1 /*
2  * Copyright (C) 2006-2009 Freescale Semicondutor, Inc. All rights reserved.
3  *
4  * Author: Shlomi Gridish <gridish@freescale.com>
5  *	   Li Yang <leoli@freescale.com>
6  *
7  * Description:
8  * QE UCC Gigabit Ethernet Driver
9  *
10  * This program is free software; you can redistribute  it and/or modify it
11  * under  the terms of  the GNU General  Public License as published by the
12  * Free Software Foundation;  either version 2 of the  License, or (at your
13  * option) any later version.
14  */
15 
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/stddef.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/mm.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/mii.h>
32 #include <linux/phy.h>
33 #include <linux/workqueue.h>
34 #include <linux/of_address.h>
35 #include <linux/of_irq.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/of_platform.h>
39 
40 #include <asm/uaccess.h>
41 #include <asm/irq.h>
42 #include <asm/io.h>
43 #include <asm/immap_qe.h>
44 #include <asm/qe.h>
45 #include <asm/ucc.h>
46 #include <asm/ucc_fast.h>
47 #include <asm/machdep.h>
48 
49 #include "ucc_geth.h"
50 
51 #undef DEBUG
52 
53 #define ugeth_printk(level, format, arg...)  \
54         printk(level format "\n", ## arg)
55 
56 #define ugeth_dbg(format, arg...)            \
57         ugeth_printk(KERN_DEBUG , format , ## arg)
58 
59 #ifdef UGETH_VERBOSE_DEBUG
60 #define ugeth_vdbg ugeth_dbg
61 #else
62 #define ugeth_vdbg(fmt, args...) do { } while (0)
63 #endif				/* UGETH_VERBOSE_DEBUG */
64 #define UGETH_MSG_DEFAULT	(NETIF_MSG_IFUP << 1 ) - 1
65 
66 
67 static DEFINE_SPINLOCK(ugeth_lock);
68 
69 static struct {
70 	u32 msg_enable;
71 } debug = { -1 };
72 
73 module_param_named(debug, debug.msg_enable, int, 0);
74 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 0xffff=all)");
75 
76 static struct ucc_geth_info ugeth_primary_info = {
77 	.uf_info = {
78 		    .bd_mem_part = MEM_PART_SYSTEM,
79 		    .rtsm = UCC_FAST_SEND_IDLES_BETWEEN_FRAMES,
80 		    .max_rx_buf_length = 1536,
81 		    /* adjusted at startup if max-speed 1000 */
82 		    .urfs = UCC_GETH_URFS_INIT,
83 		    .urfet = UCC_GETH_URFET_INIT,
84 		    .urfset = UCC_GETH_URFSET_INIT,
85 		    .utfs = UCC_GETH_UTFS_INIT,
86 		    .utfet = UCC_GETH_UTFET_INIT,
87 		    .utftt = UCC_GETH_UTFTT_INIT,
88 		    .ufpt = 256,
89 		    .mode = UCC_FAST_PROTOCOL_MODE_ETHERNET,
90 		    .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
91 		    .tenc = UCC_FAST_TX_ENCODING_NRZ,
92 		    .renc = UCC_FAST_RX_ENCODING_NRZ,
93 		    .tcrc = UCC_FAST_16_BIT_CRC,
94 		    .synl = UCC_FAST_SYNC_LEN_NOT_USED,
95 		    },
96 	.numQueuesTx = 1,
97 	.numQueuesRx = 1,
98 	.extendedFilteringChainPointer = ((uint32_t) NULL),
99 	.typeorlen = 3072 /*1536 */ ,
100 	.nonBackToBackIfgPart1 = 0x40,
101 	.nonBackToBackIfgPart2 = 0x60,
102 	.miminumInterFrameGapEnforcement = 0x50,
103 	.backToBackInterFrameGap = 0x60,
104 	.mblinterval = 128,
105 	.nortsrbytetime = 5,
106 	.fracsiz = 1,
107 	.strictpriorityq = 0xff,
108 	.altBebTruncation = 0xa,
109 	.excessDefer = 1,
110 	.maxRetransmission = 0xf,
111 	.collisionWindow = 0x37,
112 	.receiveFlowControl = 1,
113 	.transmitFlowControl = 1,
114 	.maxGroupAddrInHash = 4,
115 	.maxIndAddrInHash = 4,
116 	.prel = 7,
117 	.maxFrameLength = 1518+16, /* Add extra bytes for VLANs etc. */
118 	.minFrameLength = 64,
119 	.maxD1Length = 1520+16, /* Add extra bytes for VLANs etc. */
120 	.maxD2Length = 1520+16, /* Add extra bytes for VLANs etc. */
121 	.vlantype = 0x8100,
122 	.ecamptr = ((uint32_t) NULL),
123 	.eventRegMask = UCCE_OTHER,
124 	.pausePeriod = 0xf000,
125 	.interruptcoalescingmaxvalue = {1, 1, 1, 1, 1, 1, 1, 1},
126 	.bdRingLenTx = {
127 			TX_BD_RING_LEN,
128 			TX_BD_RING_LEN,
129 			TX_BD_RING_LEN,
130 			TX_BD_RING_LEN,
131 			TX_BD_RING_LEN,
132 			TX_BD_RING_LEN,
133 			TX_BD_RING_LEN,
134 			TX_BD_RING_LEN},
135 
136 	.bdRingLenRx = {
137 			RX_BD_RING_LEN,
138 			RX_BD_RING_LEN,
139 			RX_BD_RING_LEN,
140 			RX_BD_RING_LEN,
141 			RX_BD_RING_LEN,
142 			RX_BD_RING_LEN,
143 			RX_BD_RING_LEN,
144 			RX_BD_RING_LEN},
145 
146 	.numStationAddresses = UCC_GETH_NUM_OF_STATION_ADDRESSES_1,
147 	.largestexternallookupkeysize =
148 	    QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE,
149 	.statisticsMode = UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE |
150 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX |
151 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX,
152 	.vlanOperationTagged = UCC_GETH_VLAN_OPERATION_TAGGED_NOP,
153 	.vlanOperationNonTagged = UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP,
154 	.rxQoSMode = UCC_GETH_QOS_MODE_DEFAULT,
155 	.aufc = UPSMR_AUTOMATIC_FLOW_CONTROL_MODE_NONE,
156 	.padAndCrc = MACCFG2_PAD_AND_CRC_MODE_PAD_AND_CRC,
157 	.numThreadsTx = UCC_GETH_NUM_OF_THREADS_1,
158 	.numThreadsRx = UCC_GETH_NUM_OF_THREADS_1,
159 	.riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
160 	.riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2,
161 };
162 
163 static struct ucc_geth_info ugeth_info[8];
164 
165 #ifdef DEBUG
166 static void mem_disp(u8 *addr, int size)
167 {
168 	u8 *i;
169 	int size16Aling = (size >> 4) << 4;
170 	int size4Aling = (size >> 2) << 2;
171 	int notAlign = 0;
172 	if (size % 16)
173 		notAlign = 1;
174 
175 	for (i = addr; (u32) i < (u32) addr + size16Aling; i += 16)
176 		printk("0x%08x: %08x %08x %08x %08x\r\n",
177 		       (u32) i,
178 		       *((u32 *) (i)),
179 		       *((u32 *) (i + 4)),
180 		       *((u32 *) (i + 8)), *((u32 *) (i + 12)));
181 	if (notAlign == 1)
182 		printk("0x%08x: ", (u32) i);
183 	for (; (u32) i < (u32) addr + size4Aling; i += 4)
184 		printk("%08x ", *((u32 *) (i)));
185 	for (; (u32) i < (u32) addr + size; i++)
186 		printk("%02x", *((i)));
187 	if (notAlign == 1)
188 		printk("\r\n");
189 }
190 #endif /* DEBUG */
191 
192 static struct list_head *dequeue(struct list_head *lh)
193 {
194 	unsigned long flags;
195 
196 	spin_lock_irqsave(&ugeth_lock, flags);
197 	if (!list_empty(lh)) {
198 		struct list_head *node = lh->next;
199 		list_del(node);
200 		spin_unlock_irqrestore(&ugeth_lock, flags);
201 		return node;
202 	} else {
203 		spin_unlock_irqrestore(&ugeth_lock, flags);
204 		return NULL;
205 	}
206 }
207 
208 static struct sk_buff *get_new_skb(struct ucc_geth_private *ugeth,
209 		u8 __iomem *bd)
210 {
211 	struct sk_buff *skb;
212 
213 	skb = netdev_alloc_skb(ugeth->ndev,
214 			       ugeth->ug_info->uf_info.max_rx_buf_length +
215 			       UCC_GETH_RX_DATA_BUF_ALIGNMENT);
216 	if (!skb)
217 		return NULL;
218 
219 	/* We need the data buffer to be aligned properly.  We will reserve
220 	 * as many bytes as needed to align the data properly
221 	 */
222 	skb_reserve(skb,
223 		    UCC_GETH_RX_DATA_BUF_ALIGNMENT -
224 		    (((unsigned)skb->data) & (UCC_GETH_RX_DATA_BUF_ALIGNMENT -
225 					      1)));
226 
227 	out_be32(&((struct qe_bd __iomem *)bd)->buf,
228 		      dma_map_single(ugeth->dev,
229 				     skb->data,
230 				     ugeth->ug_info->uf_info.max_rx_buf_length +
231 				     UCC_GETH_RX_DATA_BUF_ALIGNMENT,
232 				     DMA_FROM_DEVICE));
233 
234 	out_be32((u32 __iomem *)bd,
235 			(R_E | R_I | (in_be32((u32 __iomem*)bd) & R_W)));
236 
237 	return skb;
238 }
239 
240 static int rx_bd_buffer_set(struct ucc_geth_private *ugeth, u8 rxQ)
241 {
242 	u8 __iomem *bd;
243 	u32 bd_status;
244 	struct sk_buff *skb;
245 	int i;
246 
247 	bd = ugeth->p_rx_bd_ring[rxQ];
248 	i = 0;
249 
250 	do {
251 		bd_status = in_be32((u32 __iomem *)bd);
252 		skb = get_new_skb(ugeth, bd);
253 
254 		if (!skb)	/* If can not allocate data buffer,
255 				abort. Cleanup will be elsewhere */
256 			return -ENOMEM;
257 
258 		ugeth->rx_skbuff[rxQ][i] = skb;
259 
260 		/* advance the BD pointer */
261 		bd += sizeof(struct qe_bd);
262 		i++;
263 	} while (!(bd_status & R_W));
264 
265 	return 0;
266 }
267 
268 static int fill_init_enet_entries(struct ucc_geth_private *ugeth,
269 				  u32 *p_start,
270 				  u8 num_entries,
271 				  u32 thread_size,
272 				  u32 thread_alignment,
273 				  unsigned int risc,
274 				  int skip_page_for_first_entry)
275 {
276 	u32 init_enet_offset;
277 	u8 i;
278 	int snum;
279 
280 	for (i = 0; i < num_entries; i++) {
281 		if ((snum = qe_get_snum()) < 0) {
282 			if (netif_msg_ifup(ugeth))
283 				pr_err("Can not get SNUM\n");
284 			return snum;
285 		}
286 		if ((i == 0) && skip_page_for_first_entry)
287 		/* First entry of Rx does not have page */
288 			init_enet_offset = 0;
289 		else {
290 			init_enet_offset =
291 			    qe_muram_alloc(thread_size, thread_alignment);
292 			if (IS_ERR_VALUE(init_enet_offset)) {
293 				if (netif_msg_ifup(ugeth))
294 					pr_err("Can not allocate DPRAM memory\n");
295 				qe_put_snum((u8) snum);
296 				return -ENOMEM;
297 			}
298 		}
299 		*(p_start++) =
300 		    ((u8) snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset
301 		    | risc;
302 	}
303 
304 	return 0;
305 }
306 
307 static int return_init_enet_entries(struct ucc_geth_private *ugeth,
308 				    u32 *p_start,
309 				    u8 num_entries,
310 				    unsigned int risc,
311 				    int skip_page_for_first_entry)
312 {
313 	u32 init_enet_offset;
314 	u8 i;
315 	int snum;
316 
317 	for (i = 0; i < num_entries; i++) {
318 		u32 val = *p_start;
319 
320 		/* Check that this entry was actually valid --
321 		needed in case failed in allocations */
322 		if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
323 			snum =
324 			    (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
325 			    ENET_INIT_PARAM_SNUM_SHIFT;
326 			qe_put_snum((u8) snum);
327 			if (!((i == 0) && skip_page_for_first_entry)) {
328 			/* First entry of Rx does not have page */
329 				init_enet_offset =
330 				    (val & ENET_INIT_PARAM_PTR_MASK);
331 				qe_muram_free(init_enet_offset);
332 			}
333 			*p_start++ = 0;
334 		}
335 	}
336 
337 	return 0;
338 }
339 
340 #ifdef DEBUG
341 static int dump_init_enet_entries(struct ucc_geth_private *ugeth,
342 				  u32 __iomem *p_start,
343 				  u8 num_entries,
344 				  u32 thread_size,
345 				  unsigned int risc,
346 				  int skip_page_for_first_entry)
347 {
348 	u32 init_enet_offset;
349 	u8 i;
350 	int snum;
351 
352 	for (i = 0; i < num_entries; i++) {
353 		u32 val = in_be32(p_start);
354 
355 		/* Check that this entry was actually valid --
356 		needed in case failed in allocations */
357 		if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) {
358 			snum =
359 			    (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >>
360 			    ENET_INIT_PARAM_SNUM_SHIFT;
361 			qe_put_snum((u8) snum);
362 			if (!((i == 0) && skip_page_for_first_entry)) {
363 			/* First entry of Rx does not have page */
364 				init_enet_offset =
365 				    (in_be32(p_start) &
366 				     ENET_INIT_PARAM_PTR_MASK);
367 				pr_info("Init enet entry %d:\n", i);
368 				pr_info("Base address: 0x%08x\n",
369 					(u32)qe_muram_addr(init_enet_offset));
370 				mem_disp(qe_muram_addr(init_enet_offset),
371 					 thread_size);
372 			}
373 			p_start++;
374 		}
375 	}
376 
377 	return 0;
378 }
379 #endif
380 
381 static void put_enet_addr_container(struct enet_addr_container *enet_addr_cont)
382 {
383 	kfree(enet_addr_cont);
384 }
385 
386 static void set_mac_addr(__be16 __iomem *reg, u8 *mac)
387 {
388 	out_be16(&reg[0], ((u16)mac[5] << 8) | mac[4]);
389 	out_be16(&reg[1], ((u16)mac[3] << 8) | mac[2]);
390 	out_be16(&reg[2], ((u16)mac[1] << 8) | mac[0]);
391 }
392 
393 static int hw_clear_addr_in_paddr(struct ucc_geth_private *ugeth, u8 paddr_num)
394 {
395 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
396 
397 	if (paddr_num >= NUM_OF_PADDRS) {
398 		pr_warn("%s: Invalid paddr_num: %u\n", __func__, paddr_num);
399 		return -EINVAL;
400 	}
401 
402 	p_82xx_addr_filt =
403 	    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
404 	    addressfiltering;
405 
406 	/* Writing address ff.ff.ff.ff.ff.ff disables address
407 	recognition for this register */
408 	out_be16(&p_82xx_addr_filt->paddr[paddr_num].h, 0xffff);
409 	out_be16(&p_82xx_addr_filt->paddr[paddr_num].m, 0xffff);
410 	out_be16(&p_82xx_addr_filt->paddr[paddr_num].l, 0xffff);
411 
412 	return 0;
413 }
414 
415 static void hw_add_addr_in_hash(struct ucc_geth_private *ugeth,
416                                 u8 *p_enet_addr)
417 {
418 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
419 	u32 cecr_subblock;
420 
421 	p_82xx_addr_filt =
422 	    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram->
423 	    addressfiltering;
424 
425 	cecr_subblock =
426 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
427 
428 	/* Ethernet frames are defined in Little Endian mode,
429 	therefore to insert */
430 	/* the address to the hash (Big Endian mode), we reverse the bytes.*/
431 
432 	set_mac_addr(&p_82xx_addr_filt->taddr.h, p_enet_addr);
433 
434 	qe_issue_cmd(QE_SET_GROUP_ADDRESS, cecr_subblock,
435 		     QE_CR_PROTOCOL_ETHERNET, 0);
436 }
437 
438 static inline int compare_addr(u8 **addr1, u8 **addr2)
439 {
440 	return memcmp(addr1, addr2, ETH_ALEN);
441 }
442 
443 #ifdef DEBUG
444 static void get_statistics(struct ucc_geth_private *ugeth,
445 			   struct ucc_geth_tx_firmware_statistics *
446 			   tx_firmware_statistics,
447 			   struct ucc_geth_rx_firmware_statistics *
448 			   rx_firmware_statistics,
449 			   struct ucc_geth_hardware_statistics *hardware_statistics)
450 {
451 	struct ucc_fast __iomem *uf_regs;
452 	struct ucc_geth __iomem *ug_regs;
453 	struct ucc_geth_tx_firmware_statistics_pram *p_tx_fw_statistics_pram;
454 	struct ucc_geth_rx_firmware_statistics_pram *p_rx_fw_statistics_pram;
455 
456 	ug_regs = ugeth->ug_regs;
457 	uf_regs = (struct ucc_fast __iomem *) ug_regs;
458 	p_tx_fw_statistics_pram = ugeth->p_tx_fw_statistics_pram;
459 	p_rx_fw_statistics_pram = ugeth->p_rx_fw_statistics_pram;
460 
461 	/* Tx firmware only if user handed pointer and driver actually
462 	gathers Tx firmware statistics */
463 	if (tx_firmware_statistics && p_tx_fw_statistics_pram) {
464 		tx_firmware_statistics->sicoltx =
465 		    in_be32(&p_tx_fw_statistics_pram->sicoltx);
466 		tx_firmware_statistics->mulcoltx =
467 		    in_be32(&p_tx_fw_statistics_pram->mulcoltx);
468 		tx_firmware_statistics->latecoltxfr =
469 		    in_be32(&p_tx_fw_statistics_pram->latecoltxfr);
470 		tx_firmware_statistics->frabortduecol =
471 		    in_be32(&p_tx_fw_statistics_pram->frabortduecol);
472 		tx_firmware_statistics->frlostinmactxer =
473 		    in_be32(&p_tx_fw_statistics_pram->frlostinmactxer);
474 		tx_firmware_statistics->carriersenseertx =
475 		    in_be32(&p_tx_fw_statistics_pram->carriersenseertx);
476 		tx_firmware_statistics->frtxok =
477 		    in_be32(&p_tx_fw_statistics_pram->frtxok);
478 		tx_firmware_statistics->txfrexcessivedefer =
479 		    in_be32(&p_tx_fw_statistics_pram->txfrexcessivedefer);
480 		tx_firmware_statistics->txpkts256 =
481 		    in_be32(&p_tx_fw_statistics_pram->txpkts256);
482 		tx_firmware_statistics->txpkts512 =
483 		    in_be32(&p_tx_fw_statistics_pram->txpkts512);
484 		tx_firmware_statistics->txpkts1024 =
485 		    in_be32(&p_tx_fw_statistics_pram->txpkts1024);
486 		tx_firmware_statistics->txpktsjumbo =
487 		    in_be32(&p_tx_fw_statistics_pram->txpktsjumbo);
488 	}
489 
490 	/* Rx firmware only if user handed pointer and driver actually
491 	 * gathers Rx firmware statistics */
492 	if (rx_firmware_statistics && p_rx_fw_statistics_pram) {
493 		int i;
494 		rx_firmware_statistics->frrxfcser =
495 		    in_be32(&p_rx_fw_statistics_pram->frrxfcser);
496 		rx_firmware_statistics->fraligner =
497 		    in_be32(&p_rx_fw_statistics_pram->fraligner);
498 		rx_firmware_statistics->inrangelenrxer =
499 		    in_be32(&p_rx_fw_statistics_pram->inrangelenrxer);
500 		rx_firmware_statistics->outrangelenrxer =
501 		    in_be32(&p_rx_fw_statistics_pram->outrangelenrxer);
502 		rx_firmware_statistics->frtoolong =
503 		    in_be32(&p_rx_fw_statistics_pram->frtoolong);
504 		rx_firmware_statistics->runt =
505 		    in_be32(&p_rx_fw_statistics_pram->runt);
506 		rx_firmware_statistics->verylongevent =
507 		    in_be32(&p_rx_fw_statistics_pram->verylongevent);
508 		rx_firmware_statistics->symbolerror =
509 		    in_be32(&p_rx_fw_statistics_pram->symbolerror);
510 		rx_firmware_statistics->dropbsy =
511 		    in_be32(&p_rx_fw_statistics_pram->dropbsy);
512 		for (i = 0; i < 0x8; i++)
513 			rx_firmware_statistics->res0[i] =
514 			    p_rx_fw_statistics_pram->res0[i];
515 		rx_firmware_statistics->mismatchdrop =
516 		    in_be32(&p_rx_fw_statistics_pram->mismatchdrop);
517 		rx_firmware_statistics->underpkts =
518 		    in_be32(&p_rx_fw_statistics_pram->underpkts);
519 		rx_firmware_statistics->pkts256 =
520 		    in_be32(&p_rx_fw_statistics_pram->pkts256);
521 		rx_firmware_statistics->pkts512 =
522 		    in_be32(&p_rx_fw_statistics_pram->pkts512);
523 		rx_firmware_statistics->pkts1024 =
524 		    in_be32(&p_rx_fw_statistics_pram->pkts1024);
525 		rx_firmware_statistics->pktsjumbo =
526 		    in_be32(&p_rx_fw_statistics_pram->pktsjumbo);
527 		rx_firmware_statistics->frlossinmacer =
528 		    in_be32(&p_rx_fw_statistics_pram->frlossinmacer);
529 		rx_firmware_statistics->pausefr =
530 		    in_be32(&p_rx_fw_statistics_pram->pausefr);
531 		for (i = 0; i < 0x4; i++)
532 			rx_firmware_statistics->res1[i] =
533 			    p_rx_fw_statistics_pram->res1[i];
534 		rx_firmware_statistics->removevlan =
535 		    in_be32(&p_rx_fw_statistics_pram->removevlan);
536 		rx_firmware_statistics->replacevlan =
537 		    in_be32(&p_rx_fw_statistics_pram->replacevlan);
538 		rx_firmware_statistics->insertvlan =
539 		    in_be32(&p_rx_fw_statistics_pram->insertvlan);
540 	}
541 
542 	/* Hardware only if user handed pointer and driver actually
543 	gathers hardware statistics */
544 	if (hardware_statistics &&
545 	    (in_be32(&uf_regs->upsmr) & UCC_GETH_UPSMR_HSE)) {
546 		hardware_statistics->tx64 = in_be32(&ug_regs->tx64);
547 		hardware_statistics->tx127 = in_be32(&ug_regs->tx127);
548 		hardware_statistics->tx255 = in_be32(&ug_regs->tx255);
549 		hardware_statistics->rx64 = in_be32(&ug_regs->rx64);
550 		hardware_statistics->rx127 = in_be32(&ug_regs->rx127);
551 		hardware_statistics->rx255 = in_be32(&ug_regs->rx255);
552 		hardware_statistics->txok = in_be32(&ug_regs->txok);
553 		hardware_statistics->txcf = in_be16(&ug_regs->txcf);
554 		hardware_statistics->tmca = in_be32(&ug_regs->tmca);
555 		hardware_statistics->tbca = in_be32(&ug_regs->tbca);
556 		hardware_statistics->rxfok = in_be32(&ug_regs->rxfok);
557 		hardware_statistics->rxbok = in_be32(&ug_regs->rxbok);
558 		hardware_statistics->rbyt = in_be32(&ug_regs->rbyt);
559 		hardware_statistics->rmca = in_be32(&ug_regs->rmca);
560 		hardware_statistics->rbca = in_be32(&ug_regs->rbca);
561 	}
562 }
563 
564 static void dump_bds(struct ucc_geth_private *ugeth)
565 {
566 	int i;
567 	int length;
568 
569 	for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
570 		if (ugeth->p_tx_bd_ring[i]) {
571 			length =
572 			    (ugeth->ug_info->bdRingLenTx[i] *
573 			     sizeof(struct qe_bd));
574 			pr_info("TX BDs[%d]\n", i);
575 			mem_disp(ugeth->p_tx_bd_ring[i], length);
576 		}
577 	}
578 	for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
579 		if (ugeth->p_rx_bd_ring[i]) {
580 			length =
581 			    (ugeth->ug_info->bdRingLenRx[i] *
582 			     sizeof(struct qe_bd));
583 			pr_info("RX BDs[%d]\n", i);
584 			mem_disp(ugeth->p_rx_bd_ring[i], length);
585 		}
586 	}
587 }
588 
589 static void dump_regs(struct ucc_geth_private *ugeth)
590 {
591 	int i;
592 
593 	pr_info("UCC%d Geth registers:\n", ugeth->ug_info->uf_info.ucc_num + 1);
594 	pr_info("Base address: 0x%08x\n", (u32)ugeth->ug_regs);
595 
596 	pr_info("maccfg1    : addr - 0x%08x, val - 0x%08x\n",
597 		(u32)&ugeth->ug_regs->maccfg1,
598 		in_be32(&ugeth->ug_regs->maccfg1));
599 	pr_info("maccfg2    : addr - 0x%08x, val - 0x%08x\n",
600 		(u32)&ugeth->ug_regs->maccfg2,
601 		in_be32(&ugeth->ug_regs->maccfg2));
602 	pr_info("ipgifg     : addr - 0x%08x, val - 0x%08x\n",
603 		(u32)&ugeth->ug_regs->ipgifg,
604 		in_be32(&ugeth->ug_regs->ipgifg));
605 	pr_info("hafdup     : addr - 0x%08x, val - 0x%08x\n",
606 		(u32)&ugeth->ug_regs->hafdup,
607 		in_be32(&ugeth->ug_regs->hafdup));
608 	pr_info("ifctl      : addr - 0x%08x, val - 0x%08x\n",
609 		(u32)&ugeth->ug_regs->ifctl,
610 		in_be32(&ugeth->ug_regs->ifctl));
611 	pr_info("ifstat     : addr - 0x%08x, val - 0x%08x\n",
612 		(u32)&ugeth->ug_regs->ifstat,
613 		in_be32(&ugeth->ug_regs->ifstat));
614 	pr_info("macstnaddr1: addr - 0x%08x, val - 0x%08x\n",
615 		(u32)&ugeth->ug_regs->macstnaddr1,
616 		in_be32(&ugeth->ug_regs->macstnaddr1));
617 	pr_info("macstnaddr2: addr - 0x%08x, val - 0x%08x\n",
618 		(u32)&ugeth->ug_regs->macstnaddr2,
619 		in_be32(&ugeth->ug_regs->macstnaddr2));
620 	pr_info("uempr      : addr - 0x%08x, val - 0x%08x\n",
621 		(u32)&ugeth->ug_regs->uempr,
622 		in_be32(&ugeth->ug_regs->uempr));
623 	pr_info("utbipar    : addr - 0x%08x, val - 0x%08x\n",
624 		(u32)&ugeth->ug_regs->utbipar,
625 		in_be32(&ugeth->ug_regs->utbipar));
626 	pr_info("uescr      : addr - 0x%08x, val - 0x%04x\n",
627 		(u32)&ugeth->ug_regs->uescr,
628 		in_be16(&ugeth->ug_regs->uescr));
629 	pr_info("tx64       : addr - 0x%08x, val - 0x%08x\n",
630 		(u32)&ugeth->ug_regs->tx64,
631 		in_be32(&ugeth->ug_regs->tx64));
632 	pr_info("tx127      : addr - 0x%08x, val - 0x%08x\n",
633 		(u32)&ugeth->ug_regs->tx127,
634 		in_be32(&ugeth->ug_regs->tx127));
635 	pr_info("tx255      : addr - 0x%08x, val - 0x%08x\n",
636 		(u32)&ugeth->ug_regs->tx255,
637 		in_be32(&ugeth->ug_regs->tx255));
638 	pr_info("rx64       : addr - 0x%08x, val - 0x%08x\n",
639 		(u32)&ugeth->ug_regs->rx64,
640 		in_be32(&ugeth->ug_regs->rx64));
641 	pr_info("rx127      : addr - 0x%08x, val - 0x%08x\n",
642 		(u32)&ugeth->ug_regs->rx127,
643 		in_be32(&ugeth->ug_regs->rx127));
644 	pr_info("rx255      : addr - 0x%08x, val - 0x%08x\n",
645 		(u32)&ugeth->ug_regs->rx255,
646 		in_be32(&ugeth->ug_regs->rx255));
647 	pr_info("txok       : addr - 0x%08x, val - 0x%08x\n",
648 		(u32)&ugeth->ug_regs->txok,
649 		in_be32(&ugeth->ug_regs->txok));
650 	pr_info("txcf       : addr - 0x%08x, val - 0x%04x\n",
651 		(u32)&ugeth->ug_regs->txcf,
652 		in_be16(&ugeth->ug_regs->txcf));
653 	pr_info("tmca       : addr - 0x%08x, val - 0x%08x\n",
654 		(u32)&ugeth->ug_regs->tmca,
655 		in_be32(&ugeth->ug_regs->tmca));
656 	pr_info("tbca       : addr - 0x%08x, val - 0x%08x\n",
657 		(u32)&ugeth->ug_regs->tbca,
658 		in_be32(&ugeth->ug_regs->tbca));
659 	pr_info("rxfok      : addr - 0x%08x, val - 0x%08x\n",
660 		(u32)&ugeth->ug_regs->rxfok,
661 		in_be32(&ugeth->ug_regs->rxfok));
662 	pr_info("rxbok      : addr - 0x%08x, val - 0x%08x\n",
663 		(u32)&ugeth->ug_regs->rxbok,
664 		in_be32(&ugeth->ug_regs->rxbok));
665 	pr_info("rbyt       : addr - 0x%08x, val - 0x%08x\n",
666 		(u32)&ugeth->ug_regs->rbyt,
667 		in_be32(&ugeth->ug_regs->rbyt));
668 	pr_info("rmca       : addr - 0x%08x, val - 0x%08x\n",
669 		(u32)&ugeth->ug_regs->rmca,
670 		in_be32(&ugeth->ug_regs->rmca));
671 	pr_info("rbca       : addr - 0x%08x, val - 0x%08x\n",
672 		(u32)&ugeth->ug_regs->rbca,
673 		in_be32(&ugeth->ug_regs->rbca));
674 	pr_info("scar       : addr - 0x%08x, val - 0x%08x\n",
675 		(u32)&ugeth->ug_regs->scar,
676 		in_be32(&ugeth->ug_regs->scar));
677 	pr_info("scam       : addr - 0x%08x, val - 0x%08x\n",
678 		(u32)&ugeth->ug_regs->scam,
679 		in_be32(&ugeth->ug_regs->scam));
680 
681 	if (ugeth->p_thread_data_tx) {
682 		int numThreadsTxNumerical;
683 		switch (ugeth->ug_info->numThreadsTx) {
684 		case UCC_GETH_NUM_OF_THREADS_1:
685 			numThreadsTxNumerical = 1;
686 			break;
687 		case UCC_GETH_NUM_OF_THREADS_2:
688 			numThreadsTxNumerical = 2;
689 			break;
690 		case UCC_GETH_NUM_OF_THREADS_4:
691 			numThreadsTxNumerical = 4;
692 			break;
693 		case UCC_GETH_NUM_OF_THREADS_6:
694 			numThreadsTxNumerical = 6;
695 			break;
696 		case UCC_GETH_NUM_OF_THREADS_8:
697 			numThreadsTxNumerical = 8;
698 			break;
699 		default:
700 			numThreadsTxNumerical = 0;
701 			break;
702 		}
703 
704 		pr_info("Thread data TXs:\n");
705 		pr_info("Base address: 0x%08x\n",
706 			(u32)ugeth->p_thread_data_tx);
707 		for (i = 0; i < numThreadsTxNumerical; i++) {
708 			pr_info("Thread data TX[%d]:\n", i);
709 			pr_info("Base address: 0x%08x\n",
710 				(u32)&ugeth->p_thread_data_tx[i]);
711 			mem_disp((u8 *) & ugeth->p_thread_data_tx[i],
712 				 sizeof(struct ucc_geth_thread_data_tx));
713 		}
714 	}
715 	if (ugeth->p_thread_data_rx) {
716 		int numThreadsRxNumerical;
717 		switch (ugeth->ug_info->numThreadsRx) {
718 		case UCC_GETH_NUM_OF_THREADS_1:
719 			numThreadsRxNumerical = 1;
720 			break;
721 		case UCC_GETH_NUM_OF_THREADS_2:
722 			numThreadsRxNumerical = 2;
723 			break;
724 		case UCC_GETH_NUM_OF_THREADS_4:
725 			numThreadsRxNumerical = 4;
726 			break;
727 		case UCC_GETH_NUM_OF_THREADS_6:
728 			numThreadsRxNumerical = 6;
729 			break;
730 		case UCC_GETH_NUM_OF_THREADS_8:
731 			numThreadsRxNumerical = 8;
732 			break;
733 		default:
734 			numThreadsRxNumerical = 0;
735 			break;
736 		}
737 
738 		pr_info("Thread data RX:\n");
739 		pr_info("Base address: 0x%08x\n",
740 			(u32)ugeth->p_thread_data_rx);
741 		for (i = 0; i < numThreadsRxNumerical; i++) {
742 			pr_info("Thread data RX[%d]:\n", i);
743 			pr_info("Base address: 0x%08x\n",
744 				(u32)&ugeth->p_thread_data_rx[i]);
745 			mem_disp((u8 *) & ugeth->p_thread_data_rx[i],
746 				 sizeof(struct ucc_geth_thread_data_rx));
747 		}
748 	}
749 	if (ugeth->p_exf_glbl_param) {
750 		pr_info("EXF global param:\n");
751 		pr_info("Base address: 0x%08x\n",
752 			(u32)ugeth->p_exf_glbl_param);
753 		mem_disp((u8 *) ugeth->p_exf_glbl_param,
754 			 sizeof(*ugeth->p_exf_glbl_param));
755 	}
756 	if (ugeth->p_tx_glbl_pram) {
757 		pr_info("TX global param:\n");
758 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_tx_glbl_pram);
759 		pr_info("temoder      : addr - 0x%08x, val - 0x%04x\n",
760 			(u32)&ugeth->p_tx_glbl_pram->temoder,
761 			in_be16(&ugeth->p_tx_glbl_pram->temoder));
762 	       pr_info("sqptr        : addr - 0x%08x, val - 0x%08x\n",
763 			(u32)&ugeth->p_tx_glbl_pram->sqptr,
764 			in_be32(&ugeth->p_tx_glbl_pram->sqptr));
765 		pr_info("schedulerbasepointer: addr - 0x%08x, val - 0x%08x\n",
766 			(u32)&ugeth->p_tx_glbl_pram->schedulerbasepointer,
767 			in_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer));
768 		pr_info("txrmonbaseptr: addr - 0x%08x, val - 0x%08x\n",
769 			(u32)&ugeth->p_tx_glbl_pram->txrmonbaseptr,
770 			in_be32(&ugeth->p_tx_glbl_pram->txrmonbaseptr));
771 		pr_info("tstate       : addr - 0x%08x, val - 0x%08x\n",
772 			(u32)&ugeth->p_tx_glbl_pram->tstate,
773 			in_be32(&ugeth->p_tx_glbl_pram->tstate));
774 		pr_info("iphoffset[0] : addr - 0x%08x, val - 0x%02x\n",
775 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[0],
776 			ugeth->p_tx_glbl_pram->iphoffset[0]);
777 		pr_info("iphoffset[1] : addr - 0x%08x, val - 0x%02x\n",
778 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[1],
779 			ugeth->p_tx_glbl_pram->iphoffset[1]);
780 		pr_info("iphoffset[2] : addr - 0x%08x, val - 0x%02x\n",
781 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[2],
782 			ugeth->p_tx_glbl_pram->iphoffset[2]);
783 		pr_info("iphoffset[3] : addr - 0x%08x, val - 0x%02x\n",
784 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[3],
785 			ugeth->p_tx_glbl_pram->iphoffset[3]);
786 		pr_info("iphoffset[4] : addr - 0x%08x, val - 0x%02x\n",
787 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[4],
788 			ugeth->p_tx_glbl_pram->iphoffset[4]);
789 		pr_info("iphoffset[5] : addr - 0x%08x, val - 0x%02x\n",
790 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[5],
791 			ugeth->p_tx_glbl_pram->iphoffset[5]);
792 		pr_info("iphoffset[6] : addr - 0x%08x, val - 0x%02x\n",
793 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[6],
794 			ugeth->p_tx_glbl_pram->iphoffset[6]);
795 		pr_info("iphoffset[7] : addr - 0x%08x, val - 0x%02x\n",
796 			(u32)&ugeth->p_tx_glbl_pram->iphoffset[7],
797 			ugeth->p_tx_glbl_pram->iphoffset[7]);
798 		pr_info("vtagtable[0] : addr - 0x%08x, val - 0x%08x\n",
799 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[0],
800 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[0]));
801 		pr_info("vtagtable[1] : addr - 0x%08x, val - 0x%08x\n",
802 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[1],
803 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[1]));
804 		pr_info("vtagtable[2] : addr - 0x%08x, val - 0x%08x\n",
805 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[2],
806 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[2]));
807 		pr_info("vtagtable[3] : addr - 0x%08x, val - 0x%08x\n",
808 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[3],
809 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[3]));
810 		pr_info("vtagtable[4] : addr - 0x%08x, val - 0x%08x\n",
811 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[4],
812 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[4]));
813 		pr_info("vtagtable[5] : addr - 0x%08x, val - 0x%08x\n",
814 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[5],
815 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[5]));
816 		pr_info("vtagtable[6] : addr - 0x%08x, val - 0x%08x\n",
817 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[6],
818 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[6]));
819 		pr_info("vtagtable[7] : addr - 0x%08x, val - 0x%08x\n",
820 			(u32)&ugeth->p_tx_glbl_pram->vtagtable[7],
821 			in_be32(&ugeth->p_tx_glbl_pram->vtagtable[7]));
822 		pr_info("tqptr        : addr - 0x%08x, val - 0x%08x\n",
823 			(u32)&ugeth->p_tx_glbl_pram->tqptr,
824 			in_be32(&ugeth->p_tx_glbl_pram->tqptr));
825 	}
826 	if (ugeth->p_rx_glbl_pram) {
827 		pr_info("RX global param:\n");
828 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_glbl_pram);
829 		pr_info("remoder         : addr - 0x%08x, val - 0x%08x\n",
830 			(u32)&ugeth->p_rx_glbl_pram->remoder,
831 			in_be32(&ugeth->p_rx_glbl_pram->remoder));
832 		pr_info("rqptr           : addr - 0x%08x, val - 0x%08x\n",
833 			(u32)&ugeth->p_rx_glbl_pram->rqptr,
834 			in_be32(&ugeth->p_rx_glbl_pram->rqptr));
835 		pr_info("typeorlen       : addr - 0x%08x, val - 0x%04x\n",
836 			(u32)&ugeth->p_rx_glbl_pram->typeorlen,
837 			in_be16(&ugeth->p_rx_glbl_pram->typeorlen));
838 		pr_info("rxgstpack       : addr - 0x%08x, val - 0x%02x\n",
839 			(u32)&ugeth->p_rx_glbl_pram->rxgstpack,
840 			ugeth->p_rx_glbl_pram->rxgstpack);
841 		pr_info("rxrmonbaseptr   : addr - 0x%08x, val - 0x%08x\n",
842 			(u32)&ugeth->p_rx_glbl_pram->rxrmonbaseptr,
843 			in_be32(&ugeth->p_rx_glbl_pram->rxrmonbaseptr));
844 		pr_info("intcoalescingptr: addr - 0x%08x, val - 0x%08x\n",
845 			(u32)&ugeth->p_rx_glbl_pram->intcoalescingptr,
846 			in_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr));
847 		pr_info("rstate          : addr - 0x%08x, val - 0x%02x\n",
848 			(u32)&ugeth->p_rx_glbl_pram->rstate,
849 			ugeth->p_rx_glbl_pram->rstate);
850 		pr_info("mrblr           : addr - 0x%08x, val - 0x%04x\n",
851 			(u32)&ugeth->p_rx_glbl_pram->mrblr,
852 			in_be16(&ugeth->p_rx_glbl_pram->mrblr));
853 		pr_info("rbdqptr         : addr - 0x%08x, val - 0x%08x\n",
854 			(u32)&ugeth->p_rx_glbl_pram->rbdqptr,
855 			in_be32(&ugeth->p_rx_glbl_pram->rbdqptr));
856 		pr_info("mflr            : addr - 0x%08x, val - 0x%04x\n",
857 			(u32)&ugeth->p_rx_glbl_pram->mflr,
858 			in_be16(&ugeth->p_rx_glbl_pram->mflr));
859 		pr_info("minflr          : addr - 0x%08x, val - 0x%04x\n",
860 			(u32)&ugeth->p_rx_glbl_pram->minflr,
861 			in_be16(&ugeth->p_rx_glbl_pram->minflr));
862 		pr_info("maxd1           : addr - 0x%08x, val - 0x%04x\n",
863 			(u32)&ugeth->p_rx_glbl_pram->maxd1,
864 			in_be16(&ugeth->p_rx_glbl_pram->maxd1));
865 		pr_info("maxd2           : addr - 0x%08x, val - 0x%04x\n",
866 			(u32)&ugeth->p_rx_glbl_pram->maxd2,
867 			in_be16(&ugeth->p_rx_glbl_pram->maxd2));
868 		pr_info("ecamptr         : addr - 0x%08x, val - 0x%08x\n",
869 			(u32)&ugeth->p_rx_glbl_pram->ecamptr,
870 			in_be32(&ugeth->p_rx_glbl_pram->ecamptr));
871 		pr_info("l2qt            : addr - 0x%08x, val - 0x%08x\n",
872 			(u32)&ugeth->p_rx_glbl_pram->l2qt,
873 			in_be32(&ugeth->p_rx_glbl_pram->l2qt));
874 		pr_info("l3qt[0]         : addr - 0x%08x, val - 0x%08x\n",
875 			(u32)&ugeth->p_rx_glbl_pram->l3qt[0],
876 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[0]));
877 		pr_info("l3qt[1]         : addr - 0x%08x, val - 0x%08x\n",
878 			(u32)&ugeth->p_rx_glbl_pram->l3qt[1],
879 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[1]));
880 		pr_info("l3qt[2]         : addr - 0x%08x, val - 0x%08x\n",
881 			(u32)&ugeth->p_rx_glbl_pram->l3qt[2],
882 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[2]));
883 		pr_info("l3qt[3]         : addr - 0x%08x, val - 0x%08x\n",
884 			(u32)&ugeth->p_rx_glbl_pram->l3qt[3],
885 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[3]));
886 		pr_info("l3qt[4]         : addr - 0x%08x, val - 0x%08x\n",
887 			(u32)&ugeth->p_rx_glbl_pram->l3qt[4],
888 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[4]));
889 		pr_info("l3qt[5]         : addr - 0x%08x, val - 0x%08x\n",
890 			(u32)&ugeth->p_rx_glbl_pram->l3qt[5],
891 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[5]));
892 		pr_info("l3qt[6]         : addr - 0x%08x, val - 0x%08x\n",
893 			(u32)&ugeth->p_rx_glbl_pram->l3qt[6],
894 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[6]));
895 		pr_info("l3qt[7]         : addr - 0x%08x, val - 0x%08x\n",
896 			(u32)&ugeth->p_rx_glbl_pram->l3qt[7],
897 			in_be32(&ugeth->p_rx_glbl_pram->l3qt[7]));
898 		pr_info("vlantype        : addr - 0x%08x, val - 0x%04x\n",
899 			(u32)&ugeth->p_rx_glbl_pram->vlantype,
900 			in_be16(&ugeth->p_rx_glbl_pram->vlantype));
901 		pr_info("vlantci         : addr - 0x%08x, val - 0x%04x\n",
902 			(u32)&ugeth->p_rx_glbl_pram->vlantci,
903 			in_be16(&ugeth->p_rx_glbl_pram->vlantci));
904 		for (i = 0; i < 64; i++)
905 			pr_info("addressfiltering[%d]: addr - 0x%08x, val - 0x%02x\n",
906 				i,
907 				(u32)&ugeth->p_rx_glbl_pram->addressfiltering[i],
908 				ugeth->p_rx_glbl_pram->addressfiltering[i]);
909 		pr_info("exfGlobalParam  : addr - 0x%08x, val - 0x%08x\n",
910 			(u32)&ugeth->p_rx_glbl_pram->exfGlobalParam,
911 			in_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam));
912 	}
913 	if (ugeth->p_send_q_mem_reg) {
914 		pr_info("Send Q memory registers:\n");
915 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_send_q_mem_reg);
916 		for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
917 			pr_info("SQQD[%d]:\n", i);
918 			pr_info("Base address: 0x%08x\n",
919 				(u32)&ugeth->p_send_q_mem_reg->sqqd[i]);
920 			mem_disp((u8 *) & ugeth->p_send_q_mem_reg->sqqd[i],
921 				 sizeof(struct ucc_geth_send_queue_qd));
922 		}
923 	}
924 	if (ugeth->p_scheduler) {
925 		pr_info("Scheduler:\n");
926 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_scheduler);
927 		mem_disp((u8 *) ugeth->p_scheduler,
928 			 sizeof(*ugeth->p_scheduler));
929 	}
930 	if (ugeth->p_tx_fw_statistics_pram) {
931 		pr_info("TX FW statistics pram:\n");
932 		pr_info("Base address: 0x%08x\n",
933 			(u32)ugeth->p_tx_fw_statistics_pram);
934 		mem_disp((u8 *) ugeth->p_tx_fw_statistics_pram,
935 			 sizeof(*ugeth->p_tx_fw_statistics_pram));
936 	}
937 	if (ugeth->p_rx_fw_statistics_pram) {
938 		pr_info("RX FW statistics pram:\n");
939 		pr_info("Base address: 0x%08x\n",
940 			(u32)ugeth->p_rx_fw_statistics_pram);
941 		mem_disp((u8 *) ugeth->p_rx_fw_statistics_pram,
942 			 sizeof(*ugeth->p_rx_fw_statistics_pram));
943 	}
944 	if (ugeth->p_rx_irq_coalescing_tbl) {
945 		pr_info("RX IRQ coalescing tables:\n");
946 		pr_info("Base address: 0x%08x\n",
947 			(u32)ugeth->p_rx_irq_coalescing_tbl);
948 		for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
949 			pr_info("RX IRQ coalescing table entry[%d]:\n", i);
950 			pr_info("Base address: 0x%08x\n",
951 				(u32)&ugeth->p_rx_irq_coalescing_tbl->
952 				coalescingentry[i]);
953 			pr_info("interruptcoalescingmaxvalue: addr - 0x%08x, val - 0x%08x\n",
954 				(u32)&ugeth->p_rx_irq_coalescing_tbl->
955 				coalescingentry[i].interruptcoalescingmaxvalue,
956 				in_be32(&ugeth->p_rx_irq_coalescing_tbl->
957 					coalescingentry[i].
958 					interruptcoalescingmaxvalue));
959 			pr_info("interruptcoalescingcounter : addr - 0x%08x, val - 0x%08x\n",
960 				(u32)&ugeth->p_rx_irq_coalescing_tbl->
961 				coalescingentry[i].interruptcoalescingcounter,
962 				in_be32(&ugeth->p_rx_irq_coalescing_tbl->
963 					coalescingentry[i].
964 					interruptcoalescingcounter));
965 		}
966 	}
967 	if (ugeth->p_rx_bd_qs_tbl) {
968 		pr_info("RX BD QS tables:\n");
969 		pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_bd_qs_tbl);
970 		for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
971 			pr_info("RX BD QS table[%d]:\n", i);
972 			pr_info("Base address: 0x%08x\n",
973 				(u32)&ugeth->p_rx_bd_qs_tbl[i]);
974 			pr_info("bdbaseptr        : addr - 0x%08x, val - 0x%08x\n",
975 				(u32)&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr,
976 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr));
977 			pr_info("bdptr            : addr - 0x%08x, val - 0x%08x\n",
978 				(u32)&ugeth->p_rx_bd_qs_tbl[i].bdptr,
979 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdptr));
980 			pr_info("externalbdbaseptr: addr - 0x%08x, val - 0x%08x\n",
981 				(u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
982 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].
983 					externalbdbaseptr));
984 			pr_info("externalbdptr    : addr - 0x%08x, val - 0x%08x\n",
985 				(u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdptr,
986 				in_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdptr));
987 			pr_info("ucode RX Prefetched BDs:\n");
988 			pr_info("Base address: 0x%08x\n",
989 				(u32)qe_muram_addr(in_be32
990 						   (&ugeth->p_rx_bd_qs_tbl[i].
991 						    bdbaseptr)));
992 			mem_disp((u8 *)
993 				 qe_muram_addr(in_be32
994 					       (&ugeth->p_rx_bd_qs_tbl[i].
995 						bdbaseptr)),
996 				 sizeof(struct ucc_geth_rx_prefetched_bds));
997 		}
998 	}
999 	if (ugeth->p_init_enet_param_shadow) {
1000 		int size;
1001 		pr_info("Init enet param shadow:\n");
1002 		pr_info("Base address: 0x%08x\n",
1003 			(u32) ugeth->p_init_enet_param_shadow);
1004 		mem_disp((u8 *) ugeth->p_init_enet_param_shadow,
1005 			 sizeof(*ugeth->p_init_enet_param_shadow));
1006 
1007 		size = sizeof(struct ucc_geth_thread_rx_pram);
1008 		if (ugeth->ug_info->rxExtendedFiltering) {
1009 			size +=
1010 			    THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
1011 			if (ugeth->ug_info->largestexternallookupkeysize ==
1012 			    QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
1013 				size +=
1014 			THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
1015 			if (ugeth->ug_info->largestexternallookupkeysize ==
1016 			    QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
1017 				size +=
1018 			THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
1019 		}
1020 
1021 		dump_init_enet_entries(ugeth,
1022 				       &(ugeth->p_init_enet_param_shadow->
1023 					 txthread[0]),
1024 				       ENET_INIT_PARAM_MAX_ENTRIES_TX,
1025 				       sizeof(struct ucc_geth_thread_tx_pram),
1026 				       ugeth->ug_info->riscTx, 0);
1027 		dump_init_enet_entries(ugeth,
1028 				       &(ugeth->p_init_enet_param_shadow->
1029 					 rxthread[0]),
1030 				       ENET_INIT_PARAM_MAX_ENTRIES_RX, size,
1031 				       ugeth->ug_info->riscRx, 1);
1032 	}
1033 }
1034 #endif /* DEBUG */
1035 
1036 static void init_default_reg_vals(u32 __iomem *upsmr_register,
1037 				  u32 __iomem *maccfg1_register,
1038 				  u32 __iomem *maccfg2_register)
1039 {
1040 	out_be32(upsmr_register, UCC_GETH_UPSMR_INIT);
1041 	out_be32(maccfg1_register, UCC_GETH_MACCFG1_INIT);
1042 	out_be32(maccfg2_register, UCC_GETH_MACCFG2_INIT);
1043 }
1044 
1045 static int init_half_duplex_params(int alt_beb,
1046 				   int back_pressure_no_backoff,
1047 				   int no_backoff,
1048 				   int excess_defer,
1049 				   u8 alt_beb_truncation,
1050 				   u8 max_retransmissions,
1051 				   u8 collision_window,
1052 				   u32 __iomem *hafdup_register)
1053 {
1054 	u32 value = 0;
1055 
1056 	if ((alt_beb_truncation > HALFDUP_ALT_BEB_TRUNCATION_MAX) ||
1057 	    (max_retransmissions > HALFDUP_MAX_RETRANSMISSION_MAX) ||
1058 	    (collision_window > HALFDUP_COLLISION_WINDOW_MAX))
1059 		return -EINVAL;
1060 
1061 	value = (u32) (alt_beb_truncation << HALFDUP_ALT_BEB_TRUNCATION_SHIFT);
1062 
1063 	if (alt_beb)
1064 		value |= HALFDUP_ALT_BEB;
1065 	if (back_pressure_no_backoff)
1066 		value |= HALFDUP_BACK_PRESSURE_NO_BACKOFF;
1067 	if (no_backoff)
1068 		value |= HALFDUP_NO_BACKOFF;
1069 	if (excess_defer)
1070 		value |= HALFDUP_EXCESSIVE_DEFER;
1071 
1072 	value |= (max_retransmissions << HALFDUP_MAX_RETRANSMISSION_SHIFT);
1073 
1074 	value |= collision_window;
1075 
1076 	out_be32(hafdup_register, value);
1077 	return 0;
1078 }
1079 
1080 static int init_inter_frame_gap_params(u8 non_btb_cs_ipg,
1081 				       u8 non_btb_ipg,
1082 				       u8 min_ifg,
1083 				       u8 btb_ipg,
1084 				       u32 __iomem *ipgifg_register)
1085 {
1086 	u32 value = 0;
1087 
1088 	/* Non-Back-to-back IPG part 1 should be <= Non-Back-to-back
1089 	IPG part 2 */
1090 	if (non_btb_cs_ipg > non_btb_ipg)
1091 		return -EINVAL;
1092 
1093 	if ((non_btb_cs_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART1_MAX) ||
1094 	    (non_btb_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART2_MAX) ||
1095 	    /*(min_ifg        > IPGIFG_MINIMUM_IFG_ENFORCEMENT_MAX) || */
1096 	    (btb_ipg > IPGIFG_BACK_TO_BACK_IFG_MAX))
1097 		return -EINVAL;
1098 
1099 	value |=
1100 	    ((non_btb_cs_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART1_SHIFT) &
1101 	     IPGIFG_NBTB_CS_IPG_MASK);
1102 	value |=
1103 	    ((non_btb_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART2_SHIFT) &
1104 	     IPGIFG_NBTB_IPG_MASK);
1105 	value |=
1106 	    ((min_ifg << IPGIFG_MINIMUM_IFG_ENFORCEMENT_SHIFT) &
1107 	     IPGIFG_MIN_IFG_MASK);
1108 	value |= (btb_ipg & IPGIFG_BTB_IPG_MASK);
1109 
1110 	out_be32(ipgifg_register, value);
1111 	return 0;
1112 }
1113 
1114 int init_flow_control_params(u32 automatic_flow_control_mode,
1115 				    int rx_flow_control_enable,
1116 				    int tx_flow_control_enable,
1117 				    u16 pause_period,
1118 				    u16 extension_field,
1119 				    u32 __iomem *upsmr_register,
1120 				    u32 __iomem *uempr_register,
1121 				    u32 __iomem *maccfg1_register)
1122 {
1123 	u32 value = 0;
1124 
1125 	/* Set UEMPR register */
1126 	value = (u32) pause_period << UEMPR_PAUSE_TIME_VALUE_SHIFT;
1127 	value |= (u32) extension_field << UEMPR_EXTENDED_PAUSE_TIME_VALUE_SHIFT;
1128 	out_be32(uempr_register, value);
1129 
1130 	/* Set UPSMR register */
1131 	setbits32(upsmr_register, automatic_flow_control_mode);
1132 
1133 	value = in_be32(maccfg1_register);
1134 	if (rx_flow_control_enable)
1135 		value |= MACCFG1_FLOW_RX;
1136 	if (tx_flow_control_enable)
1137 		value |= MACCFG1_FLOW_TX;
1138 	out_be32(maccfg1_register, value);
1139 
1140 	return 0;
1141 }
1142 
1143 static int init_hw_statistics_gathering_mode(int enable_hardware_statistics,
1144 					     int auto_zero_hardware_statistics,
1145 					     u32 __iomem *upsmr_register,
1146 					     u16 __iomem *uescr_register)
1147 {
1148 	u16 uescr_value = 0;
1149 
1150 	/* Enable hardware statistics gathering if requested */
1151 	if (enable_hardware_statistics)
1152 		setbits32(upsmr_register, UCC_GETH_UPSMR_HSE);
1153 
1154 	/* Clear hardware statistics counters */
1155 	uescr_value = in_be16(uescr_register);
1156 	uescr_value |= UESCR_CLRCNT;
1157 	/* Automatically zero hardware statistics counters on read,
1158 	if requested */
1159 	if (auto_zero_hardware_statistics)
1160 		uescr_value |= UESCR_AUTOZ;
1161 	out_be16(uescr_register, uescr_value);
1162 
1163 	return 0;
1164 }
1165 
1166 static int init_firmware_statistics_gathering_mode(int
1167 		enable_tx_firmware_statistics,
1168 		int enable_rx_firmware_statistics,
1169 		u32 __iomem *tx_rmon_base_ptr,
1170 		u32 tx_firmware_statistics_structure_address,
1171 		u32 __iomem *rx_rmon_base_ptr,
1172 		u32 rx_firmware_statistics_structure_address,
1173 		u16 __iomem *temoder_register,
1174 		u32 __iomem *remoder_register)
1175 {
1176 	/* Note: this function does not check if */
1177 	/* the parameters it receives are NULL   */
1178 
1179 	if (enable_tx_firmware_statistics) {
1180 		out_be32(tx_rmon_base_ptr,
1181 			 tx_firmware_statistics_structure_address);
1182 		setbits16(temoder_register, TEMODER_TX_RMON_STATISTICS_ENABLE);
1183 	}
1184 
1185 	if (enable_rx_firmware_statistics) {
1186 		out_be32(rx_rmon_base_ptr,
1187 			 rx_firmware_statistics_structure_address);
1188 		setbits32(remoder_register, REMODER_RX_RMON_STATISTICS_ENABLE);
1189 	}
1190 
1191 	return 0;
1192 }
1193 
1194 static int init_mac_station_addr_regs(u8 address_byte_0,
1195 				      u8 address_byte_1,
1196 				      u8 address_byte_2,
1197 				      u8 address_byte_3,
1198 				      u8 address_byte_4,
1199 				      u8 address_byte_5,
1200 				      u32 __iomem *macstnaddr1_register,
1201 				      u32 __iomem *macstnaddr2_register)
1202 {
1203 	u32 value = 0;
1204 
1205 	/* Example: for a station address of 0x12345678ABCD, */
1206 	/* 0x12 is byte 0, 0x34 is byte 1 and so on and 0xCD is byte 5 */
1207 
1208 	/* MACSTNADDR1 Register: */
1209 
1210 	/* 0                      7   8                      15  */
1211 	/* station address byte 5     station address byte 4     */
1212 	/* 16                     23  24                     31  */
1213 	/* station address byte 3     station address byte 2     */
1214 	value |= (u32) ((address_byte_2 << 0) & 0x000000FF);
1215 	value |= (u32) ((address_byte_3 << 8) & 0x0000FF00);
1216 	value |= (u32) ((address_byte_4 << 16) & 0x00FF0000);
1217 	value |= (u32) ((address_byte_5 << 24) & 0xFF000000);
1218 
1219 	out_be32(macstnaddr1_register, value);
1220 
1221 	/* MACSTNADDR2 Register: */
1222 
1223 	/* 0                      7   8                      15  */
1224 	/* station address byte 1     station address byte 0     */
1225 	/* 16                     23  24                     31  */
1226 	/*         reserved                   reserved           */
1227 	value = 0;
1228 	value |= (u32) ((address_byte_0 << 16) & 0x00FF0000);
1229 	value |= (u32) ((address_byte_1 << 24) & 0xFF000000);
1230 
1231 	out_be32(macstnaddr2_register, value);
1232 
1233 	return 0;
1234 }
1235 
1236 static int init_check_frame_length_mode(int length_check,
1237 					u32 __iomem *maccfg2_register)
1238 {
1239 	u32 value = 0;
1240 
1241 	value = in_be32(maccfg2_register);
1242 
1243 	if (length_check)
1244 		value |= MACCFG2_LC;
1245 	else
1246 		value &= ~MACCFG2_LC;
1247 
1248 	out_be32(maccfg2_register, value);
1249 	return 0;
1250 }
1251 
1252 static int init_preamble_length(u8 preamble_length,
1253 				u32 __iomem *maccfg2_register)
1254 {
1255 	if ((preamble_length < 3) || (preamble_length > 7))
1256 		return -EINVAL;
1257 
1258 	clrsetbits_be32(maccfg2_register, MACCFG2_PREL_MASK,
1259 			preamble_length << MACCFG2_PREL_SHIFT);
1260 
1261 	return 0;
1262 }
1263 
1264 static int init_rx_parameters(int reject_broadcast,
1265 			      int receive_short_frames,
1266 			      int promiscuous, u32 __iomem *upsmr_register)
1267 {
1268 	u32 value = 0;
1269 
1270 	value = in_be32(upsmr_register);
1271 
1272 	if (reject_broadcast)
1273 		value |= UCC_GETH_UPSMR_BRO;
1274 	else
1275 		value &= ~UCC_GETH_UPSMR_BRO;
1276 
1277 	if (receive_short_frames)
1278 		value |= UCC_GETH_UPSMR_RSH;
1279 	else
1280 		value &= ~UCC_GETH_UPSMR_RSH;
1281 
1282 	if (promiscuous)
1283 		value |= UCC_GETH_UPSMR_PRO;
1284 	else
1285 		value &= ~UCC_GETH_UPSMR_PRO;
1286 
1287 	out_be32(upsmr_register, value);
1288 
1289 	return 0;
1290 }
1291 
1292 static int init_max_rx_buff_len(u16 max_rx_buf_len,
1293 				u16 __iomem *mrblr_register)
1294 {
1295 	/* max_rx_buf_len value must be a multiple of 128 */
1296 	if ((max_rx_buf_len == 0) ||
1297 	    (max_rx_buf_len % UCC_GETH_MRBLR_ALIGNMENT))
1298 		return -EINVAL;
1299 
1300 	out_be16(mrblr_register, max_rx_buf_len);
1301 	return 0;
1302 }
1303 
1304 static int init_min_frame_len(u16 min_frame_length,
1305 			      u16 __iomem *minflr_register,
1306 			      u16 __iomem *mrblr_register)
1307 {
1308 	u16 mrblr_value = 0;
1309 
1310 	mrblr_value = in_be16(mrblr_register);
1311 	if (min_frame_length >= (mrblr_value - 4))
1312 		return -EINVAL;
1313 
1314 	out_be16(minflr_register, min_frame_length);
1315 	return 0;
1316 }
1317 
1318 static int adjust_enet_interface(struct ucc_geth_private *ugeth)
1319 {
1320 	struct ucc_geth_info *ug_info;
1321 	struct ucc_geth __iomem *ug_regs;
1322 	struct ucc_fast __iomem *uf_regs;
1323 	int ret_val;
1324 	u32 upsmr, maccfg2;
1325 	u16 value;
1326 
1327 	ugeth_vdbg("%s: IN", __func__);
1328 
1329 	ug_info = ugeth->ug_info;
1330 	ug_regs = ugeth->ug_regs;
1331 	uf_regs = ugeth->uccf->uf_regs;
1332 
1333 	/*                    Set MACCFG2                    */
1334 	maccfg2 = in_be32(&ug_regs->maccfg2);
1335 	maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK;
1336 	if ((ugeth->max_speed == SPEED_10) ||
1337 	    (ugeth->max_speed == SPEED_100))
1338 		maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE;
1339 	else if (ugeth->max_speed == SPEED_1000)
1340 		maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE;
1341 	maccfg2 |= ug_info->padAndCrc;
1342 	out_be32(&ug_regs->maccfg2, maccfg2);
1343 
1344 	/*                    Set UPSMR                      */
1345 	upsmr = in_be32(&uf_regs->upsmr);
1346 	upsmr &= ~(UCC_GETH_UPSMR_RPM | UCC_GETH_UPSMR_R10M |
1347 		   UCC_GETH_UPSMR_TBIM | UCC_GETH_UPSMR_RMM);
1348 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1349 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1350 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1351 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1352 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1353 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1354 		if (ugeth->phy_interface != PHY_INTERFACE_MODE_RMII)
1355 			upsmr |= UCC_GETH_UPSMR_RPM;
1356 		switch (ugeth->max_speed) {
1357 		case SPEED_10:
1358 			upsmr |= UCC_GETH_UPSMR_R10M;
1359 			/* FALLTHROUGH */
1360 		case SPEED_100:
1361 			if (ugeth->phy_interface != PHY_INTERFACE_MODE_RTBI)
1362 				upsmr |= UCC_GETH_UPSMR_RMM;
1363 		}
1364 	}
1365 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1366 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1367 		upsmr |= UCC_GETH_UPSMR_TBIM;
1368 	}
1369 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_SGMII))
1370 		upsmr |= UCC_GETH_UPSMR_SGMM;
1371 
1372 	out_be32(&uf_regs->upsmr, upsmr);
1373 
1374 	/* Disable autonegotiation in tbi mode, because by default it
1375 	comes up in autonegotiation mode. */
1376 	/* Note that this depends on proper setting in utbipar register. */
1377 	if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) ||
1378 	    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1379 		struct ucc_geth_info *ug_info = ugeth->ug_info;
1380 		struct phy_device *tbiphy;
1381 
1382 		if (!ug_info->tbi_node)
1383 			pr_warn("TBI mode requires that the device tree specify a tbi-handle\n");
1384 
1385 		tbiphy = of_phy_find_device(ug_info->tbi_node);
1386 		if (!tbiphy)
1387 			pr_warn("Could not get TBI device\n");
1388 
1389 		value = phy_read(tbiphy, ENET_TBI_MII_CR);
1390 		value &= ~0x1000;	/* Turn off autonegotiation */
1391 		phy_write(tbiphy, ENET_TBI_MII_CR, value);
1392 	}
1393 
1394 	init_check_frame_length_mode(ug_info->lengthCheckRx, &ug_regs->maccfg2);
1395 
1396 	ret_val = init_preamble_length(ug_info->prel, &ug_regs->maccfg2);
1397 	if (ret_val != 0) {
1398 		if (netif_msg_probe(ugeth))
1399 			pr_err("Preamble length must be between 3 and 7 inclusive\n");
1400 		return ret_val;
1401 	}
1402 
1403 	return 0;
1404 }
1405 
1406 static int ugeth_graceful_stop_tx(struct ucc_geth_private *ugeth)
1407 {
1408 	struct ucc_fast_private *uccf;
1409 	u32 cecr_subblock;
1410 	u32 temp;
1411 	int i = 10;
1412 
1413 	uccf = ugeth->uccf;
1414 
1415 	/* Mask GRACEFUL STOP TX interrupt bit and clear it */
1416 	clrbits32(uccf->p_uccm, UCC_GETH_UCCE_GRA);
1417 	out_be32(uccf->p_ucce, UCC_GETH_UCCE_GRA);  /* clear by writing 1 */
1418 
1419 	/* Issue host command */
1420 	cecr_subblock =
1421 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1422 	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
1423 		     QE_CR_PROTOCOL_ETHERNET, 0);
1424 
1425 	/* Wait for command to complete */
1426 	do {
1427 		msleep(10);
1428 		temp = in_be32(uccf->p_ucce);
1429 	} while (!(temp & UCC_GETH_UCCE_GRA) && --i);
1430 
1431 	uccf->stopped_tx = 1;
1432 
1433 	return 0;
1434 }
1435 
1436 static int ugeth_graceful_stop_rx(struct ucc_geth_private *ugeth)
1437 {
1438 	struct ucc_fast_private *uccf;
1439 	u32 cecr_subblock;
1440 	u8 temp;
1441 	int i = 10;
1442 
1443 	uccf = ugeth->uccf;
1444 
1445 	/* Clear acknowledge bit */
1446 	temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1447 	temp &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX;
1448 	out_8(&ugeth->p_rx_glbl_pram->rxgstpack, temp);
1449 
1450 	/* Keep issuing command and checking acknowledge bit until
1451 	it is asserted, according to spec */
1452 	do {
1453 		/* Issue host command */
1454 		cecr_subblock =
1455 		    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.
1456 						ucc_num);
1457 		qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock,
1458 			     QE_CR_PROTOCOL_ETHERNET, 0);
1459 		msleep(10);
1460 		temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack);
1461 	} while (!(temp & GRACEFUL_STOP_ACKNOWLEDGE_RX) && --i);
1462 
1463 	uccf->stopped_rx = 1;
1464 
1465 	return 0;
1466 }
1467 
1468 static int ugeth_restart_tx(struct ucc_geth_private *ugeth)
1469 {
1470 	struct ucc_fast_private *uccf;
1471 	u32 cecr_subblock;
1472 
1473 	uccf = ugeth->uccf;
1474 
1475 	cecr_subblock =
1476 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1477 	qe_issue_cmd(QE_RESTART_TX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 0);
1478 	uccf->stopped_tx = 0;
1479 
1480 	return 0;
1481 }
1482 
1483 static int ugeth_restart_rx(struct ucc_geth_private *ugeth)
1484 {
1485 	struct ucc_fast_private *uccf;
1486 	u32 cecr_subblock;
1487 
1488 	uccf = ugeth->uccf;
1489 
1490 	cecr_subblock =
1491 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
1492 	qe_issue_cmd(QE_RESTART_RX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
1493 		     0);
1494 	uccf->stopped_rx = 0;
1495 
1496 	return 0;
1497 }
1498 
1499 static int ugeth_enable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1500 {
1501 	struct ucc_fast_private *uccf;
1502 	int enabled_tx, enabled_rx;
1503 
1504 	uccf = ugeth->uccf;
1505 
1506 	/* check if the UCC number is in range. */
1507 	if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1508 		if (netif_msg_probe(ugeth))
1509 			pr_err("ucc_num out of range\n");
1510 		return -EINVAL;
1511 	}
1512 
1513 	enabled_tx = uccf->enabled_tx;
1514 	enabled_rx = uccf->enabled_rx;
1515 
1516 	/* Get Tx and Rx going again, in case this channel was actively
1517 	disabled. */
1518 	if ((mode & COMM_DIR_TX) && (!enabled_tx) && uccf->stopped_tx)
1519 		ugeth_restart_tx(ugeth);
1520 	if ((mode & COMM_DIR_RX) && (!enabled_rx) && uccf->stopped_rx)
1521 		ugeth_restart_rx(ugeth);
1522 
1523 	ucc_fast_enable(uccf, mode);	/* OK to do even if not disabled */
1524 
1525 	return 0;
1526 
1527 }
1528 
1529 static int ugeth_disable(struct ucc_geth_private *ugeth, enum comm_dir mode)
1530 {
1531 	struct ucc_fast_private *uccf;
1532 
1533 	uccf = ugeth->uccf;
1534 
1535 	/* check if the UCC number is in range. */
1536 	if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) {
1537 		if (netif_msg_probe(ugeth))
1538 			pr_err("ucc_num out of range\n");
1539 		return -EINVAL;
1540 	}
1541 
1542 	/* Stop any transmissions */
1543 	if ((mode & COMM_DIR_TX) && uccf->enabled_tx && !uccf->stopped_tx)
1544 		ugeth_graceful_stop_tx(ugeth);
1545 
1546 	/* Stop any receptions */
1547 	if ((mode & COMM_DIR_RX) && uccf->enabled_rx && !uccf->stopped_rx)
1548 		ugeth_graceful_stop_rx(ugeth);
1549 
1550 	ucc_fast_disable(ugeth->uccf, mode); /* OK to do even if not enabled */
1551 
1552 	return 0;
1553 }
1554 
1555 static void ugeth_quiesce(struct ucc_geth_private *ugeth)
1556 {
1557 	/* Prevent any further xmits, plus detach the device. */
1558 	netif_device_detach(ugeth->ndev);
1559 
1560 	/* Wait for any current xmits to finish. */
1561 	netif_tx_disable(ugeth->ndev);
1562 
1563 	/* Disable the interrupt to avoid NAPI rescheduling. */
1564 	disable_irq(ugeth->ug_info->uf_info.irq);
1565 
1566 	/* Stop NAPI, and possibly wait for its completion. */
1567 	napi_disable(&ugeth->napi);
1568 }
1569 
1570 static void ugeth_activate(struct ucc_geth_private *ugeth)
1571 {
1572 	napi_enable(&ugeth->napi);
1573 	enable_irq(ugeth->ug_info->uf_info.irq);
1574 	netif_device_attach(ugeth->ndev);
1575 }
1576 
1577 /* Called every time the controller might need to be made
1578  * aware of new link state.  The PHY code conveys this
1579  * information through variables in the ugeth structure, and this
1580  * function converts those variables into the appropriate
1581  * register values, and can bring down the device if needed.
1582  */
1583 
1584 static void adjust_link(struct net_device *dev)
1585 {
1586 	struct ucc_geth_private *ugeth = netdev_priv(dev);
1587 	struct ucc_geth __iomem *ug_regs;
1588 	struct ucc_fast __iomem *uf_regs;
1589 	struct phy_device *phydev = ugeth->phydev;
1590 	int new_state = 0;
1591 
1592 	ug_regs = ugeth->ug_regs;
1593 	uf_regs = ugeth->uccf->uf_regs;
1594 
1595 	if (phydev->link) {
1596 		u32 tempval = in_be32(&ug_regs->maccfg2);
1597 		u32 upsmr = in_be32(&uf_regs->upsmr);
1598 		/* Now we make sure that we can be in full duplex mode.
1599 		 * If not, we operate in half-duplex mode. */
1600 		if (phydev->duplex != ugeth->oldduplex) {
1601 			new_state = 1;
1602 			if (!(phydev->duplex))
1603 				tempval &= ~(MACCFG2_FDX);
1604 			else
1605 				tempval |= MACCFG2_FDX;
1606 			ugeth->oldduplex = phydev->duplex;
1607 		}
1608 
1609 		if (phydev->speed != ugeth->oldspeed) {
1610 			new_state = 1;
1611 			switch (phydev->speed) {
1612 			case SPEED_1000:
1613 				tempval = ((tempval &
1614 					    ~(MACCFG2_INTERFACE_MODE_MASK)) |
1615 					    MACCFG2_INTERFACE_MODE_BYTE);
1616 				break;
1617 			case SPEED_100:
1618 			case SPEED_10:
1619 				tempval = ((tempval &
1620 					    ~(MACCFG2_INTERFACE_MODE_MASK)) |
1621 					    MACCFG2_INTERFACE_MODE_NIBBLE);
1622 				/* if reduced mode, re-set UPSMR.R10M */
1623 				if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) ||
1624 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) ||
1625 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) ||
1626 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
1627 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) ||
1628 				    (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) {
1629 					if (phydev->speed == SPEED_10)
1630 						upsmr |= UCC_GETH_UPSMR_R10M;
1631 					else
1632 						upsmr &= ~UCC_GETH_UPSMR_R10M;
1633 				}
1634 				break;
1635 			default:
1636 				if (netif_msg_link(ugeth))
1637 					pr_warn(
1638 						"%s: Ack!  Speed (%d) is not 10/100/1000!",
1639 						dev->name, phydev->speed);
1640 				break;
1641 			}
1642 			ugeth->oldspeed = phydev->speed;
1643 		}
1644 
1645 		if (!ugeth->oldlink) {
1646 			new_state = 1;
1647 			ugeth->oldlink = 1;
1648 		}
1649 
1650 		if (new_state) {
1651 			/*
1652 			 * To change the MAC configuration we need to disable
1653 			 * the controller. To do so, we have to either grab
1654 			 * ugeth->lock, which is a bad idea since 'graceful
1655 			 * stop' commands might take quite a while, or we can
1656 			 * quiesce driver's activity.
1657 			 */
1658 			ugeth_quiesce(ugeth);
1659 			ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
1660 
1661 			out_be32(&ug_regs->maccfg2, tempval);
1662 			out_be32(&uf_regs->upsmr, upsmr);
1663 
1664 			ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
1665 			ugeth_activate(ugeth);
1666 		}
1667 	} else if (ugeth->oldlink) {
1668 			new_state = 1;
1669 			ugeth->oldlink = 0;
1670 			ugeth->oldspeed = 0;
1671 			ugeth->oldduplex = -1;
1672 	}
1673 
1674 	if (new_state && netif_msg_link(ugeth))
1675 		phy_print_status(phydev);
1676 }
1677 
1678 /* Initialize TBI PHY interface for communicating with the
1679  * SERDES lynx PHY on the chip.  We communicate with this PHY
1680  * through the MDIO bus on each controller, treating it as a
1681  * "normal" PHY at the address found in the UTBIPA register.  We assume
1682  * that the UTBIPA register is valid.  Either the MDIO bus code will set
1683  * it to a value that doesn't conflict with other PHYs on the bus, or the
1684  * value doesn't matter, as there are no other PHYs on the bus.
1685  */
1686 static void uec_configure_serdes(struct net_device *dev)
1687 {
1688 	struct ucc_geth_private *ugeth = netdev_priv(dev);
1689 	struct ucc_geth_info *ug_info = ugeth->ug_info;
1690 	struct phy_device *tbiphy;
1691 
1692 	if (!ug_info->tbi_node) {
1693 		dev_warn(&dev->dev, "SGMII mode requires that the device "
1694 			"tree specify a tbi-handle\n");
1695 		return;
1696 	}
1697 
1698 	tbiphy = of_phy_find_device(ug_info->tbi_node);
1699 	if (!tbiphy) {
1700 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1701 		return;
1702 	}
1703 
1704 	/*
1705 	 * If the link is already up, we must already be ok, and don't need to
1706 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1707 	 * everything for us?  Resetting it takes the link down and requires
1708 	 * several seconds for it to come back.
1709 	 */
1710 	if (phy_read(tbiphy, ENET_TBI_MII_SR) & TBISR_LSTATUS)
1711 		return;
1712 
1713 	/* Single clk mode, mii mode off(for serdes communication) */
1714 	phy_write(tbiphy, ENET_TBI_MII_ANA, TBIANA_SETTINGS);
1715 
1716 	phy_write(tbiphy, ENET_TBI_MII_TBICON, TBICON_CLK_SELECT);
1717 
1718 	phy_write(tbiphy, ENET_TBI_MII_CR, TBICR_SETTINGS);
1719 }
1720 
1721 /* Configure the PHY for dev.
1722  * returns 0 if success.  -1 if failure
1723  */
1724 static int init_phy(struct net_device *dev)
1725 {
1726 	struct ucc_geth_private *priv = netdev_priv(dev);
1727 	struct ucc_geth_info *ug_info = priv->ug_info;
1728 	struct phy_device *phydev;
1729 
1730 	priv->oldlink = 0;
1731 	priv->oldspeed = 0;
1732 	priv->oldduplex = -1;
1733 
1734 	phydev = of_phy_connect(dev, ug_info->phy_node, &adjust_link, 0,
1735 				priv->phy_interface);
1736 	if (!phydev)
1737 		phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1738 						   priv->phy_interface);
1739 	if (!phydev) {
1740 		dev_err(&dev->dev, "Could not attach to PHY\n");
1741 		return -ENODEV;
1742 	}
1743 
1744 	if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII)
1745 		uec_configure_serdes(dev);
1746 
1747 	phydev->supported &= (SUPPORTED_MII |
1748 			      SUPPORTED_Autoneg |
1749 			      ADVERTISED_10baseT_Half |
1750 			      ADVERTISED_10baseT_Full |
1751 			      ADVERTISED_100baseT_Half |
1752 			      ADVERTISED_100baseT_Full);
1753 
1754 	if (priv->max_speed == SPEED_1000)
1755 		phydev->supported |= ADVERTISED_1000baseT_Full;
1756 
1757 	phydev->advertising = phydev->supported;
1758 
1759 	priv->phydev = phydev;
1760 
1761 	return 0;
1762 }
1763 
1764 static void ugeth_dump_regs(struct ucc_geth_private *ugeth)
1765 {
1766 #ifdef DEBUG
1767 	ucc_fast_dump_regs(ugeth->uccf);
1768 	dump_regs(ugeth);
1769 	dump_bds(ugeth);
1770 #endif
1771 }
1772 
1773 static int ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private *
1774 						       ugeth,
1775 						       enum enet_addr_type
1776 						       enet_addr_type)
1777 {
1778 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
1779 	struct ucc_fast_private *uccf;
1780 	enum comm_dir comm_dir;
1781 	struct list_head *p_lh;
1782 	u16 i, num;
1783 	u32 __iomem *addr_h;
1784 	u32 __iomem *addr_l;
1785 	u8 *p_counter;
1786 
1787 	uccf = ugeth->uccf;
1788 
1789 	p_82xx_addr_filt =
1790 	    (struct ucc_geth_82xx_address_filtering_pram __iomem *)
1791 	    ugeth->p_rx_glbl_pram->addressfiltering;
1792 
1793 	if (enet_addr_type == ENET_ADDR_TYPE_GROUP) {
1794 		addr_h = &(p_82xx_addr_filt->gaddr_h);
1795 		addr_l = &(p_82xx_addr_filt->gaddr_l);
1796 		p_lh = &ugeth->group_hash_q;
1797 		p_counter = &(ugeth->numGroupAddrInHash);
1798 	} else if (enet_addr_type == ENET_ADDR_TYPE_INDIVIDUAL) {
1799 		addr_h = &(p_82xx_addr_filt->iaddr_h);
1800 		addr_l = &(p_82xx_addr_filt->iaddr_l);
1801 		p_lh = &ugeth->ind_hash_q;
1802 		p_counter = &(ugeth->numIndAddrInHash);
1803 	} else
1804 		return -EINVAL;
1805 
1806 	comm_dir = 0;
1807 	if (uccf->enabled_tx)
1808 		comm_dir |= COMM_DIR_TX;
1809 	if (uccf->enabled_rx)
1810 		comm_dir |= COMM_DIR_RX;
1811 	if (comm_dir)
1812 		ugeth_disable(ugeth, comm_dir);
1813 
1814 	/* Clear the hash table. */
1815 	out_be32(addr_h, 0x00000000);
1816 	out_be32(addr_l, 0x00000000);
1817 
1818 	if (!p_lh)
1819 		return 0;
1820 
1821 	num = *p_counter;
1822 
1823 	/* Delete all remaining CQ elements */
1824 	for (i = 0; i < num; i++)
1825 		put_enet_addr_container(ENET_ADDR_CONT_ENTRY(dequeue(p_lh)));
1826 
1827 	*p_counter = 0;
1828 
1829 	if (comm_dir)
1830 		ugeth_enable(ugeth, comm_dir);
1831 
1832 	return 0;
1833 }
1834 
1835 static int ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private *ugeth,
1836 						    u8 paddr_num)
1837 {
1838 	ugeth->indAddrRegUsed[paddr_num] = 0; /* mark this paddr as not used */
1839 	return hw_clear_addr_in_paddr(ugeth, paddr_num);/* clear in hardware */
1840 }
1841 
1842 static void ucc_geth_free_rx(struct ucc_geth_private *ugeth)
1843 {
1844 	struct ucc_geth_info *ug_info;
1845 	struct ucc_fast_info *uf_info;
1846 	u16 i, j;
1847 	u8 __iomem *bd;
1848 
1849 
1850 	ug_info = ugeth->ug_info;
1851 	uf_info = &ug_info->uf_info;
1852 
1853 	for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) {
1854 		if (ugeth->p_rx_bd_ring[i]) {
1855 			/* Return existing data buffers in ring */
1856 			bd = ugeth->p_rx_bd_ring[i];
1857 			for (j = 0; j < ugeth->ug_info->bdRingLenRx[i]; j++) {
1858 				if (ugeth->rx_skbuff[i][j]) {
1859 					dma_unmap_single(ugeth->dev,
1860 						in_be32(&((struct qe_bd __iomem *)bd)->buf),
1861 						ugeth->ug_info->
1862 						uf_info.max_rx_buf_length +
1863 						UCC_GETH_RX_DATA_BUF_ALIGNMENT,
1864 						DMA_FROM_DEVICE);
1865 					dev_kfree_skb_any(
1866 						ugeth->rx_skbuff[i][j]);
1867 					ugeth->rx_skbuff[i][j] = NULL;
1868 				}
1869 				bd += sizeof(struct qe_bd);
1870 			}
1871 
1872 			kfree(ugeth->rx_skbuff[i]);
1873 
1874 			if (ugeth->ug_info->uf_info.bd_mem_part ==
1875 			    MEM_PART_SYSTEM)
1876 				kfree((void *)ugeth->rx_bd_ring_offset[i]);
1877 			else if (ugeth->ug_info->uf_info.bd_mem_part ==
1878 				 MEM_PART_MURAM)
1879 				qe_muram_free(ugeth->rx_bd_ring_offset[i]);
1880 			ugeth->p_rx_bd_ring[i] = NULL;
1881 		}
1882 	}
1883 
1884 }
1885 
1886 static void ucc_geth_free_tx(struct ucc_geth_private *ugeth)
1887 {
1888 	struct ucc_geth_info *ug_info;
1889 	struct ucc_fast_info *uf_info;
1890 	u16 i, j;
1891 	u8 __iomem *bd;
1892 
1893 	ug_info = ugeth->ug_info;
1894 	uf_info = &ug_info->uf_info;
1895 
1896 	for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) {
1897 		bd = ugeth->p_tx_bd_ring[i];
1898 		if (!bd)
1899 			continue;
1900 		for (j = 0; j < ugeth->ug_info->bdRingLenTx[i]; j++) {
1901 			if (ugeth->tx_skbuff[i][j]) {
1902 				dma_unmap_single(ugeth->dev,
1903 						 in_be32(&((struct qe_bd __iomem *)bd)->buf),
1904 						 (in_be32((u32 __iomem *)bd) &
1905 						  BD_LENGTH_MASK),
1906 						 DMA_TO_DEVICE);
1907 				dev_kfree_skb_any(ugeth->tx_skbuff[i][j]);
1908 				ugeth->tx_skbuff[i][j] = NULL;
1909 			}
1910 		}
1911 
1912 		kfree(ugeth->tx_skbuff[i]);
1913 
1914 		if (ugeth->p_tx_bd_ring[i]) {
1915 			if (ugeth->ug_info->uf_info.bd_mem_part ==
1916 			    MEM_PART_SYSTEM)
1917 				kfree((void *)ugeth->tx_bd_ring_offset[i]);
1918 			else if (ugeth->ug_info->uf_info.bd_mem_part ==
1919 				 MEM_PART_MURAM)
1920 				qe_muram_free(ugeth->tx_bd_ring_offset[i]);
1921 			ugeth->p_tx_bd_ring[i] = NULL;
1922 		}
1923 	}
1924 
1925 }
1926 
1927 static void ucc_geth_memclean(struct ucc_geth_private *ugeth)
1928 {
1929 	if (!ugeth)
1930 		return;
1931 
1932 	if (ugeth->uccf) {
1933 		ucc_fast_free(ugeth->uccf);
1934 		ugeth->uccf = NULL;
1935 	}
1936 
1937 	if (ugeth->p_thread_data_tx) {
1938 		qe_muram_free(ugeth->thread_dat_tx_offset);
1939 		ugeth->p_thread_data_tx = NULL;
1940 	}
1941 	if (ugeth->p_thread_data_rx) {
1942 		qe_muram_free(ugeth->thread_dat_rx_offset);
1943 		ugeth->p_thread_data_rx = NULL;
1944 	}
1945 	if (ugeth->p_exf_glbl_param) {
1946 		qe_muram_free(ugeth->exf_glbl_param_offset);
1947 		ugeth->p_exf_glbl_param = NULL;
1948 	}
1949 	if (ugeth->p_rx_glbl_pram) {
1950 		qe_muram_free(ugeth->rx_glbl_pram_offset);
1951 		ugeth->p_rx_glbl_pram = NULL;
1952 	}
1953 	if (ugeth->p_tx_glbl_pram) {
1954 		qe_muram_free(ugeth->tx_glbl_pram_offset);
1955 		ugeth->p_tx_glbl_pram = NULL;
1956 	}
1957 	if (ugeth->p_send_q_mem_reg) {
1958 		qe_muram_free(ugeth->send_q_mem_reg_offset);
1959 		ugeth->p_send_q_mem_reg = NULL;
1960 	}
1961 	if (ugeth->p_scheduler) {
1962 		qe_muram_free(ugeth->scheduler_offset);
1963 		ugeth->p_scheduler = NULL;
1964 	}
1965 	if (ugeth->p_tx_fw_statistics_pram) {
1966 		qe_muram_free(ugeth->tx_fw_statistics_pram_offset);
1967 		ugeth->p_tx_fw_statistics_pram = NULL;
1968 	}
1969 	if (ugeth->p_rx_fw_statistics_pram) {
1970 		qe_muram_free(ugeth->rx_fw_statistics_pram_offset);
1971 		ugeth->p_rx_fw_statistics_pram = NULL;
1972 	}
1973 	if (ugeth->p_rx_irq_coalescing_tbl) {
1974 		qe_muram_free(ugeth->rx_irq_coalescing_tbl_offset);
1975 		ugeth->p_rx_irq_coalescing_tbl = NULL;
1976 	}
1977 	if (ugeth->p_rx_bd_qs_tbl) {
1978 		qe_muram_free(ugeth->rx_bd_qs_tbl_offset);
1979 		ugeth->p_rx_bd_qs_tbl = NULL;
1980 	}
1981 	if (ugeth->p_init_enet_param_shadow) {
1982 		return_init_enet_entries(ugeth,
1983 					 &(ugeth->p_init_enet_param_shadow->
1984 					   rxthread[0]),
1985 					 ENET_INIT_PARAM_MAX_ENTRIES_RX,
1986 					 ugeth->ug_info->riscRx, 1);
1987 		return_init_enet_entries(ugeth,
1988 					 &(ugeth->p_init_enet_param_shadow->
1989 					   txthread[0]),
1990 					 ENET_INIT_PARAM_MAX_ENTRIES_TX,
1991 					 ugeth->ug_info->riscTx, 0);
1992 		kfree(ugeth->p_init_enet_param_shadow);
1993 		ugeth->p_init_enet_param_shadow = NULL;
1994 	}
1995 	ucc_geth_free_tx(ugeth);
1996 	ucc_geth_free_rx(ugeth);
1997 	while (!list_empty(&ugeth->group_hash_q))
1998 		put_enet_addr_container(ENET_ADDR_CONT_ENTRY
1999 					(dequeue(&ugeth->group_hash_q)));
2000 	while (!list_empty(&ugeth->ind_hash_q))
2001 		put_enet_addr_container(ENET_ADDR_CONT_ENTRY
2002 					(dequeue(&ugeth->ind_hash_q)));
2003 	if (ugeth->ug_regs) {
2004 		iounmap(ugeth->ug_regs);
2005 		ugeth->ug_regs = NULL;
2006 	}
2007 }
2008 
2009 static void ucc_geth_set_multi(struct net_device *dev)
2010 {
2011 	struct ucc_geth_private *ugeth;
2012 	struct netdev_hw_addr *ha;
2013 	struct ucc_fast __iomem *uf_regs;
2014 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2015 
2016 	ugeth = netdev_priv(dev);
2017 
2018 	uf_regs = ugeth->uccf->uf_regs;
2019 
2020 	if (dev->flags & IFF_PROMISC) {
2021 		setbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2022 	} else {
2023 		clrbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO);
2024 
2025 		p_82xx_addr_filt =
2026 		    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2027 		    p_rx_glbl_pram->addressfiltering;
2028 
2029 		if (dev->flags & IFF_ALLMULTI) {
2030 			/* Catch all multicast addresses, so set the
2031 			 * filter to all 1's.
2032 			 */
2033 			out_be32(&p_82xx_addr_filt->gaddr_h, 0xffffffff);
2034 			out_be32(&p_82xx_addr_filt->gaddr_l, 0xffffffff);
2035 		} else {
2036 			/* Clear filter and add the addresses in the list.
2037 			 */
2038 			out_be32(&p_82xx_addr_filt->gaddr_h, 0x0);
2039 			out_be32(&p_82xx_addr_filt->gaddr_l, 0x0);
2040 
2041 			netdev_for_each_mc_addr(ha, dev) {
2042 				/* Ask CPM to run CRC and set bit in
2043 				 * filter mask.
2044 				 */
2045 				hw_add_addr_in_hash(ugeth, ha->addr);
2046 			}
2047 		}
2048 	}
2049 }
2050 
2051 static void ucc_geth_stop(struct ucc_geth_private *ugeth)
2052 {
2053 	struct ucc_geth __iomem *ug_regs = ugeth->ug_regs;
2054 	struct phy_device *phydev = ugeth->phydev;
2055 
2056 	ugeth_vdbg("%s: IN", __func__);
2057 
2058 	/*
2059 	 * Tell the kernel the link is down.
2060 	 * Must be done before disabling the controller
2061 	 * or deadlock may happen.
2062 	 */
2063 	phy_stop(phydev);
2064 
2065 	/* Disable the controller */
2066 	ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
2067 
2068 	/* Mask all interrupts */
2069 	out_be32(ugeth->uccf->p_uccm, 0x00000000);
2070 
2071 	/* Clear all interrupts */
2072 	out_be32(ugeth->uccf->p_ucce, 0xffffffff);
2073 
2074 	/* Disable Rx and Tx */
2075 	clrbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2076 
2077 	ucc_geth_memclean(ugeth);
2078 }
2079 
2080 static int ucc_struct_init(struct ucc_geth_private *ugeth)
2081 {
2082 	struct ucc_geth_info *ug_info;
2083 	struct ucc_fast_info *uf_info;
2084 	int i;
2085 
2086 	ug_info = ugeth->ug_info;
2087 	uf_info = &ug_info->uf_info;
2088 
2089 	if (!((uf_info->bd_mem_part == MEM_PART_SYSTEM) ||
2090 	      (uf_info->bd_mem_part == MEM_PART_MURAM))) {
2091 		if (netif_msg_probe(ugeth))
2092 			pr_err("Bad memory partition value\n");
2093 		return -EINVAL;
2094 	}
2095 
2096 	/* Rx BD lengths */
2097 	for (i = 0; i < ug_info->numQueuesRx; i++) {
2098 		if ((ug_info->bdRingLenRx[i] < UCC_GETH_RX_BD_RING_SIZE_MIN) ||
2099 		    (ug_info->bdRingLenRx[i] %
2100 		     UCC_GETH_RX_BD_RING_SIZE_ALIGNMENT)) {
2101 			if (netif_msg_probe(ugeth))
2102 				pr_err("Rx BD ring length must be multiple of 4, no smaller than 8\n");
2103 			return -EINVAL;
2104 		}
2105 	}
2106 
2107 	/* Tx BD lengths */
2108 	for (i = 0; i < ug_info->numQueuesTx; i++) {
2109 		if (ug_info->bdRingLenTx[i] < UCC_GETH_TX_BD_RING_SIZE_MIN) {
2110 			if (netif_msg_probe(ugeth))
2111 				pr_err("Tx BD ring length must be no smaller than 2\n");
2112 			return -EINVAL;
2113 		}
2114 	}
2115 
2116 	/* mrblr */
2117 	if ((uf_info->max_rx_buf_length == 0) ||
2118 	    (uf_info->max_rx_buf_length % UCC_GETH_MRBLR_ALIGNMENT)) {
2119 		if (netif_msg_probe(ugeth))
2120 			pr_err("max_rx_buf_length must be non-zero multiple of 128\n");
2121 		return -EINVAL;
2122 	}
2123 
2124 	/* num Tx queues */
2125 	if (ug_info->numQueuesTx > NUM_TX_QUEUES) {
2126 		if (netif_msg_probe(ugeth))
2127 			pr_err("number of tx queues too large\n");
2128 		return -EINVAL;
2129 	}
2130 
2131 	/* num Rx queues */
2132 	if (ug_info->numQueuesRx > NUM_RX_QUEUES) {
2133 		if (netif_msg_probe(ugeth))
2134 			pr_err("number of rx queues too large\n");
2135 		return -EINVAL;
2136 	}
2137 
2138 	/* l2qt */
2139 	for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) {
2140 		if (ug_info->l2qt[i] >= ug_info->numQueuesRx) {
2141 			if (netif_msg_probe(ugeth))
2142 				pr_err("VLAN priority table entry must not be larger than number of Rx queues\n");
2143 			return -EINVAL;
2144 		}
2145 	}
2146 
2147 	/* l3qt */
2148 	for (i = 0; i < UCC_GETH_IP_PRIORITY_MAX; i++) {
2149 		if (ug_info->l3qt[i] >= ug_info->numQueuesRx) {
2150 			if (netif_msg_probe(ugeth))
2151 				pr_err("IP priority table entry must not be larger than number of Rx queues\n");
2152 			return -EINVAL;
2153 		}
2154 	}
2155 
2156 	if (ug_info->cam && !ug_info->ecamptr) {
2157 		if (netif_msg_probe(ugeth))
2158 			pr_err("If cam mode is chosen, must supply cam ptr\n");
2159 		return -EINVAL;
2160 	}
2161 
2162 	if ((ug_info->numStationAddresses !=
2163 	     UCC_GETH_NUM_OF_STATION_ADDRESSES_1) &&
2164 	    ug_info->rxExtendedFiltering) {
2165 		if (netif_msg_probe(ugeth))
2166 			pr_err("Number of station addresses greater than 1 not allowed in extended parsing mode\n");
2167 		return -EINVAL;
2168 	}
2169 
2170 	/* Generate uccm_mask for receive */
2171 	uf_info->uccm_mask = ug_info->eventRegMask & UCCE_OTHER;/* Errors */
2172 	for (i = 0; i < ug_info->numQueuesRx; i++)
2173 		uf_info->uccm_mask |= (UCC_GETH_UCCE_RXF0 << i);
2174 
2175 	for (i = 0; i < ug_info->numQueuesTx; i++)
2176 		uf_info->uccm_mask |= (UCC_GETH_UCCE_TXB0 << i);
2177 	/* Initialize the general fast UCC block. */
2178 	if (ucc_fast_init(uf_info, &ugeth->uccf)) {
2179 		if (netif_msg_probe(ugeth))
2180 			pr_err("Failed to init uccf\n");
2181 		return -ENOMEM;
2182 	}
2183 
2184 	/* read the number of risc engines, update the riscTx and riscRx
2185 	 * if there are 4 riscs in QE
2186 	 */
2187 	if (qe_get_num_of_risc() == 4) {
2188 		ug_info->riscTx = QE_RISC_ALLOCATION_FOUR_RISCS;
2189 		ug_info->riscRx = QE_RISC_ALLOCATION_FOUR_RISCS;
2190 	}
2191 
2192 	ugeth->ug_regs = ioremap(uf_info->regs, sizeof(*ugeth->ug_regs));
2193 	if (!ugeth->ug_regs) {
2194 		if (netif_msg_probe(ugeth))
2195 			pr_err("Failed to ioremap regs\n");
2196 		return -ENOMEM;
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 static int ucc_geth_alloc_tx(struct ucc_geth_private *ugeth)
2203 {
2204 	struct ucc_geth_info *ug_info;
2205 	struct ucc_fast_info *uf_info;
2206 	int length;
2207 	u16 i, j;
2208 	u8 __iomem *bd;
2209 
2210 	ug_info = ugeth->ug_info;
2211 	uf_info = &ug_info->uf_info;
2212 
2213 	/* Allocate Tx bds */
2214 	for (j = 0; j < ug_info->numQueuesTx; j++) {
2215 		/* Allocate in multiple of
2216 		   UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT,
2217 		   according to spec */
2218 		length = ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd))
2219 			  / UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2220 		    * UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2221 		if ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) %
2222 		    UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT)
2223 			length += UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT;
2224 		if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2225 			u32 align = 4;
2226 			if (UCC_GETH_TX_BD_RING_ALIGNMENT > 4)
2227 				align = UCC_GETH_TX_BD_RING_ALIGNMENT;
2228 			ugeth->tx_bd_ring_offset[j] =
2229 				(u32) kmalloc((u32) (length + align), GFP_KERNEL);
2230 
2231 			if (ugeth->tx_bd_ring_offset[j] != 0)
2232 				ugeth->p_tx_bd_ring[j] =
2233 					(u8 __iomem *)((ugeth->tx_bd_ring_offset[j] +
2234 					align) & ~(align - 1));
2235 		} else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2236 			ugeth->tx_bd_ring_offset[j] =
2237 			    qe_muram_alloc(length,
2238 					   UCC_GETH_TX_BD_RING_ALIGNMENT);
2239 			if (!IS_ERR_VALUE(ugeth->tx_bd_ring_offset[j]))
2240 				ugeth->p_tx_bd_ring[j] =
2241 				    (u8 __iomem *) qe_muram_addr(ugeth->
2242 							 tx_bd_ring_offset[j]);
2243 		}
2244 		if (!ugeth->p_tx_bd_ring[j]) {
2245 			if (netif_msg_ifup(ugeth))
2246 				pr_err("Can not allocate memory for Tx bd rings\n");
2247 			return -ENOMEM;
2248 		}
2249 		/* Zero unused end of bd ring, according to spec */
2250 		memset_io((void __iomem *)(ugeth->p_tx_bd_ring[j] +
2251 		       ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)), 0,
2252 		       length - ug_info->bdRingLenTx[j] * sizeof(struct qe_bd));
2253 	}
2254 
2255 	/* Init Tx bds */
2256 	for (j = 0; j < ug_info->numQueuesTx; j++) {
2257 		/* Setup the skbuff rings */
2258 		ugeth->tx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2259 					      ugeth->ug_info->bdRingLenTx[j],
2260 					      GFP_KERNEL);
2261 
2262 		if (ugeth->tx_skbuff[j] == NULL) {
2263 			if (netif_msg_ifup(ugeth))
2264 				pr_err("Could not allocate tx_skbuff\n");
2265 			return -ENOMEM;
2266 		}
2267 
2268 		for (i = 0; i < ugeth->ug_info->bdRingLenTx[j]; i++)
2269 			ugeth->tx_skbuff[j][i] = NULL;
2270 
2271 		ugeth->skb_curtx[j] = ugeth->skb_dirtytx[j] = 0;
2272 		bd = ugeth->confBd[j] = ugeth->txBd[j] = ugeth->p_tx_bd_ring[j];
2273 		for (i = 0; i < ug_info->bdRingLenTx[j]; i++) {
2274 			/* clear bd buffer */
2275 			out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2276 			/* set bd status and length */
2277 			out_be32((u32 __iomem *)bd, 0);
2278 			bd += sizeof(struct qe_bd);
2279 		}
2280 		bd -= sizeof(struct qe_bd);
2281 		/* set bd status and length */
2282 		out_be32((u32 __iomem *)bd, T_W); /* for last BD set Wrap bit */
2283 	}
2284 
2285 	return 0;
2286 }
2287 
2288 static int ucc_geth_alloc_rx(struct ucc_geth_private *ugeth)
2289 {
2290 	struct ucc_geth_info *ug_info;
2291 	struct ucc_fast_info *uf_info;
2292 	int length;
2293 	u16 i, j;
2294 	u8 __iomem *bd;
2295 
2296 	ug_info = ugeth->ug_info;
2297 	uf_info = &ug_info->uf_info;
2298 
2299 	/* Allocate Rx bds */
2300 	for (j = 0; j < ug_info->numQueuesRx; j++) {
2301 		length = ug_info->bdRingLenRx[j] * sizeof(struct qe_bd);
2302 		if (uf_info->bd_mem_part == MEM_PART_SYSTEM) {
2303 			u32 align = 4;
2304 			if (UCC_GETH_RX_BD_RING_ALIGNMENT > 4)
2305 				align = UCC_GETH_RX_BD_RING_ALIGNMENT;
2306 			ugeth->rx_bd_ring_offset[j] =
2307 				(u32) kmalloc((u32) (length + align), GFP_KERNEL);
2308 			if (ugeth->rx_bd_ring_offset[j] != 0)
2309 				ugeth->p_rx_bd_ring[j] =
2310 					(u8 __iomem *)((ugeth->rx_bd_ring_offset[j] +
2311 					align) & ~(align - 1));
2312 		} else if (uf_info->bd_mem_part == MEM_PART_MURAM) {
2313 			ugeth->rx_bd_ring_offset[j] =
2314 			    qe_muram_alloc(length,
2315 					   UCC_GETH_RX_BD_RING_ALIGNMENT);
2316 			if (!IS_ERR_VALUE(ugeth->rx_bd_ring_offset[j]))
2317 				ugeth->p_rx_bd_ring[j] =
2318 				    (u8 __iomem *) qe_muram_addr(ugeth->
2319 							 rx_bd_ring_offset[j]);
2320 		}
2321 		if (!ugeth->p_rx_bd_ring[j]) {
2322 			if (netif_msg_ifup(ugeth))
2323 				pr_err("Can not allocate memory for Rx bd rings\n");
2324 			return -ENOMEM;
2325 		}
2326 	}
2327 
2328 	/* Init Rx bds */
2329 	for (j = 0; j < ug_info->numQueuesRx; j++) {
2330 		/* Setup the skbuff rings */
2331 		ugeth->rx_skbuff[j] = kmalloc(sizeof(struct sk_buff *) *
2332 					      ugeth->ug_info->bdRingLenRx[j],
2333 					      GFP_KERNEL);
2334 
2335 		if (ugeth->rx_skbuff[j] == NULL) {
2336 			if (netif_msg_ifup(ugeth))
2337 				pr_err("Could not allocate rx_skbuff\n");
2338 			return -ENOMEM;
2339 		}
2340 
2341 		for (i = 0; i < ugeth->ug_info->bdRingLenRx[j]; i++)
2342 			ugeth->rx_skbuff[j][i] = NULL;
2343 
2344 		ugeth->skb_currx[j] = 0;
2345 		bd = ugeth->rxBd[j] = ugeth->p_rx_bd_ring[j];
2346 		for (i = 0; i < ug_info->bdRingLenRx[j]; i++) {
2347 			/* set bd status and length */
2348 			out_be32((u32 __iomem *)bd, R_I);
2349 			/* clear bd buffer */
2350 			out_be32(&((struct qe_bd __iomem *)bd)->buf, 0);
2351 			bd += sizeof(struct qe_bd);
2352 		}
2353 		bd -= sizeof(struct qe_bd);
2354 		/* set bd status and length */
2355 		out_be32((u32 __iomem *)bd, R_W); /* for last BD set Wrap bit */
2356 	}
2357 
2358 	return 0;
2359 }
2360 
2361 static int ucc_geth_startup(struct ucc_geth_private *ugeth)
2362 {
2363 	struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt;
2364 	struct ucc_geth_init_pram __iomem *p_init_enet_pram;
2365 	struct ucc_fast_private *uccf;
2366 	struct ucc_geth_info *ug_info;
2367 	struct ucc_fast_info *uf_info;
2368 	struct ucc_fast __iomem *uf_regs;
2369 	struct ucc_geth __iomem *ug_regs;
2370 	int ret_val = -EINVAL;
2371 	u32 remoder = UCC_GETH_REMODER_INIT;
2372 	u32 init_enet_pram_offset, cecr_subblock, command;
2373 	u32 ifstat, i, j, size, l2qt, l3qt;
2374 	u16 temoder = UCC_GETH_TEMODER_INIT;
2375 	u16 test;
2376 	u8 function_code = 0;
2377 	u8 __iomem *endOfRing;
2378 	u8 numThreadsRxNumerical, numThreadsTxNumerical;
2379 
2380 	ugeth_vdbg("%s: IN", __func__);
2381 	uccf = ugeth->uccf;
2382 	ug_info = ugeth->ug_info;
2383 	uf_info = &ug_info->uf_info;
2384 	uf_regs = uccf->uf_regs;
2385 	ug_regs = ugeth->ug_regs;
2386 
2387 	switch (ug_info->numThreadsRx) {
2388 	case UCC_GETH_NUM_OF_THREADS_1:
2389 		numThreadsRxNumerical = 1;
2390 		break;
2391 	case UCC_GETH_NUM_OF_THREADS_2:
2392 		numThreadsRxNumerical = 2;
2393 		break;
2394 	case UCC_GETH_NUM_OF_THREADS_4:
2395 		numThreadsRxNumerical = 4;
2396 		break;
2397 	case UCC_GETH_NUM_OF_THREADS_6:
2398 		numThreadsRxNumerical = 6;
2399 		break;
2400 	case UCC_GETH_NUM_OF_THREADS_8:
2401 		numThreadsRxNumerical = 8;
2402 		break;
2403 	default:
2404 		if (netif_msg_ifup(ugeth))
2405 			pr_err("Bad number of Rx threads value\n");
2406 		return -EINVAL;
2407 		break;
2408 	}
2409 
2410 	switch (ug_info->numThreadsTx) {
2411 	case UCC_GETH_NUM_OF_THREADS_1:
2412 		numThreadsTxNumerical = 1;
2413 		break;
2414 	case UCC_GETH_NUM_OF_THREADS_2:
2415 		numThreadsTxNumerical = 2;
2416 		break;
2417 	case UCC_GETH_NUM_OF_THREADS_4:
2418 		numThreadsTxNumerical = 4;
2419 		break;
2420 	case UCC_GETH_NUM_OF_THREADS_6:
2421 		numThreadsTxNumerical = 6;
2422 		break;
2423 	case UCC_GETH_NUM_OF_THREADS_8:
2424 		numThreadsTxNumerical = 8;
2425 		break;
2426 	default:
2427 		if (netif_msg_ifup(ugeth))
2428 			pr_err("Bad number of Tx threads value\n");
2429 		return -EINVAL;
2430 		break;
2431 	}
2432 
2433 	/* Calculate rx_extended_features */
2434 	ugeth->rx_non_dynamic_extended_features = ug_info->ipCheckSumCheck ||
2435 	    ug_info->ipAddressAlignment ||
2436 	    (ug_info->numStationAddresses !=
2437 	     UCC_GETH_NUM_OF_STATION_ADDRESSES_1);
2438 
2439 	ugeth->rx_extended_features = ugeth->rx_non_dynamic_extended_features ||
2440 		(ug_info->vlanOperationTagged != UCC_GETH_VLAN_OPERATION_TAGGED_NOP) ||
2441 		(ug_info->vlanOperationNonTagged !=
2442 		 UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP);
2443 
2444 	init_default_reg_vals(&uf_regs->upsmr,
2445 			      &ug_regs->maccfg1, &ug_regs->maccfg2);
2446 
2447 	/*                    Set UPSMR                      */
2448 	/* For more details see the hardware spec.           */
2449 	init_rx_parameters(ug_info->bro,
2450 			   ug_info->rsh, ug_info->pro, &uf_regs->upsmr);
2451 
2452 	/* We're going to ignore other registers for now, */
2453 	/* except as needed to get up and running         */
2454 
2455 	/*                    Set MACCFG1                    */
2456 	/* For more details see the hardware spec.           */
2457 	init_flow_control_params(ug_info->aufc,
2458 				 ug_info->receiveFlowControl,
2459 				 ug_info->transmitFlowControl,
2460 				 ug_info->pausePeriod,
2461 				 ug_info->extensionField,
2462 				 &uf_regs->upsmr,
2463 				 &ug_regs->uempr, &ug_regs->maccfg1);
2464 
2465 	setbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX);
2466 
2467 	/*                    Set IPGIFG                     */
2468 	/* For more details see the hardware spec.           */
2469 	ret_val = init_inter_frame_gap_params(ug_info->nonBackToBackIfgPart1,
2470 					      ug_info->nonBackToBackIfgPart2,
2471 					      ug_info->
2472 					      miminumInterFrameGapEnforcement,
2473 					      ug_info->backToBackInterFrameGap,
2474 					      &ug_regs->ipgifg);
2475 	if (ret_val != 0) {
2476 		if (netif_msg_ifup(ugeth))
2477 			pr_err("IPGIFG initialization parameter too large\n");
2478 		return ret_val;
2479 	}
2480 
2481 	/*                    Set HAFDUP                     */
2482 	/* For more details see the hardware spec.           */
2483 	ret_val = init_half_duplex_params(ug_info->altBeb,
2484 					  ug_info->backPressureNoBackoff,
2485 					  ug_info->noBackoff,
2486 					  ug_info->excessDefer,
2487 					  ug_info->altBebTruncation,
2488 					  ug_info->maxRetransmission,
2489 					  ug_info->collisionWindow,
2490 					  &ug_regs->hafdup);
2491 	if (ret_val != 0) {
2492 		if (netif_msg_ifup(ugeth))
2493 			pr_err("Half Duplex initialization parameter too large\n");
2494 		return ret_val;
2495 	}
2496 
2497 	/*                    Set IFSTAT                     */
2498 	/* For more details see the hardware spec.           */
2499 	/* Read only - resets upon read                      */
2500 	ifstat = in_be32(&ug_regs->ifstat);
2501 
2502 	/*                    Clear UEMPR                    */
2503 	/* For more details see the hardware spec.           */
2504 	out_be32(&ug_regs->uempr, 0);
2505 
2506 	/*                    Set UESCR                      */
2507 	/* For more details see the hardware spec.           */
2508 	init_hw_statistics_gathering_mode((ug_info->statisticsMode &
2509 				UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE),
2510 				0, &uf_regs->upsmr, &ug_regs->uescr);
2511 
2512 	ret_val = ucc_geth_alloc_tx(ugeth);
2513 	if (ret_val != 0)
2514 		return ret_val;
2515 
2516 	ret_val = ucc_geth_alloc_rx(ugeth);
2517 	if (ret_val != 0)
2518 		return ret_val;
2519 
2520 	/*
2521 	 * Global PRAM
2522 	 */
2523 	/* Tx global PRAM */
2524 	/* Allocate global tx parameter RAM page */
2525 	ugeth->tx_glbl_pram_offset =
2526 	    qe_muram_alloc(sizeof(struct ucc_geth_tx_global_pram),
2527 			   UCC_GETH_TX_GLOBAL_PRAM_ALIGNMENT);
2528 	if (IS_ERR_VALUE(ugeth->tx_glbl_pram_offset)) {
2529 		if (netif_msg_ifup(ugeth))
2530 			pr_err("Can not allocate DPRAM memory for p_tx_glbl_pram\n");
2531 		return -ENOMEM;
2532 	}
2533 	ugeth->p_tx_glbl_pram =
2534 	    (struct ucc_geth_tx_global_pram __iomem *) qe_muram_addr(ugeth->
2535 							tx_glbl_pram_offset);
2536 	/* Zero out p_tx_glbl_pram */
2537 	memset_io((void __iomem *)ugeth->p_tx_glbl_pram, 0, sizeof(struct ucc_geth_tx_global_pram));
2538 
2539 	/* Fill global PRAM */
2540 
2541 	/* TQPTR */
2542 	/* Size varies with number of Tx threads */
2543 	ugeth->thread_dat_tx_offset =
2544 	    qe_muram_alloc(numThreadsTxNumerical *
2545 			   sizeof(struct ucc_geth_thread_data_tx) +
2546 			   32 * (numThreadsTxNumerical == 1),
2547 			   UCC_GETH_THREAD_DATA_ALIGNMENT);
2548 	if (IS_ERR_VALUE(ugeth->thread_dat_tx_offset)) {
2549 		if (netif_msg_ifup(ugeth))
2550 			pr_err("Can not allocate DPRAM memory for p_thread_data_tx\n");
2551 		return -ENOMEM;
2552 	}
2553 
2554 	ugeth->p_thread_data_tx =
2555 	    (struct ucc_geth_thread_data_tx __iomem *) qe_muram_addr(ugeth->
2556 							thread_dat_tx_offset);
2557 	out_be32(&ugeth->p_tx_glbl_pram->tqptr, ugeth->thread_dat_tx_offset);
2558 
2559 	/* vtagtable */
2560 	for (i = 0; i < UCC_GETH_TX_VTAG_TABLE_ENTRY_MAX; i++)
2561 		out_be32(&ugeth->p_tx_glbl_pram->vtagtable[i],
2562 			 ug_info->vtagtable[i]);
2563 
2564 	/* iphoffset */
2565 	for (i = 0; i < TX_IP_OFFSET_ENTRY_MAX; i++)
2566 		out_8(&ugeth->p_tx_glbl_pram->iphoffset[i],
2567 				ug_info->iphoffset[i]);
2568 
2569 	/* SQPTR */
2570 	/* Size varies with number of Tx queues */
2571 	ugeth->send_q_mem_reg_offset =
2572 	    qe_muram_alloc(ug_info->numQueuesTx *
2573 			   sizeof(struct ucc_geth_send_queue_qd),
2574 			   UCC_GETH_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT);
2575 	if (IS_ERR_VALUE(ugeth->send_q_mem_reg_offset)) {
2576 		if (netif_msg_ifup(ugeth))
2577 			pr_err("Can not allocate DPRAM memory for p_send_q_mem_reg\n");
2578 		return -ENOMEM;
2579 	}
2580 
2581 	ugeth->p_send_q_mem_reg =
2582 	    (struct ucc_geth_send_queue_mem_region __iomem *) qe_muram_addr(ugeth->
2583 			send_q_mem_reg_offset);
2584 	out_be32(&ugeth->p_tx_glbl_pram->sqptr, ugeth->send_q_mem_reg_offset);
2585 
2586 	/* Setup the table */
2587 	/* Assume BD rings are already established */
2588 	for (i = 0; i < ug_info->numQueuesTx; i++) {
2589 		endOfRing =
2590 		    ugeth->p_tx_bd_ring[i] + (ug_info->bdRingLenTx[i] -
2591 					      1) * sizeof(struct qe_bd);
2592 		if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2593 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2594 				 (u32) virt_to_phys(ugeth->p_tx_bd_ring[i]));
2595 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2596 				 last_bd_completed_address,
2597 				 (u32) virt_to_phys(endOfRing));
2598 		} else if (ugeth->ug_info->uf_info.bd_mem_part ==
2599 			   MEM_PART_MURAM) {
2600 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base,
2601 				 (u32) immrbar_virt_to_phys(ugeth->
2602 							    p_tx_bd_ring[i]));
2603 			out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].
2604 				 last_bd_completed_address,
2605 				 (u32) immrbar_virt_to_phys(endOfRing));
2606 		}
2607 	}
2608 
2609 	/* schedulerbasepointer */
2610 
2611 	if (ug_info->numQueuesTx > 1) {
2612 	/* scheduler exists only if more than 1 tx queue */
2613 		ugeth->scheduler_offset =
2614 		    qe_muram_alloc(sizeof(struct ucc_geth_scheduler),
2615 				   UCC_GETH_SCHEDULER_ALIGNMENT);
2616 		if (IS_ERR_VALUE(ugeth->scheduler_offset)) {
2617 			if (netif_msg_ifup(ugeth))
2618 				pr_err("Can not allocate DPRAM memory for p_scheduler\n");
2619 			return -ENOMEM;
2620 		}
2621 
2622 		ugeth->p_scheduler =
2623 		    (struct ucc_geth_scheduler __iomem *) qe_muram_addr(ugeth->
2624 							   scheduler_offset);
2625 		out_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer,
2626 			 ugeth->scheduler_offset);
2627 		/* Zero out p_scheduler */
2628 		memset_io((void __iomem *)ugeth->p_scheduler, 0, sizeof(struct ucc_geth_scheduler));
2629 
2630 		/* Set values in scheduler */
2631 		out_be32(&ugeth->p_scheduler->mblinterval,
2632 			 ug_info->mblinterval);
2633 		out_be16(&ugeth->p_scheduler->nortsrbytetime,
2634 			 ug_info->nortsrbytetime);
2635 		out_8(&ugeth->p_scheduler->fracsiz, ug_info->fracsiz);
2636 		out_8(&ugeth->p_scheduler->strictpriorityq,
2637 				ug_info->strictpriorityq);
2638 		out_8(&ugeth->p_scheduler->txasap, ug_info->txasap);
2639 		out_8(&ugeth->p_scheduler->extrabw, ug_info->extrabw);
2640 		for (i = 0; i < NUM_TX_QUEUES; i++)
2641 			out_8(&ugeth->p_scheduler->weightfactor[i],
2642 			    ug_info->weightfactor[i]);
2643 
2644 		/* Set pointers to cpucount registers in scheduler */
2645 		ugeth->p_cpucount[0] = &(ugeth->p_scheduler->cpucount0);
2646 		ugeth->p_cpucount[1] = &(ugeth->p_scheduler->cpucount1);
2647 		ugeth->p_cpucount[2] = &(ugeth->p_scheduler->cpucount2);
2648 		ugeth->p_cpucount[3] = &(ugeth->p_scheduler->cpucount3);
2649 		ugeth->p_cpucount[4] = &(ugeth->p_scheduler->cpucount4);
2650 		ugeth->p_cpucount[5] = &(ugeth->p_scheduler->cpucount5);
2651 		ugeth->p_cpucount[6] = &(ugeth->p_scheduler->cpucount6);
2652 		ugeth->p_cpucount[7] = &(ugeth->p_scheduler->cpucount7);
2653 	}
2654 
2655 	/* schedulerbasepointer */
2656 	/* TxRMON_PTR (statistics) */
2657 	if (ug_info->
2658 	    statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX) {
2659 		ugeth->tx_fw_statistics_pram_offset =
2660 		    qe_muram_alloc(sizeof
2661 				   (struct ucc_geth_tx_firmware_statistics_pram),
2662 				   UCC_GETH_TX_STATISTICS_ALIGNMENT);
2663 		if (IS_ERR_VALUE(ugeth->tx_fw_statistics_pram_offset)) {
2664 			if (netif_msg_ifup(ugeth))
2665 				pr_err("Can not allocate DPRAM memory for p_tx_fw_statistics_pram\n");
2666 			return -ENOMEM;
2667 		}
2668 		ugeth->p_tx_fw_statistics_pram =
2669 		    (struct ucc_geth_tx_firmware_statistics_pram __iomem *)
2670 		    qe_muram_addr(ugeth->tx_fw_statistics_pram_offset);
2671 		/* Zero out p_tx_fw_statistics_pram */
2672 		memset_io((void __iomem *)ugeth->p_tx_fw_statistics_pram,
2673 		       0, sizeof(struct ucc_geth_tx_firmware_statistics_pram));
2674 	}
2675 
2676 	/* temoder */
2677 	/* Already has speed set */
2678 
2679 	if (ug_info->numQueuesTx > 1)
2680 		temoder |= TEMODER_SCHEDULER_ENABLE;
2681 	if (ug_info->ipCheckSumGenerate)
2682 		temoder |= TEMODER_IP_CHECKSUM_GENERATE;
2683 	temoder |= ((ug_info->numQueuesTx - 1) << TEMODER_NUM_OF_QUEUES_SHIFT);
2684 	out_be16(&ugeth->p_tx_glbl_pram->temoder, temoder);
2685 
2686 	test = in_be16(&ugeth->p_tx_glbl_pram->temoder);
2687 
2688 	/* Function code register value to be used later */
2689 	function_code = UCC_BMR_BO_BE | UCC_BMR_GBL;
2690 	/* Required for QE */
2691 
2692 	/* function code register */
2693 	out_be32(&ugeth->p_tx_glbl_pram->tstate, ((u32) function_code) << 24);
2694 
2695 	/* Rx global PRAM */
2696 	/* Allocate global rx parameter RAM page */
2697 	ugeth->rx_glbl_pram_offset =
2698 	    qe_muram_alloc(sizeof(struct ucc_geth_rx_global_pram),
2699 			   UCC_GETH_RX_GLOBAL_PRAM_ALIGNMENT);
2700 	if (IS_ERR_VALUE(ugeth->rx_glbl_pram_offset)) {
2701 		if (netif_msg_ifup(ugeth))
2702 			pr_err("Can not allocate DPRAM memory for p_rx_glbl_pram\n");
2703 		return -ENOMEM;
2704 	}
2705 	ugeth->p_rx_glbl_pram =
2706 	    (struct ucc_geth_rx_global_pram __iomem *) qe_muram_addr(ugeth->
2707 							rx_glbl_pram_offset);
2708 	/* Zero out p_rx_glbl_pram */
2709 	memset_io((void __iomem *)ugeth->p_rx_glbl_pram, 0, sizeof(struct ucc_geth_rx_global_pram));
2710 
2711 	/* Fill global PRAM */
2712 
2713 	/* RQPTR */
2714 	/* Size varies with number of Rx threads */
2715 	ugeth->thread_dat_rx_offset =
2716 	    qe_muram_alloc(numThreadsRxNumerical *
2717 			   sizeof(struct ucc_geth_thread_data_rx),
2718 			   UCC_GETH_THREAD_DATA_ALIGNMENT);
2719 	if (IS_ERR_VALUE(ugeth->thread_dat_rx_offset)) {
2720 		if (netif_msg_ifup(ugeth))
2721 			pr_err("Can not allocate DPRAM memory for p_thread_data_rx\n");
2722 		return -ENOMEM;
2723 	}
2724 
2725 	ugeth->p_thread_data_rx =
2726 	    (struct ucc_geth_thread_data_rx __iomem *) qe_muram_addr(ugeth->
2727 							thread_dat_rx_offset);
2728 	out_be32(&ugeth->p_rx_glbl_pram->rqptr, ugeth->thread_dat_rx_offset);
2729 
2730 	/* typeorlen */
2731 	out_be16(&ugeth->p_rx_glbl_pram->typeorlen, ug_info->typeorlen);
2732 
2733 	/* rxrmonbaseptr (statistics) */
2734 	if (ug_info->
2735 	    statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX) {
2736 		ugeth->rx_fw_statistics_pram_offset =
2737 		    qe_muram_alloc(sizeof
2738 				   (struct ucc_geth_rx_firmware_statistics_pram),
2739 				   UCC_GETH_RX_STATISTICS_ALIGNMENT);
2740 		if (IS_ERR_VALUE(ugeth->rx_fw_statistics_pram_offset)) {
2741 			if (netif_msg_ifup(ugeth))
2742 				pr_err("Can not allocate DPRAM memory for p_rx_fw_statistics_pram\n");
2743 			return -ENOMEM;
2744 		}
2745 		ugeth->p_rx_fw_statistics_pram =
2746 		    (struct ucc_geth_rx_firmware_statistics_pram __iomem *)
2747 		    qe_muram_addr(ugeth->rx_fw_statistics_pram_offset);
2748 		/* Zero out p_rx_fw_statistics_pram */
2749 		memset_io((void __iomem *)ugeth->p_rx_fw_statistics_pram, 0,
2750 		       sizeof(struct ucc_geth_rx_firmware_statistics_pram));
2751 	}
2752 
2753 	/* intCoalescingPtr */
2754 
2755 	/* Size varies with number of Rx queues */
2756 	ugeth->rx_irq_coalescing_tbl_offset =
2757 	    qe_muram_alloc(ug_info->numQueuesRx *
2758 			   sizeof(struct ucc_geth_rx_interrupt_coalescing_entry)
2759 			   + 4, UCC_GETH_RX_INTERRUPT_COALESCING_ALIGNMENT);
2760 	if (IS_ERR_VALUE(ugeth->rx_irq_coalescing_tbl_offset)) {
2761 		if (netif_msg_ifup(ugeth))
2762 			pr_err("Can not allocate DPRAM memory for p_rx_irq_coalescing_tbl\n");
2763 		return -ENOMEM;
2764 	}
2765 
2766 	ugeth->p_rx_irq_coalescing_tbl =
2767 	    (struct ucc_geth_rx_interrupt_coalescing_table __iomem *)
2768 	    qe_muram_addr(ugeth->rx_irq_coalescing_tbl_offset);
2769 	out_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr,
2770 		 ugeth->rx_irq_coalescing_tbl_offset);
2771 
2772 	/* Fill interrupt coalescing table */
2773 	for (i = 0; i < ug_info->numQueuesRx; i++) {
2774 		out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2775 			 interruptcoalescingmaxvalue,
2776 			 ug_info->interruptcoalescingmaxvalue[i]);
2777 		out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i].
2778 			 interruptcoalescingcounter,
2779 			 ug_info->interruptcoalescingmaxvalue[i]);
2780 	}
2781 
2782 	/* MRBLR */
2783 	init_max_rx_buff_len(uf_info->max_rx_buf_length,
2784 			     &ugeth->p_rx_glbl_pram->mrblr);
2785 	/* MFLR */
2786 	out_be16(&ugeth->p_rx_glbl_pram->mflr, ug_info->maxFrameLength);
2787 	/* MINFLR */
2788 	init_min_frame_len(ug_info->minFrameLength,
2789 			   &ugeth->p_rx_glbl_pram->minflr,
2790 			   &ugeth->p_rx_glbl_pram->mrblr);
2791 	/* MAXD1 */
2792 	out_be16(&ugeth->p_rx_glbl_pram->maxd1, ug_info->maxD1Length);
2793 	/* MAXD2 */
2794 	out_be16(&ugeth->p_rx_glbl_pram->maxd2, ug_info->maxD2Length);
2795 
2796 	/* l2qt */
2797 	l2qt = 0;
2798 	for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++)
2799 		l2qt |= (ug_info->l2qt[i] << (28 - 4 * i));
2800 	out_be32(&ugeth->p_rx_glbl_pram->l2qt, l2qt);
2801 
2802 	/* l3qt */
2803 	for (j = 0; j < UCC_GETH_IP_PRIORITY_MAX; j += 8) {
2804 		l3qt = 0;
2805 		for (i = 0; i < 8; i++)
2806 			l3qt |= (ug_info->l3qt[j + i] << (28 - 4 * i));
2807 		out_be32(&ugeth->p_rx_glbl_pram->l3qt[j/8], l3qt);
2808 	}
2809 
2810 	/* vlantype */
2811 	out_be16(&ugeth->p_rx_glbl_pram->vlantype, ug_info->vlantype);
2812 
2813 	/* vlantci */
2814 	out_be16(&ugeth->p_rx_glbl_pram->vlantci, ug_info->vlantci);
2815 
2816 	/* ecamptr */
2817 	out_be32(&ugeth->p_rx_glbl_pram->ecamptr, ug_info->ecamptr);
2818 
2819 	/* RBDQPTR */
2820 	/* Size varies with number of Rx queues */
2821 	ugeth->rx_bd_qs_tbl_offset =
2822 	    qe_muram_alloc(ug_info->numQueuesRx *
2823 			   (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2824 			    sizeof(struct ucc_geth_rx_prefetched_bds)),
2825 			   UCC_GETH_RX_BD_QUEUES_ALIGNMENT);
2826 	if (IS_ERR_VALUE(ugeth->rx_bd_qs_tbl_offset)) {
2827 		if (netif_msg_ifup(ugeth))
2828 			pr_err("Can not allocate DPRAM memory for p_rx_bd_qs_tbl\n");
2829 		return -ENOMEM;
2830 	}
2831 
2832 	ugeth->p_rx_bd_qs_tbl =
2833 	    (struct ucc_geth_rx_bd_queues_entry __iomem *) qe_muram_addr(ugeth->
2834 				    rx_bd_qs_tbl_offset);
2835 	out_be32(&ugeth->p_rx_glbl_pram->rbdqptr, ugeth->rx_bd_qs_tbl_offset);
2836 	/* Zero out p_rx_bd_qs_tbl */
2837 	memset_io((void __iomem *)ugeth->p_rx_bd_qs_tbl,
2838 	       0,
2839 	       ug_info->numQueuesRx * (sizeof(struct ucc_geth_rx_bd_queues_entry) +
2840 				       sizeof(struct ucc_geth_rx_prefetched_bds)));
2841 
2842 	/* Setup the table */
2843 	/* Assume BD rings are already established */
2844 	for (i = 0; i < ug_info->numQueuesRx; i++) {
2845 		if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) {
2846 			out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2847 				 (u32) virt_to_phys(ugeth->p_rx_bd_ring[i]));
2848 		} else if (ugeth->ug_info->uf_info.bd_mem_part ==
2849 			   MEM_PART_MURAM) {
2850 			out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr,
2851 				 (u32) immrbar_virt_to_phys(ugeth->
2852 							    p_rx_bd_ring[i]));
2853 		}
2854 		/* rest of fields handled by QE */
2855 	}
2856 
2857 	/* remoder */
2858 	/* Already has speed set */
2859 
2860 	if (ugeth->rx_extended_features)
2861 		remoder |= REMODER_RX_EXTENDED_FEATURES;
2862 	if (ug_info->rxExtendedFiltering)
2863 		remoder |= REMODER_RX_EXTENDED_FILTERING;
2864 	if (ug_info->dynamicMaxFrameLength)
2865 		remoder |= REMODER_DYNAMIC_MAX_FRAME_LENGTH;
2866 	if (ug_info->dynamicMinFrameLength)
2867 		remoder |= REMODER_DYNAMIC_MIN_FRAME_LENGTH;
2868 	remoder |=
2869 	    ug_info->vlanOperationTagged << REMODER_VLAN_OPERATION_TAGGED_SHIFT;
2870 	remoder |=
2871 	    ug_info->
2872 	    vlanOperationNonTagged << REMODER_VLAN_OPERATION_NON_TAGGED_SHIFT;
2873 	remoder |= ug_info->rxQoSMode << REMODER_RX_QOS_MODE_SHIFT;
2874 	remoder |= ((ug_info->numQueuesRx - 1) << REMODER_NUM_OF_QUEUES_SHIFT);
2875 	if (ug_info->ipCheckSumCheck)
2876 		remoder |= REMODER_IP_CHECKSUM_CHECK;
2877 	if (ug_info->ipAddressAlignment)
2878 		remoder |= REMODER_IP_ADDRESS_ALIGNMENT;
2879 	out_be32(&ugeth->p_rx_glbl_pram->remoder, remoder);
2880 
2881 	/* Note that this function must be called */
2882 	/* ONLY AFTER p_tx_fw_statistics_pram */
2883 	/* andp_UccGethRxFirmwareStatisticsPram are allocated ! */
2884 	init_firmware_statistics_gathering_mode((ug_info->
2885 		statisticsMode &
2886 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX),
2887 		(ug_info->statisticsMode &
2888 		UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX),
2889 		&ugeth->p_tx_glbl_pram->txrmonbaseptr,
2890 		ugeth->tx_fw_statistics_pram_offset,
2891 		&ugeth->p_rx_glbl_pram->rxrmonbaseptr,
2892 		ugeth->rx_fw_statistics_pram_offset,
2893 		&ugeth->p_tx_glbl_pram->temoder,
2894 		&ugeth->p_rx_glbl_pram->remoder);
2895 
2896 	/* function code register */
2897 	out_8(&ugeth->p_rx_glbl_pram->rstate, function_code);
2898 
2899 	/* initialize extended filtering */
2900 	if (ug_info->rxExtendedFiltering) {
2901 		if (!ug_info->extendedFilteringChainPointer) {
2902 			if (netif_msg_ifup(ugeth))
2903 				pr_err("Null Extended Filtering Chain Pointer\n");
2904 			return -EINVAL;
2905 		}
2906 
2907 		/* Allocate memory for extended filtering Mode Global
2908 		Parameters */
2909 		ugeth->exf_glbl_param_offset =
2910 		    qe_muram_alloc(sizeof(struct ucc_geth_exf_global_pram),
2911 		UCC_GETH_RX_EXTENDED_FILTERING_GLOBAL_PARAMETERS_ALIGNMENT);
2912 		if (IS_ERR_VALUE(ugeth->exf_glbl_param_offset)) {
2913 			if (netif_msg_ifup(ugeth))
2914 				pr_err("Can not allocate DPRAM memory for p_exf_glbl_param\n");
2915 			return -ENOMEM;
2916 		}
2917 
2918 		ugeth->p_exf_glbl_param =
2919 		    (struct ucc_geth_exf_global_pram __iomem *) qe_muram_addr(ugeth->
2920 				 exf_glbl_param_offset);
2921 		out_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam,
2922 			 ugeth->exf_glbl_param_offset);
2923 		out_be32(&ugeth->p_exf_glbl_param->l2pcdptr,
2924 			 (u32) ug_info->extendedFilteringChainPointer);
2925 
2926 	} else {		/* initialize 82xx style address filtering */
2927 
2928 		/* Init individual address recognition registers to disabled */
2929 
2930 		for (j = 0; j < NUM_OF_PADDRS; j++)
2931 			ugeth_82xx_filtering_clear_addr_in_paddr(ugeth, (u8) j);
2932 
2933 		p_82xx_addr_filt =
2934 		    (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->
2935 		    p_rx_glbl_pram->addressfiltering;
2936 
2937 		ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2938 			ENET_ADDR_TYPE_GROUP);
2939 		ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth,
2940 			ENET_ADDR_TYPE_INDIVIDUAL);
2941 	}
2942 
2943 	/*
2944 	 * Initialize UCC at QE level
2945 	 */
2946 
2947 	command = QE_INIT_TX_RX;
2948 
2949 	/* Allocate shadow InitEnet command parameter structure.
2950 	 * This is needed because after the InitEnet command is executed,
2951 	 * the structure in DPRAM is released, because DPRAM is a premium
2952 	 * resource.
2953 	 * This shadow structure keeps a copy of what was done so that the
2954 	 * allocated resources can be released when the channel is freed.
2955 	 */
2956 	if (!(ugeth->p_init_enet_param_shadow =
2957 	      kmalloc(sizeof(struct ucc_geth_init_pram), GFP_KERNEL))) {
2958 		if (netif_msg_ifup(ugeth))
2959 			pr_err("Can not allocate memory for p_UccInitEnetParamShadows\n");
2960 		return -ENOMEM;
2961 	}
2962 	/* Zero out *p_init_enet_param_shadow */
2963 	memset((char *)ugeth->p_init_enet_param_shadow,
2964 	       0, sizeof(struct ucc_geth_init_pram));
2965 
2966 	/* Fill shadow InitEnet command parameter structure */
2967 
2968 	ugeth->p_init_enet_param_shadow->resinit1 =
2969 	    ENET_INIT_PARAM_MAGIC_RES_INIT1;
2970 	ugeth->p_init_enet_param_shadow->resinit2 =
2971 	    ENET_INIT_PARAM_MAGIC_RES_INIT2;
2972 	ugeth->p_init_enet_param_shadow->resinit3 =
2973 	    ENET_INIT_PARAM_MAGIC_RES_INIT3;
2974 	ugeth->p_init_enet_param_shadow->resinit4 =
2975 	    ENET_INIT_PARAM_MAGIC_RES_INIT4;
2976 	ugeth->p_init_enet_param_shadow->resinit5 =
2977 	    ENET_INIT_PARAM_MAGIC_RES_INIT5;
2978 	ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2979 	    ((u32) ug_info->numThreadsRx) << ENET_INIT_PARAM_RGF_SHIFT;
2980 	ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2981 	    ((u32) ug_info->numThreadsTx) << ENET_INIT_PARAM_TGF_SHIFT;
2982 
2983 	ugeth->p_init_enet_param_shadow->rgftgfrxglobal |=
2984 	    ugeth->rx_glbl_pram_offset | ug_info->riscRx;
2985 	if ((ug_info->largestexternallookupkeysize !=
2986 	     QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE) &&
2987 	    (ug_info->largestexternallookupkeysize !=
2988 	     QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) &&
2989 	    (ug_info->largestexternallookupkeysize !=
2990 	     QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)) {
2991 		if (netif_msg_ifup(ugeth))
2992 			pr_err("Invalid largest External Lookup Key Size\n");
2993 		return -EINVAL;
2994 	}
2995 	ugeth->p_init_enet_param_shadow->largestexternallookupkeysize =
2996 	    ug_info->largestexternallookupkeysize;
2997 	size = sizeof(struct ucc_geth_thread_rx_pram);
2998 	if (ug_info->rxExtendedFiltering) {
2999 		size += THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING;
3000 		if (ug_info->largestexternallookupkeysize ==
3001 		    QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES)
3002 			size +=
3003 			    THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8;
3004 		if (ug_info->largestexternallookupkeysize ==
3005 		    QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES)
3006 			size +=
3007 			    THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16;
3008 	}
3009 
3010 	if ((ret_val = fill_init_enet_entries(ugeth, &(ugeth->
3011 		p_init_enet_param_shadow->rxthread[0]),
3012 		(u8) (numThreadsRxNumerical + 1)
3013 		/* Rx needs one extra for terminator */
3014 		, size, UCC_GETH_THREAD_RX_PRAM_ALIGNMENT,
3015 		ug_info->riscRx, 1)) != 0) {
3016 		if (netif_msg_ifup(ugeth))
3017 			pr_err("Can not fill p_init_enet_param_shadow\n");
3018 		return ret_val;
3019 	}
3020 
3021 	ugeth->p_init_enet_param_shadow->txglobal =
3022 	    ugeth->tx_glbl_pram_offset | ug_info->riscTx;
3023 	if ((ret_val =
3024 	     fill_init_enet_entries(ugeth,
3025 				    &(ugeth->p_init_enet_param_shadow->
3026 				      txthread[0]), numThreadsTxNumerical,
3027 				    sizeof(struct ucc_geth_thread_tx_pram),
3028 				    UCC_GETH_THREAD_TX_PRAM_ALIGNMENT,
3029 				    ug_info->riscTx, 0)) != 0) {
3030 		if (netif_msg_ifup(ugeth))
3031 			pr_err("Can not fill p_init_enet_param_shadow\n");
3032 		return ret_val;
3033 	}
3034 
3035 	/* Load Rx bds with buffers */
3036 	for (i = 0; i < ug_info->numQueuesRx; i++) {
3037 		if ((ret_val = rx_bd_buffer_set(ugeth, (u8) i)) != 0) {
3038 			if (netif_msg_ifup(ugeth))
3039 				pr_err("Can not fill Rx bds with buffers\n");
3040 			return ret_val;
3041 		}
3042 	}
3043 
3044 	/* Allocate InitEnet command parameter structure */
3045 	init_enet_pram_offset = qe_muram_alloc(sizeof(struct ucc_geth_init_pram), 4);
3046 	if (IS_ERR_VALUE(init_enet_pram_offset)) {
3047 		if (netif_msg_ifup(ugeth))
3048 			pr_err("Can not allocate DPRAM memory for p_init_enet_pram\n");
3049 		return -ENOMEM;
3050 	}
3051 	p_init_enet_pram =
3052 	    (struct ucc_geth_init_pram __iomem *) qe_muram_addr(init_enet_pram_offset);
3053 
3054 	/* Copy shadow InitEnet command parameter structure into PRAM */
3055 	out_8(&p_init_enet_pram->resinit1,
3056 			ugeth->p_init_enet_param_shadow->resinit1);
3057 	out_8(&p_init_enet_pram->resinit2,
3058 			ugeth->p_init_enet_param_shadow->resinit2);
3059 	out_8(&p_init_enet_pram->resinit3,
3060 			ugeth->p_init_enet_param_shadow->resinit3);
3061 	out_8(&p_init_enet_pram->resinit4,
3062 			ugeth->p_init_enet_param_shadow->resinit4);
3063 	out_be16(&p_init_enet_pram->resinit5,
3064 		 ugeth->p_init_enet_param_shadow->resinit5);
3065 	out_8(&p_init_enet_pram->largestexternallookupkeysize,
3066 	    ugeth->p_init_enet_param_shadow->largestexternallookupkeysize);
3067 	out_be32(&p_init_enet_pram->rgftgfrxglobal,
3068 		 ugeth->p_init_enet_param_shadow->rgftgfrxglobal);
3069 	for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_RX; i++)
3070 		out_be32(&p_init_enet_pram->rxthread[i],
3071 			 ugeth->p_init_enet_param_shadow->rxthread[i]);
3072 	out_be32(&p_init_enet_pram->txglobal,
3073 		 ugeth->p_init_enet_param_shadow->txglobal);
3074 	for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_TX; i++)
3075 		out_be32(&p_init_enet_pram->txthread[i],
3076 			 ugeth->p_init_enet_param_shadow->txthread[i]);
3077 
3078 	/* Issue QE command */
3079 	cecr_subblock =
3080 	    ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num);
3081 	qe_issue_cmd(command, cecr_subblock, QE_CR_PROTOCOL_ETHERNET,
3082 		     init_enet_pram_offset);
3083 
3084 	/* Free InitEnet command parameter */
3085 	qe_muram_free(init_enet_pram_offset);
3086 
3087 	return 0;
3088 }
3089 
3090 /* This is called by the kernel when a frame is ready for transmission. */
3091 /* It is pointed to by the dev->hard_start_xmit function pointer */
3092 static int ucc_geth_start_xmit(struct sk_buff *skb, struct net_device *dev)
3093 {
3094 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3095 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3096 	struct ucc_fast_private *uccf;
3097 #endif
3098 	u8 __iomem *bd;			/* BD pointer */
3099 	u32 bd_status;
3100 	u8 txQ = 0;
3101 	unsigned long flags;
3102 
3103 	ugeth_vdbg("%s: IN", __func__);
3104 
3105 	spin_lock_irqsave(&ugeth->lock, flags);
3106 
3107 	dev->stats.tx_bytes += skb->len;
3108 
3109 	/* Start from the next BD that should be filled */
3110 	bd = ugeth->txBd[txQ];
3111 	bd_status = in_be32((u32 __iomem *)bd);
3112 	/* Save the skb pointer so we can free it later */
3113 	ugeth->tx_skbuff[txQ][ugeth->skb_curtx[txQ]] = skb;
3114 
3115 	/* Update the current skb pointer (wrapping if this was the last) */
3116 	ugeth->skb_curtx[txQ] =
3117 	    (ugeth->skb_curtx[txQ] +
3118 	     1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3119 
3120 	/* set up the buffer descriptor */
3121 	out_be32(&((struct qe_bd __iomem *)bd)->buf,
3122 		      dma_map_single(ugeth->dev, skb->data,
3123 			      skb->len, DMA_TO_DEVICE));
3124 
3125 	/* printk(KERN_DEBUG"skb->data is 0x%x\n",skb->data); */
3126 
3127 	bd_status = (bd_status & T_W) | T_R | T_I | T_L | skb->len;
3128 
3129 	/* set bd status and length */
3130 	out_be32((u32 __iomem *)bd, bd_status);
3131 
3132 	/* Move to next BD in the ring */
3133 	if (!(bd_status & T_W))
3134 		bd += sizeof(struct qe_bd);
3135 	else
3136 		bd = ugeth->p_tx_bd_ring[txQ];
3137 
3138 	/* If the next BD still needs to be cleaned up, then the bds
3139 	   are full.  We need to tell the kernel to stop sending us stuff. */
3140 	if (bd == ugeth->confBd[txQ]) {
3141 		if (!netif_queue_stopped(dev))
3142 			netif_stop_queue(dev);
3143 	}
3144 
3145 	ugeth->txBd[txQ] = bd;
3146 
3147 	skb_tx_timestamp(skb);
3148 
3149 	if (ugeth->p_scheduler) {
3150 		ugeth->cpucount[txQ]++;
3151 		/* Indicate to QE that there are more Tx bds ready for
3152 		transmission */
3153 		/* This is done by writing a running counter of the bd
3154 		count to the scheduler PRAM. */
3155 		out_be16(ugeth->p_cpucount[txQ], ugeth->cpucount[txQ]);
3156 	}
3157 
3158 #ifdef CONFIG_UGETH_TX_ON_DEMAND
3159 	uccf = ugeth->uccf;
3160 	out_be16(uccf->p_utodr, UCC_FAST_TOD);
3161 #endif
3162 	spin_unlock_irqrestore(&ugeth->lock, flags);
3163 
3164 	return NETDEV_TX_OK;
3165 }
3166 
3167 static int ucc_geth_rx(struct ucc_geth_private *ugeth, u8 rxQ, int rx_work_limit)
3168 {
3169 	struct sk_buff *skb;
3170 	u8 __iomem *bd;
3171 	u16 length, howmany = 0;
3172 	u32 bd_status;
3173 	u8 *bdBuffer;
3174 	struct net_device *dev;
3175 
3176 	ugeth_vdbg("%s: IN", __func__);
3177 
3178 	dev = ugeth->ndev;
3179 
3180 	/* collect received buffers */
3181 	bd = ugeth->rxBd[rxQ];
3182 
3183 	bd_status = in_be32((u32 __iomem *)bd);
3184 
3185 	/* while there are received buffers and BD is full (~R_E) */
3186 	while (!((bd_status & (R_E)) || (--rx_work_limit < 0))) {
3187 		bdBuffer = (u8 *) in_be32(&((struct qe_bd __iomem *)bd)->buf);
3188 		length = (u16) ((bd_status & BD_LENGTH_MASK) - 4);
3189 		skb = ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]];
3190 
3191 		/* determine whether buffer is first, last, first and last
3192 		(single buffer frame) or middle (not first and not last) */
3193 		if (!skb ||
3194 		    (!(bd_status & (R_F | R_L))) ||
3195 		    (bd_status & R_ERRORS_FATAL)) {
3196 			if (netif_msg_rx_err(ugeth))
3197 				pr_err("%d: ERROR!!! skb - 0x%08x\n",
3198 				       __LINE__, (u32)skb);
3199 			dev_kfree_skb(skb);
3200 
3201 			ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = NULL;
3202 			dev->stats.rx_dropped++;
3203 		} else {
3204 			dev->stats.rx_packets++;
3205 			howmany++;
3206 
3207 			/* Prep the skb for the packet */
3208 			skb_put(skb, length);
3209 
3210 			/* Tell the skb what kind of packet this is */
3211 			skb->protocol = eth_type_trans(skb, ugeth->ndev);
3212 
3213 			dev->stats.rx_bytes += length;
3214 			/* Send the packet up the stack */
3215 			netif_receive_skb(skb);
3216 		}
3217 
3218 		skb = get_new_skb(ugeth, bd);
3219 		if (!skb) {
3220 			if (netif_msg_rx_err(ugeth))
3221 				pr_warn("No Rx Data Buffer\n");
3222 			dev->stats.rx_dropped++;
3223 			break;
3224 		}
3225 
3226 		ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = skb;
3227 
3228 		/* update to point at the next skb */
3229 		ugeth->skb_currx[rxQ] =
3230 		    (ugeth->skb_currx[rxQ] +
3231 		     1) & RX_RING_MOD_MASK(ugeth->ug_info->bdRingLenRx[rxQ]);
3232 
3233 		if (bd_status & R_W)
3234 			bd = ugeth->p_rx_bd_ring[rxQ];
3235 		else
3236 			bd += sizeof(struct qe_bd);
3237 
3238 		bd_status = in_be32((u32 __iomem *)bd);
3239 	}
3240 
3241 	ugeth->rxBd[rxQ] = bd;
3242 	return howmany;
3243 }
3244 
3245 static int ucc_geth_tx(struct net_device *dev, u8 txQ)
3246 {
3247 	/* Start from the next BD that should be filled */
3248 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3249 	u8 __iomem *bd;		/* BD pointer */
3250 	u32 bd_status;
3251 
3252 	bd = ugeth->confBd[txQ];
3253 	bd_status = in_be32((u32 __iomem *)bd);
3254 
3255 	/* Normal processing. */
3256 	while ((bd_status & T_R) == 0) {
3257 		struct sk_buff *skb;
3258 
3259 		/* BD contains already transmitted buffer.   */
3260 		/* Handle the transmitted buffer and release */
3261 		/* the BD to be used with the current frame  */
3262 
3263 		skb = ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]];
3264 		if (!skb)
3265 			break;
3266 
3267 		dev->stats.tx_packets++;
3268 
3269 		dev_kfree_skb(skb);
3270 
3271 		ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]] = NULL;
3272 		ugeth->skb_dirtytx[txQ] =
3273 		    (ugeth->skb_dirtytx[txQ] +
3274 		     1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]);
3275 
3276 		/* We freed a buffer, so now we can restart transmission */
3277 		if (netif_queue_stopped(dev))
3278 			netif_wake_queue(dev);
3279 
3280 		/* Advance the confirmation BD pointer */
3281 		if (!(bd_status & T_W))
3282 			bd += sizeof(struct qe_bd);
3283 		else
3284 			bd = ugeth->p_tx_bd_ring[txQ];
3285 		bd_status = in_be32((u32 __iomem *)bd);
3286 	}
3287 	ugeth->confBd[txQ] = bd;
3288 	return 0;
3289 }
3290 
3291 static int ucc_geth_poll(struct napi_struct *napi, int budget)
3292 {
3293 	struct ucc_geth_private *ugeth = container_of(napi, struct ucc_geth_private, napi);
3294 	struct ucc_geth_info *ug_info;
3295 	int howmany, i;
3296 
3297 	ug_info = ugeth->ug_info;
3298 
3299 	/* Tx event processing */
3300 	spin_lock(&ugeth->lock);
3301 	for (i = 0; i < ug_info->numQueuesTx; i++)
3302 		ucc_geth_tx(ugeth->ndev, i);
3303 	spin_unlock(&ugeth->lock);
3304 
3305 	howmany = 0;
3306 	for (i = 0; i < ug_info->numQueuesRx; i++)
3307 		howmany += ucc_geth_rx(ugeth, i, budget - howmany);
3308 
3309 	if (howmany < budget) {
3310 		napi_complete(napi);
3311 		setbits32(ugeth->uccf->p_uccm, UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3312 	}
3313 
3314 	return howmany;
3315 }
3316 
3317 static irqreturn_t ucc_geth_irq_handler(int irq, void *info)
3318 {
3319 	struct net_device *dev = info;
3320 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3321 	struct ucc_fast_private *uccf;
3322 	struct ucc_geth_info *ug_info;
3323 	register u32 ucce;
3324 	register u32 uccm;
3325 
3326 	ugeth_vdbg("%s: IN", __func__);
3327 
3328 	uccf = ugeth->uccf;
3329 	ug_info = ugeth->ug_info;
3330 
3331 	/* read and clear events */
3332 	ucce = (u32) in_be32(uccf->p_ucce);
3333 	uccm = (u32) in_be32(uccf->p_uccm);
3334 	ucce &= uccm;
3335 	out_be32(uccf->p_ucce, ucce);
3336 
3337 	/* check for receive events that require processing */
3338 	if (ucce & (UCCE_RX_EVENTS | UCCE_TX_EVENTS)) {
3339 		if (napi_schedule_prep(&ugeth->napi)) {
3340 			uccm &= ~(UCCE_RX_EVENTS | UCCE_TX_EVENTS);
3341 			out_be32(uccf->p_uccm, uccm);
3342 			__napi_schedule(&ugeth->napi);
3343 		}
3344 	}
3345 
3346 	/* Errors and other events */
3347 	if (ucce & UCCE_OTHER) {
3348 		if (ucce & UCC_GETH_UCCE_BSY)
3349 			dev->stats.rx_errors++;
3350 		if (ucce & UCC_GETH_UCCE_TXE)
3351 			dev->stats.tx_errors++;
3352 	}
3353 
3354 	return IRQ_HANDLED;
3355 }
3356 
3357 #ifdef CONFIG_NET_POLL_CONTROLLER
3358 /*
3359  * Polling 'interrupt' - used by things like netconsole to send skbs
3360  * without having to re-enable interrupts. It's not called while
3361  * the interrupt routine is executing.
3362  */
3363 static void ucc_netpoll(struct net_device *dev)
3364 {
3365 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3366 	int irq = ugeth->ug_info->uf_info.irq;
3367 
3368 	disable_irq(irq);
3369 	ucc_geth_irq_handler(irq, dev);
3370 	enable_irq(irq);
3371 }
3372 #endif /* CONFIG_NET_POLL_CONTROLLER */
3373 
3374 static int ucc_geth_set_mac_addr(struct net_device *dev, void *p)
3375 {
3376 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3377 	struct sockaddr *addr = p;
3378 
3379 	if (!is_valid_ether_addr(addr->sa_data))
3380 		return -EADDRNOTAVAIL;
3381 
3382 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3383 
3384 	/*
3385 	 * If device is not running, we will set mac addr register
3386 	 * when opening the device.
3387 	 */
3388 	if (!netif_running(dev))
3389 		return 0;
3390 
3391 	spin_lock_irq(&ugeth->lock);
3392 	init_mac_station_addr_regs(dev->dev_addr[0],
3393 				   dev->dev_addr[1],
3394 				   dev->dev_addr[2],
3395 				   dev->dev_addr[3],
3396 				   dev->dev_addr[4],
3397 				   dev->dev_addr[5],
3398 				   &ugeth->ug_regs->macstnaddr1,
3399 				   &ugeth->ug_regs->macstnaddr2);
3400 	spin_unlock_irq(&ugeth->lock);
3401 
3402 	return 0;
3403 }
3404 
3405 static int ucc_geth_init_mac(struct ucc_geth_private *ugeth)
3406 {
3407 	struct net_device *dev = ugeth->ndev;
3408 	int err;
3409 
3410 	err = ucc_struct_init(ugeth);
3411 	if (err) {
3412 		netif_err(ugeth, ifup, dev, "Cannot configure internal struct, aborting\n");
3413 		goto err;
3414 	}
3415 
3416 	err = ucc_geth_startup(ugeth);
3417 	if (err) {
3418 		netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3419 		goto err;
3420 	}
3421 
3422 	err = adjust_enet_interface(ugeth);
3423 	if (err) {
3424 		netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n");
3425 		goto err;
3426 	}
3427 
3428 	/*       Set MACSTNADDR1, MACSTNADDR2                */
3429 	/* For more details see the hardware spec.           */
3430 	init_mac_station_addr_regs(dev->dev_addr[0],
3431 				   dev->dev_addr[1],
3432 				   dev->dev_addr[2],
3433 				   dev->dev_addr[3],
3434 				   dev->dev_addr[4],
3435 				   dev->dev_addr[5],
3436 				   &ugeth->ug_regs->macstnaddr1,
3437 				   &ugeth->ug_regs->macstnaddr2);
3438 
3439 	err = ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3440 	if (err) {
3441 		netif_err(ugeth, ifup, dev, "Cannot enable net device, aborting\n");
3442 		goto err;
3443 	}
3444 
3445 	return 0;
3446 err:
3447 	ucc_geth_stop(ugeth);
3448 	return err;
3449 }
3450 
3451 /* Called when something needs to use the ethernet device */
3452 /* Returns 0 for success. */
3453 static int ucc_geth_open(struct net_device *dev)
3454 {
3455 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3456 	int err;
3457 
3458 	ugeth_vdbg("%s: IN", __func__);
3459 
3460 	/* Test station address */
3461 	if (dev->dev_addr[0] & ENET_GROUP_ADDR) {
3462 		netif_err(ugeth, ifup, dev,
3463 			  "Multicast address used for station address - is this what you wanted?\n");
3464 		return -EINVAL;
3465 	}
3466 
3467 	err = init_phy(dev);
3468 	if (err) {
3469 		netif_err(ugeth, ifup, dev, "Cannot initialize PHY, aborting\n");
3470 		return err;
3471 	}
3472 
3473 	err = ucc_geth_init_mac(ugeth);
3474 	if (err) {
3475 		netif_err(ugeth, ifup, dev, "Cannot initialize MAC, aborting\n");
3476 		goto err;
3477 	}
3478 
3479 	err = request_irq(ugeth->ug_info->uf_info.irq, ucc_geth_irq_handler,
3480 			  0, "UCC Geth", dev);
3481 	if (err) {
3482 		netif_err(ugeth, ifup, dev, "Cannot get IRQ for net device, aborting\n");
3483 		goto err;
3484 	}
3485 
3486 	phy_start(ugeth->phydev);
3487 	napi_enable(&ugeth->napi);
3488 	netif_start_queue(dev);
3489 
3490 	device_set_wakeup_capable(&dev->dev,
3491 			qe_alive_during_sleep() || ugeth->phydev->irq);
3492 	device_set_wakeup_enable(&dev->dev, ugeth->wol_en);
3493 
3494 	return err;
3495 
3496 err:
3497 	ucc_geth_stop(ugeth);
3498 	return err;
3499 }
3500 
3501 /* Stops the kernel queue, and halts the controller */
3502 static int ucc_geth_close(struct net_device *dev)
3503 {
3504 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3505 
3506 	ugeth_vdbg("%s: IN", __func__);
3507 
3508 	napi_disable(&ugeth->napi);
3509 
3510 	cancel_work_sync(&ugeth->timeout_work);
3511 	ucc_geth_stop(ugeth);
3512 	phy_disconnect(ugeth->phydev);
3513 	ugeth->phydev = NULL;
3514 
3515 	free_irq(ugeth->ug_info->uf_info.irq, ugeth->ndev);
3516 
3517 	netif_stop_queue(dev);
3518 
3519 	return 0;
3520 }
3521 
3522 /* Reopen device. This will reset the MAC and PHY. */
3523 static void ucc_geth_timeout_work(struct work_struct *work)
3524 {
3525 	struct ucc_geth_private *ugeth;
3526 	struct net_device *dev;
3527 
3528 	ugeth = container_of(work, struct ucc_geth_private, timeout_work);
3529 	dev = ugeth->ndev;
3530 
3531 	ugeth_vdbg("%s: IN", __func__);
3532 
3533 	dev->stats.tx_errors++;
3534 
3535 	ugeth_dump_regs(ugeth);
3536 
3537 	if (dev->flags & IFF_UP) {
3538 		/*
3539 		 * Must reset MAC *and* PHY. This is done by reopening
3540 		 * the device.
3541 		 */
3542 		netif_tx_stop_all_queues(dev);
3543 		ucc_geth_stop(ugeth);
3544 		ucc_geth_init_mac(ugeth);
3545 		/* Must start PHY here */
3546 		phy_start(ugeth->phydev);
3547 		netif_tx_start_all_queues(dev);
3548 	}
3549 
3550 	netif_tx_schedule_all(dev);
3551 }
3552 
3553 /*
3554  * ucc_geth_timeout gets called when a packet has not been
3555  * transmitted after a set amount of time.
3556  */
3557 static void ucc_geth_timeout(struct net_device *dev)
3558 {
3559 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3560 
3561 	schedule_work(&ugeth->timeout_work);
3562 }
3563 
3564 
3565 #ifdef CONFIG_PM
3566 
3567 static int ucc_geth_suspend(struct platform_device *ofdev, pm_message_t state)
3568 {
3569 	struct net_device *ndev = platform_get_drvdata(ofdev);
3570 	struct ucc_geth_private *ugeth = netdev_priv(ndev);
3571 
3572 	if (!netif_running(ndev))
3573 		return 0;
3574 
3575 	netif_device_detach(ndev);
3576 	napi_disable(&ugeth->napi);
3577 
3578 	/*
3579 	 * Disable the controller, otherwise we'll wakeup on any network
3580 	 * activity.
3581 	 */
3582 	ugeth_disable(ugeth, COMM_DIR_RX_AND_TX);
3583 
3584 	if (ugeth->wol_en & WAKE_MAGIC) {
3585 		setbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3586 		setbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3587 		ucc_fast_enable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3588 	} else if (!(ugeth->wol_en & WAKE_PHY)) {
3589 		phy_stop(ugeth->phydev);
3590 	}
3591 
3592 	return 0;
3593 }
3594 
3595 static int ucc_geth_resume(struct platform_device *ofdev)
3596 {
3597 	struct net_device *ndev = platform_get_drvdata(ofdev);
3598 	struct ucc_geth_private *ugeth = netdev_priv(ndev);
3599 	int err;
3600 
3601 	if (!netif_running(ndev))
3602 		return 0;
3603 
3604 	if (qe_alive_during_sleep()) {
3605 		if (ugeth->wol_en & WAKE_MAGIC) {
3606 			ucc_fast_disable(ugeth->uccf, COMM_DIR_RX_AND_TX);
3607 			clrbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE);
3608 			clrbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD);
3609 		}
3610 		ugeth_enable(ugeth, COMM_DIR_RX_AND_TX);
3611 	} else {
3612 		/*
3613 		 * Full reinitialization is required if QE shuts down
3614 		 * during sleep.
3615 		 */
3616 		ucc_geth_memclean(ugeth);
3617 
3618 		err = ucc_geth_init_mac(ugeth);
3619 		if (err) {
3620 			netdev_err(ndev, "Cannot initialize MAC, aborting\n");
3621 			return err;
3622 		}
3623 	}
3624 
3625 	ugeth->oldlink = 0;
3626 	ugeth->oldspeed = 0;
3627 	ugeth->oldduplex = -1;
3628 
3629 	phy_stop(ugeth->phydev);
3630 	phy_start(ugeth->phydev);
3631 
3632 	napi_enable(&ugeth->napi);
3633 	netif_device_attach(ndev);
3634 
3635 	return 0;
3636 }
3637 
3638 #else
3639 #define ucc_geth_suspend NULL
3640 #define ucc_geth_resume NULL
3641 #endif
3642 
3643 static phy_interface_t to_phy_interface(const char *phy_connection_type)
3644 {
3645 	if (strcasecmp(phy_connection_type, "mii") == 0)
3646 		return PHY_INTERFACE_MODE_MII;
3647 	if (strcasecmp(phy_connection_type, "gmii") == 0)
3648 		return PHY_INTERFACE_MODE_GMII;
3649 	if (strcasecmp(phy_connection_type, "tbi") == 0)
3650 		return PHY_INTERFACE_MODE_TBI;
3651 	if (strcasecmp(phy_connection_type, "rmii") == 0)
3652 		return PHY_INTERFACE_MODE_RMII;
3653 	if (strcasecmp(phy_connection_type, "rgmii") == 0)
3654 		return PHY_INTERFACE_MODE_RGMII;
3655 	if (strcasecmp(phy_connection_type, "rgmii-id") == 0)
3656 		return PHY_INTERFACE_MODE_RGMII_ID;
3657 	if (strcasecmp(phy_connection_type, "rgmii-txid") == 0)
3658 		return PHY_INTERFACE_MODE_RGMII_TXID;
3659 	if (strcasecmp(phy_connection_type, "rgmii-rxid") == 0)
3660 		return PHY_INTERFACE_MODE_RGMII_RXID;
3661 	if (strcasecmp(phy_connection_type, "rtbi") == 0)
3662 		return PHY_INTERFACE_MODE_RTBI;
3663 	if (strcasecmp(phy_connection_type, "sgmii") == 0)
3664 		return PHY_INTERFACE_MODE_SGMII;
3665 
3666 	return PHY_INTERFACE_MODE_MII;
3667 }
3668 
3669 static int ucc_geth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3670 {
3671 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3672 
3673 	if (!netif_running(dev))
3674 		return -EINVAL;
3675 
3676 	if (!ugeth->phydev)
3677 		return -ENODEV;
3678 
3679 	return phy_mii_ioctl(ugeth->phydev, rq, cmd);
3680 }
3681 
3682 static const struct net_device_ops ucc_geth_netdev_ops = {
3683 	.ndo_open		= ucc_geth_open,
3684 	.ndo_stop		= ucc_geth_close,
3685 	.ndo_start_xmit		= ucc_geth_start_xmit,
3686 	.ndo_validate_addr	= eth_validate_addr,
3687 	.ndo_set_mac_address	= ucc_geth_set_mac_addr,
3688 	.ndo_change_mtu		= eth_change_mtu,
3689 	.ndo_set_rx_mode	= ucc_geth_set_multi,
3690 	.ndo_tx_timeout		= ucc_geth_timeout,
3691 	.ndo_do_ioctl		= ucc_geth_ioctl,
3692 #ifdef CONFIG_NET_POLL_CONTROLLER
3693 	.ndo_poll_controller	= ucc_netpoll,
3694 #endif
3695 };
3696 
3697 static int ucc_geth_probe(struct platform_device* ofdev)
3698 {
3699 	struct device *device = &ofdev->dev;
3700 	struct device_node *np = ofdev->dev.of_node;
3701 	struct net_device *dev = NULL;
3702 	struct ucc_geth_private *ugeth = NULL;
3703 	struct ucc_geth_info *ug_info;
3704 	struct resource res;
3705 	int err, ucc_num, max_speed = 0;
3706 	const unsigned int *prop;
3707 	const char *sprop;
3708 	const void *mac_addr;
3709 	phy_interface_t phy_interface;
3710 	static const int enet_to_speed[] = {
3711 		SPEED_10, SPEED_10, SPEED_10,
3712 		SPEED_100, SPEED_100, SPEED_100,
3713 		SPEED_1000, SPEED_1000, SPEED_1000, SPEED_1000,
3714 	};
3715 	static const phy_interface_t enet_to_phy_interface[] = {
3716 		PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_RMII,
3717 		PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_MII,
3718 		PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII,
3719 		PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_RGMII,
3720 		PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_RTBI,
3721 		PHY_INTERFACE_MODE_SGMII,
3722 	};
3723 
3724 	ugeth_vdbg("%s: IN", __func__);
3725 
3726 	prop = of_get_property(np, "cell-index", NULL);
3727 	if (!prop) {
3728 		prop = of_get_property(np, "device-id", NULL);
3729 		if (!prop)
3730 			return -ENODEV;
3731 	}
3732 
3733 	ucc_num = *prop - 1;
3734 	if ((ucc_num < 0) || (ucc_num > 7))
3735 		return -ENODEV;
3736 
3737 	ug_info = &ugeth_info[ucc_num];
3738 	if (ug_info == NULL) {
3739 		if (netif_msg_probe(&debug))
3740 			pr_err("[%d] Missing additional data!\n", ucc_num);
3741 		return -ENODEV;
3742 	}
3743 
3744 	ug_info->uf_info.ucc_num = ucc_num;
3745 
3746 	sprop = of_get_property(np, "rx-clock-name", NULL);
3747 	if (sprop) {
3748 		ug_info->uf_info.rx_clock = qe_clock_source(sprop);
3749 		if ((ug_info->uf_info.rx_clock < QE_CLK_NONE) ||
3750 		    (ug_info->uf_info.rx_clock > QE_CLK24)) {
3751 			pr_err("invalid rx-clock-name property\n");
3752 			return -EINVAL;
3753 		}
3754 	} else {
3755 		prop = of_get_property(np, "rx-clock", NULL);
3756 		if (!prop) {
3757 			/* If both rx-clock-name and rx-clock are missing,
3758 			   we want to tell people to use rx-clock-name. */
3759 			pr_err("missing rx-clock-name property\n");
3760 			return -EINVAL;
3761 		}
3762 		if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3763 			pr_err("invalid rx-clock propperty\n");
3764 			return -EINVAL;
3765 		}
3766 		ug_info->uf_info.rx_clock = *prop;
3767 	}
3768 
3769 	sprop = of_get_property(np, "tx-clock-name", NULL);
3770 	if (sprop) {
3771 		ug_info->uf_info.tx_clock = qe_clock_source(sprop);
3772 		if ((ug_info->uf_info.tx_clock < QE_CLK_NONE) ||
3773 		    (ug_info->uf_info.tx_clock > QE_CLK24)) {
3774 			pr_err("invalid tx-clock-name property\n");
3775 			return -EINVAL;
3776 		}
3777 	} else {
3778 		prop = of_get_property(np, "tx-clock", NULL);
3779 		if (!prop) {
3780 			pr_err("missing tx-clock-name property\n");
3781 			return -EINVAL;
3782 		}
3783 		if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) {
3784 			pr_err("invalid tx-clock property\n");
3785 			return -EINVAL;
3786 		}
3787 		ug_info->uf_info.tx_clock = *prop;
3788 	}
3789 
3790 	err = of_address_to_resource(np, 0, &res);
3791 	if (err)
3792 		return -EINVAL;
3793 
3794 	ug_info->uf_info.regs = res.start;
3795 	ug_info->uf_info.irq = irq_of_parse_and_map(np, 0);
3796 
3797 	ug_info->phy_node = of_parse_phandle(np, "phy-handle", 0);
3798 
3799 	/* Find the TBI PHY node.  If it's not there, we don't support SGMII */
3800 	ug_info->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
3801 
3802 	/* get the phy interface type, or default to MII */
3803 	prop = of_get_property(np, "phy-connection-type", NULL);
3804 	if (!prop) {
3805 		/* handle interface property present in old trees */
3806 		prop = of_get_property(ug_info->phy_node, "interface", NULL);
3807 		if (prop != NULL) {
3808 			phy_interface = enet_to_phy_interface[*prop];
3809 			max_speed = enet_to_speed[*prop];
3810 		} else
3811 			phy_interface = PHY_INTERFACE_MODE_MII;
3812 	} else {
3813 		phy_interface = to_phy_interface((const char *)prop);
3814 	}
3815 
3816 	/* get speed, or derive from PHY interface */
3817 	if (max_speed == 0)
3818 		switch (phy_interface) {
3819 		case PHY_INTERFACE_MODE_GMII:
3820 		case PHY_INTERFACE_MODE_RGMII:
3821 		case PHY_INTERFACE_MODE_RGMII_ID:
3822 		case PHY_INTERFACE_MODE_RGMII_RXID:
3823 		case PHY_INTERFACE_MODE_RGMII_TXID:
3824 		case PHY_INTERFACE_MODE_TBI:
3825 		case PHY_INTERFACE_MODE_RTBI:
3826 		case PHY_INTERFACE_MODE_SGMII:
3827 			max_speed = SPEED_1000;
3828 			break;
3829 		default:
3830 			max_speed = SPEED_100;
3831 			break;
3832 		}
3833 
3834 	if (max_speed == SPEED_1000) {
3835 		unsigned int snums = qe_get_num_of_snums();
3836 
3837 		/* configure muram FIFOs for gigabit operation */
3838 		ug_info->uf_info.urfs = UCC_GETH_URFS_GIGA_INIT;
3839 		ug_info->uf_info.urfet = UCC_GETH_URFET_GIGA_INIT;
3840 		ug_info->uf_info.urfset = UCC_GETH_URFSET_GIGA_INIT;
3841 		ug_info->uf_info.utfs = UCC_GETH_UTFS_GIGA_INIT;
3842 		ug_info->uf_info.utfet = UCC_GETH_UTFET_GIGA_INIT;
3843 		ug_info->uf_info.utftt = UCC_GETH_UTFTT_GIGA_INIT;
3844 		ug_info->numThreadsTx = UCC_GETH_NUM_OF_THREADS_4;
3845 
3846 		/* If QE's snum number is 46/76 which means we need to support
3847 		 * 4 UECs at 1000Base-T simultaneously, we need to allocate
3848 		 * more Threads to Rx.
3849 		 */
3850 		if ((snums == 76) || (snums == 46))
3851 			ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_6;
3852 		else
3853 			ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_4;
3854 	}
3855 
3856 	if (netif_msg_probe(&debug))
3857 		pr_info("UCC%1d at 0x%8x (irq = %d)\n",
3858 			ug_info->uf_info.ucc_num + 1, ug_info->uf_info.regs,
3859 			ug_info->uf_info.irq);
3860 
3861 	/* Create an ethernet device instance */
3862 	dev = alloc_etherdev(sizeof(*ugeth));
3863 
3864 	if (dev == NULL)
3865 		return -ENOMEM;
3866 
3867 	ugeth = netdev_priv(dev);
3868 	spin_lock_init(&ugeth->lock);
3869 
3870 	/* Create CQs for hash tables */
3871 	INIT_LIST_HEAD(&ugeth->group_hash_q);
3872 	INIT_LIST_HEAD(&ugeth->ind_hash_q);
3873 
3874 	dev_set_drvdata(device, dev);
3875 
3876 	/* Set the dev->base_addr to the gfar reg region */
3877 	dev->base_addr = (unsigned long)(ug_info->uf_info.regs);
3878 
3879 	SET_NETDEV_DEV(dev, device);
3880 
3881 	/* Fill in the dev structure */
3882 	uec_set_ethtool_ops(dev);
3883 	dev->netdev_ops = &ucc_geth_netdev_ops;
3884 	dev->watchdog_timeo = TX_TIMEOUT;
3885 	INIT_WORK(&ugeth->timeout_work, ucc_geth_timeout_work);
3886 	netif_napi_add(dev, &ugeth->napi, ucc_geth_poll, 64);
3887 	dev->mtu = 1500;
3888 
3889 	ugeth->msg_enable = netif_msg_init(debug.msg_enable, UGETH_MSG_DEFAULT);
3890 	ugeth->phy_interface = phy_interface;
3891 	ugeth->max_speed = max_speed;
3892 
3893 	err = register_netdev(dev);
3894 	if (err) {
3895 		if (netif_msg_probe(ugeth))
3896 			pr_err("%s: Cannot register net device, aborting\n",
3897 			       dev->name);
3898 		free_netdev(dev);
3899 		return err;
3900 	}
3901 
3902 	mac_addr = of_get_mac_address(np);
3903 	if (mac_addr)
3904 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
3905 
3906 	ugeth->ug_info = ug_info;
3907 	ugeth->dev = device;
3908 	ugeth->ndev = dev;
3909 	ugeth->node = np;
3910 
3911 	return 0;
3912 }
3913 
3914 static int ucc_geth_remove(struct platform_device* ofdev)
3915 {
3916 	struct net_device *dev = platform_get_drvdata(ofdev);
3917 	struct ucc_geth_private *ugeth = netdev_priv(dev);
3918 
3919 	unregister_netdev(dev);
3920 	free_netdev(dev);
3921 	ucc_geth_memclean(ugeth);
3922 
3923 	return 0;
3924 }
3925 
3926 static struct of_device_id ucc_geth_match[] = {
3927 	{
3928 		.type = "network",
3929 		.compatible = "ucc_geth",
3930 	},
3931 	{},
3932 };
3933 
3934 MODULE_DEVICE_TABLE(of, ucc_geth_match);
3935 
3936 static struct platform_driver ucc_geth_driver = {
3937 	.driver = {
3938 		.name = DRV_NAME,
3939 		.owner = THIS_MODULE,
3940 		.of_match_table = ucc_geth_match,
3941 	},
3942 	.probe		= ucc_geth_probe,
3943 	.remove		= ucc_geth_remove,
3944 	.suspend	= ucc_geth_suspend,
3945 	.resume		= ucc_geth_resume,
3946 };
3947 
3948 static int __init ucc_geth_init(void)
3949 {
3950 	int i, ret;
3951 
3952 	if (netif_msg_drv(&debug))
3953 		pr_info(DRV_DESC "\n");
3954 	for (i = 0; i < 8; i++)
3955 		memcpy(&(ugeth_info[i]), &ugeth_primary_info,
3956 		       sizeof(ugeth_primary_info));
3957 
3958 	ret = platform_driver_register(&ucc_geth_driver);
3959 
3960 	return ret;
3961 }
3962 
3963 static void __exit ucc_geth_exit(void)
3964 {
3965 	platform_driver_unregister(&ucc_geth_driver);
3966 }
3967 
3968 module_init(ucc_geth_init);
3969 module_exit(ucc_geth_exit);
3970 
3971 MODULE_AUTHOR("Freescale Semiconductor, Inc");
3972 MODULE_DESCRIPTION(DRV_DESC);
3973 MODULE_VERSION(DRV_VERSION);
3974 MODULE_LICENSE("GPL");
3975