xref: /openbmc/linux/drivers/net/ethernet/freescale/ucc_geth.c (revision 4da722ca19f30f7db250db808d1ab1703607a932)
1 /*
2  * Copyright (C) 2006-2009 Freescale Semicondutor, Inc. All rights reserved.
3  *
4  * Author: Shlomi Gridish <gridish@freescale.com>
5  *	   Li Yang <leoli@freescale.com>
6  *
7  * Description:
8  * QE UCC Gigabit Ethernet Driver
9  *
10  * This program is free software; you can redistribute  it and/or modify it
11  * under  the terms of  the GNU General  Public License as published by the
12  * Free Software Foundation;  either version 2 of the  License, or (at your
13  * option) any later version.
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/stddef.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mm.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mii.h>
32 #include <linux/phy.h>
33 #include <linux/workqueue.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/of_platform.h>
39 
40 #include <linux/uaccess.h>
41 #include <asm/irq.h>
42 #include <asm/io.h>
43 #include <soc/fsl/qe/immap_qe.h>
44 #include <soc/fsl/qe/qe.h>
45 #include <soc/fsl/qe/ucc.h>
46 #include <soc/fsl/qe/ucc_fast.h>
47 #include <asm/machdep.h>
48 
49 #include "ucc_geth.h"
50 
51 #undef DEBUG
52 
53 #define ugeth_printk(level, format, arg...)  \
54         printk(level format "\n", ## arg)
55 
56 #define ugeth_dbg(format, arg...)            \
57         ugeth_printk(KERN_DEBUG , format , ## arg)
58 
59 #ifdef UGETH_VERBOSE_DEBUG
60 #define ugeth_vdbg ugeth_dbg
61 #else
62 #define ugeth_vdbg(fmt, args...) do { } while (0)
63 #endif				/* UGETH_VERBOSE_DEBUG */
64 #define UGETH_MSG_DEFAULT	(NETIF_MSG_IFUP << 1 ) - 1
65 
66 
67 static DEFINE_SPINLOCK(ugeth_lock);
68 
69 static struct {
70 	u32 msg_enable;
71 } debug = { -1 };
72 
73 module_param_named(debug, debug.msg_enable, int, 0);
74 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 0xffff=all)");
75 
76 static struct ucc_geth_info ugeth_primary_info = {
77 	.uf_info = {
78 		    .bd_mem_part = MEM_PART_SYSTEM,
79 		    .rtsm = UCC_FAST_SEND_IDLES_BETWEEN_FRAMES,
80 		    .max_rx_buf_length = 1536,
81 		    /* adjusted at startup if max-speed 1000 */
82 		    .urfs = UCC_GETH_URFS_INIT,
83 		    .urfet = UCC_GETH_URFET_INIT,
84 		    .urfset = UCC_GETH_URFSET_INIT,
85 		    .utfs = UCC_GETH_UTFS_INIT,
86 		    .utfet = UCC_GETH_UTFET_INIT,
87 		    .utftt = UCC_GETH_UTFTT_INIT,
88 		    .ufpt = 256,
89 		    .mode = UCC_FAST_PROTOCOL_MODE_ETHERNET,
90 		    .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
91 		    .tenc = UCC_FAST_TX_ENCODING_NRZ,
92 		    .renc = UCC_FAST_RX_ENCODING_NRZ,
93 		    .tcrc = UCC_FAST_16_BIT_CRC,
94 		    .synl = UCC_FAST_SYNC_LEN_NOT_USED,
95 		    },
96 	.numQueuesTx = 1,
97 	.numQueuesRx = 1,
98 	.extendedFilteringChainPointer = ((uint32_t) NULL),
99 	.typeorlen = 3072 /*1536 */ ,
100 	.nonBackToBackIfgPart1 = 0x40,
101 	.nonBackToBackIfgPart2 = 0x60,
102 	.miminumInterFrameGapEnforcement = 0x50,
103 	.backToBackInterFrameGap = 0x60,
104 	.mblinterval = 128,
105 	.nortsrbytetime = 5,
106 	.fracsiz = 1,
107 	.strictpriorityq = 0xff,
108 	.altBebTruncation = 0xa,
109 	.excessDefer = 1,
110 	.maxRetransmission = 0xf,
111 	.collisionWindow = 0x37,
112 	.receiveFlowControl = 1,
113 	.transmitFlowControl = 1,
114 	.maxGroupAddrInHash = 4,
115 	.maxIndAddrInHash = 4,
116 	.prel = 7,
117 	.maxFrameLength = 1518+16, /* Add extra bytes for VLANs etc. */
118 	.minFrameLength = 64,
119 	.maxD1Length = 1520+16, /* Add extra bytes for VLANs etc. */
120 	.maxD2Length = 1520+16, /* Add extra bytes for VLANs etc. */
121 	.vlantype = 0x8100,
122 	.ecamptr = ((uint32_t) NULL),
123 	.eventRegMask = UCCE_OTHER,
124 	.pausePeriod = 0xf000,
125 	.interruptcoalescingmaxvalue = {1, 1, 1, 1, 1, 1, 1, 1},
126 	.bdRingLenTx = {
127 			TX_BD_RING_LEN,
128 			TX_BD_RING_LEN,
129 			TX_BD_RING_LEN,
130 			TX_BD_RING_LEN,
131 			TX_BD_RING_LEN,
132 			TX_BD_RING_LEN,
133 			TX_BD_RING_LEN,
134 			TX_BD_RING_LEN},
135 
136 	.bdRingLenRx = {
137 			RX_BD_RING_LEN,
138 			RX_BD_RING_LEN,
139 			RX_BD_RING_LEN,
140 			RX_BD_RING_LEN,
141 			RX_BD_RING_LEN,
142 			RX_BD_RING_LEN,
143 			RX_BD_RING_LEN,
144 			RX_BD_RING_LEN},
145 
146 	.numStationAddresses = UCC_GETH_NUM_OF_STATION_ADDRESSES_1,
147 	.largestexternallookupkeysize =
148 	    QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE,
149 	.statisticsMode = UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE |
150 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX |
151 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX,
152 	.vlanOperationTagged = UCC_GETH_VLAN_OPERATION_TAGGED_NOP,
153 	.vlanOperationNonTagged = UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP,
154 	.rxQoSMode = UCC_GETH_QOS_MODE_DEFAULT,
155 	.aufc = UPSMR_AUTOMATIC_FLOW_CONTROL_MODE_NONE,
156 	.padAndCrc = MACCFG2_PAD_AND_CRC_MODE_PAD_AND_CRC,
157 	.numThreadsTx = UCC_GETH_NUM_OF_THREADS_1,
158 	.numThreadsRx = UCC_GETH_NUM_OF_THREADS_1,
159 	.riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
160 	.riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
161 };
162 
163 static struct ucc_geth_info ugeth_info[8];
164 
165 #ifdef DEBUG
166 static void mem_disp(u8 *addr, int size)
167 {
168 	u8 *i;
169 	int size16Aling = (size >> 4) << 4;
170 	int size4Aling = (size >> 2) << 2;
171 	int notAlign = 0;
172 	if (size % 16)
173 		notAlign = 1;
174 
175 	for (i = addr; (u32) i < (u32) addr + size16Aling; i += 16)
176 		printk("0x%08x: %08x %08x %08x %08x\r\n",
177 		       (u32) i,
178 		       *((u32 *) (i)),
179 		       *((u32 *) (i + 4)),
180 		       *((u32 *) (i + 8)), *((u32 *) (i + 12)));
181 	if (notAlign == 1)
182 		printk("0x%08x: ", (u32) i);
183 	for (; (u32) i < (u32) addr + size4Aling; i += 4)
184 		printk("%08x ", *((u32 *) (i)));
185 	for (; (u32) i < (u32) addr + size; i++)
186 		printk("%02x", *((i)));
187 	if (notAlign == 1)
188 		printk("\r\n");
189 }
190 #endif /* DEBUG */
191 
192 static struct list_head *dequeue(struct list_head *lh)
193 {
194 	unsigned long flags;
195 
196 	spin_lock_irqsave(&ugeth_lock, flags);
197 	if (!list_empty(lh)) {
198 		struct list_head *node = lh->next;
199 		list_del(node);
200 		spin_unlock_irqrestore(&ugeth_lock, flags);
201 		return node;
202 	} else {
203 		spin_unlock_irqrestore(&ugeth_lock, flags);
204 		return NULL;
205 	}
206 }
207 
208 static struct sk_buff *get_new_skb(struct ucc_geth_private *ugeth,
209 		u8 __iomem *bd)
210 {
211 	struct sk_buff *skb;
212 
213 	skb = netdev_alloc_skb(ugeth->ndev,
214 			       ugeth->ug_info->uf_info.max_rx_buf_length +
215 			       UCC_GETH_RX_DATA_BUF_ALIGNMENT);
216 	if (!skb)
217 		return NULL;
218 
219 	/* We need the data buffer to be aligned properly.  We will reserve
220 	 * as many bytes as needed to align the data properly
221 	 */
222 	skb_reserve(skb,
223 		    UCC_GETH_RX_DATA_BUF_ALIGNMENT -
224 		    (((unsigned)skb->data) & (UCC_GETH_RX_DATA_BUF_ALIGNMENT -
225 					      1)));
226 
227 	out_be32(&((struct qe_bd __iomem *)bd)->buf,
228 		      dma_map_single(ugeth->dev,
229 				     skb->data,
230 				     ugeth->ug_info->uf_info.max_rx_buf_length +
231 				     UCC_GETH_RX_DATA_BUF_ALIGNMENT,
232 				     DMA_FROM_DEVICE));
233 
234 	out_be32((u32 __iomem *)bd,
235 			(R_E | R_I | (in_be32((u32 __iomem*)bd) & R_W)));
236 
237 	return skb;
238 }
239 
240 static int rx_bd_buffer_set(struct ucc_geth_private *ugeth, u8 rxQ)
241 {
242 	u8 __iomem *bd;
243 	u32 bd_status;
244 	struct sk_buff *skb;
245 	int i;
246 
247 	bd = ugeth->p_rx_bd_ring[rxQ];
248 	i = 0;
249 
250 	do {
251 		bd_status = in_be32((u32 __iomem *)bd);
252 		skb = get_new_skb(ugeth, bd);
253 
254 		if (!skb)	/* If can not allocate data buffer,
255 				abort. Cleanup will be elsewhere */
256 			return -ENOMEM;
257 
258 		ugeth->rx_skbuff[rxQ][i] = skb;
259 
260 		/* advance the BD pointer */
261 		bd += sizeof(struct qe_bd);
262 		i++;
263 	} while (!(bd_status & R_W));
264 
265 	return 0;
266 }
267 
268 static int fill_init_enet_entries(struct ucc_geth_private *ugeth,
269 				  u32 *p_start,
270 				  u8 num_entries,
271 				  u32 thread_size,
272 				  u32 thread_alignment,
273 				  unsigned int risc,
274 				  int skip_page_for_first_entry)
275 {
276 	u32 init_enet_offset;
277 	u8 i;
278 	int snum;
279 
280 	for (i = 0; i < num_entries; i++) {
281 		if ((snum = qe_get_snum()) < 0) {
282 			if (netif_msg_ifup(ugeth))
283 				pr_err("Can not get SNUM\n");
284 			return snum;
285 		}
286 		if ((i == 0) && skip_page_for_first_entry)
287 		/* First entry of Rx does not have page */
288 			init_enet_offset = 0;
289 		else {
290 			init_enet_offset =
291 			    qe_muram_alloc(thread_size, thread_alignment);
292 			if (IS_ERR_VALUE(init_enet_offset)) {
293 				if (netif_msg_ifup(ugeth))
294 					pr_err("Can not allocate DPRAM memory\n");
295 				qe_put_snum((u8) snum);
296 				return -ENOMEM;
297 			}
298 		}
299 		*(p_start++) =
300 		    ((u8) snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset
301 		    | risc;
302 	}
303 
304 	return 0;
305 }
306 
307 static int return_init_enet_entries(struct ucc_geth_private *ugeth,
308 				    u32 *p_start,
309 				    u8 num_entries,
310 				    unsigned int risc,
311 				    int skip_page_for_first_entry)
312 {
313 	u32 init_enet_offset;
314 	u8 i;
315 	int snum;
316 
317 	for (i = 0; i < num_entries; i++) {
318 		u32 val = *p_start;
319 
320 		/* Check that this entry was actually valid --
321 		needed in case failed in allocations */
322 		if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
323 			snum =
324 			    (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
325 			    ENET_INIT_PARAM_SNUM_SHIFT;
326 			qe_put_snum((u8) snum);
327 			if (!((i == 0) && skip_page_for_first_entry)) {
328 			/* First entry of Rx does not have page */
329 				init_enet_offset =
330 				    (val & ENET_INIT_PARAM_PTR_MASK);
331 				qe_muram_free(init_enet_offset);
332 			}
333 			*p_start++ = 0;
334 		}
335 	}
336 
337 	return 0;
338 }
339 
340 #ifdef DEBUG
341 static int dump_init_enet_entries(struct ucc_geth_private *ugeth,
342 				  u32 __iomem *p_start,
343 				  u8 num_entries,
344 				  u32 thread_size,
345 				  unsigned int risc,
346 				  int skip_page_for_first_entry)
347 {
348 	u32 init_enet_offset;
349 	u8 i;
350 	int snum;
351 
352 	for (i = 0; i < num_entries; i++) {
353 		u32 val = in_be32(p_start);
354 
355 		/* Check that this entry was actually valid --
356 		needed in case failed in allocations */
357 		if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
358 			snum =
359 			    (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
360 			    ENET_INIT_PARAM_SNUM_SHIFT;
361 			qe_put_snum((u8) snum);
362 			if (!((i == 0) && skip_page_for_first_entry)) {
363 			/* First entry of Rx does not have page */
364 				init_enet_offset =
365 				    (in_be32(p_start) &
366 				     ENET_INIT_PARAM_PTR_MASK);
367 				pr_info("Init enet entry %d:\n", i);
368 				pr_info("Base address: 0x%08x\n",
369 					(u32)qe_muram_addr(init_enet_offset));
370 				mem_disp(qe_muram_addr(init_enet_offset),
371 					 thread_size);
372 			}
373 			p_start++;
374 		}
375 	}
376 
377 	return 0;
378 }
379 #endif
380 
381 static void put_enet_addr_container(struct enet_addr_container *enet_addr_cont)
382 {
383 	kfree(enet_addr_cont);
384 }
385 
386 static void set_mac_addr(__be16 __iomem *reg, u8 *mac)
387 {
388 	out_be16(&reg[0], ((u16)mac[5] << 8) | mac[4]);
389 	out_be16(&reg[1], ((u16)mac[3] << 8) | mac[2]);
390 	out_be16(&reg[2], ((u16)mac[1] << 8) | mac[0]);
391 }
392 
393 static int hw_clear_addr_in_paddr(struct ucc_geth_private *ugeth, u8 paddr_num)
394 {
395 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
396 
397 	if (paddr_num >= NUM_OF_PADDRS) {
398 		pr_warn("%s: Invalid paddr_num: %u\n", __func__, paddr_num);
399 		return -EINVAL;
400 	}
401 
402 	p_82xx_addr_filt =
403 	    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
404 	    addressfiltering;
405 
406 	/* Writing address ff.ff.ff.ff.ff.ff disables address
407 	recognition for this register */
408 	out_be16(&p_82xx_addr_filt->paddr[paddr_num].h, 0xffff);
409 	out_be16(&p_82xx_addr_filt->paddr[paddr_num].m, 0xffff);
410 	out_be16(&p_82xx_addr_filt->paddr[paddr_num].l, 0xffff);
411 
412 	return 0;
413 }
414 
415 static void hw_add_addr_in_hash(struct ucc_geth_private *ugeth,
416                                 u8 *p_enet_addr)
417 {
418 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
419 	u32 cecr_subblock;
420 
421 	p_82xx_addr_filt =
422 	    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
423 	    addressfiltering;
424 
425 	cecr_subblock =
426 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
427 
428 	/* Ethernet frames are defined in Little Endian mode,
429 	therefore to insert */
430 	/* the address to the hash (Big Endian mode), we reverse the bytes.*/
431 
432 	set_mac_addr(&p_82xx_addr_filt->taddr.h, p_enet_addr);
433 
434 	qe_issue_cmd(QE_SET_GROUP_ADDRESS, cecr_subblock,
435 		     QE_CR_PROTOCOL_ETHERNET, 0);
436 }
437 
438 #ifdef DEBUG
439 static void get_statistics(struct ucc_geth_private *ugeth,
440 			   struct ucc_geth_tx_firmware_statistics *
441 			   tx_firmware_statistics,
442 			   struct ucc_geth_rx_firmware_statistics *
443 			   rx_firmware_statistics,
444 			   struct ucc_geth_hardware_statistics *hardware_statistics)
445 {
446 	struct ucc_fast __iomem *uf_regs;
447 	struct ucc_geth __iomem *ug_regs;
448 	struct ucc_geth_tx_firmware_statistics_pram *p_tx_fw_statistics_pram;
449 	struct ucc_geth_rx_firmware_statistics_pram *p_rx_fw_statistics_pram;
450 
451 	ug_regs = ugeth->ug_regs;
452 	uf_regs = (struct ucc_fast __iomem *) ug_regs;
453 	p_tx_fw_statistics_pram = ugeth->p_tx_fw_statistics_pram;
454 	p_rx_fw_statistics_pram = ugeth->p_rx_fw_statistics_pram;
455 
456 	/* Tx firmware only if user handed pointer and driver actually
457 	gathers Tx firmware statistics */
458 	if (tx_firmware_statistics && p_tx_fw_statistics_pram) {
459 		tx_firmware_statistics->sicoltx =
460 		    in_be32(&p_tx_fw_statistics_pram->sicoltx);
461 		tx_firmware_statistics->mulcoltx =
462 		    in_be32(&p_tx_fw_statistics_pram->mulcoltx);
463 		tx_firmware_statistics->latecoltxfr =
464 		    in_be32(&p_tx_fw_statistics_pram->latecoltxfr);
465 		tx_firmware_statistics->frabortduecol =
466 		    in_be32(&p_tx_fw_statistics_pram->frabortduecol);
467 		tx_firmware_statistics->frlostinmactxer =
468 		    in_be32(&p_tx_fw_statistics_pram->frlostinmactxer);
469 		tx_firmware_statistics->carriersenseertx =
470 		    in_be32(&p_tx_fw_statistics_pram->carriersenseertx);
471 		tx_firmware_statistics->frtxok =
472 		    in_be32(&p_tx_fw_statistics_pram->frtxok);
473 		tx_firmware_statistics->txfrexcessivedefer =
474 		    in_be32(&p_tx_fw_statistics_pram->txfrexcessivedefer);
475 		tx_firmware_statistics->txpkts256 =
476 		    in_be32(&p_tx_fw_statistics_pram->txpkts256);
477 		tx_firmware_statistics->txpkts512 =
478 		    in_be32(&p_tx_fw_statistics_pram->txpkts512);
479 		tx_firmware_statistics->txpkts1024 =
480 		    in_be32(&p_tx_fw_statistics_pram->txpkts1024);
481 		tx_firmware_statistics->txpktsjumbo =
482 		    in_be32(&p_tx_fw_statistics_pram->txpktsjumbo);
483 	}
484 
485 	/* Rx firmware only if user handed pointer and driver actually
486 	 * gathers Rx firmware statistics */
487 	if (rx_firmware_statistics && p_rx_fw_statistics_pram) {
488 		int i;
489 		rx_firmware_statistics->frrxfcser =
490 		    in_be32(&p_rx_fw_statistics_pram->frrxfcser);
491 		rx_firmware_statistics->fraligner =
492 		    in_be32(&p_rx_fw_statistics_pram->fraligner);
493 		rx_firmware_statistics->inrangelenrxer =
494 		    in_be32(&p_rx_fw_statistics_pram->inrangelenrxer);
495 		rx_firmware_statistics->outrangelenrxer =
496 		    in_be32(&p_rx_fw_statistics_pram->outrangelenrxer);
497 		rx_firmware_statistics->frtoolong =
498 		    in_be32(&p_rx_fw_statistics_pram->frtoolong);
499 		rx_firmware_statistics->runt =
500 		    in_be32(&p_rx_fw_statistics_pram->runt);
501 		rx_firmware_statistics->verylongevent =
502 		    in_be32(&p_rx_fw_statistics_pram->verylongevent);
503 		rx_firmware_statistics->symbolerror =
504 		    in_be32(&p_rx_fw_statistics_pram->symbolerror);
505 		rx_firmware_statistics->dropbsy =
506 		    in_be32(&p_rx_fw_statistics_pram->dropbsy);
507 		for (i = 0; i < 0x8; i++)
508 			rx_firmware_statistics->res0[i] =
509 			    p_rx_fw_statistics_pram->res0[i];
510 		rx_firmware_statistics->mismatchdrop =
511 		    in_be32(&p_rx_fw_statistics_pram->mismatchdrop);
512 		rx_firmware_statistics->underpkts =
513 		    in_be32(&p_rx_fw_statistics_pram->underpkts);
514 		rx_firmware_statistics->pkts256 =
515 		    in_be32(&p_rx_fw_statistics_pram->pkts256);
516 		rx_firmware_statistics->pkts512 =
517 		    in_be32(&p_rx_fw_statistics_pram->pkts512);
518 		rx_firmware_statistics->pkts1024 =
519 		    in_be32(&p_rx_fw_statistics_pram->pkts1024);
520 		rx_firmware_statistics->pktsjumbo =
521 		    in_be32(&p_rx_fw_statistics_pram->pktsjumbo);
522 		rx_firmware_statistics->frlossinmacer =
523 		    in_be32(&p_rx_fw_statistics_pram->frlossinmacer);
524 		rx_firmware_statistics->pausefr =
525 		    in_be32(&p_rx_fw_statistics_pram->pausefr);
526 		for (i = 0; i < 0x4; i++)
527 			rx_firmware_statistics->res1[i] =
528 			    p_rx_fw_statistics_pram->res1[i];
529 		rx_firmware_statistics->removevlan =
530 		    in_be32(&p_rx_fw_statistics_pram->removevlan);
531 		rx_firmware_statistics->replacevlan =
532 		    in_be32(&p_rx_fw_statistics_pram->replacevlan);
533 		rx_firmware_statistics->insertvlan =
534 		    in_be32(&p_rx_fw_statistics_pram->insertvlan);
535 	}
536 
537 	/* Hardware only if user handed pointer and driver actually
538 	gathers hardware statistics */
539 	if (hardware_statistics &&
540 	    (in_be32(&uf_regs->upsmr) & UCC_GETH_UPSMR_HSE)) {
541 		hardware_statistics->tx64 = in_be32(&ug_regs->tx64);
542 		hardware_statistics->tx127 = in_be32(&ug_regs->tx127);
543 		hardware_statistics->tx255 = in_be32(&ug_regs->tx255);
544 		hardware_statistics->rx64 = in_be32(&ug_regs->rx64);
545 		hardware_statistics->rx127 = in_be32(&ug_regs->rx127);
546 		hardware_statistics->rx255 = in_be32(&ug_regs->rx255);
547 		hardware_statistics->txok = in_be32(&ug_regs->txok);
548 		hardware_statistics->txcf = in_be16(&ug_regs->txcf);
549 		hardware_statistics->tmca = in_be32(&ug_regs->tmca);
550 		hardware_statistics->tbca = in_be32(&ug_regs->tbca);
551 		hardware_statistics->rxfok = in_be32(&ug_regs->rxfok);
552 		hardware_statistics->rxbok = in_be32(&ug_regs->rxbok);
553 		hardware_statistics->rbyt = in_be32(&ug_regs->rbyt);
554 		hardware_statistics->rmca = in_be32(&ug_regs->rmca);
555 		hardware_statistics->rbca = in_be32(&ug_regs->rbca);
556 	}
557 }
558 
559 static void dump_bds(struct ucc_geth_private *ugeth)
560 {
561 	int i;
562 	int length;
563 
564 	for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
565 		if (ugeth->p_tx_bd_ring[i]) {
566 			length =
567 			    (ugeth->ug_info->bdRingLenTx[i] *
568 			     sizeof(struct qe_bd));
569 			pr_info("TX BDs[%d]\n", i);
570 			mem_disp(ugeth->p_tx_bd_ring[i], length);
571 		}
572 	}
573 	for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
574 		if (ugeth->p_rx_bd_ring[i]) {
575 			length =
576 			    (ugeth->ug_info->bdRingLenRx[i] *
577 			     sizeof(struct qe_bd));
578 			pr_info("RX BDs[%d]\n", i);
579 			mem_disp(ugeth->p_rx_bd_ring[i], length);
580 		}
581 	}
582 }
583 
584 static void dump_regs(struct ucc_geth_private *ugeth)
585 {
586 	int i;
587 
588 	pr_info("UCC%d Geth registers:\n", ugeth->ug_info->uf_info.ucc_num + 1);
589 	pr_info("Base address: 0x%08x\n", (u32)ugeth->ug_regs);
590 
591 	pr_info("maccfg1    : addr - 0x%08x, val - 0x%08x\n",
592 		(u32)&ugeth->ug_regs->maccfg1,
593 		in_be32(&ugeth->ug_regs->maccfg1));
594 	pr_info("maccfg2    : addr - 0x%08x, val - 0x%08x\n",
595 		(u32)&ugeth->ug_regs->maccfg2,
596 		in_be32(&ugeth->ug_regs->maccfg2));
597 	pr_info("ipgifg     : addr - 0x%08x, val - 0x%08x\n",
598 		(u32)&ugeth->ug_regs->ipgifg,
599 		in_be32(&ugeth->ug_regs->ipgifg));
600 	pr_info("hafdup     : addr - 0x%08x, val - 0x%08x\n",
601 		(u32)&ugeth->ug_regs->hafdup,
602 		in_be32(&ugeth->ug_regs->hafdup));
603 	pr_info("ifctl      : addr - 0x%08x, val - 0x%08x\n",
604 		(u32)&ugeth->ug_regs->ifctl,
605 		in_be32(&ugeth->ug_regs->ifctl));
606 	pr_info("ifstat     : addr - 0x%08x, val - 0x%08x\n",
607 		(u32)&ugeth->ug_regs->ifstat,
608 		in_be32(&ugeth->ug_regs->ifstat));
609 	pr_info("macstnaddr1: addr - 0x%08x, val - 0x%08x\n",
610 		(u32)&ugeth->ug_regs->macstnaddr1,
611 		in_be32(&ugeth->ug_regs->macstnaddr1));
612 	pr_info("macstnaddr2: addr - 0x%08x, val - 0x%08x\n",
613 		(u32)&ugeth->ug_regs->macstnaddr2,
614 		in_be32(&ugeth->ug_regs->macstnaddr2));
615 	pr_info("uempr      : addr - 0x%08x, val - 0x%08x\n",
616 		(u32)&ugeth->ug_regs->uempr,
617 		in_be32(&ugeth->ug_regs->uempr));
618 	pr_info("utbipar    : addr - 0x%08x, val - 0x%08x\n",
619 		(u32)&ugeth->ug_regs->utbipar,
620 		in_be32(&ugeth->ug_regs->utbipar));
621 	pr_info("uescr      : addr - 0x%08x, val - 0x%04x\n",
622 		(u32)&ugeth->ug_regs->uescr,
623 		in_be16(&ugeth->ug_regs->uescr));
624 	pr_info("tx64       : addr - 0x%08x, val - 0x%08x\n",
625 		(u32)&ugeth->ug_regs->tx64,
626 		in_be32(&ugeth->ug_regs->tx64));
627 	pr_info("tx127      : addr - 0x%08x, val - 0x%08x\n",
628 		(u32)&ugeth->ug_regs->tx127,
629 		in_be32(&ugeth->ug_regs->tx127));
630 	pr_info("tx255      : addr - 0x%08x, val - 0x%08x\n",
631 		(u32)&ugeth->ug_regs->tx255,
632 		in_be32(&ugeth->ug_regs->tx255));
633 	pr_info("rx64       : addr - 0x%08x, val - 0x%08x\n",
634 		(u32)&ugeth->ug_regs->rx64,
635 		in_be32(&ugeth->ug_regs->rx64));
636 	pr_info("rx127      : addr - 0x%08x, val - 0x%08x\n",
637 		(u32)&ugeth->ug_regs->rx127,
638 		in_be32(&ugeth->ug_regs->rx127));
639 	pr_info("rx255      : addr - 0x%08x, val - 0x%08x\n",
640 		(u32)&ugeth->ug_regs->rx255,
641 		in_be32(&ugeth->ug_regs->rx255));
642 	pr_info("txok       : addr - 0x%08x, val - 0x%08x\n",
643 		(u32)&ugeth->ug_regs->txok,
644 		in_be32(&ugeth->ug_regs->txok));
645 	pr_info("txcf       : addr - 0x%08x, val - 0x%04x\n",
646 		(u32)&ugeth->ug_regs->txcf,
647 		in_be16(&ugeth->ug_regs->txcf));
648 	pr_info("tmca       : addr - 0x%08x, val - 0x%08x\n",
649 		(u32)&ugeth->ug_regs->tmca,
650 		in_be32(&ugeth->ug_regs->tmca));
651 	pr_info("tbca       : addr - 0x%08x, val - 0x%08x\n",
652 		(u32)&ugeth->ug_regs->tbca,
653 		in_be32(&ugeth->ug_regs->tbca));
654 	pr_info("rxfok      : addr - 0x%08x, val - 0x%08x\n",
655 		(u32)&ugeth->ug_regs->rxfok,
656 		in_be32(&ugeth->ug_regs->rxfok));
657 	pr_info("rxbok      : addr - 0x%08x, val - 0x%08x\n",
658 		(u32)&ugeth->ug_regs->rxbok,
659 		in_be32(&ugeth->ug_regs->rxbok));
660 	pr_info("rbyt       : addr - 0x%08x, val - 0x%08x\n",
661 		(u32)&ugeth->ug_regs->rbyt,
662 		in_be32(&ugeth->ug_regs->rbyt));
663 	pr_info("rmca       : addr - 0x%08x, val - 0x%08x\n",
664 		(u32)&ugeth->ug_regs->rmca,
665 		in_be32(&ugeth->ug_regs->rmca));
666 	pr_info("rbca       : addr - 0x%08x, val - 0x%08x\n",
667 		(u32)&ugeth->ug_regs->rbca,
668 		in_be32(&ugeth->ug_regs->rbca));
669 	pr_info("scar       : addr - 0x%08x, val - 0x%08x\n",
670 		(u32)&ugeth->ug_regs->scar,
671 		in_be32(&ugeth->ug_regs->scar));
672 	pr_info("scam       : addr - 0x%08x, val - 0x%08x\n",
673 		(u32)&ugeth->ug_regs->scam,
674 		in_be32(&ugeth->ug_regs->scam));
675 
676 	if (ugeth->p_thread_data_tx) {
677 		int numThreadsTxNumerical;
678 		switch (ugeth->ug_info->numThreadsTx) {
679 		case UCC_GETH_NUM_OF_THREADS_1:
680 			numThreadsTxNumerical = 1;
681 			break;
682 		case UCC_GETH_NUM_OF_THREADS_2:
683 			numThreadsTxNumerical = 2;
684 			break;
685 		case UCC_GETH_NUM_OF_THREADS_4:
686 			numThreadsTxNumerical = 4;
687 			break;
688 		case UCC_GETH_NUM_OF_THREADS_6:
689 			numThreadsTxNumerical = 6;
690 			break;
691 		case UCC_GETH_NUM_OF_THREADS_8:
692 			numThreadsTxNumerical = 8;
693 			break;
694 		default:
695 			numThreadsTxNumerical = 0;
696 			break;
697 		}
698 
699 		pr_info("Thread data TXs:\n");
700 		pr_info("Base address: 0x%08x\n",
701 			(u32)ugeth->p_thread_data_tx);
702 		for (i = 0; i < numThreadsTxNumerical; i++) {
703 			pr_info("Thread data TX[%d]:\n", i);
704 			pr_info("Base address: 0x%08x\n",
705 				(u32)&ugeth->p_thread_data_tx[i]);
706 			mem_disp((u8 *) & ugeth->p_thread_data_tx[i],
707 				 sizeof(struct ucc_geth_thread_data_tx));
708 		}
709 	}
710 	if (ugeth->p_thread_data_rx) {
711 		int numThreadsRxNumerical;
712 		switch (ugeth->ug_info->numThreadsRx) {
713 		case UCC_GETH_NUM_OF_THREADS_1:
714 			numThreadsRxNumerical = 1;
715 			break;
716 		case UCC_GETH_NUM_OF_THREADS_2:
717 			numThreadsRxNumerical = 2;
718 			break;
719 		case UCC_GETH_NUM_OF_THREADS_4:
720 			numThreadsRxNumerical = 4;
721 			break;
722 		case UCC_GETH_NUM_OF_THREADS_6:
723 			numThreadsRxNumerical = 6;
724 			break;
725 		case UCC_GETH_NUM_OF_THREADS_8:
726 			numThreadsRxNumerical = 8;
727 			break;
728 		default:
729 			numThreadsRxNumerical = 0;
730 			break;
731 		}
732 
733 		pr_info("Thread data RX:\n");
734 		pr_info("Base address: 0x%08x\n",
735 			(u32)ugeth->p_thread_data_rx);
736 		for (i = 0; i < numThreadsRxNumerical; i++) {
737 			pr_info("Thread data RX[%d]:\n", i);
738 			pr_info("Base address: 0x%08x\n",
739 				(u32)&ugeth->p_thread_data_rx[i]);
740 			mem_disp((u8 *) & ugeth->p_thread_data_rx[i],
741 				 sizeof(struct ucc_geth_thread_data_rx));
742 		}
743 	}
744 	if (ugeth->p_exf_glbl_param) {
745 		pr_info("EXF global param:\n");
746 		pr_info("Base address: 0x%08x\n",
747 			(u32)ugeth->p_exf_glbl_param);
748 		mem_disp((u8 *) ugeth->p_exf_glbl_param,
749 			 sizeof(*ugeth->p_exf_glbl_param));
750 	}
751 	if (ugeth->p_tx_glbl_pram) {
752 		pr_info("TX global param:\n");
753 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_tx_glbl_pram);
754 		pr_info("temoder      : addr - 0x%08x, val - 0x%04x\n",
755 			(u32)&ugeth->p_tx_glbl_pram->temoder,
756 			in_be16(&ugeth->p_tx_glbl_pram->temoder));
757 	       pr_info("sqptr        : addr - 0x%08x, val - 0x%08x\n",
758 			(u32)&ugeth->p_tx_glbl_pram->sqptr,
759 			in_be32(&ugeth->p_tx_glbl_pram->sqptr));
760 		pr_info("schedulerbasepointer: addr - 0x%08x, val - 0x%08x\n",
761 			(u32)&ugeth->p_tx_glbl_pram->schedulerbasepointer,
762 			in_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer));
763 		pr_info("txrmonbaseptr: addr - 0x%08x, val - 0x%08x\n",
764 			(u32)&ugeth->p_tx_glbl_pram->txrmonbaseptr,
765 			in_be32(&ugeth->p_tx_glbl_pram->txrmonbaseptr));
766 		pr_info("tstate       : addr - 0x%08x, val - 0x%08x\n",
767 			(u32)&ugeth->p_tx_glbl_pram->tstate,
768 			in_be32(&ugeth->p_tx_glbl_pram->tstate));
769 		pr_info("iphoffset[0] : addr - 0x%08x, val - 0x%02x\n",
770 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[0],
771 			ugeth->p_tx_glbl_pram->iphoffset[0]);
772 		pr_info("iphoffset[1] : addr - 0x%08x, val - 0x%02x\n",
773 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[1],
774 			ugeth->p_tx_glbl_pram->iphoffset[1]);
775 		pr_info("iphoffset[2] : addr - 0x%08x, val - 0x%02x\n",
776 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[2],
777 			ugeth->p_tx_glbl_pram->iphoffset[2]);
778 		pr_info("iphoffset[3] : addr - 0x%08x, val - 0x%02x\n",
779 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[3],
780 			ugeth->p_tx_glbl_pram->iphoffset[3]);
781 		pr_info("iphoffset[4] : addr - 0x%08x, val - 0x%02x\n",
782 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[4],
783 			ugeth->p_tx_glbl_pram->iphoffset[4]);
784 		pr_info("iphoffset[5] : addr - 0x%08x, val - 0x%02x\n",
785 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[5],
786 			ugeth->p_tx_glbl_pram->iphoffset[5]);
787 		pr_info("iphoffset[6] : addr - 0x%08x, val - 0x%02x\n",
788 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[6],
789 			ugeth->p_tx_glbl_pram->iphoffset[6]);
790 		pr_info("iphoffset[7] : addr - 0x%08x, val - 0x%02x\n",
791 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[7],
792 			ugeth->p_tx_glbl_pram->iphoffset[7]);
793 		pr_info("vtagtable[0] : addr - 0x%08x, val - 0x%08x\n",
794 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[0],
795 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[0]));
796 		pr_info("vtagtable[1] : addr - 0x%08x, val - 0x%08x\n",
797 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[1],
798 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[1]));
799 		pr_info("vtagtable[2] : addr - 0x%08x, val - 0x%08x\n",
800 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[2],
801 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[2]));
802 		pr_info("vtagtable[3] : addr - 0x%08x, val - 0x%08x\n",
803 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[3],
804 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[3]));
805 		pr_info("vtagtable[4] : addr - 0x%08x, val - 0x%08x\n",
806 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[4],
807 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[4]));
808 		pr_info("vtagtable[5] : addr - 0x%08x, val - 0x%08x\n",
809 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[5],
810 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[5]));
811 		pr_info("vtagtable[6] : addr - 0x%08x, val - 0x%08x\n",
812 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[6],
813 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[6]));
814 		pr_info("vtagtable[7] : addr - 0x%08x, val - 0x%08x\n",
815 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[7],
816 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[7]));
817 		pr_info("tqptr        : addr - 0x%08x, val - 0x%08x\n",
818 			(u32)&ugeth->p_tx_glbl_pram->tqptr,
819 			in_be32(&ugeth->p_tx_glbl_pram->tqptr));
820 	}
821 	if (ugeth->p_rx_glbl_pram) {
822 		pr_info("RX global param:\n");
823 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_glbl_pram);
824 		pr_info("remoder         : addr - 0x%08x, val - 0x%08x\n",
825 			(u32)&ugeth->p_rx_glbl_pram->remoder,
826 			in_be32(&ugeth->p_rx_glbl_pram->remoder));
827 		pr_info("rqptr           : addr - 0x%08x, val - 0x%08x\n",
828 			(u32)&ugeth->p_rx_glbl_pram->rqptr,
829 			in_be32(&ugeth->p_rx_glbl_pram->rqptr));
830 		pr_info("typeorlen       : addr - 0x%08x, val - 0x%04x\n",
831 			(u32)&ugeth->p_rx_glbl_pram->typeorlen,
832 			in_be16(&ugeth->p_rx_glbl_pram->typeorlen));
833 		pr_info("rxgstpack       : addr - 0x%08x, val - 0x%02x\n",
834 			(u32)&ugeth->p_rx_glbl_pram->rxgstpack,
835 			ugeth->p_rx_glbl_pram->rxgstpack);
836 		pr_info("rxrmonbaseptr   : addr - 0x%08x, val - 0x%08x\n",
837 			(u32)&ugeth->p_rx_glbl_pram->rxrmonbaseptr,
838 			in_be32(&ugeth->p_rx_glbl_pram->rxrmonbaseptr));
839 		pr_info("intcoalescingptr: addr - 0x%08x, val - 0x%08x\n",
840 			(u32)&ugeth->p_rx_glbl_pram->intcoalescingptr,
841 			in_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr));
842 		pr_info("rstate          : addr - 0x%08x, val - 0x%02x\n",
843 			(u32)&ugeth->p_rx_glbl_pram->rstate,
844 			ugeth->p_rx_glbl_pram->rstate);
845 		pr_info("mrblr           : addr - 0x%08x, val - 0x%04x\n",
846 			(u32)&ugeth->p_rx_glbl_pram->mrblr,
847 			in_be16(&ugeth->p_rx_glbl_pram->mrblr));
848 		pr_info("rbdqptr         : addr - 0x%08x, val - 0x%08x\n",
849 			(u32)&ugeth->p_rx_glbl_pram->rbdqptr,
850 			in_be32(&ugeth->p_rx_glbl_pram->rbdqptr));
851 		pr_info("mflr            : addr - 0x%08x, val - 0x%04x\n",
852 			(u32)&ugeth->p_rx_glbl_pram->mflr,
853 			in_be16(&ugeth->p_rx_glbl_pram->mflr));
854 		pr_info("minflr          : addr - 0x%08x, val - 0x%04x\n",
855 			(u32)&ugeth->p_rx_glbl_pram->minflr,
856 			in_be16(&ugeth->p_rx_glbl_pram->minflr));
857 		pr_info("maxd1           : addr - 0x%08x, val - 0x%04x\n",
858 			(u32)&ugeth->p_rx_glbl_pram->maxd1,
859 			in_be16(&ugeth->p_rx_glbl_pram->maxd1));
860 		pr_info("maxd2           : addr - 0x%08x, val - 0x%04x\n",
861 			(u32)&ugeth->p_rx_glbl_pram->maxd2,
862 			in_be16(&ugeth->p_rx_glbl_pram->maxd2));
863 		pr_info("ecamptr         : addr - 0x%08x, val - 0x%08x\n",
864 			(u32)&ugeth->p_rx_glbl_pram->ecamptr,
865 			in_be32(&ugeth->p_rx_glbl_pram->ecamptr));
866 		pr_info("l2qt            : addr - 0x%08x, val - 0x%08x\n",
867 			(u32)&ugeth->p_rx_glbl_pram->l2qt,
868 			in_be32(&ugeth->p_rx_glbl_pram->l2qt));
869 		pr_info("l3qt[0]         : addr - 0x%08x, val - 0x%08x\n",
870 			(u32)&ugeth->p_rx_glbl_pram->l3qt[0],
871 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[0]));
872 		pr_info("l3qt[1]         : addr - 0x%08x, val - 0x%08x\n",
873 			(u32)&ugeth->p_rx_glbl_pram->l3qt[1],
874 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[1]));
875 		pr_info("l3qt[2]         : addr - 0x%08x, val - 0x%08x\n",
876 			(u32)&ugeth->p_rx_glbl_pram->l3qt[2],
877 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[2]));
878 		pr_info("l3qt[3]         : addr - 0x%08x, val - 0x%08x\n",
879 			(u32)&ugeth->p_rx_glbl_pram->l3qt[3],
880 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[3]));
881 		pr_info("l3qt[4]         : addr - 0x%08x, val - 0x%08x\n",
882 			(u32)&ugeth->p_rx_glbl_pram->l3qt[4],
883 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[4]));
884 		pr_info("l3qt[5]         : addr - 0x%08x, val - 0x%08x\n",
885 			(u32)&ugeth->p_rx_glbl_pram->l3qt[5],
886 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[5]));
887 		pr_info("l3qt[6]         : addr - 0x%08x, val - 0x%08x\n",
888 			(u32)&ugeth->p_rx_glbl_pram->l3qt[6],
889 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[6]));
890 		pr_info("l3qt[7]         : addr - 0x%08x, val - 0x%08x\n",
891 			(u32)&ugeth->p_rx_glbl_pram->l3qt[7],
892 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[7]));
893 		pr_info("vlantype        : addr - 0x%08x, val - 0x%04x\n",
894 			(u32)&ugeth->p_rx_glbl_pram->vlantype,
895 			in_be16(&ugeth->p_rx_glbl_pram->vlantype));
896 		pr_info("vlantci         : addr - 0x%08x, val - 0x%04x\n",
897 			(u32)&ugeth->p_rx_glbl_pram->vlantci,
898 			in_be16(&ugeth->p_rx_glbl_pram->vlantci));
899 		for (i = 0; i < 64; i++)
900 			pr_info("addressfiltering[%d]: addr - 0x%08x, val - 0x%02x\n",
901 				i,
902 				(u32)&ugeth->p_rx_glbl_pram->addressfiltering[i],
903 				ugeth->p_rx_glbl_pram->addressfiltering[i]);
904 		pr_info("exfGlobalParam  : addr - 0x%08x, val - 0x%08x\n",
905 			(u32)&ugeth->p_rx_glbl_pram->exfGlobalParam,
906 			in_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam));
907 	}
908 	if (ugeth->p_send_q_mem_reg) {
909 		pr_info("Send Q memory registers:\n");
910 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_send_q_mem_reg);
911 		for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
912 			pr_info("SQQD[%d]:\n", i);
913 			pr_info("Base address: 0x%08x\n",
914 				(u32)&ugeth->p_send_q_mem_reg->sqqd[i]);
915 			mem_disp((u8 *) & ugeth->p_send_q_mem_reg->sqqd[i],
916 				 sizeof(struct ucc_geth_send_queue_qd));
917 		}
918 	}
919 	if (ugeth->p_scheduler) {
920 		pr_info("Scheduler:\n");
921 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_scheduler);
922 		mem_disp((u8 *) ugeth->p_scheduler,
923 			 sizeof(*ugeth->p_scheduler));
924 	}
925 	if (ugeth->p_tx_fw_statistics_pram) {
926 		pr_info("TX FW statistics pram:\n");
927 		pr_info("Base address: 0x%08x\n",
928 			(u32)ugeth->p_tx_fw_statistics_pram);
929 		mem_disp((u8 *) ugeth->p_tx_fw_statistics_pram,
930 			 sizeof(*ugeth->p_tx_fw_statistics_pram));
931 	}
932 	if (ugeth->p_rx_fw_statistics_pram) {
933 		pr_info("RX FW statistics pram:\n");
934 		pr_info("Base address: 0x%08x\n",
935 			(u32)ugeth->p_rx_fw_statistics_pram);
936 		mem_disp((u8 *) ugeth->p_rx_fw_statistics_pram,
937 			 sizeof(*ugeth->p_rx_fw_statistics_pram));
938 	}
939 	if (ugeth->p_rx_irq_coalescing_tbl) {
940 		pr_info("RX IRQ coalescing tables:\n");
941 		pr_info("Base address: 0x%08x\n",
942 			(u32)ugeth->p_rx_irq_coalescing_tbl);
943 		for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
944 			pr_info("RX IRQ coalescing table entry[%d]:\n", i);
945 			pr_info("Base address: 0x%08x\n",
946 				(u32)&ugeth->p_rx_irq_coalescing_tbl->
947 				coalescingentry[i]);
948 			pr_info("interruptcoalescingmaxvalue: addr - 0x%08x, val - 0x%08x\n",
949 				(u32)&ugeth->p_rx_irq_coalescing_tbl->
950 				coalescingentry[i].interruptcoalescingmaxvalue,
951 				in_be32(&ugeth->p_rx_irq_coalescing_tbl->
952 					coalescingentry[i].
953 					interruptcoalescingmaxvalue));
954 			pr_info("interruptcoalescingcounter : addr - 0x%08x, val - 0x%08x\n",
955 				(u32)&ugeth->p_rx_irq_coalescing_tbl->
956 				coalescingentry[i].interruptcoalescingcounter,
957 				in_be32(&ugeth->p_rx_irq_coalescing_tbl->
958 					coalescingentry[i].
959 					interruptcoalescingcounter));
960 		}
961 	}
962 	if (ugeth->p_rx_bd_qs_tbl) {
963 		pr_info("RX BD QS tables:\n");
964 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_bd_qs_tbl);
965 		for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
966 			pr_info("RX BD QS table[%d]:\n", i);
967 			pr_info("Base address: 0x%08x\n",
968 				(u32)&ugeth->p_rx_bd_qs_tbl[i]);
969 			pr_info("bdbaseptr        : addr - 0x%08x, val - 0x%08x\n",
970 				(u32)&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr,
971 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr));
972 			pr_info("bdptr            : addr - 0x%08x, val - 0x%08x\n",
973 				(u32)&ugeth->p_rx_bd_qs_tbl[i].bdptr,
974 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdptr));
975 			pr_info("externalbdbaseptr: addr - 0x%08x, val - 0x%08x\n",
976 				(u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
977 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].
978 					externalbdbaseptr));
979 			pr_info("externalbdptr    : addr - 0x%08x, val - 0x%08x\n",
980 				(u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdptr,
981 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdptr));
982 			pr_info("ucode RX Prefetched BDs:\n");
983 			pr_info("Base address: 0x%08x\n",
984 				(u32)qe_muram_addr(in_be32
985 						   (&ugeth->p_rx_bd_qs_tbl[i].
986 						    bdbaseptr)));
987 			mem_disp((u8 *)
988 				 qe_muram_addr(in_be32
989 					       (&ugeth->p_rx_bd_qs_tbl[i].
990 						bdbaseptr)),
991 				 sizeof(struct ucc_geth_rx_prefetched_bds));
992 		}
993 	}
994 	if (ugeth->p_init_enet_param_shadow) {
995 		int size;
996 		pr_info("Init enet param shadow:\n");
997 		pr_info("Base address: 0x%08x\n",
998 			(u32) ugeth->p_init_enet_param_shadow);
999 		mem_disp((u8 *) ugeth->p_init_enet_param_shadow,
1000 			 sizeof(*ugeth->p_init_enet_param_shadow));
1001 
1002 		size = sizeof(struct ucc_geth_thread_rx_pram);
1003 		if (ugeth->ug_info->rxExtendedFiltering) {
1004 			size +=
1005 			    THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
1006 			if (ugeth->ug_info->largestexternallookupkeysize ==
1007 			    QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
1008 				size +=
1009 			THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
1010 			if (ugeth->ug_info->largestexternallookupkeysize ==
1011 			    QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
1012 				size +=
1013 			THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
1014 		}
1015 
1016 		dump_init_enet_entries(ugeth,
1017 				       &(ugeth->p_init_enet_param_shadow->
1018 					 txthread[0]),
1019 				       ENET_INIT_PARAM_MAX_ENTRIES_TX,
1020 				       sizeof(struct ucc_geth_thread_tx_pram),
1021 				       ugeth->ug_info->riscTx, 0);
1022 		dump_init_enet_entries(ugeth,
1023 				       &(ugeth->p_init_enet_param_shadow->
1024 					 rxthread[0]),
1025 				       ENET_INIT_PARAM_MAX_ENTRIES_RX, size,
1026 				       ugeth->ug_info->riscRx, 1);
1027 	}
1028 }
1029 #endif /* DEBUG */
1030 
1031 static void init_default_reg_vals(u32 __iomem *upsmr_register,
1032 				  u32 __iomem *maccfg1_register,
1033 				  u32 __iomem *maccfg2_register)
1034 {
1035 	out_be32(upsmr_register, UCC_GETH_UPSMR_INIT);
1036 	out_be32(maccfg1_register, UCC_GETH_MACCFG1_INIT);
1037 	out_be32(maccfg2_register, UCC_GETH_MACCFG2_INIT);
1038 }
1039 
1040 static int init_half_duplex_params(int alt_beb,
1041 				   int back_pressure_no_backoff,
1042 				   int no_backoff,
1043 				   int excess_defer,
1044 				   u8 alt_beb_truncation,
1045 				   u8 max_retransmissions,
1046 				   u8 collision_window,
1047 				   u32 __iomem *hafdup_register)
1048 {
1049 	u32 value = 0;
1050 
1051 	if ((alt_beb_truncation > HALFDUP_ALT_BEB_TRUNCATION_MAX) ||
1052 	    (max_retransmissions > HALFDUP_MAX_RETRANSMISSION_MAX) ||
1053 	    (collision_window > HALFDUP_COLLISION_WINDOW_MAX))
1054 		return -EINVAL;
1055 
1056 	value = (u32) (alt_beb_truncation << HALFDUP_ALT_BEB_TRUNCATION_SHIFT);
1057 
1058 	if (alt_beb)
1059 		value |= HALFDUP_ALT_BEB;
1060 	if (back_pressure_no_backoff)
1061 		value |= HALFDUP_BACK_PRESSURE_NO_BACKOFF;
1062 	if (no_backoff)
1063 		value |= HALFDUP_NO_BACKOFF;
1064 	if (excess_defer)
1065 		value |= HALFDUP_EXCESSIVE_DEFER;
1066 
1067 	value |= (max_retransmissions << HALFDUP_MAX_RETRANSMISSION_SHIFT);
1068 
1069 	value |= collision_window;
1070 
1071 	out_be32(hafdup_register, value);
1072 	return 0;
1073 }
1074 
1075 static int init_inter_frame_gap_params(u8 non_btb_cs_ipg,
1076 				       u8 non_btb_ipg,
1077 				       u8 min_ifg,
1078 				       u8 btb_ipg,
1079 				       u32 __iomem *ipgifg_register)
1080 {
1081 	u32 value = 0;
1082 
1083 	/* Non-Back-to-back IPG part 1 should be <= Non-Back-to-back
1084 	IPG part 2 */
1085 	if (non_btb_cs_ipg > non_btb_ipg)
1086 		return -EINVAL;
1087 
1088 	if ((non_btb_cs_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART1_MAX) ||
1089 	    (non_btb_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART2_MAX) ||
1090 	    /*(min_ifg        > IPGIFG_MINIMUM_IFG_ENFORCEMENT_MAX) || */
1091 	    (btb_ipg > IPGIFG_BACK_TO_BACK_IFG_MAX))
1092 		return -EINVAL;
1093 
1094 	value |=
1095 	    ((non_btb_cs_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART1_SHIFT) &
1096 	     IPGIFG_NBTB_CS_IPG_MASK);
1097 	value |=
1098 	    ((non_btb_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART2_SHIFT) &
1099 	     IPGIFG_NBTB_IPG_MASK);
1100 	value |=
1101 	    ((min_ifg << IPGIFG_MINIMUM_IFG_ENFORCEMENT_SHIFT) &
1102 	     IPGIFG_MIN_IFG_MASK);
1103 	value |= (btb_ipg & IPGIFG_BTB_IPG_MASK);
1104 
1105 	out_be32(ipgifg_register, value);
1106 	return 0;
1107 }
1108 
1109 int init_flow_control_params(u32 automatic_flow_control_mode,
1110 				    int rx_flow_control_enable,
1111 				    int tx_flow_control_enable,
1112 				    u16 pause_period,
1113 				    u16 extension_field,
1114 				    u32 __iomem *upsmr_register,
1115 				    u32 __iomem *uempr_register,
1116 				    u32 __iomem *maccfg1_register)
1117 {
1118 	u32 value = 0;
1119 
1120 	/* Set UEMPR register */
1121 	value = (u32) pause_period << UEMPR_PAUSE_TIME_VALUE_SHIFT;
1122 	value |= (u32) extension_field << UEMPR_EXTENDED_PAUSE_TIME_VALUE_SHIFT;
1123 	out_be32(uempr_register, value);
1124 
1125 	/* Set UPSMR register */
1126 	setbits32(upsmr_register, automatic_flow_control_mode);
1127 
1128 	value = in_be32(maccfg1_register);
1129 	if (rx_flow_control_enable)
1130 		value |= MACCFG1_FLOW_RX;
1131 	if (tx_flow_control_enable)
1132 		value |= MACCFG1_FLOW_TX;
1133 	out_be32(maccfg1_register, value);
1134 
1135 	return 0;
1136 }
1137 
1138 static int init_hw_statistics_gathering_mode(int enable_hardware_statistics,
1139 					     int auto_zero_hardware_statistics,
1140 					     u32 __iomem *upsmr_register,
1141 					     u16 __iomem *uescr_register)
1142 {
1143 	u16 uescr_value = 0;
1144 
1145 	/* Enable hardware statistics gathering if requested */
1146 	if (enable_hardware_statistics)
1147 		setbits32(upsmr_register, UCC_GETH_UPSMR_HSE);
1148 
1149 	/* Clear hardware statistics counters */
1150 	uescr_value = in_be16(uescr_register);
1151 	uescr_value |= UESCR_CLRCNT;
1152 	/* Automatically zero hardware statistics counters on read,
1153 	if requested */
1154 	if (auto_zero_hardware_statistics)
1155 		uescr_value |= UESCR_AUTOZ;
1156 	out_be16(uescr_register, uescr_value);
1157 
1158 	return 0;
1159 }
1160 
1161 static int init_firmware_statistics_gathering_mode(int
1162 		enable_tx_firmware_statistics,
1163 		int enable_rx_firmware_statistics,
1164 		u32 __iomem *tx_rmon_base_ptr,
1165 		u32 tx_firmware_statistics_structure_address,
1166 		u32 __iomem *rx_rmon_base_ptr,
1167 		u32 rx_firmware_statistics_structure_address,
1168 		u16 __iomem *temoder_register,
1169 		u32 __iomem *remoder_register)
1170 {
1171 	/* Note: this function does not check if */
1172 	/* the parameters it receives are NULL   */
1173 
1174 	if (enable_tx_firmware_statistics) {
1175 		out_be32(tx_rmon_base_ptr,
1176 			 tx_firmware_statistics_structure_address);
1177 		setbits16(temoder_register, TEMODER_TX_RMON_STATISTICS_ENABLE);
1178 	}
1179 
1180 	if (enable_rx_firmware_statistics) {
1181 		out_be32(rx_rmon_base_ptr,
1182 			 rx_firmware_statistics_structure_address);
1183 		setbits32(remoder_register, REMODER_RX_RMON_STATISTICS_ENABLE);
1184 	}
1185 
1186 	return 0;
1187 }
1188 
1189 static int init_mac_station_addr_regs(u8 address_byte_0,
1190 				      u8 address_byte_1,
1191 				      u8 address_byte_2,
1192 				      u8 address_byte_3,
1193 				      u8 address_byte_4,
1194 				      u8 address_byte_5,
1195 				      u32 __iomem *macstnaddr1_register,
1196 				      u32 __iomem *macstnaddr2_register)
1197 {
1198 	u32 value = 0;
1199 
1200 	/* Example: for a station address of 0x12345678ABCD, */
1201 	/* 0x12 is byte 0, 0x34 is byte 1 and so on and 0xCD is byte 5 */
1202 
1203 	/* MACSTNADDR1 Register: */
1204 
1205 	/* 0                      7   8                      15  */
1206 	/* station address byte 5     station address byte 4     */
1207 	/* 16                     23  24                     31  */
1208 	/* station address byte 3     station address byte 2     */
1209 	value |= (u32) ((address_byte_2 << 0) & 0x000000FF);
1210 	value |= (u32) ((address_byte_3 << 8) & 0x0000FF00);
1211 	value |= (u32) ((address_byte_4 << 16) & 0x00FF0000);
1212 	value |= (u32) ((address_byte_5 << 24) & 0xFF000000);
1213 
1214 	out_be32(macstnaddr1_register, value);
1215 
1216 	/* MACSTNADDR2 Register: */
1217 
1218 	/* 0                      7   8                      15  */
1219 	/* station address byte 1     station address byte 0     */
1220 	/* 16                     23  24                     31  */
1221 	/*         reserved                   reserved           */
1222 	value = 0;
1223 	value |= (u32) ((address_byte_0 << 16) & 0x00FF0000);
1224 	value |= (u32) ((address_byte_1 << 24) & 0xFF000000);
1225 
1226 	out_be32(macstnaddr2_register, value);
1227 
1228 	return 0;
1229 }
1230 
1231 static int init_check_frame_length_mode(int length_check,
1232 					u32 __iomem *maccfg2_register)
1233 {
1234 	u32 value = 0;
1235 
1236 	value = in_be32(maccfg2_register);
1237 
1238 	if (length_check)
1239 		value |= MACCFG2_LC;
1240 	else
1241 		value &= ~MACCFG2_LC;
1242 
1243 	out_be32(maccfg2_register, value);
1244 	return 0;
1245 }
1246 
1247 static int init_preamble_length(u8 preamble_length,
1248 				u32 __iomem *maccfg2_register)
1249 {
1250 	if ((preamble_length < 3) || (preamble_length > 7))
1251 		return -EINVAL;
1252 
1253 	clrsetbits_be32(maccfg2_register, MACCFG2_PREL_MASK,
1254 			preamble_length << MACCFG2_PREL_SHIFT);
1255 
1256 	return 0;
1257 }
1258 
1259 static int init_rx_parameters(int reject_broadcast,
1260 			      int receive_short_frames,
1261 			      int promiscuous, u32 __iomem *upsmr_register)
1262 {
1263 	u32 value = 0;
1264 
1265 	value = in_be32(upsmr_register);
1266 
1267 	if (reject_broadcast)
1268 		value |= UCC_GETH_UPSMR_BRO;
1269 	else
1270 		value &= ~UCC_GETH_UPSMR_BRO;
1271 
1272 	if (receive_short_frames)
1273 		value |= UCC_GETH_UPSMR_RSH;
1274 	else
1275 		value &= ~UCC_GETH_UPSMR_RSH;
1276 
1277 	if (promiscuous)
1278 		value |= UCC_GETH_UPSMR_PRO;
1279 	else
1280 		value &= ~UCC_GETH_UPSMR_PRO;
1281 
1282 	out_be32(upsmr_register, value);
1283 
1284 	return 0;
1285 }
1286 
1287 static int init_max_rx_buff_len(u16 max_rx_buf_len,
1288 				u16 __iomem *mrblr_register)
1289 {
1290 	/* max_rx_buf_len value must be a multiple of 128 */
1291 	if ((max_rx_buf_len == 0) ||
1292 	    (max_rx_buf_len % UCC_GETH_MRBLR_ALIGNMENT))
1293 		return -EINVAL;
1294 
1295 	out_be16(mrblr_register, max_rx_buf_len);
1296 	return 0;
1297 }
1298 
1299 static int init_min_frame_len(u16 min_frame_length,
1300 			      u16 __iomem *minflr_register,
1301 			      u16 __iomem *mrblr_register)
1302 {
1303 	u16 mrblr_value = 0;
1304 
1305 	mrblr_value = in_be16(mrblr_register);
1306 	if (min_frame_length >= (mrblr_value - 4))
1307 		return -EINVAL;
1308 
1309 	out_be16(minflr_register, min_frame_length);
1310 	return 0;
1311 }
1312 
1313 static int adjust_enet_interface(struct ucc_geth_private *ugeth)
1314 {
1315 	struct ucc_geth_info *ug_info;
1316 	struct ucc_geth __iomem *ug_regs;
1317 	struct ucc_fast __iomem *uf_regs;
1318 	int ret_val;
1319 	u32 upsmr, maccfg2;
1320 	u16 value;
1321 
1322 	ugeth_vdbg("%s: IN", __func__);
1323 
1324 	ug_info = ugeth->ug_info;
1325 	ug_regs = ugeth->ug_regs;
1326 	uf_regs = ugeth->uccf->uf_regs;
1327 
1328 	/*                    Set MACCFG2                    */
1329 	maccfg2 = in_be32(&ug_regs->maccfg2);
1330 	maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
1331 	if ((ugeth->max_speed == SPEED_10) ||
1332 	    (ugeth->max_speed == SPEED_100))
1333 		maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
1334 	else if (ugeth->max_speed == SPEED_1000)
1335 		maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
1336 	maccfg2 |= ug_info->padAndCrc;
1337 	out_be32(&ug_regs->maccfg2, maccfg2);
1338 
1339 	/*                    Set UPSMR                      */
1340 	upsmr = in_be32(&uf_regs->upsmr);
1341 	upsmr &= ~(UCC_GETH_UPSMR_RPM | UCC_GETH_UPSMR_R10M |
1342 		   UCC_GETH_UPSMR_TBIM | UCC_GETH_UPSMR_RMM);
1343 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1344 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1345 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1346 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1347 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1348 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1349 		if (ugeth->phy_interface != PHY_INTERFACE_MODE_RMII)
1350 			upsmr |= UCC_GETH_UPSMR_RPM;
1351 		switch (ugeth->max_speed) {
1352 		case SPEED_10:
1353 			upsmr |= UCC_GETH_UPSMR_R10M;
1354 			/* FALLTHROUGH */
1355 		case SPEED_100:
1356 			if (ugeth->phy_interface != PHY_INTERFACE_MODE_RTBI)
1357 				upsmr |= UCC_GETH_UPSMR_RMM;
1358 		}
1359 	}
1360 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1361 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1362 		upsmr |= UCC_GETH_UPSMR_TBIM;
1363 	}
1364 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_SGMII))
1365 		upsmr |= UCC_GETH_UPSMR_SGMM;
1366 
1367 	out_be32(&uf_regs->upsmr, upsmr);
1368 
1369 	/* Disable autonegotiation in tbi mode, because by default it
1370 	comes up in autonegotiation mode. */
1371 	/* Note that this depends on proper setting in utbipar register. */
1372 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1373 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1374 		struct ucc_geth_info *ug_info = ugeth->ug_info;
1375 		struct phy_device *tbiphy;
1376 
1377 		if (!ug_info->tbi_node)
1378 			pr_warn("TBI mode requires that the device tree specify a tbi-handle\n");
1379 
1380 		tbiphy = of_phy_find_device(ug_info->tbi_node);
1381 		if (!tbiphy)
1382 			pr_warn("Could not get TBI device\n");
1383 
1384 		value = phy_read(tbiphy, ENET_TBI_MII_CR);
1385 		value &= ~0x1000;	/* Turn off autonegotiation */
1386 		phy_write(tbiphy, ENET_TBI_MII_CR, value);
1387 
1388 		put_device(&tbiphy->mdio.dev);
1389 	}
1390 
1391 	init_check_frame_length_mode(ug_info->lengthCheckRx, &ug_regs->maccfg2);
1392 
1393 	ret_val = init_preamble_length(ug_info->prel, &ug_regs->maccfg2);
1394 	if (ret_val != 0) {
1395 		if (netif_msg_probe(ugeth))
1396 			pr_err("Preamble length must be between 3 and 7 inclusive\n");
1397 		return ret_val;
1398 	}
1399 
1400 	return 0;
1401 }
1402 
1403 static int ugeth_graceful_stop_tx(struct ucc_geth_private *ugeth)
1404 {
1405 	struct ucc_fast_private *uccf;
1406 	u32 cecr_subblock;
1407 	u32 temp;
1408 	int i = 10;
1409 
1410 	uccf = ugeth->uccf;
1411 
1412 	/* Mask GRACEFUL STOP TX interrupt bit and clear it */
1413 	clrbits32(uccf->p_uccm, UCC_GETH_UCCE_GRA);
1414 	out_be32(uccf->p_ucce, UCC_GETH_UCCE_GRA);  /* clear by writing 1 */
1415 
1416 	/* Issue host command */
1417 	cecr_subblock =
1418 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1419 	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
1420 		     QE_CR_PROTOCOL_ETHERNET, 0);
1421 
1422 	/* Wait for command to complete */
1423 	do {
1424 		msleep(10);
1425 		temp = in_be32(uccf->p_ucce);
1426 	} while (!(temp & UCC_GETH_UCCE_GRA) && --i);
1427 
1428 	uccf->stopped_tx = 1;
1429 
1430 	return 0;
1431 }
1432 
1433 static int ugeth_graceful_stop_rx(struct ucc_geth_private *ugeth)
1434 {
1435 	struct ucc_fast_private *uccf;
1436 	u32 cecr_subblock;
1437 	u8 temp;
1438 	int i = 10;
1439 
1440 	uccf = ugeth->uccf;
1441 
1442 	/* Clear acknowledge bit */
1443 	temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1444 	temp &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
1445 	out_8(&ugeth->p_rx_glbl_pram->rxgstpack, temp);
1446 
1447 	/* Keep issuing command and checking acknowledge bit until
1448 	it is asserted, according to spec */
1449 	do {
1450 		/* Issue host command */
1451 		cecr_subblock =
1452 		    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.
1453 						ucc_num);
1454 		qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
1455 			     QE_CR_PROTOCOL_ETHERNET, 0);
1456 		msleep(10);
1457 		temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1458 	} while (!(temp & GRACEFUL_STOP_ACKNOWLEDGE_RX) && --i);
1459 
1460 	uccf->stopped_rx = 1;
1461 
1462 	return 0;
1463 }
1464 
1465 static int ugeth_restart_tx(struct ucc_geth_private *ugeth)
1466 {
1467 	struct ucc_fast_private *uccf;
1468 	u32 cecr_subblock;
1469 
1470 	uccf = ugeth->uccf;
1471 
1472 	cecr_subblock =
1473 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1474 	qe_issue_cmd(QE_RESTART_TX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 0);
1475 	uccf->stopped_tx = 0;
1476 
1477 	return 0;
1478 }
1479 
1480 static int ugeth_restart_rx(struct ucc_geth_private *ugeth)
1481 {
1482 	struct ucc_fast_private *uccf;
1483 	u32 cecr_subblock;
1484 
1485 	uccf = ugeth->uccf;
1486 
1487 	cecr_subblock =
1488 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1489 	qe_issue_cmd(QE_RESTART_RX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
1490 		     0);
1491 	uccf->stopped_rx = 0;
1492 
1493 	return 0;
1494 }
1495 
1496 static int ugeth_enable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1497 {
1498 	struct ucc_fast_private *uccf;
1499 	int enabled_tx, enabled_rx;
1500 
1501 	uccf = ugeth->uccf;
1502 
1503 	/* check if the UCC number is in range. */
1504 	if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1505 		if (netif_msg_probe(ugeth))
1506 			pr_err("ucc_num out of range\n");
1507 		return -EINVAL;
1508 	}
1509 
1510 	enabled_tx = uccf->enabled_tx;
1511 	enabled_rx = uccf->enabled_rx;
1512 
1513 	/* Get Tx and Rx going again, in case this channel was actively
1514 	disabled. */
1515 	if ((mode & COMM_DIR_TX) && (!enabled_tx) && uccf->stopped_tx)
1516 		ugeth_restart_tx(ugeth);
1517 	if ((mode & COMM_DIR_RX) && (!enabled_rx) && uccf->stopped_rx)
1518 		ugeth_restart_rx(ugeth);
1519 
1520 	ucc_fast_enable(uccf, mode);	/* OK to do even if not disabled */
1521 
1522 	return 0;
1523 
1524 }
1525 
1526 static int ugeth_disable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1527 {
1528 	struct ucc_fast_private *uccf;
1529 
1530 	uccf = ugeth->uccf;
1531 
1532 	/* check if the UCC number is in range. */
1533 	if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1534 		if (netif_msg_probe(ugeth))
1535 			pr_err("ucc_num out of range\n");
1536 		return -EINVAL;
1537 	}
1538 
1539 	/* Stop any transmissions */
1540 	if ((mode & COMM_DIR_TX) && uccf->enabled_tx && !uccf->stopped_tx)
1541 		ugeth_graceful_stop_tx(ugeth);
1542 
1543 	/* Stop any receptions */
1544 	if ((mode & COMM_DIR_RX) && uccf->enabled_rx && !uccf->stopped_rx)
1545 		ugeth_graceful_stop_rx(ugeth);
1546 
1547 	ucc_fast_disable(ugeth->uccf, mode); /* OK to do even if not enabled */
1548 
1549 	return 0;
1550 }
1551 
1552 static void ugeth_quiesce(struct ucc_geth_private *ugeth)
1553 {
1554 	/* Prevent any further xmits, plus detach the device. */
1555 	netif_device_detach(ugeth->ndev);
1556 
1557 	/* Wait for any current xmits to finish. */
1558 	netif_tx_disable(ugeth->ndev);
1559 
1560 	/* Disable the interrupt to avoid NAPI rescheduling. */
1561 	disable_irq(ugeth->ug_info->uf_info.irq);
1562 
1563 	/* Stop NAPI, and possibly wait for its completion. */
1564 	napi_disable(&ugeth->napi);
1565 }
1566 
1567 static void ugeth_activate(struct ucc_geth_private *ugeth)
1568 {
1569 	napi_enable(&ugeth->napi);
1570 	enable_irq(ugeth->ug_info->uf_info.irq);
1571 	netif_device_attach(ugeth->ndev);
1572 }
1573 
1574 /* Called every time the controller might need to be made
1575  * aware of new link state.  The PHY code conveys this
1576  * information through variables in the ugeth structure, and this
1577  * function converts those variables into the appropriate
1578  * register values, and can bring down the device if needed.
1579  */
1580 
1581 static void adjust_link(struct net_device *dev)
1582 {
1583 	struct ucc_geth_private *ugeth = netdev_priv(dev);
1584 	struct ucc_geth __iomem *ug_regs;
1585 	struct ucc_fast __iomem *uf_regs;
1586 	struct phy_device *phydev = ugeth->phydev;
1587 	int new_state = 0;
1588 
1589 	ug_regs = ugeth->ug_regs;
1590 	uf_regs = ugeth->uccf->uf_regs;
1591 
1592 	if (phydev->link) {
1593 		u32 tempval = in_be32(&ug_regs->maccfg2);
1594 		u32 upsmr = in_be32(&uf_regs->upsmr);
1595 		/* Now we make sure that we can be in full duplex mode.
1596 		 * If not, we operate in half-duplex mode. */
1597 		if (phydev->duplex != ugeth->oldduplex) {
1598 			new_state = 1;
1599 			if (!(phydev->duplex))
1600 				tempval &= ~(MACCFG2_FDX);
1601 			else
1602 				tempval |= MACCFG2_FDX;
1603 			ugeth->oldduplex = phydev->duplex;
1604 		}
1605 
1606 		if (phydev->speed != ugeth->oldspeed) {
1607 			new_state = 1;
1608 			switch (phydev->speed) {
1609 			case SPEED_1000:
1610 				tempval = ((tempval &
1611 					    ~(MACCFG2_INTERFACE_MODE_MASK)) |
1612 					    MACCFG2_INTERFACE_MODE_BYTE);
1613 				break;
1614 			case SPEED_100:
1615 			case SPEED_10:
1616 				tempval = ((tempval &
1617 					    ~(MACCFG2_INTERFACE_MODE_MASK)) |
1618 					    MACCFG2_INTERFACE_MODE_NIBBLE);
1619 				/* if reduced mode, re-set UPSMR.R10M */
1620 				if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1621 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1622 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1623 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1624 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1625 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1626 					if (phydev->speed == SPEED_10)
1627 						upsmr |= UCC_GETH_UPSMR_R10M;
1628 					else
1629 						upsmr &= ~UCC_GETH_UPSMR_R10M;
1630 				}
1631 				break;
1632 			default:
1633 				if (netif_msg_link(ugeth))
1634 					pr_warn(
1635 						"%s: Ack!  Speed (%d) is not 10/100/1000!",
1636 						dev->name, phydev->speed);
1637 				break;
1638 			}
1639 			ugeth->oldspeed = phydev->speed;
1640 		}
1641 
1642 		if (!ugeth->oldlink) {
1643 			new_state = 1;
1644 			ugeth->oldlink = 1;
1645 		}
1646 
1647 		if (new_state) {
1648 			/*
1649 			 * To change the MAC configuration we need to disable
1650 			 * the controller. To do so, we have to either grab
1651 			 * ugeth->lock, which is a bad idea since 'graceful
1652 			 * stop' commands might take quite a while, or we can
1653 			 * quiesce driver's activity.
1654 			 */
1655 			ugeth_quiesce(ugeth);
1656 			ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
1657 
1658 			out_be32(&ug_regs->maccfg2, tempval);
1659 			out_be32(&uf_regs->upsmr, upsmr);
1660 
1661 			ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
1662 			ugeth_activate(ugeth);
1663 		}
1664 	} else if (ugeth->oldlink) {
1665 			new_state = 1;
1666 			ugeth->oldlink = 0;
1667 			ugeth->oldspeed = 0;
1668 			ugeth->oldduplex = -1;
1669 	}
1670 
1671 	if (new_state && netif_msg_link(ugeth))
1672 		phy_print_status(phydev);
1673 }
1674 
1675 /* Initialize TBI PHY interface for communicating with the
1676  * SERDES lynx PHY on the chip.  We communicate with this PHY
1677  * through the MDIO bus on each controller, treating it as a
1678  * "normal" PHY at the address found in the UTBIPA register.  We assume
1679  * that the UTBIPA register is valid.  Either the MDIO bus code will set
1680  * it to a value that doesn't conflict with other PHYs on the bus, or the
1681  * value doesn't matter, as there are no other PHYs on the bus.
1682  */
1683 static void uec_configure_serdes(struct net_device *dev)
1684 {
1685 	struct ucc_geth_private *ugeth = netdev_priv(dev);
1686 	struct ucc_geth_info *ug_info = ugeth->ug_info;
1687 	struct phy_device *tbiphy;
1688 
1689 	if (!ug_info->tbi_node) {
1690 		dev_warn(&dev->dev, "SGMII mode requires that the device "
1691 			"tree specify a tbi-handle\n");
1692 		return;
1693 	}
1694 
1695 	tbiphy = of_phy_find_device(ug_info->tbi_node);
1696 	if (!tbiphy) {
1697 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1698 		return;
1699 	}
1700 
1701 	/*
1702 	 * If the link is already up, we must already be ok, and don't need to
1703 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1704 	 * everything for us?  Resetting it takes the link down and requires
1705 	 * several seconds for it to come back.
1706 	 */
1707 	if (phy_read(tbiphy, ENET_TBI_MII_SR) & TBISR_LSTATUS) {
1708 		put_device(&tbiphy->mdio.dev);
1709 		return;
1710 	}
1711 
1712 	/* Single clk mode, mii mode off(for serdes communication) */
1713 	phy_write(tbiphy, ENET_TBI_MII_ANA, TBIANA_SETTINGS);
1714 
1715 	phy_write(tbiphy, ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
1716 
1717 	phy_write(tbiphy, ENET_TBI_MII_CR, TBICR_SETTINGS);
1718 
1719 	put_device(&tbiphy->mdio.dev);
1720 }
1721 
1722 /* Configure the PHY for dev.
1723  * returns 0 if success.  -1 if failure
1724  */
1725 static int init_phy(struct net_device *dev)
1726 {
1727 	struct ucc_geth_private *priv = netdev_priv(dev);
1728 	struct ucc_geth_info *ug_info = priv->ug_info;
1729 	struct phy_device *phydev;
1730 
1731 	priv->oldlink = 0;
1732 	priv->oldspeed = 0;
1733 	priv->oldduplex = -1;
1734 
1735 	phydev = of_phy_connect(dev, ug_info->phy_node, &adjust_link, 0,
1736 				priv->phy_interface);
1737 	if (!phydev) {
1738 		dev_err(&dev->dev, "Could not attach to PHY\n");
1739 		return -ENODEV;
1740 	}
1741 
1742 	if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII)
1743 		uec_configure_serdes(dev);
1744 
1745 	phydev->supported &= (SUPPORTED_MII |
1746 			      SUPPORTED_Autoneg |
1747 			      ADVERTISED_10baseT_Half |
1748 			      ADVERTISED_10baseT_Full |
1749 			      ADVERTISED_100baseT_Half |
1750 			      ADVERTISED_100baseT_Full);
1751 
1752 	if (priv->max_speed == SPEED_1000)
1753 		phydev->supported |= ADVERTISED_1000baseT_Full;
1754 
1755 	phydev->advertising = phydev->supported;
1756 
1757 	priv->phydev = phydev;
1758 
1759 	return 0;
1760 }
1761 
1762 static void ugeth_dump_regs(struct ucc_geth_private *ugeth)
1763 {
1764 #ifdef DEBUG
1765 	ucc_fast_dump_regs(ugeth->uccf);
1766 	dump_regs(ugeth);
1767 	dump_bds(ugeth);
1768 #endif
1769 }
1770 
1771 static int ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private *
1772 						       ugeth,
1773 						       enum enet_addr_type
1774 						       enet_addr_type)
1775 {
1776 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
1777 	struct ucc_fast_private *uccf;
1778 	enum comm_dir comm_dir;
1779 	struct list_head *p_lh;
1780 	u16 i, num;
1781 	u32 __iomem *addr_h;
1782 	u32 __iomem *addr_l;
1783 	u8 *p_counter;
1784 
1785 	uccf = ugeth->uccf;
1786 
1787 	p_82xx_addr_filt =
1788 	    (struct ucc_geth_82xx_address_filtering_pram __iomem *)
1789 	    ugeth->p_rx_glbl_pram->addressfiltering;
1790 
1791 	if (enet_addr_type == ENET_ADDR_TYPE_GROUP) {
1792 		addr_h = &(p_82xx_addr_filt->gaddr_h);
1793 		addr_l = &(p_82xx_addr_filt->gaddr_l);
1794 		p_lh = &ugeth->group_hash_q;
1795 		p_counter = &(ugeth->numGroupAddrInHash);
1796 	} else if (enet_addr_type == ENET_ADDR_TYPE_INDIVIDUAL) {
1797 		addr_h = &(p_82xx_addr_filt->iaddr_h);
1798 		addr_l = &(p_82xx_addr_filt->iaddr_l);
1799 		p_lh = &ugeth->ind_hash_q;
1800 		p_counter = &(ugeth->numIndAddrInHash);
1801 	} else
1802 		return -EINVAL;
1803 
1804 	comm_dir = 0;
1805 	if (uccf->enabled_tx)
1806 		comm_dir |= COMM_DIR_TX;
1807 	if (uccf->enabled_rx)
1808 		comm_dir |= COMM_DIR_RX;
1809 	if (comm_dir)
1810 		ugeth_disable(ugeth, comm_dir);
1811 
1812 	/* Clear the hash table. */
1813 	out_be32(addr_h, 0x00000000);
1814 	out_be32(addr_l, 0x00000000);
1815 
1816 	if (!p_lh)
1817 		return 0;
1818 
1819 	num = *p_counter;
1820 
1821 	/* Delete all remaining CQ elements */
1822 	for (i = 0; i < num; i++)
1823 		put_enet_addr_container(ENET_ADDR_CONT_ENTRY(dequeue(p_lh)));
1824 
1825 	*p_counter = 0;
1826 
1827 	if (comm_dir)
1828 		ugeth_enable(ugeth, comm_dir);
1829 
1830 	return 0;
1831 }
1832 
1833 static int ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private *ugeth,
1834 						    u8 paddr_num)
1835 {
1836 	ugeth->indAddrRegUsed[paddr_num] = 0; /* mark this paddr as not used */
1837 	return hw_clear_addr_in_paddr(ugeth, paddr_num);/* clear in hardware */
1838 }
1839 
1840 static void ucc_geth_free_rx(struct ucc_geth_private *ugeth)
1841 {
1842 	struct ucc_geth_info *ug_info;
1843 	struct ucc_fast_info *uf_info;
1844 	u16 i, j;
1845 	u8 __iomem *bd;
1846 
1847 
1848 	ug_info = ugeth->ug_info;
1849 	uf_info = &ug_info->uf_info;
1850 
1851 	for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
1852 		if (ugeth->p_rx_bd_ring[i]) {
1853 			/* Return existing data buffers in ring */
1854 			bd = ugeth->p_rx_bd_ring[i];
1855 			for (j = 0; j < ugeth->ug_info->bdRingLenRx[i]; j++) {
1856 				if (ugeth->rx_skbuff[i][j]) {
1857 					dma_unmap_single(ugeth->dev,
1858 						in_be32(&((struct qe_bd __iomem *)bd)->buf),
1859 						ugeth->ug_info->
1860 						uf_info.max_rx_buf_length +
1861 						UCC_GETH_RX_DATA_BUF_ALIGNMENT,
1862 						DMA_FROM_DEVICE);
1863 					dev_kfree_skb_any(
1864 						ugeth->rx_skbuff[i][j]);
1865 					ugeth->rx_skbuff[i][j] = NULL;
1866 				}
1867 				bd += sizeof(struct qe_bd);
1868 			}
1869 
1870 			kfree(ugeth->rx_skbuff[i]);
1871 
1872 			if (ugeth->ug_info->uf_info.bd_mem_part ==
1873 			    MEM_PART_SYSTEM)
1874 				kfree((void *)ugeth->rx_bd_ring_offset[i]);
1875 			else if (ugeth->ug_info->uf_info.bd_mem_part ==
1876 				 MEM_PART_MURAM)
1877 				qe_muram_free(ugeth->rx_bd_ring_offset[i]);
1878 			ugeth->p_rx_bd_ring[i] = NULL;
1879 		}
1880 	}
1881 
1882 }
1883 
1884 static void ucc_geth_free_tx(struct ucc_geth_private *ugeth)
1885 {
1886 	struct ucc_geth_info *ug_info;
1887 	struct ucc_fast_info *uf_info;
1888 	u16 i, j;
1889 	u8 __iomem *bd;
1890 
1891 	ug_info = ugeth->ug_info;
1892 	uf_info = &ug_info->uf_info;
1893 
1894 	for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
1895 		bd = ugeth->p_tx_bd_ring[i];
1896 		if (!bd)
1897 			continue;
1898 		for (j = 0; j < ugeth->ug_info->bdRingLenTx[i]; j++) {
1899 			if (ugeth->tx_skbuff[i][j]) {
1900 				dma_unmap_single(ugeth->dev,
1901 						 in_be32(&((struct qe_bd __iomem *)bd)->buf),
1902 						 (in_be32((u32 __iomem *)bd) &
1903 						  BD_LENGTH_MASK),
1904 						 DMA_TO_DEVICE);
1905 				dev_kfree_skb_any(ugeth->tx_skbuff[i][j]);
1906 				ugeth->tx_skbuff[i][j] = NULL;
1907 			}
1908 		}
1909 
1910 		kfree(ugeth->tx_skbuff[i]);
1911 
1912 		if (ugeth->p_tx_bd_ring[i]) {
1913 			if (ugeth->ug_info->uf_info.bd_mem_part ==
1914 			    MEM_PART_SYSTEM)
1915 				kfree((void *)ugeth->tx_bd_ring_offset[i]);
1916 			else if (ugeth->ug_info->uf_info.bd_mem_part ==
1917 				 MEM_PART_MURAM)
1918 				qe_muram_free(ugeth->tx_bd_ring_offset[i]);
1919 			ugeth->p_tx_bd_ring[i] = NULL;
1920 		}
1921 	}
1922 
1923 }
1924 
1925 static void ucc_geth_memclean(struct ucc_geth_private *ugeth)
1926 {
1927 	if (!ugeth)
1928 		return;
1929 
1930 	if (ugeth->uccf) {
1931 		ucc_fast_free(ugeth->uccf);
1932 		ugeth->uccf = NULL;
1933 	}
1934 
1935 	if (ugeth->p_thread_data_tx) {
1936 		qe_muram_free(ugeth->thread_dat_tx_offset);
1937 		ugeth->p_thread_data_tx = NULL;
1938 	}
1939 	if (ugeth->p_thread_data_rx) {
1940 		qe_muram_free(ugeth->thread_dat_rx_offset);
1941 		ugeth->p_thread_data_rx = NULL;
1942 	}
1943 	if (ugeth->p_exf_glbl_param) {
1944 		qe_muram_free(ugeth->exf_glbl_param_offset);
1945 		ugeth->p_exf_glbl_param = NULL;
1946 	}
1947 	if (ugeth->p_rx_glbl_pram) {
1948 		qe_muram_free(ugeth->rx_glbl_pram_offset);
1949 		ugeth->p_rx_glbl_pram = NULL;
1950 	}
1951 	if (ugeth->p_tx_glbl_pram) {
1952 		qe_muram_free(ugeth->tx_glbl_pram_offset);
1953 		ugeth->p_tx_glbl_pram = NULL;
1954 	}
1955 	if (ugeth->p_send_q_mem_reg) {
1956 		qe_muram_free(ugeth->send_q_mem_reg_offset);
1957 		ugeth->p_send_q_mem_reg = NULL;
1958 	}
1959 	if (ugeth->p_scheduler) {
1960 		qe_muram_free(ugeth->scheduler_offset);
1961 		ugeth->p_scheduler = NULL;
1962 	}
1963 	if (ugeth->p_tx_fw_statistics_pram) {
1964 		qe_muram_free(ugeth->tx_fw_statistics_pram_offset);
1965 		ugeth->p_tx_fw_statistics_pram = NULL;
1966 	}
1967 	if (ugeth->p_rx_fw_statistics_pram) {
1968 		qe_muram_free(ugeth->rx_fw_statistics_pram_offset);
1969 		ugeth->p_rx_fw_statistics_pram = NULL;
1970 	}
1971 	if (ugeth->p_rx_irq_coalescing_tbl) {
1972 		qe_muram_free(ugeth->rx_irq_coalescing_tbl_offset);
1973 		ugeth->p_rx_irq_coalescing_tbl = NULL;
1974 	}
1975 	if (ugeth->p_rx_bd_qs_tbl) {
1976 		qe_muram_free(ugeth->rx_bd_qs_tbl_offset);
1977 		ugeth->p_rx_bd_qs_tbl = NULL;
1978 	}
1979 	if (ugeth->p_init_enet_param_shadow) {
1980 		return_init_enet_entries(ugeth,
1981 					 &(ugeth->p_init_enet_param_shadow->
1982 					   rxthread[0]),
1983 					 ENET_INIT_PARAM_MAX_ENTRIES_RX,
1984 					 ugeth->ug_info->riscRx, 1);
1985 		return_init_enet_entries(ugeth,
1986 					 &(ugeth->p_init_enet_param_shadow->
1987 					   txthread[0]),
1988 					 ENET_INIT_PARAM_MAX_ENTRIES_TX,
1989 					 ugeth->ug_info->riscTx, 0);
1990 		kfree(ugeth->p_init_enet_param_shadow);
1991 		ugeth->p_init_enet_param_shadow = NULL;
1992 	}
1993 	ucc_geth_free_tx(ugeth);
1994 	ucc_geth_free_rx(ugeth);
1995 	while (!list_empty(&ugeth->group_hash_q))
1996 		put_enet_addr_container(ENET_ADDR_CONT_ENTRY
1997 					(dequeue(&ugeth->group_hash_q)));
1998 	while (!list_empty(&ugeth->ind_hash_q))
1999 		put_enet_addr_container(ENET_ADDR_CONT_ENTRY
2000 					(dequeue(&ugeth->ind_hash_q)));
2001 	if (ugeth->ug_regs) {
2002 		iounmap(ugeth->ug_regs);
2003 		ugeth->ug_regs = NULL;
2004 	}
2005 }
2006 
2007 static void ucc_geth_set_multi(struct net_device *dev)
2008 {
2009 	struct ucc_geth_private *ugeth;
2010 	struct netdev_hw_addr *ha;
2011 	struct ucc_fast __iomem *uf_regs;
2012 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2013 
2014 	ugeth = netdev_priv(dev);
2015 
2016 	uf_regs = ugeth->uccf->uf_regs;
2017 
2018 	if (dev->flags & IFF_PROMISC) {
2019 		setbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2020 	} else {
2021 		clrbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2022 
2023 		p_82xx_addr_filt =
2024 		    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2025 		    p_rx_glbl_pram->addressfiltering;
2026 
2027 		if (dev->flags & IFF_ALLMULTI) {
2028 			/* Catch all multicast addresses, so set the
2029 			 * filter to all 1's.
2030 			 */
2031 			out_be32(&p_82xx_addr_filt->gaddr_h, 0xffffffff);
2032 			out_be32(&p_82xx_addr_filt->gaddr_l, 0xffffffff);
2033 		} else {
2034 			/* Clear filter and add the addresses in the list.
2035 			 */
2036 			out_be32(&p_82xx_addr_filt->gaddr_h, 0x0);
2037 			out_be32(&p_82xx_addr_filt->gaddr_l, 0x0);
2038 
2039 			netdev_for_each_mc_addr(ha, dev) {
2040 				/* Ask CPM to run CRC and set bit in
2041 				 * filter mask.
2042 				 */
2043 				hw_add_addr_in_hash(ugeth, ha->addr);
2044 			}
2045 		}
2046 	}
2047 }
2048 
2049 static void ucc_geth_stop(struct ucc_geth_private *ugeth)
2050 {
2051 	struct ucc_geth __iomem *ug_regs = ugeth->ug_regs;
2052 	struct phy_device *phydev = ugeth->phydev;
2053 
2054 	ugeth_vdbg("%s: IN", __func__);
2055 
2056 	/*
2057 	 * Tell the kernel the link is down.
2058 	 * Must be done before disabling the controller
2059 	 * or deadlock may happen.
2060 	 */
2061 	phy_stop(phydev);
2062 
2063 	/* Disable the controller */
2064 	ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
2065 
2066 	/* Mask all interrupts */
2067 	out_be32(ugeth->uccf->p_uccm, 0x00000000);
2068 
2069 	/* Clear all interrupts */
2070 	out_be32(ugeth->uccf->p_ucce, 0xffffffff);
2071 
2072 	/* Disable Rx and Tx */
2073 	clrbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2074 
2075 	ucc_geth_memclean(ugeth);
2076 }
2077 
2078 static int ucc_struct_init(struct ucc_geth_private *ugeth)
2079 {
2080 	struct ucc_geth_info *ug_info;
2081 	struct ucc_fast_info *uf_info;
2082 	int i;
2083 
2084 	ug_info = ugeth->ug_info;
2085 	uf_info = &ug_info->uf_info;
2086 
2087 	if (!((uf_info->bd_mem_part == MEM_PART_SYSTEM) ||
2088 	      (uf_info->bd_mem_part == MEM_PART_MURAM))) {
2089 		if (netif_msg_probe(ugeth))
2090 			pr_err("Bad memory partition value\n");
2091 		return -EINVAL;
2092 	}
2093 
2094 	/* Rx BD lengths */
2095 	for (i = 0; i < ug_info->numQueuesRx; i++) {
2096 		if ((ug_info->bdRingLenRx[i] < UCC_GETH_RX_BD_RING_SIZE_MIN) ||
2097 		    (ug_info->bdRingLenRx[i] %
2098 		     UCC_GETH_RX_BD_RING_SIZE_ALIGNMENT)) {
2099 			if (netif_msg_probe(ugeth))
2100 				pr_err("Rx BD ring length must be multiple of 4, no smaller than 8\n");
2101 			return -EINVAL;
2102 		}
2103 	}
2104 
2105 	/* Tx BD lengths */
2106 	for (i = 0; i < ug_info->numQueuesTx; i++) {
2107 		if (ug_info->bdRingLenTx[i] < UCC_GETH_TX_BD_RING_SIZE_MIN) {
2108 			if (netif_msg_probe(ugeth))
2109 				pr_err("Tx BD ring length must be no smaller than 2\n");
2110 			return -EINVAL;
2111 		}
2112 	}
2113 
2114 	/* mrblr */
2115 	if ((uf_info->max_rx_buf_length == 0) ||
2116 	    (uf_info->max_rx_buf_length % UCC_GETH_MRBLR_ALIGNMENT)) {
2117 		if (netif_msg_probe(ugeth))
2118 			pr_err("max_rx_buf_length must be non-zero multiple of 128\n");
2119 		return -EINVAL;
2120 	}
2121 
2122 	/* num Tx queues */
2123 	if (ug_info->numQueuesTx > NUM_TX_QUEUES) {
2124 		if (netif_msg_probe(ugeth))
2125 			pr_err("number of tx queues too large\n");
2126 		return -EINVAL;
2127 	}
2128 
2129 	/* num Rx queues */
2130 	if (ug_info->numQueuesRx > NUM_RX_QUEUES) {
2131 		if (netif_msg_probe(ugeth))
2132 			pr_err("number of rx queues too large\n");
2133 		return -EINVAL;
2134 	}
2135 
2136 	/* l2qt */
2137 	for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) {
2138 		if (ug_info->l2qt[i] >= ug_info->numQueuesRx) {
2139 			if (netif_msg_probe(ugeth))
2140 				pr_err("VLAN priority table entry must not be larger than number of Rx queues\n");
2141 			return -EINVAL;
2142 		}
2143 	}
2144 
2145 	/* l3qt */
2146 	for (i = 0; i < UCC_GETH_IP_PRIORITY_MAX; i++) {
2147 		if (ug_info->l3qt[i] >= ug_info->numQueuesRx) {
2148 			if (netif_msg_probe(ugeth))
2149 				pr_err("IP priority table entry must not be larger than number of Rx queues\n");
2150 			return -EINVAL;
2151 		}
2152 	}
2153 
2154 	if (ug_info->cam && !ug_info->ecamptr) {
2155 		if (netif_msg_probe(ugeth))
2156 			pr_err("If cam mode is chosen, must supply cam ptr\n");
2157 		return -EINVAL;
2158 	}
2159 
2160 	if ((ug_info->numStationAddresses !=
2161 	     UCC_GETH_NUM_OF_STATION_ADDRESSES_1) &&
2162 	    ug_info->rxExtendedFiltering) {
2163 		if (netif_msg_probe(ugeth))
2164 			pr_err("Number of station addresses greater than 1 not allowed in extended parsing mode\n");
2165 		return -EINVAL;
2166 	}
2167 
2168 	/* Generate uccm_mask for receive */
2169 	uf_info->uccm_mask = ug_info->eventRegMask & UCCE_OTHER;/* Errors */
2170 	for (i = 0; i < ug_info->numQueuesRx; i++)
2171 		uf_info->uccm_mask |= (UCC_GETH_UCCE_RXF0 << i);
2172 
2173 	for (i = 0; i < ug_info->numQueuesTx; i++)
2174 		uf_info->uccm_mask |= (UCC_GETH_UCCE_TXB0 << i);
2175 	/* Initialize the general fast UCC block. */
2176 	if (ucc_fast_init(uf_info, &ugeth->uccf)) {
2177 		if (netif_msg_probe(ugeth))
2178 			pr_err("Failed to init uccf\n");
2179 		return -ENOMEM;
2180 	}
2181 
2182 	/* read the number of risc engines, update the riscTx and riscRx
2183 	 * if there are 4 riscs in QE
2184 	 */
2185 	if (qe_get_num_of_risc() == 4) {
2186 		ug_info->riscTx = QE_RISC_ALLOCATION_FOUR_RISCS;
2187 		ug_info->riscRx = QE_RISC_ALLOCATION_FOUR_RISCS;
2188 	}
2189 
2190 	ugeth->ug_regs = ioremap(uf_info->regs, sizeof(*ugeth->ug_regs));
2191 	if (!ugeth->ug_regs) {
2192 		if (netif_msg_probe(ugeth))
2193 			pr_err("Failed to ioremap regs\n");
2194 		return -ENOMEM;
2195 	}
2196 
2197 	return 0;
2198 }
2199 
2200 static int ucc_geth_alloc_tx(struct ucc_geth_private *ugeth)
2201 {
2202 	struct ucc_geth_info *ug_info;
2203 	struct ucc_fast_info *uf_info;
2204 	int length;
2205 	u16 i, j;
2206 	u8 __iomem *bd;
2207 
2208 	ug_info = ugeth->ug_info;
2209 	uf_info = &ug_info->uf_info;
2210 
2211 	/* Allocate Tx bds */
2212 	for (j = 0; j < ug_info->numQueuesTx; j++) {
2213 		/* Allocate in multiple of
2214 		   UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT,
2215 		   according to spec */
2216 		length = ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd))
2217 			  / UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2218 		    * UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2219 		if ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) %
2220 		    UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2221 			length += UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2222 		if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2223 			u32 align = 4;
2224 			if (UCC_GETH_TX_BD_RING_ALIGNMENT > 4)
2225 				align = UCC_GETH_TX_BD_RING_ALIGNMENT;
2226 			ugeth->tx_bd_ring_offset[j] =
2227 				(u32) kmalloc((u32) (length + align), GFP_KERNEL);
2228 
2229 			if (ugeth->tx_bd_ring_offset[j] != 0)
2230 				ugeth->p_tx_bd_ring[j] =
2231 					(u8 __iomem *)((ugeth->tx_bd_ring_offset[j] +
2232 					align) & ~(align - 1));
2233 		} else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2234 			ugeth->tx_bd_ring_offset[j] =
2235 			    qe_muram_alloc(length,
2236 					   UCC_GETH_TX_BD_RING_ALIGNMENT);
2237 			if (!IS_ERR_VALUE(ugeth->tx_bd_ring_offset[j]))
2238 				ugeth->p_tx_bd_ring[j] =
2239 				    (u8 __iomem *) qe_muram_addr(ugeth->
2240 							 tx_bd_ring_offset[j]);
2241 		}
2242 		if (!ugeth->p_tx_bd_ring[j]) {
2243 			if (netif_msg_ifup(ugeth))
2244 				pr_err("Can not allocate memory for Tx bd rings\n");
2245 			return -ENOMEM;
2246 		}
2247 		/* Zero unused end of bd ring, according to spec */
2248 		memset_io((void __iomem *)(ugeth->p_tx_bd_ring[j] +
2249 		       ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)), 0,
2250 		       length - ug_info->bdRingLenTx[j] * sizeof(struct qe_bd));
2251 	}
2252 
2253 	/* Init Tx bds */
2254 	for (j = 0; j < ug_info->numQueuesTx; j++) {
2255 		/* Setup the skbuff rings */
2256 		ugeth->tx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2257 					      ugeth->ug_info->bdRingLenTx[j],
2258 					      GFP_KERNEL);
2259 
2260 		if (ugeth->tx_skbuff[j] == NULL) {
2261 			if (netif_msg_ifup(ugeth))
2262 				pr_err("Could not allocate tx_skbuff\n");
2263 			return -ENOMEM;
2264 		}
2265 
2266 		for (i = 0; i < ugeth->ug_info->bdRingLenTx[j]; i++)
2267 			ugeth->tx_skbuff[j][i] = NULL;
2268 
2269 		ugeth->skb_curtx[j] = ugeth->skb_dirtytx[j] = 0;
2270 		bd = ugeth->confBd[j] = ugeth->txBd[j] = ugeth->p_tx_bd_ring[j];
2271 		for (i = 0; i < ug_info->bdRingLenTx[j]; i++) {
2272 			/* clear bd buffer */
2273 			out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2274 			/* set bd status and length */
2275 			out_be32((u32 __iomem *)bd, 0);
2276 			bd += sizeof(struct qe_bd);
2277 		}
2278 		bd -= sizeof(struct qe_bd);
2279 		/* set bd status and length */
2280 		out_be32((u32 __iomem *)bd, T_W); /* for last BD set Wrap bit */
2281 	}
2282 
2283 	return 0;
2284 }
2285 
2286 static int ucc_geth_alloc_rx(struct ucc_geth_private *ugeth)
2287 {
2288 	struct ucc_geth_info *ug_info;
2289 	struct ucc_fast_info *uf_info;
2290 	int length;
2291 	u16 i, j;
2292 	u8 __iomem *bd;
2293 
2294 	ug_info = ugeth->ug_info;
2295 	uf_info = &ug_info->uf_info;
2296 
2297 	/* Allocate Rx bds */
2298 	for (j = 0; j < ug_info->numQueuesRx; j++) {
2299 		length = ug_info->bdRingLenRx[j] * sizeof(struct qe_bd);
2300 		if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2301 			u32 align = 4;
2302 			if (UCC_GETH_RX_BD_RING_ALIGNMENT > 4)
2303 				align = UCC_GETH_RX_BD_RING_ALIGNMENT;
2304 			ugeth->rx_bd_ring_offset[j] =
2305 				(u32) kmalloc((u32) (length + align), GFP_KERNEL);
2306 			if (ugeth->rx_bd_ring_offset[j] != 0)
2307 				ugeth->p_rx_bd_ring[j] =
2308 					(u8 __iomem *)((ugeth->rx_bd_ring_offset[j] +
2309 					align) & ~(align - 1));
2310 		} else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2311 			ugeth->rx_bd_ring_offset[j] =
2312 			    qe_muram_alloc(length,
2313 					   UCC_GETH_RX_BD_RING_ALIGNMENT);
2314 			if (!IS_ERR_VALUE(ugeth->rx_bd_ring_offset[j]))
2315 				ugeth->p_rx_bd_ring[j] =
2316 				    (u8 __iomem *) qe_muram_addr(ugeth->
2317 							 rx_bd_ring_offset[j]);
2318 		}
2319 		if (!ugeth->p_rx_bd_ring[j]) {
2320 			if (netif_msg_ifup(ugeth))
2321 				pr_err("Can not allocate memory for Rx bd rings\n");
2322 			return -ENOMEM;
2323 		}
2324 	}
2325 
2326 	/* Init Rx bds */
2327 	for (j = 0; j < ug_info->numQueuesRx; j++) {
2328 		/* Setup the skbuff rings */
2329 		ugeth->rx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2330 					      ugeth->ug_info->bdRingLenRx[j],
2331 					      GFP_KERNEL);
2332 
2333 		if (ugeth->rx_skbuff[j] == NULL) {
2334 			if (netif_msg_ifup(ugeth))
2335 				pr_err("Could not allocate rx_skbuff\n");
2336 			return -ENOMEM;
2337 		}
2338 
2339 		for (i = 0; i < ugeth->ug_info->bdRingLenRx[j]; i++)
2340 			ugeth->rx_skbuff[j][i] = NULL;
2341 
2342 		ugeth->skb_currx[j] = 0;
2343 		bd = ugeth->rxBd[j] = ugeth->p_rx_bd_ring[j];
2344 		for (i = 0; i < ug_info->bdRingLenRx[j]; i++) {
2345 			/* set bd status and length */
2346 			out_be32((u32 __iomem *)bd, R_I);
2347 			/* clear bd buffer */
2348 			out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2349 			bd += sizeof(struct qe_bd);
2350 		}
2351 		bd -= sizeof(struct qe_bd);
2352 		/* set bd status and length */
2353 		out_be32((u32 __iomem *)bd, R_W); /* for last BD set Wrap bit */
2354 	}
2355 
2356 	return 0;
2357 }
2358 
2359 static int ucc_geth_startup(struct ucc_geth_private *ugeth)
2360 {
2361 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2362 	struct ucc_geth_init_pram __iomem *p_init_enet_pram;
2363 	struct ucc_fast_private *uccf;
2364 	struct ucc_geth_info *ug_info;
2365 	struct ucc_fast_info *uf_info;
2366 	struct ucc_fast __iomem *uf_regs;
2367 	struct ucc_geth __iomem *ug_regs;
2368 	int ret_val = -EINVAL;
2369 	u32 remoder = UCC_GETH_REMODER_INIT;
2370 	u32 init_enet_pram_offset, cecr_subblock, command;
2371 	u32 ifstat, i, j, size, l2qt, l3qt;
2372 	u16 temoder = UCC_GETH_TEMODER_INIT;
2373 	u16 test;
2374 	u8 function_code = 0;
2375 	u8 __iomem *endOfRing;
2376 	u8 numThreadsRxNumerical, numThreadsTxNumerical;
2377 
2378 	ugeth_vdbg("%s: IN", __func__);
2379 	uccf = ugeth->uccf;
2380 	ug_info = ugeth->ug_info;
2381 	uf_info = &ug_info->uf_info;
2382 	uf_regs = uccf->uf_regs;
2383 	ug_regs = ugeth->ug_regs;
2384 
2385 	switch (ug_info->numThreadsRx) {
2386 	case UCC_GETH_NUM_OF_THREADS_1:
2387 		numThreadsRxNumerical = 1;
2388 		break;
2389 	case UCC_GETH_NUM_OF_THREADS_2:
2390 		numThreadsRxNumerical = 2;
2391 		break;
2392 	case UCC_GETH_NUM_OF_THREADS_4:
2393 		numThreadsRxNumerical = 4;
2394 		break;
2395 	case UCC_GETH_NUM_OF_THREADS_6:
2396 		numThreadsRxNumerical = 6;
2397 		break;
2398 	case UCC_GETH_NUM_OF_THREADS_8:
2399 		numThreadsRxNumerical = 8;
2400 		break;
2401 	default:
2402 		if (netif_msg_ifup(ugeth))
2403 			pr_err("Bad number of Rx threads value\n");
2404 		return -EINVAL;
2405 	}
2406 
2407 	switch (ug_info->numThreadsTx) {
2408 	case UCC_GETH_NUM_OF_THREADS_1:
2409 		numThreadsTxNumerical = 1;
2410 		break;
2411 	case UCC_GETH_NUM_OF_THREADS_2:
2412 		numThreadsTxNumerical = 2;
2413 		break;
2414 	case UCC_GETH_NUM_OF_THREADS_4:
2415 		numThreadsTxNumerical = 4;
2416 		break;
2417 	case UCC_GETH_NUM_OF_THREADS_6:
2418 		numThreadsTxNumerical = 6;
2419 		break;
2420 	case UCC_GETH_NUM_OF_THREADS_8:
2421 		numThreadsTxNumerical = 8;
2422 		break;
2423 	default:
2424 		if (netif_msg_ifup(ugeth))
2425 			pr_err("Bad number of Tx threads value\n");
2426 		return -EINVAL;
2427 	}
2428 
2429 	/* Calculate rx_extended_features */
2430 	ugeth->rx_non_dynamic_extended_features = ug_info->ipCheckSumCheck ||
2431 	    ug_info->ipAddressAlignment ||
2432 	    (ug_info->numStationAddresses !=
2433 	     UCC_GETH_NUM_OF_STATION_ADDRESSES_1);
2434 
2435 	ugeth->rx_extended_features = ugeth->rx_non_dynamic_extended_features ||
2436 		(ug_info->vlanOperationTagged != UCC_GETH_VLAN_OPERATION_TAGGED_NOP) ||
2437 		(ug_info->vlanOperationNonTagged !=
2438 		 UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP);
2439 
2440 	init_default_reg_vals(&uf_regs->upsmr,
2441 			      &ug_regs->maccfg1, &ug_regs->maccfg2);
2442 
2443 	/*                    Set UPSMR                      */
2444 	/* For more details see the hardware spec.           */
2445 	init_rx_parameters(ug_info->bro,
2446 			   ug_info->rsh, ug_info->pro, &uf_regs->upsmr);
2447 
2448 	/* We're going to ignore other registers for now, */
2449 	/* except as needed to get up and running         */
2450 
2451 	/*                    Set MACCFG1                    */
2452 	/* For more details see the hardware spec.           */
2453 	init_flow_control_params(ug_info->aufc,
2454 				 ug_info->receiveFlowControl,
2455 				 ug_info->transmitFlowControl,
2456 				 ug_info->pausePeriod,
2457 				 ug_info->extensionField,
2458 				 &uf_regs->upsmr,
2459 				 &ug_regs->uempr, &ug_regs->maccfg1);
2460 
2461 	setbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2462 
2463 	/*                    Set IPGIFG                     */
2464 	/* For more details see the hardware spec.           */
2465 	ret_val = init_inter_frame_gap_params(ug_info->nonBackToBackIfgPart1,
2466 					      ug_info->nonBackToBackIfgPart2,
2467 					      ug_info->
2468 					      miminumInterFrameGapEnforcement,
2469 					      ug_info->backToBackInterFrameGap,
2470 					      &ug_regs->ipgifg);
2471 	if (ret_val != 0) {
2472 		if (netif_msg_ifup(ugeth))
2473 			pr_err("IPGIFG initialization parameter too large\n");
2474 		return ret_val;
2475 	}
2476 
2477 	/*                    Set HAFDUP                     */
2478 	/* For more details see the hardware spec.           */
2479 	ret_val = init_half_duplex_params(ug_info->altBeb,
2480 					  ug_info->backPressureNoBackoff,
2481 					  ug_info->noBackoff,
2482 					  ug_info->excessDefer,
2483 					  ug_info->altBebTruncation,
2484 					  ug_info->maxRetransmission,
2485 					  ug_info->collisionWindow,
2486 					  &ug_regs->hafdup);
2487 	if (ret_val != 0) {
2488 		if (netif_msg_ifup(ugeth))
2489 			pr_err("Half Duplex initialization parameter too large\n");
2490 		return ret_val;
2491 	}
2492 
2493 	/*                    Set IFSTAT                     */
2494 	/* For more details see the hardware spec.           */
2495 	/* Read only - resets upon read                      */
2496 	ifstat = in_be32(&ug_regs->ifstat);
2497 
2498 	/*                    Clear UEMPR                    */
2499 	/* For more details see the hardware spec.           */
2500 	out_be32(&ug_regs->uempr, 0);
2501 
2502 	/*                    Set UESCR                      */
2503 	/* For more details see the hardware spec.           */
2504 	init_hw_statistics_gathering_mode((ug_info->statisticsMode &
2505 				UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE),
2506 				0, &uf_regs->upsmr, &ug_regs->uescr);
2507 
2508 	ret_val = ucc_geth_alloc_tx(ugeth);
2509 	if (ret_val != 0)
2510 		return ret_val;
2511 
2512 	ret_val = ucc_geth_alloc_rx(ugeth);
2513 	if (ret_val != 0)
2514 		return ret_val;
2515 
2516 	/*
2517 	 * Global PRAM
2518 	 */
2519 	/* Tx global PRAM */
2520 	/* Allocate global tx parameter RAM page */
2521 	ugeth->tx_glbl_pram_offset =
2522 	    qe_muram_alloc(sizeof(struct ucc_geth_tx_global_pram),
2523 			   UCC_GETH_TX_GLOBAL_PRAM_ALIGNMENT);
2524 	if (IS_ERR_VALUE(ugeth->tx_glbl_pram_offset)) {
2525 		if (netif_msg_ifup(ugeth))
2526 			pr_err("Can not allocate DPRAM memory for p_tx_glbl_pram\n");
2527 		return -ENOMEM;
2528 	}
2529 	ugeth->p_tx_glbl_pram =
2530 	    (struct ucc_geth_tx_global_pram __iomem *) qe_muram_addr(ugeth->
2531 							tx_glbl_pram_offset);
2532 	/* Zero out p_tx_glbl_pram */
2533 	memset_io((void __iomem *)ugeth->p_tx_glbl_pram, 0, sizeof(struct ucc_geth_tx_global_pram));
2534 
2535 	/* Fill global PRAM */
2536 
2537 	/* TQPTR */
2538 	/* Size varies with number of Tx threads */
2539 	ugeth->thread_dat_tx_offset =
2540 	    qe_muram_alloc(numThreadsTxNumerical *
2541 			   sizeof(struct ucc_geth_thread_data_tx) +
2542 			   32 * (numThreadsTxNumerical == 1),
2543 			   UCC_GETH_THREAD_DATA_ALIGNMENT);
2544 	if (IS_ERR_VALUE(ugeth->thread_dat_tx_offset)) {
2545 		if (netif_msg_ifup(ugeth))
2546 			pr_err("Can not allocate DPRAM memory for p_thread_data_tx\n");
2547 		return -ENOMEM;
2548 	}
2549 
2550 	ugeth->p_thread_data_tx =
2551 	    (struct ucc_geth_thread_data_tx __iomem *) qe_muram_addr(ugeth->
2552 							thread_dat_tx_offset);
2553 	out_be32(&ugeth->p_tx_glbl_pram->tqptr, ugeth->thread_dat_tx_offset);
2554 
2555 	/* vtagtable */
2556 	for (i = 0; i < UCC_GETH_TX_VTAG_TABLE_ENTRY_MAX; i++)
2557 		out_be32(&ugeth->p_tx_glbl_pram->vtagtable[i],
2558 			 ug_info->vtagtable[i]);
2559 
2560 	/* iphoffset */
2561 	for (i = 0; i < TX_IP_OFFSET_ENTRY_MAX; i++)
2562 		out_8(&ugeth->p_tx_glbl_pram->iphoffset[i],
2563 				ug_info->iphoffset[i]);
2564 
2565 	/* SQPTR */
2566 	/* Size varies with number of Tx queues */
2567 	ugeth->send_q_mem_reg_offset =
2568 	    qe_muram_alloc(ug_info->numQueuesTx *
2569 			   sizeof(struct ucc_geth_send_queue_qd),
2570 			   UCC_GETH_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
2571 	if (IS_ERR_VALUE(ugeth->send_q_mem_reg_offset)) {
2572 		if (netif_msg_ifup(ugeth))
2573 			pr_err("Can not allocate DPRAM memory for p_send_q_mem_reg\n");
2574 		return -ENOMEM;
2575 	}
2576 
2577 	ugeth->p_send_q_mem_reg =
2578 	    (struct ucc_geth_send_queue_mem_region __iomem *) qe_muram_addr(ugeth->
2579 			send_q_mem_reg_offset);
2580 	out_be32(&ugeth->p_tx_glbl_pram->sqptr, ugeth->send_q_mem_reg_offset);
2581 
2582 	/* Setup the table */
2583 	/* Assume BD rings are already established */
2584 	for (i = 0; i < ug_info->numQueuesTx; i++) {
2585 		endOfRing =
2586 		    ugeth->p_tx_bd_ring[i] + (ug_info->bdRingLenTx[i] -
2587 					      1) * sizeof(struct qe_bd);
2588 		if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2589 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2590 				 (u32) virt_to_phys(ugeth->p_tx_bd_ring[i]));
2591 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2592 				 last_bd_completed_address,
2593 				 (u32) virt_to_phys(endOfRing));
2594 		} else if (ugeth->ug_info->uf_info.bd_mem_part ==
2595 			   MEM_PART_MURAM) {
2596 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2597 				 (u32)qe_muram_dma(ugeth->p_tx_bd_ring[i]));
2598 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2599 				 last_bd_completed_address,
2600 				 (u32)qe_muram_dma(endOfRing));
2601 		}
2602 	}
2603 
2604 	/* schedulerbasepointer */
2605 
2606 	if (ug_info->numQueuesTx > 1) {
2607 	/* scheduler exists only if more than 1 tx queue */
2608 		ugeth->scheduler_offset =
2609 		    qe_muram_alloc(sizeof(struct ucc_geth_scheduler),
2610 				   UCC_GETH_SCHEDULER_ALIGNMENT);
2611 		if (IS_ERR_VALUE(ugeth->scheduler_offset)) {
2612 			if (netif_msg_ifup(ugeth))
2613 				pr_err("Can not allocate DPRAM memory for p_scheduler\n");
2614 			return -ENOMEM;
2615 		}
2616 
2617 		ugeth->p_scheduler =
2618 		    (struct ucc_geth_scheduler __iomem *) qe_muram_addr(ugeth->
2619 							   scheduler_offset);
2620 		out_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer,
2621 			 ugeth->scheduler_offset);
2622 		/* Zero out p_scheduler */
2623 		memset_io((void __iomem *)ugeth->p_scheduler, 0, sizeof(struct ucc_geth_scheduler));
2624 
2625 		/* Set values in scheduler */
2626 		out_be32(&ugeth->p_scheduler->mblinterval,
2627 			 ug_info->mblinterval);
2628 		out_be16(&ugeth->p_scheduler->nortsrbytetime,
2629 			 ug_info->nortsrbytetime);
2630 		out_8(&ugeth->p_scheduler->fracsiz, ug_info->fracsiz);
2631 		out_8(&ugeth->p_scheduler->strictpriorityq,
2632 				ug_info->strictpriorityq);
2633 		out_8(&ugeth->p_scheduler->txasap, ug_info->txasap);
2634 		out_8(&ugeth->p_scheduler->extrabw, ug_info->extrabw);
2635 		for (i = 0; i < NUM_TX_QUEUES; i++)
2636 			out_8(&ugeth->p_scheduler->weightfactor[i],
2637 			    ug_info->weightfactor[i]);
2638 
2639 		/* Set pointers to cpucount registers in scheduler */
2640 		ugeth->p_cpucount[0] = &(ugeth->p_scheduler->cpucount0);
2641 		ugeth->p_cpucount[1] = &(ugeth->p_scheduler->cpucount1);
2642 		ugeth->p_cpucount[2] = &(ugeth->p_scheduler->cpucount2);
2643 		ugeth->p_cpucount[3] = &(ugeth->p_scheduler->cpucount3);
2644 		ugeth->p_cpucount[4] = &(ugeth->p_scheduler->cpucount4);
2645 		ugeth->p_cpucount[5] = &(ugeth->p_scheduler->cpucount5);
2646 		ugeth->p_cpucount[6] = &(ugeth->p_scheduler->cpucount6);
2647 		ugeth->p_cpucount[7] = &(ugeth->p_scheduler->cpucount7);
2648 	}
2649 
2650 	/* schedulerbasepointer */
2651 	/* TxRMON_PTR (statistics) */
2652 	if (ug_info->
2653 	    statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX) {
2654 		ugeth->tx_fw_statistics_pram_offset =
2655 		    qe_muram_alloc(sizeof
2656 				   (struct ucc_geth_tx_firmware_statistics_pram),
2657 				   UCC_GETH_TX_STATISTICS_ALIGNMENT);
2658 		if (IS_ERR_VALUE(ugeth->tx_fw_statistics_pram_offset)) {
2659 			if (netif_msg_ifup(ugeth))
2660 				pr_err("Can not allocate DPRAM memory for p_tx_fw_statistics_pram\n");
2661 			return -ENOMEM;
2662 		}
2663 		ugeth->p_tx_fw_statistics_pram =
2664 		    (struct ucc_geth_tx_firmware_statistics_pram __iomem *)
2665 		    qe_muram_addr(ugeth->tx_fw_statistics_pram_offset);
2666 		/* Zero out p_tx_fw_statistics_pram */
2667 		memset_io((void __iomem *)ugeth->p_tx_fw_statistics_pram,
2668 		       0, sizeof(struct ucc_geth_tx_firmware_statistics_pram));
2669 	}
2670 
2671 	/* temoder */
2672 	/* Already has speed set */
2673 
2674 	if (ug_info->numQueuesTx > 1)
2675 		temoder |= TEMODER_SCHEDULER_ENABLE;
2676 	if (ug_info->ipCheckSumGenerate)
2677 		temoder |= TEMODER_IP_CHECKSUM_GENERATE;
2678 	temoder |= ((ug_info->numQueuesTx - 1) << TEMODER_NUM_OF_QUEUES_SHIFT);
2679 	out_be16(&ugeth->p_tx_glbl_pram->temoder, temoder);
2680 
2681 	test = in_be16(&ugeth->p_tx_glbl_pram->temoder);
2682 
2683 	/* Function code register value to be used later */
2684 	function_code = UCC_BMR_BO_BE | UCC_BMR_GBL;
2685 	/* Required for QE */
2686 
2687 	/* function code register */
2688 	out_be32(&ugeth->p_tx_glbl_pram->tstate, ((u32) function_code) << 24);
2689 
2690 	/* Rx global PRAM */
2691 	/* Allocate global rx parameter RAM page */
2692 	ugeth->rx_glbl_pram_offset =
2693 	    qe_muram_alloc(sizeof(struct ucc_geth_rx_global_pram),
2694 			   UCC_GETH_RX_GLOBAL_PRAM_ALIGNMENT);
2695 	if (IS_ERR_VALUE(ugeth->rx_glbl_pram_offset)) {
2696 		if (netif_msg_ifup(ugeth))
2697 			pr_err("Can not allocate DPRAM memory for p_rx_glbl_pram\n");
2698 		return -ENOMEM;
2699 	}
2700 	ugeth->p_rx_glbl_pram =
2701 	    (struct ucc_geth_rx_global_pram __iomem *) qe_muram_addr(ugeth->
2702 							rx_glbl_pram_offset);
2703 	/* Zero out p_rx_glbl_pram */
2704 	memset_io((void __iomem *)ugeth->p_rx_glbl_pram, 0, sizeof(struct ucc_geth_rx_global_pram));
2705 
2706 	/* Fill global PRAM */
2707 
2708 	/* RQPTR */
2709 	/* Size varies with number of Rx threads */
2710 	ugeth->thread_dat_rx_offset =
2711 	    qe_muram_alloc(numThreadsRxNumerical *
2712 			   sizeof(struct ucc_geth_thread_data_rx),
2713 			   UCC_GETH_THREAD_DATA_ALIGNMENT);
2714 	if (IS_ERR_VALUE(ugeth->thread_dat_rx_offset)) {
2715 		if (netif_msg_ifup(ugeth))
2716 			pr_err("Can not allocate DPRAM memory for p_thread_data_rx\n");
2717 		return -ENOMEM;
2718 	}
2719 
2720 	ugeth->p_thread_data_rx =
2721 	    (struct ucc_geth_thread_data_rx __iomem *) qe_muram_addr(ugeth->
2722 							thread_dat_rx_offset);
2723 	out_be32(&ugeth->p_rx_glbl_pram->rqptr, ugeth->thread_dat_rx_offset);
2724 
2725 	/* typeorlen */
2726 	out_be16(&ugeth->p_rx_glbl_pram->typeorlen, ug_info->typeorlen);
2727 
2728 	/* rxrmonbaseptr (statistics) */
2729 	if (ug_info->
2730 	    statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX) {
2731 		ugeth->rx_fw_statistics_pram_offset =
2732 		    qe_muram_alloc(sizeof
2733 				   (struct ucc_geth_rx_firmware_statistics_pram),
2734 				   UCC_GETH_RX_STATISTICS_ALIGNMENT);
2735 		if (IS_ERR_VALUE(ugeth->rx_fw_statistics_pram_offset)) {
2736 			if (netif_msg_ifup(ugeth))
2737 				pr_err("Can not allocate DPRAM memory for p_rx_fw_statistics_pram\n");
2738 			return -ENOMEM;
2739 		}
2740 		ugeth->p_rx_fw_statistics_pram =
2741 		    (struct ucc_geth_rx_firmware_statistics_pram __iomem *)
2742 		    qe_muram_addr(ugeth->rx_fw_statistics_pram_offset);
2743 		/* Zero out p_rx_fw_statistics_pram */
2744 		memset_io((void __iomem *)ugeth->p_rx_fw_statistics_pram, 0,
2745 		       sizeof(struct ucc_geth_rx_firmware_statistics_pram));
2746 	}
2747 
2748 	/* intCoalescingPtr */
2749 
2750 	/* Size varies with number of Rx queues */
2751 	ugeth->rx_irq_coalescing_tbl_offset =
2752 	    qe_muram_alloc(ug_info->numQueuesRx *
2753 			   sizeof(struct ucc_geth_rx_interrupt_coalescing_entry)
2754 			   + 4, UCC_GETH_RX_INTERRUPT_COALESCING_ALIGNMENT);
2755 	if (IS_ERR_VALUE(ugeth->rx_irq_coalescing_tbl_offset)) {
2756 		if (netif_msg_ifup(ugeth))
2757 			pr_err("Can not allocate DPRAM memory for p_rx_irq_coalescing_tbl\n");
2758 		return -ENOMEM;
2759 	}
2760 
2761 	ugeth->p_rx_irq_coalescing_tbl =
2762 	    (struct ucc_geth_rx_interrupt_coalescing_table __iomem *)
2763 	    qe_muram_addr(ugeth->rx_irq_coalescing_tbl_offset);
2764 	out_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr,
2765 		 ugeth->rx_irq_coalescing_tbl_offset);
2766 
2767 	/* Fill interrupt coalescing table */
2768 	for (i = 0; i < ug_info->numQueuesRx; i++) {
2769 		out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2770 			 interruptcoalescingmaxvalue,
2771 			 ug_info->interruptcoalescingmaxvalue[i]);
2772 		out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2773 			 interruptcoalescingcounter,
2774 			 ug_info->interruptcoalescingmaxvalue[i]);
2775 	}
2776 
2777 	/* MRBLR */
2778 	init_max_rx_buff_len(uf_info->max_rx_buf_length,
2779 			     &ugeth->p_rx_glbl_pram->mrblr);
2780 	/* MFLR */
2781 	out_be16(&ugeth->p_rx_glbl_pram->mflr, ug_info->maxFrameLength);
2782 	/* MINFLR */
2783 	init_min_frame_len(ug_info->minFrameLength,
2784 			   &ugeth->p_rx_glbl_pram->minflr,
2785 			   &ugeth->p_rx_glbl_pram->mrblr);
2786 	/* MAXD1 */
2787 	out_be16(&ugeth->p_rx_glbl_pram->maxd1, ug_info->maxD1Length);
2788 	/* MAXD2 */
2789 	out_be16(&ugeth->p_rx_glbl_pram->maxd2, ug_info->maxD2Length);
2790 
2791 	/* l2qt */
2792 	l2qt = 0;
2793 	for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++)
2794 		l2qt |= (ug_info->l2qt[i] << (28 - 4 * i));
2795 	out_be32(&ugeth->p_rx_glbl_pram->l2qt, l2qt);
2796 
2797 	/* l3qt */
2798 	for (j = 0; j < UCC_GETH_IP_PRIORITY_MAX; j += 8) {
2799 		l3qt = 0;
2800 		for (i = 0; i < 8; i++)
2801 			l3qt |= (ug_info->l3qt[j + i] << (28 - 4 * i));
2802 		out_be32(&ugeth->p_rx_glbl_pram->l3qt[j/8], l3qt);
2803 	}
2804 
2805 	/* vlantype */
2806 	out_be16(&ugeth->p_rx_glbl_pram->vlantype, ug_info->vlantype);
2807 
2808 	/* vlantci */
2809 	out_be16(&ugeth->p_rx_glbl_pram->vlantci, ug_info->vlantci);
2810 
2811 	/* ecamptr */
2812 	out_be32(&ugeth->p_rx_glbl_pram->ecamptr, ug_info->ecamptr);
2813 
2814 	/* RBDQPTR */
2815 	/* Size varies with number of Rx queues */
2816 	ugeth->rx_bd_qs_tbl_offset =
2817 	    qe_muram_alloc(ug_info->numQueuesRx *
2818 			   (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2819 			    sizeof(struct ucc_geth_rx_prefetched_bds)),
2820 			   UCC_GETH_RX_BD_QUEUES_ALIGNMENT);
2821 	if (IS_ERR_VALUE(ugeth->rx_bd_qs_tbl_offset)) {
2822 		if (netif_msg_ifup(ugeth))
2823 			pr_err("Can not allocate DPRAM memory for p_rx_bd_qs_tbl\n");
2824 		return -ENOMEM;
2825 	}
2826 
2827 	ugeth->p_rx_bd_qs_tbl =
2828 	    (struct ucc_geth_rx_bd_queues_entry __iomem *) qe_muram_addr(ugeth->
2829 				    rx_bd_qs_tbl_offset);
2830 	out_be32(&ugeth->p_rx_glbl_pram->rbdqptr, ugeth->rx_bd_qs_tbl_offset);
2831 	/* Zero out p_rx_bd_qs_tbl */
2832 	memset_io((void __iomem *)ugeth->p_rx_bd_qs_tbl,
2833 	       0,
2834 	       ug_info->numQueuesRx * (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2835 				       sizeof(struct ucc_geth_rx_prefetched_bds)));
2836 
2837 	/* Setup the table */
2838 	/* Assume BD rings are already established */
2839 	for (i = 0; i < ug_info->numQueuesRx; i++) {
2840 		if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2841 			out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2842 				 (u32) virt_to_phys(ugeth->p_rx_bd_ring[i]));
2843 		} else if (ugeth->ug_info->uf_info.bd_mem_part ==
2844 			   MEM_PART_MURAM) {
2845 			out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2846 				 (u32)qe_muram_dma(ugeth->p_rx_bd_ring[i]));
2847 		}
2848 		/* rest of fields handled by QE */
2849 	}
2850 
2851 	/* remoder */
2852 	/* Already has speed set */
2853 
2854 	if (ugeth->rx_extended_features)
2855 		remoder |= REMODER_RX_EXTENDED_FEATURES;
2856 	if (ug_info->rxExtendedFiltering)
2857 		remoder |= REMODER_RX_EXTENDED_FILTERING;
2858 	if (ug_info->dynamicMaxFrameLength)
2859 		remoder |= REMODER_DYNAMIC_MAX_FRAME_LENGTH;
2860 	if (ug_info->dynamicMinFrameLength)
2861 		remoder |= REMODER_DYNAMIC_MIN_FRAME_LENGTH;
2862 	remoder |=
2863 	    ug_info->vlanOperationTagged << REMODER_VLAN_OPERATION_TAGGED_SHIFT;
2864 	remoder |=
2865 	    ug_info->
2866 	    vlanOperationNonTagged << REMODER_VLAN_OPERATION_NON_TAGGED_SHIFT;
2867 	remoder |= ug_info->rxQoSMode << REMODER_RX_QOS_MODE_SHIFT;
2868 	remoder |= ((ug_info->numQueuesRx - 1) << REMODER_NUM_OF_QUEUES_SHIFT);
2869 	if (ug_info->ipCheckSumCheck)
2870 		remoder |= REMODER_IP_CHECKSUM_CHECK;
2871 	if (ug_info->ipAddressAlignment)
2872 		remoder |= REMODER_IP_ADDRESS_ALIGNMENT;
2873 	out_be32(&ugeth->p_rx_glbl_pram->remoder, remoder);
2874 
2875 	/* Note that this function must be called */
2876 	/* ONLY AFTER p_tx_fw_statistics_pram */
2877 	/* andp_UccGethRxFirmwareStatisticsPram are allocated ! */
2878 	init_firmware_statistics_gathering_mode((ug_info->
2879 		statisticsMode &
2880 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX),
2881 		(ug_info->statisticsMode &
2882 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX),
2883 		&ugeth->p_tx_glbl_pram->txrmonbaseptr,
2884 		ugeth->tx_fw_statistics_pram_offset,
2885 		&ugeth->p_rx_glbl_pram->rxrmonbaseptr,
2886 		ugeth->rx_fw_statistics_pram_offset,
2887 		&ugeth->p_tx_glbl_pram->temoder,
2888 		&ugeth->p_rx_glbl_pram->remoder);
2889 
2890 	/* function code register */
2891 	out_8(&ugeth->p_rx_glbl_pram->rstate, function_code);
2892 
2893 	/* initialize extended filtering */
2894 	if (ug_info->rxExtendedFiltering) {
2895 		if (!ug_info->extendedFilteringChainPointer) {
2896 			if (netif_msg_ifup(ugeth))
2897 				pr_err("Null Extended Filtering Chain Pointer\n");
2898 			return -EINVAL;
2899 		}
2900 
2901 		/* Allocate memory for extended filtering Mode Global
2902 		Parameters */
2903 		ugeth->exf_glbl_param_offset =
2904 		    qe_muram_alloc(sizeof(struct ucc_geth_exf_global_pram),
2905 		UCC_GETH_RX_EXTENDED_FILTERING_GLOBAL_PARAMETERS_ALIGNMENT);
2906 		if (IS_ERR_VALUE(ugeth->exf_glbl_param_offset)) {
2907 			if (netif_msg_ifup(ugeth))
2908 				pr_err("Can not allocate DPRAM memory for p_exf_glbl_param\n");
2909 			return -ENOMEM;
2910 		}
2911 
2912 		ugeth->p_exf_glbl_param =
2913 		    (struct ucc_geth_exf_global_pram __iomem *) qe_muram_addr(ugeth->
2914 				 exf_glbl_param_offset);
2915 		out_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam,
2916 			 ugeth->exf_glbl_param_offset);
2917 		out_be32(&ugeth->p_exf_glbl_param->l2pcdptr,
2918 			 (u32) ug_info->extendedFilteringChainPointer);
2919 
2920 	} else {		/* initialize 82xx style address filtering */
2921 
2922 		/* Init individual address recognition registers to disabled */
2923 
2924 		for (j = 0; j < NUM_OF_PADDRS; j++)
2925 			ugeth_82xx_filtering_clear_addr_in_paddr(ugeth, (u8) j);
2926 
2927 		p_82xx_addr_filt =
2928 		    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2929 		    p_rx_glbl_pram->addressfiltering;
2930 
2931 		ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2932 			ENET_ADDR_TYPE_GROUP);
2933 		ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2934 			ENET_ADDR_TYPE_INDIVIDUAL);
2935 	}
2936 
2937 	/*
2938 	 * Initialize UCC at QE level
2939 	 */
2940 
2941 	command = QE_INIT_TX_RX;
2942 
2943 	/* Allocate shadow InitEnet command parameter structure.
2944 	 * This is needed because after the InitEnet command is executed,
2945 	 * the structure in DPRAM is released, because DPRAM is a premium
2946 	 * resource.
2947 	 * This shadow structure keeps a copy of what was done so that the
2948 	 * allocated resources can be released when the channel is freed.
2949 	 */
2950 	if (!(ugeth->p_init_enet_param_shadow =
2951 	      kmalloc(sizeof(struct ucc_geth_init_pram), GFP_KERNEL))) {
2952 		if (netif_msg_ifup(ugeth))
2953 			pr_err("Can not allocate memory for p_UccInitEnetParamShadows\n");
2954 		return -ENOMEM;
2955 	}
2956 	/* Zero out *p_init_enet_param_shadow */
2957 	memset((char *)ugeth->p_init_enet_param_shadow,
2958 	       0, sizeof(struct ucc_geth_init_pram));
2959 
2960 	/* Fill shadow InitEnet command parameter structure */
2961 
2962 	ugeth->p_init_enet_param_shadow->resinit1 =
2963 	    ENET_INIT_PARAM_MAGIC_RES_INIT1;
2964 	ugeth->p_init_enet_param_shadow->resinit2 =
2965 	    ENET_INIT_PARAM_MAGIC_RES_INIT2;
2966 	ugeth->p_init_enet_param_shadow->resinit3 =
2967 	    ENET_INIT_PARAM_MAGIC_RES_INIT3;
2968 	ugeth->p_init_enet_param_shadow->resinit4 =
2969 	    ENET_INIT_PARAM_MAGIC_RES_INIT4;
2970 	ugeth->p_init_enet_param_shadow->resinit5 =
2971 	    ENET_INIT_PARAM_MAGIC_RES_INIT5;
2972 	ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2973 	    ((u32) ug_info->numThreadsRx) << ENET_INIT_PARAM_RGF_SHIFT;
2974 	ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2975 	    ((u32) ug_info->numThreadsTx) << ENET_INIT_PARAM_TGF_SHIFT;
2976 
2977 	ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2978 	    ugeth->rx_glbl_pram_offset | ug_info->riscRx;
2979 	if ((ug_info->largestexternallookupkeysize !=
2980 	     QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE) &&
2981 	    (ug_info->largestexternallookupkeysize !=
2982 	     QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) &&
2983 	    (ug_info->largestexternallookupkeysize !=
2984 	     QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)) {
2985 		if (netif_msg_ifup(ugeth))
2986 			pr_err("Invalid largest External Lookup Key Size\n");
2987 		return -EINVAL;
2988 	}
2989 	ugeth->p_init_enet_param_shadow->largestexternallookupkeysize =
2990 	    ug_info->largestexternallookupkeysize;
2991 	size = sizeof(struct ucc_geth_thread_rx_pram);
2992 	if (ug_info->rxExtendedFiltering) {
2993 		size += THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
2994 		if (ug_info->largestexternallookupkeysize ==
2995 		    QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
2996 			size +=
2997 			    THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
2998 		if (ug_info->largestexternallookupkeysize ==
2999 		    QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
3000 			size +=
3001 			    THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
3002 	}
3003 
3004 	if ((ret_val = fill_init_enet_entries(ugeth, &(ugeth->
3005 		p_init_enet_param_shadow->rxthread[0]),
3006 		(u8) (numThreadsRxNumerical + 1)
3007 		/* Rx needs one extra for terminator */
3008 		, size, UCC_GETH_THREAD_RX_PRAM_ALIGNMENT,
3009 		ug_info->riscRx, 1)) != 0) {
3010 		if (netif_msg_ifup(ugeth))
3011 			pr_err("Can not fill p_init_enet_param_shadow\n");
3012 		return ret_val;
3013 	}
3014 
3015 	ugeth->p_init_enet_param_shadow->txglobal =
3016 	    ugeth->tx_glbl_pram_offset | ug_info->riscTx;
3017 	if ((ret_val =
3018 	     fill_init_enet_entries(ugeth,
3019 				    &(ugeth->p_init_enet_param_shadow->
3020 				      txthread[0]), numThreadsTxNumerical,
3021 				    sizeof(struct ucc_geth_thread_tx_pram),
3022 				    UCC_GETH_THREAD_TX_PRAM_ALIGNMENT,
3023 				    ug_info->riscTx, 0)) != 0) {
3024 		if (netif_msg_ifup(ugeth))
3025 			pr_err("Can not fill p_init_enet_param_shadow\n");
3026 		return ret_val;
3027 	}
3028 
3029 	/* Load Rx bds with buffers */
3030 	for (i = 0; i < ug_info->numQueuesRx; i++) {
3031 		if ((ret_val = rx_bd_buffer_set(ugeth, (u8) i)) != 0) {
3032 			if (netif_msg_ifup(ugeth))
3033 				pr_err("Can not fill Rx bds with buffers\n");
3034 			return ret_val;
3035 		}
3036 	}
3037 
3038 	/* Allocate InitEnet command parameter structure */
3039 	init_enet_pram_offset = qe_muram_alloc(sizeof(struct ucc_geth_init_pram), 4);
3040 	if (IS_ERR_VALUE(init_enet_pram_offset)) {
3041 		if (netif_msg_ifup(ugeth))
3042 			pr_err("Can not allocate DPRAM memory for p_init_enet_pram\n");
3043 		return -ENOMEM;
3044 	}
3045 	p_init_enet_pram =
3046 	    (struct ucc_geth_init_pram __iomem *) qe_muram_addr(init_enet_pram_offset);
3047 
3048 	/* Copy shadow InitEnet command parameter structure into PRAM */
3049 	out_8(&p_init_enet_pram->resinit1,
3050 			ugeth->p_init_enet_param_shadow->resinit1);
3051 	out_8(&p_init_enet_pram->resinit2,
3052 			ugeth->p_init_enet_param_shadow->resinit2);
3053 	out_8(&p_init_enet_pram->resinit3,
3054 			ugeth->p_init_enet_param_shadow->resinit3);
3055 	out_8(&p_init_enet_pram->resinit4,
3056 			ugeth->p_init_enet_param_shadow->resinit4);
3057 	out_be16(&p_init_enet_pram->resinit5,
3058 		 ugeth->p_init_enet_param_shadow->resinit5);
3059 	out_8(&p_init_enet_pram->largestexternallookupkeysize,
3060 	    ugeth->p_init_enet_param_shadow->largestexternallookupkeysize);
3061 	out_be32(&p_init_enet_pram->rgftgfrxglobal,
3062 		 ugeth->p_init_enet_param_shadow->rgftgfrxglobal);
3063 	for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_RX; i++)
3064 		out_be32(&p_init_enet_pram->rxthread[i],
3065 			 ugeth->p_init_enet_param_shadow->rxthread[i]);
3066 	out_be32(&p_init_enet_pram->txglobal,
3067 		 ugeth->p_init_enet_param_shadow->txglobal);
3068 	for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_TX; i++)
3069 		out_be32(&p_init_enet_pram->txthread[i],
3070 			 ugeth->p_init_enet_param_shadow->txthread[i]);
3071 
3072 	/* Issue QE command */
3073 	cecr_subblock =
3074 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
3075 	qe_issue_cmd(command, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
3076 		     init_enet_pram_offset);
3077 
3078 	/* Free InitEnet command parameter */
3079 	qe_muram_free(init_enet_pram_offset);
3080 
3081 	return 0;
3082 }
3083 
3084 /* This is called by the kernel when a frame is ready for transmission. */
3085 /* It is pointed to by the dev->hard_start_xmit function pointer */
3086 static int ucc_geth_start_xmit(struct sk_buff *skb, struct net_device *dev)
3087 {
3088 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3089 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3090 	struct ucc_fast_private *uccf;
3091 #endif
3092 	u8 __iomem *bd;			/* BD pointer */
3093 	u32 bd_status;
3094 	u8 txQ = 0;
3095 	unsigned long flags;
3096 
3097 	ugeth_vdbg("%s: IN", __func__);
3098 
3099 	spin_lock_irqsave(&ugeth->lock, flags);
3100 
3101 	dev->stats.tx_bytes += skb->len;
3102 
3103 	/* Start from the next BD that should be filled */
3104 	bd = ugeth->txBd[txQ];
3105 	bd_status = in_be32((u32 __iomem *)bd);
3106 	/* Save the skb pointer so we can free it later */
3107 	ugeth->tx_skbuff[txQ][ugeth->skb_curtx[txQ]] = skb;
3108 
3109 	/* Update the current skb pointer (wrapping if this was the last) */
3110 	ugeth->skb_curtx[txQ] =
3111 	    (ugeth->skb_curtx[txQ] +
3112 	     1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3113 
3114 	/* set up the buffer descriptor */
3115 	out_be32(&((struct qe_bd __iomem *)bd)->buf,
3116 		      dma_map_single(ugeth->dev, skb->data,
3117 			      skb->len, DMA_TO_DEVICE));
3118 
3119 	/* printk(KERN_DEBUG"skb->data is 0x%x\n",skb->data); */
3120 
3121 	bd_status = (bd_status & T_W) | T_R | T_I | T_L | skb->len;
3122 
3123 	/* set bd status and length */
3124 	out_be32((u32 __iomem *)bd, bd_status);
3125 
3126 	/* Move to next BD in the ring */
3127 	if (!(bd_status & T_W))
3128 		bd += sizeof(struct qe_bd);
3129 	else
3130 		bd = ugeth->p_tx_bd_ring[txQ];
3131 
3132 	/* If the next BD still needs to be cleaned up, then the bds
3133 	   are full.  We need to tell the kernel to stop sending us stuff. */
3134 	if (bd == ugeth->confBd[txQ]) {
3135 		if (!netif_queue_stopped(dev))
3136 			netif_stop_queue(dev);
3137 	}
3138 
3139 	ugeth->txBd[txQ] = bd;
3140 
3141 	skb_tx_timestamp(skb);
3142 
3143 	if (ugeth->p_scheduler) {
3144 		ugeth->cpucount[txQ]++;
3145 		/* Indicate to QE that there are more Tx bds ready for
3146 		transmission */
3147 		/* This is done by writing a running counter of the bd
3148 		count to the scheduler PRAM. */
3149 		out_be16(ugeth->p_cpucount[txQ], ugeth->cpucount[txQ]);
3150 	}
3151 
3152 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3153 	uccf = ugeth->uccf;
3154 	out_be16(uccf->p_utodr, UCC_FAST_TOD);
3155 #endif
3156 	spin_unlock_irqrestore(&ugeth->lock, flags);
3157 
3158 	return NETDEV_TX_OK;
3159 }
3160 
3161 static int ucc_geth_rx(struct ucc_geth_private *ugeth, u8 rxQ, int rx_work_limit)
3162 {
3163 	struct sk_buff *skb;
3164 	u8 __iomem *bd;
3165 	u16 length, howmany = 0;
3166 	u32 bd_status;
3167 	u8 *bdBuffer;
3168 	struct net_device *dev;
3169 
3170 	ugeth_vdbg("%s: IN", __func__);
3171 
3172 	dev = ugeth->ndev;
3173 
3174 	/* collect received buffers */
3175 	bd = ugeth->rxBd[rxQ];
3176 
3177 	bd_status = in_be32((u32 __iomem *)bd);
3178 
3179 	/* while there are received buffers and BD is full (~R_E) */
3180 	while (!((bd_status & (R_E)) || (--rx_work_limit < 0))) {
3181 		bdBuffer = (u8 *) in_be32(&((struct qe_bd __iomem *)bd)->buf);
3182 		length = (u16) ((bd_status & BD_LENGTH_MASK) - 4);
3183 		skb = ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]];
3184 
3185 		/* determine whether buffer is first, last, first and last
3186 		(single buffer frame) or middle (not first and not last) */
3187 		if (!skb ||
3188 		    (!(bd_status & (R_F | R_L))) ||
3189 		    (bd_status & R_ERRORS_FATAL)) {
3190 			if (netif_msg_rx_err(ugeth))
3191 				pr_err("%d: ERROR!!! skb - 0x%08x\n",
3192 				       __LINE__, (u32)skb);
3193 			dev_kfree_skb(skb);
3194 
3195 			ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = NULL;
3196 			dev->stats.rx_dropped++;
3197 		} else {
3198 			dev->stats.rx_packets++;
3199 			howmany++;
3200 
3201 			/* Prep the skb for the packet */
3202 			skb_put(skb, length);
3203 
3204 			/* Tell the skb what kind of packet this is */
3205 			skb->protocol = eth_type_trans(skb, ugeth->ndev);
3206 
3207 			dev->stats.rx_bytes += length;
3208 			/* Send the packet up the stack */
3209 			netif_receive_skb(skb);
3210 		}
3211 
3212 		skb = get_new_skb(ugeth, bd);
3213 		if (!skb) {
3214 			if (netif_msg_rx_err(ugeth))
3215 				pr_warn("No Rx Data Buffer\n");
3216 			dev->stats.rx_dropped++;
3217 			break;
3218 		}
3219 
3220 		ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = skb;
3221 
3222 		/* update to point at the next skb */
3223 		ugeth->skb_currx[rxQ] =
3224 		    (ugeth->skb_currx[rxQ] +
3225 		     1) & RX_RING_MOD_MASK(ugeth->ug_info->bdRingLenRx[rxQ]);
3226 
3227 		if (bd_status & R_W)
3228 			bd = ugeth->p_rx_bd_ring[rxQ];
3229 		else
3230 			bd += sizeof(struct qe_bd);
3231 
3232 		bd_status = in_be32((u32 __iomem *)bd);
3233 	}
3234 
3235 	ugeth->rxBd[rxQ] = bd;
3236 	return howmany;
3237 }
3238 
3239 static int ucc_geth_tx(struct net_device *dev, u8 txQ)
3240 {
3241 	/* Start from the next BD that should be filled */
3242 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3243 	u8 __iomem *bd;		/* BD pointer */
3244 	u32 bd_status;
3245 
3246 	bd = ugeth->confBd[txQ];
3247 	bd_status = in_be32((u32 __iomem *)bd);
3248 
3249 	/* Normal processing. */
3250 	while ((bd_status & T_R) == 0) {
3251 		struct sk_buff *skb;
3252 
3253 		/* BD contains already transmitted buffer.   */
3254 		/* Handle the transmitted buffer and release */
3255 		/* the BD to be used with the current frame  */
3256 
3257 		skb = ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]];
3258 		if (!skb)
3259 			break;
3260 
3261 		dev->stats.tx_packets++;
3262 
3263 		dev_consume_skb_any(skb);
3264 
3265 		ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]] = NULL;
3266 		ugeth->skb_dirtytx[txQ] =
3267 		    (ugeth->skb_dirtytx[txQ] +
3268 		     1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3269 
3270 		/* We freed a buffer, so now we can restart transmission */
3271 		if (netif_queue_stopped(dev))
3272 			netif_wake_queue(dev);
3273 
3274 		/* Advance the confirmation BD pointer */
3275 		if (!(bd_status & T_W))
3276 			bd += sizeof(struct qe_bd);
3277 		else
3278 			bd = ugeth->p_tx_bd_ring[txQ];
3279 		bd_status = in_be32((u32 __iomem *)bd);
3280 	}
3281 	ugeth->confBd[txQ] = bd;
3282 	return 0;
3283 }
3284 
3285 static int ucc_geth_poll(struct napi_struct *napi, int budget)
3286 {
3287 	struct ucc_geth_private *ugeth = container_of(napi, struct ucc_geth_private, napi);
3288 	struct ucc_geth_info *ug_info;
3289 	int howmany, i;
3290 
3291 	ug_info = ugeth->ug_info;
3292 
3293 	/* Tx event processing */
3294 	spin_lock(&ugeth->lock);
3295 	for (i = 0; i < ug_info->numQueuesTx; i++)
3296 		ucc_geth_tx(ugeth->ndev, i);
3297 	spin_unlock(&ugeth->lock);
3298 
3299 	howmany = 0;
3300 	for (i = 0; i < ug_info->numQueuesRx; i++)
3301 		howmany += ucc_geth_rx(ugeth, i, budget - howmany);
3302 
3303 	if (howmany < budget) {
3304 		napi_complete_done(napi, howmany);
3305 		setbits32(ugeth->uccf->p_uccm, UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3306 	}
3307 
3308 	return howmany;
3309 }
3310 
3311 static irqreturn_t ucc_geth_irq_handler(int irq, void *info)
3312 {
3313 	struct net_device *dev = info;
3314 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3315 	struct ucc_fast_private *uccf;
3316 	struct ucc_geth_info *ug_info;
3317 	register u32 ucce;
3318 	register u32 uccm;
3319 
3320 	ugeth_vdbg("%s: IN", __func__);
3321 
3322 	uccf = ugeth->uccf;
3323 	ug_info = ugeth->ug_info;
3324 
3325 	/* read and clear events */
3326 	ucce = (u32) in_be32(uccf->p_ucce);
3327 	uccm = (u32) in_be32(uccf->p_uccm);
3328 	ucce &= uccm;
3329 	out_be32(uccf->p_ucce, ucce);
3330 
3331 	/* check for receive events that require processing */
3332 	if (ucce & (UCCE_RX_EVENTS | UCCE_TX_EVENTS)) {
3333 		if (napi_schedule_prep(&ugeth->napi)) {
3334 			uccm &= ~(UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3335 			out_be32(uccf->p_uccm, uccm);
3336 			__napi_schedule(&ugeth->napi);
3337 		}
3338 	}
3339 
3340 	/* Errors and other events */
3341 	if (ucce & UCCE_OTHER) {
3342 		if (ucce & UCC_GETH_UCCE_BSY)
3343 			dev->stats.rx_errors++;
3344 		if (ucce & UCC_GETH_UCCE_TXE)
3345 			dev->stats.tx_errors++;
3346 	}
3347 
3348 	return IRQ_HANDLED;
3349 }
3350 
3351 #ifdef CONFIG_NET_POLL_CONTROLLER
3352 /*
3353  * Polling 'interrupt' - used by things like netconsole to send skbs
3354  * without having to re-enable interrupts. It's not called while
3355  * the interrupt routine is executing.
3356  */
3357 static void ucc_netpoll(struct net_device *dev)
3358 {
3359 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3360 	int irq = ugeth->ug_info->uf_info.irq;
3361 
3362 	disable_irq(irq);
3363 	ucc_geth_irq_handler(irq, dev);
3364 	enable_irq(irq);
3365 }
3366 #endif /* CONFIG_NET_POLL_CONTROLLER */
3367 
3368 static int ucc_geth_set_mac_addr(struct net_device *dev, void *p)
3369 {
3370 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3371 	struct sockaddr *addr = p;
3372 
3373 	if (!is_valid_ether_addr(addr->sa_data))
3374 		return -EADDRNOTAVAIL;
3375 
3376 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3377 
3378 	/*
3379 	 * If device is not running, we will set mac addr register
3380 	 * when opening the device.
3381 	 */
3382 	if (!netif_running(dev))
3383 		return 0;
3384 
3385 	spin_lock_irq(&ugeth->lock);
3386 	init_mac_station_addr_regs(dev->dev_addr[0],
3387 				   dev->dev_addr[1],
3388 				   dev->dev_addr[2],
3389 				   dev->dev_addr[3],
3390 				   dev->dev_addr[4],
3391 				   dev->dev_addr[5],
3392 				   &ugeth->ug_regs->macstnaddr1,
3393 				   &ugeth->ug_regs->macstnaddr2);
3394 	spin_unlock_irq(&ugeth->lock);
3395 
3396 	return 0;
3397 }
3398 
3399 static int ucc_geth_init_mac(struct ucc_geth_private *ugeth)
3400 {
3401 	struct net_device *dev = ugeth->ndev;
3402 	int err;
3403 
3404 	err = ucc_struct_init(ugeth);
3405 	if (err) {
3406 		netif_err(ugeth, ifup, dev, "Cannot configure internal struct, aborting\n");
3407 		goto err;
3408 	}
3409 
3410 	err = ucc_geth_startup(ugeth);
3411 	if (err) {
3412 		netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3413 		goto err;
3414 	}
3415 
3416 	err = adjust_enet_interface(ugeth);
3417 	if (err) {
3418 		netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3419 		goto err;
3420 	}
3421 
3422 	/*       Set MACSTNADDR1, MACSTNADDR2                */
3423 	/* For more details see the hardware spec.           */
3424 	init_mac_station_addr_regs(dev->dev_addr[0],
3425 				   dev->dev_addr[1],
3426 				   dev->dev_addr[2],
3427 				   dev->dev_addr[3],
3428 				   dev->dev_addr[4],
3429 				   dev->dev_addr[5],
3430 				   &ugeth->ug_regs->macstnaddr1,
3431 				   &ugeth->ug_regs->macstnaddr2);
3432 
3433 	err = ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3434 	if (err) {
3435 		netif_err(ugeth, ifup, dev, "Cannot enable net device, aborting\n");
3436 		goto err;
3437 	}
3438 
3439 	return 0;
3440 err:
3441 	ucc_geth_stop(ugeth);
3442 	return err;
3443 }
3444 
3445 /* Called when something needs to use the ethernet device */
3446 /* Returns 0 for success. */
3447 static int ucc_geth_open(struct net_device *dev)
3448 {
3449 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3450 	int err;
3451 
3452 	ugeth_vdbg("%s: IN", __func__);
3453 
3454 	/* Test station address */
3455 	if (dev->dev_addr[0] & ENET_GROUP_ADDR) {
3456 		netif_err(ugeth, ifup, dev,
3457 			  "Multicast address used for station address - is this what you wanted?\n");
3458 		return -EINVAL;
3459 	}
3460 
3461 	err = init_phy(dev);
3462 	if (err) {
3463 		netif_err(ugeth, ifup, dev, "Cannot initialize PHY, aborting\n");
3464 		return err;
3465 	}
3466 
3467 	err = ucc_geth_init_mac(ugeth);
3468 	if (err) {
3469 		netif_err(ugeth, ifup, dev, "Cannot initialize MAC, aborting\n");
3470 		goto err;
3471 	}
3472 
3473 	err = request_irq(ugeth->ug_info->uf_info.irq, ucc_geth_irq_handler,
3474 			  0, "UCC Geth", dev);
3475 	if (err) {
3476 		netif_err(ugeth, ifup, dev, "Cannot get IRQ for net device, aborting\n");
3477 		goto err;
3478 	}
3479 
3480 	phy_start(ugeth->phydev);
3481 	napi_enable(&ugeth->napi);
3482 	netif_start_queue(dev);
3483 
3484 	device_set_wakeup_capable(&dev->dev,
3485 			qe_alive_during_sleep() || ugeth->phydev->irq);
3486 	device_set_wakeup_enable(&dev->dev, ugeth->wol_en);
3487 
3488 	return err;
3489 
3490 err:
3491 	ucc_geth_stop(ugeth);
3492 	return err;
3493 }
3494 
3495 /* Stops the kernel queue, and halts the controller */
3496 static int ucc_geth_close(struct net_device *dev)
3497 {
3498 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3499 
3500 	ugeth_vdbg("%s: IN", __func__);
3501 
3502 	napi_disable(&ugeth->napi);
3503 
3504 	cancel_work_sync(&ugeth->timeout_work);
3505 	ucc_geth_stop(ugeth);
3506 	phy_disconnect(ugeth->phydev);
3507 	ugeth->phydev = NULL;
3508 
3509 	free_irq(ugeth->ug_info->uf_info.irq, ugeth->ndev);
3510 
3511 	netif_stop_queue(dev);
3512 
3513 	return 0;
3514 }
3515 
3516 /* Reopen device. This will reset the MAC and PHY. */
3517 static void ucc_geth_timeout_work(struct work_struct *work)
3518 {
3519 	struct ucc_geth_private *ugeth;
3520 	struct net_device *dev;
3521 
3522 	ugeth = container_of(work, struct ucc_geth_private, timeout_work);
3523 	dev = ugeth->ndev;
3524 
3525 	ugeth_vdbg("%s: IN", __func__);
3526 
3527 	dev->stats.tx_errors++;
3528 
3529 	ugeth_dump_regs(ugeth);
3530 
3531 	if (dev->flags & IFF_UP) {
3532 		/*
3533 		 * Must reset MAC *and* PHY. This is done by reopening
3534 		 * the device.
3535 		 */
3536 		netif_tx_stop_all_queues(dev);
3537 		ucc_geth_stop(ugeth);
3538 		ucc_geth_init_mac(ugeth);
3539 		/* Must start PHY here */
3540 		phy_start(ugeth->phydev);
3541 		netif_tx_start_all_queues(dev);
3542 	}
3543 
3544 	netif_tx_schedule_all(dev);
3545 }
3546 
3547 /*
3548  * ucc_geth_timeout gets called when a packet has not been
3549  * transmitted after a set amount of time.
3550  */
3551 static void ucc_geth_timeout(struct net_device *dev)
3552 {
3553 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3554 
3555 	schedule_work(&ugeth->timeout_work);
3556 }
3557 
3558 
3559 #ifdef CONFIG_PM
3560 
3561 static int ucc_geth_suspend(struct platform_device *ofdev, pm_message_t state)
3562 {
3563 	struct net_device *ndev = platform_get_drvdata(ofdev);
3564 	struct ucc_geth_private *ugeth = netdev_priv(ndev);
3565 
3566 	if (!netif_running(ndev))
3567 		return 0;
3568 
3569 	netif_device_detach(ndev);
3570 	napi_disable(&ugeth->napi);
3571 
3572 	/*
3573 	 * Disable the controller, otherwise we'll wakeup on any network
3574 	 * activity.
3575 	 */
3576 	ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
3577 
3578 	if (ugeth->wol_en & WAKE_MAGIC) {
3579 		setbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3580 		setbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3581 		ucc_fast_enable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3582 	} else if (!(ugeth->wol_en & WAKE_PHY)) {
3583 		phy_stop(ugeth->phydev);
3584 	}
3585 
3586 	return 0;
3587 }
3588 
3589 static int ucc_geth_resume(struct platform_device *ofdev)
3590 {
3591 	struct net_device *ndev = platform_get_drvdata(ofdev);
3592 	struct ucc_geth_private *ugeth = netdev_priv(ndev);
3593 	int err;
3594 
3595 	if (!netif_running(ndev))
3596 		return 0;
3597 
3598 	if (qe_alive_during_sleep()) {
3599 		if (ugeth->wol_en & WAKE_MAGIC) {
3600 			ucc_fast_disable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3601 			clrbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3602 			clrbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3603 		}
3604 		ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3605 	} else {
3606 		/*
3607 		 * Full reinitialization is required if QE shuts down
3608 		 * during sleep.
3609 		 */
3610 		ucc_geth_memclean(ugeth);
3611 
3612 		err = ucc_geth_init_mac(ugeth);
3613 		if (err) {
3614 			netdev_err(ndev, "Cannot initialize MAC, aborting\n");
3615 			return err;
3616 		}
3617 	}
3618 
3619 	ugeth->oldlink = 0;
3620 	ugeth->oldspeed = 0;
3621 	ugeth->oldduplex = -1;
3622 
3623 	phy_stop(ugeth->phydev);
3624 	phy_start(ugeth->phydev);
3625 
3626 	napi_enable(&ugeth->napi);
3627 	netif_device_attach(ndev);
3628 
3629 	return 0;
3630 }
3631 
3632 #else
3633 #define ucc_geth_suspend NULL
3634 #define ucc_geth_resume NULL
3635 #endif
3636 
3637 static phy_interface_t to_phy_interface(const char *phy_connection_type)
3638 {
3639 	if (strcasecmp(phy_connection_type, "mii") == 0)
3640 		return PHY_INTERFACE_MODE_MII;
3641 	if (strcasecmp(phy_connection_type, "gmii") == 0)
3642 		return PHY_INTERFACE_MODE_GMII;
3643 	if (strcasecmp(phy_connection_type, "tbi") == 0)
3644 		return PHY_INTERFACE_MODE_TBI;
3645 	if (strcasecmp(phy_connection_type, "rmii") == 0)
3646 		return PHY_INTERFACE_MODE_RMII;
3647 	if (strcasecmp(phy_connection_type, "rgmii") == 0)
3648 		return PHY_INTERFACE_MODE_RGMII;
3649 	if (strcasecmp(phy_connection_type, "rgmii-id") == 0)
3650 		return PHY_INTERFACE_MODE_RGMII_ID;
3651 	if (strcasecmp(phy_connection_type, "rgmii-txid") == 0)
3652 		return PHY_INTERFACE_MODE_RGMII_TXID;
3653 	if (strcasecmp(phy_connection_type, "rgmii-rxid") == 0)
3654 		return PHY_INTERFACE_MODE_RGMII_RXID;
3655 	if (strcasecmp(phy_connection_type, "rtbi") == 0)
3656 		return PHY_INTERFACE_MODE_RTBI;
3657 	if (strcasecmp(phy_connection_type, "sgmii") == 0)
3658 		return PHY_INTERFACE_MODE_SGMII;
3659 
3660 	return PHY_INTERFACE_MODE_MII;
3661 }
3662 
3663 static int ucc_geth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3664 {
3665 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3666 
3667 	if (!netif_running(dev))
3668 		return -EINVAL;
3669 
3670 	if (!ugeth->phydev)
3671 		return -ENODEV;
3672 
3673 	return phy_mii_ioctl(ugeth->phydev, rq, cmd);
3674 }
3675 
3676 static const struct net_device_ops ucc_geth_netdev_ops = {
3677 	.ndo_open		= ucc_geth_open,
3678 	.ndo_stop		= ucc_geth_close,
3679 	.ndo_start_xmit		= ucc_geth_start_xmit,
3680 	.ndo_validate_addr	= eth_validate_addr,
3681 	.ndo_set_mac_address	= ucc_geth_set_mac_addr,
3682 	.ndo_set_rx_mode	= ucc_geth_set_multi,
3683 	.ndo_tx_timeout		= ucc_geth_timeout,
3684 	.ndo_do_ioctl		= ucc_geth_ioctl,
3685 #ifdef CONFIG_NET_POLL_CONTROLLER
3686 	.ndo_poll_controller	= ucc_netpoll,
3687 #endif
3688 };
3689 
3690 static int ucc_geth_probe(struct platform_device* ofdev)
3691 {
3692 	struct device *device = &ofdev->dev;
3693 	struct device_node *np = ofdev->dev.of_node;
3694 	struct net_device *dev = NULL;
3695 	struct ucc_geth_private *ugeth = NULL;
3696 	struct ucc_geth_info *ug_info;
3697 	struct resource res;
3698 	int err, ucc_num, max_speed = 0;
3699 	const unsigned int *prop;
3700 	const char *sprop;
3701 	const void *mac_addr;
3702 	phy_interface_t phy_interface;
3703 	static const int enet_to_speed[] = {
3704 		SPEED_10, SPEED_10, SPEED_10,
3705 		SPEED_100, SPEED_100, SPEED_100,
3706 		SPEED_1000, SPEED_1000, SPEED_1000, SPEED_1000,
3707 	};
3708 	static const phy_interface_t enet_to_phy_interface[] = {
3709 		PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_RMII,
3710 		PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_MII,
3711 		PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII,
3712 		PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_RGMII,
3713 		PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_RTBI,
3714 		PHY_INTERFACE_MODE_SGMII,
3715 	};
3716 
3717 	ugeth_vdbg("%s: IN", __func__);
3718 
3719 	prop = of_get_property(np, "cell-index", NULL);
3720 	if (!prop) {
3721 		prop = of_get_property(np, "device-id", NULL);
3722 		if (!prop)
3723 			return -ENODEV;
3724 	}
3725 
3726 	ucc_num = *prop - 1;
3727 	if ((ucc_num < 0) || (ucc_num > 7))
3728 		return -ENODEV;
3729 
3730 	ug_info = &ugeth_info[ucc_num];
3731 	if (ug_info == NULL) {
3732 		if (netif_msg_probe(&debug))
3733 			pr_err("[%d] Missing additional data!\n", ucc_num);
3734 		return -ENODEV;
3735 	}
3736 
3737 	ug_info->uf_info.ucc_num = ucc_num;
3738 
3739 	sprop = of_get_property(np, "rx-clock-name", NULL);
3740 	if (sprop) {
3741 		ug_info->uf_info.rx_clock = qe_clock_source(sprop);
3742 		if ((ug_info->uf_info.rx_clock < QE_CLK_NONE) ||
3743 		    (ug_info->uf_info.rx_clock > QE_CLK24)) {
3744 			pr_err("invalid rx-clock-name property\n");
3745 			return -EINVAL;
3746 		}
3747 	} else {
3748 		prop = of_get_property(np, "rx-clock", NULL);
3749 		if (!prop) {
3750 			/* If both rx-clock-name and rx-clock are missing,
3751 			   we want to tell people to use rx-clock-name. */
3752 			pr_err("missing rx-clock-name property\n");
3753 			return -EINVAL;
3754 		}
3755 		if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3756 			pr_err("invalid rx-clock property\n");
3757 			return -EINVAL;
3758 		}
3759 		ug_info->uf_info.rx_clock = *prop;
3760 	}
3761 
3762 	sprop = of_get_property(np, "tx-clock-name", NULL);
3763 	if (sprop) {
3764 		ug_info->uf_info.tx_clock = qe_clock_source(sprop);
3765 		if ((ug_info->uf_info.tx_clock < QE_CLK_NONE) ||
3766 		    (ug_info->uf_info.tx_clock > QE_CLK24)) {
3767 			pr_err("invalid tx-clock-name property\n");
3768 			return -EINVAL;
3769 		}
3770 	} else {
3771 		prop = of_get_property(np, "tx-clock", NULL);
3772 		if (!prop) {
3773 			pr_err("missing tx-clock-name property\n");
3774 			return -EINVAL;
3775 		}
3776 		if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3777 			pr_err("invalid tx-clock property\n");
3778 			return -EINVAL;
3779 		}
3780 		ug_info->uf_info.tx_clock = *prop;
3781 	}
3782 
3783 	err = of_address_to_resource(np, 0, &res);
3784 	if (err)
3785 		return -EINVAL;
3786 
3787 	ug_info->uf_info.regs = res.start;
3788 	ug_info->uf_info.irq = irq_of_parse_and_map(np, 0);
3789 
3790 	ug_info->phy_node = of_parse_phandle(np, "phy-handle", 0);
3791 	if (!ug_info->phy_node && of_phy_is_fixed_link(np)) {
3792 		/*
3793 		 * In the case of a fixed PHY, the DT node associated
3794 		 * to the PHY is the Ethernet MAC DT node.
3795 		 */
3796 		err = of_phy_register_fixed_link(np);
3797 		if (err)
3798 			return err;
3799 		ug_info->phy_node = of_node_get(np);
3800 	}
3801 
3802 	/* Find the TBI PHY node.  If it's not there, we don't support SGMII */
3803 	ug_info->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
3804 
3805 	/* get the phy interface type, or default to MII */
3806 	prop = of_get_property(np, "phy-connection-type", NULL);
3807 	if (!prop) {
3808 		/* handle interface property present in old trees */
3809 		prop = of_get_property(ug_info->phy_node, "interface", NULL);
3810 		if (prop != NULL) {
3811 			phy_interface = enet_to_phy_interface[*prop];
3812 			max_speed = enet_to_speed[*prop];
3813 		} else
3814 			phy_interface = PHY_INTERFACE_MODE_MII;
3815 	} else {
3816 		phy_interface = to_phy_interface((const char *)prop);
3817 	}
3818 
3819 	/* get speed, or derive from PHY interface */
3820 	if (max_speed == 0)
3821 		switch (phy_interface) {
3822 		case PHY_INTERFACE_MODE_GMII:
3823 		case PHY_INTERFACE_MODE_RGMII:
3824 		case PHY_INTERFACE_MODE_RGMII_ID:
3825 		case PHY_INTERFACE_MODE_RGMII_RXID:
3826 		case PHY_INTERFACE_MODE_RGMII_TXID:
3827 		case PHY_INTERFACE_MODE_TBI:
3828 		case PHY_INTERFACE_MODE_RTBI:
3829 		case PHY_INTERFACE_MODE_SGMII:
3830 			max_speed = SPEED_1000;
3831 			break;
3832 		default:
3833 			max_speed = SPEED_100;
3834 			break;
3835 		}
3836 
3837 	if (max_speed == SPEED_1000) {
3838 		unsigned int snums = qe_get_num_of_snums();
3839 
3840 		/* configure muram FIFOs for gigabit operation */
3841 		ug_info->uf_info.urfs = UCC_GETH_URFS_GIGA_INIT;
3842 		ug_info->uf_info.urfet = UCC_GETH_URFET_GIGA_INIT;
3843 		ug_info->uf_info.urfset = UCC_GETH_URFSET_GIGA_INIT;
3844 		ug_info->uf_info.utfs = UCC_GETH_UTFS_GIGA_INIT;
3845 		ug_info->uf_info.utfet = UCC_GETH_UTFET_GIGA_INIT;
3846 		ug_info->uf_info.utftt = UCC_GETH_UTFTT_GIGA_INIT;
3847 		ug_info->numThreadsTx = UCC_GETH_NUM_OF_THREADS_4;
3848 
3849 		/* If QE's snum number is 46/76 which means we need to support
3850 		 * 4 UECs at 1000Base-T simultaneously, we need to allocate
3851 		 * more Threads to Rx.
3852 		 */
3853 		if ((snums == 76) || (snums == 46))
3854 			ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_6;
3855 		else
3856 			ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_4;
3857 	}
3858 
3859 	if (netif_msg_probe(&debug))
3860 		pr_info("UCC%1d at 0x%8x (irq = %d)\n",
3861 			ug_info->uf_info.ucc_num + 1, ug_info->uf_info.regs,
3862 			ug_info->uf_info.irq);
3863 
3864 	/* Create an ethernet device instance */
3865 	dev = alloc_etherdev(sizeof(*ugeth));
3866 
3867 	if (dev == NULL) {
3868 		err = -ENOMEM;
3869 		goto err_deregister_fixed_link;
3870 	}
3871 
3872 	ugeth = netdev_priv(dev);
3873 	spin_lock_init(&ugeth->lock);
3874 
3875 	/* Create CQs for hash tables */
3876 	INIT_LIST_HEAD(&ugeth->group_hash_q);
3877 	INIT_LIST_HEAD(&ugeth->ind_hash_q);
3878 
3879 	dev_set_drvdata(device, dev);
3880 
3881 	/* Set the dev->base_addr to the gfar reg region */
3882 	dev->base_addr = (unsigned long)(ug_info->uf_info.regs);
3883 
3884 	SET_NETDEV_DEV(dev, device);
3885 
3886 	/* Fill in the dev structure */
3887 	uec_set_ethtool_ops(dev);
3888 	dev->netdev_ops = &ucc_geth_netdev_ops;
3889 	dev->watchdog_timeo = TX_TIMEOUT;
3890 	INIT_WORK(&ugeth->timeout_work, ucc_geth_timeout_work);
3891 	netif_napi_add(dev, &ugeth->napi, ucc_geth_poll, 64);
3892 	dev->mtu = 1500;
3893 
3894 	ugeth->msg_enable = netif_msg_init(debug.msg_enable, UGETH_MSG_DEFAULT);
3895 	ugeth->phy_interface = phy_interface;
3896 	ugeth->max_speed = max_speed;
3897 
3898 	/* Carrier starts down, phylib will bring it up */
3899 	netif_carrier_off(dev);
3900 
3901 	err = register_netdev(dev);
3902 	if (err) {
3903 		if (netif_msg_probe(ugeth))
3904 			pr_err("%s: Cannot register net device, aborting\n",
3905 			       dev->name);
3906 		goto err_free_netdev;
3907 	}
3908 
3909 	mac_addr = of_get_mac_address(np);
3910 	if (mac_addr)
3911 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
3912 
3913 	ugeth->ug_info = ug_info;
3914 	ugeth->dev = device;
3915 	ugeth->ndev = dev;
3916 	ugeth->node = np;
3917 
3918 	return 0;
3919 
3920 err_free_netdev:
3921 	free_netdev(dev);
3922 err_deregister_fixed_link:
3923 	if (of_phy_is_fixed_link(np))
3924 		of_phy_deregister_fixed_link(np);
3925 	of_node_put(ug_info->tbi_node);
3926 	of_node_put(ug_info->phy_node);
3927 
3928 	return err;
3929 }
3930 
3931 static int ucc_geth_remove(struct platform_device* ofdev)
3932 {
3933 	struct net_device *dev = platform_get_drvdata(ofdev);
3934 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3935 	struct device_node *np = ofdev->dev.of_node;
3936 
3937 	unregister_netdev(dev);
3938 	free_netdev(dev);
3939 	ucc_geth_memclean(ugeth);
3940 	if (of_phy_is_fixed_link(np))
3941 		of_phy_deregister_fixed_link(np);
3942 	of_node_put(ugeth->ug_info->tbi_node);
3943 	of_node_put(ugeth->ug_info->phy_node);
3944 
3945 	return 0;
3946 }
3947 
3948 static const struct of_device_id ucc_geth_match[] = {
3949 	{
3950 		.type = "network",
3951 		.compatible = "ucc_geth",
3952 	},
3953 	{},
3954 };
3955 
3956 MODULE_DEVICE_TABLE(of, ucc_geth_match);
3957 
3958 static struct platform_driver ucc_geth_driver = {
3959 	.driver = {
3960 		.name = DRV_NAME,
3961 		.of_match_table = ucc_geth_match,
3962 	},
3963 	.probe		= ucc_geth_probe,
3964 	.remove		= ucc_geth_remove,
3965 	.suspend	= ucc_geth_suspend,
3966 	.resume		= ucc_geth_resume,
3967 };
3968 
3969 static int __init ucc_geth_init(void)
3970 {
3971 	int i, ret;
3972 
3973 	if (netif_msg_drv(&debug))
3974 		pr_info(DRV_DESC "\n");
3975 	for (i = 0; i < 8; i++)
3976 		memcpy(&(ugeth_info[i]), &ugeth_primary_info,
3977 		       sizeof(ugeth_primary_info));
3978 
3979 	ret = platform_driver_register(&ucc_geth_driver);
3980 
3981 	return ret;
3982 }
3983 
3984 static void __exit ucc_geth_exit(void)
3985 {
3986 	platform_driver_unregister(&ucc_geth_driver);
3987 }
3988 
3989 module_init(ucc_geth_init);
3990 module_exit(ucc_geth_exit);
3991 
3992 MODULE_AUTHOR("Freescale Semiconductor, Inc");
3993 MODULE_DESCRIPTION(DRV_DESC);
3994 MODULE_VERSION(DRV_VERSION);
3995 MODULE_LICENSE("GPL");
3996