1 /*
2  * Copyright (C) 2006-2009 Freescale Semicondutor, Inc. All rights reserved.
3  *
4  * Author: Shlomi Gridish <gridish@freescale.com>
5  *	   Li Yang <leoli@freescale.com>
6  *
7  * Description:
8  * QE UCC Gigabit Ethernet Driver
9  *
10  * This program is free software; you can redistribute  it and/or modify it
11  * under  the terms of  the GNU General  Public License as published by the
12  * Free Software Foundation;  either version 2 of the  License, or (at your
13  * option) any later version.
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/stddef.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mm.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mii.h>
32 #include <linux/phy.h>
33 #include <linux/workqueue.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/of_platform.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/irq.h>
42 #include <asm/io.h>
43 #include <asm/immap_qe.h>
44 #include <asm/qe.h>
45 #include <asm/ucc.h>
46 #include <asm/ucc_fast.h>
47 #include <asm/machdep.h>
48 
49 #include "ucc_geth.h"
50 
51 #undef DEBUG
52 
53 #define ugeth_printk(level, format, arg...)  \
54         printk(level format "\n", ## arg)
55 
56 #define ugeth_dbg(format, arg...)            \
57         ugeth_printk(KERN_DEBUG , format , ## arg)
58 
59 #ifdef UGETH_VERBOSE_DEBUG
60 #define ugeth_vdbg ugeth_dbg
61 #else
62 #define ugeth_vdbg(fmt, args...) do { } while (0)
63 #endif				/* UGETH_VERBOSE_DEBUG */
64 #define UGETH_MSG_DEFAULT	(NETIF_MSG_IFUP << 1 ) - 1
65 
66 
67 static DEFINE_SPINLOCK(ugeth_lock);
68 
69 static struct {
70 	u32 msg_enable;
71 } debug = { -1 };
72 
73 module_param_named(debug, debug.msg_enable, int, 0);
74 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 0xffff=all)");
75 
76 static struct ucc_geth_info ugeth_primary_info = {
77 	.uf_info = {
78 		    .bd_mem_part = MEM_PART_SYSTEM,
79 		    .rtsm = UCC_FAST_SEND_IDLES_BETWEEN_FRAMES,
80 		    .max_rx_buf_length = 1536,
81 		    /* adjusted at startup if max-speed 1000 */
82 		    .urfs = UCC_GETH_URFS_INIT,
83 		    .urfet = UCC_GETH_URFET_INIT,
84 		    .urfset = UCC_GETH_URFSET_INIT,
85 		    .utfs = UCC_GETH_UTFS_INIT,
86 		    .utfet = UCC_GETH_UTFET_INIT,
87 		    .utftt = UCC_GETH_UTFTT_INIT,
88 		    .ufpt = 256,
89 		    .mode = UCC_FAST_PROTOCOL_MODE_ETHERNET,
90 		    .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
91 		    .tenc = UCC_FAST_TX_ENCODING_NRZ,
92 		    .renc = UCC_FAST_RX_ENCODING_NRZ,
93 		    .tcrc = UCC_FAST_16_BIT_CRC,
94 		    .synl = UCC_FAST_SYNC_LEN_NOT_USED,
95 		    },
96 	.numQueuesTx = 1,
97 	.numQueuesRx = 1,
98 	.extendedFilteringChainPointer = ((uint32_t) NULL),
99 	.typeorlen = 3072 /*1536 */ ,
100 	.nonBackToBackIfgPart1 = 0x40,
101 	.nonBackToBackIfgPart2 = 0x60,
102 	.miminumInterFrameGapEnforcement = 0x50,
103 	.backToBackInterFrameGap = 0x60,
104 	.mblinterval = 128,
105 	.nortsrbytetime = 5,
106 	.fracsiz = 1,
107 	.strictpriorityq = 0xff,
108 	.altBebTruncation = 0xa,
109 	.excessDefer = 1,
110 	.maxRetransmission = 0xf,
111 	.collisionWindow = 0x37,
112 	.receiveFlowControl = 1,
113 	.transmitFlowControl = 1,
114 	.maxGroupAddrInHash = 4,
115 	.maxIndAddrInHash = 4,
116 	.prel = 7,
117 	.maxFrameLength = 1518+16, /* Add extra bytes for VLANs etc. */
118 	.minFrameLength = 64,
119 	.maxD1Length = 1520+16, /* Add extra bytes for VLANs etc. */
120 	.maxD2Length = 1520+16, /* Add extra bytes for VLANs etc. */
121 	.vlantype = 0x8100,
122 	.ecamptr = ((uint32_t) NULL),
123 	.eventRegMask = UCCE_OTHER,
124 	.pausePeriod = 0xf000,
125 	.interruptcoalescingmaxvalue = {1, 1, 1, 1, 1, 1, 1, 1},
126 	.bdRingLenTx = {
127 			TX_BD_RING_LEN,
128 			TX_BD_RING_LEN,
129 			TX_BD_RING_LEN,
130 			TX_BD_RING_LEN,
131 			TX_BD_RING_LEN,
132 			TX_BD_RING_LEN,
133 			TX_BD_RING_LEN,
134 			TX_BD_RING_LEN},
135 
136 	.bdRingLenRx = {
137 			RX_BD_RING_LEN,
138 			RX_BD_RING_LEN,
139 			RX_BD_RING_LEN,
140 			RX_BD_RING_LEN,
141 			RX_BD_RING_LEN,
142 			RX_BD_RING_LEN,
143 			RX_BD_RING_LEN,
144 			RX_BD_RING_LEN},
145 
146 	.numStationAddresses = UCC_GETH_NUM_OF_STATION_ADDRESSES_1,
147 	.largestexternallookupkeysize =
148 	    QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE,
149 	.statisticsMode = UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE |
150 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX |
151 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX,
152 	.vlanOperationTagged = UCC_GETH_VLAN_OPERATION_TAGGED_NOP,
153 	.vlanOperationNonTagged = UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP,
154 	.rxQoSMode = UCC_GETH_QOS_MODE_DEFAULT,
155 	.aufc = UPSMR_AUTOMATIC_FLOW_CONTROL_MODE_NONE,
156 	.padAndCrc = MACCFG2_PAD_AND_CRC_MODE_PAD_AND_CRC,
157 	.numThreadsTx = UCC_GETH_NUM_OF_THREADS_1,
158 	.numThreadsRx = UCC_GETH_NUM_OF_THREADS_1,
159 	.riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
160 	.riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
161 };
162 
163 static struct ucc_geth_info ugeth_info[8];
164 
165 #ifdef DEBUG
166 static void mem_disp(u8 *addr, int size)
167 {
168 	u8 *i;
169 	int size16Aling = (size >> 4) << 4;
170 	int size4Aling = (size >> 2) << 2;
171 	int notAlign = 0;
172 	if (size % 16)
173 		notAlign = 1;
174 
175 	for (i = addr; (u32) i < (u32) addr + size16Aling; i += 16)
176 		printk("0x%08x: %08x %08x %08x %08x\r\n",
177 		       (u32) i,
178 		       *((u32 *) (i)),
179 		       *((u32 *) (i + 4)),
180 		       *((u32 *) (i + 8)), *((u32 *) (i + 12)));
181 	if (notAlign == 1)
182 		printk("0x%08x: ", (u32) i);
183 	for (; (u32) i < (u32) addr + size4Aling; i += 4)
184 		printk("%08x ", *((u32 *) (i)));
185 	for (; (u32) i < (u32) addr + size; i++)
186 		printk("%02x", *((i)));
187 	if (notAlign == 1)
188 		printk("\r\n");
189 }
190 #endif /* DEBUG */
191 
192 static struct list_head *dequeue(struct list_head *lh)
193 {
194 	unsigned long flags;
195 
196 	spin_lock_irqsave(&ugeth_lock, flags);
197 	if (!list_empty(lh)) {
198 		struct list_head *node = lh->next;
199 		list_del(node);
200 		spin_unlock_irqrestore(&ugeth_lock, flags);
201 		return node;
202 	} else {
203 		spin_unlock_irqrestore(&ugeth_lock, flags);
204 		return NULL;
205 	}
206 }
207 
208 static struct sk_buff *get_new_skb(struct ucc_geth_private *ugeth,
209 		u8 __iomem *bd)
210 {
211 	struct sk_buff *skb;
212 
213 	skb = netdev_alloc_skb(ugeth->ndev,
214 			       ugeth->ug_info->uf_info.max_rx_buf_length +
215 			       UCC_GETH_RX_DATA_BUF_ALIGNMENT);
216 	if (!skb)
217 		return NULL;
218 
219 	/* We need the data buffer to be aligned properly.  We will reserve
220 	 * as many bytes as needed to align the data properly
221 	 */
222 	skb_reserve(skb,
223 		    UCC_GETH_RX_DATA_BUF_ALIGNMENT -
224 		    (((unsigned)skb->data) & (UCC_GETH_RX_DATA_BUF_ALIGNMENT -
225 					      1)));
226 
227 	out_be32(&((struct qe_bd __iomem *)bd)->buf,
228 		      dma_map_single(ugeth->dev,
229 				     skb->data,
230 				     ugeth->ug_info->uf_info.max_rx_buf_length +
231 				     UCC_GETH_RX_DATA_BUF_ALIGNMENT,
232 				     DMA_FROM_DEVICE));
233 
234 	out_be32((u32 __iomem *)bd,
235 			(R_E | R_I | (in_be32((u32 __iomem*)bd) & R_W)));
236 
237 	return skb;
238 }
239 
240 static int rx_bd_buffer_set(struct ucc_geth_private *ugeth, u8 rxQ)
241 {
242 	u8 __iomem *bd;
243 	u32 bd_status;
244 	struct sk_buff *skb;
245 	int i;
246 
247 	bd = ugeth->p_rx_bd_ring[rxQ];
248 	i = 0;
249 
250 	do {
251 		bd_status = in_be32((u32 __iomem *)bd);
252 		skb = get_new_skb(ugeth, bd);
253 
254 		if (!skb)	/* If can not allocate data buffer,
255 				abort. Cleanup will be elsewhere */
256 			return -ENOMEM;
257 
258 		ugeth->rx_skbuff[rxQ][i] = skb;
259 
260 		/* advance the BD pointer */
261 		bd += sizeof(struct qe_bd);
262 		i++;
263 	} while (!(bd_status & R_W));
264 
265 	return 0;
266 }
267 
268 static int fill_init_enet_entries(struct ucc_geth_private *ugeth,
269 				  u32 *p_start,
270 				  u8 num_entries,
271 				  u32 thread_size,
272 				  u32 thread_alignment,
273 				  unsigned int risc,
274 				  int skip_page_for_first_entry)
275 {
276 	u32 init_enet_offset;
277 	u8 i;
278 	int snum;
279 
280 	for (i = 0; i < num_entries; i++) {
281 		if ((snum = qe_get_snum()) < 0) {
282 			if (netif_msg_ifup(ugeth))
283 				pr_err("Can not get SNUM\n");
284 			return snum;
285 		}
286 		if ((i == 0) && skip_page_for_first_entry)
287 		/* First entry of Rx does not have page */
288 			init_enet_offset = 0;
289 		else {
290 			init_enet_offset =
291 			    qe_muram_alloc(thread_size, thread_alignment);
292 			if (IS_ERR_VALUE(init_enet_offset)) {
293 				if (netif_msg_ifup(ugeth))
294 					pr_err("Can not allocate DPRAM memory\n");
295 				qe_put_snum((u8) snum);
296 				return -ENOMEM;
297 			}
298 		}
299 		*(p_start++) =
300 		    ((u8) snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset
301 		    | risc;
302 	}
303 
304 	return 0;
305 }
306 
307 static int return_init_enet_entries(struct ucc_geth_private *ugeth,
308 				    u32 *p_start,
309 				    u8 num_entries,
310 				    unsigned int risc,
311 				    int skip_page_for_first_entry)
312 {
313 	u32 init_enet_offset;
314 	u8 i;
315 	int snum;
316 
317 	for (i = 0; i < num_entries; i++) {
318 		u32 val = *p_start;
319 
320 		/* Check that this entry was actually valid --
321 		needed in case failed in allocations */
322 		if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
323 			snum =
324 			    (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
325 			    ENET_INIT_PARAM_SNUM_SHIFT;
326 			qe_put_snum((u8) snum);
327 			if (!((i == 0) && skip_page_for_first_entry)) {
328 			/* First entry of Rx does not have page */
329 				init_enet_offset =
330 				    (val & ENET_INIT_PARAM_PTR_MASK);
331 				qe_muram_free(init_enet_offset);
332 			}
333 			*p_start++ = 0;
334 		}
335 	}
336 
337 	return 0;
338 }
339 
340 #ifdef DEBUG
341 static int dump_init_enet_entries(struct ucc_geth_private *ugeth,
342 				  u32 __iomem *p_start,
343 				  u8 num_entries,
344 				  u32 thread_size,
345 				  unsigned int risc,
346 				  int skip_page_for_first_entry)
347 {
348 	u32 init_enet_offset;
349 	u8 i;
350 	int snum;
351 
352 	for (i = 0; i < num_entries; i++) {
353 		u32 val = in_be32(p_start);
354 
355 		/* Check that this entry was actually valid --
356 		needed in case failed in allocations */
357 		if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
358 			snum =
359 			    (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
360 			    ENET_INIT_PARAM_SNUM_SHIFT;
361 			qe_put_snum((u8) snum);
362 			if (!((i == 0) && skip_page_for_first_entry)) {
363 			/* First entry of Rx does not have page */
364 				init_enet_offset =
365 				    (in_be32(p_start) &
366 				     ENET_INIT_PARAM_PTR_MASK);
367 				pr_info("Init enet entry %d:\n", i);
368 				pr_info("Base address: 0x%08x\n",
369 					(u32)qe_muram_addr(init_enet_offset));
370 				mem_disp(qe_muram_addr(init_enet_offset),
371 					 thread_size);
372 			}
373 			p_start++;
374 		}
375 	}
376 
377 	return 0;
378 }
379 #endif
380 
381 static void put_enet_addr_container(struct enet_addr_container *enet_addr_cont)
382 {
383 	kfree(enet_addr_cont);
384 }
385 
386 static void set_mac_addr(__be16 __iomem *reg, u8 *mac)
387 {
388 	out_be16(&reg[0], ((u16)mac[5] << 8) | mac[4]);
389 	out_be16(&reg[1], ((u16)mac[3] << 8) | mac[2]);
390 	out_be16(&reg[2], ((u16)mac[1] << 8) | mac[0]);
391 }
392 
393 static int hw_clear_addr_in_paddr(struct ucc_geth_private *ugeth, u8 paddr_num)
394 {
395 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
396 
397 	if (paddr_num >= NUM_OF_PADDRS) {
398 		pr_warn("%s: Invalid paddr_num: %u\n", __func__, paddr_num);
399 		return -EINVAL;
400 	}
401 
402 	p_82xx_addr_filt =
403 	    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
404 	    addressfiltering;
405 
406 	/* Writing address ff.ff.ff.ff.ff.ff disables address
407 	recognition for this register */
408 	out_be16(&p_82xx_addr_filt->paddr[paddr_num].h, 0xffff);
409 	out_be16(&p_82xx_addr_filt->paddr[paddr_num].m, 0xffff);
410 	out_be16(&p_82xx_addr_filt->paddr[paddr_num].l, 0xffff);
411 
412 	return 0;
413 }
414 
415 static void hw_add_addr_in_hash(struct ucc_geth_private *ugeth,
416                                 u8 *p_enet_addr)
417 {
418 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
419 	u32 cecr_subblock;
420 
421 	p_82xx_addr_filt =
422 	    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
423 	    addressfiltering;
424 
425 	cecr_subblock =
426 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
427 
428 	/* Ethernet frames are defined in Little Endian mode,
429 	therefore to insert */
430 	/* the address to the hash (Big Endian mode), we reverse the bytes.*/
431 
432 	set_mac_addr(&p_82xx_addr_filt->taddr.h, p_enet_addr);
433 
434 	qe_issue_cmd(QE_SET_GROUP_ADDRESS, cecr_subblock,
435 		     QE_CR_PROTOCOL_ETHERNET, 0);
436 }
437 
438 #ifdef DEBUG
439 static void get_statistics(struct ucc_geth_private *ugeth,
440 			   struct ucc_geth_tx_firmware_statistics *
441 			   tx_firmware_statistics,
442 			   struct ucc_geth_rx_firmware_statistics *
443 			   rx_firmware_statistics,
444 			   struct ucc_geth_hardware_statistics *hardware_statistics)
445 {
446 	struct ucc_fast __iomem *uf_regs;
447 	struct ucc_geth __iomem *ug_regs;
448 	struct ucc_geth_tx_firmware_statistics_pram *p_tx_fw_statistics_pram;
449 	struct ucc_geth_rx_firmware_statistics_pram *p_rx_fw_statistics_pram;
450 
451 	ug_regs = ugeth->ug_regs;
452 	uf_regs = (struct ucc_fast __iomem *) ug_regs;
453 	p_tx_fw_statistics_pram = ugeth->p_tx_fw_statistics_pram;
454 	p_rx_fw_statistics_pram = ugeth->p_rx_fw_statistics_pram;
455 
456 	/* Tx firmware only if user handed pointer and driver actually
457 	gathers Tx firmware statistics */
458 	if (tx_firmware_statistics && p_tx_fw_statistics_pram) {
459 		tx_firmware_statistics->sicoltx =
460 		    in_be32(&p_tx_fw_statistics_pram->sicoltx);
461 		tx_firmware_statistics->mulcoltx =
462 		    in_be32(&p_tx_fw_statistics_pram->mulcoltx);
463 		tx_firmware_statistics->latecoltxfr =
464 		    in_be32(&p_tx_fw_statistics_pram->latecoltxfr);
465 		tx_firmware_statistics->frabortduecol =
466 		    in_be32(&p_tx_fw_statistics_pram->frabortduecol);
467 		tx_firmware_statistics->frlostinmactxer =
468 		    in_be32(&p_tx_fw_statistics_pram->frlostinmactxer);
469 		tx_firmware_statistics->carriersenseertx =
470 		    in_be32(&p_tx_fw_statistics_pram->carriersenseertx);
471 		tx_firmware_statistics->frtxok =
472 		    in_be32(&p_tx_fw_statistics_pram->frtxok);
473 		tx_firmware_statistics->txfrexcessivedefer =
474 		    in_be32(&p_tx_fw_statistics_pram->txfrexcessivedefer);
475 		tx_firmware_statistics->txpkts256 =
476 		    in_be32(&p_tx_fw_statistics_pram->txpkts256);
477 		tx_firmware_statistics->txpkts512 =
478 		    in_be32(&p_tx_fw_statistics_pram->txpkts512);
479 		tx_firmware_statistics->txpkts1024 =
480 		    in_be32(&p_tx_fw_statistics_pram->txpkts1024);
481 		tx_firmware_statistics->txpktsjumbo =
482 		    in_be32(&p_tx_fw_statistics_pram->txpktsjumbo);
483 	}
484 
485 	/* Rx firmware only if user handed pointer and driver actually
486 	 * gathers Rx firmware statistics */
487 	if (rx_firmware_statistics && p_rx_fw_statistics_pram) {
488 		int i;
489 		rx_firmware_statistics->frrxfcser =
490 		    in_be32(&p_rx_fw_statistics_pram->frrxfcser);
491 		rx_firmware_statistics->fraligner =
492 		    in_be32(&p_rx_fw_statistics_pram->fraligner);
493 		rx_firmware_statistics->inrangelenrxer =
494 		    in_be32(&p_rx_fw_statistics_pram->inrangelenrxer);
495 		rx_firmware_statistics->outrangelenrxer =
496 		    in_be32(&p_rx_fw_statistics_pram->outrangelenrxer);
497 		rx_firmware_statistics->frtoolong =
498 		    in_be32(&p_rx_fw_statistics_pram->frtoolong);
499 		rx_firmware_statistics->runt =
500 		    in_be32(&p_rx_fw_statistics_pram->runt);
501 		rx_firmware_statistics->verylongevent =
502 		    in_be32(&p_rx_fw_statistics_pram->verylongevent);
503 		rx_firmware_statistics->symbolerror =
504 		    in_be32(&p_rx_fw_statistics_pram->symbolerror);
505 		rx_firmware_statistics->dropbsy =
506 		    in_be32(&p_rx_fw_statistics_pram->dropbsy);
507 		for (i = 0; i < 0x8; i++)
508 			rx_firmware_statistics->res0[i] =
509 			    p_rx_fw_statistics_pram->res0[i];
510 		rx_firmware_statistics->mismatchdrop =
511 		    in_be32(&p_rx_fw_statistics_pram->mismatchdrop);
512 		rx_firmware_statistics->underpkts =
513 		    in_be32(&p_rx_fw_statistics_pram->underpkts);
514 		rx_firmware_statistics->pkts256 =
515 		    in_be32(&p_rx_fw_statistics_pram->pkts256);
516 		rx_firmware_statistics->pkts512 =
517 		    in_be32(&p_rx_fw_statistics_pram->pkts512);
518 		rx_firmware_statistics->pkts1024 =
519 		    in_be32(&p_rx_fw_statistics_pram->pkts1024);
520 		rx_firmware_statistics->pktsjumbo =
521 		    in_be32(&p_rx_fw_statistics_pram->pktsjumbo);
522 		rx_firmware_statistics->frlossinmacer =
523 		    in_be32(&p_rx_fw_statistics_pram->frlossinmacer);
524 		rx_firmware_statistics->pausefr =
525 		    in_be32(&p_rx_fw_statistics_pram->pausefr);
526 		for (i = 0; i < 0x4; i++)
527 			rx_firmware_statistics->res1[i] =
528 			    p_rx_fw_statistics_pram->res1[i];
529 		rx_firmware_statistics->removevlan =
530 		    in_be32(&p_rx_fw_statistics_pram->removevlan);
531 		rx_firmware_statistics->replacevlan =
532 		    in_be32(&p_rx_fw_statistics_pram->replacevlan);
533 		rx_firmware_statistics->insertvlan =
534 		    in_be32(&p_rx_fw_statistics_pram->insertvlan);
535 	}
536 
537 	/* Hardware only if user handed pointer and driver actually
538 	gathers hardware statistics */
539 	if (hardware_statistics &&
540 	    (in_be32(&uf_regs->upsmr) & UCC_GETH_UPSMR_HSE)) {
541 		hardware_statistics->tx64 = in_be32(&ug_regs->tx64);
542 		hardware_statistics->tx127 = in_be32(&ug_regs->tx127);
543 		hardware_statistics->tx255 = in_be32(&ug_regs->tx255);
544 		hardware_statistics->rx64 = in_be32(&ug_regs->rx64);
545 		hardware_statistics->rx127 = in_be32(&ug_regs->rx127);
546 		hardware_statistics->rx255 = in_be32(&ug_regs->rx255);
547 		hardware_statistics->txok = in_be32(&ug_regs->txok);
548 		hardware_statistics->txcf = in_be16(&ug_regs->txcf);
549 		hardware_statistics->tmca = in_be32(&ug_regs->tmca);
550 		hardware_statistics->tbca = in_be32(&ug_regs->tbca);
551 		hardware_statistics->rxfok = in_be32(&ug_regs->rxfok);
552 		hardware_statistics->rxbok = in_be32(&ug_regs->rxbok);
553 		hardware_statistics->rbyt = in_be32(&ug_regs->rbyt);
554 		hardware_statistics->rmca = in_be32(&ug_regs->rmca);
555 		hardware_statistics->rbca = in_be32(&ug_regs->rbca);
556 	}
557 }
558 
559 static void dump_bds(struct ucc_geth_private *ugeth)
560 {
561 	int i;
562 	int length;
563 
564 	for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
565 		if (ugeth->p_tx_bd_ring[i]) {
566 			length =
567 			    (ugeth->ug_info->bdRingLenTx[i] *
568 			     sizeof(struct qe_bd));
569 			pr_info("TX BDs[%d]\n", i);
570 			mem_disp(ugeth->p_tx_bd_ring[i], length);
571 		}
572 	}
573 	for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
574 		if (ugeth->p_rx_bd_ring[i]) {
575 			length =
576 			    (ugeth->ug_info->bdRingLenRx[i] *
577 			     sizeof(struct qe_bd));
578 			pr_info("RX BDs[%d]\n", i);
579 			mem_disp(ugeth->p_rx_bd_ring[i], length);
580 		}
581 	}
582 }
583 
584 static void dump_regs(struct ucc_geth_private *ugeth)
585 {
586 	int i;
587 
588 	pr_info("UCC%d Geth registers:\n", ugeth->ug_info->uf_info.ucc_num + 1);
589 	pr_info("Base address: 0x%08x\n", (u32)ugeth->ug_regs);
590 
591 	pr_info("maccfg1    : addr - 0x%08x, val - 0x%08x\n",
592 		(u32)&ugeth->ug_regs->maccfg1,
593 		in_be32(&ugeth->ug_regs->maccfg1));
594 	pr_info("maccfg2    : addr - 0x%08x, val - 0x%08x\n",
595 		(u32)&ugeth->ug_regs->maccfg2,
596 		in_be32(&ugeth->ug_regs->maccfg2));
597 	pr_info("ipgifg     : addr - 0x%08x, val - 0x%08x\n",
598 		(u32)&ugeth->ug_regs->ipgifg,
599 		in_be32(&ugeth->ug_regs->ipgifg));
600 	pr_info("hafdup     : addr - 0x%08x, val - 0x%08x\n",
601 		(u32)&ugeth->ug_regs->hafdup,
602 		in_be32(&ugeth->ug_regs->hafdup));
603 	pr_info("ifctl      : addr - 0x%08x, val - 0x%08x\n",
604 		(u32)&ugeth->ug_regs->ifctl,
605 		in_be32(&ugeth->ug_regs->ifctl));
606 	pr_info("ifstat     : addr - 0x%08x, val - 0x%08x\n",
607 		(u32)&ugeth->ug_regs->ifstat,
608 		in_be32(&ugeth->ug_regs->ifstat));
609 	pr_info("macstnaddr1: addr - 0x%08x, val - 0x%08x\n",
610 		(u32)&ugeth->ug_regs->macstnaddr1,
611 		in_be32(&ugeth->ug_regs->macstnaddr1));
612 	pr_info("macstnaddr2: addr - 0x%08x, val - 0x%08x\n",
613 		(u32)&ugeth->ug_regs->macstnaddr2,
614 		in_be32(&ugeth->ug_regs->macstnaddr2));
615 	pr_info("uempr      : addr - 0x%08x, val - 0x%08x\n",
616 		(u32)&ugeth->ug_regs->uempr,
617 		in_be32(&ugeth->ug_regs->uempr));
618 	pr_info("utbipar    : addr - 0x%08x, val - 0x%08x\n",
619 		(u32)&ugeth->ug_regs->utbipar,
620 		in_be32(&ugeth->ug_regs->utbipar));
621 	pr_info("uescr      : addr - 0x%08x, val - 0x%04x\n",
622 		(u32)&ugeth->ug_regs->uescr,
623 		in_be16(&ugeth->ug_regs->uescr));
624 	pr_info("tx64       : addr - 0x%08x, val - 0x%08x\n",
625 		(u32)&ugeth->ug_regs->tx64,
626 		in_be32(&ugeth->ug_regs->tx64));
627 	pr_info("tx127      : addr - 0x%08x, val - 0x%08x\n",
628 		(u32)&ugeth->ug_regs->tx127,
629 		in_be32(&ugeth->ug_regs->tx127));
630 	pr_info("tx255      : addr - 0x%08x, val - 0x%08x\n",
631 		(u32)&ugeth->ug_regs->tx255,
632 		in_be32(&ugeth->ug_regs->tx255));
633 	pr_info("rx64       : addr - 0x%08x, val - 0x%08x\n",
634 		(u32)&ugeth->ug_regs->rx64,
635 		in_be32(&ugeth->ug_regs->rx64));
636 	pr_info("rx127      : addr - 0x%08x, val - 0x%08x\n",
637 		(u32)&ugeth->ug_regs->rx127,
638 		in_be32(&ugeth->ug_regs->rx127));
639 	pr_info("rx255      : addr - 0x%08x, val - 0x%08x\n",
640 		(u32)&ugeth->ug_regs->rx255,
641 		in_be32(&ugeth->ug_regs->rx255));
642 	pr_info("txok       : addr - 0x%08x, val - 0x%08x\n",
643 		(u32)&ugeth->ug_regs->txok,
644 		in_be32(&ugeth->ug_regs->txok));
645 	pr_info("txcf       : addr - 0x%08x, val - 0x%04x\n",
646 		(u32)&ugeth->ug_regs->txcf,
647 		in_be16(&ugeth->ug_regs->txcf));
648 	pr_info("tmca       : addr - 0x%08x, val - 0x%08x\n",
649 		(u32)&ugeth->ug_regs->tmca,
650 		in_be32(&ugeth->ug_regs->tmca));
651 	pr_info("tbca       : addr - 0x%08x, val - 0x%08x\n",
652 		(u32)&ugeth->ug_regs->tbca,
653 		in_be32(&ugeth->ug_regs->tbca));
654 	pr_info("rxfok      : addr - 0x%08x, val - 0x%08x\n",
655 		(u32)&ugeth->ug_regs->rxfok,
656 		in_be32(&ugeth->ug_regs->rxfok));
657 	pr_info("rxbok      : addr - 0x%08x, val - 0x%08x\n",
658 		(u32)&ugeth->ug_regs->rxbok,
659 		in_be32(&ugeth->ug_regs->rxbok));
660 	pr_info("rbyt       : addr - 0x%08x, val - 0x%08x\n",
661 		(u32)&ugeth->ug_regs->rbyt,
662 		in_be32(&ugeth->ug_regs->rbyt));
663 	pr_info("rmca       : addr - 0x%08x, val - 0x%08x\n",
664 		(u32)&ugeth->ug_regs->rmca,
665 		in_be32(&ugeth->ug_regs->rmca));
666 	pr_info("rbca       : addr - 0x%08x, val - 0x%08x\n",
667 		(u32)&ugeth->ug_regs->rbca,
668 		in_be32(&ugeth->ug_regs->rbca));
669 	pr_info("scar       : addr - 0x%08x, val - 0x%08x\n",
670 		(u32)&ugeth->ug_regs->scar,
671 		in_be32(&ugeth->ug_regs->scar));
672 	pr_info("scam       : addr - 0x%08x, val - 0x%08x\n",
673 		(u32)&ugeth->ug_regs->scam,
674 		in_be32(&ugeth->ug_regs->scam));
675 
676 	if (ugeth->p_thread_data_tx) {
677 		int numThreadsTxNumerical;
678 		switch (ugeth->ug_info->numThreadsTx) {
679 		case UCC_GETH_NUM_OF_THREADS_1:
680 			numThreadsTxNumerical = 1;
681 			break;
682 		case UCC_GETH_NUM_OF_THREADS_2:
683 			numThreadsTxNumerical = 2;
684 			break;
685 		case UCC_GETH_NUM_OF_THREADS_4:
686 			numThreadsTxNumerical = 4;
687 			break;
688 		case UCC_GETH_NUM_OF_THREADS_6:
689 			numThreadsTxNumerical = 6;
690 			break;
691 		case UCC_GETH_NUM_OF_THREADS_8:
692 			numThreadsTxNumerical = 8;
693 			break;
694 		default:
695 			numThreadsTxNumerical = 0;
696 			break;
697 		}
698 
699 		pr_info("Thread data TXs:\n");
700 		pr_info("Base address: 0x%08x\n",
701 			(u32)ugeth->p_thread_data_tx);
702 		for (i = 0; i < numThreadsTxNumerical; i++) {
703 			pr_info("Thread data TX[%d]:\n", i);
704 			pr_info("Base address: 0x%08x\n",
705 				(u32)&ugeth->p_thread_data_tx[i]);
706 			mem_disp((u8 *) & ugeth->p_thread_data_tx[i],
707 				 sizeof(struct ucc_geth_thread_data_tx));
708 		}
709 	}
710 	if (ugeth->p_thread_data_rx) {
711 		int numThreadsRxNumerical;
712 		switch (ugeth->ug_info->numThreadsRx) {
713 		case UCC_GETH_NUM_OF_THREADS_1:
714 			numThreadsRxNumerical = 1;
715 			break;
716 		case UCC_GETH_NUM_OF_THREADS_2:
717 			numThreadsRxNumerical = 2;
718 			break;
719 		case UCC_GETH_NUM_OF_THREADS_4:
720 			numThreadsRxNumerical = 4;
721 			break;
722 		case UCC_GETH_NUM_OF_THREADS_6:
723 			numThreadsRxNumerical = 6;
724 			break;
725 		case UCC_GETH_NUM_OF_THREADS_8:
726 			numThreadsRxNumerical = 8;
727 			break;
728 		default:
729 			numThreadsRxNumerical = 0;
730 			break;
731 		}
732 
733 		pr_info("Thread data RX:\n");
734 		pr_info("Base address: 0x%08x\n",
735 			(u32)ugeth->p_thread_data_rx);
736 		for (i = 0; i < numThreadsRxNumerical; i++) {
737 			pr_info("Thread data RX[%d]:\n", i);
738 			pr_info("Base address: 0x%08x\n",
739 				(u32)&ugeth->p_thread_data_rx[i]);
740 			mem_disp((u8 *) & ugeth->p_thread_data_rx[i],
741 				 sizeof(struct ucc_geth_thread_data_rx));
742 		}
743 	}
744 	if (ugeth->p_exf_glbl_param) {
745 		pr_info("EXF global param:\n");
746 		pr_info("Base address: 0x%08x\n",
747 			(u32)ugeth->p_exf_glbl_param);
748 		mem_disp((u8 *) ugeth->p_exf_glbl_param,
749 			 sizeof(*ugeth->p_exf_glbl_param));
750 	}
751 	if (ugeth->p_tx_glbl_pram) {
752 		pr_info("TX global param:\n");
753 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_tx_glbl_pram);
754 		pr_info("temoder      : addr - 0x%08x, val - 0x%04x\n",
755 			(u32)&ugeth->p_tx_glbl_pram->temoder,
756 			in_be16(&ugeth->p_tx_glbl_pram->temoder));
757 	       pr_info("sqptr        : addr - 0x%08x, val - 0x%08x\n",
758 			(u32)&ugeth->p_tx_glbl_pram->sqptr,
759 			in_be32(&ugeth->p_tx_glbl_pram->sqptr));
760 		pr_info("schedulerbasepointer: addr - 0x%08x, val - 0x%08x\n",
761 			(u32)&ugeth->p_tx_glbl_pram->schedulerbasepointer,
762 			in_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer));
763 		pr_info("txrmonbaseptr: addr - 0x%08x, val - 0x%08x\n",
764 			(u32)&ugeth->p_tx_glbl_pram->txrmonbaseptr,
765 			in_be32(&ugeth->p_tx_glbl_pram->txrmonbaseptr));
766 		pr_info("tstate       : addr - 0x%08x, val - 0x%08x\n",
767 			(u32)&ugeth->p_tx_glbl_pram->tstate,
768 			in_be32(&ugeth->p_tx_glbl_pram->tstate));
769 		pr_info("iphoffset[0] : addr - 0x%08x, val - 0x%02x\n",
770 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[0],
771 			ugeth->p_tx_glbl_pram->iphoffset[0]);
772 		pr_info("iphoffset[1] : addr - 0x%08x, val - 0x%02x\n",
773 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[1],
774 			ugeth->p_tx_glbl_pram->iphoffset[1]);
775 		pr_info("iphoffset[2] : addr - 0x%08x, val - 0x%02x\n",
776 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[2],
777 			ugeth->p_tx_glbl_pram->iphoffset[2]);
778 		pr_info("iphoffset[3] : addr - 0x%08x, val - 0x%02x\n",
779 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[3],
780 			ugeth->p_tx_glbl_pram->iphoffset[3]);
781 		pr_info("iphoffset[4] : addr - 0x%08x, val - 0x%02x\n",
782 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[4],
783 			ugeth->p_tx_glbl_pram->iphoffset[4]);
784 		pr_info("iphoffset[5] : addr - 0x%08x, val - 0x%02x\n",
785 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[5],
786 			ugeth->p_tx_glbl_pram->iphoffset[5]);
787 		pr_info("iphoffset[6] : addr - 0x%08x, val - 0x%02x\n",
788 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[6],
789 			ugeth->p_tx_glbl_pram->iphoffset[6]);
790 		pr_info("iphoffset[7] : addr - 0x%08x, val - 0x%02x\n",
791 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[7],
792 			ugeth->p_tx_glbl_pram->iphoffset[7]);
793 		pr_info("vtagtable[0] : addr - 0x%08x, val - 0x%08x\n",
794 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[0],
795 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[0]));
796 		pr_info("vtagtable[1] : addr - 0x%08x, val - 0x%08x\n",
797 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[1],
798 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[1]));
799 		pr_info("vtagtable[2] : addr - 0x%08x, val - 0x%08x\n",
800 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[2],
801 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[2]));
802 		pr_info("vtagtable[3] : addr - 0x%08x, val - 0x%08x\n",
803 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[3],
804 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[3]));
805 		pr_info("vtagtable[4] : addr - 0x%08x, val - 0x%08x\n",
806 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[4],
807 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[4]));
808 		pr_info("vtagtable[5] : addr - 0x%08x, val - 0x%08x\n",
809 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[5],
810 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[5]));
811 		pr_info("vtagtable[6] : addr - 0x%08x, val - 0x%08x\n",
812 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[6],
813 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[6]));
814 		pr_info("vtagtable[7] : addr - 0x%08x, val - 0x%08x\n",
815 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[7],
816 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[7]));
817 		pr_info("tqptr        : addr - 0x%08x, val - 0x%08x\n",
818 			(u32)&ugeth->p_tx_glbl_pram->tqptr,
819 			in_be32(&ugeth->p_tx_glbl_pram->tqptr));
820 	}
821 	if (ugeth->p_rx_glbl_pram) {
822 		pr_info("RX global param:\n");
823 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_glbl_pram);
824 		pr_info("remoder         : addr - 0x%08x, val - 0x%08x\n",
825 			(u32)&ugeth->p_rx_glbl_pram->remoder,
826 			in_be32(&ugeth->p_rx_glbl_pram->remoder));
827 		pr_info("rqptr           : addr - 0x%08x, val - 0x%08x\n",
828 			(u32)&ugeth->p_rx_glbl_pram->rqptr,
829 			in_be32(&ugeth->p_rx_glbl_pram->rqptr));
830 		pr_info("typeorlen       : addr - 0x%08x, val - 0x%04x\n",
831 			(u32)&ugeth->p_rx_glbl_pram->typeorlen,
832 			in_be16(&ugeth->p_rx_glbl_pram->typeorlen));
833 		pr_info("rxgstpack       : addr - 0x%08x, val - 0x%02x\n",
834 			(u32)&ugeth->p_rx_glbl_pram->rxgstpack,
835 			ugeth->p_rx_glbl_pram->rxgstpack);
836 		pr_info("rxrmonbaseptr   : addr - 0x%08x, val - 0x%08x\n",
837 			(u32)&ugeth->p_rx_glbl_pram->rxrmonbaseptr,
838 			in_be32(&ugeth->p_rx_glbl_pram->rxrmonbaseptr));
839 		pr_info("intcoalescingptr: addr - 0x%08x, val - 0x%08x\n",
840 			(u32)&ugeth->p_rx_glbl_pram->intcoalescingptr,
841 			in_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr));
842 		pr_info("rstate          : addr - 0x%08x, val - 0x%02x\n",
843 			(u32)&ugeth->p_rx_glbl_pram->rstate,
844 			ugeth->p_rx_glbl_pram->rstate);
845 		pr_info("mrblr           : addr - 0x%08x, val - 0x%04x\n",
846 			(u32)&ugeth->p_rx_glbl_pram->mrblr,
847 			in_be16(&ugeth->p_rx_glbl_pram->mrblr));
848 		pr_info("rbdqptr         : addr - 0x%08x, val - 0x%08x\n",
849 			(u32)&ugeth->p_rx_glbl_pram->rbdqptr,
850 			in_be32(&ugeth->p_rx_glbl_pram->rbdqptr));
851 		pr_info("mflr            : addr - 0x%08x, val - 0x%04x\n",
852 			(u32)&ugeth->p_rx_glbl_pram->mflr,
853 			in_be16(&ugeth->p_rx_glbl_pram->mflr));
854 		pr_info("minflr          : addr - 0x%08x, val - 0x%04x\n",
855 			(u32)&ugeth->p_rx_glbl_pram->minflr,
856 			in_be16(&ugeth->p_rx_glbl_pram->minflr));
857 		pr_info("maxd1           : addr - 0x%08x, val - 0x%04x\n",
858 			(u32)&ugeth->p_rx_glbl_pram->maxd1,
859 			in_be16(&ugeth->p_rx_glbl_pram->maxd1));
860 		pr_info("maxd2           : addr - 0x%08x, val - 0x%04x\n",
861 			(u32)&ugeth->p_rx_glbl_pram->maxd2,
862 			in_be16(&ugeth->p_rx_glbl_pram->maxd2));
863 		pr_info("ecamptr         : addr - 0x%08x, val - 0x%08x\n",
864 			(u32)&ugeth->p_rx_glbl_pram->ecamptr,
865 			in_be32(&ugeth->p_rx_glbl_pram->ecamptr));
866 		pr_info("l2qt            : addr - 0x%08x, val - 0x%08x\n",
867 			(u32)&ugeth->p_rx_glbl_pram->l2qt,
868 			in_be32(&ugeth->p_rx_glbl_pram->l2qt));
869 		pr_info("l3qt[0]         : addr - 0x%08x, val - 0x%08x\n",
870 			(u32)&ugeth->p_rx_glbl_pram->l3qt[0],
871 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[0]));
872 		pr_info("l3qt[1]         : addr - 0x%08x, val - 0x%08x\n",
873 			(u32)&ugeth->p_rx_glbl_pram->l3qt[1],
874 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[1]));
875 		pr_info("l3qt[2]         : addr - 0x%08x, val - 0x%08x\n",
876 			(u32)&ugeth->p_rx_glbl_pram->l3qt[2],
877 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[2]));
878 		pr_info("l3qt[3]         : addr - 0x%08x, val - 0x%08x\n",
879 			(u32)&ugeth->p_rx_glbl_pram->l3qt[3],
880 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[3]));
881 		pr_info("l3qt[4]         : addr - 0x%08x, val - 0x%08x\n",
882 			(u32)&ugeth->p_rx_glbl_pram->l3qt[4],
883 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[4]));
884 		pr_info("l3qt[5]         : addr - 0x%08x, val - 0x%08x\n",
885 			(u32)&ugeth->p_rx_glbl_pram->l3qt[5],
886 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[5]));
887 		pr_info("l3qt[6]         : addr - 0x%08x, val - 0x%08x\n",
888 			(u32)&ugeth->p_rx_glbl_pram->l3qt[6],
889 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[6]));
890 		pr_info("l3qt[7]         : addr - 0x%08x, val - 0x%08x\n",
891 			(u32)&ugeth->p_rx_glbl_pram->l3qt[7],
892 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[7]));
893 		pr_info("vlantype        : addr - 0x%08x, val - 0x%04x\n",
894 			(u32)&ugeth->p_rx_glbl_pram->vlantype,
895 			in_be16(&ugeth->p_rx_glbl_pram->vlantype));
896 		pr_info("vlantci         : addr - 0x%08x, val - 0x%04x\n",
897 			(u32)&ugeth->p_rx_glbl_pram->vlantci,
898 			in_be16(&ugeth->p_rx_glbl_pram->vlantci));
899 		for (i = 0; i < 64; i++)
900 			pr_info("addressfiltering[%d]: addr - 0x%08x, val - 0x%02x\n",
901 				i,
902 				(u32)&ugeth->p_rx_glbl_pram->addressfiltering[i],
903 				ugeth->p_rx_glbl_pram->addressfiltering[i]);
904 		pr_info("exfGlobalParam  : addr - 0x%08x, val - 0x%08x\n",
905 			(u32)&ugeth->p_rx_glbl_pram->exfGlobalParam,
906 			in_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam));
907 	}
908 	if (ugeth->p_send_q_mem_reg) {
909 		pr_info("Send Q memory registers:\n");
910 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_send_q_mem_reg);
911 		for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
912 			pr_info("SQQD[%d]:\n", i);
913 			pr_info("Base address: 0x%08x\n",
914 				(u32)&ugeth->p_send_q_mem_reg->sqqd[i]);
915 			mem_disp((u8 *) & ugeth->p_send_q_mem_reg->sqqd[i],
916 				 sizeof(struct ucc_geth_send_queue_qd));
917 		}
918 	}
919 	if (ugeth->p_scheduler) {
920 		pr_info("Scheduler:\n");
921 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_scheduler);
922 		mem_disp((u8 *) ugeth->p_scheduler,
923 			 sizeof(*ugeth->p_scheduler));
924 	}
925 	if (ugeth->p_tx_fw_statistics_pram) {
926 		pr_info("TX FW statistics pram:\n");
927 		pr_info("Base address: 0x%08x\n",
928 			(u32)ugeth->p_tx_fw_statistics_pram);
929 		mem_disp((u8 *) ugeth->p_tx_fw_statistics_pram,
930 			 sizeof(*ugeth->p_tx_fw_statistics_pram));
931 	}
932 	if (ugeth->p_rx_fw_statistics_pram) {
933 		pr_info("RX FW statistics pram:\n");
934 		pr_info("Base address: 0x%08x\n",
935 			(u32)ugeth->p_rx_fw_statistics_pram);
936 		mem_disp((u8 *) ugeth->p_rx_fw_statistics_pram,
937 			 sizeof(*ugeth->p_rx_fw_statistics_pram));
938 	}
939 	if (ugeth->p_rx_irq_coalescing_tbl) {
940 		pr_info("RX IRQ coalescing tables:\n");
941 		pr_info("Base address: 0x%08x\n",
942 			(u32)ugeth->p_rx_irq_coalescing_tbl);
943 		for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
944 			pr_info("RX IRQ coalescing table entry[%d]:\n", i);
945 			pr_info("Base address: 0x%08x\n",
946 				(u32)&ugeth->p_rx_irq_coalescing_tbl->
947 				coalescingentry[i]);
948 			pr_info("interruptcoalescingmaxvalue: addr - 0x%08x, val - 0x%08x\n",
949 				(u32)&ugeth->p_rx_irq_coalescing_tbl->
950 				coalescingentry[i].interruptcoalescingmaxvalue,
951 				in_be32(&ugeth->p_rx_irq_coalescing_tbl->
952 					coalescingentry[i].
953 					interruptcoalescingmaxvalue));
954 			pr_info("interruptcoalescingcounter : addr - 0x%08x, val - 0x%08x\n",
955 				(u32)&ugeth->p_rx_irq_coalescing_tbl->
956 				coalescingentry[i].interruptcoalescingcounter,
957 				in_be32(&ugeth->p_rx_irq_coalescing_tbl->
958 					coalescingentry[i].
959 					interruptcoalescingcounter));
960 		}
961 	}
962 	if (ugeth->p_rx_bd_qs_tbl) {
963 		pr_info("RX BD QS tables:\n");
964 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_bd_qs_tbl);
965 		for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
966 			pr_info("RX BD QS table[%d]:\n", i);
967 			pr_info("Base address: 0x%08x\n",
968 				(u32)&ugeth->p_rx_bd_qs_tbl[i]);
969 			pr_info("bdbaseptr        : addr - 0x%08x, val - 0x%08x\n",
970 				(u32)&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr,
971 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr));
972 			pr_info("bdptr            : addr - 0x%08x, val - 0x%08x\n",
973 				(u32)&ugeth->p_rx_bd_qs_tbl[i].bdptr,
974 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdptr));
975 			pr_info("externalbdbaseptr: addr - 0x%08x, val - 0x%08x\n",
976 				(u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
977 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].
978 					externalbdbaseptr));
979 			pr_info("externalbdptr    : addr - 0x%08x, val - 0x%08x\n",
980 				(u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdptr,
981 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdptr));
982 			pr_info("ucode RX Prefetched BDs:\n");
983 			pr_info("Base address: 0x%08x\n",
984 				(u32)qe_muram_addr(in_be32
985 						   (&ugeth->p_rx_bd_qs_tbl[i].
986 						    bdbaseptr)));
987 			mem_disp((u8 *)
988 				 qe_muram_addr(in_be32
989 					       (&ugeth->p_rx_bd_qs_tbl[i].
990 						bdbaseptr)),
991 				 sizeof(struct ucc_geth_rx_prefetched_bds));
992 		}
993 	}
994 	if (ugeth->p_init_enet_param_shadow) {
995 		int size;
996 		pr_info("Init enet param shadow:\n");
997 		pr_info("Base address: 0x%08x\n",
998 			(u32) ugeth->p_init_enet_param_shadow);
999 		mem_disp((u8 *) ugeth->p_init_enet_param_shadow,
1000 			 sizeof(*ugeth->p_init_enet_param_shadow));
1001 
1002 		size = sizeof(struct ucc_geth_thread_rx_pram);
1003 		if (ugeth->ug_info->rxExtendedFiltering) {
1004 			size +=
1005 			    THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
1006 			if (ugeth->ug_info->largestexternallookupkeysize ==
1007 			    QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
1008 				size +=
1009 			THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
1010 			if (ugeth->ug_info->largestexternallookupkeysize ==
1011 			    QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
1012 				size +=
1013 			THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
1014 		}
1015 
1016 		dump_init_enet_entries(ugeth,
1017 				       &(ugeth->p_init_enet_param_shadow->
1018 					 txthread[0]),
1019 				       ENET_INIT_PARAM_MAX_ENTRIES_TX,
1020 				       sizeof(struct ucc_geth_thread_tx_pram),
1021 				       ugeth->ug_info->riscTx, 0);
1022 		dump_init_enet_entries(ugeth,
1023 				       &(ugeth->p_init_enet_param_shadow->
1024 					 rxthread[0]),
1025 				       ENET_INIT_PARAM_MAX_ENTRIES_RX, size,
1026 				       ugeth->ug_info->riscRx, 1);
1027 	}
1028 }
1029 #endif /* DEBUG */
1030 
1031 static void init_default_reg_vals(u32 __iomem *upsmr_register,
1032 				  u32 __iomem *maccfg1_register,
1033 				  u32 __iomem *maccfg2_register)
1034 {
1035 	out_be32(upsmr_register, UCC_GETH_UPSMR_INIT);
1036 	out_be32(maccfg1_register, UCC_GETH_MACCFG1_INIT);
1037 	out_be32(maccfg2_register, UCC_GETH_MACCFG2_INIT);
1038 }
1039 
1040 static int init_half_duplex_params(int alt_beb,
1041 				   int back_pressure_no_backoff,
1042 				   int no_backoff,
1043 				   int excess_defer,
1044 				   u8 alt_beb_truncation,
1045 				   u8 max_retransmissions,
1046 				   u8 collision_window,
1047 				   u32 __iomem *hafdup_register)
1048 {
1049 	u32 value = 0;
1050 
1051 	if ((alt_beb_truncation > HALFDUP_ALT_BEB_TRUNCATION_MAX) ||
1052 	    (max_retransmissions > HALFDUP_MAX_RETRANSMISSION_MAX) ||
1053 	    (collision_window > HALFDUP_COLLISION_WINDOW_MAX))
1054 		return -EINVAL;
1055 
1056 	value = (u32) (alt_beb_truncation << HALFDUP_ALT_BEB_TRUNCATION_SHIFT);
1057 
1058 	if (alt_beb)
1059 		value |= HALFDUP_ALT_BEB;
1060 	if (back_pressure_no_backoff)
1061 		value |= HALFDUP_BACK_PRESSURE_NO_BACKOFF;
1062 	if (no_backoff)
1063 		value |= HALFDUP_NO_BACKOFF;
1064 	if (excess_defer)
1065 		value |= HALFDUP_EXCESSIVE_DEFER;
1066 
1067 	value |= (max_retransmissions << HALFDUP_MAX_RETRANSMISSION_SHIFT);
1068 
1069 	value |= collision_window;
1070 
1071 	out_be32(hafdup_register, value);
1072 	return 0;
1073 }
1074 
1075 static int init_inter_frame_gap_params(u8 non_btb_cs_ipg,
1076 				       u8 non_btb_ipg,
1077 				       u8 min_ifg,
1078 				       u8 btb_ipg,
1079 				       u32 __iomem *ipgifg_register)
1080 {
1081 	u32 value = 0;
1082 
1083 	/* Non-Back-to-back IPG part 1 should be <= Non-Back-to-back
1084 	IPG part 2 */
1085 	if (non_btb_cs_ipg > non_btb_ipg)
1086 		return -EINVAL;
1087 
1088 	if ((non_btb_cs_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART1_MAX) ||
1089 	    (non_btb_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART2_MAX) ||
1090 	    /*(min_ifg        > IPGIFG_MINIMUM_IFG_ENFORCEMENT_MAX) || */
1091 	    (btb_ipg > IPGIFG_BACK_TO_BACK_IFG_MAX))
1092 		return -EINVAL;
1093 
1094 	value |=
1095 	    ((non_btb_cs_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART1_SHIFT) &
1096 	     IPGIFG_NBTB_CS_IPG_MASK);
1097 	value |=
1098 	    ((non_btb_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART2_SHIFT) &
1099 	     IPGIFG_NBTB_IPG_MASK);
1100 	value |=
1101 	    ((min_ifg << IPGIFG_MINIMUM_IFG_ENFORCEMENT_SHIFT) &
1102 	     IPGIFG_MIN_IFG_MASK);
1103 	value |= (btb_ipg & IPGIFG_BTB_IPG_MASK);
1104 
1105 	out_be32(ipgifg_register, value);
1106 	return 0;
1107 }
1108 
1109 int init_flow_control_params(u32 automatic_flow_control_mode,
1110 				    int rx_flow_control_enable,
1111 				    int tx_flow_control_enable,
1112 				    u16 pause_period,
1113 				    u16 extension_field,
1114 				    u32 __iomem *upsmr_register,
1115 				    u32 __iomem *uempr_register,
1116 				    u32 __iomem *maccfg1_register)
1117 {
1118 	u32 value = 0;
1119 
1120 	/* Set UEMPR register */
1121 	value = (u32) pause_period << UEMPR_PAUSE_TIME_VALUE_SHIFT;
1122 	value |= (u32) extension_field << UEMPR_EXTENDED_PAUSE_TIME_VALUE_SHIFT;
1123 	out_be32(uempr_register, value);
1124 
1125 	/* Set UPSMR register */
1126 	setbits32(upsmr_register, automatic_flow_control_mode);
1127 
1128 	value = in_be32(maccfg1_register);
1129 	if (rx_flow_control_enable)
1130 		value |= MACCFG1_FLOW_RX;
1131 	if (tx_flow_control_enable)
1132 		value |= MACCFG1_FLOW_TX;
1133 	out_be32(maccfg1_register, value);
1134 
1135 	return 0;
1136 }
1137 
1138 static int init_hw_statistics_gathering_mode(int enable_hardware_statistics,
1139 					     int auto_zero_hardware_statistics,
1140 					     u32 __iomem *upsmr_register,
1141 					     u16 __iomem *uescr_register)
1142 {
1143 	u16 uescr_value = 0;
1144 
1145 	/* Enable hardware statistics gathering if requested */
1146 	if (enable_hardware_statistics)
1147 		setbits32(upsmr_register, UCC_GETH_UPSMR_HSE);
1148 
1149 	/* Clear hardware statistics counters */
1150 	uescr_value = in_be16(uescr_register);
1151 	uescr_value |= UESCR_CLRCNT;
1152 	/* Automatically zero hardware statistics counters on read,
1153 	if requested */
1154 	if (auto_zero_hardware_statistics)
1155 		uescr_value |= UESCR_AUTOZ;
1156 	out_be16(uescr_register, uescr_value);
1157 
1158 	return 0;
1159 }
1160 
1161 static int init_firmware_statistics_gathering_mode(int
1162 		enable_tx_firmware_statistics,
1163 		int enable_rx_firmware_statistics,
1164 		u32 __iomem *tx_rmon_base_ptr,
1165 		u32 tx_firmware_statistics_structure_address,
1166 		u32 __iomem *rx_rmon_base_ptr,
1167 		u32 rx_firmware_statistics_structure_address,
1168 		u16 __iomem *temoder_register,
1169 		u32 __iomem *remoder_register)
1170 {
1171 	/* Note: this function does not check if */
1172 	/* the parameters it receives are NULL   */
1173 
1174 	if (enable_tx_firmware_statistics) {
1175 		out_be32(tx_rmon_base_ptr,
1176 			 tx_firmware_statistics_structure_address);
1177 		setbits16(temoder_register, TEMODER_TX_RMON_STATISTICS_ENABLE);
1178 	}
1179 
1180 	if (enable_rx_firmware_statistics) {
1181 		out_be32(rx_rmon_base_ptr,
1182 			 rx_firmware_statistics_structure_address);
1183 		setbits32(remoder_register, REMODER_RX_RMON_STATISTICS_ENABLE);
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 static int init_mac_station_addr_regs(u8 address_byte_0,
1190 				      u8 address_byte_1,
1191 				      u8 address_byte_2,
1192 				      u8 address_byte_3,
1193 				      u8 address_byte_4,
1194 				      u8 address_byte_5,
1195 				      u32 __iomem *macstnaddr1_register,
1196 				      u32 __iomem *macstnaddr2_register)
1197 {
1198 	u32 value = 0;
1199 
1200 	/* Example: for a station address of 0x12345678ABCD, */
1201 	/* 0x12 is byte 0, 0x34 is byte 1 and so on and 0xCD is byte 5 */
1202 
1203 	/* MACSTNADDR1 Register: */
1204 
1205 	/* 0                      7   8                      15  */
1206 	/* station address byte 5     station address byte 4     */
1207 	/* 16                     23  24                     31  */
1208 	/* station address byte 3     station address byte 2     */
1209 	value |= (u32) ((address_byte_2 << 0) & 0x000000FF);
1210 	value |= (u32) ((address_byte_3 << 8) & 0x0000FF00);
1211 	value |= (u32) ((address_byte_4 << 16) & 0x00FF0000);
1212 	value |= (u32) ((address_byte_5 << 24) & 0xFF000000);
1213 
1214 	out_be32(macstnaddr1_register, value);
1215 
1216 	/* MACSTNADDR2 Register: */
1217 
1218 	/* 0                      7   8                      15  */
1219 	/* station address byte 1     station address byte 0     */
1220 	/* 16                     23  24                     31  */
1221 	/*         reserved                   reserved           */
1222 	value = 0;
1223 	value |= (u32) ((address_byte_0 << 16) & 0x00FF0000);
1224 	value |= (u32) ((address_byte_1 << 24) & 0xFF000000);
1225 
1226 	out_be32(macstnaddr2_register, value);
1227 
1228 	return 0;
1229 }
1230 
1231 static int init_check_frame_length_mode(int length_check,
1232 					u32 __iomem *maccfg2_register)
1233 {
1234 	u32 value = 0;
1235 
1236 	value = in_be32(maccfg2_register);
1237 
1238 	if (length_check)
1239 		value |= MACCFG2_LC;
1240 	else
1241 		value &= ~MACCFG2_LC;
1242 
1243 	out_be32(maccfg2_register, value);
1244 	return 0;
1245 }
1246 
1247 static int init_preamble_length(u8 preamble_length,
1248 				u32 __iomem *maccfg2_register)
1249 {
1250 	if ((preamble_length < 3) || (preamble_length > 7))
1251 		return -EINVAL;
1252 
1253 	clrsetbits_be32(maccfg2_register, MACCFG2_PREL_MASK,
1254 			preamble_length << MACCFG2_PREL_SHIFT);
1255 
1256 	return 0;
1257 }
1258 
1259 static int init_rx_parameters(int reject_broadcast,
1260 			      int receive_short_frames,
1261 			      int promiscuous, u32 __iomem *upsmr_register)
1262 {
1263 	u32 value = 0;
1264 
1265 	value = in_be32(upsmr_register);
1266 
1267 	if (reject_broadcast)
1268 		value |= UCC_GETH_UPSMR_BRO;
1269 	else
1270 		value &= ~UCC_GETH_UPSMR_BRO;
1271 
1272 	if (receive_short_frames)
1273 		value |= UCC_GETH_UPSMR_RSH;
1274 	else
1275 		value &= ~UCC_GETH_UPSMR_RSH;
1276 
1277 	if (promiscuous)
1278 		value |= UCC_GETH_UPSMR_PRO;
1279 	else
1280 		value &= ~UCC_GETH_UPSMR_PRO;
1281 
1282 	out_be32(upsmr_register, value);
1283 
1284 	return 0;
1285 }
1286 
1287 static int init_max_rx_buff_len(u16 max_rx_buf_len,
1288 				u16 __iomem *mrblr_register)
1289 {
1290 	/* max_rx_buf_len value must be a multiple of 128 */
1291 	if ((max_rx_buf_len == 0) ||
1292 	    (max_rx_buf_len % UCC_GETH_MRBLR_ALIGNMENT))
1293 		return -EINVAL;
1294 
1295 	out_be16(mrblr_register, max_rx_buf_len);
1296 	return 0;
1297 }
1298 
1299 static int init_min_frame_len(u16 min_frame_length,
1300 			      u16 __iomem *minflr_register,
1301 			      u16 __iomem *mrblr_register)
1302 {
1303 	u16 mrblr_value = 0;
1304 
1305 	mrblr_value = in_be16(mrblr_register);
1306 	if (min_frame_length >= (mrblr_value - 4))
1307 		return -EINVAL;
1308 
1309 	out_be16(minflr_register, min_frame_length);
1310 	return 0;
1311 }
1312 
1313 static int adjust_enet_interface(struct ucc_geth_private *ugeth)
1314 {
1315 	struct ucc_geth_info *ug_info;
1316 	struct ucc_geth __iomem *ug_regs;
1317 	struct ucc_fast __iomem *uf_regs;
1318 	int ret_val;
1319 	u32 upsmr, maccfg2;
1320 	u16 value;
1321 
1322 	ugeth_vdbg("%s: IN", __func__);
1323 
1324 	ug_info = ugeth->ug_info;
1325 	ug_regs = ugeth->ug_regs;
1326 	uf_regs = ugeth->uccf->uf_regs;
1327 
1328 	/*                    Set MACCFG2                    */
1329 	maccfg2 = in_be32(&ug_regs->maccfg2);
1330 	maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
1331 	if ((ugeth->max_speed == SPEED_10) ||
1332 	    (ugeth->max_speed == SPEED_100))
1333 		maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
1334 	else if (ugeth->max_speed == SPEED_1000)
1335 		maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
1336 	maccfg2 |= ug_info->padAndCrc;
1337 	out_be32(&ug_regs->maccfg2, maccfg2);
1338 
1339 	/*                    Set UPSMR                      */
1340 	upsmr = in_be32(&uf_regs->upsmr);
1341 	upsmr &= ~(UCC_GETH_UPSMR_RPM | UCC_GETH_UPSMR_R10M |
1342 		   UCC_GETH_UPSMR_TBIM | UCC_GETH_UPSMR_RMM);
1343 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1344 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1345 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1346 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1347 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1348 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1349 		if (ugeth->phy_interface != PHY_INTERFACE_MODE_RMII)
1350 			upsmr |= UCC_GETH_UPSMR_RPM;
1351 		switch (ugeth->max_speed) {
1352 		case SPEED_10:
1353 			upsmr |= UCC_GETH_UPSMR_R10M;
1354 			/* FALLTHROUGH */
1355 		case SPEED_100:
1356 			if (ugeth->phy_interface != PHY_INTERFACE_MODE_RTBI)
1357 				upsmr |= UCC_GETH_UPSMR_RMM;
1358 		}
1359 	}
1360 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1361 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1362 		upsmr |= UCC_GETH_UPSMR_TBIM;
1363 	}
1364 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_SGMII))
1365 		upsmr |= UCC_GETH_UPSMR_SGMM;
1366 
1367 	out_be32(&uf_regs->upsmr, upsmr);
1368 
1369 	/* Disable autonegotiation in tbi mode, because by default it
1370 	comes up in autonegotiation mode. */
1371 	/* Note that this depends on proper setting in utbipar register. */
1372 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1373 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1374 		struct ucc_geth_info *ug_info = ugeth->ug_info;
1375 		struct phy_device *tbiphy;
1376 
1377 		if (!ug_info->tbi_node)
1378 			pr_warn("TBI mode requires that the device tree specify a tbi-handle\n");
1379 
1380 		tbiphy = of_phy_find_device(ug_info->tbi_node);
1381 		if (!tbiphy)
1382 			pr_warn("Could not get TBI device\n");
1383 
1384 		value = phy_read(tbiphy, ENET_TBI_MII_CR);
1385 		value &= ~0x1000;	/* Turn off autonegotiation */
1386 		phy_write(tbiphy, ENET_TBI_MII_CR, value);
1387 	}
1388 
1389 	init_check_frame_length_mode(ug_info->lengthCheckRx, &ug_regs->maccfg2);
1390 
1391 	ret_val = init_preamble_length(ug_info->prel, &ug_regs->maccfg2);
1392 	if (ret_val != 0) {
1393 		if (netif_msg_probe(ugeth))
1394 			pr_err("Preamble length must be between 3 and 7 inclusive\n");
1395 		return ret_val;
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 static int ugeth_graceful_stop_tx(struct ucc_geth_private *ugeth)
1402 {
1403 	struct ucc_fast_private *uccf;
1404 	u32 cecr_subblock;
1405 	u32 temp;
1406 	int i = 10;
1407 
1408 	uccf = ugeth->uccf;
1409 
1410 	/* Mask GRACEFUL STOP TX interrupt bit and clear it */
1411 	clrbits32(uccf->p_uccm, UCC_GETH_UCCE_GRA);
1412 	out_be32(uccf->p_ucce, UCC_GETH_UCCE_GRA);  /* clear by writing 1 */
1413 
1414 	/* Issue host command */
1415 	cecr_subblock =
1416 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1417 	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
1418 		     QE_CR_PROTOCOL_ETHERNET, 0);
1419 
1420 	/* Wait for command to complete */
1421 	do {
1422 		msleep(10);
1423 		temp = in_be32(uccf->p_ucce);
1424 	} while (!(temp & UCC_GETH_UCCE_GRA) && --i);
1425 
1426 	uccf->stopped_tx = 1;
1427 
1428 	return 0;
1429 }
1430 
1431 static int ugeth_graceful_stop_rx(struct ucc_geth_private *ugeth)
1432 {
1433 	struct ucc_fast_private *uccf;
1434 	u32 cecr_subblock;
1435 	u8 temp;
1436 	int i = 10;
1437 
1438 	uccf = ugeth->uccf;
1439 
1440 	/* Clear acknowledge bit */
1441 	temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1442 	temp &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
1443 	out_8(&ugeth->p_rx_glbl_pram->rxgstpack, temp);
1444 
1445 	/* Keep issuing command and checking acknowledge bit until
1446 	it is asserted, according to spec */
1447 	do {
1448 		/* Issue host command */
1449 		cecr_subblock =
1450 		    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.
1451 						ucc_num);
1452 		qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
1453 			     QE_CR_PROTOCOL_ETHERNET, 0);
1454 		msleep(10);
1455 		temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1456 	} while (!(temp & GRACEFUL_STOP_ACKNOWLEDGE_RX) && --i);
1457 
1458 	uccf->stopped_rx = 1;
1459 
1460 	return 0;
1461 }
1462 
1463 static int ugeth_restart_tx(struct ucc_geth_private *ugeth)
1464 {
1465 	struct ucc_fast_private *uccf;
1466 	u32 cecr_subblock;
1467 
1468 	uccf = ugeth->uccf;
1469 
1470 	cecr_subblock =
1471 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1472 	qe_issue_cmd(QE_RESTART_TX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 0);
1473 	uccf->stopped_tx = 0;
1474 
1475 	return 0;
1476 }
1477 
1478 static int ugeth_restart_rx(struct ucc_geth_private *ugeth)
1479 {
1480 	struct ucc_fast_private *uccf;
1481 	u32 cecr_subblock;
1482 
1483 	uccf = ugeth->uccf;
1484 
1485 	cecr_subblock =
1486 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1487 	qe_issue_cmd(QE_RESTART_RX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
1488 		     0);
1489 	uccf->stopped_rx = 0;
1490 
1491 	return 0;
1492 }
1493 
1494 static int ugeth_enable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1495 {
1496 	struct ucc_fast_private *uccf;
1497 	int enabled_tx, enabled_rx;
1498 
1499 	uccf = ugeth->uccf;
1500 
1501 	/* check if the UCC number is in range. */
1502 	if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1503 		if (netif_msg_probe(ugeth))
1504 			pr_err("ucc_num out of range\n");
1505 		return -EINVAL;
1506 	}
1507 
1508 	enabled_tx = uccf->enabled_tx;
1509 	enabled_rx = uccf->enabled_rx;
1510 
1511 	/* Get Tx and Rx going again, in case this channel was actively
1512 	disabled. */
1513 	if ((mode & COMM_DIR_TX) && (!enabled_tx) && uccf->stopped_tx)
1514 		ugeth_restart_tx(ugeth);
1515 	if ((mode & COMM_DIR_RX) && (!enabled_rx) && uccf->stopped_rx)
1516 		ugeth_restart_rx(ugeth);
1517 
1518 	ucc_fast_enable(uccf, mode);	/* OK to do even if not disabled */
1519 
1520 	return 0;
1521 
1522 }
1523 
1524 static int ugeth_disable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1525 {
1526 	struct ucc_fast_private *uccf;
1527 
1528 	uccf = ugeth->uccf;
1529 
1530 	/* check if the UCC number is in range. */
1531 	if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1532 		if (netif_msg_probe(ugeth))
1533 			pr_err("ucc_num out of range\n");
1534 		return -EINVAL;
1535 	}
1536 
1537 	/* Stop any transmissions */
1538 	if ((mode & COMM_DIR_TX) && uccf->enabled_tx && !uccf->stopped_tx)
1539 		ugeth_graceful_stop_tx(ugeth);
1540 
1541 	/* Stop any receptions */
1542 	if ((mode & COMM_DIR_RX) && uccf->enabled_rx && !uccf->stopped_rx)
1543 		ugeth_graceful_stop_rx(ugeth);
1544 
1545 	ucc_fast_disable(ugeth->uccf, mode); /* OK to do even if not enabled */
1546 
1547 	return 0;
1548 }
1549 
1550 static void ugeth_quiesce(struct ucc_geth_private *ugeth)
1551 {
1552 	/* Prevent any further xmits, plus detach the device. */
1553 	netif_device_detach(ugeth->ndev);
1554 
1555 	/* Wait for any current xmits to finish. */
1556 	netif_tx_disable(ugeth->ndev);
1557 
1558 	/* Disable the interrupt to avoid NAPI rescheduling. */
1559 	disable_irq(ugeth->ug_info->uf_info.irq);
1560 
1561 	/* Stop NAPI, and possibly wait for its completion. */
1562 	napi_disable(&ugeth->napi);
1563 }
1564 
1565 static void ugeth_activate(struct ucc_geth_private *ugeth)
1566 {
1567 	napi_enable(&ugeth->napi);
1568 	enable_irq(ugeth->ug_info->uf_info.irq);
1569 	netif_device_attach(ugeth->ndev);
1570 }
1571 
1572 /* Called every time the controller might need to be made
1573  * aware of new link state.  The PHY code conveys this
1574  * information through variables in the ugeth structure, and this
1575  * function converts those variables into the appropriate
1576  * register values, and can bring down the device if needed.
1577  */
1578 
1579 static void adjust_link(struct net_device *dev)
1580 {
1581 	struct ucc_geth_private *ugeth = netdev_priv(dev);
1582 	struct ucc_geth __iomem *ug_regs;
1583 	struct ucc_fast __iomem *uf_regs;
1584 	struct phy_device *phydev = ugeth->phydev;
1585 	int new_state = 0;
1586 
1587 	ug_regs = ugeth->ug_regs;
1588 	uf_regs = ugeth->uccf->uf_regs;
1589 
1590 	if (phydev->link) {
1591 		u32 tempval = in_be32(&ug_regs->maccfg2);
1592 		u32 upsmr = in_be32(&uf_regs->upsmr);
1593 		/* Now we make sure that we can be in full duplex mode.
1594 		 * If not, we operate in half-duplex mode. */
1595 		if (phydev->duplex != ugeth->oldduplex) {
1596 			new_state = 1;
1597 			if (!(phydev->duplex))
1598 				tempval &= ~(MACCFG2_FDX);
1599 			else
1600 				tempval |= MACCFG2_FDX;
1601 			ugeth->oldduplex = phydev->duplex;
1602 		}
1603 
1604 		if (phydev->speed != ugeth->oldspeed) {
1605 			new_state = 1;
1606 			switch (phydev->speed) {
1607 			case SPEED_1000:
1608 				tempval = ((tempval &
1609 					    ~(MACCFG2_INTERFACE_MODE_MASK)) |
1610 					    MACCFG2_INTERFACE_MODE_BYTE);
1611 				break;
1612 			case SPEED_100:
1613 			case SPEED_10:
1614 				tempval = ((tempval &
1615 					    ~(MACCFG2_INTERFACE_MODE_MASK)) |
1616 					    MACCFG2_INTERFACE_MODE_NIBBLE);
1617 				/* if reduced mode, re-set UPSMR.R10M */
1618 				if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1619 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1620 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1621 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1622 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1623 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1624 					if (phydev->speed == SPEED_10)
1625 						upsmr |= UCC_GETH_UPSMR_R10M;
1626 					else
1627 						upsmr &= ~UCC_GETH_UPSMR_R10M;
1628 				}
1629 				break;
1630 			default:
1631 				if (netif_msg_link(ugeth))
1632 					pr_warn(
1633 						"%s: Ack!  Speed (%d) is not 10/100/1000!",
1634 						dev->name, phydev->speed);
1635 				break;
1636 			}
1637 			ugeth->oldspeed = phydev->speed;
1638 		}
1639 
1640 		if (!ugeth->oldlink) {
1641 			new_state = 1;
1642 			ugeth->oldlink = 1;
1643 		}
1644 
1645 		if (new_state) {
1646 			/*
1647 			 * To change the MAC configuration we need to disable
1648 			 * the controller. To do so, we have to either grab
1649 			 * ugeth->lock, which is a bad idea since 'graceful
1650 			 * stop' commands might take quite a while, or we can
1651 			 * quiesce driver's activity.
1652 			 */
1653 			ugeth_quiesce(ugeth);
1654 			ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
1655 
1656 			out_be32(&ug_regs->maccfg2, tempval);
1657 			out_be32(&uf_regs->upsmr, upsmr);
1658 
1659 			ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
1660 			ugeth_activate(ugeth);
1661 		}
1662 	} else if (ugeth->oldlink) {
1663 			new_state = 1;
1664 			ugeth->oldlink = 0;
1665 			ugeth->oldspeed = 0;
1666 			ugeth->oldduplex = -1;
1667 	}
1668 
1669 	if (new_state && netif_msg_link(ugeth))
1670 		phy_print_status(phydev);
1671 }
1672 
1673 /* Initialize TBI PHY interface for communicating with the
1674  * SERDES lynx PHY on the chip.  We communicate with this PHY
1675  * through the MDIO bus on each controller, treating it as a
1676  * "normal" PHY at the address found in the UTBIPA register.  We assume
1677  * that the UTBIPA register is valid.  Either the MDIO bus code will set
1678  * it to a value that doesn't conflict with other PHYs on the bus, or the
1679  * value doesn't matter, as there are no other PHYs on the bus.
1680  */
1681 static void uec_configure_serdes(struct net_device *dev)
1682 {
1683 	struct ucc_geth_private *ugeth = netdev_priv(dev);
1684 	struct ucc_geth_info *ug_info = ugeth->ug_info;
1685 	struct phy_device *tbiphy;
1686 
1687 	if (!ug_info->tbi_node) {
1688 		dev_warn(&dev->dev, "SGMII mode requires that the device "
1689 			"tree specify a tbi-handle\n");
1690 		return;
1691 	}
1692 
1693 	tbiphy = of_phy_find_device(ug_info->tbi_node);
1694 	if (!tbiphy) {
1695 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1696 		return;
1697 	}
1698 
1699 	/*
1700 	 * If the link is already up, we must already be ok, and don't need to
1701 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1702 	 * everything for us?  Resetting it takes the link down and requires
1703 	 * several seconds for it to come back.
1704 	 */
1705 	if (phy_read(tbiphy, ENET_TBI_MII_SR) & TBISR_LSTATUS)
1706 		return;
1707 
1708 	/* Single clk mode, mii mode off(for serdes communication) */
1709 	phy_write(tbiphy, ENET_TBI_MII_ANA, TBIANA_SETTINGS);
1710 
1711 	phy_write(tbiphy, ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
1712 
1713 	phy_write(tbiphy, ENET_TBI_MII_CR, TBICR_SETTINGS);
1714 }
1715 
1716 /* Configure the PHY for dev.
1717  * returns 0 if success.  -1 if failure
1718  */
1719 static int init_phy(struct net_device *dev)
1720 {
1721 	struct ucc_geth_private *priv = netdev_priv(dev);
1722 	struct ucc_geth_info *ug_info = priv->ug_info;
1723 	struct phy_device *phydev;
1724 
1725 	priv->oldlink = 0;
1726 	priv->oldspeed = 0;
1727 	priv->oldduplex = -1;
1728 
1729 	phydev = of_phy_connect(dev, ug_info->phy_node, &adjust_link, 0,
1730 				priv->phy_interface);
1731 	if (!phydev) {
1732 		dev_err(&dev->dev, "Could not attach to PHY\n");
1733 		return -ENODEV;
1734 	}
1735 
1736 	if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII)
1737 		uec_configure_serdes(dev);
1738 
1739 	phydev->supported &= (SUPPORTED_MII |
1740 			      SUPPORTED_Autoneg |
1741 			      ADVERTISED_10baseT_Half |
1742 			      ADVERTISED_10baseT_Full |
1743 			      ADVERTISED_100baseT_Half |
1744 			      ADVERTISED_100baseT_Full);
1745 
1746 	if (priv->max_speed == SPEED_1000)
1747 		phydev->supported |= ADVERTISED_1000baseT_Full;
1748 
1749 	phydev->advertising = phydev->supported;
1750 
1751 	priv->phydev = phydev;
1752 
1753 	return 0;
1754 }
1755 
1756 static void ugeth_dump_regs(struct ucc_geth_private *ugeth)
1757 {
1758 #ifdef DEBUG
1759 	ucc_fast_dump_regs(ugeth->uccf);
1760 	dump_regs(ugeth);
1761 	dump_bds(ugeth);
1762 #endif
1763 }
1764 
1765 static int ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private *
1766 						       ugeth,
1767 						       enum enet_addr_type
1768 						       enet_addr_type)
1769 {
1770 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
1771 	struct ucc_fast_private *uccf;
1772 	enum comm_dir comm_dir;
1773 	struct list_head *p_lh;
1774 	u16 i, num;
1775 	u32 __iomem *addr_h;
1776 	u32 __iomem *addr_l;
1777 	u8 *p_counter;
1778 
1779 	uccf = ugeth->uccf;
1780 
1781 	p_82xx_addr_filt =
1782 	    (struct ucc_geth_82xx_address_filtering_pram __iomem *)
1783 	    ugeth->p_rx_glbl_pram->addressfiltering;
1784 
1785 	if (enet_addr_type == ENET_ADDR_TYPE_GROUP) {
1786 		addr_h = &(p_82xx_addr_filt->gaddr_h);
1787 		addr_l = &(p_82xx_addr_filt->gaddr_l);
1788 		p_lh = &ugeth->group_hash_q;
1789 		p_counter = &(ugeth->numGroupAddrInHash);
1790 	} else if (enet_addr_type == ENET_ADDR_TYPE_INDIVIDUAL) {
1791 		addr_h = &(p_82xx_addr_filt->iaddr_h);
1792 		addr_l = &(p_82xx_addr_filt->iaddr_l);
1793 		p_lh = &ugeth->ind_hash_q;
1794 		p_counter = &(ugeth->numIndAddrInHash);
1795 	} else
1796 		return -EINVAL;
1797 
1798 	comm_dir = 0;
1799 	if (uccf->enabled_tx)
1800 		comm_dir |= COMM_DIR_TX;
1801 	if (uccf->enabled_rx)
1802 		comm_dir |= COMM_DIR_RX;
1803 	if (comm_dir)
1804 		ugeth_disable(ugeth, comm_dir);
1805 
1806 	/* Clear the hash table. */
1807 	out_be32(addr_h, 0x00000000);
1808 	out_be32(addr_l, 0x00000000);
1809 
1810 	if (!p_lh)
1811 		return 0;
1812 
1813 	num = *p_counter;
1814 
1815 	/* Delete all remaining CQ elements */
1816 	for (i = 0; i < num; i++)
1817 		put_enet_addr_container(ENET_ADDR_CONT_ENTRY(dequeue(p_lh)));
1818 
1819 	*p_counter = 0;
1820 
1821 	if (comm_dir)
1822 		ugeth_enable(ugeth, comm_dir);
1823 
1824 	return 0;
1825 }
1826 
1827 static int ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private *ugeth,
1828 						    u8 paddr_num)
1829 {
1830 	ugeth->indAddrRegUsed[paddr_num] = 0; /* mark this paddr as not used */
1831 	return hw_clear_addr_in_paddr(ugeth, paddr_num);/* clear in hardware */
1832 }
1833 
1834 static void ucc_geth_free_rx(struct ucc_geth_private *ugeth)
1835 {
1836 	struct ucc_geth_info *ug_info;
1837 	struct ucc_fast_info *uf_info;
1838 	u16 i, j;
1839 	u8 __iomem *bd;
1840 
1841 
1842 	ug_info = ugeth->ug_info;
1843 	uf_info = &ug_info->uf_info;
1844 
1845 	for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
1846 		if (ugeth->p_rx_bd_ring[i]) {
1847 			/* Return existing data buffers in ring */
1848 			bd = ugeth->p_rx_bd_ring[i];
1849 			for (j = 0; j < ugeth->ug_info->bdRingLenRx[i]; j++) {
1850 				if (ugeth->rx_skbuff[i][j]) {
1851 					dma_unmap_single(ugeth->dev,
1852 						in_be32(&((struct qe_bd __iomem *)bd)->buf),
1853 						ugeth->ug_info->
1854 						uf_info.max_rx_buf_length +
1855 						UCC_GETH_RX_DATA_BUF_ALIGNMENT,
1856 						DMA_FROM_DEVICE);
1857 					dev_kfree_skb_any(
1858 						ugeth->rx_skbuff[i][j]);
1859 					ugeth->rx_skbuff[i][j] = NULL;
1860 				}
1861 				bd += sizeof(struct qe_bd);
1862 			}
1863 
1864 			kfree(ugeth->rx_skbuff[i]);
1865 
1866 			if (ugeth->ug_info->uf_info.bd_mem_part ==
1867 			    MEM_PART_SYSTEM)
1868 				kfree((void *)ugeth->rx_bd_ring_offset[i]);
1869 			else if (ugeth->ug_info->uf_info.bd_mem_part ==
1870 				 MEM_PART_MURAM)
1871 				qe_muram_free(ugeth->rx_bd_ring_offset[i]);
1872 			ugeth->p_rx_bd_ring[i] = NULL;
1873 		}
1874 	}
1875 
1876 }
1877 
1878 static void ucc_geth_free_tx(struct ucc_geth_private *ugeth)
1879 {
1880 	struct ucc_geth_info *ug_info;
1881 	struct ucc_fast_info *uf_info;
1882 	u16 i, j;
1883 	u8 __iomem *bd;
1884 
1885 	ug_info = ugeth->ug_info;
1886 	uf_info = &ug_info->uf_info;
1887 
1888 	for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
1889 		bd = ugeth->p_tx_bd_ring[i];
1890 		if (!bd)
1891 			continue;
1892 		for (j = 0; j < ugeth->ug_info->bdRingLenTx[i]; j++) {
1893 			if (ugeth->tx_skbuff[i][j]) {
1894 				dma_unmap_single(ugeth->dev,
1895 						 in_be32(&((struct qe_bd __iomem *)bd)->buf),
1896 						 (in_be32((u32 __iomem *)bd) &
1897 						  BD_LENGTH_MASK),
1898 						 DMA_TO_DEVICE);
1899 				dev_kfree_skb_any(ugeth->tx_skbuff[i][j]);
1900 				ugeth->tx_skbuff[i][j] = NULL;
1901 			}
1902 		}
1903 
1904 		kfree(ugeth->tx_skbuff[i]);
1905 
1906 		if (ugeth->p_tx_bd_ring[i]) {
1907 			if (ugeth->ug_info->uf_info.bd_mem_part ==
1908 			    MEM_PART_SYSTEM)
1909 				kfree((void *)ugeth->tx_bd_ring_offset[i]);
1910 			else if (ugeth->ug_info->uf_info.bd_mem_part ==
1911 				 MEM_PART_MURAM)
1912 				qe_muram_free(ugeth->tx_bd_ring_offset[i]);
1913 			ugeth->p_tx_bd_ring[i] = NULL;
1914 		}
1915 	}
1916 
1917 }
1918 
1919 static void ucc_geth_memclean(struct ucc_geth_private *ugeth)
1920 {
1921 	if (!ugeth)
1922 		return;
1923 
1924 	if (ugeth->uccf) {
1925 		ucc_fast_free(ugeth->uccf);
1926 		ugeth->uccf = NULL;
1927 	}
1928 
1929 	if (ugeth->p_thread_data_tx) {
1930 		qe_muram_free(ugeth->thread_dat_tx_offset);
1931 		ugeth->p_thread_data_tx = NULL;
1932 	}
1933 	if (ugeth->p_thread_data_rx) {
1934 		qe_muram_free(ugeth->thread_dat_rx_offset);
1935 		ugeth->p_thread_data_rx = NULL;
1936 	}
1937 	if (ugeth->p_exf_glbl_param) {
1938 		qe_muram_free(ugeth->exf_glbl_param_offset);
1939 		ugeth->p_exf_glbl_param = NULL;
1940 	}
1941 	if (ugeth->p_rx_glbl_pram) {
1942 		qe_muram_free(ugeth->rx_glbl_pram_offset);
1943 		ugeth->p_rx_glbl_pram = NULL;
1944 	}
1945 	if (ugeth->p_tx_glbl_pram) {
1946 		qe_muram_free(ugeth->tx_glbl_pram_offset);
1947 		ugeth->p_tx_glbl_pram = NULL;
1948 	}
1949 	if (ugeth->p_send_q_mem_reg) {
1950 		qe_muram_free(ugeth->send_q_mem_reg_offset);
1951 		ugeth->p_send_q_mem_reg = NULL;
1952 	}
1953 	if (ugeth->p_scheduler) {
1954 		qe_muram_free(ugeth->scheduler_offset);
1955 		ugeth->p_scheduler = NULL;
1956 	}
1957 	if (ugeth->p_tx_fw_statistics_pram) {
1958 		qe_muram_free(ugeth->tx_fw_statistics_pram_offset);
1959 		ugeth->p_tx_fw_statistics_pram = NULL;
1960 	}
1961 	if (ugeth->p_rx_fw_statistics_pram) {
1962 		qe_muram_free(ugeth->rx_fw_statistics_pram_offset);
1963 		ugeth->p_rx_fw_statistics_pram = NULL;
1964 	}
1965 	if (ugeth->p_rx_irq_coalescing_tbl) {
1966 		qe_muram_free(ugeth->rx_irq_coalescing_tbl_offset);
1967 		ugeth->p_rx_irq_coalescing_tbl = NULL;
1968 	}
1969 	if (ugeth->p_rx_bd_qs_tbl) {
1970 		qe_muram_free(ugeth->rx_bd_qs_tbl_offset);
1971 		ugeth->p_rx_bd_qs_tbl = NULL;
1972 	}
1973 	if (ugeth->p_init_enet_param_shadow) {
1974 		return_init_enet_entries(ugeth,
1975 					 &(ugeth->p_init_enet_param_shadow->
1976 					   rxthread[0]),
1977 					 ENET_INIT_PARAM_MAX_ENTRIES_RX,
1978 					 ugeth->ug_info->riscRx, 1);
1979 		return_init_enet_entries(ugeth,
1980 					 &(ugeth->p_init_enet_param_shadow->
1981 					   txthread[0]),
1982 					 ENET_INIT_PARAM_MAX_ENTRIES_TX,
1983 					 ugeth->ug_info->riscTx, 0);
1984 		kfree(ugeth->p_init_enet_param_shadow);
1985 		ugeth->p_init_enet_param_shadow = NULL;
1986 	}
1987 	ucc_geth_free_tx(ugeth);
1988 	ucc_geth_free_rx(ugeth);
1989 	while (!list_empty(&ugeth->group_hash_q))
1990 		put_enet_addr_container(ENET_ADDR_CONT_ENTRY
1991 					(dequeue(&ugeth->group_hash_q)));
1992 	while (!list_empty(&ugeth->ind_hash_q))
1993 		put_enet_addr_container(ENET_ADDR_CONT_ENTRY
1994 					(dequeue(&ugeth->ind_hash_q)));
1995 	if (ugeth->ug_regs) {
1996 		iounmap(ugeth->ug_regs);
1997 		ugeth->ug_regs = NULL;
1998 	}
1999 }
2000 
2001 static void ucc_geth_set_multi(struct net_device *dev)
2002 {
2003 	struct ucc_geth_private *ugeth;
2004 	struct netdev_hw_addr *ha;
2005 	struct ucc_fast __iomem *uf_regs;
2006 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2007 
2008 	ugeth = netdev_priv(dev);
2009 
2010 	uf_regs = ugeth->uccf->uf_regs;
2011 
2012 	if (dev->flags & IFF_PROMISC) {
2013 		setbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2014 	} else {
2015 		clrbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2016 
2017 		p_82xx_addr_filt =
2018 		    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2019 		    p_rx_glbl_pram->addressfiltering;
2020 
2021 		if (dev->flags & IFF_ALLMULTI) {
2022 			/* Catch all multicast addresses, so set the
2023 			 * filter to all 1's.
2024 			 */
2025 			out_be32(&p_82xx_addr_filt->gaddr_h, 0xffffffff);
2026 			out_be32(&p_82xx_addr_filt->gaddr_l, 0xffffffff);
2027 		} else {
2028 			/* Clear filter and add the addresses in the list.
2029 			 */
2030 			out_be32(&p_82xx_addr_filt->gaddr_h, 0x0);
2031 			out_be32(&p_82xx_addr_filt->gaddr_l, 0x0);
2032 
2033 			netdev_for_each_mc_addr(ha, dev) {
2034 				/* Ask CPM to run CRC and set bit in
2035 				 * filter mask.
2036 				 */
2037 				hw_add_addr_in_hash(ugeth, ha->addr);
2038 			}
2039 		}
2040 	}
2041 }
2042 
2043 static void ucc_geth_stop(struct ucc_geth_private *ugeth)
2044 {
2045 	struct ucc_geth __iomem *ug_regs = ugeth->ug_regs;
2046 	struct phy_device *phydev = ugeth->phydev;
2047 
2048 	ugeth_vdbg("%s: IN", __func__);
2049 
2050 	/*
2051 	 * Tell the kernel the link is down.
2052 	 * Must be done before disabling the controller
2053 	 * or deadlock may happen.
2054 	 */
2055 	phy_stop(phydev);
2056 
2057 	/* Disable the controller */
2058 	ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
2059 
2060 	/* Mask all interrupts */
2061 	out_be32(ugeth->uccf->p_uccm, 0x00000000);
2062 
2063 	/* Clear all interrupts */
2064 	out_be32(ugeth->uccf->p_ucce, 0xffffffff);
2065 
2066 	/* Disable Rx and Tx */
2067 	clrbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2068 
2069 	ucc_geth_memclean(ugeth);
2070 }
2071 
2072 static int ucc_struct_init(struct ucc_geth_private *ugeth)
2073 {
2074 	struct ucc_geth_info *ug_info;
2075 	struct ucc_fast_info *uf_info;
2076 	int i;
2077 
2078 	ug_info = ugeth->ug_info;
2079 	uf_info = &ug_info->uf_info;
2080 
2081 	if (!((uf_info->bd_mem_part == MEM_PART_SYSTEM) ||
2082 	      (uf_info->bd_mem_part == MEM_PART_MURAM))) {
2083 		if (netif_msg_probe(ugeth))
2084 			pr_err("Bad memory partition value\n");
2085 		return -EINVAL;
2086 	}
2087 
2088 	/* Rx BD lengths */
2089 	for (i = 0; i < ug_info->numQueuesRx; i++) {
2090 		if ((ug_info->bdRingLenRx[i] < UCC_GETH_RX_BD_RING_SIZE_MIN) ||
2091 		    (ug_info->bdRingLenRx[i] %
2092 		     UCC_GETH_RX_BD_RING_SIZE_ALIGNMENT)) {
2093 			if (netif_msg_probe(ugeth))
2094 				pr_err("Rx BD ring length must be multiple of 4, no smaller than 8\n");
2095 			return -EINVAL;
2096 		}
2097 	}
2098 
2099 	/* Tx BD lengths */
2100 	for (i = 0; i < ug_info->numQueuesTx; i++) {
2101 		if (ug_info->bdRingLenTx[i] < UCC_GETH_TX_BD_RING_SIZE_MIN) {
2102 			if (netif_msg_probe(ugeth))
2103 				pr_err("Tx BD ring length must be no smaller than 2\n");
2104 			return -EINVAL;
2105 		}
2106 	}
2107 
2108 	/* mrblr */
2109 	if ((uf_info->max_rx_buf_length == 0) ||
2110 	    (uf_info->max_rx_buf_length % UCC_GETH_MRBLR_ALIGNMENT)) {
2111 		if (netif_msg_probe(ugeth))
2112 			pr_err("max_rx_buf_length must be non-zero multiple of 128\n");
2113 		return -EINVAL;
2114 	}
2115 
2116 	/* num Tx queues */
2117 	if (ug_info->numQueuesTx > NUM_TX_QUEUES) {
2118 		if (netif_msg_probe(ugeth))
2119 			pr_err("number of tx queues too large\n");
2120 		return -EINVAL;
2121 	}
2122 
2123 	/* num Rx queues */
2124 	if (ug_info->numQueuesRx > NUM_RX_QUEUES) {
2125 		if (netif_msg_probe(ugeth))
2126 			pr_err("number of rx queues too large\n");
2127 		return -EINVAL;
2128 	}
2129 
2130 	/* l2qt */
2131 	for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) {
2132 		if (ug_info->l2qt[i] >= ug_info->numQueuesRx) {
2133 			if (netif_msg_probe(ugeth))
2134 				pr_err("VLAN priority table entry must not be larger than number of Rx queues\n");
2135 			return -EINVAL;
2136 		}
2137 	}
2138 
2139 	/* l3qt */
2140 	for (i = 0; i < UCC_GETH_IP_PRIORITY_MAX; i++) {
2141 		if (ug_info->l3qt[i] >= ug_info->numQueuesRx) {
2142 			if (netif_msg_probe(ugeth))
2143 				pr_err("IP priority table entry must not be larger than number of Rx queues\n");
2144 			return -EINVAL;
2145 		}
2146 	}
2147 
2148 	if (ug_info->cam && !ug_info->ecamptr) {
2149 		if (netif_msg_probe(ugeth))
2150 			pr_err("If cam mode is chosen, must supply cam ptr\n");
2151 		return -EINVAL;
2152 	}
2153 
2154 	if ((ug_info->numStationAddresses !=
2155 	     UCC_GETH_NUM_OF_STATION_ADDRESSES_1) &&
2156 	    ug_info->rxExtendedFiltering) {
2157 		if (netif_msg_probe(ugeth))
2158 			pr_err("Number of station addresses greater than 1 not allowed in extended parsing mode\n");
2159 		return -EINVAL;
2160 	}
2161 
2162 	/* Generate uccm_mask for receive */
2163 	uf_info->uccm_mask = ug_info->eventRegMask & UCCE_OTHER;/* Errors */
2164 	for (i = 0; i < ug_info->numQueuesRx; i++)
2165 		uf_info->uccm_mask |= (UCC_GETH_UCCE_RXF0 << i);
2166 
2167 	for (i = 0; i < ug_info->numQueuesTx; i++)
2168 		uf_info->uccm_mask |= (UCC_GETH_UCCE_TXB0 << i);
2169 	/* Initialize the general fast UCC block. */
2170 	if (ucc_fast_init(uf_info, &ugeth->uccf)) {
2171 		if (netif_msg_probe(ugeth))
2172 			pr_err("Failed to init uccf\n");
2173 		return -ENOMEM;
2174 	}
2175 
2176 	/* read the number of risc engines, update the riscTx and riscRx
2177 	 * if there are 4 riscs in QE
2178 	 */
2179 	if (qe_get_num_of_risc() == 4) {
2180 		ug_info->riscTx = QE_RISC_ALLOCATION_FOUR_RISCS;
2181 		ug_info->riscRx = QE_RISC_ALLOCATION_FOUR_RISCS;
2182 	}
2183 
2184 	ugeth->ug_regs = ioremap(uf_info->regs, sizeof(*ugeth->ug_regs));
2185 	if (!ugeth->ug_regs) {
2186 		if (netif_msg_probe(ugeth))
2187 			pr_err("Failed to ioremap regs\n");
2188 		return -ENOMEM;
2189 	}
2190 
2191 	return 0;
2192 }
2193 
2194 static int ucc_geth_alloc_tx(struct ucc_geth_private *ugeth)
2195 {
2196 	struct ucc_geth_info *ug_info;
2197 	struct ucc_fast_info *uf_info;
2198 	int length;
2199 	u16 i, j;
2200 	u8 __iomem *bd;
2201 
2202 	ug_info = ugeth->ug_info;
2203 	uf_info = &ug_info->uf_info;
2204 
2205 	/* Allocate Tx bds */
2206 	for (j = 0; j < ug_info->numQueuesTx; j++) {
2207 		/* Allocate in multiple of
2208 		   UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT,
2209 		   according to spec */
2210 		length = ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd))
2211 			  / UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2212 		    * UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2213 		if ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) %
2214 		    UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2215 			length += UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2216 		if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2217 			u32 align = 4;
2218 			if (UCC_GETH_TX_BD_RING_ALIGNMENT > 4)
2219 				align = UCC_GETH_TX_BD_RING_ALIGNMENT;
2220 			ugeth->tx_bd_ring_offset[j] =
2221 				(u32) kmalloc((u32) (length + align), GFP_KERNEL);
2222 
2223 			if (ugeth->tx_bd_ring_offset[j] != 0)
2224 				ugeth->p_tx_bd_ring[j] =
2225 					(u8 __iomem *)((ugeth->tx_bd_ring_offset[j] +
2226 					align) & ~(align - 1));
2227 		} else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2228 			ugeth->tx_bd_ring_offset[j] =
2229 			    qe_muram_alloc(length,
2230 					   UCC_GETH_TX_BD_RING_ALIGNMENT);
2231 			if (!IS_ERR_VALUE(ugeth->tx_bd_ring_offset[j]))
2232 				ugeth->p_tx_bd_ring[j] =
2233 				    (u8 __iomem *) qe_muram_addr(ugeth->
2234 							 tx_bd_ring_offset[j]);
2235 		}
2236 		if (!ugeth->p_tx_bd_ring[j]) {
2237 			if (netif_msg_ifup(ugeth))
2238 				pr_err("Can not allocate memory for Tx bd rings\n");
2239 			return -ENOMEM;
2240 		}
2241 		/* Zero unused end of bd ring, according to spec */
2242 		memset_io((void __iomem *)(ugeth->p_tx_bd_ring[j] +
2243 		       ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)), 0,
2244 		       length - ug_info->bdRingLenTx[j] * sizeof(struct qe_bd));
2245 	}
2246 
2247 	/* Init Tx bds */
2248 	for (j = 0; j < ug_info->numQueuesTx; j++) {
2249 		/* Setup the skbuff rings */
2250 		ugeth->tx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2251 					      ugeth->ug_info->bdRingLenTx[j],
2252 					      GFP_KERNEL);
2253 
2254 		if (ugeth->tx_skbuff[j] == NULL) {
2255 			if (netif_msg_ifup(ugeth))
2256 				pr_err("Could not allocate tx_skbuff\n");
2257 			return -ENOMEM;
2258 		}
2259 
2260 		for (i = 0; i < ugeth->ug_info->bdRingLenTx[j]; i++)
2261 			ugeth->tx_skbuff[j][i] = NULL;
2262 
2263 		ugeth->skb_curtx[j] = ugeth->skb_dirtytx[j] = 0;
2264 		bd = ugeth->confBd[j] = ugeth->txBd[j] = ugeth->p_tx_bd_ring[j];
2265 		for (i = 0; i < ug_info->bdRingLenTx[j]; i++) {
2266 			/* clear bd buffer */
2267 			out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2268 			/* set bd status and length */
2269 			out_be32((u32 __iomem *)bd, 0);
2270 			bd += sizeof(struct qe_bd);
2271 		}
2272 		bd -= sizeof(struct qe_bd);
2273 		/* set bd status and length */
2274 		out_be32((u32 __iomem *)bd, T_W); /* for last BD set Wrap bit */
2275 	}
2276 
2277 	return 0;
2278 }
2279 
2280 static int ucc_geth_alloc_rx(struct ucc_geth_private *ugeth)
2281 {
2282 	struct ucc_geth_info *ug_info;
2283 	struct ucc_fast_info *uf_info;
2284 	int length;
2285 	u16 i, j;
2286 	u8 __iomem *bd;
2287 
2288 	ug_info = ugeth->ug_info;
2289 	uf_info = &ug_info->uf_info;
2290 
2291 	/* Allocate Rx bds */
2292 	for (j = 0; j < ug_info->numQueuesRx; j++) {
2293 		length = ug_info->bdRingLenRx[j] * sizeof(struct qe_bd);
2294 		if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2295 			u32 align = 4;
2296 			if (UCC_GETH_RX_BD_RING_ALIGNMENT > 4)
2297 				align = UCC_GETH_RX_BD_RING_ALIGNMENT;
2298 			ugeth->rx_bd_ring_offset[j] =
2299 				(u32) kmalloc((u32) (length + align), GFP_KERNEL);
2300 			if (ugeth->rx_bd_ring_offset[j] != 0)
2301 				ugeth->p_rx_bd_ring[j] =
2302 					(u8 __iomem *)((ugeth->rx_bd_ring_offset[j] +
2303 					align) & ~(align - 1));
2304 		} else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2305 			ugeth->rx_bd_ring_offset[j] =
2306 			    qe_muram_alloc(length,
2307 					   UCC_GETH_RX_BD_RING_ALIGNMENT);
2308 			if (!IS_ERR_VALUE(ugeth->rx_bd_ring_offset[j]))
2309 				ugeth->p_rx_bd_ring[j] =
2310 				    (u8 __iomem *) qe_muram_addr(ugeth->
2311 							 rx_bd_ring_offset[j]);
2312 		}
2313 		if (!ugeth->p_rx_bd_ring[j]) {
2314 			if (netif_msg_ifup(ugeth))
2315 				pr_err("Can not allocate memory for Rx bd rings\n");
2316 			return -ENOMEM;
2317 		}
2318 	}
2319 
2320 	/* Init Rx bds */
2321 	for (j = 0; j < ug_info->numQueuesRx; j++) {
2322 		/* Setup the skbuff rings */
2323 		ugeth->rx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2324 					      ugeth->ug_info->bdRingLenRx[j],
2325 					      GFP_KERNEL);
2326 
2327 		if (ugeth->rx_skbuff[j] == NULL) {
2328 			if (netif_msg_ifup(ugeth))
2329 				pr_err("Could not allocate rx_skbuff\n");
2330 			return -ENOMEM;
2331 		}
2332 
2333 		for (i = 0; i < ugeth->ug_info->bdRingLenRx[j]; i++)
2334 			ugeth->rx_skbuff[j][i] = NULL;
2335 
2336 		ugeth->skb_currx[j] = 0;
2337 		bd = ugeth->rxBd[j] = ugeth->p_rx_bd_ring[j];
2338 		for (i = 0; i < ug_info->bdRingLenRx[j]; i++) {
2339 			/* set bd status and length */
2340 			out_be32((u32 __iomem *)bd, R_I);
2341 			/* clear bd buffer */
2342 			out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2343 			bd += sizeof(struct qe_bd);
2344 		}
2345 		bd -= sizeof(struct qe_bd);
2346 		/* set bd status and length */
2347 		out_be32((u32 __iomem *)bd, R_W); /* for last BD set Wrap bit */
2348 	}
2349 
2350 	return 0;
2351 }
2352 
2353 static int ucc_geth_startup(struct ucc_geth_private *ugeth)
2354 {
2355 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2356 	struct ucc_geth_init_pram __iomem *p_init_enet_pram;
2357 	struct ucc_fast_private *uccf;
2358 	struct ucc_geth_info *ug_info;
2359 	struct ucc_fast_info *uf_info;
2360 	struct ucc_fast __iomem *uf_regs;
2361 	struct ucc_geth __iomem *ug_regs;
2362 	int ret_val = -EINVAL;
2363 	u32 remoder = UCC_GETH_REMODER_INIT;
2364 	u32 init_enet_pram_offset, cecr_subblock, command;
2365 	u32 ifstat, i, j, size, l2qt, l3qt;
2366 	u16 temoder = UCC_GETH_TEMODER_INIT;
2367 	u16 test;
2368 	u8 function_code = 0;
2369 	u8 __iomem *endOfRing;
2370 	u8 numThreadsRxNumerical, numThreadsTxNumerical;
2371 
2372 	ugeth_vdbg("%s: IN", __func__);
2373 	uccf = ugeth->uccf;
2374 	ug_info = ugeth->ug_info;
2375 	uf_info = &ug_info->uf_info;
2376 	uf_regs = uccf->uf_regs;
2377 	ug_regs = ugeth->ug_regs;
2378 
2379 	switch (ug_info->numThreadsRx) {
2380 	case UCC_GETH_NUM_OF_THREADS_1:
2381 		numThreadsRxNumerical = 1;
2382 		break;
2383 	case UCC_GETH_NUM_OF_THREADS_2:
2384 		numThreadsRxNumerical = 2;
2385 		break;
2386 	case UCC_GETH_NUM_OF_THREADS_4:
2387 		numThreadsRxNumerical = 4;
2388 		break;
2389 	case UCC_GETH_NUM_OF_THREADS_6:
2390 		numThreadsRxNumerical = 6;
2391 		break;
2392 	case UCC_GETH_NUM_OF_THREADS_8:
2393 		numThreadsRxNumerical = 8;
2394 		break;
2395 	default:
2396 		if (netif_msg_ifup(ugeth))
2397 			pr_err("Bad number of Rx threads value\n");
2398 		return -EINVAL;
2399 		break;
2400 	}
2401 
2402 	switch (ug_info->numThreadsTx) {
2403 	case UCC_GETH_NUM_OF_THREADS_1:
2404 		numThreadsTxNumerical = 1;
2405 		break;
2406 	case UCC_GETH_NUM_OF_THREADS_2:
2407 		numThreadsTxNumerical = 2;
2408 		break;
2409 	case UCC_GETH_NUM_OF_THREADS_4:
2410 		numThreadsTxNumerical = 4;
2411 		break;
2412 	case UCC_GETH_NUM_OF_THREADS_6:
2413 		numThreadsTxNumerical = 6;
2414 		break;
2415 	case UCC_GETH_NUM_OF_THREADS_8:
2416 		numThreadsTxNumerical = 8;
2417 		break;
2418 	default:
2419 		if (netif_msg_ifup(ugeth))
2420 			pr_err("Bad number of Tx threads value\n");
2421 		return -EINVAL;
2422 		break;
2423 	}
2424 
2425 	/* Calculate rx_extended_features */
2426 	ugeth->rx_non_dynamic_extended_features = ug_info->ipCheckSumCheck ||
2427 	    ug_info->ipAddressAlignment ||
2428 	    (ug_info->numStationAddresses !=
2429 	     UCC_GETH_NUM_OF_STATION_ADDRESSES_1);
2430 
2431 	ugeth->rx_extended_features = ugeth->rx_non_dynamic_extended_features ||
2432 		(ug_info->vlanOperationTagged != UCC_GETH_VLAN_OPERATION_TAGGED_NOP) ||
2433 		(ug_info->vlanOperationNonTagged !=
2434 		 UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP);
2435 
2436 	init_default_reg_vals(&uf_regs->upsmr,
2437 			      &ug_regs->maccfg1, &ug_regs->maccfg2);
2438 
2439 	/*                    Set UPSMR                      */
2440 	/* For more details see the hardware spec.           */
2441 	init_rx_parameters(ug_info->bro,
2442 			   ug_info->rsh, ug_info->pro, &uf_regs->upsmr);
2443 
2444 	/* We're going to ignore other registers for now, */
2445 	/* except as needed to get up and running         */
2446 
2447 	/*                    Set MACCFG1                    */
2448 	/* For more details see the hardware spec.           */
2449 	init_flow_control_params(ug_info->aufc,
2450 				 ug_info->receiveFlowControl,
2451 				 ug_info->transmitFlowControl,
2452 				 ug_info->pausePeriod,
2453 				 ug_info->extensionField,
2454 				 &uf_regs->upsmr,
2455 				 &ug_regs->uempr, &ug_regs->maccfg1);
2456 
2457 	setbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2458 
2459 	/*                    Set IPGIFG                     */
2460 	/* For more details see the hardware spec.           */
2461 	ret_val = init_inter_frame_gap_params(ug_info->nonBackToBackIfgPart1,
2462 					      ug_info->nonBackToBackIfgPart2,
2463 					      ug_info->
2464 					      miminumInterFrameGapEnforcement,
2465 					      ug_info->backToBackInterFrameGap,
2466 					      &ug_regs->ipgifg);
2467 	if (ret_val != 0) {
2468 		if (netif_msg_ifup(ugeth))
2469 			pr_err("IPGIFG initialization parameter too large\n");
2470 		return ret_val;
2471 	}
2472 
2473 	/*                    Set HAFDUP                     */
2474 	/* For more details see the hardware spec.           */
2475 	ret_val = init_half_duplex_params(ug_info->altBeb,
2476 					  ug_info->backPressureNoBackoff,
2477 					  ug_info->noBackoff,
2478 					  ug_info->excessDefer,
2479 					  ug_info->altBebTruncation,
2480 					  ug_info->maxRetransmission,
2481 					  ug_info->collisionWindow,
2482 					  &ug_regs->hafdup);
2483 	if (ret_val != 0) {
2484 		if (netif_msg_ifup(ugeth))
2485 			pr_err("Half Duplex initialization parameter too large\n");
2486 		return ret_val;
2487 	}
2488 
2489 	/*                    Set IFSTAT                     */
2490 	/* For more details see the hardware spec.           */
2491 	/* Read only - resets upon read                      */
2492 	ifstat = in_be32(&ug_regs->ifstat);
2493 
2494 	/*                    Clear UEMPR                    */
2495 	/* For more details see the hardware spec.           */
2496 	out_be32(&ug_regs->uempr, 0);
2497 
2498 	/*                    Set UESCR                      */
2499 	/* For more details see the hardware spec.           */
2500 	init_hw_statistics_gathering_mode((ug_info->statisticsMode &
2501 				UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE),
2502 				0, &uf_regs->upsmr, &ug_regs->uescr);
2503 
2504 	ret_val = ucc_geth_alloc_tx(ugeth);
2505 	if (ret_val != 0)
2506 		return ret_val;
2507 
2508 	ret_val = ucc_geth_alloc_rx(ugeth);
2509 	if (ret_val != 0)
2510 		return ret_val;
2511 
2512 	/*
2513 	 * Global PRAM
2514 	 */
2515 	/* Tx global PRAM */
2516 	/* Allocate global tx parameter RAM page */
2517 	ugeth->tx_glbl_pram_offset =
2518 	    qe_muram_alloc(sizeof(struct ucc_geth_tx_global_pram),
2519 			   UCC_GETH_TX_GLOBAL_PRAM_ALIGNMENT);
2520 	if (IS_ERR_VALUE(ugeth->tx_glbl_pram_offset)) {
2521 		if (netif_msg_ifup(ugeth))
2522 			pr_err("Can not allocate DPRAM memory for p_tx_glbl_pram\n");
2523 		return -ENOMEM;
2524 	}
2525 	ugeth->p_tx_glbl_pram =
2526 	    (struct ucc_geth_tx_global_pram __iomem *) qe_muram_addr(ugeth->
2527 							tx_glbl_pram_offset);
2528 	/* Zero out p_tx_glbl_pram */
2529 	memset_io((void __iomem *)ugeth->p_tx_glbl_pram, 0, sizeof(struct ucc_geth_tx_global_pram));
2530 
2531 	/* Fill global PRAM */
2532 
2533 	/* TQPTR */
2534 	/* Size varies with number of Tx threads */
2535 	ugeth->thread_dat_tx_offset =
2536 	    qe_muram_alloc(numThreadsTxNumerical *
2537 			   sizeof(struct ucc_geth_thread_data_tx) +
2538 			   32 * (numThreadsTxNumerical == 1),
2539 			   UCC_GETH_THREAD_DATA_ALIGNMENT);
2540 	if (IS_ERR_VALUE(ugeth->thread_dat_tx_offset)) {
2541 		if (netif_msg_ifup(ugeth))
2542 			pr_err("Can not allocate DPRAM memory for p_thread_data_tx\n");
2543 		return -ENOMEM;
2544 	}
2545 
2546 	ugeth->p_thread_data_tx =
2547 	    (struct ucc_geth_thread_data_tx __iomem *) qe_muram_addr(ugeth->
2548 							thread_dat_tx_offset);
2549 	out_be32(&ugeth->p_tx_glbl_pram->tqptr, ugeth->thread_dat_tx_offset);
2550 
2551 	/* vtagtable */
2552 	for (i = 0; i < UCC_GETH_TX_VTAG_TABLE_ENTRY_MAX; i++)
2553 		out_be32(&ugeth->p_tx_glbl_pram->vtagtable[i],
2554 			 ug_info->vtagtable[i]);
2555 
2556 	/* iphoffset */
2557 	for (i = 0; i < TX_IP_OFFSET_ENTRY_MAX; i++)
2558 		out_8(&ugeth->p_tx_glbl_pram->iphoffset[i],
2559 				ug_info->iphoffset[i]);
2560 
2561 	/* SQPTR */
2562 	/* Size varies with number of Tx queues */
2563 	ugeth->send_q_mem_reg_offset =
2564 	    qe_muram_alloc(ug_info->numQueuesTx *
2565 			   sizeof(struct ucc_geth_send_queue_qd),
2566 			   UCC_GETH_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
2567 	if (IS_ERR_VALUE(ugeth->send_q_mem_reg_offset)) {
2568 		if (netif_msg_ifup(ugeth))
2569 			pr_err("Can not allocate DPRAM memory for p_send_q_mem_reg\n");
2570 		return -ENOMEM;
2571 	}
2572 
2573 	ugeth->p_send_q_mem_reg =
2574 	    (struct ucc_geth_send_queue_mem_region __iomem *) qe_muram_addr(ugeth->
2575 			send_q_mem_reg_offset);
2576 	out_be32(&ugeth->p_tx_glbl_pram->sqptr, ugeth->send_q_mem_reg_offset);
2577 
2578 	/* Setup the table */
2579 	/* Assume BD rings are already established */
2580 	for (i = 0; i < ug_info->numQueuesTx; i++) {
2581 		endOfRing =
2582 		    ugeth->p_tx_bd_ring[i] + (ug_info->bdRingLenTx[i] -
2583 					      1) * sizeof(struct qe_bd);
2584 		if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2585 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2586 				 (u32) virt_to_phys(ugeth->p_tx_bd_ring[i]));
2587 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2588 				 last_bd_completed_address,
2589 				 (u32) virt_to_phys(endOfRing));
2590 		} else if (ugeth->ug_info->uf_info.bd_mem_part ==
2591 			   MEM_PART_MURAM) {
2592 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2593 				 (u32) immrbar_virt_to_phys(ugeth->
2594 							    p_tx_bd_ring[i]));
2595 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2596 				 last_bd_completed_address,
2597 				 (u32) immrbar_virt_to_phys(endOfRing));
2598 		}
2599 	}
2600 
2601 	/* schedulerbasepointer */
2602 
2603 	if (ug_info->numQueuesTx > 1) {
2604 	/* scheduler exists only if more than 1 tx queue */
2605 		ugeth->scheduler_offset =
2606 		    qe_muram_alloc(sizeof(struct ucc_geth_scheduler),
2607 				   UCC_GETH_SCHEDULER_ALIGNMENT);
2608 		if (IS_ERR_VALUE(ugeth->scheduler_offset)) {
2609 			if (netif_msg_ifup(ugeth))
2610 				pr_err("Can not allocate DPRAM memory for p_scheduler\n");
2611 			return -ENOMEM;
2612 		}
2613 
2614 		ugeth->p_scheduler =
2615 		    (struct ucc_geth_scheduler __iomem *) qe_muram_addr(ugeth->
2616 							   scheduler_offset);
2617 		out_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer,
2618 			 ugeth->scheduler_offset);
2619 		/* Zero out p_scheduler */
2620 		memset_io((void __iomem *)ugeth->p_scheduler, 0, sizeof(struct ucc_geth_scheduler));
2621 
2622 		/* Set values in scheduler */
2623 		out_be32(&ugeth->p_scheduler->mblinterval,
2624 			 ug_info->mblinterval);
2625 		out_be16(&ugeth->p_scheduler->nortsrbytetime,
2626 			 ug_info->nortsrbytetime);
2627 		out_8(&ugeth->p_scheduler->fracsiz, ug_info->fracsiz);
2628 		out_8(&ugeth->p_scheduler->strictpriorityq,
2629 				ug_info->strictpriorityq);
2630 		out_8(&ugeth->p_scheduler->txasap, ug_info->txasap);
2631 		out_8(&ugeth->p_scheduler->extrabw, ug_info->extrabw);
2632 		for (i = 0; i < NUM_TX_QUEUES; i++)
2633 			out_8(&ugeth->p_scheduler->weightfactor[i],
2634 			    ug_info->weightfactor[i]);
2635 
2636 		/* Set pointers to cpucount registers in scheduler */
2637 		ugeth->p_cpucount[0] = &(ugeth->p_scheduler->cpucount0);
2638 		ugeth->p_cpucount[1] = &(ugeth->p_scheduler->cpucount1);
2639 		ugeth->p_cpucount[2] = &(ugeth->p_scheduler->cpucount2);
2640 		ugeth->p_cpucount[3] = &(ugeth->p_scheduler->cpucount3);
2641 		ugeth->p_cpucount[4] = &(ugeth->p_scheduler->cpucount4);
2642 		ugeth->p_cpucount[5] = &(ugeth->p_scheduler->cpucount5);
2643 		ugeth->p_cpucount[6] = &(ugeth->p_scheduler->cpucount6);
2644 		ugeth->p_cpucount[7] = &(ugeth->p_scheduler->cpucount7);
2645 	}
2646 
2647 	/* schedulerbasepointer */
2648 	/* TxRMON_PTR (statistics) */
2649 	if (ug_info->
2650 	    statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX) {
2651 		ugeth->tx_fw_statistics_pram_offset =
2652 		    qe_muram_alloc(sizeof
2653 				   (struct ucc_geth_tx_firmware_statistics_pram),
2654 				   UCC_GETH_TX_STATISTICS_ALIGNMENT);
2655 		if (IS_ERR_VALUE(ugeth->tx_fw_statistics_pram_offset)) {
2656 			if (netif_msg_ifup(ugeth))
2657 				pr_err("Can not allocate DPRAM memory for p_tx_fw_statistics_pram\n");
2658 			return -ENOMEM;
2659 		}
2660 		ugeth->p_tx_fw_statistics_pram =
2661 		    (struct ucc_geth_tx_firmware_statistics_pram __iomem *)
2662 		    qe_muram_addr(ugeth->tx_fw_statistics_pram_offset);
2663 		/* Zero out p_tx_fw_statistics_pram */
2664 		memset_io((void __iomem *)ugeth->p_tx_fw_statistics_pram,
2665 		       0, sizeof(struct ucc_geth_tx_firmware_statistics_pram));
2666 	}
2667 
2668 	/* temoder */
2669 	/* Already has speed set */
2670 
2671 	if (ug_info->numQueuesTx > 1)
2672 		temoder |= TEMODER_SCHEDULER_ENABLE;
2673 	if (ug_info->ipCheckSumGenerate)
2674 		temoder |= TEMODER_IP_CHECKSUM_GENERATE;
2675 	temoder |= ((ug_info->numQueuesTx - 1) << TEMODER_NUM_OF_QUEUES_SHIFT);
2676 	out_be16(&ugeth->p_tx_glbl_pram->temoder, temoder);
2677 
2678 	test = in_be16(&ugeth->p_tx_glbl_pram->temoder);
2679 
2680 	/* Function code register value to be used later */
2681 	function_code = UCC_BMR_BO_BE | UCC_BMR_GBL;
2682 	/* Required for QE */
2683 
2684 	/* function code register */
2685 	out_be32(&ugeth->p_tx_glbl_pram->tstate, ((u32) function_code) << 24);
2686 
2687 	/* Rx global PRAM */
2688 	/* Allocate global rx parameter RAM page */
2689 	ugeth->rx_glbl_pram_offset =
2690 	    qe_muram_alloc(sizeof(struct ucc_geth_rx_global_pram),
2691 			   UCC_GETH_RX_GLOBAL_PRAM_ALIGNMENT);
2692 	if (IS_ERR_VALUE(ugeth->rx_glbl_pram_offset)) {
2693 		if (netif_msg_ifup(ugeth))
2694 			pr_err("Can not allocate DPRAM memory for p_rx_glbl_pram\n");
2695 		return -ENOMEM;
2696 	}
2697 	ugeth->p_rx_glbl_pram =
2698 	    (struct ucc_geth_rx_global_pram __iomem *) qe_muram_addr(ugeth->
2699 							rx_glbl_pram_offset);
2700 	/* Zero out p_rx_glbl_pram */
2701 	memset_io((void __iomem *)ugeth->p_rx_glbl_pram, 0, sizeof(struct ucc_geth_rx_global_pram));
2702 
2703 	/* Fill global PRAM */
2704 
2705 	/* RQPTR */
2706 	/* Size varies with number of Rx threads */
2707 	ugeth->thread_dat_rx_offset =
2708 	    qe_muram_alloc(numThreadsRxNumerical *
2709 			   sizeof(struct ucc_geth_thread_data_rx),
2710 			   UCC_GETH_THREAD_DATA_ALIGNMENT);
2711 	if (IS_ERR_VALUE(ugeth->thread_dat_rx_offset)) {
2712 		if (netif_msg_ifup(ugeth))
2713 			pr_err("Can not allocate DPRAM memory for p_thread_data_rx\n");
2714 		return -ENOMEM;
2715 	}
2716 
2717 	ugeth->p_thread_data_rx =
2718 	    (struct ucc_geth_thread_data_rx __iomem *) qe_muram_addr(ugeth->
2719 							thread_dat_rx_offset);
2720 	out_be32(&ugeth->p_rx_glbl_pram->rqptr, ugeth->thread_dat_rx_offset);
2721 
2722 	/* typeorlen */
2723 	out_be16(&ugeth->p_rx_glbl_pram->typeorlen, ug_info->typeorlen);
2724 
2725 	/* rxrmonbaseptr (statistics) */
2726 	if (ug_info->
2727 	    statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX) {
2728 		ugeth->rx_fw_statistics_pram_offset =
2729 		    qe_muram_alloc(sizeof
2730 				   (struct ucc_geth_rx_firmware_statistics_pram),
2731 				   UCC_GETH_RX_STATISTICS_ALIGNMENT);
2732 		if (IS_ERR_VALUE(ugeth->rx_fw_statistics_pram_offset)) {
2733 			if (netif_msg_ifup(ugeth))
2734 				pr_err("Can not allocate DPRAM memory for p_rx_fw_statistics_pram\n");
2735 			return -ENOMEM;
2736 		}
2737 		ugeth->p_rx_fw_statistics_pram =
2738 		    (struct ucc_geth_rx_firmware_statistics_pram __iomem *)
2739 		    qe_muram_addr(ugeth->rx_fw_statistics_pram_offset);
2740 		/* Zero out p_rx_fw_statistics_pram */
2741 		memset_io((void __iomem *)ugeth->p_rx_fw_statistics_pram, 0,
2742 		       sizeof(struct ucc_geth_rx_firmware_statistics_pram));
2743 	}
2744 
2745 	/* intCoalescingPtr */
2746 
2747 	/* Size varies with number of Rx queues */
2748 	ugeth->rx_irq_coalescing_tbl_offset =
2749 	    qe_muram_alloc(ug_info->numQueuesRx *
2750 			   sizeof(struct ucc_geth_rx_interrupt_coalescing_entry)
2751 			   + 4, UCC_GETH_RX_INTERRUPT_COALESCING_ALIGNMENT);
2752 	if (IS_ERR_VALUE(ugeth->rx_irq_coalescing_tbl_offset)) {
2753 		if (netif_msg_ifup(ugeth))
2754 			pr_err("Can not allocate DPRAM memory for p_rx_irq_coalescing_tbl\n");
2755 		return -ENOMEM;
2756 	}
2757 
2758 	ugeth->p_rx_irq_coalescing_tbl =
2759 	    (struct ucc_geth_rx_interrupt_coalescing_table __iomem *)
2760 	    qe_muram_addr(ugeth->rx_irq_coalescing_tbl_offset);
2761 	out_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr,
2762 		 ugeth->rx_irq_coalescing_tbl_offset);
2763 
2764 	/* Fill interrupt coalescing table */
2765 	for (i = 0; i < ug_info->numQueuesRx; i++) {
2766 		out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2767 			 interruptcoalescingmaxvalue,
2768 			 ug_info->interruptcoalescingmaxvalue[i]);
2769 		out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2770 			 interruptcoalescingcounter,
2771 			 ug_info->interruptcoalescingmaxvalue[i]);
2772 	}
2773 
2774 	/* MRBLR */
2775 	init_max_rx_buff_len(uf_info->max_rx_buf_length,
2776 			     &ugeth->p_rx_glbl_pram->mrblr);
2777 	/* MFLR */
2778 	out_be16(&ugeth->p_rx_glbl_pram->mflr, ug_info->maxFrameLength);
2779 	/* MINFLR */
2780 	init_min_frame_len(ug_info->minFrameLength,
2781 			   &ugeth->p_rx_glbl_pram->minflr,
2782 			   &ugeth->p_rx_glbl_pram->mrblr);
2783 	/* MAXD1 */
2784 	out_be16(&ugeth->p_rx_glbl_pram->maxd1, ug_info->maxD1Length);
2785 	/* MAXD2 */
2786 	out_be16(&ugeth->p_rx_glbl_pram->maxd2, ug_info->maxD2Length);
2787 
2788 	/* l2qt */
2789 	l2qt = 0;
2790 	for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++)
2791 		l2qt |= (ug_info->l2qt[i] << (28 - 4 * i));
2792 	out_be32(&ugeth->p_rx_glbl_pram->l2qt, l2qt);
2793 
2794 	/* l3qt */
2795 	for (j = 0; j < UCC_GETH_IP_PRIORITY_MAX; j += 8) {
2796 		l3qt = 0;
2797 		for (i = 0; i < 8; i++)
2798 			l3qt |= (ug_info->l3qt[j + i] << (28 - 4 * i));
2799 		out_be32(&ugeth->p_rx_glbl_pram->l3qt[j/8], l3qt);
2800 	}
2801 
2802 	/* vlantype */
2803 	out_be16(&ugeth->p_rx_glbl_pram->vlantype, ug_info->vlantype);
2804 
2805 	/* vlantci */
2806 	out_be16(&ugeth->p_rx_glbl_pram->vlantci, ug_info->vlantci);
2807 
2808 	/* ecamptr */
2809 	out_be32(&ugeth->p_rx_glbl_pram->ecamptr, ug_info->ecamptr);
2810 
2811 	/* RBDQPTR */
2812 	/* Size varies with number of Rx queues */
2813 	ugeth->rx_bd_qs_tbl_offset =
2814 	    qe_muram_alloc(ug_info->numQueuesRx *
2815 			   (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2816 			    sizeof(struct ucc_geth_rx_prefetched_bds)),
2817 			   UCC_GETH_RX_BD_QUEUES_ALIGNMENT);
2818 	if (IS_ERR_VALUE(ugeth->rx_bd_qs_tbl_offset)) {
2819 		if (netif_msg_ifup(ugeth))
2820 			pr_err("Can not allocate DPRAM memory for p_rx_bd_qs_tbl\n");
2821 		return -ENOMEM;
2822 	}
2823 
2824 	ugeth->p_rx_bd_qs_tbl =
2825 	    (struct ucc_geth_rx_bd_queues_entry __iomem *) qe_muram_addr(ugeth->
2826 				    rx_bd_qs_tbl_offset);
2827 	out_be32(&ugeth->p_rx_glbl_pram->rbdqptr, ugeth->rx_bd_qs_tbl_offset);
2828 	/* Zero out p_rx_bd_qs_tbl */
2829 	memset_io((void __iomem *)ugeth->p_rx_bd_qs_tbl,
2830 	       0,
2831 	       ug_info->numQueuesRx * (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2832 				       sizeof(struct ucc_geth_rx_prefetched_bds)));
2833 
2834 	/* Setup the table */
2835 	/* Assume BD rings are already established */
2836 	for (i = 0; i < ug_info->numQueuesRx; i++) {
2837 		if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2838 			out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2839 				 (u32) virt_to_phys(ugeth->p_rx_bd_ring[i]));
2840 		} else if (ugeth->ug_info->uf_info.bd_mem_part ==
2841 			   MEM_PART_MURAM) {
2842 			out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2843 				 (u32) immrbar_virt_to_phys(ugeth->
2844 							    p_rx_bd_ring[i]));
2845 		}
2846 		/* rest of fields handled by QE */
2847 	}
2848 
2849 	/* remoder */
2850 	/* Already has speed set */
2851 
2852 	if (ugeth->rx_extended_features)
2853 		remoder |= REMODER_RX_EXTENDED_FEATURES;
2854 	if (ug_info->rxExtendedFiltering)
2855 		remoder |= REMODER_RX_EXTENDED_FILTERING;
2856 	if (ug_info->dynamicMaxFrameLength)
2857 		remoder |= REMODER_DYNAMIC_MAX_FRAME_LENGTH;
2858 	if (ug_info->dynamicMinFrameLength)
2859 		remoder |= REMODER_DYNAMIC_MIN_FRAME_LENGTH;
2860 	remoder |=
2861 	    ug_info->vlanOperationTagged << REMODER_VLAN_OPERATION_TAGGED_SHIFT;
2862 	remoder |=
2863 	    ug_info->
2864 	    vlanOperationNonTagged << REMODER_VLAN_OPERATION_NON_TAGGED_SHIFT;
2865 	remoder |= ug_info->rxQoSMode << REMODER_RX_QOS_MODE_SHIFT;
2866 	remoder |= ((ug_info->numQueuesRx - 1) << REMODER_NUM_OF_QUEUES_SHIFT);
2867 	if (ug_info->ipCheckSumCheck)
2868 		remoder |= REMODER_IP_CHECKSUM_CHECK;
2869 	if (ug_info->ipAddressAlignment)
2870 		remoder |= REMODER_IP_ADDRESS_ALIGNMENT;
2871 	out_be32(&ugeth->p_rx_glbl_pram->remoder, remoder);
2872 
2873 	/* Note that this function must be called */
2874 	/* ONLY AFTER p_tx_fw_statistics_pram */
2875 	/* andp_UccGethRxFirmwareStatisticsPram are allocated ! */
2876 	init_firmware_statistics_gathering_mode((ug_info->
2877 		statisticsMode &
2878 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX),
2879 		(ug_info->statisticsMode &
2880 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX),
2881 		&ugeth->p_tx_glbl_pram->txrmonbaseptr,
2882 		ugeth->tx_fw_statistics_pram_offset,
2883 		&ugeth->p_rx_glbl_pram->rxrmonbaseptr,
2884 		ugeth->rx_fw_statistics_pram_offset,
2885 		&ugeth->p_tx_glbl_pram->temoder,
2886 		&ugeth->p_rx_glbl_pram->remoder);
2887 
2888 	/* function code register */
2889 	out_8(&ugeth->p_rx_glbl_pram->rstate, function_code);
2890 
2891 	/* initialize extended filtering */
2892 	if (ug_info->rxExtendedFiltering) {
2893 		if (!ug_info->extendedFilteringChainPointer) {
2894 			if (netif_msg_ifup(ugeth))
2895 				pr_err("Null Extended Filtering Chain Pointer\n");
2896 			return -EINVAL;
2897 		}
2898 
2899 		/* Allocate memory for extended filtering Mode Global
2900 		Parameters */
2901 		ugeth->exf_glbl_param_offset =
2902 		    qe_muram_alloc(sizeof(struct ucc_geth_exf_global_pram),
2903 		UCC_GETH_RX_EXTENDED_FILTERING_GLOBAL_PARAMETERS_ALIGNMENT);
2904 		if (IS_ERR_VALUE(ugeth->exf_glbl_param_offset)) {
2905 			if (netif_msg_ifup(ugeth))
2906 				pr_err("Can not allocate DPRAM memory for p_exf_glbl_param\n");
2907 			return -ENOMEM;
2908 		}
2909 
2910 		ugeth->p_exf_glbl_param =
2911 		    (struct ucc_geth_exf_global_pram __iomem *) qe_muram_addr(ugeth->
2912 				 exf_glbl_param_offset);
2913 		out_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam,
2914 			 ugeth->exf_glbl_param_offset);
2915 		out_be32(&ugeth->p_exf_glbl_param->l2pcdptr,
2916 			 (u32) ug_info->extendedFilteringChainPointer);
2917 
2918 	} else {		/* initialize 82xx style address filtering */
2919 
2920 		/* Init individual address recognition registers to disabled */
2921 
2922 		for (j = 0; j < NUM_OF_PADDRS; j++)
2923 			ugeth_82xx_filtering_clear_addr_in_paddr(ugeth, (u8) j);
2924 
2925 		p_82xx_addr_filt =
2926 		    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2927 		    p_rx_glbl_pram->addressfiltering;
2928 
2929 		ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2930 			ENET_ADDR_TYPE_GROUP);
2931 		ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2932 			ENET_ADDR_TYPE_INDIVIDUAL);
2933 	}
2934 
2935 	/*
2936 	 * Initialize UCC at QE level
2937 	 */
2938 
2939 	command = QE_INIT_TX_RX;
2940 
2941 	/* Allocate shadow InitEnet command parameter structure.
2942 	 * This is needed because after the InitEnet command is executed,
2943 	 * the structure in DPRAM is released, because DPRAM is a premium
2944 	 * resource.
2945 	 * This shadow structure keeps a copy of what was done so that the
2946 	 * allocated resources can be released when the channel is freed.
2947 	 */
2948 	if (!(ugeth->p_init_enet_param_shadow =
2949 	      kmalloc(sizeof(struct ucc_geth_init_pram), GFP_KERNEL))) {
2950 		if (netif_msg_ifup(ugeth))
2951 			pr_err("Can not allocate memory for p_UccInitEnetParamShadows\n");
2952 		return -ENOMEM;
2953 	}
2954 	/* Zero out *p_init_enet_param_shadow */
2955 	memset((char *)ugeth->p_init_enet_param_shadow,
2956 	       0, sizeof(struct ucc_geth_init_pram));
2957 
2958 	/* Fill shadow InitEnet command parameter structure */
2959 
2960 	ugeth->p_init_enet_param_shadow->resinit1 =
2961 	    ENET_INIT_PARAM_MAGIC_RES_INIT1;
2962 	ugeth->p_init_enet_param_shadow->resinit2 =
2963 	    ENET_INIT_PARAM_MAGIC_RES_INIT2;
2964 	ugeth->p_init_enet_param_shadow->resinit3 =
2965 	    ENET_INIT_PARAM_MAGIC_RES_INIT3;
2966 	ugeth->p_init_enet_param_shadow->resinit4 =
2967 	    ENET_INIT_PARAM_MAGIC_RES_INIT4;
2968 	ugeth->p_init_enet_param_shadow->resinit5 =
2969 	    ENET_INIT_PARAM_MAGIC_RES_INIT5;
2970 	ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2971 	    ((u32) ug_info->numThreadsRx) << ENET_INIT_PARAM_RGF_SHIFT;
2972 	ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2973 	    ((u32) ug_info->numThreadsTx) << ENET_INIT_PARAM_TGF_SHIFT;
2974 
2975 	ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2976 	    ugeth->rx_glbl_pram_offset | ug_info->riscRx;
2977 	if ((ug_info->largestexternallookupkeysize !=
2978 	     QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE) &&
2979 	    (ug_info->largestexternallookupkeysize !=
2980 	     QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) &&
2981 	    (ug_info->largestexternallookupkeysize !=
2982 	     QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)) {
2983 		if (netif_msg_ifup(ugeth))
2984 			pr_err("Invalid largest External Lookup Key Size\n");
2985 		return -EINVAL;
2986 	}
2987 	ugeth->p_init_enet_param_shadow->largestexternallookupkeysize =
2988 	    ug_info->largestexternallookupkeysize;
2989 	size = sizeof(struct ucc_geth_thread_rx_pram);
2990 	if (ug_info->rxExtendedFiltering) {
2991 		size += THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
2992 		if (ug_info->largestexternallookupkeysize ==
2993 		    QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
2994 			size +=
2995 			    THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
2996 		if (ug_info->largestexternallookupkeysize ==
2997 		    QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
2998 			size +=
2999 			    THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
3000 	}
3001 
3002 	if ((ret_val = fill_init_enet_entries(ugeth, &(ugeth->
3003 		p_init_enet_param_shadow->rxthread[0]),
3004 		(u8) (numThreadsRxNumerical + 1)
3005 		/* Rx needs one extra for terminator */
3006 		, size, UCC_GETH_THREAD_RX_PRAM_ALIGNMENT,
3007 		ug_info->riscRx, 1)) != 0) {
3008 		if (netif_msg_ifup(ugeth))
3009 			pr_err("Can not fill p_init_enet_param_shadow\n");
3010 		return ret_val;
3011 	}
3012 
3013 	ugeth->p_init_enet_param_shadow->txglobal =
3014 	    ugeth->tx_glbl_pram_offset | ug_info->riscTx;
3015 	if ((ret_val =
3016 	     fill_init_enet_entries(ugeth,
3017 				    &(ugeth->p_init_enet_param_shadow->
3018 				      txthread[0]), numThreadsTxNumerical,
3019 				    sizeof(struct ucc_geth_thread_tx_pram),
3020 				    UCC_GETH_THREAD_TX_PRAM_ALIGNMENT,
3021 				    ug_info->riscTx, 0)) != 0) {
3022 		if (netif_msg_ifup(ugeth))
3023 			pr_err("Can not fill p_init_enet_param_shadow\n");
3024 		return ret_val;
3025 	}
3026 
3027 	/* Load Rx bds with buffers */
3028 	for (i = 0; i < ug_info->numQueuesRx; i++) {
3029 		if ((ret_val = rx_bd_buffer_set(ugeth, (u8) i)) != 0) {
3030 			if (netif_msg_ifup(ugeth))
3031 				pr_err("Can not fill Rx bds with buffers\n");
3032 			return ret_val;
3033 		}
3034 	}
3035 
3036 	/* Allocate InitEnet command parameter structure */
3037 	init_enet_pram_offset = qe_muram_alloc(sizeof(struct ucc_geth_init_pram), 4);
3038 	if (IS_ERR_VALUE(init_enet_pram_offset)) {
3039 		if (netif_msg_ifup(ugeth))
3040 			pr_err("Can not allocate DPRAM memory for p_init_enet_pram\n");
3041 		return -ENOMEM;
3042 	}
3043 	p_init_enet_pram =
3044 	    (struct ucc_geth_init_pram __iomem *) qe_muram_addr(init_enet_pram_offset);
3045 
3046 	/* Copy shadow InitEnet command parameter structure into PRAM */
3047 	out_8(&p_init_enet_pram->resinit1,
3048 			ugeth->p_init_enet_param_shadow->resinit1);
3049 	out_8(&p_init_enet_pram->resinit2,
3050 			ugeth->p_init_enet_param_shadow->resinit2);
3051 	out_8(&p_init_enet_pram->resinit3,
3052 			ugeth->p_init_enet_param_shadow->resinit3);
3053 	out_8(&p_init_enet_pram->resinit4,
3054 			ugeth->p_init_enet_param_shadow->resinit4);
3055 	out_be16(&p_init_enet_pram->resinit5,
3056 		 ugeth->p_init_enet_param_shadow->resinit5);
3057 	out_8(&p_init_enet_pram->largestexternallookupkeysize,
3058 	    ugeth->p_init_enet_param_shadow->largestexternallookupkeysize);
3059 	out_be32(&p_init_enet_pram->rgftgfrxglobal,
3060 		 ugeth->p_init_enet_param_shadow->rgftgfrxglobal);
3061 	for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_RX; i++)
3062 		out_be32(&p_init_enet_pram->rxthread[i],
3063 			 ugeth->p_init_enet_param_shadow->rxthread[i]);
3064 	out_be32(&p_init_enet_pram->txglobal,
3065 		 ugeth->p_init_enet_param_shadow->txglobal);
3066 	for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_TX; i++)
3067 		out_be32(&p_init_enet_pram->txthread[i],
3068 			 ugeth->p_init_enet_param_shadow->txthread[i]);
3069 
3070 	/* Issue QE command */
3071 	cecr_subblock =
3072 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
3073 	qe_issue_cmd(command, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
3074 		     init_enet_pram_offset);
3075 
3076 	/* Free InitEnet command parameter */
3077 	qe_muram_free(init_enet_pram_offset);
3078 
3079 	return 0;
3080 }
3081 
3082 /* This is called by the kernel when a frame is ready for transmission. */
3083 /* It is pointed to by the dev->hard_start_xmit function pointer */
3084 static int ucc_geth_start_xmit(struct sk_buff *skb, struct net_device *dev)
3085 {
3086 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3087 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3088 	struct ucc_fast_private *uccf;
3089 #endif
3090 	u8 __iomem *bd;			/* BD pointer */
3091 	u32 bd_status;
3092 	u8 txQ = 0;
3093 	unsigned long flags;
3094 
3095 	ugeth_vdbg("%s: IN", __func__);
3096 
3097 	spin_lock_irqsave(&ugeth->lock, flags);
3098 
3099 	dev->stats.tx_bytes += skb->len;
3100 
3101 	/* Start from the next BD that should be filled */
3102 	bd = ugeth->txBd[txQ];
3103 	bd_status = in_be32((u32 __iomem *)bd);
3104 	/* Save the skb pointer so we can free it later */
3105 	ugeth->tx_skbuff[txQ][ugeth->skb_curtx[txQ]] = skb;
3106 
3107 	/* Update the current skb pointer (wrapping if this was the last) */
3108 	ugeth->skb_curtx[txQ] =
3109 	    (ugeth->skb_curtx[txQ] +
3110 	     1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3111 
3112 	/* set up the buffer descriptor */
3113 	out_be32(&((struct qe_bd __iomem *)bd)->buf,
3114 		      dma_map_single(ugeth->dev, skb->data,
3115 			      skb->len, DMA_TO_DEVICE));
3116 
3117 	/* printk(KERN_DEBUG"skb->data is 0x%x\n",skb->data); */
3118 
3119 	bd_status = (bd_status & T_W) | T_R | T_I | T_L | skb->len;
3120 
3121 	/* set bd status and length */
3122 	out_be32((u32 __iomem *)bd, bd_status);
3123 
3124 	/* Move to next BD in the ring */
3125 	if (!(bd_status & T_W))
3126 		bd += sizeof(struct qe_bd);
3127 	else
3128 		bd = ugeth->p_tx_bd_ring[txQ];
3129 
3130 	/* If the next BD still needs to be cleaned up, then the bds
3131 	   are full.  We need to tell the kernel to stop sending us stuff. */
3132 	if (bd == ugeth->confBd[txQ]) {
3133 		if (!netif_queue_stopped(dev))
3134 			netif_stop_queue(dev);
3135 	}
3136 
3137 	ugeth->txBd[txQ] = bd;
3138 
3139 	skb_tx_timestamp(skb);
3140 
3141 	if (ugeth->p_scheduler) {
3142 		ugeth->cpucount[txQ]++;
3143 		/* Indicate to QE that there are more Tx bds ready for
3144 		transmission */
3145 		/* This is done by writing a running counter of the bd
3146 		count to the scheduler PRAM. */
3147 		out_be16(ugeth->p_cpucount[txQ], ugeth->cpucount[txQ]);
3148 	}
3149 
3150 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3151 	uccf = ugeth->uccf;
3152 	out_be16(uccf->p_utodr, UCC_FAST_TOD);
3153 #endif
3154 	spin_unlock_irqrestore(&ugeth->lock, flags);
3155 
3156 	return NETDEV_TX_OK;
3157 }
3158 
3159 static int ucc_geth_rx(struct ucc_geth_private *ugeth, u8 rxQ, int rx_work_limit)
3160 {
3161 	struct sk_buff *skb;
3162 	u8 __iomem *bd;
3163 	u16 length, howmany = 0;
3164 	u32 bd_status;
3165 	u8 *bdBuffer;
3166 	struct net_device *dev;
3167 
3168 	ugeth_vdbg("%s: IN", __func__);
3169 
3170 	dev = ugeth->ndev;
3171 
3172 	/* collect received buffers */
3173 	bd = ugeth->rxBd[rxQ];
3174 
3175 	bd_status = in_be32((u32 __iomem *)bd);
3176 
3177 	/* while there are received buffers and BD is full (~R_E) */
3178 	while (!((bd_status & (R_E)) || (--rx_work_limit < 0))) {
3179 		bdBuffer = (u8 *) in_be32(&((struct qe_bd __iomem *)bd)->buf);
3180 		length = (u16) ((bd_status & BD_LENGTH_MASK) - 4);
3181 		skb = ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]];
3182 
3183 		/* determine whether buffer is first, last, first and last
3184 		(single buffer frame) or middle (not first and not last) */
3185 		if (!skb ||
3186 		    (!(bd_status & (R_F | R_L))) ||
3187 		    (bd_status & R_ERRORS_FATAL)) {
3188 			if (netif_msg_rx_err(ugeth))
3189 				pr_err("%d: ERROR!!! skb - 0x%08x\n",
3190 				       __LINE__, (u32)skb);
3191 			dev_kfree_skb(skb);
3192 
3193 			ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = NULL;
3194 			dev->stats.rx_dropped++;
3195 		} else {
3196 			dev->stats.rx_packets++;
3197 			howmany++;
3198 
3199 			/* Prep the skb for the packet */
3200 			skb_put(skb, length);
3201 
3202 			/* Tell the skb what kind of packet this is */
3203 			skb->protocol = eth_type_trans(skb, ugeth->ndev);
3204 
3205 			dev->stats.rx_bytes += length;
3206 			/* Send the packet up the stack */
3207 			netif_receive_skb(skb);
3208 		}
3209 
3210 		skb = get_new_skb(ugeth, bd);
3211 		if (!skb) {
3212 			if (netif_msg_rx_err(ugeth))
3213 				pr_warn("No Rx Data Buffer\n");
3214 			dev->stats.rx_dropped++;
3215 			break;
3216 		}
3217 
3218 		ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = skb;
3219 
3220 		/* update to point at the next skb */
3221 		ugeth->skb_currx[rxQ] =
3222 		    (ugeth->skb_currx[rxQ] +
3223 		     1) & RX_RING_MOD_MASK(ugeth->ug_info->bdRingLenRx[rxQ]);
3224 
3225 		if (bd_status & R_W)
3226 			bd = ugeth->p_rx_bd_ring[rxQ];
3227 		else
3228 			bd += sizeof(struct qe_bd);
3229 
3230 		bd_status = in_be32((u32 __iomem *)bd);
3231 	}
3232 
3233 	ugeth->rxBd[rxQ] = bd;
3234 	return howmany;
3235 }
3236 
3237 static int ucc_geth_tx(struct net_device *dev, u8 txQ)
3238 {
3239 	/* Start from the next BD that should be filled */
3240 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3241 	u8 __iomem *bd;		/* BD pointer */
3242 	u32 bd_status;
3243 
3244 	bd = ugeth->confBd[txQ];
3245 	bd_status = in_be32((u32 __iomem *)bd);
3246 
3247 	/* Normal processing. */
3248 	while ((bd_status & T_R) == 0) {
3249 		struct sk_buff *skb;
3250 
3251 		/* BD contains already transmitted buffer.   */
3252 		/* Handle the transmitted buffer and release */
3253 		/* the BD to be used with the current frame  */
3254 
3255 		skb = ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]];
3256 		if (!skb)
3257 			break;
3258 
3259 		dev->stats.tx_packets++;
3260 
3261 		dev_consume_skb_any(skb);
3262 
3263 		ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]] = NULL;
3264 		ugeth->skb_dirtytx[txQ] =
3265 		    (ugeth->skb_dirtytx[txQ] +
3266 		     1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3267 
3268 		/* We freed a buffer, so now we can restart transmission */
3269 		if (netif_queue_stopped(dev))
3270 			netif_wake_queue(dev);
3271 
3272 		/* Advance the confirmation BD pointer */
3273 		if (!(bd_status & T_W))
3274 			bd += sizeof(struct qe_bd);
3275 		else
3276 			bd = ugeth->p_tx_bd_ring[txQ];
3277 		bd_status = in_be32((u32 __iomem *)bd);
3278 	}
3279 	ugeth->confBd[txQ] = bd;
3280 	return 0;
3281 }
3282 
3283 static int ucc_geth_poll(struct napi_struct *napi, int budget)
3284 {
3285 	struct ucc_geth_private *ugeth = container_of(napi, struct ucc_geth_private, napi);
3286 	struct ucc_geth_info *ug_info;
3287 	int howmany, i;
3288 
3289 	ug_info = ugeth->ug_info;
3290 
3291 	/* Tx event processing */
3292 	spin_lock(&ugeth->lock);
3293 	for (i = 0; i < ug_info->numQueuesTx; i++)
3294 		ucc_geth_tx(ugeth->ndev, i);
3295 	spin_unlock(&ugeth->lock);
3296 
3297 	howmany = 0;
3298 	for (i = 0; i < ug_info->numQueuesRx; i++)
3299 		howmany += ucc_geth_rx(ugeth, i, budget - howmany);
3300 
3301 	if (howmany < budget) {
3302 		napi_complete(napi);
3303 		setbits32(ugeth->uccf->p_uccm, UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3304 	}
3305 
3306 	return howmany;
3307 }
3308 
3309 static irqreturn_t ucc_geth_irq_handler(int irq, void *info)
3310 {
3311 	struct net_device *dev = info;
3312 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3313 	struct ucc_fast_private *uccf;
3314 	struct ucc_geth_info *ug_info;
3315 	register u32 ucce;
3316 	register u32 uccm;
3317 
3318 	ugeth_vdbg("%s: IN", __func__);
3319 
3320 	uccf = ugeth->uccf;
3321 	ug_info = ugeth->ug_info;
3322 
3323 	/* read and clear events */
3324 	ucce = (u32) in_be32(uccf->p_ucce);
3325 	uccm = (u32) in_be32(uccf->p_uccm);
3326 	ucce &= uccm;
3327 	out_be32(uccf->p_ucce, ucce);
3328 
3329 	/* check for receive events that require processing */
3330 	if (ucce & (UCCE_RX_EVENTS | UCCE_TX_EVENTS)) {
3331 		if (napi_schedule_prep(&ugeth->napi)) {
3332 			uccm &= ~(UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3333 			out_be32(uccf->p_uccm, uccm);
3334 			__napi_schedule(&ugeth->napi);
3335 		}
3336 	}
3337 
3338 	/* Errors and other events */
3339 	if (ucce & UCCE_OTHER) {
3340 		if (ucce & UCC_GETH_UCCE_BSY)
3341 			dev->stats.rx_errors++;
3342 		if (ucce & UCC_GETH_UCCE_TXE)
3343 			dev->stats.tx_errors++;
3344 	}
3345 
3346 	return IRQ_HANDLED;
3347 }
3348 
3349 #ifdef CONFIG_NET_POLL_CONTROLLER
3350 /*
3351  * Polling 'interrupt' - used by things like netconsole to send skbs
3352  * without having to re-enable interrupts. It's not called while
3353  * the interrupt routine is executing.
3354  */
3355 static void ucc_netpoll(struct net_device *dev)
3356 {
3357 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3358 	int irq = ugeth->ug_info->uf_info.irq;
3359 
3360 	disable_irq(irq);
3361 	ucc_geth_irq_handler(irq, dev);
3362 	enable_irq(irq);
3363 }
3364 #endif /* CONFIG_NET_POLL_CONTROLLER */
3365 
3366 static int ucc_geth_set_mac_addr(struct net_device *dev, void *p)
3367 {
3368 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3369 	struct sockaddr *addr = p;
3370 
3371 	if (!is_valid_ether_addr(addr->sa_data))
3372 		return -EADDRNOTAVAIL;
3373 
3374 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3375 
3376 	/*
3377 	 * If device is not running, we will set mac addr register
3378 	 * when opening the device.
3379 	 */
3380 	if (!netif_running(dev))
3381 		return 0;
3382 
3383 	spin_lock_irq(&ugeth->lock);
3384 	init_mac_station_addr_regs(dev->dev_addr[0],
3385 				   dev->dev_addr[1],
3386 				   dev->dev_addr[2],
3387 				   dev->dev_addr[3],
3388 				   dev->dev_addr[4],
3389 				   dev->dev_addr[5],
3390 				   &ugeth->ug_regs->macstnaddr1,
3391 				   &ugeth->ug_regs->macstnaddr2);
3392 	spin_unlock_irq(&ugeth->lock);
3393 
3394 	return 0;
3395 }
3396 
3397 static int ucc_geth_init_mac(struct ucc_geth_private *ugeth)
3398 {
3399 	struct net_device *dev = ugeth->ndev;
3400 	int err;
3401 
3402 	err = ucc_struct_init(ugeth);
3403 	if (err) {
3404 		netif_err(ugeth, ifup, dev, "Cannot configure internal struct, aborting\n");
3405 		goto err;
3406 	}
3407 
3408 	err = ucc_geth_startup(ugeth);
3409 	if (err) {
3410 		netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3411 		goto err;
3412 	}
3413 
3414 	err = adjust_enet_interface(ugeth);
3415 	if (err) {
3416 		netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3417 		goto err;
3418 	}
3419 
3420 	/*       Set MACSTNADDR1, MACSTNADDR2                */
3421 	/* For more details see the hardware spec.           */
3422 	init_mac_station_addr_regs(dev->dev_addr[0],
3423 				   dev->dev_addr[1],
3424 				   dev->dev_addr[2],
3425 				   dev->dev_addr[3],
3426 				   dev->dev_addr[4],
3427 				   dev->dev_addr[5],
3428 				   &ugeth->ug_regs->macstnaddr1,
3429 				   &ugeth->ug_regs->macstnaddr2);
3430 
3431 	err = ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3432 	if (err) {
3433 		netif_err(ugeth, ifup, dev, "Cannot enable net device, aborting\n");
3434 		goto err;
3435 	}
3436 
3437 	return 0;
3438 err:
3439 	ucc_geth_stop(ugeth);
3440 	return err;
3441 }
3442 
3443 /* Called when something needs to use the ethernet device */
3444 /* Returns 0 for success. */
3445 static int ucc_geth_open(struct net_device *dev)
3446 {
3447 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3448 	int err;
3449 
3450 	ugeth_vdbg("%s: IN", __func__);
3451 
3452 	/* Test station address */
3453 	if (dev->dev_addr[0] & ENET_GROUP_ADDR) {
3454 		netif_err(ugeth, ifup, dev,
3455 			  "Multicast address used for station address - is this what you wanted?\n");
3456 		return -EINVAL;
3457 	}
3458 
3459 	err = init_phy(dev);
3460 	if (err) {
3461 		netif_err(ugeth, ifup, dev, "Cannot initialize PHY, aborting\n");
3462 		return err;
3463 	}
3464 
3465 	err = ucc_geth_init_mac(ugeth);
3466 	if (err) {
3467 		netif_err(ugeth, ifup, dev, "Cannot initialize MAC, aborting\n");
3468 		goto err;
3469 	}
3470 
3471 	err = request_irq(ugeth->ug_info->uf_info.irq, ucc_geth_irq_handler,
3472 			  0, "UCC Geth", dev);
3473 	if (err) {
3474 		netif_err(ugeth, ifup, dev, "Cannot get IRQ for net device, aborting\n");
3475 		goto err;
3476 	}
3477 
3478 	phy_start(ugeth->phydev);
3479 	napi_enable(&ugeth->napi);
3480 	netif_start_queue(dev);
3481 
3482 	device_set_wakeup_capable(&dev->dev,
3483 			qe_alive_during_sleep() || ugeth->phydev->irq);
3484 	device_set_wakeup_enable(&dev->dev, ugeth->wol_en);
3485 
3486 	return err;
3487 
3488 err:
3489 	ucc_geth_stop(ugeth);
3490 	return err;
3491 }
3492 
3493 /* Stops the kernel queue, and halts the controller */
3494 static int ucc_geth_close(struct net_device *dev)
3495 {
3496 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3497 
3498 	ugeth_vdbg("%s: IN", __func__);
3499 
3500 	napi_disable(&ugeth->napi);
3501 
3502 	cancel_work_sync(&ugeth->timeout_work);
3503 	ucc_geth_stop(ugeth);
3504 	phy_disconnect(ugeth->phydev);
3505 	ugeth->phydev = NULL;
3506 
3507 	free_irq(ugeth->ug_info->uf_info.irq, ugeth->ndev);
3508 
3509 	netif_stop_queue(dev);
3510 
3511 	return 0;
3512 }
3513 
3514 /* Reopen device. This will reset the MAC and PHY. */
3515 static void ucc_geth_timeout_work(struct work_struct *work)
3516 {
3517 	struct ucc_geth_private *ugeth;
3518 	struct net_device *dev;
3519 
3520 	ugeth = container_of(work, struct ucc_geth_private, timeout_work);
3521 	dev = ugeth->ndev;
3522 
3523 	ugeth_vdbg("%s: IN", __func__);
3524 
3525 	dev->stats.tx_errors++;
3526 
3527 	ugeth_dump_regs(ugeth);
3528 
3529 	if (dev->flags & IFF_UP) {
3530 		/*
3531 		 * Must reset MAC *and* PHY. This is done by reopening
3532 		 * the device.
3533 		 */
3534 		netif_tx_stop_all_queues(dev);
3535 		ucc_geth_stop(ugeth);
3536 		ucc_geth_init_mac(ugeth);
3537 		/* Must start PHY here */
3538 		phy_start(ugeth->phydev);
3539 		netif_tx_start_all_queues(dev);
3540 	}
3541 
3542 	netif_tx_schedule_all(dev);
3543 }
3544 
3545 /*
3546  * ucc_geth_timeout gets called when a packet has not been
3547  * transmitted after a set amount of time.
3548  */
3549 static void ucc_geth_timeout(struct net_device *dev)
3550 {
3551 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3552 
3553 	schedule_work(&ugeth->timeout_work);
3554 }
3555 
3556 
3557 #ifdef CONFIG_PM
3558 
3559 static int ucc_geth_suspend(struct platform_device *ofdev, pm_message_t state)
3560 {
3561 	struct net_device *ndev = platform_get_drvdata(ofdev);
3562 	struct ucc_geth_private *ugeth = netdev_priv(ndev);
3563 
3564 	if (!netif_running(ndev))
3565 		return 0;
3566 
3567 	netif_device_detach(ndev);
3568 	napi_disable(&ugeth->napi);
3569 
3570 	/*
3571 	 * Disable the controller, otherwise we'll wakeup on any network
3572 	 * activity.
3573 	 */
3574 	ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
3575 
3576 	if (ugeth->wol_en & WAKE_MAGIC) {
3577 		setbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3578 		setbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3579 		ucc_fast_enable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3580 	} else if (!(ugeth->wol_en & WAKE_PHY)) {
3581 		phy_stop(ugeth->phydev);
3582 	}
3583 
3584 	return 0;
3585 }
3586 
3587 static int ucc_geth_resume(struct platform_device *ofdev)
3588 {
3589 	struct net_device *ndev = platform_get_drvdata(ofdev);
3590 	struct ucc_geth_private *ugeth = netdev_priv(ndev);
3591 	int err;
3592 
3593 	if (!netif_running(ndev))
3594 		return 0;
3595 
3596 	if (qe_alive_during_sleep()) {
3597 		if (ugeth->wol_en & WAKE_MAGIC) {
3598 			ucc_fast_disable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3599 			clrbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3600 			clrbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3601 		}
3602 		ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3603 	} else {
3604 		/*
3605 		 * Full reinitialization is required if QE shuts down
3606 		 * during sleep.
3607 		 */
3608 		ucc_geth_memclean(ugeth);
3609 
3610 		err = ucc_geth_init_mac(ugeth);
3611 		if (err) {
3612 			netdev_err(ndev, "Cannot initialize MAC, aborting\n");
3613 			return err;
3614 		}
3615 	}
3616 
3617 	ugeth->oldlink = 0;
3618 	ugeth->oldspeed = 0;
3619 	ugeth->oldduplex = -1;
3620 
3621 	phy_stop(ugeth->phydev);
3622 	phy_start(ugeth->phydev);
3623 
3624 	napi_enable(&ugeth->napi);
3625 	netif_device_attach(ndev);
3626 
3627 	return 0;
3628 }
3629 
3630 #else
3631 #define ucc_geth_suspend NULL
3632 #define ucc_geth_resume NULL
3633 #endif
3634 
3635 static phy_interface_t to_phy_interface(const char *phy_connection_type)
3636 {
3637 	if (strcasecmp(phy_connection_type, "mii") == 0)
3638 		return PHY_INTERFACE_MODE_MII;
3639 	if (strcasecmp(phy_connection_type, "gmii") == 0)
3640 		return PHY_INTERFACE_MODE_GMII;
3641 	if (strcasecmp(phy_connection_type, "tbi") == 0)
3642 		return PHY_INTERFACE_MODE_TBI;
3643 	if (strcasecmp(phy_connection_type, "rmii") == 0)
3644 		return PHY_INTERFACE_MODE_RMII;
3645 	if (strcasecmp(phy_connection_type, "rgmii") == 0)
3646 		return PHY_INTERFACE_MODE_RGMII;
3647 	if (strcasecmp(phy_connection_type, "rgmii-id") == 0)
3648 		return PHY_INTERFACE_MODE_RGMII_ID;
3649 	if (strcasecmp(phy_connection_type, "rgmii-txid") == 0)
3650 		return PHY_INTERFACE_MODE_RGMII_TXID;
3651 	if (strcasecmp(phy_connection_type, "rgmii-rxid") == 0)
3652 		return PHY_INTERFACE_MODE_RGMII_RXID;
3653 	if (strcasecmp(phy_connection_type, "rtbi") == 0)
3654 		return PHY_INTERFACE_MODE_RTBI;
3655 	if (strcasecmp(phy_connection_type, "sgmii") == 0)
3656 		return PHY_INTERFACE_MODE_SGMII;
3657 
3658 	return PHY_INTERFACE_MODE_MII;
3659 }
3660 
3661 static int ucc_geth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3662 {
3663 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3664 
3665 	if (!netif_running(dev))
3666 		return -EINVAL;
3667 
3668 	if (!ugeth->phydev)
3669 		return -ENODEV;
3670 
3671 	return phy_mii_ioctl(ugeth->phydev, rq, cmd);
3672 }
3673 
3674 static const struct net_device_ops ucc_geth_netdev_ops = {
3675 	.ndo_open		= ucc_geth_open,
3676 	.ndo_stop		= ucc_geth_close,
3677 	.ndo_start_xmit		= ucc_geth_start_xmit,
3678 	.ndo_validate_addr	= eth_validate_addr,
3679 	.ndo_set_mac_address	= ucc_geth_set_mac_addr,
3680 	.ndo_change_mtu		= eth_change_mtu,
3681 	.ndo_set_rx_mode	= ucc_geth_set_multi,
3682 	.ndo_tx_timeout		= ucc_geth_timeout,
3683 	.ndo_do_ioctl		= ucc_geth_ioctl,
3684 #ifdef CONFIG_NET_POLL_CONTROLLER
3685 	.ndo_poll_controller	= ucc_netpoll,
3686 #endif
3687 };
3688 
3689 static int ucc_geth_probe(struct platform_device* ofdev)
3690 {
3691 	struct device *device = &ofdev->dev;
3692 	struct device_node *np = ofdev->dev.of_node;
3693 	struct net_device *dev = NULL;
3694 	struct ucc_geth_private *ugeth = NULL;
3695 	struct ucc_geth_info *ug_info;
3696 	struct resource res;
3697 	int err, ucc_num, max_speed = 0;
3698 	const unsigned int *prop;
3699 	const char *sprop;
3700 	const void *mac_addr;
3701 	phy_interface_t phy_interface;
3702 	static const int enet_to_speed[] = {
3703 		SPEED_10, SPEED_10, SPEED_10,
3704 		SPEED_100, SPEED_100, SPEED_100,
3705 		SPEED_1000, SPEED_1000, SPEED_1000, SPEED_1000,
3706 	};
3707 	static const phy_interface_t enet_to_phy_interface[] = {
3708 		PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_RMII,
3709 		PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_MII,
3710 		PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII,
3711 		PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_RGMII,
3712 		PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_RTBI,
3713 		PHY_INTERFACE_MODE_SGMII,
3714 	};
3715 
3716 	ugeth_vdbg("%s: IN", __func__);
3717 
3718 	prop = of_get_property(np, "cell-index", NULL);
3719 	if (!prop) {
3720 		prop = of_get_property(np, "device-id", NULL);
3721 		if (!prop)
3722 			return -ENODEV;
3723 	}
3724 
3725 	ucc_num = *prop - 1;
3726 	if ((ucc_num < 0) || (ucc_num > 7))
3727 		return -ENODEV;
3728 
3729 	ug_info = &ugeth_info[ucc_num];
3730 	if (ug_info == NULL) {
3731 		if (netif_msg_probe(&debug))
3732 			pr_err("[%d] Missing additional data!\n", ucc_num);
3733 		return -ENODEV;
3734 	}
3735 
3736 	ug_info->uf_info.ucc_num = ucc_num;
3737 
3738 	sprop = of_get_property(np, "rx-clock-name", NULL);
3739 	if (sprop) {
3740 		ug_info->uf_info.rx_clock = qe_clock_source(sprop);
3741 		if ((ug_info->uf_info.rx_clock < QE_CLK_NONE) ||
3742 		    (ug_info->uf_info.rx_clock > QE_CLK24)) {
3743 			pr_err("invalid rx-clock-name property\n");
3744 			return -EINVAL;
3745 		}
3746 	} else {
3747 		prop = of_get_property(np, "rx-clock", NULL);
3748 		if (!prop) {
3749 			/* If both rx-clock-name and rx-clock are missing,
3750 			   we want to tell people to use rx-clock-name. */
3751 			pr_err("missing rx-clock-name property\n");
3752 			return -EINVAL;
3753 		}
3754 		if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3755 			pr_err("invalid rx-clock propperty\n");
3756 			return -EINVAL;
3757 		}
3758 		ug_info->uf_info.rx_clock = *prop;
3759 	}
3760 
3761 	sprop = of_get_property(np, "tx-clock-name", NULL);
3762 	if (sprop) {
3763 		ug_info->uf_info.tx_clock = qe_clock_source(sprop);
3764 		if ((ug_info->uf_info.tx_clock < QE_CLK_NONE) ||
3765 		    (ug_info->uf_info.tx_clock > QE_CLK24)) {
3766 			pr_err("invalid tx-clock-name property\n");
3767 			return -EINVAL;
3768 		}
3769 	} else {
3770 		prop = of_get_property(np, "tx-clock", NULL);
3771 		if (!prop) {
3772 			pr_err("missing tx-clock-name property\n");
3773 			return -EINVAL;
3774 		}
3775 		if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3776 			pr_err("invalid tx-clock property\n");
3777 			return -EINVAL;
3778 		}
3779 		ug_info->uf_info.tx_clock = *prop;
3780 	}
3781 
3782 	err = of_address_to_resource(np, 0, &res);
3783 	if (err)
3784 		return -EINVAL;
3785 
3786 	ug_info->uf_info.regs = res.start;
3787 	ug_info->uf_info.irq = irq_of_parse_and_map(np, 0);
3788 
3789 	ug_info->phy_node = of_parse_phandle(np, "phy-handle", 0);
3790 	if (!ug_info->phy_node) {
3791 		/* In the case of a fixed PHY, the DT node associated
3792 		 * to the PHY is the Ethernet MAC DT node.
3793 		 */
3794 		if (of_phy_is_fixed_link(np)) {
3795 			err = of_phy_register_fixed_link(np);
3796 			if (err)
3797 				return err;
3798 		}
3799 		ug_info->phy_node = np;
3800 	}
3801 
3802 	/* Find the TBI PHY node.  If it's not there, we don't support SGMII */
3803 	ug_info->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
3804 
3805 	/* get the phy interface type, or default to MII */
3806 	prop = of_get_property(np, "phy-connection-type", NULL);
3807 	if (!prop) {
3808 		/* handle interface property present in old trees */
3809 		prop = of_get_property(ug_info->phy_node, "interface", NULL);
3810 		if (prop != NULL) {
3811 			phy_interface = enet_to_phy_interface[*prop];
3812 			max_speed = enet_to_speed[*prop];
3813 		} else
3814 			phy_interface = PHY_INTERFACE_MODE_MII;
3815 	} else {
3816 		phy_interface = to_phy_interface((const char *)prop);
3817 	}
3818 
3819 	/* get speed, or derive from PHY interface */
3820 	if (max_speed == 0)
3821 		switch (phy_interface) {
3822 		case PHY_INTERFACE_MODE_GMII:
3823 		case PHY_INTERFACE_MODE_RGMII:
3824 		case PHY_INTERFACE_MODE_RGMII_ID:
3825 		case PHY_INTERFACE_MODE_RGMII_RXID:
3826 		case PHY_INTERFACE_MODE_RGMII_TXID:
3827 		case PHY_INTERFACE_MODE_TBI:
3828 		case PHY_INTERFACE_MODE_RTBI:
3829 		case PHY_INTERFACE_MODE_SGMII:
3830 			max_speed = SPEED_1000;
3831 			break;
3832 		default:
3833 			max_speed = SPEED_100;
3834 			break;
3835 		}
3836 
3837 	if (max_speed == SPEED_1000) {
3838 		unsigned int snums = qe_get_num_of_snums();
3839 
3840 		/* configure muram FIFOs for gigabit operation */
3841 		ug_info->uf_info.urfs = UCC_GETH_URFS_GIGA_INIT;
3842 		ug_info->uf_info.urfet = UCC_GETH_URFET_GIGA_INIT;
3843 		ug_info->uf_info.urfset = UCC_GETH_URFSET_GIGA_INIT;
3844 		ug_info->uf_info.utfs = UCC_GETH_UTFS_GIGA_INIT;
3845 		ug_info->uf_info.utfet = UCC_GETH_UTFET_GIGA_INIT;
3846 		ug_info->uf_info.utftt = UCC_GETH_UTFTT_GIGA_INIT;
3847 		ug_info->numThreadsTx = UCC_GETH_NUM_OF_THREADS_4;
3848 
3849 		/* If QE's snum number is 46/76 which means we need to support
3850 		 * 4 UECs at 1000Base-T simultaneously, we need to allocate
3851 		 * more Threads to Rx.
3852 		 */
3853 		if ((snums == 76) || (snums == 46))
3854 			ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_6;
3855 		else
3856 			ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_4;
3857 	}
3858 
3859 	if (netif_msg_probe(&debug))
3860 		pr_info("UCC%1d at 0x%8x (irq = %d)\n",
3861 			ug_info->uf_info.ucc_num + 1, ug_info->uf_info.regs,
3862 			ug_info->uf_info.irq);
3863 
3864 	/* Create an ethernet device instance */
3865 	dev = alloc_etherdev(sizeof(*ugeth));
3866 
3867 	if (dev == NULL)
3868 		return -ENOMEM;
3869 
3870 	ugeth = netdev_priv(dev);
3871 	spin_lock_init(&ugeth->lock);
3872 
3873 	/* Create CQs for hash tables */
3874 	INIT_LIST_HEAD(&ugeth->group_hash_q);
3875 	INIT_LIST_HEAD(&ugeth->ind_hash_q);
3876 
3877 	dev_set_drvdata(device, dev);
3878 
3879 	/* Set the dev->base_addr to the gfar reg region */
3880 	dev->base_addr = (unsigned long)(ug_info->uf_info.regs);
3881 
3882 	SET_NETDEV_DEV(dev, device);
3883 
3884 	/* Fill in the dev structure */
3885 	uec_set_ethtool_ops(dev);
3886 	dev->netdev_ops = &ucc_geth_netdev_ops;
3887 	dev->watchdog_timeo = TX_TIMEOUT;
3888 	INIT_WORK(&ugeth->timeout_work, ucc_geth_timeout_work);
3889 	netif_napi_add(dev, &ugeth->napi, ucc_geth_poll, 64);
3890 	dev->mtu = 1500;
3891 
3892 	ugeth->msg_enable = netif_msg_init(debug.msg_enable, UGETH_MSG_DEFAULT);
3893 	ugeth->phy_interface = phy_interface;
3894 	ugeth->max_speed = max_speed;
3895 
3896 	err = register_netdev(dev);
3897 	if (err) {
3898 		if (netif_msg_probe(ugeth))
3899 			pr_err("%s: Cannot register net device, aborting\n",
3900 			       dev->name);
3901 		free_netdev(dev);
3902 		return err;
3903 	}
3904 
3905 	mac_addr = of_get_mac_address(np);
3906 	if (mac_addr)
3907 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
3908 
3909 	ugeth->ug_info = ug_info;
3910 	ugeth->dev = device;
3911 	ugeth->ndev = dev;
3912 	ugeth->node = np;
3913 
3914 	return 0;
3915 }
3916 
3917 static int ucc_geth_remove(struct platform_device* ofdev)
3918 {
3919 	struct net_device *dev = platform_get_drvdata(ofdev);
3920 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3921 
3922 	unregister_netdev(dev);
3923 	free_netdev(dev);
3924 	ucc_geth_memclean(ugeth);
3925 
3926 	return 0;
3927 }
3928 
3929 static struct of_device_id ucc_geth_match[] = {
3930 	{
3931 		.type = "network",
3932 		.compatible = "ucc_geth",
3933 	},
3934 	{},
3935 };
3936 
3937 MODULE_DEVICE_TABLE(of, ucc_geth_match);
3938 
3939 static struct platform_driver ucc_geth_driver = {
3940 	.driver = {
3941 		.name = DRV_NAME,
3942 		.owner = THIS_MODULE,
3943 		.of_match_table = ucc_geth_match,
3944 	},
3945 	.probe		= ucc_geth_probe,
3946 	.remove		= ucc_geth_remove,
3947 	.suspend	= ucc_geth_suspend,
3948 	.resume		= ucc_geth_resume,
3949 };
3950 
3951 static int __init ucc_geth_init(void)
3952 {
3953 	int i, ret;
3954 
3955 	if (netif_msg_drv(&debug))
3956 		pr_info(DRV_DESC "\n");
3957 	for (i = 0; i < 8; i++)
3958 		memcpy(&(ugeth_info[i]), &ugeth_primary_info,
3959 		       sizeof(ugeth_primary_info));
3960 
3961 	ret = platform_driver_register(&ucc_geth_driver);
3962 
3963 	return ret;
3964 }
3965 
3966 static void __exit ucc_geth_exit(void)
3967 {
3968 	platform_driver_unregister(&ucc_geth_driver);
3969 }
3970 
3971 module_init(ucc_geth_init);
3972 module_exit(ucc_geth_exit);
3973 
3974 MODULE_AUTHOR("Freescale Semiconductor, Inc");
3975 MODULE_DESCRIPTION(DRV_DESC);
3976 MODULE_VERSION(DRV_VERSION);
3977 MODULE_LICENSE("GPL");
3978