac_address	= ucc_geth_set_mac_addr,
3686 	.ndo_change_mtu		= eth_change_mtu,
3687 	.ndo_set_rx_mode	= ucc_geth_set_multi,
3688 	.ndo_tx_timeout		= ucc_geth_timeout,
3689 	.ndo_do_ioctl		= ucc_geth_ioctl,
3690 #ifdef CONFIG_NET_POLL_CONTROLLER
3691 	.ndo_poll_controller	= ucc_netpoll,
3692 #endif
3693 };
3694 
3695 static int ucc_geth_probe(struct platform_device* ofdev)
3696 {
3697 	struct device *device = &ofdev->dev;
3698 	struct device_node *np = ofdev->dev.of_node;
3699 	struct net_device *dev = NULL;
3700 	struct ucc_geth_private *ugeth = NULL;
3701 	struct ucc_geth_info *ug_info;
3702 	struct resource res;
3703 	int err, ucc_num, max_speed = 0;
3704 	const unsigned int *prop;
3705 	const char *sprop;
3706 	const void *mac_addr;
3707 	phy_interface_t phy_interface;
3708 	static const int enet_to_speed[] = {
3709 		SPEED_10, SPEED_10, SPEED_10,
3710 		SPEED_100, SPEED_100, SPEED_100,
3711 		SPEED_1000, SPEED_1000, SPEED_1000, SPEED_1000,
3712 	};
3713 	static const phy_interface_t enet_to_phy_interface[] = {
3714 		PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_RMII,
3715 		PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_MII,
3716 		PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII,
3717 		PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_RGMII,
3718 		PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_RTBI,
3719 		PHY_INTERFACE_MODE_SGMII,
3720 	};
3721 
3722 	ugeth_vdbg("%s: IN", __func__);
3723 
3724 	prop = of_get_property(np, "cell-index", NULL);
3725 	if (!prop) {
3726 		prop = of_get_property(np, "device-id", NULL);
3727 		if (!prop)
3728 			return -ENODEV;
3729 	}
3730 
3731 	ucc_num = *prop - 1;
3732 	if ((ucc_num < 0) || (ucc_num > 7))
3733 		return -ENODEV;
3734 
3735 	ug_info = &ugeth_info[ucc_num];
3736 	if (ug_info == NULL) {
3737 		if (netif_msg_probe(&debug))
3738 			pr_err("[%d] Missing additional data!\n", ucc_num);
3739 		return -ENODEV;
3740 	}
3741 
3742 	ug_info->uf_info.ucc_num = ucc_num;
3743 
3744 	sprop = of_get_property(np, "rx-clock-name", NULL);
3745 	if (sprop) {
3746 		ug_info->uf_info.rx_clock = qe_clock_source(sprop);
3747 		if ((ug_info->uf_info.rx_clock < QE_CLK_NONE) ||
3748 		    (ug_info->uf_info.rx_clock > QE_CLK24)) {
3749 			pr_err("invalid rx-clock-name property\n");
3750 			return -EINVAL;
3751 		}
3752 	} else {
3753 		prop = of_get_property(np, "rx-clock", NULL);
3754 		if (!prop) {
3755 			/* If both rx-clock-name and rx-clock are missing,
3756 			   we want to tell people to use rx-clock-name. */
3757 			pr_err("missing rx-clock-name property\n");
3758 			return -EINVAL;
3759 		}
3760 		if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3761 			pr_err("invalid rx-clock propperty\n");
3762 			return -EINVAL;
3763 		}
3764 		ug_info->uf_info.rx_clock = *prop;
3765 	}
3766 
3767 	sprop = of_get_property(np, "tx-clock-name", NULL);
3768 	if (sprop) {
3769 		ug_info->uf_info.tx_clock = qe_clock_source(sprop);
3770 		if ((ug_info->uf_info.tx_clock < QE_CLK_NONE) ||
3771 		    (ug_info->uf_info.tx_clock > QE_CLK24)) {
3772 			pr_err("invalid tx-clock-name property\n");
3773 			return -EINVAL;
3774 		}
3775 	} else {
3776 		prop = of_get_property(np, "tx-clock", NULL);
3777 		if (!prop) {
3778 			pr_err("missing tx-clock-name property\n");
3779 			return -EINVAL;
3780 		}
3781 		if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3782 			pr_err("invalid tx-clock property\n");
3783 			return -EINVAL;
3784 		}
3785 		ug_info->uf_info.tx_clock = *prop;
3786 	}
3787 
3788 	err = of_address_to_resource(np, 0, &res);
3789 	if (err)
3790 		return -EINVAL;
3791 
3792 	ug_info->uf_info.regs = res.start;
3793 	ug_info->uf_info.irq = irq_of_parse_and_map(np, 0);
3794 
3795 	ug_info->phy_node = of_parse_phandle(np, "phy-handle", 0);
3796 
3797 	/* Find the TBI PHY node.  If it's not there, we don't support SGMII */
3798 	ug_info->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
3799 
3800 	/* get the phy interface type, or default to MII */
3801 	prop = of_get_property(np, "phy-connection-type", NULL);
3802 	if (!prop) {
3803 		/* handle interface property present in old trees */
3804 		prop = of_get_property(ug_info->phy_node, "interface", NULL);
3805 		if (prop != NULL) {
3806 			phy_interface = enet_to_phy_interface[*prop];
3807 			max_speed = enet_to_speed[*prop];
3808 		} else
3809 			phy_interface = PHY_INTERFACE_MODE_MII;
3810 	} else {
3811 		phy_interface = to_phy_interface((const char *)prop);
3812 	}
3813 
3814 	/* get speed, or derive from PHY interface */
3815 	if (max_speed == 0)
3816 		switch (phy_interface) {
3817 		case PHY_INTERFACE_MODE_GMII:
3818 		case PHY_INTERFACE_MODE_RGMII:
3819 		case PHY_INTERFACE_MODE_RGMII_ID:
3820 		case PHY_INTERFACE_MODE_RGMII_RXID:
3821 		case PHY_INTERFACE_MODE_RGMII_TXID:
3822 		case PHY_INTERFACE_MODE_TBI:
3823 		case PHY_INTERFACE_MODE_RTBI:
3824 		case PHY_INTERFACE_MODE_SGMII:
3825 			max_speed = SPEED_1000;
3826 			break;
3827 		default:
3828 			max_speed = SPEED_100;
3829 			break;
3830 		}
3831 
3832 	if (max_speed == SPEED_1000) {
3833 		unsigned int snums = qe_get_num_of_snums();
3834 
3835 		/* configure muram FIFOs for gigabit operation */
3836 		ug_info->uf_info.urfs = UCC_GETH_URFS_GIGA_INIT;
3837 		ug_info->uf_info.urfet = UCC_GETH_URFET_GIGA_INIT;
3838 		ug_info->uf_info.urfset = UCC_GETH_URFSET_GIGA_INIT;
3839 		ug_info->uf_info.utfs = UCC_GETH_UTFS_GIGA_INIT;
3840 		ug_info->uf_info.utfet = UCC_GETH_UTFET_GIGA_INIT;
3841 		ug_info->uf_info.utftt = UCC_GETH_UTFTT_GIGA_INIT;
3842 		ug_info->numThreadsTx = UCC_GETH_NUM_OF_THREADS_4;
3843 
3844 		/* If QE's snum number is 46/76 which means we need to support
3845 		 * 4 UECs at 1000Base-T simultaneously, we need to allocate
3846 		 * more Threads to Rx.
3847 		 */
3848 		if ((snums == 76) || (snums == 46))
3849 			ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_6;
3850 		else
3851 			ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_4;
3852 	}
3853 
3854 	if (netif_msg_probe(&debug))
3855 		pr_info("UCC%1d at 0x%8x (irq = %d)\n",
3856 			ug_info->uf_info.ucc_num + 1, ug_info->uf_info.regs,
3857 			ug_info->uf_info.irq);
3858 
3859 	/* Create an ethernet device instance */
3860 	dev = alloc_etherdev(sizeof(*ugeth));
3861 
3862 	if (dev == NULL)
3863 		return -ENOMEM;
3864 
3865 	ugeth = netdev_priv(dev);
3866 	spin_lock_init(&ugeth->lock);
3867 
3868 	/* Create CQs for hash tables */
3869 	INIT_LIST_HEAD(&ugeth->group_hash_q);
3870 	INIT_LIST_HEAD(&ugeth->ind_hash_q);
3871 
3872 	dev_set_drvdata(device, dev);
3873 
3874 	/* Set the dev->base_addr to the gfar reg region */
3875 	dev->base_addr = (unsigned long)(ug_info->uf_info.regs);
3876 
3877 	SET_NETDEV_DEV(dev, device);
3878 
3879 	/* Fill in the dev structure */
3880 	uec_set_ethtool_ops(dev);
3881 	dev->netdev_ops = &ucc_geth_netdev_ops;
3882 	dev->watchdog_timeo = TX_TIMEOUT;
3883 	INIT_WORK(&ugeth->timeout_work, ucc_geth_timeout_work);
3884 	netif_napi_add(dev, &ugeth->napi, ucc_geth_poll, 64);
3885 	dev->mtu = 1500;
3886 
3887 	ugeth->msg_enable = netif_msg_init(debug.msg_enable, UGETH_MSG_DEFAULT);
3888 	ugeth->phy_interface = phy_interface;
3889 	ugeth->max_speed = max_speed;
3890 
3891 	err = register_netdev(dev);
3892 	if (err) {
3893 		if (netif_msg_probe(ugeth))
3894 			pr_err("%s: Cannot register net device, aborting\n",
3895 			       dev->name);
3896 		free_netdev(dev);
3897 		return err;
3898 	}
3899 
3900 	mac_addr = of_get_mac_address(np);
3901 	if (mac_addr)
3902 		memcpy(dev->dev_addr, mac_addr, 6);
3903 
3904 	ugeth->ug_info = ug_info;
3905 	ugeth->dev = device;
3906 	ugeth->ndev = dev;
3907 	ugeth->node = np;
3908 
3909 	return 0;
3910 }
3911 
3912 static int ucc_geth_remove(struct platform_device* ofdev)
3913 {
3914 	struct net_device *dev = platform_get_drvdata(ofdev);
3915 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3916 
3917 	unregister_netdev(dev);
3918 	free_netdev(dev);
3919 	ucc_geth_memclean(ugeth);
3920 
3921 	return 0;
3922 }
3923 
3924 static struct of_device_id ucc_geth_match[] = {
3925 	{
3926 		.type = "network",
3927 		.compatible = "ucc_geth",
3928 	},
3929 	{},
3930 };
3931 
3932 MODULE_DEVICE_TABLE(of, ucc_geth_match);
3933 
3934 static struct platform_driver ucc_geth_driver = {
3935 	.driver = {
3936 		.name = DRV_NAME,
3937 		.owner = THIS_MODULE,
3938 		.of_match_table = ucc_geth_match,
3939 	},
3940 	.probe		= ucc_geth_probe,
3941 	.remove		= ucc_geth_remove,
3942 	.suspend	= ucc_geth_suspend,
3943 	.resume		= ucc_geth_resume,
3944 };
3945 
3946 static int __init ucc_geth_init(void)
3947 {
3948 	int i, ret;
3949 
3950 	if (netif_msg_drv(&debug))
3951 		pr_info(DRV_DESC "\n");
3952 	for (i = 0; i < 8; i++)
3953 		memcpy(&(ugeth_info[i]), &ugeth_primary_info,
3954 		       sizeof(ugeth_primary_info));
3955 
3956 	ret = platform_driver_register(&ucc_geth_driver);
3957 
3958 	return ret;
3959 }
3960 
3961 static void __exit ucc_geth_exit(void)
3962 {
3963 	platform_driver_unregister(&ucc_geth_driver);
3964 }
3965 
3966 module_init(ucc_geth_init);
3967 module_exit(ucc_geth_exit);
3968 
3969 MODULE_AUTHOR("Freescale Semiconductor, Inc");
3970 MODULE_DESCRIPTION(DRV_DESC);
3971 MODULE_VERSION(DRV_VERSION);
3972 MODULE_LICENSE("GPL");
3973