1 /* 2 * Copyright (C) 2006-2009 Freescale Semicondutor, Inc. All rights reserved. 3 * 4 * Author: Shlomi Gridish <gridish@freescale.com> 5 * Li Yang <leoli@freescale.com> 6 * 7 * Description: 8 * QE UCC Gigabit Ethernet Driver 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms of the GNU General Public License as published by the 12 * Free Software Foundation; either version 2 of the License, or (at your 13 * option) any later version. 14 */ 15 16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 17 18 #include <linux/kernel.h> 19 #include <linux/init.h> 20 #include <linux/errno.h> 21 #include <linux/slab.h> 22 #include <linux/stddef.h> 23 #include <linux/module.h> 24 #include <linux/interrupt.h> 25 #include <linux/netdevice.h> 26 #include <linux/etherdevice.h> 27 #include <linux/skbuff.h> 28 #include <linux/spinlock.h> 29 #include <linux/mm.h> 30 #include <linux/dma-mapping.h> 31 #include <linux/mii.h> 32 #include <linux/phy.h> 33 #include <linux/workqueue.h> 34 #include <linux/of_address.h> 35 #include <linux/of_irq.h> 36 #include <linux/of_mdio.h> 37 #include <linux/of_net.h> 38 #include <linux/of_platform.h> 39 40 #include <asm/uaccess.h> 41 #include <asm/irq.h> 42 #include <asm/io.h> 43 #include <asm/immap_qe.h> 44 #include <asm/qe.h> 45 #include <asm/ucc.h> 46 #include <asm/ucc_fast.h> 47 #include <asm/machdep.h> 48 49 #include "ucc_geth.h" 50 51 #undef DEBUG 52 53 #define ugeth_printk(level, format, arg...) \ 54 printk(level format "\n", ## arg) 55 56 #define ugeth_dbg(format, arg...) \ 57 ugeth_printk(KERN_DEBUG , format , ## arg) 58 59 #ifdef UGETH_VERBOSE_DEBUG 60 #define ugeth_vdbg ugeth_dbg 61 #else 62 #define ugeth_vdbg(fmt, args...) do { } while (0) 63 #endif /* UGETH_VERBOSE_DEBUG */ 64 #define UGETH_MSG_DEFAULT (NETIF_MSG_IFUP << 1 ) - 1 65 66 67 static DEFINE_SPINLOCK(ugeth_lock); 68 69 static struct { 70 u32 msg_enable; 71 } debug = { -1 }; 72 73 module_param_named(debug, debug.msg_enable, int, 0); 74 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 0xffff=all)"); 75 76 static struct ucc_geth_info ugeth_primary_info = { 77 .uf_info = { 78 .bd_mem_part = MEM_PART_SYSTEM, 79 .rtsm = UCC_FAST_SEND_IDLES_BETWEEN_FRAMES, 80 .max_rx_buf_length = 1536, 81 /* adjusted at startup if max-speed 1000 */ 82 .urfs = UCC_GETH_URFS_INIT, 83 .urfet = UCC_GETH_URFET_INIT, 84 .urfset = UCC_GETH_URFSET_INIT, 85 .utfs = UCC_GETH_UTFS_INIT, 86 .utfet = UCC_GETH_UTFET_INIT, 87 .utftt = UCC_GETH_UTFTT_INIT, 88 .ufpt = 256, 89 .mode = UCC_FAST_PROTOCOL_MODE_ETHERNET, 90 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL, 91 .tenc = UCC_FAST_TX_ENCODING_NRZ, 92 .renc = UCC_FAST_RX_ENCODING_NRZ, 93 .tcrc = UCC_FAST_16_BIT_CRC, 94 .synl = UCC_FAST_SYNC_LEN_NOT_USED, 95 }, 96 .numQueuesTx = 1, 97 .numQueuesRx = 1, 98 .extendedFilteringChainPointer = ((uint32_t) NULL), 99 .typeorlen = 3072 /*1536 */ , 100 .nonBackToBackIfgPart1 = 0x40, 101 .nonBackToBackIfgPart2 = 0x60, 102 .miminumInterFrameGapEnforcement = 0x50, 103 .backToBackInterFrameGap = 0x60, 104 .mblinterval = 128, 105 .nortsrbytetime = 5, 106 .fracsiz = 1, 107 .strictpriorityq = 0xff, 108 .altBebTruncation = 0xa, 109 .excessDefer = 1, 110 .maxRetransmission = 0xf, 111 .collisionWindow = 0x37, 112 .receiveFlowControl = 1, 113 .transmitFlowControl = 1, 114 .maxGroupAddrInHash = 4, 115 .maxIndAddrInHash = 4, 116 .prel = 7, 117 .maxFrameLength = 1518+16, /* Add extra bytes for VLANs etc. */ 118 .minFrameLength = 64, 119 .maxD1Length = 1520+16, /* Add extra bytes for VLANs etc. */ 120 .maxD2Length = 1520+16, /* Add extra bytes for VLANs etc. */ 121 .vlantype = 0x8100, 122 .ecamptr = ((uint32_t) NULL), 123 .eventRegMask = UCCE_OTHER, 124 .pausePeriod = 0xf000, 125 .interruptcoalescingmaxvalue = {1, 1, 1, 1, 1, 1, 1, 1}, 126 .bdRingLenTx = { 127 TX_BD_RING_LEN, 128 TX_BD_RING_LEN, 129 TX_BD_RING_LEN, 130 TX_BD_RING_LEN, 131 TX_BD_RING_LEN, 132 TX_BD_RING_LEN, 133 TX_BD_RING_LEN, 134 TX_BD_RING_LEN}, 135 136 .bdRingLenRx = { 137 RX_BD_RING_LEN, 138 RX_BD_RING_LEN, 139 RX_BD_RING_LEN, 140 RX_BD_RING_LEN, 141 RX_BD_RING_LEN, 142 RX_BD_RING_LEN, 143 RX_BD_RING_LEN, 144 RX_BD_RING_LEN}, 145 146 .numStationAddresses = UCC_GETH_NUM_OF_STATION_ADDRESSES_1, 147 .largestexternallookupkeysize = 148 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE, 149 .statisticsMode = UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE | 150 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX | 151 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX, 152 .vlanOperationTagged = UCC_GETH_VLAN_OPERATION_TAGGED_NOP, 153 .vlanOperationNonTagged = UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP, 154 .rxQoSMode = UCC_GETH_QOS_MODE_DEFAULT, 155 .aufc = UPSMR_AUTOMATIC_FLOW_CONTROL_MODE_NONE, 156 .padAndCrc = MACCFG2_PAD_AND_CRC_MODE_PAD_AND_CRC, 157 .numThreadsTx = UCC_GETH_NUM_OF_THREADS_1, 158 .numThreadsRx = UCC_GETH_NUM_OF_THREADS_1, 159 .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, 160 .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, 161 }; 162 163 static struct ucc_geth_info ugeth_info[8]; 164 165 #ifdef DEBUG 166 static void mem_disp(u8 *addr, int size) 167 { 168 u8 *i; 169 int size16Aling = (size >> 4) << 4; 170 int size4Aling = (size >> 2) << 2; 171 int notAlign = 0; 172 if (size % 16) 173 notAlign = 1; 174 175 for (i = addr; (u32) i < (u32) addr + size16Aling; i += 16) 176 printk("0x%08x: %08x %08x %08x %08x\r\n", 177 (u32) i, 178 *((u32 *) (i)), 179 *((u32 *) (i + 4)), 180 *((u32 *) (i + 8)), *((u32 *) (i + 12))); 181 if (notAlign == 1) 182 printk("0x%08x: ", (u32) i); 183 for (; (u32) i < (u32) addr + size4Aling; i += 4) 184 printk("%08x ", *((u32 *) (i))); 185 for (; (u32) i < (u32) addr + size; i++) 186 printk("%02x", *((i))); 187 if (notAlign == 1) 188 printk("\r\n"); 189 } 190 #endif /* DEBUG */ 191 192 static struct list_head *dequeue(struct list_head *lh) 193 { 194 unsigned long flags; 195 196 spin_lock_irqsave(&ugeth_lock, flags); 197 if (!list_empty(lh)) { 198 struct list_head *node = lh->next; 199 list_del(node); 200 spin_unlock_irqrestore(&ugeth_lock, flags); 201 return node; 202 } else { 203 spin_unlock_irqrestore(&ugeth_lock, flags); 204 return NULL; 205 } 206 } 207 208 static struct sk_buff *get_new_skb(struct ucc_geth_private *ugeth, 209 u8 __iomem *bd) 210 { 211 struct sk_buff *skb; 212 213 skb = netdev_alloc_skb(ugeth->ndev, 214 ugeth->ug_info->uf_info.max_rx_buf_length + 215 UCC_GETH_RX_DATA_BUF_ALIGNMENT); 216 if (!skb) 217 return NULL; 218 219 /* We need the data buffer to be aligned properly. We will reserve 220 * as many bytes as needed to align the data properly 221 */ 222 skb_reserve(skb, 223 UCC_GETH_RX_DATA_BUF_ALIGNMENT - 224 (((unsigned)skb->data) & (UCC_GETH_RX_DATA_BUF_ALIGNMENT - 225 1))); 226 227 out_be32(&((struct qe_bd __iomem *)bd)->buf, 228 dma_map_single(ugeth->dev, 229 skb->data, 230 ugeth->ug_info->uf_info.max_rx_buf_length + 231 UCC_GETH_RX_DATA_BUF_ALIGNMENT, 232 DMA_FROM_DEVICE)); 233 234 out_be32((u32 __iomem *)bd, 235 (R_E | R_I | (in_be32((u32 __iomem*)bd) & R_W))); 236 237 return skb; 238 } 239 240 static int rx_bd_buffer_set(struct ucc_geth_private *ugeth, u8 rxQ) 241 { 242 u8 __iomem *bd; 243 u32 bd_status; 244 struct sk_buff *skb; 245 int i; 246 247 bd = ugeth->p_rx_bd_ring[rxQ]; 248 i = 0; 249 250 do { 251 bd_status = in_be32((u32 __iomem *)bd); 252 skb = get_new_skb(ugeth, bd); 253 254 if (!skb) /* If can not allocate data buffer, 255 abort. Cleanup will be elsewhere */ 256 return -ENOMEM; 257 258 ugeth->rx_skbuff[rxQ][i] = skb; 259 260 /* advance the BD pointer */ 261 bd += sizeof(struct qe_bd); 262 i++; 263 } while (!(bd_status & R_W)); 264 265 return 0; 266 } 267 268 static int fill_init_enet_entries(struct ucc_geth_private *ugeth, 269 u32 *p_start, 270 u8 num_entries, 271 u32 thread_size, 272 u32 thread_alignment, 273 unsigned int risc, 274 int skip_page_for_first_entry) 275 { 276 u32 init_enet_offset; 277 u8 i; 278 int snum; 279 280 for (i = 0; i < num_entries; i++) { 281 if ((snum = qe_get_snum()) < 0) { 282 if (netif_msg_ifup(ugeth)) 283 pr_err("Can not get SNUM\n"); 284 return snum; 285 } 286 if ((i == 0) && skip_page_for_first_entry) 287 /* First entry of Rx does not have page */ 288 init_enet_offset = 0; 289 else { 290 init_enet_offset = 291 qe_muram_alloc(thread_size, thread_alignment); 292 if (IS_ERR_VALUE(init_enet_offset)) { 293 if (netif_msg_ifup(ugeth)) 294 pr_err("Can not allocate DPRAM memory\n"); 295 qe_put_snum((u8) snum); 296 return -ENOMEM; 297 } 298 } 299 *(p_start++) = 300 ((u8) snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset 301 | risc; 302 } 303 304 return 0; 305 } 306 307 static int return_init_enet_entries(struct ucc_geth_private *ugeth, 308 u32 *p_start, 309 u8 num_entries, 310 unsigned int risc, 311 int skip_page_for_first_entry) 312 { 313 u32 init_enet_offset; 314 u8 i; 315 int snum; 316 317 for (i = 0; i < num_entries; i++) { 318 u32 val = *p_start; 319 320 /* Check that this entry was actually valid -- 321 needed in case failed in allocations */ 322 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) { 323 snum = 324 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >> 325 ENET_INIT_PARAM_SNUM_SHIFT; 326 qe_put_snum((u8) snum); 327 if (!((i == 0) && skip_page_for_first_entry)) { 328 /* First entry of Rx does not have page */ 329 init_enet_offset = 330 (val & ENET_INIT_PARAM_PTR_MASK); 331 qe_muram_free(init_enet_offset); 332 } 333 *p_start++ = 0; 334 } 335 } 336 337 return 0; 338 } 339 340 #ifdef DEBUG 341 static int dump_init_enet_entries(struct ucc_geth_private *ugeth, 342 u32 __iomem *p_start, 343 u8 num_entries, 344 u32 thread_size, 345 unsigned int risc, 346 int skip_page_for_first_entry) 347 { 348 u32 init_enet_offset; 349 u8 i; 350 int snum; 351 352 for (i = 0; i < num_entries; i++) { 353 u32 val = in_be32(p_start); 354 355 /* Check that this entry was actually valid -- 356 needed in case failed in allocations */ 357 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) { 358 snum = 359 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >> 360 ENET_INIT_PARAM_SNUM_SHIFT; 361 qe_put_snum((u8) snum); 362 if (!((i == 0) && skip_page_for_first_entry)) { 363 /* First entry of Rx does not have page */ 364 init_enet_offset = 365 (in_be32(p_start) & 366 ENET_INIT_PARAM_PTR_MASK); 367 pr_info("Init enet entry %d:\n", i); 368 pr_info("Base address: 0x%08x\n", 369 (u32)qe_muram_addr(init_enet_offset)); 370 mem_disp(qe_muram_addr(init_enet_offset), 371 thread_size); 372 } 373 p_start++; 374 } 375 } 376 377 return 0; 378 } 379 #endif 380 381 static void put_enet_addr_container(struct enet_addr_container *enet_addr_cont) 382 { 383 kfree(enet_addr_cont); 384 } 385 386 static void set_mac_addr(__be16 __iomem *reg, u8 *mac) 387 { 388 out_be16(®[0], ((u16)mac[5] << 8) | mac[4]); 389 out_be16(®[1], ((u16)mac[3] << 8) | mac[2]); 390 out_be16(®[2], ((u16)mac[1] << 8) | mac[0]); 391 } 392 393 static int hw_clear_addr_in_paddr(struct ucc_geth_private *ugeth, u8 paddr_num) 394 { 395 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 396 397 if (paddr_num >= NUM_OF_PADDRS) { 398 pr_warn("%s: Invalid paddr_num: %u\n", __func__, paddr_num); 399 return -EINVAL; 400 } 401 402 p_82xx_addr_filt = 403 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram-> 404 addressfiltering; 405 406 /* Writing address ff.ff.ff.ff.ff.ff disables address 407 recognition for this register */ 408 out_be16(&p_82xx_addr_filt->paddr[paddr_num].h, 0xffff); 409 out_be16(&p_82xx_addr_filt->paddr[paddr_num].m, 0xffff); 410 out_be16(&p_82xx_addr_filt->paddr[paddr_num].l, 0xffff); 411 412 return 0; 413 } 414 415 static void hw_add_addr_in_hash(struct ucc_geth_private *ugeth, 416 u8 *p_enet_addr) 417 { 418 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 419 u32 cecr_subblock; 420 421 p_82xx_addr_filt = 422 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram-> 423 addressfiltering; 424 425 cecr_subblock = 426 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 427 428 /* Ethernet frames are defined in Little Endian mode, 429 therefore to insert */ 430 /* the address to the hash (Big Endian mode), we reverse the bytes.*/ 431 432 set_mac_addr(&p_82xx_addr_filt->taddr.h, p_enet_addr); 433 434 qe_issue_cmd(QE_SET_GROUP_ADDRESS, cecr_subblock, 435 QE_CR_PROTOCOL_ETHERNET, 0); 436 } 437 438 #ifdef DEBUG 439 static void get_statistics(struct ucc_geth_private *ugeth, 440 struct ucc_geth_tx_firmware_statistics * 441 tx_firmware_statistics, 442 struct ucc_geth_rx_firmware_statistics * 443 rx_firmware_statistics, 444 struct ucc_geth_hardware_statistics *hardware_statistics) 445 { 446 struct ucc_fast __iomem *uf_regs; 447 struct ucc_geth __iomem *ug_regs; 448 struct ucc_geth_tx_firmware_statistics_pram *p_tx_fw_statistics_pram; 449 struct ucc_geth_rx_firmware_statistics_pram *p_rx_fw_statistics_pram; 450 451 ug_regs = ugeth->ug_regs; 452 uf_regs = (struct ucc_fast __iomem *) ug_regs; 453 p_tx_fw_statistics_pram = ugeth->p_tx_fw_statistics_pram; 454 p_rx_fw_statistics_pram = ugeth->p_rx_fw_statistics_pram; 455 456 /* Tx firmware only if user handed pointer and driver actually 457 gathers Tx firmware statistics */ 458 if (tx_firmware_statistics && p_tx_fw_statistics_pram) { 459 tx_firmware_statistics->sicoltx = 460 in_be32(&p_tx_fw_statistics_pram->sicoltx); 461 tx_firmware_statistics->mulcoltx = 462 in_be32(&p_tx_fw_statistics_pram->mulcoltx); 463 tx_firmware_statistics->latecoltxfr = 464 in_be32(&p_tx_fw_statistics_pram->latecoltxfr); 465 tx_firmware_statistics->frabortduecol = 466 in_be32(&p_tx_fw_statistics_pram->frabortduecol); 467 tx_firmware_statistics->frlostinmactxer = 468 in_be32(&p_tx_fw_statistics_pram->frlostinmactxer); 469 tx_firmware_statistics->carriersenseertx = 470 in_be32(&p_tx_fw_statistics_pram->carriersenseertx); 471 tx_firmware_statistics->frtxok = 472 in_be32(&p_tx_fw_statistics_pram->frtxok); 473 tx_firmware_statistics->txfrexcessivedefer = 474 in_be32(&p_tx_fw_statistics_pram->txfrexcessivedefer); 475 tx_firmware_statistics->txpkts256 = 476 in_be32(&p_tx_fw_statistics_pram->txpkts256); 477 tx_firmware_statistics->txpkts512 = 478 in_be32(&p_tx_fw_statistics_pram->txpkts512); 479 tx_firmware_statistics->txpkts1024 = 480 in_be32(&p_tx_fw_statistics_pram->txpkts1024); 481 tx_firmware_statistics->txpktsjumbo = 482 in_be32(&p_tx_fw_statistics_pram->txpktsjumbo); 483 } 484 485 /* Rx firmware only if user handed pointer and driver actually 486 * gathers Rx firmware statistics */ 487 if (rx_firmware_statistics && p_rx_fw_statistics_pram) { 488 int i; 489 rx_firmware_statistics->frrxfcser = 490 in_be32(&p_rx_fw_statistics_pram->frrxfcser); 491 rx_firmware_statistics->fraligner = 492 in_be32(&p_rx_fw_statistics_pram->fraligner); 493 rx_firmware_statistics->inrangelenrxer = 494 in_be32(&p_rx_fw_statistics_pram->inrangelenrxer); 495 rx_firmware_statistics->outrangelenrxer = 496 in_be32(&p_rx_fw_statistics_pram->outrangelenrxer); 497 rx_firmware_statistics->frtoolong = 498 in_be32(&p_rx_fw_statistics_pram->frtoolong); 499 rx_firmware_statistics->runt = 500 in_be32(&p_rx_fw_statistics_pram->runt); 501 rx_firmware_statistics->verylongevent = 502 in_be32(&p_rx_fw_statistics_pram->verylongevent); 503 rx_firmware_statistics->symbolerror = 504 in_be32(&p_rx_fw_statistics_pram->symbolerror); 505 rx_firmware_statistics->dropbsy = 506 in_be32(&p_rx_fw_statistics_pram->dropbsy); 507 for (i = 0; i < 0x8; i++) 508 rx_firmware_statistics->res0[i] = 509 p_rx_fw_statistics_pram->res0[i]; 510 rx_firmware_statistics->mismatchdrop = 511 in_be32(&p_rx_fw_statistics_pram->mismatchdrop); 512 rx_firmware_statistics->underpkts = 513 in_be32(&p_rx_fw_statistics_pram->underpkts); 514 rx_firmware_statistics->pkts256 = 515 in_be32(&p_rx_fw_statistics_pram->pkts256); 516 rx_firmware_statistics->pkts512 = 517 in_be32(&p_rx_fw_statistics_pram->pkts512); 518 rx_firmware_statistics->pkts1024 = 519 in_be32(&p_rx_fw_statistics_pram->pkts1024); 520 rx_firmware_statistics->pktsjumbo = 521 in_be32(&p_rx_fw_statistics_pram->pktsjumbo); 522 rx_firmware_statistics->frlossinmacer = 523 in_be32(&p_rx_fw_statistics_pram->frlossinmacer); 524 rx_firmware_statistics->pausefr = 525 in_be32(&p_rx_fw_statistics_pram->pausefr); 526 for (i = 0; i < 0x4; i++) 527 rx_firmware_statistics->res1[i] = 528 p_rx_fw_statistics_pram->res1[i]; 529 rx_firmware_statistics->removevlan = 530 in_be32(&p_rx_fw_statistics_pram->removevlan); 531 rx_firmware_statistics->replacevlan = 532 in_be32(&p_rx_fw_statistics_pram->replacevlan); 533 rx_firmware_statistics->insertvlan = 534 in_be32(&p_rx_fw_statistics_pram->insertvlan); 535 } 536 537 /* Hardware only if user handed pointer and driver actually 538 gathers hardware statistics */ 539 if (hardware_statistics && 540 (in_be32(&uf_regs->upsmr) & UCC_GETH_UPSMR_HSE)) { 541 hardware_statistics->tx64 = in_be32(&ug_regs->tx64); 542 hardware_statistics->tx127 = in_be32(&ug_regs->tx127); 543 hardware_statistics->tx255 = in_be32(&ug_regs->tx255); 544 hardware_statistics->rx64 = in_be32(&ug_regs->rx64); 545 hardware_statistics->rx127 = in_be32(&ug_regs->rx127); 546 hardware_statistics->rx255 = in_be32(&ug_regs->rx255); 547 hardware_statistics->txok = in_be32(&ug_regs->txok); 548 hardware_statistics->txcf = in_be16(&ug_regs->txcf); 549 hardware_statistics->tmca = in_be32(&ug_regs->tmca); 550 hardware_statistics->tbca = in_be32(&ug_regs->tbca); 551 hardware_statistics->rxfok = in_be32(&ug_regs->rxfok); 552 hardware_statistics->rxbok = in_be32(&ug_regs->rxbok); 553 hardware_statistics->rbyt = in_be32(&ug_regs->rbyt); 554 hardware_statistics->rmca = in_be32(&ug_regs->rmca); 555 hardware_statistics->rbca = in_be32(&ug_regs->rbca); 556 } 557 } 558 559 static void dump_bds(struct ucc_geth_private *ugeth) 560 { 561 int i; 562 int length; 563 564 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) { 565 if (ugeth->p_tx_bd_ring[i]) { 566 length = 567 (ugeth->ug_info->bdRingLenTx[i] * 568 sizeof(struct qe_bd)); 569 pr_info("TX BDs[%d]\n", i); 570 mem_disp(ugeth->p_tx_bd_ring[i], length); 571 } 572 } 573 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) { 574 if (ugeth->p_rx_bd_ring[i]) { 575 length = 576 (ugeth->ug_info->bdRingLenRx[i] * 577 sizeof(struct qe_bd)); 578 pr_info("RX BDs[%d]\n", i); 579 mem_disp(ugeth->p_rx_bd_ring[i], length); 580 } 581 } 582 } 583 584 static void dump_regs(struct ucc_geth_private *ugeth) 585 { 586 int i; 587 588 pr_info("UCC%d Geth registers:\n", ugeth->ug_info->uf_info.ucc_num + 1); 589 pr_info("Base address: 0x%08x\n", (u32)ugeth->ug_regs); 590 591 pr_info("maccfg1 : addr - 0x%08x, val - 0x%08x\n", 592 (u32)&ugeth->ug_regs->maccfg1, 593 in_be32(&ugeth->ug_regs->maccfg1)); 594 pr_info("maccfg2 : addr - 0x%08x, val - 0x%08x\n", 595 (u32)&ugeth->ug_regs->maccfg2, 596 in_be32(&ugeth->ug_regs->maccfg2)); 597 pr_info("ipgifg : addr - 0x%08x, val - 0x%08x\n", 598 (u32)&ugeth->ug_regs->ipgifg, 599 in_be32(&ugeth->ug_regs->ipgifg)); 600 pr_info("hafdup : addr - 0x%08x, val - 0x%08x\n", 601 (u32)&ugeth->ug_regs->hafdup, 602 in_be32(&ugeth->ug_regs->hafdup)); 603 pr_info("ifctl : addr - 0x%08x, val - 0x%08x\n", 604 (u32)&ugeth->ug_regs->ifctl, 605 in_be32(&ugeth->ug_regs->ifctl)); 606 pr_info("ifstat : addr - 0x%08x, val - 0x%08x\n", 607 (u32)&ugeth->ug_regs->ifstat, 608 in_be32(&ugeth->ug_regs->ifstat)); 609 pr_info("macstnaddr1: addr - 0x%08x, val - 0x%08x\n", 610 (u32)&ugeth->ug_regs->macstnaddr1, 611 in_be32(&ugeth->ug_regs->macstnaddr1)); 612 pr_info("macstnaddr2: addr - 0x%08x, val - 0x%08x\n", 613 (u32)&ugeth->ug_regs->macstnaddr2, 614 in_be32(&ugeth->ug_regs->macstnaddr2)); 615 pr_info("uempr : addr - 0x%08x, val - 0x%08x\n", 616 (u32)&ugeth->ug_regs->uempr, 617 in_be32(&ugeth->ug_regs->uempr)); 618 pr_info("utbipar : addr - 0x%08x, val - 0x%08x\n", 619 (u32)&ugeth->ug_regs->utbipar, 620 in_be32(&ugeth->ug_regs->utbipar)); 621 pr_info("uescr : addr - 0x%08x, val - 0x%04x\n", 622 (u32)&ugeth->ug_regs->uescr, 623 in_be16(&ugeth->ug_regs->uescr)); 624 pr_info("tx64 : addr - 0x%08x, val - 0x%08x\n", 625 (u32)&ugeth->ug_regs->tx64, 626 in_be32(&ugeth->ug_regs->tx64)); 627 pr_info("tx127 : addr - 0x%08x, val - 0x%08x\n", 628 (u32)&ugeth->ug_regs->tx127, 629 in_be32(&ugeth->ug_regs->tx127)); 630 pr_info("tx255 : addr - 0x%08x, val - 0x%08x\n", 631 (u32)&ugeth->ug_regs->tx255, 632 in_be32(&ugeth->ug_regs->tx255)); 633 pr_info("rx64 : addr - 0x%08x, val - 0x%08x\n", 634 (u32)&ugeth->ug_regs->rx64, 635 in_be32(&ugeth->ug_regs->rx64)); 636 pr_info("rx127 : addr - 0x%08x, val - 0x%08x\n", 637 (u32)&ugeth->ug_regs->rx127, 638 in_be32(&ugeth->ug_regs->rx127)); 639 pr_info("rx255 : addr - 0x%08x, val - 0x%08x\n", 640 (u32)&ugeth->ug_regs->rx255, 641 in_be32(&ugeth->ug_regs->rx255)); 642 pr_info("txok : addr - 0x%08x, val - 0x%08x\n", 643 (u32)&ugeth->ug_regs->txok, 644 in_be32(&ugeth->ug_regs->txok)); 645 pr_info("txcf : addr - 0x%08x, val - 0x%04x\n", 646 (u32)&ugeth->ug_regs->txcf, 647 in_be16(&ugeth->ug_regs->txcf)); 648 pr_info("tmca : addr - 0x%08x, val - 0x%08x\n", 649 (u32)&ugeth->ug_regs->tmca, 650 in_be32(&ugeth->ug_regs->tmca)); 651 pr_info("tbca : addr - 0x%08x, val - 0x%08x\n", 652 (u32)&ugeth->ug_regs->tbca, 653 in_be32(&ugeth->ug_regs->tbca)); 654 pr_info("rxfok : addr - 0x%08x, val - 0x%08x\n", 655 (u32)&ugeth->ug_regs->rxfok, 656 in_be32(&ugeth->ug_regs->rxfok)); 657 pr_info("rxbok : addr - 0x%08x, val - 0x%08x\n", 658 (u32)&ugeth->ug_regs->rxbok, 659 in_be32(&ugeth->ug_regs->rxbok)); 660 pr_info("rbyt : addr - 0x%08x, val - 0x%08x\n", 661 (u32)&ugeth->ug_regs->rbyt, 662 in_be32(&ugeth->ug_regs->rbyt)); 663 pr_info("rmca : addr - 0x%08x, val - 0x%08x\n", 664 (u32)&ugeth->ug_regs->rmca, 665 in_be32(&ugeth->ug_regs->rmca)); 666 pr_info("rbca : addr - 0x%08x, val - 0x%08x\n", 667 (u32)&ugeth->ug_regs->rbca, 668 in_be32(&ugeth->ug_regs->rbca)); 669 pr_info("scar : addr - 0x%08x, val - 0x%08x\n", 670 (u32)&ugeth->ug_regs->scar, 671 in_be32(&ugeth->ug_regs->scar)); 672 pr_info("scam : addr - 0x%08x, val - 0x%08x\n", 673 (u32)&ugeth->ug_regs->scam, 674 in_be32(&ugeth->ug_regs->scam)); 675 676 if (ugeth->p_thread_data_tx) { 677 int numThreadsTxNumerical; 678 switch (ugeth->ug_info->numThreadsTx) { 679 case UCC_GETH_NUM_OF_THREADS_1: 680 numThreadsTxNumerical = 1; 681 break; 682 case UCC_GETH_NUM_OF_THREADS_2: 683 numThreadsTxNumerical = 2; 684 break; 685 case UCC_GETH_NUM_OF_THREADS_4: 686 numThreadsTxNumerical = 4; 687 break; 688 case UCC_GETH_NUM_OF_THREADS_6: 689 numThreadsTxNumerical = 6; 690 break; 691 case UCC_GETH_NUM_OF_THREADS_8: 692 numThreadsTxNumerical = 8; 693 break; 694 default: 695 numThreadsTxNumerical = 0; 696 break; 697 } 698 699 pr_info("Thread data TXs:\n"); 700 pr_info("Base address: 0x%08x\n", 701 (u32)ugeth->p_thread_data_tx); 702 for (i = 0; i < numThreadsTxNumerical; i++) { 703 pr_info("Thread data TX[%d]:\n", i); 704 pr_info("Base address: 0x%08x\n", 705 (u32)&ugeth->p_thread_data_tx[i]); 706 mem_disp((u8 *) & ugeth->p_thread_data_tx[i], 707 sizeof(struct ucc_geth_thread_data_tx)); 708 } 709 } 710 if (ugeth->p_thread_data_rx) { 711 int numThreadsRxNumerical; 712 switch (ugeth->ug_info->numThreadsRx) { 713 case UCC_GETH_NUM_OF_THREADS_1: 714 numThreadsRxNumerical = 1; 715 break; 716 case UCC_GETH_NUM_OF_THREADS_2: 717 numThreadsRxNumerical = 2; 718 break; 719 case UCC_GETH_NUM_OF_THREADS_4: 720 numThreadsRxNumerical = 4; 721 break; 722 case UCC_GETH_NUM_OF_THREADS_6: 723 numThreadsRxNumerical = 6; 724 break; 725 case UCC_GETH_NUM_OF_THREADS_8: 726 numThreadsRxNumerical = 8; 727 break; 728 default: 729 numThreadsRxNumerical = 0; 730 break; 731 } 732 733 pr_info("Thread data RX:\n"); 734 pr_info("Base address: 0x%08x\n", 735 (u32)ugeth->p_thread_data_rx); 736 for (i = 0; i < numThreadsRxNumerical; i++) { 737 pr_info("Thread data RX[%d]:\n", i); 738 pr_info("Base address: 0x%08x\n", 739 (u32)&ugeth->p_thread_data_rx[i]); 740 mem_disp((u8 *) & ugeth->p_thread_data_rx[i], 741 sizeof(struct ucc_geth_thread_data_rx)); 742 } 743 } 744 if (ugeth->p_exf_glbl_param) { 745 pr_info("EXF global param:\n"); 746 pr_info("Base address: 0x%08x\n", 747 (u32)ugeth->p_exf_glbl_param); 748 mem_disp((u8 *) ugeth->p_exf_glbl_param, 749 sizeof(*ugeth->p_exf_glbl_param)); 750 } 751 if (ugeth->p_tx_glbl_pram) { 752 pr_info("TX global param:\n"); 753 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_tx_glbl_pram); 754 pr_info("temoder : addr - 0x%08x, val - 0x%04x\n", 755 (u32)&ugeth->p_tx_glbl_pram->temoder, 756 in_be16(&ugeth->p_tx_glbl_pram->temoder)); 757 pr_info("sqptr : addr - 0x%08x, val - 0x%08x\n", 758 (u32)&ugeth->p_tx_glbl_pram->sqptr, 759 in_be32(&ugeth->p_tx_glbl_pram->sqptr)); 760 pr_info("schedulerbasepointer: addr - 0x%08x, val - 0x%08x\n", 761 (u32)&ugeth->p_tx_glbl_pram->schedulerbasepointer, 762 in_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer)); 763 pr_info("txrmonbaseptr: addr - 0x%08x, val - 0x%08x\n", 764 (u32)&ugeth->p_tx_glbl_pram->txrmonbaseptr, 765 in_be32(&ugeth->p_tx_glbl_pram->txrmonbaseptr)); 766 pr_info("tstate : addr - 0x%08x, val - 0x%08x\n", 767 (u32)&ugeth->p_tx_glbl_pram->tstate, 768 in_be32(&ugeth->p_tx_glbl_pram->tstate)); 769 pr_info("iphoffset[0] : addr - 0x%08x, val - 0x%02x\n", 770 (u32)&ugeth->p_tx_glbl_pram->iphoffset[0], 771 ugeth->p_tx_glbl_pram->iphoffset[0]); 772 pr_info("iphoffset[1] : addr - 0x%08x, val - 0x%02x\n", 773 (u32)&ugeth->p_tx_glbl_pram->iphoffset[1], 774 ugeth->p_tx_glbl_pram->iphoffset[1]); 775 pr_info("iphoffset[2] : addr - 0x%08x, val - 0x%02x\n", 776 (u32)&ugeth->p_tx_glbl_pram->iphoffset[2], 777 ugeth->p_tx_glbl_pram->iphoffset[2]); 778 pr_info("iphoffset[3] : addr - 0x%08x, val - 0x%02x\n", 779 (u32)&ugeth->p_tx_glbl_pram->iphoffset[3], 780 ugeth->p_tx_glbl_pram->iphoffset[3]); 781 pr_info("iphoffset[4] : addr - 0x%08x, val - 0x%02x\n", 782 (u32)&ugeth->p_tx_glbl_pram->iphoffset[4], 783 ugeth->p_tx_glbl_pram->iphoffset[4]); 784 pr_info("iphoffset[5] : addr - 0x%08x, val - 0x%02x\n", 785 (u32)&ugeth->p_tx_glbl_pram->iphoffset[5], 786 ugeth->p_tx_glbl_pram->iphoffset[5]); 787 pr_info("iphoffset[6] : addr - 0x%08x, val - 0x%02x\n", 788 (u32)&ugeth->p_tx_glbl_pram->iphoffset[6], 789 ugeth->p_tx_glbl_pram->iphoffset[6]); 790 pr_info("iphoffset[7] : addr - 0x%08x, val - 0x%02x\n", 791 (u32)&ugeth->p_tx_glbl_pram->iphoffset[7], 792 ugeth->p_tx_glbl_pram->iphoffset[7]); 793 pr_info("vtagtable[0] : addr - 0x%08x, val - 0x%08x\n", 794 (u32)&ugeth->p_tx_glbl_pram->vtagtable[0], 795 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[0])); 796 pr_info("vtagtable[1] : addr - 0x%08x, val - 0x%08x\n", 797 (u32)&ugeth->p_tx_glbl_pram->vtagtable[1], 798 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[1])); 799 pr_info("vtagtable[2] : addr - 0x%08x, val - 0x%08x\n", 800 (u32)&ugeth->p_tx_glbl_pram->vtagtable[2], 801 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[2])); 802 pr_info("vtagtable[3] : addr - 0x%08x, val - 0x%08x\n", 803 (u32)&ugeth->p_tx_glbl_pram->vtagtable[3], 804 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[3])); 805 pr_info("vtagtable[4] : addr - 0x%08x, val - 0x%08x\n", 806 (u32)&ugeth->p_tx_glbl_pram->vtagtable[4], 807 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[4])); 808 pr_info("vtagtable[5] : addr - 0x%08x, val - 0x%08x\n", 809 (u32)&ugeth->p_tx_glbl_pram->vtagtable[5], 810 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[5])); 811 pr_info("vtagtable[6] : addr - 0x%08x, val - 0x%08x\n", 812 (u32)&ugeth->p_tx_glbl_pram->vtagtable[6], 813 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[6])); 814 pr_info("vtagtable[7] : addr - 0x%08x, val - 0x%08x\n", 815 (u32)&ugeth->p_tx_glbl_pram->vtagtable[7], 816 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[7])); 817 pr_info("tqptr : addr - 0x%08x, val - 0x%08x\n", 818 (u32)&ugeth->p_tx_glbl_pram->tqptr, 819 in_be32(&ugeth->p_tx_glbl_pram->tqptr)); 820 } 821 if (ugeth->p_rx_glbl_pram) { 822 pr_info("RX global param:\n"); 823 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_glbl_pram); 824 pr_info("remoder : addr - 0x%08x, val - 0x%08x\n", 825 (u32)&ugeth->p_rx_glbl_pram->remoder, 826 in_be32(&ugeth->p_rx_glbl_pram->remoder)); 827 pr_info("rqptr : addr - 0x%08x, val - 0x%08x\n", 828 (u32)&ugeth->p_rx_glbl_pram->rqptr, 829 in_be32(&ugeth->p_rx_glbl_pram->rqptr)); 830 pr_info("typeorlen : addr - 0x%08x, val - 0x%04x\n", 831 (u32)&ugeth->p_rx_glbl_pram->typeorlen, 832 in_be16(&ugeth->p_rx_glbl_pram->typeorlen)); 833 pr_info("rxgstpack : addr - 0x%08x, val - 0x%02x\n", 834 (u32)&ugeth->p_rx_glbl_pram->rxgstpack, 835 ugeth->p_rx_glbl_pram->rxgstpack); 836 pr_info("rxrmonbaseptr : addr - 0x%08x, val - 0x%08x\n", 837 (u32)&ugeth->p_rx_glbl_pram->rxrmonbaseptr, 838 in_be32(&ugeth->p_rx_glbl_pram->rxrmonbaseptr)); 839 pr_info("intcoalescingptr: addr - 0x%08x, val - 0x%08x\n", 840 (u32)&ugeth->p_rx_glbl_pram->intcoalescingptr, 841 in_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr)); 842 pr_info("rstate : addr - 0x%08x, val - 0x%02x\n", 843 (u32)&ugeth->p_rx_glbl_pram->rstate, 844 ugeth->p_rx_glbl_pram->rstate); 845 pr_info("mrblr : addr - 0x%08x, val - 0x%04x\n", 846 (u32)&ugeth->p_rx_glbl_pram->mrblr, 847 in_be16(&ugeth->p_rx_glbl_pram->mrblr)); 848 pr_info("rbdqptr : addr - 0x%08x, val - 0x%08x\n", 849 (u32)&ugeth->p_rx_glbl_pram->rbdqptr, 850 in_be32(&ugeth->p_rx_glbl_pram->rbdqptr)); 851 pr_info("mflr : addr - 0x%08x, val - 0x%04x\n", 852 (u32)&ugeth->p_rx_glbl_pram->mflr, 853 in_be16(&ugeth->p_rx_glbl_pram->mflr)); 854 pr_info("minflr : addr - 0x%08x, val - 0x%04x\n", 855 (u32)&ugeth->p_rx_glbl_pram->minflr, 856 in_be16(&ugeth->p_rx_glbl_pram->minflr)); 857 pr_info("maxd1 : addr - 0x%08x, val - 0x%04x\n", 858 (u32)&ugeth->p_rx_glbl_pram->maxd1, 859 in_be16(&ugeth->p_rx_glbl_pram->maxd1)); 860 pr_info("maxd2 : addr - 0x%08x, val - 0x%04x\n", 861 (u32)&ugeth->p_rx_glbl_pram->maxd2, 862 in_be16(&ugeth->p_rx_glbl_pram->maxd2)); 863 pr_info("ecamptr : addr - 0x%08x, val - 0x%08x\n", 864 (u32)&ugeth->p_rx_glbl_pram->ecamptr, 865 in_be32(&ugeth->p_rx_glbl_pram->ecamptr)); 866 pr_info("l2qt : addr - 0x%08x, val - 0x%08x\n", 867 (u32)&ugeth->p_rx_glbl_pram->l2qt, 868 in_be32(&ugeth->p_rx_glbl_pram->l2qt)); 869 pr_info("l3qt[0] : addr - 0x%08x, val - 0x%08x\n", 870 (u32)&ugeth->p_rx_glbl_pram->l3qt[0], 871 in_be32(&ugeth->p_rx_glbl_pram->l3qt[0])); 872 pr_info("l3qt[1] : addr - 0x%08x, val - 0x%08x\n", 873 (u32)&ugeth->p_rx_glbl_pram->l3qt[1], 874 in_be32(&ugeth->p_rx_glbl_pram->l3qt[1])); 875 pr_info("l3qt[2] : addr - 0x%08x, val - 0x%08x\n", 876 (u32)&ugeth->p_rx_glbl_pram->l3qt[2], 877 in_be32(&ugeth->p_rx_glbl_pram->l3qt[2])); 878 pr_info("l3qt[3] : addr - 0x%08x, val - 0x%08x\n", 879 (u32)&ugeth->p_rx_glbl_pram->l3qt[3], 880 in_be32(&ugeth->p_rx_glbl_pram->l3qt[3])); 881 pr_info("l3qt[4] : addr - 0x%08x, val - 0x%08x\n", 882 (u32)&ugeth->p_rx_glbl_pram->l3qt[4], 883 in_be32(&ugeth->p_rx_glbl_pram->l3qt[4])); 884 pr_info("l3qt[5] : addr - 0x%08x, val - 0x%08x\n", 885 (u32)&ugeth->p_rx_glbl_pram->l3qt[5], 886 in_be32(&ugeth->p_rx_glbl_pram->l3qt[5])); 887 pr_info("l3qt[6] : addr - 0x%08x, val - 0x%08x\n", 888 (u32)&ugeth->p_rx_glbl_pram->l3qt[6], 889 in_be32(&ugeth->p_rx_glbl_pram->l3qt[6])); 890 pr_info("l3qt[7] : addr - 0x%08x, val - 0x%08x\n", 891 (u32)&ugeth->p_rx_glbl_pram->l3qt[7], 892 in_be32(&ugeth->p_rx_glbl_pram->l3qt[7])); 893 pr_info("vlantype : addr - 0x%08x, val - 0x%04x\n", 894 (u32)&ugeth->p_rx_glbl_pram->vlantype, 895 in_be16(&ugeth->p_rx_glbl_pram->vlantype)); 896 pr_info("vlantci : addr - 0x%08x, val - 0x%04x\n", 897 (u32)&ugeth->p_rx_glbl_pram->vlantci, 898 in_be16(&ugeth->p_rx_glbl_pram->vlantci)); 899 for (i = 0; i < 64; i++) 900 pr_info("addressfiltering[%d]: addr - 0x%08x, val - 0x%02x\n", 901 i, 902 (u32)&ugeth->p_rx_glbl_pram->addressfiltering[i], 903 ugeth->p_rx_glbl_pram->addressfiltering[i]); 904 pr_info("exfGlobalParam : addr - 0x%08x, val - 0x%08x\n", 905 (u32)&ugeth->p_rx_glbl_pram->exfGlobalParam, 906 in_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam)); 907 } 908 if (ugeth->p_send_q_mem_reg) { 909 pr_info("Send Q memory registers:\n"); 910 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_send_q_mem_reg); 911 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) { 912 pr_info("SQQD[%d]:\n", i); 913 pr_info("Base address: 0x%08x\n", 914 (u32)&ugeth->p_send_q_mem_reg->sqqd[i]); 915 mem_disp((u8 *) & ugeth->p_send_q_mem_reg->sqqd[i], 916 sizeof(struct ucc_geth_send_queue_qd)); 917 } 918 } 919 if (ugeth->p_scheduler) { 920 pr_info("Scheduler:\n"); 921 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_scheduler); 922 mem_disp((u8 *) ugeth->p_scheduler, 923 sizeof(*ugeth->p_scheduler)); 924 } 925 if (ugeth->p_tx_fw_statistics_pram) { 926 pr_info("TX FW statistics pram:\n"); 927 pr_info("Base address: 0x%08x\n", 928 (u32)ugeth->p_tx_fw_statistics_pram); 929 mem_disp((u8 *) ugeth->p_tx_fw_statistics_pram, 930 sizeof(*ugeth->p_tx_fw_statistics_pram)); 931 } 932 if (ugeth->p_rx_fw_statistics_pram) { 933 pr_info("RX FW statistics pram:\n"); 934 pr_info("Base address: 0x%08x\n", 935 (u32)ugeth->p_rx_fw_statistics_pram); 936 mem_disp((u8 *) ugeth->p_rx_fw_statistics_pram, 937 sizeof(*ugeth->p_rx_fw_statistics_pram)); 938 } 939 if (ugeth->p_rx_irq_coalescing_tbl) { 940 pr_info("RX IRQ coalescing tables:\n"); 941 pr_info("Base address: 0x%08x\n", 942 (u32)ugeth->p_rx_irq_coalescing_tbl); 943 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) { 944 pr_info("RX IRQ coalescing table entry[%d]:\n", i); 945 pr_info("Base address: 0x%08x\n", 946 (u32)&ugeth->p_rx_irq_coalescing_tbl-> 947 coalescingentry[i]); 948 pr_info("interruptcoalescingmaxvalue: addr - 0x%08x, val - 0x%08x\n", 949 (u32)&ugeth->p_rx_irq_coalescing_tbl-> 950 coalescingentry[i].interruptcoalescingmaxvalue, 951 in_be32(&ugeth->p_rx_irq_coalescing_tbl-> 952 coalescingentry[i]. 953 interruptcoalescingmaxvalue)); 954 pr_info("interruptcoalescingcounter : addr - 0x%08x, val - 0x%08x\n", 955 (u32)&ugeth->p_rx_irq_coalescing_tbl-> 956 coalescingentry[i].interruptcoalescingcounter, 957 in_be32(&ugeth->p_rx_irq_coalescing_tbl-> 958 coalescingentry[i]. 959 interruptcoalescingcounter)); 960 } 961 } 962 if (ugeth->p_rx_bd_qs_tbl) { 963 pr_info("RX BD QS tables:\n"); 964 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_bd_qs_tbl); 965 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) { 966 pr_info("RX BD QS table[%d]:\n", i); 967 pr_info("Base address: 0x%08x\n", 968 (u32)&ugeth->p_rx_bd_qs_tbl[i]); 969 pr_info("bdbaseptr : addr - 0x%08x, val - 0x%08x\n", 970 (u32)&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr, 971 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr)); 972 pr_info("bdptr : addr - 0x%08x, val - 0x%08x\n", 973 (u32)&ugeth->p_rx_bd_qs_tbl[i].bdptr, 974 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdptr)); 975 pr_info("externalbdbaseptr: addr - 0x%08x, val - 0x%08x\n", 976 (u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr, 977 in_be32(&ugeth->p_rx_bd_qs_tbl[i]. 978 externalbdbaseptr)); 979 pr_info("externalbdptr : addr - 0x%08x, val - 0x%08x\n", 980 (u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdptr, 981 in_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdptr)); 982 pr_info("ucode RX Prefetched BDs:\n"); 983 pr_info("Base address: 0x%08x\n", 984 (u32)qe_muram_addr(in_be32 985 (&ugeth->p_rx_bd_qs_tbl[i]. 986 bdbaseptr))); 987 mem_disp((u8 *) 988 qe_muram_addr(in_be32 989 (&ugeth->p_rx_bd_qs_tbl[i]. 990 bdbaseptr)), 991 sizeof(struct ucc_geth_rx_prefetched_bds)); 992 } 993 } 994 if (ugeth->p_init_enet_param_shadow) { 995 int size; 996 pr_info("Init enet param shadow:\n"); 997 pr_info("Base address: 0x%08x\n", 998 (u32) ugeth->p_init_enet_param_shadow); 999 mem_disp((u8 *) ugeth->p_init_enet_param_shadow, 1000 sizeof(*ugeth->p_init_enet_param_shadow)); 1001 1002 size = sizeof(struct ucc_geth_thread_rx_pram); 1003 if (ugeth->ug_info->rxExtendedFiltering) { 1004 size += 1005 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING; 1006 if (ugeth->ug_info->largestexternallookupkeysize == 1007 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES) 1008 size += 1009 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8; 1010 if (ugeth->ug_info->largestexternallookupkeysize == 1011 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES) 1012 size += 1013 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16; 1014 } 1015 1016 dump_init_enet_entries(ugeth, 1017 &(ugeth->p_init_enet_param_shadow-> 1018 txthread[0]), 1019 ENET_INIT_PARAM_MAX_ENTRIES_TX, 1020 sizeof(struct ucc_geth_thread_tx_pram), 1021 ugeth->ug_info->riscTx, 0); 1022 dump_init_enet_entries(ugeth, 1023 &(ugeth->p_init_enet_param_shadow-> 1024 rxthread[0]), 1025 ENET_INIT_PARAM_MAX_ENTRIES_RX, size, 1026 ugeth->ug_info->riscRx, 1); 1027 } 1028 } 1029 #endif /* DEBUG */ 1030 1031 static void init_default_reg_vals(u32 __iomem *upsmr_register, 1032 u32 __iomem *maccfg1_register, 1033 u32 __iomem *maccfg2_register) 1034 { 1035 out_be32(upsmr_register, UCC_GETH_UPSMR_INIT); 1036 out_be32(maccfg1_register, UCC_GETH_MACCFG1_INIT); 1037 out_be32(maccfg2_register, UCC_GETH_MACCFG2_INIT); 1038 } 1039 1040 static int init_half_duplex_params(int alt_beb, 1041 int back_pressure_no_backoff, 1042 int no_backoff, 1043 int excess_defer, 1044 u8 alt_beb_truncation, 1045 u8 max_retransmissions, 1046 u8 collision_window, 1047 u32 __iomem *hafdup_register) 1048 { 1049 u32 value = 0; 1050 1051 if ((alt_beb_truncation > HALFDUP_ALT_BEB_TRUNCATION_MAX) || 1052 (max_retransmissions > HALFDUP_MAX_RETRANSMISSION_MAX) || 1053 (collision_window > HALFDUP_COLLISION_WINDOW_MAX)) 1054 return -EINVAL; 1055 1056 value = (u32) (alt_beb_truncation << HALFDUP_ALT_BEB_TRUNCATION_SHIFT); 1057 1058 if (alt_beb) 1059 value |= HALFDUP_ALT_BEB; 1060 if (back_pressure_no_backoff) 1061 value |= HALFDUP_BACK_PRESSURE_NO_BACKOFF; 1062 if (no_backoff) 1063 value |= HALFDUP_NO_BACKOFF; 1064 if (excess_defer) 1065 value |= HALFDUP_EXCESSIVE_DEFER; 1066 1067 value |= (max_retransmissions << HALFDUP_MAX_RETRANSMISSION_SHIFT); 1068 1069 value |= collision_window; 1070 1071 out_be32(hafdup_register, value); 1072 return 0; 1073 } 1074 1075 static int init_inter_frame_gap_params(u8 non_btb_cs_ipg, 1076 u8 non_btb_ipg, 1077 u8 min_ifg, 1078 u8 btb_ipg, 1079 u32 __iomem *ipgifg_register) 1080 { 1081 u32 value = 0; 1082 1083 /* Non-Back-to-back IPG part 1 should be <= Non-Back-to-back 1084 IPG part 2 */ 1085 if (non_btb_cs_ipg > non_btb_ipg) 1086 return -EINVAL; 1087 1088 if ((non_btb_cs_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART1_MAX) || 1089 (non_btb_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART2_MAX) || 1090 /*(min_ifg > IPGIFG_MINIMUM_IFG_ENFORCEMENT_MAX) || */ 1091 (btb_ipg > IPGIFG_BACK_TO_BACK_IFG_MAX)) 1092 return -EINVAL; 1093 1094 value |= 1095 ((non_btb_cs_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART1_SHIFT) & 1096 IPGIFG_NBTB_CS_IPG_MASK); 1097 value |= 1098 ((non_btb_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART2_SHIFT) & 1099 IPGIFG_NBTB_IPG_MASK); 1100 value |= 1101 ((min_ifg << IPGIFG_MINIMUM_IFG_ENFORCEMENT_SHIFT) & 1102 IPGIFG_MIN_IFG_MASK); 1103 value |= (btb_ipg & IPGIFG_BTB_IPG_MASK); 1104 1105 out_be32(ipgifg_register, value); 1106 return 0; 1107 } 1108 1109 int init_flow_control_params(u32 automatic_flow_control_mode, 1110 int rx_flow_control_enable, 1111 int tx_flow_control_enable, 1112 u16 pause_period, 1113 u16 extension_field, 1114 u32 __iomem *upsmr_register, 1115 u32 __iomem *uempr_register, 1116 u32 __iomem *maccfg1_register) 1117 { 1118 u32 value = 0; 1119 1120 /* Set UEMPR register */ 1121 value = (u32) pause_period << UEMPR_PAUSE_TIME_VALUE_SHIFT; 1122 value |= (u32) extension_field << UEMPR_EXTENDED_PAUSE_TIME_VALUE_SHIFT; 1123 out_be32(uempr_register, value); 1124 1125 /* Set UPSMR register */ 1126 setbits32(upsmr_register, automatic_flow_control_mode); 1127 1128 value = in_be32(maccfg1_register); 1129 if (rx_flow_control_enable) 1130 value |= MACCFG1_FLOW_RX; 1131 if (tx_flow_control_enable) 1132 value |= MACCFG1_FLOW_TX; 1133 out_be32(maccfg1_register, value); 1134 1135 return 0; 1136 } 1137 1138 static int init_hw_statistics_gathering_mode(int enable_hardware_statistics, 1139 int auto_zero_hardware_statistics, 1140 u32 __iomem *upsmr_register, 1141 u16 __iomem *uescr_register) 1142 { 1143 u16 uescr_value = 0; 1144 1145 /* Enable hardware statistics gathering if requested */ 1146 if (enable_hardware_statistics) 1147 setbits32(upsmr_register, UCC_GETH_UPSMR_HSE); 1148 1149 /* Clear hardware statistics counters */ 1150 uescr_value = in_be16(uescr_register); 1151 uescr_value |= UESCR_CLRCNT; 1152 /* Automatically zero hardware statistics counters on read, 1153 if requested */ 1154 if (auto_zero_hardware_statistics) 1155 uescr_value |= UESCR_AUTOZ; 1156 out_be16(uescr_register, uescr_value); 1157 1158 return 0; 1159 } 1160 1161 static int init_firmware_statistics_gathering_mode(int 1162 enable_tx_firmware_statistics, 1163 int enable_rx_firmware_statistics, 1164 u32 __iomem *tx_rmon_base_ptr, 1165 u32 tx_firmware_statistics_structure_address, 1166 u32 __iomem *rx_rmon_base_ptr, 1167 u32 rx_firmware_statistics_structure_address, 1168 u16 __iomem *temoder_register, 1169 u32 __iomem *remoder_register) 1170 { 1171 /* Note: this function does not check if */ 1172 /* the parameters it receives are NULL */ 1173 1174 if (enable_tx_firmware_statistics) { 1175 out_be32(tx_rmon_base_ptr, 1176 tx_firmware_statistics_structure_address); 1177 setbits16(temoder_register, TEMODER_TX_RMON_STATISTICS_ENABLE); 1178 } 1179 1180 if (enable_rx_firmware_statistics) { 1181 out_be32(rx_rmon_base_ptr, 1182 rx_firmware_statistics_structure_address); 1183 setbits32(remoder_register, REMODER_RX_RMON_STATISTICS_ENABLE); 1184 } 1185 1186 return 0; 1187 } 1188 1189 static int init_mac_station_addr_regs(u8 address_byte_0, 1190 u8 address_byte_1, 1191 u8 address_byte_2, 1192 u8 address_byte_3, 1193 u8 address_byte_4, 1194 u8 address_byte_5, 1195 u32 __iomem *macstnaddr1_register, 1196 u32 __iomem *macstnaddr2_register) 1197 { 1198 u32 value = 0; 1199 1200 /* Example: for a station address of 0x12345678ABCD, */ 1201 /* 0x12 is byte 0, 0x34 is byte 1 and so on and 0xCD is byte 5 */ 1202 1203 /* MACSTNADDR1 Register: */ 1204 1205 /* 0 7 8 15 */ 1206 /* station address byte 5 station address byte 4 */ 1207 /* 16 23 24 31 */ 1208 /* station address byte 3 station address byte 2 */ 1209 value |= (u32) ((address_byte_2 << 0) & 0x000000FF); 1210 value |= (u32) ((address_byte_3 << 8) & 0x0000FF00); 1211 value |= (u32) ((address_byte_4 << 16) & 0x00FF0000); 1212 value |= (u32) ((address_byte_5 << 24) & 0xFF000000); 1213 1214 out_be32(macstnaddr1_register, value); 1215 1216 /* MACSTNADDR2 Register: */ 1217 1218 /* 0 7 8 15 */ 1219 /* station address byte 1 station address byte 0 */ 1220 /* 16 23 24 31 */ 1221 /* reserved reserved */ 1222 value = 0; 1223 value |= (u32) ((address_byte_0 << 16) & 0x00FF0000); 1224 value |= (u32) ((address_byte_1 << 24) & 0xFF000000); 1225 1226 out_be32(macstnaddr2_register, value); 1227 1228 return 0; 1229 } 1230 1231 static int init_check_frame_length_mode(int length_check, 1232 u32 __iomem *maccfg2_register) 1233 { 1234 u32 value = 0; 1235 1236 value = in_be32(maccfg2_register); 1237 1238 if (length_check) 1239 value |= MACCFG2_LC; 1240 else 1241 value &= ~MACCFG2_LC; 1242 1243 out_be32(maccfg2_register, value); 1244 return 0; 1245 } 1246 1247 static int init_preamble_length(u8 preamble_length, 1248 u32 __iomem *maccfg2_register) 1249 { 1250 if ((preamble_length < 3) || (preamble_length > 7)) 1251 return -EINVAL; 1252 1253 clrsetbits_be32(maccfg2_register, MACCFG2_PREL_MASK, 1254 preamble_length << MACCFG2_PREL_SHIFT); 1255 1256 return 0; 1257 } 1258 1259 static int init_rx_parameters(int reject_broadcast, 1260 int receive_short_frames, 1261 int promiscuous, u32 __iomem *upsmr_register) 1262 { 1263 u32 value = 0; 1264 1265 value = in_be32(upsmr_register); 1266 1267 if (reject_broadcast) 1268 value |= UCC_GETH_UPSMR_BRO; 1269 else 1270 value &= ~UCC_GETH_UPSMR_BRO; 1271 1272 if (receive_short_frames) 1273 value |= UCC_GETH_UPSMR_RSH; 1274 else 1275 value &= ~UCC_GETH_UPSMR_RSH; 1276 1277 if (promiscuous) 1278 value |= UCC_GETH_UPSMR_PRO; 1279 else 1280 value &= ~UCC_GETH_UPSMR_PRO; 1281 1282 out_be32(upsmr_register, value); 1283 1284 return 0; 1285 } 1286 1287 static int init_max_rx_buff_len(u16 max_rx_buf_len, 1288 u16 __iomem *mrblr_register) 1289 { 1290 /* max_rx_buf_len value must be a multiple of 128 */ 1291 if ((max_rx_buf_len == 0) || 1292 (max_rx_buf_len % UCC_GETH_MRBLR_ALIGNMENT)) 1293 return -EINVAL; 1294 1295 out_be16(mrblr_register, max_rx_buf_len); 1296 return 0; 1297 } 1298 1299 static int init_min_frame_len(u16 min_frame_length, 1300 u16 __iomem *minflr_register, 1301 u16 __iomem *mrblr_register) 1302 { 1303 u16 mrblr_value = 0; 1304 1305 mrblr_value = in_be16(mrblr_register); 1306 if (min_frame_length >= (mrblr_value - 4)) 1307 return -EINVAL; 1308 1309 out_be16(minflr_register, min_frame_length); 1310 return 0; 1311 } 1312 1313 static int adjust_enet_interface(struct ucc_geth_private *ugeth) 1314 { 1315 struct ucc_geth_info *ug_info; 1316 struct ucc_geth __iomem *ug_regs; 1317 struct ucc_fast __iomem *uf_regs; 1318 int ret_val; 1319 u32 upsmr, maccfg2; 1320 u16 value; 1321 1322 ugeth_vdbg("%s: IN", __func__); 1323 1324 ug_info = ugeth->ug_info; 1325 ug_regs = ugeth->ug_regs; 1326 uf_regs = ugeth->uccf->uf_regs; 1327 1328 /* Set MACCFG2 */ 1329 maccfg2 = in_be32(&ug_regs->maccfg2); 1330 maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK; 1331 if ((ugeth->max_speed == SPEED_10) || 1332 (ugeth->max_speed == SPEED_100)) 1333 maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE; 1334 else if (ugeth->max_speed == SPEED_1000) 1335 maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE; 1336 maccfg2 |= ug_info->padAndCrc; 1337 out_be32(&ug_regs->maccfg2, maccfg2); 1338 1339 /* Set UPSMR */ 1340 upsmr = in_be32(&uf_regs->upsmr); 1341 upsmr &= ~(UCC_GETH_UPSMR_RPM | UCC_GETH_UPSMR_R10M | 1342 UCC_GETH_UPSMR_TBIM | UCC_GETH_UPSMR_RMM); 1343 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) || 1344 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) || 1345 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) || 1346 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1347 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) || 1348 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) { 1349 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RMII) 1350 upsmr |= UCC_GETH_UPSMR_RPM; 1351 switch (ugeth->max_speed) { 1352 case SPEED_10: 1353 upsmr |= UCC_GETH_UPSMR_R10M; 1354 /* FALLTHROUGH */ 1355 case SPEED_100: 1356 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RTBI) 1357 upsmr |= UCC_GETH_UPSMR_RMM; 1358 } 1359 } 1360 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) || 1361 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) { 1362 upsmr |= UCC_GETH_UPSMR_TBIM; 1363 } 1364 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_SGMII)) 1365 upsmr |= UCC_GETH_UPSMR_SGMM; 1366 1367 out_be32(&uf_regs->upsmr, upsmr); 1368 1369 /* Disable autonegotiation in tbi mode, because by default it 1370 comes up in autonegotiation mode. */ 1371 /* Note that this depends on proper setting in utbipar register. */ 1372 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) || 1373 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) { 1374 struct ucc_geth_info *ug_info = ugeth->ug_info; 1375 struct phy_device *tbiphy; 1376 1377 if (!ug_info->tbi_node) 1378 pr_warn("TBI mode requires that the device tree specify a tbi-handle\n"); 1379 1380 tbiphy = of_phy_find_device(ug_info->tbi_node); 1381 if (!tbiphy) 1382 pr_warn("Could not get TBI device\n"); 1383 1384 value = phy_read(tbiphy, ENET_TBI_MII_CR); 1385 value &= ~0x1000; /* Turn off autonegotiation */ 1386 phy_write(tbiphy, ENET_TBI_MII_CR, value); 1387 } 1388 1389 init_check_frame_length_mode(ug_info->lengthCheckRx, &ug_regs->maccfg2); 1390 1391 ret_val = init_preamble_length(ug_info->prel, &ug_regs->maccfg2); 1392 if (ret_val != 0) { 1393 if (netif_msg_probe(ugeth)) 1394 pr_err("Preamble length must be between 3 and 7 inclusive\n"); 1395 return ret_val; 1396 } 1397 1398 return 0; 1399 } 1400 1401 static int ugeth_graceful_stop_tx(struct ucc_geth_private *ugeth) 1402 { 1403 struct ucc_fast_private *uccf; 1404 u32 cecr_subblock; 1405 u32 temp; 1406 int i = 10; 1407 1408 uccf = ugeth->uccf; 1409 1410 /* Mask GRACEFUL STOP TX interrupt bit and clear it */ 1411 clrbits32(uccf->p_uccm, UCC_GETH_UCCE_GRA); 1412 out_be32(uccf->p_ucce, UCC_GETH_UCCE_GRA); /* clear by writing 1 */ 1413 1414 /* Issue host command */ 1415 cecr_subblock = 1416 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 1417 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock, 1418 QE_CR_PROTOCOL_ETHERNET, 0); 1419 1420 /* Wait for command to complete */ 1421 do { 1422 msleep(10); 1423 temp = in_be32(uccf->p_ucce); 1424 } while (!(temp & UCC_GETH_UCCE_GRA) && --i); 1425 1426 uccf->stopped_tx = 1; 1427 1428 return 0; 1429 } 1430 1431 static int ugeth_graceful_stop_rx(struct ucc_geth_private *ugeth) 1432 { 1433 struct ucc_fast_private *uccf; 1434 u32 cecr_subblock; 1435 u8 temp; 1436 int i = 10; 1437 1438 uccf = ugeth->uccf; 1439 1440 /* Clear acknowledge bit */ 1441 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack); 1442 temp &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX; 1443 out_8(&ugeth->p_rx_glbl_pram->rxgstpack, temp); 1444 1445 /* Keep issuing command and checking acknowledge bit until 1446 it is asserted, according to spec */ 1447 do { 1448 /* Issue host command */ 1449 cecr_subblock = 1450 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info. 1451 ucc_num); 1452 qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock, 1453 QE_CR_PROTOCOL_ETHERNET, 0); 1454 msleep(10); 1455 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack); 1456 } while (!(temp & GRACEFUL_STOP_ACKNOWLEDGE_RX) && --i); 1457 1458 uccf->stopped_rx = 1; 1459 1460 return 0; 1461 } 1462 1463 static int ugeth_restart_tx(struct ucc_geth_private *ugeth) 1464 { 1465 struct ucc_fast_private *uccf; 1466 u32 cecr_subblock; 1467 1468 uccf = ugeth->uccf; 1469 1470 cecr_subblock = 1471 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 1472 qe_issue_cmd(QE_RESTART_TX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 0); 1473 uccf->stopped_tx = 0; 1474 1475 return 0; 1476 } 1477 1478 static int ugeth_restart_rx(struct ucc_geth_private *ugeth) 1479 { 1480 struct ucc_fast_private *uccf; 1481 u32 cecr_subblock; 1482 1483 uccf = ugeth->uccf; 1484 1485 cecr_subblock = 1486 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 1487 qe_issue_cmd(QE_RESTART_RX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 1488 0); 1489 uccf->stopped_rx = 0; 1490 1491 return 0; 1492 } 1493 1494 static int ugeth_enable(struct ucc_geth_private *ugeth, enum comm_dir mode) 1495 { 1496 struct ucc_fast_private *uccf; 1497 int enabled_tx, enabled_rx; 1498 1499 uccf = ugeth->uccf; 1500 1501 /* check if the UCC number is in range. */ 1502 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) { 1503 if (netif_msg_probe(ugeth)) 1504 pr_err("ucc_num out of range\n"); 1505 return -EINVAL; 1506 } 1507 1508 enabled_tx = uccf->enabled_tx; 1509 enabled_rx = uccf->enabled_rx; 1510 1511 /* Get Tx and Rx going again, in case this channel was actively 1512 disabled. */ 1513 if ((mode & COMM_DIR_TX) && (!enabled_tx) && uccf->stopped_tx) 1514 ugeth_restart_tx(ugeth); 1515 if ((mode & COMM_DIR_RX) && (!enabled_rx) && uccf->stopped_rx) 1516 ugeth_restart_rx(ugeth); 1517 1518 ucc_fast_enable(uccf, mode); /* OK to do even if not disabled */ 1519 1520 return 0; 1521 1522 } 1523 1524 static int ugeth_disable(struct ucc_geth_private *ugeth, enum comm_dir mode) 1525 { 1526 struct ucc_fast_private *uccf; 1527 1528 uccf = ugeth->uccf; 1529 1530 /* check if the UCC number is in range. */ 1531 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) { 1532 if (netif_msg_probe(ugeth)) 1533 pr_err("ucc_num out of range\n"); 1534 return -EINVAL; 1535 } 1536 1537 /* Stop any transmissions */ 1538 if ((mode & COMM_DIR_TX) && uccf->enabled_tx && !uccf->stopped_tx) 1539 ugeth_graceful_stop_tx(ugeth); 1540 1541 /* Stop any receptions */ 1542 if ((mode & COMM_DIR_RX) && uccf->enabled_rx && !uccf->stopped_rx) 1543 ugeth_graceful_stop_rx(ugeth); 1544 1545 ucc_fast_disable(ugeth->uccf, mode); /* OK to do even if not enabled */ 1546 1547 return 0; 1548 } 1549 1550 static void ugeth_quiesce(struct ucc_geth_private *ugeth) 1551 { 1552 /* Prevent any further xmits, plus detach the device. */ 1553 netif_device_detach(ugeth->ndev); 1554 1555 /* Wait for any current xmits to finish. */ 1556 netif_tx_disable(ugeth->ndev); 1557 1558 /* Disable the interrupt to avoid NAPI rescheduling. */ 1559 disable_irq(ugeth->ug_info->uf_info.irq); 1560 1561 /* Stop NAPI, and possibly wait for its completion. */ 1562 napi_disable(&ugeth->napi); 1563 } 1564 1565 static void ugeth_activate(struct ucc_geth_private *ugeth) 1566 { 1567 napi_enable(&ugeth->napi); 1568 enable_irq(ugeth->ug_info->uf_info.irq); 1569 netif_device_attach(ugeth->ndev); 1570 } 1571 1572 /* Called every time the controller might need to be made 1573 * aware of new link state. The PHY code conveys this 1574 * information through variables in the ugeth structure, and this 1575 * function converts those variables into the appropriate 1576 * register values, and can bring down the device if needed. 1577 */ 1578 1579 static void adjust_link(struct net_device *dev) 1580 { 1581 struct ucc_geth_private *ugeth = netdev_priv(dev); 1582 struct ucc_geth __iomem *ug_regs; 1583 struct ucc_fast __iomem *uf_regs; 1584 struct phy_device *phydev = ugeth->phydev; 1585 int new_state = 0; 1586 1587 ug_regs = ugeth->ug_regs; 1588 uf_regs = ugeth->uccf->uf_regs; 1589 1590 if (phydev->link) { 1591 u32 tempval = in_be32(&ug_regs->maccfg2); 1592 u32 upsmr = in_be32(&uf_regs->upsmr); 1593 /* Now we make sure that we can be in full duplex mode. 1594 * If not, we operate in half-duplex mode. */ 1595 if (phydev->duplex != ugeth->oldduplex) { 1596 new_state = 1; 1597 if (!(phydev->duplex)) 1598 tempval &= ~(MACCFG2_FDX); 1599 else 1600 tempval |= MACCFG2_FDX; 1601 ugeth->oldduplex = phydev->duplex; 1602 } 1603 1604 if (phydev->speed != ugeth->oldspeed) { 1605 new_state = 1; 1606 switch (phydev->speed) { 1607 case SPEED_1000: 1608 tempval = ((tempval & 1609 ~(MACCFG2_INTERFACE_MODE_MASK)) | 1610 MACCFG2_INTERFACE_MODE_BYTE); 1611 break; 1612 case SPEED_100: 1613 case SPEED_10: 1614 tempval = ((tempval & 1615 ~(MACCFG2_INTERFACE_MODE_MASK)) | 1616 MACCFG2_INTERFACE_MODE_NIBBLE); 1617 /* if reduced mode, re-set UPSMR.R10M */ 1618 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) || 1619 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) || 1620 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) || 1621 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1622 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) || 1623 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) { 1624 if (phydev->speed == SPEED_10) 1625 upsmr |= UCC_GETH_UPSMR_R10M; 1626 else 1627 upsmr &= ~UCC_GETH_UPSMR_R10M; 1628 } 1629 break; 1630 default: 1631 if (netif_msg_link(ugeth)) 1632 pr_warn( 1633 "%s: Ack! Speed (%d) is not 10/100/1000!", 1634 dev->name, phydev->speed); 1635 break; 1636 } 1637 ugeth->oldspeed = phydev->speed; 1638 } 1639 1640 if (!ugeth->oldlink) { 1641 new_state = 1; 1642 ugeth->oldlink = 1; 1643 } 1644 1645 if (new_state) { 1646 /* 1647 * To change the MAC configuration we need to disable 1648 * the controller. To do so, we have to either grab 1649 * ugeth->lock, which is a bad idea since 'graceful 1650 * stop' commands might take quite a while, or we can 1651 * quiesce driver's activity. 1652 */ 1653 ugeth_quiesce(ugeth); 1654 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX); 1655 1656 out_be32(&ug_regs->maccfg2, tempval); 1657 out_be32(&uf_regs->upsmr, upsmr); 1658 1659 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX); 1660 ugeth_activate(ugeth); 1661 } 1662 } else if (ugeth->oldlink) { 1663 new_state = 1; 1664 ugeth->oldlink = 0; 1665 ugeth->oldspeed = 0; 1666 ugeth->oldduplex = -1; 1667 } 1668 1669 if (new_state && netif_msg_link(ugeth)) 1670 phy_print_status(phydev); 1671 } 1672 1673 /* Initialize TBI PHY interface for communicating with the 1674 * SERDES lynx PHY on the chip. We communicate with this PHY 1675 * through the MDIO bus on each controller, treating it as a 1676 * "normal" PHY at the address found in the UTBIPA register. We assume 1677 * that the UTBIPA register is valid. Either the MDIO bus code will set 1678 * it to a value that doesn't conflict with other PHYs on the bus, or the 1679 * value doesn't matter, as there are no other PHYs on the bus. 1680 */ 1681 static void uec_configure_serdes(struct net_device *dev) 1682 { 1683 struct ucc_geth_private *ugeth = netdev_priv(dev); 1684 struct ucc_geth_info *ug_info = ugeth->ug_info; 1685 struct phy_device *tbiphy; 1686 1687 if (!ug_info->tbi_node) { 1688 dev_warn(&dev->dev, "SGMII mode requires that the device " 1689 "tree specify a tbi-handle\n"); 1690 return; 1691 } 1692 1693 tbiphy = of_phy_find_device(ug_info->tbi_node); 1694 if (!tbiphy) { 1695 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1696 return; 1697 } 1698 1699 /* 1700 * If the link is already up, we must already be ok, and don't need to 1701 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1702 * everything for us? Resetting it takes the link down and requires 1703 * several seconds for it to come back. 1704 */ 1705 if (phy_read(tbiphy, ENET_TBI_MII_SR) & TBISR_LSTATUS) 1706 return; 1707 1708 /* Single clk mode, mii mode off(for serdes communication) */ 1709 phy_write(tbiphy, ENET_TBI_MII_ANA, TBIANA_SETTINGS); 1710 1711 phy_write(tbiphy, ENET_TBI_MII_TBICON, TBICON_CLK_SELECT); 1712 1713 phy_write(tbiphy, ENET_TBI_MII_CR, TBICR_SETTINGS); 1714 } 1715 1716 /* Configure the PHY for dev. 1717 * returns 0 if success. -1 if failure 1718 */ 1719 static int init_phy(struct net_device *dev) 1720 { 1721 struct ucc_geth_private *priv = netdev_priv(dev); 1722 struct ucc_geth_info *ug_info = priv->ug_info; 1723 struct phy_device *phydev; 1724 1725 priv->oldlink = 0; 1726 priv->oldspeed = 0; 1727 priv->oldduplex = -1; 1728 1729 phydev = of_phy_connect(dev, ug_info->phy_node, &adjust_link, 0, 1730 priv->phy_interface); 1731 if (!phydev) { 1732 dev_err(&dev->dev, "Could not attach to PHY\n"); 1733 return -ENODEV; 1734 } 1735 1736 if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII) 1737 uec_configure_serdes(dev); 1738 1739 phydev->supported &= (SUPPORTED_MII | 1740 SUPPORTED_Autoneg | 1741 ADVERTISED_10baseT_Half | 1742 ADVERTISED_10baseT_Full | 1743 ADVERTISED_100baseT_Half | 1744 ADVERTISED_100baseT_Full); 1745 1746 if (priv->max_speed == SPEED_1000) 1747 phydev->supported |= ADVERTISED_1000baseT_Full; 1748 1749 phydev->advertising = phydev->supported; 1750 1751 priv->phydev = phydev; 1752 1753 return 0; 1754 } 1755 1756 static void ugeth_dump_regs(struct ucc_geth_private *ugeth) 1757 { 1758 #ifdef DEBUG 1759 ucc_fast_dump_regs(ugeth->uccf); 1760 dump_regs(ugeth); 1761 dump_bds(ugeth); 1762 #endif 1763 } 1764 1765 static int ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private * 1766 ugeth, 1767 enum enet_addr_type 1768 enet_addr_type) 1769 { 1770 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 1771 struct ucc_fast_private *uccf; 1772 enum comm_dir comm_dir; 1773 struct list_head *p_lh; 1774 u16 i, num; 1775 u32 __iomem *addr_h; 1776 u32 __iomem *addr_l; 1777 u8 *p_counter; 1778 1779 uccf = ugeth->uccf; 1780 1781 p_82xx_addr_filt = 1782 (struct ucc_geth_82xx_address_filtering_pram __iomem *) 1783 ugeth->p_rx_glbl_pram->addressfiltering; 1784 1785 if (enet_addr_type == ENET_ADDR_TYPE_GROUP) { 1786 addr_h = &(p_82xx_addr_filt->gaddr_h); 1787 addr_l = &(p_82xx_addr_filt->gaddr_l); 1788 p_lh = &ugeth->group_hash_q; 1789 p_counter = &(ugeth->numGroupAddrInHash); 1790 } else if (enet_addr_type == ENET_ADDR_TYPE_INDIVIDUAL) { 1791 addr_h = &(p_82xx_addr_filt->iaddr_h); 1792 addr_l = &(p_82xx_addr_filt->iaddr_l); 1793 p_lh = &ugeth->ind_hash_q; 1794 p_counter = &(ugeth->numIndAddrInHash); 1795 } else 1796 return -EINVAL; 1797 1798 comm_dir = 0; 1799 if (uccf->enabled_tx) 1800 comm_dir |= COMM_DIR_TX; 1801 if (uccf->enabled_rx) 1802 comm_dir |= COMM_DIR_RX; 1803 if (comm_dir) 1804 ugeth_disable(ugeth, comm_dir); 1805 1806 /* Clear the hash table. */ 1807 out_be32(addr_h, 0x00000000); 1808 out_be32(addr_l, 0x00000000); 1809 1810 if (!p_lh) 1811 return 0; 1812 1813 num = *p_counter; 1814 1815 /* Delete all remaining CQ elements */ 1816 for (i = 0; i < num; i++) 1817 put_enet_addr_container(ENET_ADDR_CONT_ENTRY(dequeue(p_lh))); 1818 1819 *p_counter = 0; 1820 1821 if (comm_dir) 1822 ugeth_enable(ugeth, comm_dir); 1823 1824 return 0; 1825 } 1826 1827 static int ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private *ugeth, 1828 u8 paddr_num) 1829 { 1830 ugeth->indAddrRegUsed[paddr_num] = 0; /* mark this paddr as not used */ 1831 return hw_clear_addr_in_paddr(ugeth, paddr_num);/* clear in hardware */ 1832 } 1833 1834 static void ucc_geth_free_rx(struct ucc_geth_private *ugeth) 1835 { 1836 struct ucc_geth_info *ug_info; 1837 struct ucc_fast_info *uf_info; 1838 u16 i, j; 1839 u8 __iomem *bd; 1840 1841 1842 ug_info = ugeth->ug_info; 1843 uf_info = &ug_info->uf_info; 1844 1845 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) { 1846 if (ugeth->p_rx_bd_ring[i]) { 1847 /* Return existing data buffers in ring */ 1848 bd = ugeth->p_rx_bd_ring[i]; 1849 for (j = 0; j < ugeth->ug_info->bdRingLenRx[i]; j++) { 1850 if (ugeth->rx_skbuff[i][j]) { 1851 dma_unmap_single(ugeth->dev, 1852 in_be32(&((struct qe_bd __iomem *)bd)->buf), 1853 ugeth->ug_info-> 1854 uf_info.max_rx_buf_length + 1855 UCC_GETH_RX_DATA_BUF_ALIGNMENT, 1856 DMA_FROM_DEVICE); 1857 dev_kfree_skb_any( 1858 ugeth->rx_skbuff[i][j]); 1859 ugeth->rx_skbuff[i][j] = NULL; 1860 } 1861 bd += sizeof(struct qe_bd); 1862 } 1863 1864 kfree(ugeth->rx_skbuff[i]); 1865 1866 if (ugeth->ug_info->uf_info.bd_mem_part == 1867 MEM_PART_SYSTEM) 1868 kfree((void *)ugeth->rx_bd_ring_offset[i]); 1869 else if (ugeth->ug_info->uf_info.bd_mem_part == 1870 MEM_PART_MURAM) 1871 qe_muram_free(ugeth->rx_bd_ring_offset[i]); 1872 ugeth->p_rx_bd_ring[i] = NULL; 1873 } 1874 } 1875 1876 } 1877 1878 static void ucc_geth_free_tx(struct ucc_geth_private *ugeth) 1879 { 1880 struct ucc_geth_info *ug_info; 1881 struct ucc_fast_info *uf_info; 1882 u16 i, j; 1883 u8 __iomem *bd; 1884 1885 ug_info = ugeth->ug_info; 1886 uf_info = &ug_info->uf_info; 1887 1888 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) { 1889 bd = ugeth->p_tx_bd_ring[i]; 1890 if (!bd) 1891 continue; 1892 for (j = 0; j < ugeth->ug_info->bdRingLenTx[i]; j++) { 1893 if (ugeth->tx_skbuff[i][j]) { 1894 dma_unmap_single(ugeth->dev, 1895 in_be32(&((struct qe_bd __iomem *)bd)->buf), 1896 (in_be32((u32 __iomem *)bd) & 1897 BD_LENGTH_MASK), 1898 DMA_TO_DEVICE); 1899 dev_kfree_skb_any(ugeth->tx_skbuff[i][j]); 1900 ugeth->tx_skbuff[i][j] = NULL; 1901 } 1902 } 1903 1904 kfree(ugeth->tx_skbuff[i]); 1905 1906 if (ugeth->p_tx_bd_ring[i]) { 1907 if (ugeth->ug_info->uf_info.bd_mem_part == 1908 MEM_PART_SYSTEM) 1909 kfree((void *)ugeth->tx_bd_ring_offset[i]); 1910 else if (ugeth->ug_info->uf_info.bd_mem_part == 1911 MEM_PART_MURAM) 1912 qe_muram_free(ugeth->tx_bd_ring_offset[i]); 1913 ugeth->p_tx_bd_ring[i] = NULL; 1914 } 1915 } 1916 1917 } 1918 1919 static void ucc_geth_memclean(struct ucc_geth_private *ugeth) 1920 { 1921 if (!ugeth) 1922 return; 1923 1924 if (ugeth->uccf) { 1925 ucc_fast_free(ugeth->uccf); 1926 ugeth->uccf = NULL; 1927 } 1928 1929 if (ugeth->p_thread_data_tx) { 1930 qe_muram_free(ugeth->thread_dat_tx_offset); 1931 ugeth->p_thread_data_tx = NULL; 1932 } 1933 if (ugeth->p_thread_data_rx) { 1934 qe_muram_free(ugeth->thread_dat_rx_offset); 1935 ugeth->p_thread_data_rx = NULL; 1936 } 1937 if (ugeth->p_exf_glbl_param) { 1938 qe_muram_free(ugeth->exf_glbl_param_offset); 1939 ugeth->p_exf_glbl_param = NULL; 1940 } 1941 if (ugeth->p_rx_glbl_pram) { 1942 qe_muram_free(ugeth->rx_glbl_pram_offset); 1943 ugeth->p_rx_glbl_pram = NULL; 1944 } 1945 if (ugeth->p_tx_glbl_pram) { 1946 qe_muram_free(ugeth->tx_glbl_pram_offset); 1947 ugeth->p_tx_glbl_pram = NULL; 1948 } 1949 if (ugeth->p_send_q_mem_reg) { 1950 qe_muram_free(ugeth->send_q_mem_reg_offset); 1951 ugeth->p_send_q_mem_reg = NULL; 1952 } 1953 if (ugeth->p_scheduler) { 1954 qe_muram_free(ugeth->scheduler_offset); 1955 ugeth->p_scheduler = NULL; 1956 } 1957 if (ugeth->p_tx_fw_statistics_pram) { 1958 qe_muram_free(ugeth->tx_fw_statistics_pram_offset); 1959 ugeth->p_tx_fw_statistics_pram = NULL; 1960 } 1961 if (ugeth->p_rx_fw_statistics_pram) { 1962 qe_muram_free(ugeth->rx_fw_statistics_pram_offset); 1963 ugeth->p_rx_fw_statistics_pram = NULL; 1964 } 1965 if (ugeth->p_rx_irq_coalescing_tbl) { 1966 qe_muram_free(ugeth->rx_irq_coalescing_tbl_offset); 1967 ugeth->p_rx_irq_coalescing_tbl = NULL; 1968 } 1969 if (ugeth->p_rx_bd_qs_tbl) { 1970 qe_muram_free(ugeth->rx_bd_qs_tbl_offset); 1971 ugeth->p_rx_bd_qs_tbl = NULL; 1972 } 1973 if (ugeth->p_init_enet_param_shadow) { 1974 return_init_enet_entries(ugeth, 1975 &(ugeth->p_init_enet_param_shadow-> 1976 rxthread[0]), 1977 ENET_INIT_PARAM_MAX_ENTRIES_RX, 1978 ugeth->ug_info->riscRx, 1); 1979 return_init_enet_entries(ugeth, 1980 &(ugeth->p_init_enet_param_shadow-> 1981 txthread[0]), 1982 ENET_INIT_PARAM_MAX_ENTRIES_TX, 1983 ugeth->ug_info->riscTx, 0); 1984 kfree(ugeth->p_init_enet_param_shadow); 1985 ugeth->p_init_enet_param_shadow = NULL; 1986 } 1987 ucc_geth_free_tx(ugeth); 1988 ucc_geth_free_rx(ugeth); 1989 while (!list_empty(&ugeth->group_hash_q)) 1990 put_enet_addr_container(ENET_ADDR_CONT_ENTRY 1991 (dequeue(&ugeth->group_hash_q))); 1992 while (!list_empty(&ugeth->ind_hash_q)) 1993 put_enet_addr_container(ENET_ADDR_CONT_ENTRY 1994 (dequeue(&ugeth->ind_hash_q))); 1995 if (ugeth->ug_regs) { 1996 iounmap(ugeth->ug_regs); 1997 ugeth->ug_regs = NULL; 1998 } 1999 } 2000 2001 static void ucc_geth_set_multi(struct net_device *dev) 2002 { 2003 struct ucc_geth_private *ugeth; 2004 struct netdev_hw_addr *ha; 2005 struct ucc_fast __iomem *uf_regs; 2006 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 2007 2008 ugeth = netdev_priv(dev); 2009 2010 uf_regs = ugeth->uccf->uf_regs; 2011 2012 if (dev->flags & IFF_PROMISC) { 2013 setbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO); 2014 } else { 2015 clrbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO); 2016 2017 p_82xx_addr_filt = 2018 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth-> 2019 p_rx_glbl_pram->addressfiltering; 2020 2021 if (dev->flags & IFF_ALLMULTI) { 2022 /* Catch all multicast addresses, so set the 2023 * filter to all 1's. 2024 */ 2025 out_be32(&p_82xx_addr_filt->gaddr_h, 0xffffffff); 2026 out_be32(&p_82xx_addr_filt->gaddr_l, 0xffffffff); 2027 } else { 2028 /* Clear filter and add the addresses in the list. 2029 */ 2030 out_be32(&p_82xx_addr_filt->gaddr_h, 0x0); 2031 out_be32(&p_82xx_addr_filt->gaddr_l, 0x0); 2032 2033 netdev_for_each_mc_addr(ha, dev) { 2034 /* Ask CPM to run CRC and set bit in 2035 * filter mask. 2036 */ 2037 hw_add_addr_in_hash(ugeth, ha->addr); 2038 } 2039 } 2040 } 2041 } 2042 2043 static void ucc_geth_stop(struct ucc_geth_private *ugeth) 2044 { 2045 struct ucc_geth __iomem *ug_regs = ugeth->ug_regs; 2046 struct phy_device *phydev = ugeth->phydev; 2047 2048 ugeth_vdbg("%s: IN", __func__); 2049 2050 /* 2051 * Tell the kernel the link is down. 2052 * Must be done before disabling the controller 2053 * or deadlock may happen. 2054 */ 2055 phy_stop(phydev); 2056 2057 /* Disable the controller */ 2058 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX); 2059 2060 /* Mask all interrupts */ 2061 out_be32(ugeth->uccf->p_uccm, 0x00000000); 2062 2063 /* Clear all interrupts */ 2064 out_be32(ugeth->uccf->p_ucce, 0xffffffff); 2065 2066 /* Disable Rx and Tx */ 2067 clrbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX); 2068 2069 ucc_geth_memclean(ugeth); 2070 } 2071 2072 static int ucc_struct_init(struct ucc_geth_private *ugeth) 2073 { 2074 struct ucc_geth_info *ug_info; 2075 struct ucc_fast_info *uf_info; 2076 int i; 2077 2078 ug_info = ugeth->ug_info; 2079 uf_info = &ug_info->uf_info; 2080 2081 if (!((uf_info->bd_mem_part == MEM_PART_SYSTEM) || 2082 (uf_info->bd_mem_part == MEM_PART_MURAM))) { 2083 if (netif_msg_probe(ugeth)) 2084 pr_err("Bad memory partition value\n"); 2085 return -EINVAL; 2086 } 2087 2088 /* Rx BD lengths */ 2089 for (i = 0; i < ug_info->numQueuesRx; i++) { 2090 if ((ug_info->bdRingLenRx[i] < UCC_GETH_RX_BD_RING_SIZE_MIN) || 2091 (ug_info->bdRingLenRx[i] % 2092 UCC_GETH_RX_BD_RING_SIZE_ALIGNMENT)) { 2093 if (netif_msg_probe(ugeth)) 2094 pr_err("Rx BD ring length must be multiple of 4, no smaller than 8\n"); 2095 return -EINVAL; 2096 } 2097 } 2098 2099 /* Tx BD lengths */ 2100 for (i = 0; i < ug_info->numQueuesTx; i++) { 2101 if (ug_info->bdRingLenTx[i] < UCC_GETH_TX_BD_RING_SIZE_MIN) { 2102 if (netif_msg_probe(ugeth)) 2103 pr_err("Tx BD ring length must be no smaller than 2\n"); 2104 return -EINVAL; 2105 } 2106 } 2107 2108 /* mrblr */ 2109 if ((uf_info->max_rx_buf_length == 0) || 2110 (uf_info->max_rx_buf_length % UCC_GETH_MRBLR_ALIGNMENT)) { 2111 if (netif_msg_probe(ugeth)) 2112 pr_err("max_rx_buf_length must be non-zero multiple of 128\n"); 2113 return -EINVAL; 2114 } 2115 2116 /* num Tx queues */ 2117 if (ug_info->numQueuesTx > NUM_TX_QUEUES) { 2118 if (netif_msg_probe(ugeth)) 2119 pr_err("number of tx queues too large\n"); 2120 return -EINVAL; 2121 } 2122 2123 /* num Rx queues */ 2124 if (ug_info->numQueuesRx > NUM_RX_QUEUES) { 2125 if (netif_msg_probe(ugeth)) 2126 pr_err("number of rx queues too large\n"); 2127 return -EINVAL; 2128 } 2129 2130 /* l2qt */ 2131 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) { 2132 if (ug_info->l2qt[i] >= ug_info->numQueuesRx) { 2133 if (netif_msg_probe(ugeth)) 2134 pr_err("VLAN priority table entry must not be larger than number of Rx queues\n"); 2135 return -EINVAL; 2136 } 2137 } 2138 2139 /* l3qt */ 2140 for (i = 0; i < UCC_GETH_IP_PRIORITY_MAX; i++) { 2141 if (ug_info->l3qt[i] >= ug_info->numQueuesRx) { 2142 if (netif_msg_probe(ugeth)) 2143 pr_err("IP priority table entry must not be larger than number of Rx queues\n"); 2144 return -EINVAL; 2145 } 2146 } 2147 2148 if (ug_info->cam && !ug_info->ecamptr) { 2149 if (netif_msg_probe(ugeth)) 2150 pr_err("If cam mode is chosen, must supply cam ptr\n"); 2151 return -EINVAL; 2152 } 2153 2154 if ((ug_info->numStationAddresses != 2155 UCC_GETH_NUM_OF_STATION_ADDRESSES_1) && 2156 ug_info->rxExtendedFiltering) { 2157 if (netif_msg_probe(ugeth)) 2158 pr_err("Number of station addresses greater than 1 not allowed in extended parsing mode\n"); 2159 return -EINVAL; 2160 } 2161 2162 /* Generate uccm_mask for receive */ 2163 uf_info->uccm_mask = ug_info->eventRegMask & UCCE_OTHER;/* Errors */ 2164 for (i = 0; i < ug_info->numQueuesRx; i++) 2165 uf_info->uccm_mask |= (UCC_GETH_UCCE_RXF0 << i); 2166 2167 for (i = 0; i < ug_info->numQueuesTx; i++) 2168 uf_info->uccm_mask |= (UCC_GETH_UCCE_TXB0 << i); 2169 /* Initialize the general fast UCC block. */ 2170 if (ucc_fast_init(uf_info, &ugeth->uccf)) { 2171 if (netif_msg_probe(ugeth)) 2172 pr_err("Failed to init uccf\n"); 2173 return -ENOMEM; 2174 } 2175 2176 /* read the number of risc engines, update the riscTx and riscRx 2177 * if there are 4 riscs in QE 2178 */ 2179 if (qe_get_num_of_risc() == 4) { 2180 ug_info->riscTx = QE_RISC_ALLOCATION_FOUR_RISCS; 2181 ug_info->riscRx = QE_RISC_ALLOCATION_FOUR_RISCS; 2182 } 2183 2184 ugeth->ug_regs = ioremap(uf_info->regs, sizeof(*ugeth->ug_regs)); 2185 if (!ugeth->ug_regs) { 2186 if (netif_msg_probe(ugeth)) 2187 pr_err("Failed to ioremap regs\n"); 2188 return -ENOMEM; 2189 } 2190 2191 return 0; 2192 } 2193 2194 static int ucc_geth_alloc_tx(struct ucc_geth_private *ugeth) 2195 { 2196 struct ucc_geth_info *ug_info; 2197 struct ucc_fast_info *uf_info; 2198 int length; 2199 u16 i, j; 2200 u8 __iomem *bd; 2201 2202 ug_info = ugeth->ug_info; 2203 uf_info = &ug_info->uf_info; 2204 2205 /* Allocate Tx bds */ 2206 for (j = 0; j < ug_info->numQueuesTx; j++) { 2207 /* Allocate in multiple of 2208 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT, 2209 according to spec */ 2210 length = ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) 2211 / UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) 2212 * UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT; 2213 if ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) % 2214 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) 2215 length += UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT; 2216 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) { 2217 u32 align = 4; 2218 if (UCC_GETH_TX_BD_RING_ALIGNMENT > 4) 2219 align = UCC_GETH_TX_BD_RING_ALIGNMENT; 2220 ugeth->tx_bd_ring_offset[j] = 2221 (u32) kmalloc((u32) (length + align), GFP_KERNEL); 2222 2223 if (ugeth->tx_bd_ring_offset[j] != 0) 2224 ugeth->p_tx_bd_ring[j] = 2225 (u8 __iomem *)((ugeth->tx_bd_ring_offset[j] + 2226 align) & ~(align - 1)); 2227 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) { 2228 ugeth->tx_bd_ring_offset[j] = 2229 qe_muram_alloc(length, 2230 UCC_GETH_TX_BD_RING_ALIGNMENT); 2231 if (!IS_ERR_VALUE(ugeth->tx_bd_ring_offset[j])) 2232 ugeth->p_tx_bd_ring[j] = 2233 (u8 __iomem *) qe_muram_addr(ugeth-> 2234 tx_bd_ring_offset[j]); 2235 } 2236 if (!ugeth->p_tx_bd_ring[j]) { 2237 if (netif_msg_ifup(ugeth)) 2238 pr_err("Can not allocate memory for Tx bd rings\n"); 2239 return -ENOMEM; 2240 } 2241 /* Zero unused end of bd ring, according to spec */ 2242 memset_io((void __iomem *)(ugeth->p_tx_bd_ring[j] + 2243 ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)), 0, 2244 length - ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)); 2245 } 2246 2247 /* Init Tx bds */ 2248 for (j = 0; j < ug_info->numQueuesTx; j++) { 2249 /* Setup the skbuff rings */ 2250 ugeth->tx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) * 2251 ugeth->ug_info->bdRingLenTx[j], 2252 GFP_KERNEL); 2253 2254 if (ugeth->tx_skbuff[j] == NULL) { 2255 if (netif_msg_ifup(ugeth)) 2256 pr_err("Could not allocate tx_skbuff\n"); 2257 return -ENOMEM; 2258 } 2259 2260 for (i = 0; i < ugeth->ug_info->bdRingLenTx[j]; i++) 2261 ugeth->tx_skbuff[j][i] = NULL; 2262 2263 ugeth->skb_curtx[j] = ugeth->skb_dirtytx[j] = 0; 2264 bd = ugeth->confBd[j] = ugeth->txBd[j] = ugeth->p_tx_bd_ring[j]; 2265 for (i = 0; i < ug_info->bdRingLenTx[j]; i++) { 2266 /* clear bd buffer */ 2267 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0); 2268 /* set bd status and length */ 2269 out_be32((u32 __iomem *)bd, 0); 2270 bd += sizeof(struct qe_bd); 2271 } 2272 bd -= sizeof(struct qe_bd); 2273 /* set bd status and length */ 2274 out_be32((u32 __iomem *)bd, T_W); /* for last BD set Wrap bit */ 2275 } 2276 2277 return 0; 2278 } 2279 2280 static int ucc_geth_alloc_rx(struct ucc_geth_private *ugeth) 2281 { 2282 struct ucc_geth_info *ug_info; 2283 struct ucc_fast_info *uf_info; 2284 int length; 2285 u16 i, j; 2286 u8 __iomem *bd; 2287 2288 ug_info = ugeth->ug_info; 2289 uf_info = &ug_info->uf_info; 2290 2291 /* Allocate Rx bds */ 2292 for (j = 0; j < ug_info->numQueuesRx; j++) { 2293 length = ug_info->bdRingLenRx[j] * sizeof(struct qe_bd); 2294 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) { 2295 u32 align = 4; 2296 if (UCC_GETH_RX_BD_RING_ALIGNMENT > 4) 2297 align = UCC_GETH_RX_BD_RING_ALIGNMENT; 2298 ugeth->rx_bd_ring_offset[j] = 2299 (u32) kmalloc((u32) (length + align), GFP_KERNEL); 2300 if (ugeth->rx_bd_ring_offset[j] != 0) 2301 ugeth->p_rx_bd_ring[j] = 2302 (u8 __iomem *)((ugeth->rx_bd_ring_offset[j] + 2303 align) & ~(align - 1)); 2304 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) { 2305 ugeth->rx_bd_ring_offset[j] = 2306 qe_muram_alloc(length, 2307 UCC_GETH_RX_BD_RING_ALIGNMENT); 2308 if (!IS_ERR_VALUE(ugeth->rx_bd_ring_offset[j])) 2309 ugeth->p_rx_bd_ring[j] = 2310 (u8 __iomem *) qe_muram_addr(ugeth-> 2311 rx_bd_ring_offset[j]); 2312 } 2313 if (!ugeth->p_rx_bd_ring[j]) { 2314 if (netif_msg_ifup(ugeth)) 2315 pr_err("Can not allocate memory for Rx bd rings\n"); 2316 return -ENOMEM; 2317 } 2318 } 2319 2320 /* Init Rx bds */ 2321 for (j = 0; j < ug_info->numQueuesRx; j++) { 2322 /* Setup the skbuff rings */ 2323 ugeth->rx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) * 2324 ugeth->ug_info->bdRingLenRx[j], 2325 GFP_KERNEL); 2326 2327 if (ugeth->rx_skbuff[j] == NULL) { 2328 if (netif_msg_ifup(ugeth)) 2329 pr_err("Could not allocate rx_skbuff\n"); 2330 return -ENOMEM; 2331 } 2332 2333 for (i = 0; i < ugeth->ug_info->bdRingLenRx[j]; i++) 2334 ugeth->rx_skbuff[j][i] = NULL; 2335 2336 ugeth->skb_currx[j] = 0; 2337 bd = ugeth->rxBd[j] = ugeth->p_rx_bd_ring[j]; 2338 for (i = 0; i < ug_info->bdRingLenRx[j]; i++) { 2339 /* set bd status and length */ 2340 out_be32((u32 __iomem *)bd, R_I); 2341 /* clear bd buffer */ 2342 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0); 2343 bd += sizeof(struct qe_bd); 2344 } 2345 bd -= sizeof(struct qe_bd); 2346 /* set bd status and length */ 2347 out_be32((u32 __iomem *)bd, R_W); /* for last BD set Wrap bit */ 2348 } 2349 2350 return 0; 2351 } 2352 2353 static int ucc_geth_startup(struct ucc_geth_private *ugeth) 2354 { 2355 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 2356 struct ucc_geth_init_pram __iomem *p_init_enet_pram; 2357 struct ucc_fast_private *uccf; 2358 struct ucc_geth_info *ug_info; 2359 struct ucc_fast_info *uf_info; 2360 struct ucc_fast __iomem *uf_regs; 2361 struct ucc_geth __iomem *ug_regs; 2362 int ret_val = -EINVAL; 2363 u32 remoder = UCC_GETH_REMODER_INIT; 2364 u32 init_enet_pram_offset, cecr_subblock, command; 2365 u32 ifstat, i, j, size, l2qt, l3qt; 2366 u16 temoder = UCC_GETH_TEMODER_INIT; 2367 u16 test; 2368 u8 function_code = 0; 2369 u8 __iomem *endOfRing; 2370 u8 numThreadsRxNumerical, numThreadsTxNumerical; 2371 2372 ugeth_vdbg("%s: IN", __func__); 2373 uccf = ugeth->uccf; 2374 ug_info = ugeth->ug_info; 2375 uf_info = &ug_info->uf_info; 2376 uf_regs = uccf->uf_regs; 2377 ug_regs = ugeth->ug_regs; 2378 2379 switch (ug_info->numThreadsRx) { 2380 case UCC_GETH_NUM_OF_THREADS_1: 2381 numThreadsRxNumerical = 1; 2382 break; 2383 case UCC_GETH_NUM_OF_THREADS_2: 2384 numThreadsRxNumerical = 2; 2385 break; 2386 case UCC_GETH_NUM_OF_THREADS_4: 2387 numThreadsRxNumerical = 4; 2388 break; 2389 case UCC_GETH_NUM_OF_THREADS_6: 2390 numThreadsRxNumerical = 6; 2391 break; 2392 case UCC_GETH_NUM_OF_THREADS_8: 2393 numThreadsRxNumerical = 8; 2394 break; 2395 default: 2396 if (netif_msg_ifup(ugeth)) 2397 pr_err("Bad number of Rx threads value\n"); 2398 return -EINVAL; 2399 } 2400 2401 switch (ug_info->numThreadsTx) { 2402 case UCC_GETH_NUM_OF_THREADS_1: 2403 numThreadsTxNumerical = 1; 2404 break; 2405 case UCC_GETH_NUM_OF_THREADS_2: 2406 numThreadsTxNumerical = 2; 2407 break; 2408 case UCC_GETH_NUM_OF_THREADS_4: 2409 numThreadsTxNumerical = 4; 2410 break; 2411 case UCC_GETH_NUM_OF_THREADS_6: 2412 numThreadsTxNumerical = 6; 2413 break; 2414 case UCC_GETH_NUM_OF_THREADS_8: 2415 numThreadsTxNumerical = 8; 2416 break; 2417 default: 2418 if (netif_msg_ifup(ugeth)) 2419 pr_err("Bad number of Tx threads value\n"); 2420 return -EINVAL; 2421 } 2422 2423 /* Calculate rx_extended_features */ 2424 ugeth->rx_non_dynamic_extended_features = ug_info->ipCheckSumCheck || 2425 ug_info->ipAddressAlignment || 2426 (ug_info->numStationAddresses != 2427 UCC_GETH_NUM_OF_STATION_ADDRESSES_1); 2428 2429 ugeth->rx_extended_features = ugeth->rx_non_dynamic_extended_features || 2430 (ug_info->vlanOperationTagged != UCC_GETH_VLAN_OPERATION_TAGGED_NOP) || 2431 (ug_info->vlanOperationNonTagged != 2432 UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP); 2433 2434 init_default_reg_vals(&uf_regs->upsmr, 2435 &ug_regs->maccfg1, &ug_regs->maccfg2); 2436 2437 /* Set UPSMR */ 2438 /* For more details see the hardware spec. */ 2439 init_rx_parameters(ug_info->bro, 2440 ug_info->rsh, ug_info->pro, &uf_regs->upsmr); 2441 2442 /* We're going to ignore other registers for now, */ 2443 /* except as needed to get up and running */ 2444 2445 /* Set MACCFG1 */ 2446 /* For more details see the hardware spec. */ 2447 init_flow_control_params(ug_info->aufc, 2448 ug_info->receiveFlowControl, 2449 ug_info->transmitFlowControl, 2450 ug_info->pausePeriod, 2451 ug_info->extensionField, 2452 &uf_regs->upsmr, 2453 &ug_regs->uempr, &ug_regs->maccfg1); 2454 2455 setbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX); 2456 2457 /* Set IPGIFG */ 2458 /* For more details see the hardware spec. */ 2459 ret_val = init_inter_frame_gap_params(ug_info->nonBackToBackIfgPart1, 2460 ug_info->nonBackToBackIfgPart2, 2461 ug_info-> 2462 miminumInterFrameGapEnforcement, 2463 ug_info->backToBackInterFrameGap, 2464 &ug_regs->ipgifg); 2465 if (ret_val != 0) { 2466 if (netif_msg_ifup(ugeth)) 2467 pr_err("IPGIFG initialization parameter too large\n"); 2468 return ret_val; 2469 } 2470 2471 /* Set HAFDUP */ 2472 /* For more details see the hardware spec. */ 2473 ret_val = init_half_duplex_params(ug_info->altBeb, 2474 ug_info->backPressureNoBackoff, 2475 ug_info->noBackoff, 2476 ug_info->excessDefer, 2477 ug_info->altBebTruncation, 2478 ug_info->maxRetransmission, 2479 ug_info->collisionWindow, 2480 &ug_regs->hafdup); 2481 if (ret_val != 0) { 2482 if (netif_msg_ifup(ugeth)) 2483 pr_err("Half Duplex initialization parameter too large\n"); 2484 return ret_val; 2485 } 2486 2487 /* Set IFSTAT */ 2488 /* For more details see the hardware spec. */ 2489 /* Read only - resets upon read */ 2490 ifstat = in_be32(&ug_regs->ifstat); 2491 2492 /* Clear UEMPR */ 2493 /* For more details see the hardware spec. */ 2494 out_be32(&ug_regs->uempr, 0); 2495 2496 /* Set UESCR */ 2497 /* For more details see the hardware spec. */ 2498 init_hw_statistics_gathering_mode((ug_info->statisticsMode & 2499 UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE), 2500 0, &uf_regs->upsmr, &ug_regs->uescr); 2501 2502 ret_val = ucc_geth_alloc_tx(ugeth); 2503 if (ret_val != 0) 2504 return ret_val; 2505 2506 ret_val = ucc_geth_alloc_rx(ugeth); 2507 if (ret_val != 0) 2508 return ret_val; 2509 2510 /* 2511 * Global PRAM 2512 */ 2513 /* Tx global PRAM */ 2514 /* Allocate global tx parameter RAM page */ 2515 ugeth->tx_glbl_pram_offset = 2516 qe_muram_alloc(sizeof(struct ucc_geth_tx_global_pram), 2517 UCC_GETH_TX_GLOBAL_PRAM_ALIGNMENT); 2518 if (IS_ERR_VALUE(ugeth->tx_glbl_pram_offset)) { 2519 if (netif_msg_ifup(ugeth)) 2520 pr_err("Can not allocate DPRAM memory for p_tx_glbl_pram\n"); 2521 return -ENOMEM; 2522 } 2523 ugeth->p_tx_glbl_pram = 2524 (struct ucc_geth_tx_global_pram __iomem *) qe_muram_addr(ugeth-> 2525 tx_glbl_pram_offset); 2526 /* Zero out p_tx_glbl_pram */ 2527 memset_io((void __iomem *)ugeth->p_tx_glbl_pram, 0, sizeof(struct ucc_geth_tx_global_pram)); 2528 2529 /* Fill global PRAM */ 2530 2531 /* TQPTR */ 2532 /* Size varies with number of Tx threads */ 2533 ugeth->thread_dat_tx_offset = 2534 qe_muram_alloc(numThreadsTxNumerical * 2535 sizeof(struct ucc_geth_thread_data_tx) + 2536 32 * (numThreadsTxNumerical == 1), 2537 UCC_GETH_THREAD_DATA_ALIGNMENT); 2538 if (IS_ERR_VALUE(ugeth->thread_dat_tx_offset)) { 2539 if (netif_msg_ifup(ugeth)) 2540 pr_err("Can not allocate DPRAM memory for p_thread_data_tx\n"); 2541 return -ENOMEM; 2542 } 2543 2544 ugeth->p_thread_data_tx = 2545 (struct ucc_geth_thread_data_tx __iomem *) qe_muram_addr(ugeth-> 2546 thread_dat_tx_offset); 2547 out_be32(&ugeth->p_tx_glbl_pram->tqptr, ugeth->thread_dat_tx_offset); 2548 2549 /* vtagtable */ 2550 for (i = 0; i < UCC_GETH_TX_VTAG_TABLE_ENTRY_MAX; i++) 2551 out_be32(&ugeth->p_tx_glbl_pram->vtagtable[i], 2552 ug_info->vtagtable[i]); 2553 2554 /* iphoffset */ 2555 for (i = 0; i < TX_IP_OFFSET_ENTRY_MAX; i++) 2556 out_8(&ugeth->p_tx_glbl_pram->iphoffset[i], 2557 ug_info->iphoffset[i]); 2558 2559 /* SQPTR */ 2560 /* Size varies with number of Tx queues */ 2561 ugeth->send_q_mem_reg_offset = 2562 qe_muram_alloc(ug_info->numQueuesTx * 2563 sizeof(struct ucc_geth_send_queue_qd), 2564 UCC_GETH_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT); 2565 if (IS_ERR_VALUE(ugeth->send_q_mem_reg_offset)) { 2566 if (netif_msg_ifup(ugeth)) 2567 pr_err("Can not allocate DPRAM memory for p_send_q_mem_reg\n"); 2568 return -ENOMEM; 2569 } 2570 2571 ugeth->p_send_q_mem_reg = 2572 (struct ucc_geth_send_queue_mem_region __iomem *) qe_muram_addr(ugeth-> 2573 send_q_mem_reg_offset); 2574 out_be32(&ugeth->p_tx_glbl_pram->sqptr, ugeth->send_q_mem_reg_offset); 2575 2576 /* Setup the table */ 2577 /* Assume BD rings are already established */ 2578 for (i = 0; i < ug_info->numQueuesTx; i++) { 2579 endOfRing = 2580 ugeth->p_tx_bd_ring[i] + (ug_info->bdRingLenTx[i] - 2581 1) * sizeof(struct qe_bd); 2582 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) { 2583 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base, 2584 (u32) virt_to_phys(ugeth->p_tx_bd_ring[i])); 2585 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i]. 2586 last_bd_completed_address, 2587 (u32) virt_to_phys(endOfRing)); 2588 } else if (ugeth->ug_info->uf_info.bd_mem_part == 2589 MEM_PART_MURAM) { 2590 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base, 2591 (u32) immrbar_virt_to_phys(ugeth-> 2592 p_tx_bd_ring[i])); 2593 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i]. 2594 last_bd_completed_address, 2595 (u32) immrbar_virt_to_phys(endOfRing)); 2596 } 2597 } 2598 2599 /* schedulerbasepointer */ 2600 2601 if (ug_info->numQueuesTx > 1) { 2602 /* scheduler exists only if more than 1 tx queue */ 2603 ugeth->scheduler_offset = 2604 qe_muram_alloc(sizeof(struct ucc_geth_scheduler), 2605 UCC_GETH_SCHEDULER_ALIGNMENT); 2606 if (IS_ERR_VALUE(ugeth->scheduler_offset)) { 2607 if (netif_msg_ifup(ugeth)) 2608 pr_err("Can not allocate DPRAM memory for p_scheduler\n"); 2609 return -ENOMEM; 2610 } 2611 2612 ugeth->p_scheduler = 2613 (struct ucc_geth_scheduler __iomem *) qe_muram_addr(ugeth-> 2614 scheduler_offset); 2615 out_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer, 2616 ugeth->scheduler_offset); 2617 /* Zero out p_scheduler */ 2618 memset_io((void __iomem *)ugeth->p_scheduler, 0, sizeof(struct ucc_geth_scheduler)); 2619 2620 /* Set values in scheduler */ 2621 out_be32(&ugeth->p_scheduler->mblinterval, 2622 ug_info->mblinterval); 2623 out_be16(&ugeth->p_scheduler->nortsrbytetime, 2624 ug_info->nortsrbytetime); 2625 out_8(&ugeth->p_scheduler->fracsiz, ug_info->fracsiz); 2626 out_8(&ugeth->p_scheduler->strictpriorityq, 2627 ug_info->strictpriorityq); 2628 out_8(&ugeth->p_scheduler->txasap, ug_info->txasap); 2629 out_8(&ugeth->p_scheduler->extrabw, ug_info->extrabw); 2630 for (i = 0; i < NUM_TX_QUEUES; i++) 2631 out_8(&ugeth->p_scheduler->weightfactor[i], 2632 ug_info->weightfactor[i]); 2633 2634 /* Set pointers to cpucount registers in scheduler */ 2635 ugeth->p_cpucount[0] = &(ugeth->p_scheduler->cpucount0); 2636 ugeth->p_cpucount[1] = &(ugeth->p_scheduler->cpucount1); 2637 ugeth->p_cpucount[2] = &(ugeth->p_scheduler->cpucount2); 2638 ugeth->p_cpucount[3] = &(ugeth->p_scheduler->cpucount3); 2639 ugeth->p_cpucount[4] = &(ugeth->p_scheduler->cpucount4); 2640 ugeth->p_cpucount[5] = &(ugeth->p_scheduler->cpucount5); 2641 ugeth->p_cpucount[6] = &(ugeth->p_scheduler->cpucount6); 2642 ugeth->p_cpucount[7] = &(ugeth->p_scheduler->cpucount7); 2643 } 2644 2645 /* schedulerbasepointer */ 2646 /* TxRMON_PTR (statistics) */ 2647 if (ug_info-> 2648 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX) { 2649 ugeth->tx_fw_statistics_pram_offset = 2650 qe_muram_alloc(sizeof 2651 (struct ucc_geth_tx_firmware_statistics_pram), 2652 UCC_GETH_TX_STATISTICS_ALIGNMENT); 2653 if (IS_ERR_VALUE(ugeth->tx_fw_statistics_pram_offset)) { 2654 if (netif_msg_ifup(ugeth)) 2655 pr_err("Can not allocate DPRAM memory for p_tx_fw_statistics_pram\n"); 2656 return -ENOMEM; 2657 } 2658 ugeth->p_tx_fw_statistics_pram = 2659 (struct ucc_geth_tx_firmware_statistics_pram __iomem *) 2660 qe_muram_addr(ugeth->tx_fw_statistics_pram_offset); 2661 /* Zero out p_tx_fw_statistics_pram */ 2662 memset_io((void __iomem *)ugeth->p_tx_fw_statistics_pram, 2663 0, sizeof(struct ucc_geth_tx_firmware_statistics_pram)); 2664 } 2665 2666 /* temoder */ 2667 /* Already has speed set */ 2668 2669 if (ug_info->numQueuesTx > 1) 2670 temoder |= TEMODER_SCHEDULER_ENABLE; 2671 if (ug_info->ipCheckSumGenerate) 2672 temoder |= TEMODER_IP_CHECKSUM_GENERATE; 2673 temoder |= ((ug_info->numQueuesTx - 1) << TEMODER_NUM_OF_QUEUES_SHIFT); 2674 out_be16(&ugeth->p_tx_glbl_pram->temoder, temoder); 2675 2676 test = in_be16(&ugeth->p_tx_glbl_pram->temoder); 2677 2678 /* Function code register value to be used later */ 2679 function_code = UCC_BMR_BO_BE | UCC_BMR_GBL; 2680 /* Required for QE */ 2681 2682 /* function code register */ 2683 out_be32(&ugeth->p_tx_glbl_pram->tstate, ((u32) function_code) << 24); 2684 2685 /* Rx global PRAM */ 2686 /* Allocate global rx parameter RAM page */ 2687 ugeth->rx_glbl_pram_offset = 2688 qe_muram_alloc(sizeof(struct ucc_geth_rx_global_pram), 2689 UCC_GETH_RX_GLOBAL_PRAM_ALIGNMENT); 2690 if (IS_ERR_VALUE(ugeth->rx_glbl_pram_offset)) { 2691 if (netif_msg_ifup(ugeth)) 2692 pr_err("Can not allocate DPRAM memory for p_rx_glbl_pram\n"); 2693 return -ENOMEM; 2694 } 2695 ugeth->p_rx_glbl_pram = 2696 (struct ucc_geth_rx_global_pram __iomem *) qe_muram_addr(ugeth-> 2697 rx_glbl_pram_offset); 2698 /* Zero out p_rx_glbl_pram */ 2699 memset_io((void __iomem *)ugeth->p_rx_glbl_pram, 0, sizeof(struct ucc_geth_rx_global_pram)); 2700 2701 /* Fill global PRAM */ 2702 2703 /* RQPTR */ 2704 /* Size varies with number of Rx threads */ 2705 ugeth->thread_dat_rx_offset = 2706 qe_muram_alloc(numThreadsRxNumerical * 2707 sizeof(struct ucc_geth_thread_data_rx), 2708 UCC_GETH_THREAD_DATA_ALIGNMENT); 2709 if (IS_ERR_VALUE(ugeth->thread_dat_rx_offset)) { 2710 if (netif_msg_ifup(ugeth)) 2711 pr_err("Can not allocate DPRAM memory for p_thread_data_rx\n"); 2712 return -ENOMEM; 2713 } 2714 2715 ugeth->p_thread_data_rx = 2716 (struct ucc_geth_thread_data_rx __iomem *) qe_muram_addr(ugeth-> 2717 thread_dat_rx_offset); 2718 out_be32(&ugeth->p_rx_glbl_pram->rqptr, ugeth->thread_dat_rx_offset); 2719 2720 /* typeorlen */ 2721 out_be16(&ugeth->p_rx_glbl_pram->typeorlen, ug_info->typeorlen); 2722 2723 /* rxrmonbaseptr (statistics) */ 2724 if (ug_info-> 2725 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX) { 2726 ugeth->rx_fw_statistics_pram_offset = 2727 qe_muram_alloc(sizeof 2728 (struct ucc_geth_rx_firmware_statistics_pram), 2729 UCC_GETH_RX_STATISTICS_ALIGNMENT); 2730 if (IS_ERR_VALUE(ugeth->rx_fw_statistics_pram_offset)) { 2731 if (netif_msg_ifup(ugeth)) 2732 pr_err("Can not allocate DPRAM memory for p_rx_fw_statistics_pram\n"); 2733 return -ENOMEM; 2734 } 2735 ugeth->p_rx_fw_statistics_pram = 2736 (struct ucc_geth_rx_firmware_statistics_pram __iomem *) 2737 qe_muram_addr(ugeth->rx_fw_statistics_pram_offset); 2738 /* Zero out p_rx_fw_statistics_pram */ 2739 memset_io((void __iomem *)ugeth->p_rx_fw_statistics_pram, 0, 2740 sizeof(struct ucc_geth_rx_firmware_statistics_pram)); 2741 } 2742 2743 /* intCoalescingPtr */ 2744 2745 /* Size varies with number of Rx queues */ 2746 ugeth->rx_irq_coalescing_tbl_offset = 2747 qe_muram_alloc(ug_info->numQueuesRx * 2748 sizeof(struct ucc_geth_rx_interrupt_coalescing_entry) 2749 + 4, UCC_GETH_RX_INTERRUPT_COALESCING_ALIGNMENT); 2750 if (IS_ERR_VALUE(ugeth->rx_irq_coalescing_tbl_offset)) { 2751 if (netif_msg_ifup(ugeth)) 2752 pr_err("Can not allocate DPRAM memory for p_rx_irq_coalescing_tbl\n"); 2753 return -ENOMEM; 2754 } 2755 2756 ugeth->p_rx_irq_coalescing_tbl = 2757 (struct ucc_geth_rx_interrupt_coalescing_table __iomem *) 2758 qe_muram_addr(ugeth->rx_irq_coalescing_tbl_offset); 2759 out_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr, 2760 ugeth->rx_irq_coalescing_tbl_offset); 2761 2762 /* Fill interrupt coalescing table */ 2763 for (i = 0; i < ug_info->numQueuesRx; i++) { 2764 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i]. 2765 interruptcoalescingmaxvalue, 2766 ug_info->interruptcoalescingmaxvalue[i]); 2767 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i]. 2768 interruptcoalescingcounter, 2769 ug_info->interruptcoalescingmaxvalue[i]); 2770 } 2771 2772 /* MRBLR */ 2773 init_max_rx_buff_len(uf_info->max_rx_buf_length, 2774 &ugeth->p_rx_glbl_pram->mrblr); 2775 /* MFLR */ 2776 out_be16(&ugeth->p_rx_glbl_pram->mflr, ug_info->maxFrameLength); 2777 /* MINFLR */ 2778 init_min_frame_len(ug_info->minFrameLength, 2779 &ugeth->p_rx_glbl_pram->minflr, 2780 &ugeth->p_rx_glbl_pram->mrblr); 2781 /* MAXD1 */ 2782 out_be16(&ugeth->p_rx_glbl_pram->maxd1, ug_info->maxD1Length); 2783 /* MAXD2 */ 2784 out_be16(&ugeth->p_rx_glbl_pram->maxd2, ug_info->maxD2Length); 2785 2786 /* l2qt */ 2787 l2qt = 0; 2788 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) 2789 l2qt |= (ug_info->l2qt[i] << (28 - 4 * i)); 2790 out_be32(&ugeth->p_rx_glbl_pram->l2qt, l2qt); 2791 2792 /* l3qt */ 2793 for (j = 0; j < UCC_GETH_IP_PRIORITY_MAX; j += 8) { 2794 l3qt = 0; 2795 for (i = 0; i < 8; i++) 2796 l3qt |= (ug_info->l3qt[j + i] << (28 - 4 * i)); 2797 out_be32(&ugeth->p_rx_glbl_pram->l3qt[j/8], l3qt); 2798 } 2799 2800 /* vlantype */ 2801 out_be16(&ugeth->p_rx_glbl_pram->vlantype, ug_info->vlantype); 2802 2803 /* vlantci */ 2804 out_be16(&ugeth->p_rx_glbl_pram->vlantci, ug_info->vlantci); 2805 2806 /* ecamptr */ 2807 out_be32(&ugeth->p_rx_glbl_pram->ecamptr, ug_info->ecamptr); 2808 2809 /* RBDQPTR */ 2810 /* Size varies with number of Rx queues */ 2811 ugeth->rx_bd_qs_tbl_offset = 2812 qe_muram_alloc(ug_info->numQueuesRx * 2813 (sizeof(struct ucc_geth_rx_bd_queues_entry) + 2814 sizeof(struct ucc_geth_rx_prefetched_bds)), 2815 UCC_GETH_RX_BD_QUEUES_ALIGNMENT); 2816 if (IS_ERR_VALUE(ugeth->rx_bd_qs_tbl_offset)) { 2817 if (netif_msg_ifup(ugeth)) 2818 pr_err("Can not allocate DPRAM memory for p_rx_bd_qs_tbl\n"); 2819 return -ENOMEM; 2820 } 2821 2822 ugeth->p_rx_bd_qs_tbl = 2823 (struct ucc_geth_rx_bd_queues_entry __iomem *) qe_muram_addr(ugeth-> 2824 rx_bd_qs_tbl_offset); 2825 out_be32(&ugeth->p_rx_glbl_pram->rbdqptr, ugeth->rx_bd_qs_tbl_offset); 2826 /* Zero out p_rx_bd_qs_tbl */ 2827 memset_io((void __iomem *)ugeth->p_rx_bd_qs_tbl, 2828 0, 2829 ug_info->numQueuesRx * (sizeof(struct ucc_geth_rx_bd_queues_entry) + 2830 sizeof(struct ucc_geth_rx_prefetched_bds))); 2831 2832 /* Setup the table */ 2833 /* Assume BD rings are already established */ 2834 for (i = 0; i < ug_info->numQueuesRx; i++) { 2835 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) { 2836 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr, 2837 (u32) virt_to_phys(ugeth->p_rx_bd_ring[i])); 2838 } else if (ugeth->ug_info->uf_info.bd_mem_part == 2839 MEM_PART_MURAM) { 2840 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr, 2841 (u32) immrbar_virt_to_phys(ugeth-> 2842 p_rx_bd_ring[i])); 2843 } 2844 /* rest of fields handled by QE */ 2845 } 2846 2847 /* remoder */ 2848 /* Already has speed set */ 2849 2850 if (ugeth->rx_extended_features) 2851 remoder |= REMODER_RX_EXTENDED_FEATURES; 2852 if (ug_info->rxExtendedFiltering) 2853 remoder |= REMODER_RX_EXTENDED_FILTERING; 2854 if (ug_info->dynamicMaxFrameLength) 2855 remoder |= REMODER_DYNAMIC_MAX_FRAME_LENGTH; 2856 if (ug_info->dynamicMinFrameLength) 2857 remoder |= REMODER_DYNAMIC_MIN_FRAME_LENGTH; 2858 remoder |= 2859 ug_info->vlanOperationTagged << REMODER_VLAN_OPERATION_TAGGED_SHIFT; 2860 remoder |= 2861 ug_info-> 2862 vlanOperationNonTagged << REMODER_VLAN_OPERATION_NON_TAGGED_SHIFT; 2863 remoder |= ug_info->rxQoSMode << REMODER_RX_QOS_MODE_SHIFT; 2864 remoder |= ((ug_info->numQueuesRx - 1) << REMODER_NUM_OF_QUEUES_SHIFT); 2865 if (ug_info->ipCheckSumCheck) 2866 remoder |= REMODER_IP_CHECKSUM_CHECK; 2867 if (ug_info->ipAddressAlignment) 2868 remoder |= REMODER_IP_ADDRESS_ALIGNMENT; 2869 out_be32(&ugeth->p_rx_glbl_pram->remoder, remoder); 2870 2871 /* Note that this function must be called */ 2872 /* ONLY AFTER p_tx_fw_statistics_pram */ 2873 /* andp_UccGethRxFirmwareStatisticsPram are allocated ! */ 2874 init_firmware_statistics_gathering_mode((ug_info-> 2875 statisticsMode & 2876 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX), 2877 (ug_info->statisticsMode & 2878 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX), 2879 &ugeth->p_tx_glbl_pram->txrmonbaseptr, 2880 ugeth->tx_fw_statistics_pram_offset, 2881 &ugeth->p_rx_glbl_pram->rxrmonbaseptr, 2882 ugeth->rx_fw_statistics_pram_offset, 2883 &ugeth->p_tx_glbl_pram->temoder, 2884 &ugeth->p_rx_glbl_pram->remoder); 2885 2886 /* function code register */ 2887 out_8(&ugeth->p_rx_glbl_pram->rstate, function_code); 2888 2889 /* initialize extended filtering */ 2890 if (ug_info->rxExtendedFiltering) { 2891 if (!ug_info->extendedFilteringChainPointer) { 2892 if (netif_msg_ifup(ugeth)) 2893 pr_err("Null Extended Filtering Chain Pointer\n"); 2894 return -EINVAL; 2895 } 2896 2897 /* Allocate memory for extended filtering Mode Global 2898 Parameters */ 2899 ugeth->exf_glbl_param_offset = 2900 qe_muram_alloc(sizeof(struct ucc_geth_exf_global_pram), 2901 UCC_GETH_RX_EXTENDED_FILTERING_GLOBAL_PARAMETERS_ALIGNMENT); 2902 if (IS_ERR_VALUE(ugeth->exf_glbl_param_offset)) { 2903 if (netif_msg_ifup(ugeth)) 2904 pr_err("Can not allocate DPRAM memory for p_exf_glbl_param\n"); 2905 return -ENOMEM; 2906 } 2907 2908 ugeth->p_exf_glbl_param = 2909 (struct ucc_geth_exf_global_pram __iomem *) qe_muram_addr(ugeth-> 2910 exf_glbl_param_offset); 2911 out_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam, 2912 ugeth->exf_glbl_param_offset); 2913 out_be32(&ugeth->p_exf_glbl_param->l2pcdptr, 2914 (u32) ug_info->extendedFilteringChainPointer); 2915 2916 } else { /* initialize 82xx style address filtering */ 2917 2918 /* Init individual address recognition registers to disabled */ 2919 2920 for (j = 0; j < NUM_OF_PADDRS; j++) 2921 ugeth_82xx_filtering_clear_addr_in_paddr(ugeth, (u8) j); 2922 2923 p_82xx_addr_filt = 2924 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth-> 2925 p_rx_glbl_pram->addressfiltering; 2926 2927 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth, 2928 ENET_ADDR_TYPE_GROUP); 2929 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth, 2930 ENET_ADDR_TYPE_INDIVIDUAL); 2931 } 2932 2933 /* 2934 * Initialize UCC at QE level 2935 */ 2936 2937 command = QE_INIT_TX_RX; 2938 2939 /* Allocate shadow InitEnet command parameter structure. 2940 * This is needed because after the InitEnet command is executed, 2941 * the structure in DPRAM is released, because DPRAM is a premium 2942 * resource. 2943 * This shadow structure keeps a copy of what was done so that the 2944 * allocated resources can be released when the channel is freed. 2945 */ 2946 if (!(ugeth->p_init_enet_param_shadow = 2947 kmalloc(sizeof(struct ucc_geth_init_pram), GFP_KERNEL))) { 2948 if (netif_msg_ifup(ugeth)) 2949 pr_err("Can not allocate memory for p_UccInitEnetParamShadows\n"); 2950 return -ENOMEM; 2951 } 2952 /* Zero out *p_init_enet_param_shadow */ 2953 memset((char *)ugeth->p_init_enet_param_shadow, 2954 0, sizeof(struct ucc_geth_init_pram)); 2955 2956 /* Fill shadow InitEnet command parameter structure */ 2957 2958 ugeth->p_init_enet_param_shadow->resinit1 = 2959 ENET_INIT_PARAM_MAGIC_RES_INIT1; 2960 ugeth->p_init_enet_param_shadow->resinit2 = 2961 ENET_INIT_PARAM_MAGIC_RES_INIT2; 2962 ugeth->p_init_enet_param_shadow->resinit3 = 2963 ENET_INIT_PARAM_MAGIC_RES_INIT3; 2964 ugeth->p_init_enet_param_shadow->resinit4 = 2965 ENET_INIT_PARAM_MAGIC_RES_INIT4; 2966 ugeth->p_init_enet_param_shadow->resinit5 = 2967 ENET_INIT_PARAM_MAGIC_RES_INIT5; 2968 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |= 2969 ((u32) ug_info->numThreadsRx) << ENET_INIT_PARAM_RGF_SHIFT; 2970 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |= 2971 ((u32) ug_info->numThreadsTx) << ENET_INIT_PARAM_TGF_SHIFT; 2972 2973 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |= 2974 ugeth->rx_glbl_pram_offset | ug_info->riscRx; 2975 if ((ug_info->largestexternallookupkeysize != 2976 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE) && 2977 (ug_info->largestexternallookupkeysize != 2978 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) && 2979 (ug_info->largestexternallookupkeysize != 2980 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)) { 2981 if (netif_msg_ifup(ugeth)) 2982 pr_err("Invalid largest External Lookup Key Size\n"); 2983 return -EINVAL; 2984 } 2985 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize = 2986 ug_info->largestexternallookupkeysize; 2987 size = sizeof(struct ucc_geth_thread_rx_pram); 2988 if (ug_info->rxExtendedFiltering) { 2989 size += THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING; 2990 if (ug_info->largestexternallookupkeysize == 2991 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) 2992 size += 2993 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8; 2994 if (ug_info->largestexternallookupkeysize == 2995 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES) 2996 size += 2997 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16; 2998 } 2999 3000 if ((ret_val = fill_init_enet_entries(ugeth, &(ugeth-> 3001 p_init_enet_param_shadow->rxthread[0]), 3002 (u8) (numThreadsRxNumerical + 1) 3003 /* Rx needs one extra for terminator */ 3004 , size, UCC_GETH_THREAD_RX_PRAM_ALIGNMENT, 3005 ug_info->riscRx, 1)) != 0) { 3006 if (netif_msg_ifup(ugeth)) 3007 pr_err("Can not fill p_init_enet_param_shadow\n"); 3008 return ret_val; 3009 } 3010 3011 ugeth->p_init_enet_param_shadow->txglobal = 3012 ugeth->tx_glbl_pram_offset | ug_info->riscTx; 3013 if ((ret_val = 3014 fill_init_enet_entries(ugeth, 3015 &(ugeth->p_init_enet_param_shadow-> 3016 txthread[0]), numThreadsTxNumerical, 3017 sizeof(struct ucc_geth_thread_tx_pram), 3018 UCC_GETH_THREAD_TX_PRAM_ALIGNMENT, 3019 ug_info->riscTx, 0)) != 0) { 3020 if (netif_msg_ifup(ugeth)) 3021 pr_err("Can not fill p_init_enet_param_shadow\n"); 3022 return ret_val; 3023 } 3024 3025 /* Load Rx bds with buffers */ 3026 for (i = 0; i < ug_info->numQueuesRx; i++) { 3027 if ((ret_val = rx_bd_buffer_set(ugeth, (u8) i)) != 0) { 3028 if (netif_msg_ifup(ugeth)) 3029 pr_err("Can not fill Rx bds with buffers\n"); 3030 return ret_val; 3031 } 3032 } 3033 3034 /* Allocate InitEnet command parameter structure */ 3035 init_enet_pram_offset = qe_muram_alloc(sizeof(struct ucc_geth_init_pram), 4); 3036 if (IS_ERR_VALUE(init_enet_pram_offset)) { 3037 if (netif_msg_ifup(ugeth)) 3038 pr_err("Can not allocate DPRAM memory for p_init_enet_pram\n"); 3039 return -ENOMEM; 3040 } 3041 p_init_enet_pram = 3042 (struct ucc_geth_init_pram __iomem *) qe_muram_addr(init_enet_pram_offset); 3043 3044 /* Copy shadow InitEnet command parameter structure into PRAM */ 3045 out_8(&p_init_enet_pram->resinit1, 3046 ugeth->p_init_enet_param_shadow->resinit1); 3047 out_8(&p_init_enet_pram->resinit2, 3048 ugeth->p_init_enet_param_shadow->resinit2); 3049 out_8(&p_init_enet_pram->resinit3, 3050 ugeth->p_init_enet_param_shadow->resinit3); 3051 out_8(&p_init_enet_pram->resinit4, 3052 ugeth->p_init_enet_param_shadow->resinit4); 3053 out_be16(&p_init_enet_pram->resinit5, 3054 ugeth->p_init_enet_param_shadow->resinit5); 3055 out_8(&p_init_enet_pram->largestexternallookupkeysize, 3056 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize); 3057 out_be32(&p_init_enet_pram->rgftgfrxglobal, 3058 ugeth->p_init_enet_param_shadow->rgftgfrxglobal); 3059 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_RX; i++) 3060 out_be32(&p_init_enet_pram->rxthread[i], 3061 ugeth->p_init_enet_param_shadow->rxthread[i]); 3062 out_be32(&p_init_enet_pram->txglobal, 3063 ugeth->p_init_enet_param_shadow->txglobal); 3064 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_TX; i++) 3065 out_be32(&p_init_enet_pram->txthread[i], 3066 ugeth->p_init_enet_param_shadow->txthread[i]); 3067 3068 /* Issue QE command */ 3069 cecr_subblock = 3070 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 3071 qe_issue_cmd(command, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 3072 init_enet_pram_offset); 3073 3074 /* Free InitEnet command parameter */ 3075 qe_muram_free(init_enet_pram_offset); 3076 3077 return 0; 3078 } 3079 3080 /* This is called by the kernel when a frame is ready for transmission. */ 3081 /* It is pointed to by the dev->hard_start_xmit function pointer */ 3082 static int ucc_geth_start_xmit(struct sk_buff *skb, struct net_device *dev) 3083 { 3084 struct ucc_geth_private *ugeth = netdev_priv(dev); 3085 #ifdef CONFIG_UGETH_TX_ON_DEMAND 3086 struct ucc_fast_private *uccf; 3087 #endif 3088 u8 __iomem *bd; /* BD pointer */ 3089 u32 bd_status; 3090 u8 txQ = 0; 3091 unsigned long flags; 3092 3093 ugeth_vdbg("%s: IN", __func__); 3094 3095 spin_lock_irqsave(&ugeth->lock, flags); 3096 3097 dev->stats.tx_bytes += skb->len; 3098 3099 /* Start from the next BD that should be filled */ 3100 bd = ugeth->txBd[txQ]; 3101 bd_status = in_be32((u32 __iomem *)bd); 3102 /* Save the skb pointer so we can free it later */ 3103 ugeth->tx_skbuff[txQ][ugeth->skb_curtx[txQ]] = skb; 3104 3105 /* Update the current skb pointer (wrapping if this was the last) */ 3106 ugeth->skb_curtx[txQ] = 3107 (ugeth->skb_curtx[txQ] + 3108 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]); 3109 3110 /* set up the buffer descriptor */ 3111 out_be32(&((struct qe_bd __iomem *)bd)->buf, 3112 dma_map_single(ugeth->dev, skb->data, 3113 skb->len, DMA_TO_DEVICE)); 3114 3115 /* printk(KERN_DEBUG"skb->data is 0x%x\n",skb->data); */ 3116 3117 bd_status = (bd_status & T_W) | T_R | T_I | T_L | skb->len; 3118 3119 /* set bd status and length */ 3120 out_be32((u32 __iomem *)bd, bd_status); 3121 3122 /* Move to next BD in the ring */ 3123 if (!(bd_status & T_W)) 3124 bd += sizeof(struct qe_bd); 3125 else 3126 bd = ugeth->p_tx_bd_ring[txQ]; 3127 3128 /* If the next BD still needs to be cleaned up, then the bds 3129 are full. We need to tell the kernel to stop sending us stuff. */ 3130 if (bd == ugeth->confBd[txQ]) { 3131 if (!netif_queue_stopped(dev)) 3132 netif_stop_queue(dev); 3133 } 3134 3135 ugeth->txBd[txQ] = bd; 3136 3137 skb_tx_timestamp(skb); 3138 3139 if (ugeth->p_scheduler) { 3140 ugeth->cpucount[txQ]++; 3141 /* Indicate to QE that there are more Tx bds ready for 3142 transmission */ 3143 /* This is done by writing a running counter of the bd 3144 count to the scheduler PRAM. */ 3145 out_be16(ugeth->p_cpucount[txQ], ugeth->cpucount[txQ]); 3146 } 3147 3148 #ifdef CONFIG_UGETH_TX_ON_DEMAND 3149 uccf = ugeth->uccf; 3150 out_be16(uccf->p_utodr, UCC_FAST_TOD); 3151 #endif 3152 spin_unlock_irqrestore(&ugeth->lock, flags); 3153 3154 return NETDEV_TX_OK; 3155 } 3156 3157 static int ucc_geth_rx(struct ucc_geth_private *ugeth, u8 rxQ, int rx_work_limit) 3158 { 3159 struct sk_buff *skb; 3160 u8 __iomem *bd; 3161 u16 length, howmany = 0; 3162 u32 bd_status; 3163 u8 *bdBuffer; 3164 struct net_device *dev; 3165 3166 ugeth_vdbg("%s: IN", __func__); 3167 3168 dev = ugeth->ndev; 3169 3170 /* collect received buffers */ 3171 bd = ugeth->rxBd[rxQ]; 3172 3173 bd_status = in_be32((u32 __iomem *)bd); 3174 3175 /* while there are received buffers and BD is full (~R_E) */ 3176 while (!((bd_status & (R_E)) || (--rx_work_limit < 0))) { 3177 bdBuffer = (u8 *) in_be32(&((struct qe_bd __iomem *)bd)->buf); 3178 length = (u16) ((bd_status & BD_LENGTH_MASK) - 4); 3179 skb = ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]]; 3180 3181 /* determine whether buffer is first, last, first and last 3182 (single buffer frame) or middle (not first and not last) */ 3183 if (!skb || 3184 (!(bd_status & (R_F | R_L))) || 3185 (bd_status & R_ERRORS_FATAL)) { 3186 if (netif_msg_rx_err(ugeth)) 3187 pr_err("%d: ERROR!!! skb - 0x%08x\n", 3188 __LINE__, (u32)skb); 3189 dev_kfree_skb(skb); 3190 3191 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = NULL; 3192 dev->stats.rx_dropped++; 3193 } else { 3194 dev->stats.rx_packets++; 3195 howmany++; 3196 3197 /* Prep the skb for the packet */ 3198 skb_put(skb, length); 3199 3200 /* Tell the skb what kind of packet this is */ 3201 skb->protocol = eth_type_trans(skb, ugeth->ndev); 3202 3203 dev->stats.rx_bytes += length; 3204 /* Send the packet up the stack */ 3205 netif_receive_skb(skb); 3206 } 3207 3208 skb = get_new_skb(ugeth, bd); 3209 if (!skb) { 3210 if (netif_msg_rx_err(ugeth)) 3211 pr_warn("No Rx Data Buffer\n"); 3212 dev->stats.rx_dropped++; 3213 break; 3214 } 3215 3216 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = skb; 3217 3218 /* update to point at the next skb */ 3219 ugeth->skb_currx[rxQ] = 3220 (ugeth->skb_currx[rxQ] + 3221 1) & RX_RING_MOD_MASK(ugeth->ug_info->bdRingLenRx[rxQ]); 3222 3223 if (bd_status & R_W) 3224 bd = ugeth->p_rx_bd_ring[rxQ]; 3225 else 3226 bd += sizeof(struct qe_bd); 3227 3228 bd_status = in_be32((u32 __iomem *)bd); 3229 } 3230 3231 ugeth->rxBd[rxQ] = bd; 3232 return howmany; 3233 } 3234 3235 static int ucc_geth_tx(struct net_device *dev, u8 txQ) 3236 { 3237 /* Start from the next BD that should be filled */ 3238 struct ucc_geth_private *ugeth = netdev_priv(dev); 3239 u8 __iomem *bd; /* BD pointer */ 3240 u32 bd_status; 3241 3242 bd = ugeth->confBd[txQ]; 3243 bd_status = in_be32((u32 __iomem *)bd); 3244 3245 /* Normal processing. */ 3246 while ((bd_status & T_R) == 0) { 3247 struct sk_buff *skb; 3248 3249 /* BD contains already transmitted buffer. */ 3250 /* Handle the transmitted buffer and release */ 3251 /* the BD to be used with the current frame */ 3252 3253 skb = ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]]; 3254 if (!skb) 3255 break; 3256 3257 dev->stats.tx_packets++; 3258 3259 dev_consume_skb_any(skb); 3260 3261 ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]] = NULL; 3262 ugeth->skb_dirtytx[txQ] = 3263 (ugeth->skb_dirtytx[txQ] + 3264 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]); 3265 3266 /* We freed a buffer, so now we can restart transmission */ 3267 if (netif_queue_stopped(dev)) 3268 netif_wake_queue(dev); 3269 3270 /* Advance the confirmation BD pointer */ 3271 if (!(bd_status & T_W)) 3272 bd += sizeof(struct qe_bd); 3273 else 3274 bd = ugeth->p_tx_bd_ring[txQ]; 3275 bd_status = in_be32((u32 __iomem *)bd); 3276 } 3277 ugeth->confBd[txQ] = bd; 3278 return 0; 3279 } 3280 3281 static int ucc_geth_poll(struct napi_struct *napi, int budget) 3282 { 3283 struct ucc_geth_private *ugeth = container_of(napi, struct ucc_geth_private, napi); 3284 struct ucc_geth_info *ug_info; 3285 int howmany, i; 3286 3287 ug_info = ugeth->ug_info; 3288 3289 /* Tx event processing */ 3290 spin_lock(&ugeth->lock); 3291 for (i = 0; i < ug_info->numQueuesTx; i++) 3292 ucc_geth_tx(ugeth->ndev, i); 3293 spin_unlock(&ugeth->lock); 3294 3295 howmany = 0; 3296 for (i = 0; i < ug_info->numQueuesRx; i++) 3297 howmany += ucc_geth_rx(ugeth, i, budget - howmany); 3298 3299 if (howmany < budget) { 3300 napi_complete(napi); 3301 setbits32(ugeth->uccf->p_uccm, UCCE_RX_EVENTS | UCCE_TX_EVENTS); 3302 } 3303 3304 return howmany; 3305 } 3306 3307 static irqreturn_t ucc_geth_irq_handler(int irq, void *info) 3308 { 3309 struct net_device *dev = info; 3310 struct ucc_geth_private *ugeth = netdev_priv(dev); 3311 struct ucc_fast_private *uccf; 3312 struct ucc_geth_info *ug_info; 3313 register u32 ucce; 3314 register u32 uccm; 3315 3316 ugeth_vdbg("%s: IN", __func__); 3317 3318 uccf = ugeth->uccf; 3319 ug_info = ugeth->ug_info; 3320 3321 /* read and clear events */ 3322 ucce = (u32) in_be32(uccf->p_ucce); 3323 uccm = (u32) in_be32(uccf->p_uccm); 3324 ucce &= uccm; 3325 out_be32(uccf->p_ucce, ucce); 3326 3327 /* check for receive events that require processing */ 3328 if (ucce & (UCCE_RX_EVENTS | UCCE_TX_EVENTS)) { 3329 if (napi_schedule_prep(&ugeth->napi)) { 3330 uccm &= ~(UCCE_RX_EVENTS | UCCE_TX_EVENTS); 3331 out_be32(uccf->p_uccm, uccm); 3332 __napi_schedule(&ugeth->napi); 3333 } 3334 } 3335 3336 /* Errors and other events */ 3337 if (ucce & UCCE_OTHER) { 3338 if (ucce & UCC_GETH_UCCE_BSY) 3339 dev->stats.rx_errors++; 3340 if (ucce & UCC_GETH_UCCE_TXE) 3341 dev->stats.tx_errors++; 3342 } 3343 3344 return IRQ_HANDLED; 3345 } 3346 3347 #ifdef CONFIG_NET_POLL_CONTROLLER 3348 /* 3349 * Polling 'interrupt' - used by things like netconsole to send skbs 3350 * without having to re-enable interrupts. It's not called while 3351 * the interrupt routine is executing. 3352 */ 3353 static void ucc_netpoll(struct net_device *dev) 3354 { 3355 struct ucc_geth_private *ugeth = netdev_priv(dev); 3356 int irq = ugeth->ug_info->uf_info.irq; 3357 3358 disable_irq(irq); 3359 ucc_geth_irq_handler(irq, dev); 3360 enable_irq(irq); 3361 } 3362 #endif /* CONFIG_NET_POLL_CONTROLLER */ 3363 3364 static int ucc_geth_set_mac_addr(struct net_device *dev, void *p) 3365 { 3366 struct ucc_geth_private *ugeth = netdev_priv(dev); 3367 struct sockaddr *addr = p; 3368 3369 if (!is_valid_ether_addr(addr->sa_data)) 3370 return -EADDRNOTAVAIL; 3371 3372 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3373 3374 /* 3375 * If device is not running, we will set mac addr register 3376 * when opening the device. 3377 */ 3378 if (!netif_running(dev)) 3379 return 0; 3380 3381 spin_lock_irq(&ugeth->lock); 3382 init_mac_station_addr_regs(dev->dev_addr[0], 3383 dev->dev_addr[1], 3384 dev->dev_addr[2], 3385 dev->dev_addr[3], 3386 dev->dev_addr[4], 3387 dev->dev_addr[5], 3388 &ugeth->ug_regs->macstnaddr1, 3389 &ugeth->ug_regs->macstnaddr2); 3390 spin_unlock_irq(&ugeth->lock); 3391 3392 return 0; 3393 } 3394 3395 static int ucc_geth_init_mac(struct ucc_geth_private *ugeth) 3396 { 3397 struct net_device *dev = ugeth->ndev; 3398 int err; 3399 3400 err = ucc_struct_init(ugeth); 3401 if (err) { 3402 netif_err(ugeth, ifup, dev, "Cannot configure internal struct, aborting\n"); 3403 goto err; 3404 } 3405 3406 err = ucc_geth_startup(ugeth); 3407 if (err) { 3408 netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n"); 3409 goto err; 3410 } 3411 3412 err = adjust_enet_interface(ugeth); 3413 if (err) { 3414 netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n"); 3415 goto err; 3416 } 3417 3418 /* Set MACSTNADDR1, MACSTNADDR2 */ 3419 /* For more details see the hardware spec. */ 3420 init_mac_station_addr_regs(dev->dev_addr[0], 3421 dev->dev_addr[1], 3422 dev->dev_addr[2], 3423 dev->dev_addr[3], 3424 dev->dev_addr[4], 3425 dev->dev_addr[5], 3426 &ugeth->ug_regs->macstnaddr1, 3427 &ugeth->ug_regs->macstnaddr2); 3428 3429 err = ugeth_enable(ugeth, COMM_DIR_RX_AND_TX); 3430 if (err) { 3431 netif_err(ugeth, ifup, dev, "Cannot enable net device, aborting\n"); 3432 goto err; 3433 } 3434 3435 return 0; 3436 err: 3437 ucc_geth_stop(ugeth); 3438 return err; 3439 } 3440 3441 /* Called when something needs to use the ethernet device */ 3442 /* Returns 0 for success. */ 3443 static int ucc_geth_open(struct net_device *dev) 3444 { 3445 struct ucc_geth_private *ugeth = netdev_priv(dev); 3446 int err; 3447 3448 ugeth_vdbg("%s: IN", __func__); 3449 3450 /* Test station address */ 3451 if (dev->dev_addr[0] & ENET_GROUP_ADDR) { 3452 netif_err(ugeth, ifup, dev, 3453 "Multicast address used for station address - is this what you wanted?\n"); 3454 return -EINVAL; 3455 } 3456 3457 err = init_phy(dev); 3458 if (err) { 3459 netif_err(ugeth, ifup, dev, "Cannot initialize PHY, aborting\n"); 3460 return err; 3461 } 3462 3463 err = ucc_geth_init_mac(ugeth); 3464 if (err) { 3465 netif_err(ugeth, ifup, dev, "Cannot initialize MAC, aborting\n"); 3466 goto err; 3467 } 3468 3469 err = request_irq(ugeth->ug_info->uf_info.irq, ucc_geth_irq_handler, 3470 0, "UCC Geth", dev); 3471 if (err) { 3472 netif_err(ugeth, ifup, dev, "Cannot get IRQ for net device, aborting\n"); 3473 goto err; 3474 } 3475 3476 phy_start(ugeth->phydev); 3477 napi_enable(&ugeth->napi); 3478 netif_start_queue(dev); 3479 3480 device_set_wakeup_capable(&dev->dev, 3481 qe_alive_during_sleep() || ugeth->phydev->irq); 3482 device_set_wakeup_enable(&dev->dev, ugeth->wol_en); 3483 3484 return err; 3485 3486 err: 3487 ucc_geth_stop(ugeth); 3488 return err; 3489 } 3490 3491 /* Stops the kernel queue, and halts the controller */ 3492 static int ucc_geth_close(struct net_device *dev) 3493 { 3494 struct ucc_geth_private *ugeth = netdev_priv(dev); 3495 3496 ugeth_vdbg("%s: IN", __func__); 3497 3498 napi_disable(&ugeth->napi); 3499 3500 cancel_work_sync(&ugeth->timeout_work); 3501 ucc_geth_stop(ugeth); 3502 phy_disconnect(ugeth->phydev); 3503 ugeth->phydev = NULL; 3504 3505 free_irq(ugeth->ug_info->uf_info.irq, ugeth->ndev); 3506 3507 netif_stop_queue(dev); 3508 3509 return 0; 3510 } 3511 3512 /* Reopen device. This will reset the MAC and PHY. */ 3513 static void ucc_geth_timeout_work(struct work_struct *work) 3514 { 3515 struct ucc_geth_private *ugeth; 3516 struct net_device *dev; 3517 3518 ugeth = container_of(work, struct ucc_geth_private, timeout_work); 3519 dev = ugeth->ndev; 3520 3521 ugeth_vdbg("%s: IN", __func__); 3522 3523 dev->stats.tx_errors++; 3524 3525 ugeth_dump_regs(ugeth); 3526 3527 if (dev->flags & IFF_UP) { 3528 /* 3529 * Must reset MAC *and* PHY. This is done by reopening 3530 * the device. 3531 */ 3532 netif_tx_stop_all_queues(dev); 3533 ucc_geth_stop(ugeth); 3534 ucc_geth_init_mac(ugeth); 3535 /* Must start PHY here */ 3536 phy_start(ugeth->phydev); 3537 netif_tx_start_all_queues(dev); 3538 } 3539 3540 netif_tx_schedule_all(dev); 3541 } 3542 3543 /* 3544 * ucc_geth_timeout gets called when a packet has not been 3545 * transmitted after a set amount of time. 3546 */ 3547 static void ucc_geth_timeout(struct net_device *dev) 3548 { 3549 struct ucc_geth_private *ugeth = netdev_priv(dev); 3550 3551 schedule_work(&ugeth->timeout_work); 3552 } 3553 3554 3555 #ifdef CONFIG_PM 3556 3557 static int ucc_geth_suspend(struct platform_device *ofdev, pm_message_t state) 3558 { 3559 struct net_device *ndev = platform_get_drvdata(ofdev); 3560 struct ucc_geth_private *ugeth = netdev_priv(ndev); 3561 3562 if (!netif_running(ndev)) 3563 return 0; 3564 3565 netif_device_detach(ndev); 3566 napi_disable(&ugeth->napi); 3567 3568 /* 3569 * Disable the controller, otherwise we'll wakeup on any network 3570 * activity. 3571 */ 3572 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX); 3573 3574 if (ugeth->wol_en & WAKE_MAGIC) { 3575 setbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD); 3576 setbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE); 3577 ucc_fast_enable(ugeth->uccf, COMM_DIR_RX_AND_TX); 3578 } else if (!(ugeth->wol_en & WAKE_PHY)) { 3579 phy_stop(ugeth->phydev); 3580 } 3581 3582 return 0; 3583 } 3584 3585 static int ucc_geth_resume(struct platform_device *ofdev) 3586 { 3587 struct net_device *ndev = platform_get_drvdata(ofdev); 3588 struct ucc_geth_private *ugeth = netdev_priv(ndev); 3589 int err; 3590 3591 if (!netif_running(ndev)) 3592 return 0; 3593 3594 if (qe_alive_during_sleep()) { 3595 if (ugeth->wol_en & WAKE_MAGIC) { 3596 ucc_fast_disable(ugeth->uccf, COMM_DIR_RX_AND_TX); 3597 clrbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE); 3598 clrbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD); 3599 } 3600 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX); 3601 } else { 3602 /* 3603 * Full reinitialization is required if QE shuts down 3604 * during sleep. 3605 */ 3606 ucc_geth_memclean(ugeth); 3607 3608 err = ucc_geth_init_mac(ugeth); 3609 if (err) { 3610 netdev_err(ndev, "Cannot initialize MAC, aborting\n"); 3611 return err; 3612 } 3613 } 3614 3615 ugeth->oldlink = 0; 3616 ugeth->oldspeed = 0; 3617 ugeth->oldduplex = -1; 3618 3619 phy_stop(ugeth->phydev); 3620 phy_start(ugeth->phydev); 3621 3622 napi_enable(&ugeth->napi); 3623 netif_device_attach(ndev); 3624 3625 return 0; 3626 } 3627 3628 #else 3629 #define ucc_geth_suspend NULL 3630 #define ucc_geth_resume NULL 3631 #endif 3632 3633 static phy_interface_t to_phy_interface(const char *phy_connection_type) 3634 { 3635 if (strcasecmp(phy_connection_type, "mii") == 0) 3636 return PHY_INTERFACE_MODE_MII; 3637 if (strcasecmp(phy_connection_type, "gmii") == 0) 3638 return PHY_INTERFACE_MODE_GMII; 3639 if (strcasecmp(phy_connection_type, "tbi") == 0) 3640 return PHY_INTERFACE_MODE_TBI; 3641 if (strcasecmp(phy_connection_type, "rmii") == 0) 3642 return PHY_INTERFACE_MODE_RMII; 3643 if (strcasecmp(phy_connection_type, "rgmii") == 0) 3644 return PHY_INTERFACE_MODE_RGMII; 3645 if (strcasecmp(phy_connection_type, "rgmii-id") == 0) 3646 return PHY_INTERFACE_MODE_RGMII_ID; 3647 if (strcasecmp(phy_connection_type, "rgmii-txid") == 0) 3648 return PHY_INTERFACE_MODE_RGMII_TXID; 3649 if (strcasecmp(phy_connection_type, "rgmii-rxid") == 0) 3650 return PHY_INTERFACE_MODE_RGMII_RXID; 3651 if (strcasecmp(phy_connection_type, "rtbi") == 0) 3652 return PHY_INTERFACE_MODE_RTBI; 3653 if (strcasecmp(phy_connection_type, "sgmii") == 0) 3654 return PHY_INTERFACE_MODE_SGMII; 3655 3656 return PHY_INTERFACE_MODE_MII; 3657 } 3658 3659 static int ucc_geth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3660 { 3661 struct ucc_geth_private *ugeth = netdev_priv(dev); 3662 3663 if (!netif_running(dev)) 3664 return -EINVAL; 3665 3666 if (!ugeth->phydev) 3667 return -ENODEV; 3668 3669 return phy_mii_ioctl(ugeth->phydev, rq, cmd); 3670 } 3671 3672 static const struct net_device_ops ucc_geth_netdev_ops = { 3673 .ndo_open = ucc_geth_open, 3674 .ndo_stop = ucc_geth_close, 3675 .ndo_start_xmit = ucc_geth_start_xmit, 3676 .ndo_validate_addr = eth_validate_addr, 3677 .ndo_set_mac_address = ucc_geth_set_mac_addr, 3678 .ndo_change_mtu = eth_change_mtu, 3679 .ndo_set_rx_mode = ucc_geth_set_multi, 3680 .ndo_tx_timeout = ucc_geth_timeout, 3681 .ndo_do_ioctl = ucc_geth_ioctl, 3682 #ifdef CONFIG_NET_POLL_CONTROLLER 3683 .ndo_poll_controller = ucc_netpoll, 3684 #endif 3685 }; 3686 3687 static int ucc_geth_probe(struct platform_device* ofdev) 3688 { 3689 struct device *device = &ofdev->dev; 3690 struct device_node *np = ofdev->dev.of_node; 3691 struct net_device *dev = NULL; 3692 struct ucc_geth_private *ugeth = NULL; 3693 struct ucc_geth_info *ug_info; 3694 struct resource res; 3695 int err, ucc_num, max_speed = 0; 3696 const unsigned int *prop; 3697 const char *sprop; 3698 const void *mac_addr; 3699 phy_interface_t phy_interface; 3700 static const int enet_to_speed[] = { 3701 SPEED_10, SPEED_10, SPEED_10, 3702 SPEED_100, SPEED_100, SPEED_100, 3703 SPEED_1000, SPEED_1000, SPEED_1000, SPEED_1000, 3704 }; 3705 static const phy_interface_t enet_to_phy_interface[] = { 3706 PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_RMII, 3707 PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_MII, 3708 PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII, 3709 PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_RGMII, 3710 PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_RTBI, 3711 PHY_INTERFACE_MODE_SGMII, 3712 }; 3713 3714 ugeth_vdbg("%s: IN", __func__); 3715 3716 prop = of_get_property(np, "cell-index", NULL); 3717 if (!prop) { 3718 prop = of_get_property(np, "device-id", NULL); 3719 if (!prop) 3720 return -ENODEV; 3721 } 3722 3723 ucc_num = *prop - 1; 3724 if ((ucc_num < 0) || (ucc_num > 7)) 3725 return -ENODEV; 3726 3727 ug_info = &ugeth_info[ucc_num]; 3728 if (ug_info == NULL) { 3729 if (netif_msg_probe(&debug)) 3730 pr_err("[%d] Missing additional data!\n", ucc_num); 3731 return -ENODEV; 3732 } 3733 3734 ug_info->uf_info.ucc_num = ucc_num; 3735 3736 sprop = of_get_property(np, "rx-clock-name", NULL); 3737 if (sprop) { 3738 ug_info->uf_info.rx_clock = qe_clock_source(sprop); 3739 if ((ug_info->uf_info.rx_clock < QE_CLK_NONE) || 3740 (ug_info->uf_info.rx_clock > QE_CLK24)) { 3741 pr_err("invalid rx-clock-name property\n"); 3742 return -EINVAL; 3743 } 3744 } else { 3745 prop = of_get_property(np, "rx-clock", NULL); 3746 if (!prop) { 3747 /* If both rx-clock-name and rx-clock are missing, 3748 we want to tell people to use rx-clock-name. */ 3749 pr_err("missing rx-clock-name property\n"); 3750 return -EINVAL; 3751 } 3752 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) { 3753 pr_err("invalid rx-clock propperty\n"); 3754 return -EINVAL; 3755 } 3756 ug_info->uf_info.rx_clock = *prop; 3757 } 3758 3759 sprop = of_get_property(np, "tx-clock-name", NULL); 3760 if (sprop) { 3761 ug_info->uf_info.tx_clock = qe_clock_source(sprop); 3762 if ((ug_info->uf_info.tx_clock < QE_CLK_NONE) || 3763 (ug_info->uf_info.tx_clock > QE_CLK24)) { 3764 pr_err("invalid tx-clock-name property\n"); 3765 return -EINVAL; 3766 } 3767 } else { 3768 prop = of_get_property(np, "tx-clock", NULL); 3769 if (!prop) { 3770 pr_err("missing tx-clock-name property\n"); 3771 return -EINVAL; 3772 } 3773 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) { 3774 pr_err("invalid tx-clock property\n"); 3775 return -EINVAL; 3776 } 3777 ug_info->uf_info.tx_clock = *prop; 3778 } 3779 3780 err = of_address_to_resource(np, 0, &res); 3781 if (err) 3782 return -EINVAL; 3783 3784 ug_info->uf_info.regs = res.start; 3785 ug_info->uf_info.irq = irq_of_parse_and_map(np, 0); 3786 3787 ug_info->phy_node = of_parse_phandle(np, "phy-handle", 0); 3788 if (!ug_info->phy_node && of_phy_is_fixed_link(np)) { 3789 /* 3790 * In the case of a fixed PHY, the DT node associated 3791 * to the PHY is the Ethernet MAC DT node. 3792 */ 3793 err = of_phy_register_fixed_link(np); 3794 if (err) 3795 return err; 3796 ug_info->phy_node = of_node_get(np); 3797 } 3798 3799 /* Find the TBI PHY node. If it's not there, we don't support SGMII */ 3800 ug_info->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 3801 3802 /* get the phy interface type, or default to MII */ 3803 prop = of_get_property(np, "phy-connection-type", NULL); 3804 if (!prop) { 3805 /* handle interface property present in old trees */ 3806 prop = of_get_property(ug_info->phy_node, "interface", NULL); 3807 if (prop != NULL) { 3808 phy_interface = enet_to_phy_interface[*prop]; 3809 max_speed = enet_to_speed[*prop]; 3810 } else 3811 phy_interface = PHY_INTERFACE_MODE_MII; 3812 } else { 3813 phy_interface = to_phy_interface((const char *)prop); 3814 } 3815 3816 /* get speed, or derive from PHY interface */ 3817 if (max_speed == 0) 3818 switch (phy_interface) { 3819 case PHY_INTERFACE_MODE_GMII: 3820 case PHY_INTERFACE_MODE_RGMII: 3821 case PHY_INTERFACE_MODE_RGMII_ID: 3822 case PHY_INTERFACE_MODE_RGMII_RXID: 3823 case PHY_INTERFACE_MODE_RGMII_TXID: 3824 case PHY_INTERFACE_MODE_TBI: 3825 case PHY_INTERFACE_MODE_RTBI: 3826 case PHY_INTERFACE_MODE_SGMII: 3827 max_speed = SPEED_1000; 3828 break; 3829 default: 3830 max_speed = SPEED_100; 3831 break; 3832 } 3833 3834 if (max_speed == SPEED_1000) { 3835 unsigned int snums = qe_get_num_of_snums(); 3836 3837 /* configure muram FIFOs for gigabit operation */ 3838 ug_info->uf_info.urfs = UCC_GETH_URFS_GIGA_INIT; 3839 ug_info->uf_info.urfet = UCC_GETH_URFET_GIGA_INIT; 3840 ug_info->uf_info.urfset = UCC_GETH_URFSET_GIGA_INIT; 3841 ug_info->uf_info.utfs = UCC_GETH_UTFS_GIGA_INIT; 3842 ug_info->uf_info.utfet = UCC_GETH_UTFET_GIGA_INIT; 3843 ug_info->uf_info.utftt = UCC_GETH_UTFTT_GIGA_INIT; 3844 ug_info->numThreadsTx = UCC_GETH_NUM_OF_THREADS_4; 3845 3846 /* If QE's snum number is 46/76 which means we need to support 3847 * 4 UECs at 1000Base-T simultaneously, we need to allocate 3848 * more Threads to Rx. 3849 */ 3850 if ((snums == 76) || (snums == 46)) 3851 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_6; 3852 else 3853 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_4; 3854 } 3855 3856 if (netif_msg_probe(&debug)) 3857 pr_info("UCC%1d at 0x%8x (irq = %d)\n", 3858 ug_info->uf_info.ucc_num + 1, ug_info->uf_info.regs, 3859 ug_info->uf_info.irq); 3860 3861 /* Create an ethernet device instance */ 3862 dev = alloc_etherdev(sizeof(*ugeth)); 3863 3864 if (dev == NULL) { 3865 of_node_put(ug_info->tbi_node); 3866 of_node_put(ug_info->phy_node); 3867 return -ENOMEM; 3868 } 3869 3870 ugeth = netdev_priv(dev); 3871 spin_lock_init(&ugeth->lock); 3872 3873 /* Create CQs for hash tables */ 3874 INIT_LIST_HEAD(&ugeth->group_hash_q); 3875 INIT_LIST_HEAD(&ugeth->ind_hash_q); 3876 3877 dev_set_drvdata(device, dev); 3878 3879 /* Set the dev->base_addr to the gfar reg region */ 3880 dev->base_addr = (unsigned long)(ug_info->uf_info.regs); 3881 3882 SET_NETDEV_DEV(dev, device); 3883 3884 /* Fill in the dev structure */ 3885 uec_set_ethtool_ops(dev); 3886 dev->netdev_ops = &ucc_geth_netdev_ops; 3887 dev->watchdog_timeo = TX_TIMEOUT; 3888 INIT_WORK(&ugeth->timeout_work, ucc_geth_timeout_work); 3889 netif_napi_add(dev, &ugeth->napi, ucc_geth_poll, 64); 3890 dev->mtu = 1500; 3891 3892 ugeth->msg_enable = netif_msg_init(debug.msg_enable, UGETH_MSG_DEFAULT); 3893 ugeth->phy_interface = phy_interface; 3894 ugeth->max_speed = max_speed; 3895 3896 /* Carrier starts down, phylib will bring it up */ 3897 netif_carrier_off(dev); 3898 3899 err = register_netdev(dev); 3900 if (err) { 3901 if (netif_msg_probe(ugeth)) 3902 pr_err("%s: Cannot register net device, aborting\n", 3903 dev->name); 3904 free_netdev(dev); 3905 of_node_put(ug_info->tbi_node); 3906 of_node_put(ug_info->phy_node); 3907 return err; 3908 } 3909 3910 mac_addr = of_get_mac_address(np); 3911 if (mac_addr) 3912 memcpy(dev->dev_addr, mac_addr, ETH_ALEN); 3913 3914 ugeth->ug_info = ug_info; 3915 ugeth->dev = device; 3916 ugeth->ndev = dev; 3917 ugeth->node = np; 3918 3919 return 0; 3920 } 3921 3922 static int ucc_geth_remove(struct platform_device* ofdev) 3923 { 3924 struct net_device *dev = platform_get_drvdata(ofdev); 3925 struct ucc_geth_private *ugeth = netdev_priv(dev); 3926 3927 unregister_netdev(dev); 3928 free_netdev(dev); 3929 ucc_geth_memclean(ugeth); 3930 of_node_put(ugeth->ug_info->tbi_node); 3931 of_node_put(ugeth->ug_info->phy_node); 3932 3933 return 0; 3934 } 3935 3936 static const struct of_device_id ucc_geth_match[] = { 3937 { 3938 .type = "network", 3939 .compatible = "ucc_geth", 3940 }, 3941 {}, 3942 }; 3943 3944 MODULE_DEVICE_TABLE(of, ucc_geth_match); 3945 3946 static struct platform_driver ucc_geth_driver = { 3947 .driver = { 3948 .name = DRV_NAME, 3949 .of_match_table = ucc_geth_match, 3950 }, 3951 .probe = ucc_geth_probe, 3952 .remove = ucc_geth_remove, 3953 .suspend = ucc_geth_suspend, 3954 .resume = ucc_geth_resume, 3955 }; 3956 3957 static int __init ucc_geth_init(void) 3958 { 3959 int i, ret; 3960 3961 if (netif_msg_drv(&debug)) 3962 pr_info(DRV_DESC "\n"); 3963 for (i = 0; i < 8; i++) 3964 memcpy(&(ugeth_info[i]), &ugeth_primary_info, 3965 sizeof(ugeth_primary_info)); 3966 3967 ret = platform_driver_register(&ucc_geth_driver); 3968 3969 return ret; 3970 } 3971 3972 static void __exit ucc_geth_exit(void) 3973 { 3974 platform_driver_unregister(&ucc_geth_driver); 3975 } 3976 3977 module_init(ucc_geth_init); 3978 module_exit(ucc_geth_exit); 3979 3980 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 3981 MODULE_DESCRIPTION(DRV_DESC); 3982 MODULE_VERSION(DRV_VERSION); 3983 MODULE_LICENSE("GPL"); 3984