1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2006-2009 Freescale Semicondutor, Inc. All rights reserved. 4 * 5 * Author: Shlomi Gridish <gridish@freescale.com> 6 * Li Yang <leoli@freescale.com> 7 * 8 * Description: 9 * QE UCC Gigabit Ethernet Driver 10 */ 11 12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 13 14 #include <linux/kernel.h> 15 #include <linux/init.h> 16 #include <linux/errno.h> 17 #include <linux/slab.h> 18 #include <linux/stddef.h> 19 #include <linux/module.h> 20 #include <linux/interrupt.h> 21 #include <linux/netdevice.h> 22 #include <linux/etherdevice.h> 23 #include <linux/skbuff.h> 24 #include <linux/spinlock.h> 25 #include <linux/mm.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/mii.h> 28 #include <linux/phy.h> 29 #include <linux/phy_fixed.h> 30 #include <linux/workqueue.h> 31 #include <linux/of_address.h> 32 #include <linux/of_irq.h> 33 #include <linux/of_mdio.h> 34 #include <linux/of_net.h> 35 #include <linux/of_platform.h> 36 37 #include <linux/uaccess.h> 38 #include <asm/irq.h> 39 #include <asm/io.h> 40 #include <soc/fsl/qe/immap_qe.h> 41 #include <soc/fsl/qe/qe.h> 42 #include <soc/fsl/qe/ucc.h> 43 #include <soc/fsl/qe/ucc_fast.h> 44 #include <asm/machdep.h> 45 46 #include "ucc_geth.h" 47 48 #undef DEBUG 49 50 #define ugeth_printk(level, format, arg...) \ 51 printk(level format "\n", ## arg) 52 53 #define ugeth_dbg(format, arg...) \ 54 ugeth_printk(KERN_DEBUG , format , ## arg) 55 56 #ifdef UGETH_VERBOSE_DEBUG 57 #define ugeth_vdbg ugeth_dbg 58 #else 59 #define ugeth_vdbg(fmt, args...) do { } while (0) 60 #endif /* UGETH_VERBOSE_DEBUG */ 61 #define UGETH_MSG_DEFAULT (NETIF_MSG_IFUP << 1 ) - 1 62 63 64 static DEFINE_SPINLOCK(ugeth_lock); 65 66 static struct { 67 u32 msg_enable; 68 } debug = { -1 }; 69 70 module_param_named(debug, debug.msg_enable, int, 0); 71 MODULE_PARM_DESC(debug, "Debug verbosity level (0=none, ..., 0xffff=all)"); 72 73 static struct ucc_geth_info ugeth_primary_info = { 74 .uf_info = { 75 .bd_mem_part = MEM_PART_SYSTEM, 76 .rtsm = UCC_FAST_SEND_IDLES_BETWEEN_FRAMES, 77 .max_rx_buf_length = 1536, 78 /* adjusted at startup if max-speed 1000 */ 79 .urfs = UCC_GETH_URFS_INIT, 80 .urfet = UCC_GETH_URFET_INIT, 81 .urfset = UCC_GETH_URFSET_INIT, 82 .utfs = UCC_GETH_UTFS_INIT, 83 .utfet = UCC_GETH_UTFET_INIT, 84 .utftt = UCC_GETH_UTFTT_INIT, 85 .ufpt = 256, 86 .mode = UCC_FAST_PROTOCOL_MODE_ETHERNET, 87 .ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL, 88 .tenc = UCC_FAST_TX_ENCODING_NRZ, 89 .renc = UCC_FAST_RX_ENCODING_NRZ, 90 .tcrc = UCC_FAST_16_BIT_CRC, 91 .synl = UCC_FAST_SYNC_LEN_NOT_USED, 92 }, 93 .numQueuesTx = 1, 94 .numQueuesRx = 1, 95 .extendedFilteringChainPointer = ((uint32_t) NULL), 96 .typeorlen = 3072 /*1536 */ , 97 .nonBackToBackIfgPart1 = 0x40, 98 .nonBackToBackIfgPart2 = 0x60, 99 .miminumInterFrameGapEnforcement = 0x50, 100 .backToBackInterFrameGap = 0x60, 101 .mblinterval = 128, 102 .nortsrbytetime = 5, 103 .fracsiz = 1, 104 .strictpriorityq = 0xff, 105 .altBebTruncation = 0xa, 106 .excessDefer = 1, 107 .maxRetransmission = 0xf, 108 .collisionWindow = 0x37, 109 .receiveFlowControl = 1, 110 .transmitFlowControl = 1, 111 .maxGroupAddrInHash = 4, 112 .maxIndAddrInHash = 4, 113 .prel = 7, 114 .maxFrameLength = 1518+16, /* Add extra bytes for VLANs etc. */ 115 .minFrameLength = 64, 116 .maxD1Length = 1520+16, /* Add extra bytes for VLANs etc. */ 117 .maxD2Length = 1520+16, /* Add extra bytes for VLANs etc. */ 118 .vlantype = 0x8100, 119 .ecamptr = ((uint32_t) NULL), 120 .eventRegMask = UCCE_OTHER, 121 .pausePeriod = 0xf000, 122 .interruptcoalescingmaxvalue = {1, 1, 1, 1, 1, 1, 1, 1}, 123 .bdRingLenTx = { 124 TX_BD_RING_LEN, 125 TX_BD_RING_LEN, 126 TX_BD_RING_LEN, 127 TX_BD_RING_LEN, 128 TX_BD_RING_LEN, 129 TX_BD_RING_LEN, 130 TX_BD_RING_LEN, 131 TX_BD_RING_LEN}, 132 133 .bdRingLenRx = { 134 RX_BD_RING_LEN, 135 RX_BD_RING_LEN, 136 RX_BD_RING_LEN, 137 RX_BD_RING_LEN, 138 RX_BD_RING_LEN, 139 RX_BD_RING_LEN, 140 RX_BD_RING_LEN, 141 RX_BD_RING_LEN}, 142 143 .numStationAddresses = UCC_GETH_NUM_OF_STATION_ADDRESSES_1, 144 .largestexternallookupkeysize = 145 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE, 146 .statisticsMode = UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE | 147 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX | 148 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX, 149 .vlanOperationTagged = UCC_GETH_VLAN_OPERATION_TAGGED_NOP, 150 .vlanOperationNonTagged = UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP, 151 .rxQoSMode = UCC_GETH_QOS_MODE_DEFAULT, 152 .aufc = UPSMR_AUTOMATIC_FLOW_CONTROL_MODE_NONE, 153 .padAndCrc = MACCFG2_PAD_AND_CRC_MODE_PAD_AND_CRC, 154 .numThreadsTx = UCC_GETH_NUM_OF_THREADS_1, 155 .numThreadsRx = UCC_GETH_NUM_OF_THREADS_1, 156 .riscTx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, 157 .riscRx = QE_RISC_ALLOCATION_RISC1_AND_RISC2, 158 }; 159 160 static struct ucc_geth_info ugeth_info[8]; 161 162 #ifdef DEBUG 163 static void mem_disp(u8 *addr, int size) 164 { 165 u8 *i; 166 int size16Aling = (size >> 4) << 4; 167 int size4Aling = (size >> 2) << 2; 168 int notAlign = 0; 169 if (size % 16) 170 notAlign = 1; 171 172 for (i = addr; (u32) i < (u32) addr + size16Aling; i += 16) 173 printk("0x%08x: %08x %08x %08x %08x\r\n", 174 (u32) i, 175 *((u32 *) (i)), 176 *((u32 *) (i + 4)), 177 *((u32 *) (i + 8)), *((u32 *) (i + 12))); 178 if (notAlign == 1) 179 printk("0x%08x: ", (u32) i); 180 for (; (u32) i < (u32) addr + size4Aling; i += 4) 181 printk("%08x ", *((u32 *) (i))); 182 for (; (u32) i < (u32) addr + size; i++) 183 printk("%02x", *((i))); 184 if (notAlign == 1) 185 printk("\r\n"); 186 } 187 #endif /* DEBUG */ 188 189 static struct list_head *dequeue(struct list_head *lh) 190 { 191 unsigned long flags; 192 193 spin_lock_irqsave(&ugeth_lock, flags); 194 if (!list_empty(lh)) { 195 struct list_head *node = lh->next; 196 list_del(node); 197 spin_unlock_irqrestore(&ugeth_lock, flags); 198 return node; 199 } else { 200 spin_unlock_irqrestore(&ugeth_lock, flags); 201 return NULL; 202 } 203 } 204 205 static struct sk_buff *get_new_skb(struct ucc_geth_private *ugeth, 206 u8 __iomem *bd) 207 { 208 struct sk_buff *skb; 209 210 skb = netdev_alloc_skb(ugeth->ndev, 211 ugeth->ug_info->uf_info.max_rx_buf_length + 212 UCC_GETH_RX_DATA_BUF_ALIGNMENT); 213 if (!skb) 214 return NULL; 215 216 /* We need the data buffer to be aligned properly. We will reserve 217 * as many bytes as needed to align the data properly 218 */ 219 skb_reserve(skb, 220 UCC_GETH_RX_DATA_BUF_ALIGNMENT - 221 (((unsigned)skb->data) & (UCC_GETH_RX_DATA_BUF_ALIGNMENT - 222 1))); 223 224 out_be32(&((struct qe_bd __iomem *)bd)->buf, 225 dma_map_single(ugeth->dev, 226 skb->data, 227 ugeth->ug_info->uf_info.max_rx_buf_length + 228 UCC_GETH_RX_DATA_BUF_ALIGNMENT, 229 DMA_FROM_DEVICE)); 230 231 out_be32((u32 __iomem *)bd, 232 (R_E | R_I | (in_be32((u32 __iomem*)bd) & R_W))); 233 234 return skb; 235 } 236 237 static int rx_bd_buffer_set(struct ucc_geth_private *ugeth, u8 rxQ) 238 { 239 u8 __iomem *bd; 240 u32 bd_status; 241 struct sk_buff *skb; 242 int i; 243 244 bd = ugeth->p_rx_bd_ring[rxQ]; 245 i = 0; 246 247 do { 248 bd_status = in_be32((u32 __iomem *)bd); 249 skb = get_new_skb(ugeth, bd); 250 251 if (!skb) /* If can not allocate data buffer, 252 abort. Cleanup will be elsewhere */ 253 return -ENOMEM; 254 255 ugeth->rx_skbuff[rxQ][i] = skb; 256 257 /* advance the BD pointer */ 258 bd += sizeof(struct qe_bd); 259 i++; 260 } while (!(bd_status & R_W)); 261 262 return 0; 263 } 264 265 static int fill_init_enet_entries(struct ucc_geth_private *ugeth, 266 u32 *p_start, 267 u8 num_entries, 268 u32 thread_size, 269 u32 thread_alignment, 270 unsigned int risc, 271 int skip_page_for_first_entry) 272 { 273 u32 init_enet_offset; 274 u8 i; 275 int snum; 276 277 for (i = 0; i < num_entries; i++) { 278 if ((snum = qe_get_snum()) < 0) { 279 if (netif_msg_ifup(ugeth)) 280 pr_err("Can not get SNUM\n"); 281 return snum; 282 } 283 if ((i == 0) && skip_page_for_first_entry) 284 /* First entry of Rx does not have page */ 285 init_enet_offset = 0; 286 else { 287 init_enet_offset = 288 qe_muram_alloc(thread_size, thread_alignment); 289 if (IS_ERR_VALUE(init_enet_offset)) { 290 if (netif_msg_ifup(ugeth)) 291 pr_err("Can not allocate DPRAM memory\n"); 292 qe_put_snum((u8) snum); 293 return -ENOMEM; 294 } 295 } 296 *(p_start++) = 297 ((u8) snum << ENET_INIT_PARAM_SNUM_SHIFT) | init_enet_offset 298 | risc; 299 } 300 301 return 0; 302 } 303 304 static int return_init_enet_entries(struct ucc_geth_private *ugeth, 305 u32 *p_start, 306 u8 num_entries, 307 unsigned int risc, 308 int skip_page_for_first_entry) 309 { 310 u32 init_enet_offset; 311 u8 i; 312 int snum; 313 314 for (i = 0; i < num_entries; i++) { 315 u32 val = *p_start; 316 317 /* Check that this entry was actually valid -- 318 needed in case failed in allocations */ 319 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) { 320 snum = 321 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >> 322 ENET_INIT_PARAM_SNUM_SHIFT; 323 qe_put_snum((u8) snum); 324 if (!((i == 0) && skip_page_for_first_entry)) { 325 /* First entry of Rx does not have page */ 326 init_enet_offset = 327 (val & ENET_INIT_PARAM_PTR_MASK); 328 qe_muram_free(init_enet_offset); 329 } 330 *p_start++ = 0; 331 } 332 } 333 334 return 0; 335 } 336 337 #ifdef DEBUG 338 static int dump_init_enet_entries(struct ucc_geth_private *ugeth, 339 u32 __iomem *p_start, 340 u8 num_entries, 341 u32 thread_size, 342 unsigned int risc, 343 int skip_page_for_first_entry) 344 { 345 u32 init_enet_offset; 346 u8 i; 347 int snum; 348 349 for (i = 0; i < num_entries; i++) { 350 u32 val = in_be32(p_start); 351 352 /* Check that this entry was actually valid -- 353 needed in case failed in allocations */ 354 if ((val & ENET_INIT_PARAM_RISC_MASK) == risc) { 355 snum = 356 (u32) (val & ENET_INIT_PARAM_SNUM_MASK) >> 357 ENET_INIT_PARAM_SNUM_SHIFT; 358 qe_put_snum((u8) snum); 359 if (!((i == 0) && skip_page_for_first_entry)) { 360 /* First entry of Rx does not have page */ 361 init_enet_offset = 362 (in_be32(p_start) & 363 ENET_INIT_PARAM_PTR_MASK); 364 pr_info("Init enet entry %d:\n", i); 365 pr_info("Base address: 0x%08x\n", 366 (u32)qe_muram_addr(init_enet_offset)); 367 mem_disp(qe_muram_addr(init_enet_offset), 368 thread_size); 369 } 370 p_start++; 371 } 372 } 373 374 return 0; 375 } 376 #endif 377 378 static void put_enet_addr_container(struct enet_addr_container *enet_addr_cont) 379 { 380 kfree(enet_addr_cont); 381 } 382 383 static void set_mac_addr(__be16 __iomem *reg, u8 *mac) 384 { 385 out_be16(®[0], ((u16)mac[5] << 8) | mac[4]); 386 out_be16(®[1], ((u16)mac[3] << 8) | mac[2]); 387 out_be16(®[2], ((u16)mac[1] << 8) | mac[0]); 388 } 389 390 static int hw_clear_addr_in_paddr(struct ucc_geth_private *ugeth, u8 paddr_num) 391 { 392 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 393 394 if (paddr_num >= NUM_OF_PADDRS) { 395 pr_warn("%s: Invalid paddr_num: %u\n", __func__, paddr_num); 396 return -EINVAL; 397 } 398 399 p_82xx_addr_filt = 400 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram-> 401 addressfiltering; 402 403 /* Writing address ff.ff.ff.ff.ff.ff disables address 404 recognition for this register */ 405 out_be16(&p_82xx_addr_filt->paddr[paddr_num].h, 0xffff); 406 out_be16(&p_82xx_addr_filt->paddr[paddr_num].m, 0xffff); 407 out_be16(&p_82xx_addr_filt->paddr[paddr_num].l, 0xffff); 408 409 return 0; 410 } 411 412 static void hw_add_addr_in_hash(struct ucc_geth_private *ugeth, 413 u8 *p_enet_addr) 414 { 415 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 416 u32 cecr_subblock; 417 418 p_82xx_addr_filt = 419 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth->p_rx_glbl_pram-> 420 addressfiltering; 421 422 cecr_subblock = 423 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 424 425 /* Ethernet frames are defined in Little Endian mode, 426 therefore to insert */ 427 /* the address to the hash (Big Endian mode), we reverse the bytes.*/ 428 429 set_mac_addr(&p_82xx_addr_filt->taddr.h, p_enet_addr); 430 431 qe_issue_cmd(QE_SET_GROUP_ADDRESS, cecr_subblock, 432 QE_CR_PROTOCOL_ETHERNET, 0); 433 } 434 435 #ifdef DEBUG 436 static void get_statistics(struct ucc_geth_private *ugeth, 437 struct ucc_geth_tx_firmware_statistics * 438 tx_firmware_statistics, 439 struct ucc_geth_rx_firmware_statistics * 440 rx_firmware_statistics, 441 struct ucc_geth_hardware_statistics *hardware_statistics) 442 { 443 struct ucc_fast __iomem *uf_regs; 444 struct ucc_geth __iomem *ug_regs; 445 struct ucc_geth_tx_firmware_statistics_pram *p_tx_fw_statistics_pram; 446 struct ucc_geth_rx_firmware_statistics_pram *p_rx_fw_statistics_pram; 447 448 ug_regs = ugeth->ug_regs; 449 uf_regs = (struct ucc_fast __iomem *) ug_regs; 450 p_tx_fw_statistics_pram = ugeth->p_tx_fw_statistics_pram; 451 p_rx_fw_statistics_pram = ugeth->p_rx_fw_statistics_pram; 452 453 /* Tx firmware only if user handed pointer and driver actually 454 gathers Tx firmware statistics */ 455 if (tx_firmware_statistics && p_tx_fw_statistics_pram) { 456 tx_firmware_statistics->sicoltx = 457 in_be32(&p_tx_fw_statistics_pram->sicoltx); 458 tx_firmware_statistics->mulcoltx = 459 in_be32(&p_tx_fw_statistics_pram->mulcoltx); 460 tx_firmware_statistics->latecoltxfr = 461 in_be32(&p_tx_fw_statistics_pram->latecoltxfr); 462 tx_firmware_statistics->frabortduecol = 463 in_be32(&p_tx_fw_statistics_pram->frabortduecol); 464 tx_firmware_statistics->frlostinmactxer = 465 in_be32(&p_tx_fw_statistics_pram->frlostinmactxer); 466 tx_firmware_statistics->carriersenseertx = 467 in_be32(&p_tx_fw_statistics_pram->carriersenseertx); 468 tx_firmware_statistics->frtxok = 469 in_be32(&p_tx_fw_statistics_pram->frtxok); 470 tx_firmware_statistics->txfrexcessivedefer = 471 in_be32(&p_tx_fw_statistics_pram->txfrexcessivedefer); 472 tx_firmware_statistics->txpkts256 = 473 in_be32(&p_tx_fw_statistics_pram->txpkts256); 474 tx_firmware_statistics->txpkts512 = 475 in_be32(&p_tx_fw_statistics_pram->txpkts512); 476 tx_firmware_statistics->txpkts1024 = 477 in_be32(&p_tx_fw_statistics_pram->txpkts1024); 478 tx_firmware_statistics->txpktsjumbo = 479 in_be32(&p_tx_fw_statistics_pram->txpktsjumbo); 480 } 481 482 /* Rx firmware only if user handed pointer and driver actually 483 * gathers Rx firmware statistics */ 484 if (rx_firmware_statistics && p_rx_fw_statistics_pram) { 485 int i; 486 rx_firmware_statistics->frrxfcser = 487 in_be32(&p_rx_fw_statistics_pram->frrxfcser); 488 rx_firmware_statistics->fraligner = 489 in_be32(&p_rx_fw_statistics_pram->fraligner); 490 rx_firmware_statistics->inrangelenrxer = 491 in_be32(&p_rx_fw_statistics_pram->inrangelenrxer); 492 rx_firmware_statistics->outrangelenrxer = 493 in_be32(&p_rx_fw_statistics_pram->outrangelenrxer); 494 rx_firmware_statistics->frtoolong = 495 in_be32(&p_rx_fw_statistics_pram->frtoolong); 496 rx_firmware_statistics->runt = 497 in_be32(&p_rx_fw_statistics_pram->runt); 498 rx_firmware_statistics->verylongevent = 499 in_be32(&p_rx_fw_statistics_pram->verylongevent); 500 rx_firmware_statistics->symbolerror = 501 in_be32(&p_rx_fw_statistics_pram->symbolerror); 502 rx_firmware_statistics->dropbsy = 503 in_be32(&p_rx_fw_statistics_pram->dropbsy); 504 for (i = 0; i < 0x8; i++) 505 rx_firmware_statistics->res0[i] = 506 p_rx_fw_statistics_pram->res0[i]; 507 rx_firmware_statistics->mismatchdrop = 508 in_be32(&p_rx_fw_statistics_pram->mismatchdrop); 509 rx_firmware_statistics->underpkts = 510 in_be32(&p_rx_fw_statistics_pram->underpkts); 511 rx_firmware_statistics->pkts256 = 512 in_be32(&p_rx_fw_statistics_pram->pkts256); 513 rx_firmware_statistics->pkts512 = 514 in_be32(&p_rx_fw_statistics_pram->pkts512); 515 rx_firmware_statistics->pkts1024 = 516 in_be32(&p_rx_fw_statistics_pram->pkts1024); 517 rx_firmware_statistics->pktsjumbo = 518 in_be32(&p_rx_fw_statistics_pram->pktsjumbo); 519 rx_firmware_statistics->frlossinmacer = 520 in_be32(&p_rx_fw_statistics_pram->frlossinmacer); 521 rx_firmware_statistics->pausefr = 522 in_be32(&p_rx_fw_statistics_pram->pausefr); 523 for (i = 0; i < 0x4; i++) 524 rx_firmware_statistics->res1[i] = 525 p_rx_fw_statistics_pram->res1[i]; 526 rx_firmware_statistics->removevlan = 527 in_be32(&p_rx_fw_statistics_pram->removevlan); 528 rx_firmware_statistics->replacevlan = 529 in_be32(&p_rx_fw_statistics_pram->replacevlan); 530 rx_firmware_statistics->insertvlan = 531 in_be32(&p_rx_fw_statistics_pram->insertvlan); 532 } 533 534 /* Hardware only if user handed pointer and driver actually 535 gathers hardware statistics */ 536 if (hardware_statistics && 537 (in_be32(&uf_regs->upsmr) & UCC_GETH_UPSMR_HSE)) { 538 hardware_statistics->tx64 = in_be32(&ug_regs->tx64); 539 hardware_statistics->tx127 = in_be32(&ug_regs->tx127); 540 hardware_statistics->tx255 = in_be32(&ug_regs->tx255); 541 hardware_statistics->rx64 = in_be32(&ug_regs->rx64); 542 hardware_statistics->rx127 = in_be32(&ug_regs->rx127); 543 hardware_statistics->rx255 = in_be32(&ug_regs->rx255); 544 hardware_statistics->txok = in_be32(&ug_regs->txok); 545 hardware_statistics->txcf = in_be16(&ug_regs->txcf); 546 hardware_statistics->tmca = in_be32(&ug_regs->tmca); 547 hardware_statistics->tbca = in_be32(&ug_regs->tbca); 548 hardware_statistics->rxfok = in_be32(&ug_regs->rxfok); 549 hardware_statistics->rxbok = in_be32(&ug_regs->rxbok); 550 hardware_statistics->rbyt = in_be32(&ug_regs->rbyt); 551 hardware_statistics->rmca = in_be32(&ug_regs->rmca); 552 hardware_statistics->rbca = in_be32(&ug_regs->rbca); 553 } 554 } 555 556 static void dump_bds(struct ucc_geth_private *ugeth) 557 { 558 int i; 559 int length; 560 561 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) { 562 if (ugeth->p_tx_bd_ring[i]) { 563 length = 564 (ugeth->ug_info->bdRingLenTx[i] * 565 sizeof(struct qe_bd)); 566 pr_info("TX BDs[%d]\n", i); 567 mem_disp(ugeth->p_tx_bd_ring[i], length); 568 } 569 } 570 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) { 571 if (ugeth->p_rx_bd_ring[i]) { 572 length = 573 (ugeth->ug_info->bdRingLenRx[i] * 574 sizeof(struct qe_bd)); 575 pr_info("RX BDs[%d]\n", i); 576 mem_disp(ugeth->p_rx_bd_ring[i], length); 577 } 578 } 579 } 580 581 static void dump_regs(struct ucc_geth_private *ugeth) 582 { 583 int i; 584 585 pr_info("UCC%d Geth registers:\n", ugeth->ug_info->uf_info.ucc_num + 1); 586 pr_info("Base address: 0x%08x\n", (u32)ugeth->ug_regs); 587 588 pr_info("maccfg1 : addr - 0x%08x, val - 0x%08x\n", 589 (u32)&ugeth->ug_regs->maccfg1, 590 in_be32(&ugeth->ug_regs->maccfg1)); 591 pr_info("maccfg2 : addr - 0x%08x, val - 0x%08x\n", 592 (u32)&ugeth->ug_regs->maccfg2, 593 in_be32(&ugeth->ug_regs->maccfg2)); 594 pr_info("ipgifg : addr - 0x%08x, val - 0x%08x\n", 595 (u32)&ugeth->ug_regs->ipgifg, 596 in_be32(&ugeth->ug_regs->ipgifg)); 597 pr_info("hafdup : addr - 0x%08x, val - 0x%08x\n", 598 (u32)&ugeth->ug_regs->hafdup, 599 in_be32(&ugeth->ug_regs->hafdup)); 600 pr_info("ifctl : addr - 0x%08x, val - 0x%08x\n", 601 (u32)&ugeth->ug_regs->ifctl, 602 in_be32(&ugeth->ug_regs->ifctl)); 603 pr_info("ifstat : addr - 0x%08x, val - 0x%08x\n", 604 (u32)&ugeth->ug_regs->ifstat, 605 in_be32(&ugeth->ug_regs->ifstat)); 606 pr_info("macstnaddr1: addr - 0x%08x, val - 0x%08x\n", 607 (u32)&ugeth->ug_regs->macstnaddr1, 608 in_be32(&ugeth->ug_regs->macstnaddr1)); 609 pr_info("macstnaddr2: addr - 0x%08x, val - 0x%08x\n", 610 (u32)&ugeth->ug_regs->macstnaddr2, 611 in_be32(&ugeth->ug_regs->macstnaddr2)); 612 pr_info("uempr : addr - 0x%08x, val - 0x%08x\n", 613 (u32)&ugeth->ug_regs->uempr, 614 in_be32(&ugeth->ug_regs->uempr)); 615 pr_info("utbipar : addr - 0x%08x, val - 0x%08x\n", 616 (u32)&ugeth->ug_regs->utbipar, 617 in_be32(&ugeth->ug_regs->utbipar)); 618 pr_info("uescr : addr - 0x%08x, val - 0x%04x\n", 619 (u32)&ugeth->ug_regs->uescr, 620 in_be16(&ugeth->ug_regs->uescr)); 621 pr_info("tx64 : addr - 0x%08x, val - 0x%08x\n", 622 (u32)&ugeth->ug_regs->tx64, 623 in_be32(&ugeth->ug_regs->tx64)); 624 pr_info("tx127 : addr - 0x%08x, val - 0x%08x\n", 625 (u32)&ugeth->ug_regs->tx127, 626 in_be32(&ugeth->ug_regs->tx127)); 627 pr_info("tx255 : addr - 0x%08x, val - 0x%08x\n", 628 (u32)&ugeth->ug_regs->tx255, 629 in_be32(&ugeth->ug_regs->tx255)); 630 pr_info("rx64 : addr - 0x%08x, val - 0x%08x\n", 631 (u32)&ugeth->ug_regs->rx64, 632 in_be32(&ugeth->ug_regs->rx64)); 633 pr_info("rx127 : addr - 0x%08x, val - 0x%08x\n", 634 (u32)&ugeth->ug_regs->rx127, 635 in_be32(&ugeth->ug_regs->rx127)); 636 pr_info("rx255 : addr - 0x%08x, val - 0x%08x\n", 637 (u32)&ugeth->ug_regs->rx255, 638 in_be32(&ugeth->ug_regs->rx255)); 639 pr_info("txok : addr - 0x%08x, val - 0x%08x\n", 640 (u32)&ugeth->ug_regs->txok, 641 in_be32(&ugeth->ug_regs->txok)); 642 pr_info("txcf : addr - 0x%08x, val - 0x%04x\n", 643 (u32)&ugeth->ug_regs->txcf, 644 in_be16(&ugeth->ug_regs->txcf)); 645 pr_info("tmca : addr - 0x%08x, val - 0x%08x\n", 646 (u32)&ugeth->ug_regs->tmca, 647 in_be32(&ugeth->ug_regs->tmca)); 648 pr_info("tbca : addr - 0x%08x, val - 0x%08x\n", 649 (u32)&ugeth->ug_regs->tbca, 650 in_be32(&ugeth->ug_regs->tbca)); 651 pr_info("rxfok : addr - 0x%08x, val - 0x%08x\n", 652 (u32)&ugeth->ug_regs->rxfok, 653 in_be32(&ugeth->ug_regs->rxfok)); 654 pr_info("rxbok : addr - 0x%08x, val - 0x%08x\n", 655 (u32)&ugeth->ug_regs->rxbok, 656 in_be32(&ugeth->ug_regs->rxbok)); 657 pr_info("rbyt : addr - 0x%08x, val - 0x%08x\n", 658 (u32)&ugeth->ug_regs->rbyt, 659 in_be32(&ugeth->ug_regs->rbyt)); 660 pr_info("rmca : addr - 0x%08x, val - 0x%08x\n", 661 (u32)&ugeth->ug_regs->rmca, 662 in_be32(&ugeth->ug_regs->rmca)); 663 pr_info("rbca : addr - 0x%08x, val - 0x%08x\n", 664 (u32)&ugeth->ug_regs->rbca, 665 in_be32(&ugeth->ug_regs->rbca)); 666 pr_info("scar : addr - 0x%08x, val - 0x%08x\n", 667 (u32)&ugeth->ug_regs->scar, 668 in_be32(&ugeth->ug_regs->scar)); 669 pr_info("scam : addr - 0x%08x, val - 0x%08x\n", 670 (u32)&ugeth->ug_regs->scam, 671 in_be32(&ugeth->ug_regs->scam)); 672 673 if (ugeth->p_thread_data_tx) { 674 int numThreadsTxNumerical; 675 switch (ugeth->ug_info->numThreadsTx) { 676 case UCC_GETH_NUM_OF_THREADS_1: 677 numThreadsTxNumerical = 1; 678 break; 679 case UCC_GETH_NUM_OF_THREADS_2: 680 numThreadsTxNumerical = 2; 681 break; 682 case UCC_GETH_NUM_OF_THREADS_4: 683 numThreadsTxNumerical = 4; 684 break; 685 case UCC_GETH_NUM_OF_THREADS_6: 686 numThreadsTxNumerical = 6; 687 break; 688 case UCC_GETH_NUM_OF_THREADS_8: 689 numThreadsTxNumerical = 8; 690 break; 691 default: 692 numThreadsTxNumerical = 0; 693 break; 694 } 695 696 pr_info("Thread data TXs:\n"); 697 pr_info("Base address: 0x%08x\n", 698 (u32)ugeth->p_thread_data_tx); 699 for (i = 0; i < numThreadsTxNumerical; i++) { 700 pr_info("Thread data TX[%d]:\n", i); 701 pr_info("Base address: 0x%08x\n", 702 (u32)&ugeth->p_thread_data_tx[i]); 703 mem_disp((u8 *) & ugeth->p_thread_data_tx[i], 704 sizeof(struct ucc_geth_thread_data_tx)); 705 } 706 } 707 if (ugeth->p_thread_data_rx) { 708 int numThreadsRxNumerical; 709 switch (ugeth->ug_info->numThreadsRx) { 710 case UCC_GETH_NUM_OF_THREADS_1: 711 numThreadsRxNumerical = 1; 712 break; 713 case UCC_GETH_NUM_OF_THREADS_2: 714 numThreadsRxNumerical = 2; 715 break; 716 case UCC_GETH_NUM_OF_THREADS_4: 717 numThreadsRxNumerical = 4; 718 break; 719 case UCC_GETH_NUM_OF_THREADS_6: 720 numThreadsRxNumerical = 6; 721 break; 722 case UCC_GETH_NUM_OF_THREADS_8: 723 numThreadsRxNumerical = 8; 724 break; 725 default: 726 numThreadsRxNumerical = 0; 727 break; 728 } 729 730 pr_info("Thread data RX:\n"); 731 pr_info("Base address: 0x%08x\n", 732 (u32)ugeth->p_thread_data_rx); 733 for (i = 0; i < numThreadsRxNumerical; i++) { 734 pr_info("Thread data RX[%d]:\n", i); 735 pr_info("Base address: 0x%08x\n", 736 (u32)&ugeth->p_thread_data_rx[i]); 737 mem_disp((u8 *) & ugeth->p_thread_data_rx[i], 738 sizeof(struct ucc_geth_thread_data_rx)); 739 } 740 } 741 if (ugeth->p_exf_glbl_param) { 742 pr_info("EXF global param:\n"); 743 pr_info("Base address: 0x%08x\n", 744 (u32)ugeth->p_exf_glbl_param); 745 mem_disp((u8 *) ugeth->p_exf_glbl_param, 746 sizeof(*ugeth->p_exf_glbl_param)); 747 } 748 if (ugeth->p_tx_glbl_pram) { 749 pr_info("TX global param:\n"); 750 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_tx_glbl_pram); 751 pr_info("temoder : addr - 0x%08x, val - 0x%04x\n", 752 (u32)&ugeth->p_tx_glbl_pram->temoder, 753 in_be16(&ugeth->p_tx_glbl_pram->temoder)); 754 pr_info("sqptr : addr - 0x%08x, val - 0x%08x\n", 755 (u32)&ugeth->p_tx_glbl_pram->sqptr, 756 in_be32(&ugeth->p_tx_glbl_pram->sqptr)); 757 pr_info("schedulerbasepointer: addr - 0x%08x, val - 0x%08x\n", 758 (u32)&ugeth->p_tx_glbl_pram->schedulerbasepointer, 759 in_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer)); 760 pr_info("txrmonbaseptr: addr - 0x%08x, val - 0x%08x\n", 761 (u32)&ugeth->p_tx_glbl_pram->txrmonbaseptr, 762 in_be32(&ugeth->p_tx_glbl_pram->txrmonbaseptr)); 763 pr_info("tstate : addr - 0x%08x, val - 0x%08x\n", 764 (u32)&ugeth->p_tx_glbl_pram->tstate, 765 in_be32(&ugeth->p_tx_glbl_pram->tstate)); 766 pr_info("iphoffset[0] : addr - 0x%08x, val - 0x%02x\n", 767 (u32)&ugeth->p_tx_glbl_pram->iphoffset[0], 768 ugeth->p_tx_glbl_pram->iphoffset[0]); 769 pr_info("iphoffset[1] : addr - 0x%08x, val - 0x%02x\n", 770 (u32)&ugeth->p_tx_glbl_pram->iphoffset[1], 771 ugeth->p_tx_glbl_pram->iphoffset[1]); 772 pr_info("iphoffset[2] : addr - 0x%08x, val - 0x%02x\n", 773 (u32)&ugeth->p_tx_glbl_pram->iphoffset[2], 774 ugeth->p_tx_glbl_pram->iphoffset[2]); 775 pr_info("iphoffset[3] : addr - 0x%08x, val - 0x%02x\n", 776 (u32)&ugeth->p_tx_glbl_pram->iphoffset[3], 777 ugeth->p_tx_glbl_pram->iphoffset[3]); 778 pr_info("iphoffset[4] : addr - 0x%08x, val - 0x%02x\n", 779 (u32)&ugeth->p_tx_glbl_pram->iphoffset[4], 780 ugeth->p_tx_glbl_pram->iphoffset[4]); 781 pr_info("iphoffset[5] : addr - 0x%08x, val - 0x%02x\n", 782 (u32)&ugeth->p_tx_glbl_pram->iphoffset[5], 783 ugeth->p_tx_glbl_pram->iphoffset[5]); 784 pr_info("iphoffset[6] : addr - 0x%08x, val - 0x%02x\n", 785 (u32)&ugeth->p_tx_glbl_pram->iphoffset[6], 786 ugeth->p_tx_glbl_pram->iphoffset[6]); 787 pr_info("iphoffset[7] : addr - 0x%08x, val - 0x%02x\n", 788 (u32)&ugeth->p_tx_glbl_pram->iphoffset[7], 789 ugeth->p_tx_glbl_pram->iphoffset[7]); 790 pr_info("vtagtable[0] : addr - 0x%08x, val - 0x%08x\n", 791 (u32)&ugeth->p_tx_glbl_pram->vtagtable[0], 792 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[0])); 793 pr_info("vtagtable[1] : addr - 0x%08x, val - 0x%08x\n", 794 (u32)&ugeth->p_tx_glbl_pram->vtagtable[1], 795 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[1])); 796 pr_info("vtagtable[2] : addr - 0x%08x, val - 0x%08x\n", 797 (u32)&ugeth->p_tx_glbl_pram->vtagtable[2], 798 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[2])); 799 pr_info("vtagtable[3] : addr - 0x%08x, val - 0x%08x\n", 800 (u32)&ugeth->p_tx_glbl_pram->vtagtable[3], 801 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[3])); 802 pr_info("vtagtable[4] : addr - 0x%08x, val - 0x%08x\n", 803 (u32)&ugeth->p_tx_glbl_pram->vtagtable[4], 804 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[4])); 805 pr_info("vtagtable[5] : addr - 0x%08x, val - 0x%08x\n", 806 (u32)&ugeth->p_tx_glbl_pram->vtagtable[5], 807 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[5])); 808 pr_info("vtagtable[6] : addr - 0x%08x, val - 0x%08x\n", 809 (u32)&ugeth->p_tx_glbl_pram->vtagtable[6], 810 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[6])); 811 pr_info("vtagtable[7] : addr - 0x%08x, val - 0x%08x\n", 812 (u32)&ugeth->p_tx_glbl_pram->vtagtable[7], 813 in_be32(&ugeth->p_tx_glbl_pram->vtagtable[7])); 814 pr_info("tqptr : addr - 0x%08x, val - 0x%08x\n", 815 (u32)&ugeth->p_tx_glbl_pram->tqptr, 816 in_be32(&ugeth->p_tx_glbl_pram->tqptr)); 817 } 818 if (ugeth->p_rx_glbl_pram) { 819 pr_info("RX global param:\n"); 820 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_glbl_pram); 821 pr_info("remoder : addr - 0x%08x, val - 0x%08x\n", 822 (u32)&ugeth->p_rx_glbl_pram->remoder, 823 in_be32(&ugeth->p_rx_glbl_pram->remoder)); 824 pr_info("rqptr : addr - 0x%08x, val - 0x%08x\n", 825 (u32)&ugeth->p_rx_glbl_pram->rqptr, 826 in_be32(&ugeth->p_rx_glbl_pram->rqptr)); 827 pr_info("typeorlen : addr - 0x%08x, val - 0x%04x\n", 828 (u32)&ugeth->p_rx_glbl_pram->typeorlen, 829 in_be16(&ugeth->p_rx_glbl_pram->typeorlen)); 830 pr_info("rxgstpack : addr - 0x%08x, val - 0x%02x\n", 831 (u32)&ugeth->p_rx_glbl_pram->rxgstpack, 832 ugeth->p_rx_glbl_pram->rxgstpack); 833 pr_info("rxrmonbaseptr : addr - 0x%08x, val - 0x%08x\n", 834 (u32)&ugeth->p_rx_glbl_pram->rxrmonbaseptr, 835 in_be32(&ugeth->p_rx_glbl_pram->rxrmonbaseptr)); 836 pr_info("intcoalescingptr: addr - 0x%08x, val - 0x%08x\n", 837 (u32)&ugeth->p_rx_glbl_pram->intcoalescingptr, 838 in_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr)); 839 pr_info("rstate : addr - 0x%08x, val - 0x%02x\n", 840 (u32)&ugeth->p_rx_glbl_pram->rstate, 841 ugeth->p_rx_glbl_pram->rstate); 842 pr_info("mrblr : addr - 0x%08x, val - 0x%04x\n", 843 (u32)&ugeth->p_rx_glbl_pram->mrblr, 844 in_be16(&ugeth->p_rx_glbl_pram->mrblr)); 845 pr_info("rbdqptr : addr - 0x%08x, val - 0x%08x\n", 846 (u32)&ugeth->p_rx_glbl_pram->rbdqptr, 847 in_be32(&ugeth->p_rx_glbl_pram->rbdqptr)); 848 pr_info("mflr : addr - 0x%08x, val - 0x%04x\n", 849 (u32)&ugeth->p_rx_glbl_pram->mflr, 850 in_be16(&ugeth->p_rx_glbl_pram->mflr)); 851 pr_info("minflr : addr - 0x%08x, val - 0x%04x\n", 852 (u32)&ugeth->p_rx_glbl_pram->minflr, 853 in_be16(&ugeth->p_rx_glbl_pram->minflr)); 854 pr_info("maxd1 : addr - 0x%08x, val - 0x%04x\n", 855 (u32)&ugeth->p_rx_glbl_pram->maxd1, 856 in_be16(&ugeth->p_rx_glbl_pram->maxd1)); 857 pr_info("maxd2 : addr - 0x%08x, val - 0x%04x\n", 858 (u32)&ugeth->p_rx_glbl_pram->maxd2, 859 in_be16(&ugeth->p_rx_glbl_pram->maxd2)); 860 pr_info("ecamptr : addr - 0x%08x, val - 0x%08x\n", 861 (u32)&ugeth->p_rx_glbl_pram->ecamptr, 862 in_be32(&ugeth->p_rx_glbl_pram->ecamptr)); 863 pr_info("l2qt : addr - 0x%08x, val - 0x%08x\n", 864 (u32)&ugeth->p_rx_glbl_pram->l2qt, 865 in_be32(&ugeth->p_rx_glbl_pram->l2qt)); 866 pr_info("l3qt[0] : addr - 0x%08x, val - 0x%08x\n", 867 (u32)&ugeth->p_rx_glbl_pram->l3qt[0], 868 in_be32(&ugeth->p_rx_glbl_pram->l3qt[0])); 869 pr_info("l3qt[1] : addr - 0x%08x, val - 0x%08x\n", 870 (u32)&ugeth->p_rx_glbl_pram->l3qt[1], 871 in_be32(&ugeth->p_rx_glbl_pram->l3qt[1])); 872 pr_info("l3qt[2] : addr - 0x%08x, val - 0x%08x\n", 873 (u32)&ugeth->p_rx_glbl_pram->l3qt[2], 874 in_be32(&ugeth->p_rx_glbl_pram->l3qt[2])); 875 pr_info("l3qt[3] : addr - 0x%08x, val - 0x%08x\n", 876 (u32)&ugeth->p_rx_glbl_pram->l3qt[3], 877 in_be32(&ugeth->p_rx_glbl_pram->l3qt[3])); 878 pr_info("l3qt[4] : addr - 0x%08x, val - 0x%08x\n", 879 (u32)&ugeth->p_rx_glbl_pram->l3qt[4], 880 in_be32(&ugeth->p_rx_glbl_pram->l3qt[4])); 881 pr_info("l3qt[5] : addr - 0x%08x, val - 0x%08x\n", 882 (u32)&ugeth->p_rx_glbl_pram->l3qt[5], 883 in_be32(&ugeth->p_rx_glbl_pram->l3qt[5])); 884 pr_info("l3qt[6] : addr - 0x%08x, val - 0x%08x\n", 885 (u32)&ugeth->p_rx_glbl_pram->l3qt[6], 886 in_be32(&ugeth->p_rx_glbl_pram->l3qt[6])); 887 pr_info("l3qt[7] : addr - 0x%08x, val - 0x%08x\n", 888 (u32)&ugeth->p_rx_glbl_pram->l3qt[7], 889 in_be32(&ugeth->p_rx_glbl_pram->l3qt[7])); 890 pr_info("vlantype : addr - 0x%08x, val - 0x%04x\n", 891 (u32)&ugeth->p_rx_glbl_pram->vlantype, 892 in_be16(&ugeth->p_rx_glbl_pram->vlantype)); 893 pr_info("vlantci : addr - 0x%08x, val - 0x%04x\n", 894 (u32)&ugeth->p_rx_glbl_pram->vlantci, 895 in_be16(&ugeth->p_rx_glbl_pram->vlantci)); 896 for (i = 0; i < 64; i++) 897 pr_info("addressfiltering[%d]: addr - 0x%08x, val - 0x%02x\n", 898 i, 899 (u32)&ugeth->p_rx_glbl_pram->addressfiltering[i], 900 ugeth->p_rx_glbl_pram->addressfiltering[i]); 901 pr_info("exfGlobalParam : addr - 0x%08x, val - 0x%08x\n", 902 (u32)&ugeth->p_rx_glbl_pram->exfGlobalParam, 903 in_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam)); 904 } 905 if (ugeth->p_send_q_mem_reg) { 906 pr_info("Send Q memory registers:\n"); 907 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_send_q_mem_reg); 908 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) { 909 pr_info("SQQD[%d]:\n", i); 910 pr_info("Base address: 0x%08x\n", 911 (u32)&ugeth->p_send_q_mem_reg->sqqd[i]); 912 mem_disp((u8 *) & ugeth->p_send_q_mem_reg->sqqd[i], 913 sizeof(struct ucc_geth_send_queue_qd)); 914 } 915 } 916 if (ugeth->p_scheduler) { 917 pr_info("Scheduler:\n"); 918 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_scheduler); 919 mem_disp((u8 *) ugeth->p_scheduler, 920 sizeof(*ugeth->p_scheduler)); 921 } 922 if (ugeth->p_tx_fw_statistics_pram) { 923 pr_info("TX FW statistics pram:\n"); 924 pr_info("Base address: 0x%08x\n", 925 (u32)ugeth->p_tx_fw_statistics_pram); 926 mem_disp((u8 *) ugeth->p_tx_fw_statistics_pram, 927 sizeof(*ugeth->p_tx_fw_statistics_pram)); 928 } 929 if (ugeth->p_rx_fw_statistics_pram) { 930 pr_info("RX FW statistics pram:\n"); 931 pr_info("Base address: 0x%08x\n", 932 (u32)ugeth->p_rx_fw_statistics_pram); 933 mem_disp((u8 *) ugeth->p_rx_fw_statistics_pram, 934 sizeof(*ugeth->p_rx_fw_statistics_pram)); 935 } 936 if (ugeth->p_rx_irq_coalescing_tbl) { 937 pr_info("RX IRQ coalescing tables:\n"); 938 pr_info("Base address: 0x%08x\n", 939 (u32)ugeth->p_rx_irq_coalescing_tbl); 940 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) { 941 pr_info("RX IRQ coalescing table entry[%d]:\n", i); 942 pr_info("Base address: 0x%08x\n", 943 (u32)&ugeth->p_rx_irq_coalescing_tbl-> 944 coalescingentry[i]); 945 pr_info("interruptcoalescingmaxvalue: addr - 0x%08x, val - 0x%08x\n", 946 (u32)&ugeth->p_rx_irq_coalescing_tbl-> 947 coalescingentry[i].interruptcoalescingmaxvalue, 948 in_be32(&ugeth->p_rx_irq_coalescing_tbl-> 949 coalescingentry[i]. 950 interruptcoalescingmaxvalue)); 951 pr_info("interruptcoalescingcounter : addr - 0x%08x, val - 0x%08x\n", 952 (u32)&ugeth->p_rx_irq_coalescing_tbl-> 953 coalescingentry[i].interruptcoalescingcounter, 954 in_be32(&ugeth->p_rx_irq_coalescing_tbl-> 955 coalescingentry[i]. 956 interruptcoalescingcounter)); 957 } 958 } 959 if (ugeth->p_rx_bd_qs_tbl) { 960 pr_info("RX BD QS tables:\n"); 961 pr_info("Base address: 0x%08x\n", (u32)ugeth->p_rx_bd_qs_tbl); 962 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) { 963 pr_info("RX BD QS table[%d]:\n", i); 964 pr_info("Base address: 0x%08x\n", 965 (u32)&ugeth->p_rx_bd_qs_tbl[i]); 966 pr_info("bdbaseptr : addr - 0x%08x, val - 0x%08x\n", 967 (u32)&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr, 968 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdbaseptr)); 969 pr_info("bdptr : addr - 0x%08x, val - 0x%08x\n", 970 (u32)&ugeth->p_rx_bd_qs_tbl[i].bdptr, 971 in_be32(&ugeth->p_rx_bd_qs_tbl[i].bdptr)); 972 pr_info("externalbdbaseptr: addr - 0x%08x, val - 0x%08x\n", 973 (u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr, 974 in_be32(&ugeth->p_rx_bd_qs_tbl[i]. 975 externalbdbaseptr)); 976 pr_info("externalbdptr : addr - 0x%08x, val - 0x%08x\n", 977 (u32)&ugeth->p_rx_bd_qs_tbl[i].externalbdptr, 978 in_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdptr)); 979 pr_info("ucode RX Prefetched BDs:\n"); 980 pr_info("Base address: 0x%08x\n", 981 (u32)qe_muram_addr(in_be32 982 (&ugeth->p_rx_bd_qs_tbl[i]. 983 bdbaseptr))); 984 mem_disp((u8 *) 985 qe_muram_addr(in_be32 986 (&ugeth->p_rx_bd_qs_tbl[i]. 987 bdbaseptr)), 988 sizeof(struct ucc_geth_rx_prefetched_bds)); 989 } 990 } 991 if (ugeth->p_init_enet_param_shadow) { 992 int size; 993 pr_info("Init enet param shadow:\n"); 994 pr_info("Base address: 0x%08x\n", 995 (u32) ugeth->p_init_enet_param_shadow); 996 mem_disp((u8 *) ugeth->p_init_enet_param_shadow, 997 sizeof(*ugeth->p_init_enet_param_shadow)); 998 999 size = sizeof(struct ucc_geth_thread_rx_pram); 1000 if (ugeth->ug_info->rxExtendedFiltering) { 1001 size += 1002 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING; 1003 if (ugeth->ug_info->largestexternallookupkeysize == 1004 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_8_BYTES) 1005 size += 1006 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8; 1007 if (ugeth->ug_info->largestexternallookupkeysize == 1008 QE_FLTR_TABLE_LOOKUP_KEY_SIZE_16_BYTES) 1009 size += 1010 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16; 1011 } 1012 1013 dump_init_enet_entries(ugeth, 1014 &(ugeth->p_init_enet_param_shadow-> 1015 txthread[0]), 1016 ENET_INIT_PARAM_MAX_ENTRIES_TX, 1017 sizeof(struct ucc_geth_thread_tx_pram), 1018 ugeth->ug_info->riscTx, 0); 1019 dump_init_enet_entries(ugeth, 1020 &(ugeth->p_init_enet_param_shadow-> 1021 rxthread[0]), 1022 ENET_INIT_PARAM_MAX_ENTRIES_RX, size, 1023 ugeth->ug_info->riscRx, 1); 1024 } 1025 } 1026 #endif /* DEBUG */ 1027 1028 static void init_default_reg_vals(u32 __iomem *upsmr_register, 1029 u32 __iomem *maccfg1_register, 1030 u32 __iomem *maccfg2_register) 1031 { 1032 out_be32(upsmr_register, UCC_GETH_UPSMR_INIT); 1033 out_be32(maccfg1_register, UCC_GETH_MACCFG1_INIT); 1034 out_be32(maccfg2_register, UCC_GETH_MACCFG2_INIT); 1035 } 1036 1037 static int init_half_duplex_params(int alt_beb, 1038 int back_pressure_no_backoff, 1039 int no_backoff, 1040 int excess_defer, 1041 u8 alt_beb_truncation, 1042 u8 max_retransmissions, 1043 u8 collision_window, 1044 u32 __iomem *hafdup_register) 1045 { 1046 u32 value = 0; 1047 1048 if ((alt_beb_truncation > HALFDUP_ALT_BEB_TRUNCATION_MAX) || 1049 (max_retransmissions > HALFDUP_MAX_RETRANSMISSION_MAX) || 1050 (collision_window > HALFDUP_COLLISION_WINDOW_MAX)) 1051 return -EINVAL; 1052 1053 value = (u32) (alt_beb_truncation << HALFDUP_ALT_BEB_TRUNCATION_SHIFT); 1054 1055 if (alt_beb) 1056 value |= HALFDUP_ALT_BEB; 1057 if (back_pressure_no_backoff) 1058 value |= HALFDUP_BACK_PRESSURE_NO_BACKOFF; 1059 if (no_backoff) 1060 value |= HALFDUP_NO_BACKOFF; 1061 if (excess_defer) 1062 value |= HALFDUP_EXCESSIVE_DEFER; 1063 1064 value |= (max_retransmissions << HALFDUP_MAX_RETRANSMISSION_SHIFT); 1065 1066 value |= collision_window; 1067 1068 out_be32(hafdup_register, value); 1069 return 0; 1070 } 1071 1072 static int init_inter_frame_gap_params(u8 non_btb_cs_ipg, 1073 u8 non_btb_ipg, 1074 u8 min_ifg, 1075 u8 btb_ipg, 1076 u32 __iomem *ipgifg_register) 1077 { 1078 u32 value = 0; 1079 1080 /* Non-Back-to-back IPG part 1 should be <= Non-Back-to-back 1081 IPG part 2 */ 1082 if (non_btb_cs_ipg > non_btb_ipg) 1083 return -EINVAL; 1084 1085 if ((non_btb_cs_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART1_MAX) || 1086 (non_btb_ipg > IPGIFG_NON_BACK_TO_BACK_IFG_PART2_MAX) || 1087 /*(min_ifg > IPGIFG_MINIMUM_IFG_ENFORCEMENT_MAX) || */ 1088 (btb_ipg > IPGIFG_BACK_TO_BACK_IFG_MAX)) 1089 return -EINVAL; 1090 1091 value |= 1092 ((non_btb_cs_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART1_SHIFT) & 1093 IPGIFG_NBTB_CS_IPG_MASK); 1094 value |= 1095 ((non_btb_ipg << IPGIFG_NON_BACK_TO_BACK_IFG_PART2_SHIFT) & 1096 IPGIFG_NBTB_IPG_MASK); 1097 value |= 1098 ((min_ifg << IPGIFG_MINIMUM_IFG_ENFORCEMENT_SHIFT) & 1099 IPGIFG_MIN_IFG_MASK); 1100 value |= (btb_ipg & IPGIFG_BTB_IPG_MASK); 1101 1102 out_be32(ipgifg_register, value); 1103 return 0; 1104 } 1105 1106 int init_flow_control_params(u32 automatic_flow_control_mode, 1107 int rx_flow_control_enable, 1108 int tx_flow_control_enable, 1109 u16 pause_period, 1110 u16 extension_field, 1111 u32 __iomem *upsmr_register, 1112 u32 __iomem *uempr_register, 1113 u32 __iomem *maccfg1_register) 1114 { 1115 u32 value = 0; 1116 1117 /* Set UEMPR register */ 1118 value = (u32) pause_period << UEMPR_PAUSE_TIME_VALUE_SHIFT; 1119 value |= (u32) extension_field << UEMPR_EXTENDED_PAUSE_TIME_VALUE_SHIFT; 1120 out_be32(uempr_register, value); 1121 1122 /* Set UPSMR register */ 1123 setbits32(upsmr_register, automatic_flow_control_mode); 1124 1125 value = in_be32(maccfg1_register); 1126 if (rx_flow_control_enable) 1127 value |= MACCFG1_FLOW_RX; 1128 if (tx_flow_control_enable) 1129 value |= MACCFG1_FLOW_TX; 1130 out_be32(maccfg1_register, value); 1131 1132 return 0; 1133 } 1134 1135 static int init_hw_statistics_gathering_mode(int enable_hardware_statistics, 1136 int auto_zero_hardware_statistics, 1137 u32 __iomem *upsmr_register, 1138 u16 __iomem *uescr_register) 1139 { 1140 u16 uescr_value = 0; 1141 1142 /* Enable hardware statistics gathering if requested */ 1143 if (enable_hardware_statistics) 1144 setbits32(upsmr_register, UCC_GETH_UPSMR_HSE); 1145 1146 /* Clear hardware statistics counters */ 1147 uescr_value = in_be16(uescr_register); 1148 uescr_value |= UESCR_CLRCNT; 1149 /* Automatically zero hardware statistics counters on read, 1150 if requested */ 1151 if (auto_zero_hardware_statistics) 1152 uescr_value |= UESCR_AUTOZ; 1153 out_be16(uescr_register, uescr_value); 1154 1155 return 0; 1156 } 1157 1158 static int init_firmware_statistics_gathering_mode(int 1159 enable_tx_firmware_statistics, 1160 int enable_rx_firmware_statistics, 1161 u32 __iomem *tx_rmon_base_ptr, 1162 u32 tx_firmware_statistics_structure_address, 1163 u32 __iomem *rx_rmon_base_ptr, 1164 u32 rx_firmware_statistics_structure_address, 1165 u16 __iomem *temoder_register, 1166 u32 __iomem *remoder_register) 1167 { 1168 /* Note: this function does not check if */ 1169 /* the parameters it receives are NULL */ 1170 1171 if (enable_tx_firmware_statistics) { 1172 out_be32(tx_rmon_base_ptr, 1173 tx_firmware_statistics_structure_address); 1174 setbits16(temoder_register, TEMODER_TX_RMON_STATISTICS_ENABLE); 1175 } 1176 1177 if (enable_rx_firmware_statistics) { 1178 out_be32(rx_rmon_base_ptr, 1179 rx_firmware_statistics_structure_address); 1180 setbits32(remoder_register, REMODER_RX_RMON_STATISTICS_ENABLE); 1181 } 1182 1183 return 0; 1184 } 1185 1186 static int init_mac_station_addr_regs(u8 address_byte_0, 1187 u8 address_byte_1, 1188 u8 address_byte_2, 1189 u8 address_byte_3, 1190 u8 address_byte_4, 1191 u8 address_byte_5, 1192 u32 __iomem *macstnaddr1_register, 1193 u32 __iomem *macstnaddr2_register) 1194 { 1195 u32 value = 0; 1196 1197 /* Example: for a station address of 0x12345678ABCD, */ 1198 /* 0x12 is byte 0, 0x34 is byte 1 and so on and 0xCD is byte 5 */ 1199 1200 /* MACSTNADDR1 Register: */ 1201 1202 /* 0 7 8 15 */ 1203 /* station address byte 5 station address byte 4 */ 1204 /* 16 23 24 31 */ 1205 /* station address byte 3 station address byte 2 */ 1206 value |= (u32) ((address_byte_2 << 0) & 0x000000FF); 1207 value |= (u32) ((address_byte_3 << 8) & 0x0000FF00); 1208 value |= (u32) ((address_byte_4 << 16) & 0x00FF0000); 1209 value |= (u32) ((address_byte_5 << 24) & 0xFF000000); 1210 1211 out_be32(macstnaddr1_register, value); 1212 1213 /* MACSTNADDR2 Register: */ 1214 1215 /* 0 7 8 15 */ 1216 /* station address byte 1 station address byte 0 */ 1217 /* 16 23 24 31 */ 1218 /* reserved reserved */ 1219 value = 0; 1220 value |= (u32) ((address_byte_0 << 16) & 0x00FF0000); 1221 value |= (u32) ((address_byte_1 << 24) & 0xFF000000); 1222 1223 out_be32(macstnaddr2_register, value); 1224 1225 return 0; 1226 } 1227 1228 static int init_check_frame_length_mode(int length_check, 1229 u32 __iomem *maccfg2_register) 1230 { 1231 u32 value = 0; 1232 1233 value = in_be32(maccfg2_register); 1234 1235 if (length_check) 1236 value |= MACCFG2_LC; 1237 else 1238 value &= ~MACCFG2_LC; 1239 1240 out_be32(maccfg2_register, value); 1241 return 0; 1242 } 1243 1244 static int init_preamble_length(u8 preamble_length, 1245 u32 __iomem *maccfg2_register) 1246 { 1247 if ((preamble_length < 3) || (preamble_length > 7)) 1248 return -EINVAL; 1249 1250 clrsetbits_be32(maccfg2_register, MACCFG2_PREL_MASK, 1251 preamble_length << MACCFG2_PREL_SHIFT); 1252 1253 return 0; 1254 } 1255 1256 static int init_rx_parameters(int reject_broadcast, 1257 int receive_short_frames, 1258 int promiscuous, u32 __iomem *upsmr_register) 1259 { 1260 u32 value = 0; 1261 1262 value = in_be32(upsmr_register); 1263 1264 if (reject_broadcast) 1265 value |= UCC_GETH_UPSMR_BRO; 1266 else 1267 value &= ~UCC_GETH_UPSMR_BRO; 1268 1269 if (receive_short_frames) 1270 value |= UCC_GETH_UPSMR_RSH; 1271 else 1272 value &= ~UCC_GETH_UPSMR_RSH; 1273 1274 if (promiscuous) 1275 value |= UCC_GETH_UPSMR_PRO; 1276 else 1277 value &= ~UCC_GETH_UPSMR_PRO; 1278 1279 out_be32(upsmr_register, value); 1280 1281 return 0; 1282 } 1283 1284 static int init_max_rx_buff_len(u16 max_rx_buf_len, 1285 u16 __iomem *mrblr_register) 1286 { 1287 /* max_rx_buf_len value must be a multiple of 128 */ 1288 if ((max_rx_buf_len == 0) || 1289 (max_rx_buf_len % UCC_GETH_MRBLR_ALIGNMENT)) 1290 return -EINVAL; 1291 1292 out_be16(mrblr_register, max_rx_buf_len); 1293 return 0; 1294 } 1295 1296 static int init_min_frame_len(u16 min_frame_length, 1297 u16 __iomem *minflr_register, 1298 u16 __iomem *mrblr_register) 1299 { 1300 u16 mrblr_value = 0; 1301 1302 mrblr_value = in_be16(mrblr_register); 1303 if (min_frame_length >= (mrblr_value - 4)) 1304 return -EINVAL; 1305 1306 out_be16(minflr_register, min_frame_length); 1307 return 0; 1308 } 1309 1310 static int adjust_enet_interface(struct ucc_geth_private *ugeth) 1311 { 1312 struct ucc_geth_info *ug_info; 1313 struct ucc_geth __iomem *ug_regs; 1314 struct ucc_fast __iomem *uf_regs; 1315 int ret_val; 1316 u32 upsmr, maccfg2; 1317 u16 value; 1318 1319 ugeth_vdbg("%s: IN", __func__); 1320 1321 ug_info = ugeth->ug_info; 1322 ug_regs = ugeth->ug_regs; 1323 uf_regs = ugeth->uccf->uf_regs; 1324 1325 /* Set MACCFG2 */ 1326 maccfg2 = in_be32(&ug_regs->maccfg2); 1327 maccfg2 &= ~MACCFG2_INTERFACE_MODE_MASK; 1328 if ((ugeth->max_speed == SPEED_10) || 1329 (ugeth->max_speed == SPEED_100)) 1330 maccfg2 |= MACCFG2_INTERFACE_MODE_NIBBLE; 1331 else if (ugeth->max_speed == SPEED_1000) 1332 maccfg2 |= MACCFG2_INTERFACE_MODE_BYTE; 1333 maccfg2 |= ug_info->padAndCrc; 1334 out_be32(&ug_regs->maccfg2, maccfg2); 1335 1336 /* Set UPSMR */ 1337 upsmr = in_be32(&uf_regs->upsmr); 1338 upsmr &= ~(UCC_GETH_UPSMR_RPM | UCC_GETH_UPSMR_R10M | 1339 UCC_GETH_UPSMR_TBIM | UCC_GETH_UPSMR_RMM); 1340 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) || 1341 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) || 1342 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) || 1343 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1344 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) || 1345 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) { 1346 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RMII) 1347 upsmr |= UCC_GETH_UPSMR_RPM; 1348 switch (ugeth->max_speed) { 1349 case SPEED_10: 1350 upsmr |= UCC_GETH_UPSMR_R10M; 1351 /* FALLTHROUGH */ 1352 case SPEED_100: 1353 if (ugeth->phy_interface != PHY_INTERFACE_MODE_RTBI) 1354 upsmr |= UCC_GETH_UPSMR_RMM; 1355 } 1356 } 1357 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) || 1358 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) { 1359 upsmr |= UCC_GETH_UPSMR_TBIM; 1360 } 1361 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_SGMII)) 1362 upsmr |= UCC_GETH_UPSMR_SGMM; 1363 1364 out_be32(&uf_regs->upsmr, upsmr); 1365 1366 /* Disable autonegotiation in tbi mode, because by default it 1367 comes up in autonegotiation mode. */ 1368 /* Note that this depends on proper setting in utbipar register. */ 1369 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_TBI) || 1370 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) { 1371 struct ucc_geth_info *ug_info = ugeth->ug_info; 1372 struct phy_device *tbiphy; 1373 1374 if (!ug_info->tbi_node) 1375 pr_warn("TBI mode requires that the device tree specify a tbi-handle\n"); 1376 1377 tbiphy = of_phy_find_device(ug_info->tbi_node); 1378 if (!tbiphy) 1379 pr_warn("Could not get TBI device\n"); 1380 1381 value = phy_read(tbiphy, ENET_TBI_MII_CR); 1382 value &= ~0x1000; /* Turn off autonegotiation */ 1383 phy_write(tbiphy, ENET_TBI_MII_CR, value); 1384 1385 put_device(&tbiphy->mdio.dev); 1386 } 1387 1388 init_check_frame_length_mode(ug_info->lengthCheckRx, &ug_regs->maccfg2); 1389 1390 ret_val = init_preamble_length(ug_info->prel, &ug_regs->maccfg2); 1391 if (ret_val != 0) { 1392 if (netif_msg_probe(ugeth)) 1393 pr_err("Preamble length must be between 3 and 7 inclusive\n"); 1394 return ret_val; 1395 } 1396 1397 return 0; 1398 } 1399 1400 static int ugeth_graceful_stop_tx(struct ucc_geth_private *ugeth) 1401 { 1402 struct ucc_fast_private *uccf; 1403 u32 cecr_subblock; 1404 u32 temp; 1405 int i = 10; 1406 1407 uccf = ugeth->uccf; 1408 1409 /* Mask GRACEFUL STOP TX interrupt bit and clear it */ 1410 clrbits32(uccf->p_uccm, UCC_GETH_UCCE_GRA); 1411 out_be32(uccf->p_ucce, UCC_GETH_UCCE_GRA); /* clear by writing 1 */ 1412 1413 /* Issue host command */ 1414 cecr_subblock = 1415 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 1416 qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock, 1417 QE_CR_PROTOCOL_ETHERNET, 0); 1418 1419 /* Wait for command to complete */ 1420 do { 1421 msleep(10); 1422 temp = in_be32(uccf->p_ucce); 1423 } while (!(temp & UCC_GETH_UCCE_GRA) && --i); 1424 1425 uccf->stopped_tx = 1; 1426 1427 return 0; 1428 } 1429 1430 static int ugeth_graceful_stop_rx(struct ucc_geth_private *ugeth) 1431 { 1432 struct ucc_fast_private *uccf; 1433 u32 cecr_subblock; 1434 u8 temp; 1435 int i = 10; 1436 1437 uccf = ugeth->uccf; 1438 1439 /* Clear acknowledge bit */ 1440 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack); 1441 temp &= ~GRACEFUL_STOP_ACKNOWLEDGE_RX; 1442 out_8(&ugeth->p_rx_glbl_pram->rxgstpack, temp); 1443 1444 /* Keep issuing command and checking acknowledge bit until 1445 it is asserted, according to spec */ 1446 do { 1447 /* Issue host command */ 1448 cecr_subblock = 1449 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info. 1450 ucc_num); 1451 qe_issue_cmd(QE_GRACEFUL_STOP_RX, cecr_subblock, 1452 QE_CR_PROTOCOL_ETHERNET, 0); 1453 msleep(10); 1454 temp = in_8(&ugeth->p_rx_glbl_pram->rxgstpack); 1455 } while (!(temp & GRACEFUL_STOP_ACKNOWLEDGE_RX) && --i); 1456 1457 uccf->stopped_rx = 1; 1458 1459 return 0; 1460 } 1461 1462 static int ugeth_restart_tx(struct ucc_geth_private *ugeth) 1463 { 1464 struct ucc_fast_private *uccf; 1465 u32 cecr_subblock; 1466 1467 uccf = ugeth->uccf; 1468 1469 cecr_subblock = 1470 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 1471 qe_issue_cmd(QE_RESTART_TX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 0); 1472 uccf->stopped_tx = 0; 1473 1474 return 0; 1475 } 1476 1477 static int ugeth_restart_rx(struct ucc_geth_private *ugeth) 1478 { 1479 struct ucc_fast_private *uccf; 1480 u32 cecr_subblock; 1481 1482 uccf = ugeth->uccf; 1483 1484 cecr_subblock = 1485 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 1486 qe_issue_cmd(QE_RESTART_RX, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 1487 0); 1488 uccf->stopped_rx = 0; 1489 1490 return 0; 1491 } 1492 1493 static int ugeth_enable(struct ucc_geth_private *ugeth, enum comm_dir mode) 1494 { 1495 struct ucc_fast_private *uccf; 1496 int enabled_tx, enabled_rx; 1497 1498 uccf = ugeth->uccf; 1499 1500 /* check if the UCC number is in range. */ 1501 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) { 1502 if (netif_msg_probe(ugeth)) 1503 pr_err("ucc_num out of range\n"); 1504 return -EINVAL; 1505 } 1506 1507 enabled_tx = uccf->enabled_tx; 1508 enabled_rx = uccf->enabled_rx; 1509 1510 /* Get Tx and Rx going again, in case this channel was actively 1511 disabled. */ 1512 if ((mode & COMM_DIR_TX) && (!enabled_tx) && uccf->stopped_tx) 1513 ugeth_restart_tx(ugeth); 1514 if ((mode & COMM_DIR_RX) && (!enabled_rx) && uccf->stopped_rx) 1515 ugeth_restart_rx(ugeth); 1516 1517 ucc_fast_enable(uccf, mode); /* OK to do even if not disabled */ 1518 1519 return 0; 1520 1521 } 1522 1523 static int ugeth_disable(struct ucc_geth_private *ugeth, enum comm_dir mode) 1524 { 1525 struct ucc_fast_private *uccf; 1526 1527 uccf = ugeth->uccf; 1528 1529 /* check if the UCC number is in range. */ 1530 if (ugeth->ug_info->uf_info.ucc_num >= UCC_MAX_NUM) { 1531 if (netif_msg_probe(ugeth)) 1532 pr_err("ucc_num out of range\n"); 1533 return -EINVAL; 1534 } 1535 1536 /* Stop any transmissions */ 1537 if ((mode & COMM_DIR_TX) && uccf->enabled_tx && !uccf->stopped_tx) 1538 ugeth_graceful_stop_tx(ugeth); 1539 1540 /* Stop any receptions */ 1541 if ((mode & COMM_DIR_RX) && uccf->enabled_rx && !uccf->stopped_rx) 1542 ugeth_graceful_stop_rx(ugeth); 1543 1544 ucc_fast_disable(ugeth->uccf, mode); /* OK to do even if not enabled */ 1545 1546 return 0; 1547 } 1548 1549 static void ugeth_quiesce(struct ucc_geth_private *ugeth) 1550 { 1551 /* Prevent any further xmits, plus detach the device. */ 1552 netif_device_detach(ugeth->ndev); 1553 1554 /* Wait for any current xmits to finish. */ 1555 netif_tx_disable(ugeth->ndev); 1556 1557 /* Disable the interrupt to avoid NAPI rescheduling. */ 1558 disable_irq(ugeth->ug_info->uf_info.irq); 1559 1560 /* Stop NAPI, and possibly wait for its completion. */ 1561 napi_disable(&ugeth->napi); 1562 } 1563 1564 static void ugeth_activate(struct ucc_geth_private *ugeth) 1565 { 1566 napi_enable(&ugeth->napi); 1567 enable_irq(ugeth->ug_info->uf_info.irq); 1568 netif_device_attach(ugeth->ndev); 1569 } 1570 1571 /* Called every time the controller might need to be made 1572 * aware of new link state. The PHY code conveys this 1573 * information through variables in the ugeth structure, and this 1574 * function converts those variables into the appropriate 1575 * register values, and can bring down the device if needed. 1576 */ 1577 1578 static void adjust_link(struct net_device *dev) 1579 { 1580 struct ucc_geth_private *ugeth = netdev_priv(dev); 1581 struct ucc_geth __iomem *ug_regs; 1582 struct ucc_fast __iomem *uf_regs; 1583 struct phy_device *phydev = ugeth->phydev; 1584 int new_state = 0; 1585 1586 ug_regs = ugeth->ug_regs; 1587 uf_regs = ugeth->uccf->uf_regs; 1588 1589 if (phydev->link) { 1590 u32 tempval = in_be32(&ug_regs->maccfg2); 1591 u32 upsmr = in_be32(&uf_regs->upsmr); 1592 /* Now we make sure that we can be in full duplex mode. 1593 * If not, we operate in half-duplex mode. */ 1594 if (phydev->duplex != ugeth->oldduplex) { 1595 new_state = 1; 1596 if (!(phydev->duplex)) 1597 tempval &= ~(MACCFG2_FDX); 1598 else 1599 tempval |= MACCFG2_FDX; 1600 ugeth->oldduplex = phydev->duplex; 1601 } 1602 1603 if (phydev->speed != ugeth->oldspeed) { 1604 new_state = 1; 1605 switch (phydev->speed) { 1606 case SPEED_1000: 1607 tempval = ((tempval & 1608 ~(MACCFG2_INTERFACE_MODE_MASK)) | 1609 MACCFG2_INTERFACE_MODE_BYTE); 1610 break; 1611 case SPEED_100: 1612 case SPEED_10: 1613 tempval = ((tempval & 1614 ~(MACCFG2_INTERFACE_MODE_MASK)) | 1615 MACCFG2_INTERFACE_MODE_NIBBLE); 1616 /* if reduced mode, re-set UPSMR.R10M */ 1617 if ((ugeth->phy_interface == PHY_INTERFACE_MODE_RMII) || 1618 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII) || 1619 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_ID) || 1620 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID) || 1621 (ugeth->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID) || 1622 (ugeth->phy_interface == PHY_INTERFACE_MODE_RTBI)) { 1623 if (phydev->speed == SPEED_10) 1624 upsmr |= UCC_GETH_UPSMR_R10M; 1625 else 1626 upsmr &= ~UCC_GETH_UPSMR_R10M; 1627 } 1628 break; 1629 default: 1630 if (netif_msg_link(ugeth)) 1631 pr_warn( 1632 "%s: Ack! Speed (%d) is not 10/100/1000!", 1633 dev->name, phydev->speed); 1634 break; 1635 } 1636 ugeth->oldspeed = phydev->speed; 1637 } 1638 1639 if (!ugeth->oldlink) { 1640 new_state = 1; 1641 ugeth->oldlink = 1; 1642 } 1643 1644 if (new_state) { 1645 /* 1646 * To change the MAC configuration we need to disable 1647 * the controller. To do so, we have to either grab 1648 * ugeth->lock, which is a bad idea since 'graceful 1649 * stop' commands might take quite a while, or we can 1650 * quiesce driver's activity. 1651 */ 1652 ugeth_quiesce(ugeth); 1653 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX); 1654 1655 out_be32(&ug_regs->maccfg2, tempval); 1656 out_be32(&uf_regs->upsmr, upsmr); 1657 1658 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX); 1659 ugeth_activate(ugeth); 1660 } 1661 } else if (ugeth->oldlink) { 1662 new_state = 1; 1663 ugeth->oldlink = 0; 1664 ugeth->oldspeed = 0; 1665 ugeth->oldduplex = -1; 1666 } 1667 1668 if (new_state && netif_msg_link(ugeth)) 1669 phy_print_status(phydev); 1670 } 1671 1672 /* Initialize TBI PHY interface for communicating with the 1673 * SERDES lynx PHY on the chip. We communicate with this PHY 1674 * through the MDIO bus on each controller, treating it as a 1675 * "normal" PHY at the address found in the UTBIPA register. We assume 1676 * that the UTBIPA register is valid. Either the MDIO bus code will set 1677 * it to a value that doesn't conflict with other PHYs on the bus, or the 1678 * value doesn't matter, as there are no other PHYs on the bus. 1679 */ 1680 static void uec_configure_serdes(struct net_device *dev) 1681 { 1682 struct ucc_geth_private *ugeth = netdev_priv(dev); 1683 struct ucc_geth_info *ug_info = ugeth->ug_info; 1684 struct phy_device *tbiphy; 1685 1686 if (!ug_info->tbi_node) { 1687 dev_warn(&dev->dev, "SGMII mode requires that the device " 1688 "tree specify a tbi-handle\n"); 1689 return; 1690 } 1691 1692 tbiphy = of_phy_find_device(ug_info->tbi_node); 1693 if (!tbiphy) { 1694 dev_err(&dev->dev, "error: Could not get TBI device\n"); 1695 return; 1696 } 1697 1698 /* 1699 * If the link is already up, we must already be ok, and don't need to 1700 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured 1701 * everything for us? Resetting it takes the link down and requires 1702 * several seconds for it to come back. 1703 */ 1704 if (phy_read(tbiphy, ENET_TBI_MII_SR) & TBISR_LSTATUS) { 1705 put_device(&tbiphy->mdio.dev); 1706 return; 1707 } 1708 1709 /* Single clk mode, mii mode off(for serdes communication) */ 1710 phy_write(tbiphy, ENET_TBI_MII_ANA, TBIANA_SETTINGS); 1711 1712 phy_write(tbiphy, ENET_TBI_MII_TBICON, TBICON_CLK_SELECT); 1713 1714 phy_write(tbiphy, ENET_TBI_MII_CR, TBICR_SETTINGS); 1715 1716 put_device(&tbiphy->mdio.dev); 1717 } 1718 1719 /* Configure the PHY for dev. 1720 * returns 0 if success. -1 if failure 1721 */ 1722 static int init_phy(struct net_device *dev) 1723 { 1724 struct ucc_geth_private *priv = netdev_priv(dev); 1725 struct ucc_geth_info *ug_info = priv->ug_info; 1726 struct phy_device *phydev; 1727 1728 priv->oldlink = 0; 1729 priv->oldspeed = 0; 1730 priv->oldduplex = -1; 1731 1732 phydev = of_phy_connect(dev, ug_info->phy_node, &adjust_link, 0, 1733 priv->phy_interface); 1734 if (!phydev) { 1735 dev_err(&dev->dev, "Could not attach to PHY\n"); 1736 return -ENODEV; 1737 } 1738 1739 if (priv->phy_interface == PHY_INTERFACE_MODE_SGMII) 1740 uec_configure_serdes(dev); 1741 1742 phy_set_max_speed(phydev, priv->max_speed); 1743 1744 priv->phydev = phydev; 1745 1746 return 0; 1747 } 1748 1749 static void ugeth_dump_regs(struct ucc_geth_private *ugeth) 1750 { 1751 #ifdef DEBUG 1752 ucc_fast_dump_regs(ugeth->uccf); 1753 dump_regs(ugeth); 1754 dump_bds(ugeth); 1755 #endif 1756 } 1757 1758 static int ugeth_82xx_filtering_clear_all_addr_in_hash(struct ucc_geth_private * 1759 ugeth, 1760 enum enet_addr_type 1761 enet_addr_type) 1762 { 1763 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 1764 struct ucc_fast_private *uccf; 1765 enum comm_dir comm_dir; 1766 struct list_head *p_lh; 1767 u16 i, num; 1768 u32 __iomem *addr_h; 1769 u32 __iomem *addr_l; 1770 u8 *p_counter; 1771 1772 uccf = ugeth->uccf; 1773 1774 p_82xx_addr_filt = 1775 (struct ucc_geth_82xx_address_filtering_pram __iomem *) 1776 ugeth->p_rx_glbl_pram->addressfiltering; 1777 1778 if (enet_addr_type == ENET_ADDR_TYPE_GROUP) { 1779 addr_h = &(p_82xx_addr_filt->gaddr_h); 1780 addr_l = &(p_82xx_addr_filt->gaddr_l); 1781 p_lh = &ugeth->group_hash_q; 1782 p_counter = &(ugeth->numGroupAddrInHash); 1783 } else if (enet_addr_type == ENET_ADDR_TYPE_INDIVIDUAL) { 1784 addr_h = &(p_82xx_addr_filt->iaddr_h); 1785 addr_l = &(p_82xx_addr_filt->iaddr_l); 1786 p_lh = &ugeth->ind_hash_q; 1787 p_counter = &(ugeth->numIndAddrInHash); 1788 } else 1789 return -EINVAL; 1790 1791 comm_dir = 0; 1792 if (uccf->enabled_tx) 1793 comm_dir |= COMM_DIR_TX; 1794 if (uccf->enabled_rx) 1795 comm_dir |= COMM_DIR_RX; 1796 if (comm_dir) 1797 ugeth_disable(ugeth, comm_dir); 1798 1799 /* Clear the hash table. */ 1800 out_be32(addr_h, 0x00000000); 1801 out_be32(addr_l, 0x00000000); 1802 1803 if (!p_lh) 1804 return 0; 1805 1806 num = *p_counter; 1807 1808 /* Delete all remaining CQ elements */ 1809 for (i = 0; i < num; i++) 1810 put_enet_addr_container(ENET_ADDR_CONT_ENTRY(dequeue(p_lh))); 1811 1812 *p_counter = 0; 1813 1814 if (comm_dir) 1815 ugeth_enable(ugeth, comm_dir); 1816 1817 return 0; 1818 } 1819 1820 static int ugeth_82xx_filtering_clear_addr_in_paddr(struct ucc_geth_private *ugeth, 1821 u8 paddr_num) 1822 { 1823 ugeth->indAddrRegUsed[paddr_num] = 0; /* mark this paddr as not used */ 1824 return hw_clear_addr_in_paddr(ugeth, paddr_num);/* clear in hardware */ 1825 } 1826 1827 static void ucc_geth_free_rx(struct ucc_geth_private *ugeth) 1828 { 1829 struct ucc_geth_info *ug_info; 1830 struct ucc_fast_info *uf_info; 1831 u16 i, j; 1832 u8 __iomem *bd; 1833 1834 1835 ug_info = ugeth->ug_info; 1836 uf_info = &ug_info->uf_info; 1837 1838 for (i = 0; i < ugeth->ug_info->numQueuesRx; i++) { 1839 if (ugeth->p_rx_bd_ring[i]) { 1840 /* Return existing data buffers in ring */ 1841 bd = ugeth->p_rx_bd_ring[i]; 1842 for (j = 0; j < ugeth->ug_info->bdRingLenRx[i]; j++) { 1843 if (ugeth->rx_skbuff[i][j]) { 1844 dma_unmap_single(ugeth->dev, 1845 in_be32(&((struct qe_bd __iomem *)bd)->buf), 1846 ugeth->ug_info-> 1847 uf_info.max_rx_buf_length + 1848 UCC_GETH_RX_DATA_BUF_ALIGNMENT, 1849 DMA_FROM_DEVICE); 1850 dev_kfree_skb_any( 1851 ugeth->rx_skbuff[i][j]); 1852 ugeth->rx_skbuff[i][j] = NULL; 1853 } 1854 bd += sizeof(struct qe_bd); 1855 } 1856 1857 kfree(ugeth->rx_skbuff[i]); 1858 1859 if (ugeth->ug_info->uf_info.bd_mem_part == 1860 MEM_PART_SYSTEM) 1861 kfree((void *)ugeth->rx_bd_ring_offset[i]); 1862 else if (ugeth->ug_info->uf_info.bd_mem_part == 1863 MEM_PART_MURAM) 1864 qe_muram_free(ugeth->rx_bd_ring_offset[i]); 1865 ugeth->p_rx_bd_ring[i] = NULL; 1866 } 1867 } 1868 1869 } 1870 1871 static void ucc_geth_free_tx(struct ucc_geth_private *ugeth) 1872 { 1873 struct ucc_geth_info *ug_info; 1874 struct ucc_fast_info *uf_info; 1875 u16 i, j; 1876 u8 __iomem *bd; 1877 1878 netdev_reset_queue(ugeth->ndev); 1879 1880 ug_info = ugeth->ug_info; 1881 uf_info = &ug_info->uf_info; 1882 1883 for (i = 0; i < ugeth->ug_info->numQueuesTx; i++) { 1884 bd = ugeth->p_tx_bd_ring[i]; 1885 if (!bd) 1886 continue; 1887 for (j = 0; j < ugeth->ug_info->bdRingLenTx[i]; j++) { 1888 if (ugeth->tx_skbuff[i][j]) { 1889 dma_unmap_single(ugeth->dev, 1890 in_be32(&((struct qe_bd __iomem *)bd)->buf), 1891 (in_be32((u32 __iomem *)bd) & 1892 BD_LENGTH_MASK), 1893 DMA_TO_DEVICE); 1894 dev_kfree_skb_any(ugeth->tx_skbuff[i][j]); 1895 ugeth->tx_skbuff[i][j] = NULL; 1896 } 1897 } 1898 1899 kfree(ugeth->tx_skbuff[i]); 1900 1901 if (ugeth->p_tx_bd_ring[i]) { 1902 if (ugeth->ug_info->uf_info.bd_mem_part == 1903 MEM_PART_SYSTEM) 1904 kfree((void *)ugeth->tx_bd_ring_offset[i]); 1905 else if (ugeth->ug_info->uf_info.bd_mem_part == 1906 MEM_PART_MURAM) 1907 qe_muram_free(ugeth->tx_bd_ring_offset[i]); 1908 ugeth->p_tx_bd_ring[i] = NULL; 1909 } 1910 } 1911 1912 } 1913 1914 static void ucc_geth_memclean(struct ucc_geth_private *ugeth) 1915 { 1916 if (!ugeth) 1917 return; 1918 1919 if (ugeth->uccf) { 1920 ucc_fast_free(ugeth->uccf); 1921 ugeth->uccf = NULL; 1922 } 1923 1924 if (ugeth->p_thread_data_tx) { 1925 qe_muram_free(ugeth->thread_dat_tx_offset); 1926 ugeth->p_thread_data_tx = NULL; 1927 } 1928 if (ugeth->p_thread_data_rx) { 1929 qe_muram_free(ugeth->thread_dat_rx_offset); 1930 ugeth->p_thread_data_rx = NULL; 1931 } 1932 if (ugeth->p_exf_glbl_param) { 1933 qe_muram_free(ugeth->exf_glbl_param_offset); 1934 ugeth->p_exf_glbl_param = NULL; 1935 } 1936 if (ugeth->p_rx_glbl_pram) { 1937 qe_muram_free(ugeth->rx_glbl_pram_offset); 1938 ugeth->p_rx_glbl_pram = NULL; 1939 } 1940 if (ugeth->p_tx_glbl_pram) { 1941 qe_muram_free(ugeth->tx_glbl_pram_offset); 1942 ugeth->p_tx_glbl_pram = NULL; 1943 } 1944 if (ugeth->p_send_q_mem_reg) { 1945 qe_muram_free(ugeth->send_q_mem_reg_offset); 1946 ugeth->p_send_q_mem_reg = NULL; 1947 } 1948 if (ugeth->p_scheduler) { 1949 qe_muram_free(ugeth->scheduler_offset); 1950 ugeth->p_scheduler = NULL; 1951 } 1952 if (ugeth->p_tx_fw_statistics_pram) { 1953 qe_muram_free(ugeth->tx_fw_statistics_pram_offset); 1954 ugeth->p_tx_fw_statistics_pram = NULL; 1955 } 1956 if (ugeth->p_rx_fw_statistics_pram) { 1957 qe_muram_free(ugeth->rx_fw_statistics_pram_offset); 1958 ugeth->p_rx_fw_statistics_pram = NULL; 1959 } 1960 if (ugeth->p_rx_irq_coalescing_tbl) { 1961 qe_muram_free(ugeth->rx_irq_coalescing_tbl_offset); 1962 ugeth->p_rx_irq_coalescing_tbl = NULL; 1963 } 1964 if (ugeth->p_rx_bd_qs_tbl) { 1965 qe_muram_free(ugeth->rx_bd_qs_tbl_offset); 1966 ugeth->p_rx_bd_qs_tbl = NULL; 1967 } 1968 if (ugeth->p_init_enet_param_shadow) { 1969 return_init_enet_entries(ugeth, 1970 &(ugeth->p_init_enet_param_shadow-> 1971 rxthread[0]), 1972 ENET_INIT_PARAM_MAX_ENTRIES_RX, 1973 ugeth->ug_info->riscRx, 1); 1974 return_init_enet_entries(ugeth, 1975 &(ugeth->p_init_enet_param_shadow-> 1976 txthread[0]), 1977 ENET_INIT_PARAM_MAX_ENTRIES_TX, 1978 ugeth->ug_info->riscTx, 0); 1979 kfree(ugeth->p_init_enet_param_shadow); 1980 ugeth->p_init_enet_param_shadow = NULL; 1981 } 1982 ucc_geth_free_tx(ugeth); 1983 ucc_geth_free_rx(ugeth); 1984 while (!list_empty(&ugeth->group_hash_q)) 1985 put_enet_addr_container(ENET_ADDR_CONT_ENTRY 1986 (dequeue(&ugeth->group_hash_q))); 1987 while (!list_empty(&ugeth->ind_hash_q)) 1988 put_enet_addr_container(ENET_ADDR_CONT_ENTRY 1989 (dequeue(&ugeth->ind_hash_q))); 1990 if (ugeth->ug_regs) { 1991 iounmap(ugeth->ug_regs); 1992 ugeth->ug_regs = NULL; 1993 } 1994 } 1995 1996 static void ucc_geth_set_multi(struct net_device *dev) 1997 { 1998 struct ucc_geth_private *ugeth; 1999 struct netdev_hw_addr *ha; 2000 struct ucc_fast __iomem *uf_regs; 2001 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 2002 2003 ugeth = netdev_priv(dev); 2004 2005 uf_regs = ugeth->uccf->uf_regs; 2006 2007 if (dev->flags & IFF_PROMISC) { 2008 setbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO); 2009 } else { 2010 clrbits32(&uf_regs->upsmr, UCC_GETH_UPSMR_PRO); 2011 2012 p_82xx_addr_filt = 2013 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth-> 2014 p_rx_glbl_pram->addressfiltering; 2015 2016 if (dev->flags & IFF_ALLMULTI) { 2017 /* Catch all multicast addresses, so set the 2018 * filter to all 1's. 2019 */ 2020 out_be32(&p_82xx_addr_filt->gaddr_h, 0xffffffff); 2021 out_be32(&p_82xx_addr_filt->gaddr_l, 0xffffffff); 2022 } else { 2023 /* Clear filter and add the addresses in the list. 2024 */ 2025 out_be32(&p_82xx_addr_filt->gaddr_h, 0x0); 2026 out_be32(&p_82xx_addr_filt->gaddr_l, 0x0); 2027 2028 netdev_for_each_mc_addr(ha, dev) { 2029 /* Ask CPM to run CRC and set bit in 2030 * filter mask. 2031 */ 2032 hw_add_addr_in_hash(ugeth, ha->addr); 2033 } 2034 } 2035 } 2036 } 2037 2038 static void ucc_geth_stop(struct ucc_geth_private *ugeth) 2039 { 2040 struct ucc_geth __iomem *ug_regs = ugeth->ug_regs; 2041 struct phy_device *phydev = ugeth->phydev; 2042 2043 ugeth_vdbg("%s: IN", __func__); 2044 2045 /* 2046 * Tell the kernel the link is down. 2047 * Must be done before disabling the controller 2048 * or deadlock may happen. 2049 */ 2050 phy_stop(phydev); 2051 2052 /* Disable the controller */ 2053 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX); 2054 2055 /* Mask all interrupts */ 2056 out_be32(ugeth->uccf->p_uccm, 0x00000000); 2057 2058 /* Clear all interrupts */ 2059 out_be32(ugeth->uccf->p_ucce, 0xffffffff); 2060 2061 /* Disable Rx and Tx */ 2062 clrbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX); 2063 2064 ucc_geth_memclean(ugeth); 2065 } 2066 2067 static int ucc_struct_init(struct ucc_geth_private *ugeth) 2068 { 2069 struct ucc_geth_info *ug_info; 2070 struct ucc_fast_info *uf_info; 2071 int i; 2072 2073 ug_info = ugeth->ug_info; 2074 uf_info = &ug_info->uf_info; 2075 2076 if (!((uf_info->bd_mem_part == MEM_PART_SYSTEM) || 2077 (uf_info->bd_mem_part == MEM_PART_MURAM))) { 2078 if (netif_msg_probe(ugeth)) 2079 pr_err("Bad memory partition value\n"); 2080 return -EINVAL; 2081 } 2082 2083 /* Rx BD lengths */ 2084 for (i = 0; i < ug_info->numQueuesRx; i++) { 2085 if ((ug_info->bdRingLenRx[i] < UCC_GETH_RX_BD_RING_SIZE_MIN) || 2086 (ug_info->bdRingLenRx[i] % 2087 UCC_GETH_RX_BD_RING_SIZE_ALIGNMENT)) { 2088 if (netif_msg_probe(ugeth)) 2089 pr_err("Rx BD ring length must be multiple of 4, no smaller than 8\n"); 2090 return -EINVAL; 2091 } 2092 } 2093 2094 /* Tx BD lengths */ 2095 for (i = 0; i < ug_info->numQueuesTx; i++) { 2096 if (ug_info->bdRingLenTx[i] < UCC_GETH_TX_BD_RING_SIZE_MIN) { 2097 if (netif_msg_probe(ugeth)) 2098 pr_err("Tx BD ring length must be no smaller than 2\n"); 2099 return -EINVAL; 2100 } 2101 } 2102 2103 /* mrblr */ 2104 if ((uf_info->max_rx_buf_length == 0) || 2105 (uf_info->max_rx_buf_length % UCC_GETH_MRBLR_ALIGNMENT)) { 2106 if (netif_msg_probe(ugeth)) 2107 pr_err("max_rx_buf_length must be non-zero multiple of 128\n"); 2108 return -EINVAL; 2109 } 2110 2111 /* num Tx queues */ 2112 if (ug_info->numQueuesTx > NUM_TX_QUEUES) { 2113 if (netif_msg_probe(ugeth)) 2114 pr_err("number of tx queues too large\n"); 2115 return -EINVAL; 2116 } 2117 2118 /* num Rx queues */ 2119 if (ug_info->numQueuesRx > NUM_RX_QUEUES) { 2120 if (netif_msg_probe(ugeth)) 2121 pr_err("number of rx queues too large\n"); 2122 return -EINVAL; 2123 } 2124 2125 /* l2qt */ 2126 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) { 2127 if (ug_info->l2qt[i] >= ug_info->numQueuesRx) { 2128 if (netif_msg_probe(ugeth)) 2129 pr_err("VLAN priority table entry must not be larger than number of Rx queues\n"); 2130 return -EINVAL; 2131 } 2132 } 2133 2134 /* l3qt */ 2135 for (i = 0; i < UCC_GETH_IP_PRIORITY_MAX; i++) { 2136 if (ug_info->l3qt[i] >= ug_info->numQueuesRx) { 2137 if (netif_msg_probe(ugeth)) 2138 pr_err("IP priority table entry must not be larger than number of Rx queues\n"); 2139 return -EINVAL; 2140 } 2141 } 2142 2143 if (ug_info->cam && !ug_info->ecamptr) { 2144 if (netif_msg_probe(ugeth)) 2145 pr_err("If cam mode is chosen, must supply cam ptr\n"); 2146 return -EINVAL; 2147 } 2148 2149 if ((ug_info->numStationAddresses != 2150 UCC_GETH_NUM_OF_STATION_ADDRESSES_1) && 2151 ug_info->rxExtendedFiltering) { 2152 if (netif_msg_probe(ugeth)) 2153 pr_err("Number of station addresses greater than 1 not allowed in extended parsing mode\n"); 2154 return -EINVAL; 2155 } 2156 2157 /* Generate uccm_mask for receive */ 2158 uf_info->uccm_mask = ug_info->eventRegMask & UCCE_OTHER;/* Errors */ 2159 for (i = 0; i < ug_info->numQueuesRx; i++) 2160 uf_info->uccm_mask |= (UCC_GETH_UCCE_RXF0 << i); 2161 2162 for (i = 0; i < ug_info->numQueuesTx; i++) 2163 uf_info->uccm_mask |= (UCC_GETH_UCCE_TXB0 << i); 2164 /* Initialize the general fast UCC block. */ 2165 if (ucc_fast_init(uf_info, &ugeth->uccf)) { 2166 if (netif_msg_probe(ugeth)) 2167 pr_err("Failed to init uccf\n"); 2168 return -ENOMEM; 2169 } 2170 2171 /* read the number of risc engines, update the riscTx and riscRx 2172 * if there are 4 riscs in QE 2173 */ 2174 if (qe_get_num_of_risc() == 4) { 2175 ug_info->riscTx = QE_RISC_ALLOCATION_FOUR_RISCS; 2176 ug_info->riscRx = QE_RISC_ALLOCATION_FOUR_RISCS; 2177 } 2178 2179 ugeth->ug_regs = ioremap(uf_info->regs, sizeof(*ugeth->ug_regs)); 2180 if (!ugeth->ug_regs) { 2181 if (netif_msg_probe(ugeth)) 2182 pr_err("Failed to ioremap regs\n"); 2183 return -ENOMEM; 2184 } 2185 2186 return 0; 2187 } 2188 2189 static int ucc_geth_alloc_tx(struct ucc_geth_private *ugeth) 2190 { 2191 struct ucc_geth_info *ug_info; 2192 struct ucc_fast_info *uf_info; 2193 int length; 2194 u16 i, j; 2195 u8 __iomem *bd; 2196 2197 ug_info = ugeth->ug_info; 2198 uf_info = &ug_info->uf_info; 2199 2200 /* Allocate Tx bds */ 2201 for (j = 0; j < ug_info->numQueuesTx; j++) { 2202 /* Allocate in multiple of 2203 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT, 2204 according to spec */ 2205 length = ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) 2206 / UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) 2207 * UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT; 2208 if ((ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)) % 2209 UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT) 2210 length += UCC_GETH_TX_BD_RING_SIZE_MEMORY_ALIGNMENT; 2211 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) { 2212 u32 align = 4; 2213 if (UCC_GETH_TX_BD_RING_ALIGNMENT > 4) 2214 align = UCC_GETH_TX_BD_RING_ALIGNMENT; 2215 ugeth->tx_bd_ring_offset[j] = 2216 (u32) kmalloc((u32) (length + align), GFP_KERNEL); 2217 2218 if (ugeth->tx_bd_ring_offset[j] != 0) 2219 ugeth->p_tx_bd_ring[j] = 2220 (u8 __iomem *)((ugeth->tx_bd_ring_offset[j] + 2221 align) & ~(align - 1)); 2222 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) { 2223 ugeth->tx_bd_ring_offset[j] = 2224 qe_muram_alloc(length, 2225 UCC_GETH_TX_BD_RING_ALIGNMENT); 2226 if (!IS_ERR_VALUE(ugeth->tx_bd_ring_offset[j])) 2227 ugeth->p_tx_bd_ring[j] = 2228 (u8 __iomem *) qe_muram_addr(ugeth-> 2229 tx_bd_ring_offset[j]); 2230 } 2231 if (!ugeth->p_tx_bd_ring[j]) { 2232 if (netif_msg_ifup(ugeth)) 2233 pr_err("Can not allocate memory for Tx bd rings\n"); 2234 return -ENOMEM; 2235 } 2236 /* Zero unused end of bd ring, according to spec */ 2237 memset_io((void __iomem *)(ugeth->p_tx_bd_ring[j] + 2238 ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)), 0, 2239 length - ug_info->bdRingLenTx[j] * sizeof(struct qe_bd)); 2240 } 2241 2242 /* Init Tx bds */ 2243 for (j = 0; j < ug_info->numQueuesTx; j++) { 2244 /* Setup the skbuff rings */ 2245 ugeth->tx_skbuff[j] = 2246 kmalloc_array(ugeth->ug_info->bdRingLenTx[j], 2247 sizeof(struct sk_buff *), GFP_KERNEL); 2248 2249 if (ugeth->tx_skbuff[j] == NULL) { 2250 if (netif_msg_ifup(ugeth)) 2251 pr_err("Could not allocate tx_skbuff\n"); 2252 return -ENOMEM; 2253 } 2254 2255 for (i = 0; i < ugeth->ug_info->bdRingLenTx[j]; i++) 2256 ugeth->tx_skbuff[j][i] = NULL; 2257 2258 ugeth->skb_curtx[j] = ugeth->skb_dirtytx[j] = 0; 2259 bd = ugeth->confBd[j] = ugeth->txBd[j] = ugeth->p_tx_bd_ring[j]; 2260 for (i = 0; i < ug_info->bdRingLenTx[j]; i++) { 2261 /* clear bd buffer */ 2262 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0); 2263 /* set bd status and length */ 2264 out_be32((u32 __iomem *)bd, 0); 2265 bd += sizeof(struct qe_bd); 2266 } 2267 bd -= sizeof(struct qe_bd); 2268 /* set bd status and length */ 2269 out_be32((u32 __iomem *)bd, T_W); /* for last BD set Wrap bit */ 2270 } 2271 2272 return 0; 2273 } 2274 2275 static int ucc_geth_alloc_rx(struct ucc_geth_private *ugeth) 2276 { 2277 struct ucc_geth_info *ug_info; 2278 struct ucc_fast_info *uf_info; 2279 int length; 2280 u16 i, j; 2281 u8 __iomem *bd; 2282 2283 ug_info = ugeth->ug_info; 2284 uf_info = &ug_info->uf_info; 2285 2286 /* Allocate Rx bds */ 2287 for (j = 0; j < ug_info->numQueuesRx; j++) { 2288 length = ug_info->bdRingLenRx[j] * sizeof(struct qe_bd); 2289 if (uf_info->bd_mem_part == MEM_PART_SYSTEM) { 2290 u32 align = 4; 2291 if (UCC_GETH_RX_BD_RING_ALIGNMENT > 4) 2292 align = UCC_GETH_RX_BD_RING_ALIGNMENT; 2293 ugeth->rx_bd_ring_offset[j] = 2294 (u32) kmalloc((u32) (length + align), GFP_KERNEL); 2295 if (ugeth->rx_bd_ring_offset[j] != 0) 2296 ugeth->p_rx_bd_ring[j] = 2297 (u8 __iomem *)((ugeth->rx_bd_ring_offset[j] + 2298 align) & ~(align - 1)); 2299 } else if (uf_info->bd_mem_part == MEM_PART_MURAM) { 2300 ugeth->rx_bd_ring_offset[j] = 2301 qe_muram_alloc(length, 2302 UCC_GETH_RX_BD_RING_ALIGNMENT); 2303 if (!IS_ERR_VALUE(ugeth->rx_bd_ring_offset[j])) 2304 ugeth->p_rx_bd_ring[j] = 2305 (u8 __iomem *) qe_muram_addr(ugeth-> 2306 rx_bd_ring_offset[j]); 2307 } 2308 if (!ugeth->p_rx_bd_ring[j]) { 2309 if (netif_msg_ifup(ugeth)) 2310 pr_err("Can not allocate memory for Rx bd rings\n"); 2311 return -ENOMEM; 2312 } 2313 } 2314 2315 /* Init Rx bds */ 2316 for (j = 0; j < ug_info->numQueuesRx; j++) { 2317 /* Setup the skbuff rings */ 2318 ugeth->rx_skbuff[j] = 2319 kmalloc_array(ugeth->ug_info->bdRingLenRx[j], 2320 sizeof(struct sk_buff *), GFP_KERNEL); 2321 2322 if (ugeth->rx_skbuff[j] == NULL) { 2323 if (netif_msg_ifup(ugeth)) 2324 pr_err("Could not allocate rx_skbuff\n"); 2325 return -ENOMEM; 2326 } 2327 2328 for (i = 0; i < ugeth->ug_info->bdRingLenRx[j]; i++) 2329 ugeth->rx_skbuff[j][i] = NULL; 2330 2331 ugeth->skb_currx[j] = 0; 2332 bd = ugeth->rxBd[j] = ugeth->p_rx_bd_ring[j]; 2333 for (i = 0; i < ug_info->bdRingLenRx[j]; i++) { 2334 /* set bd status and length */ 2335 out_be32((u32 __iomem *)bd, R_I); 2336 /* clear bd buffer */ 2337 out_be32(&((struct qe_bd __iomem *)bd)->buf, 0); 2338 bd += sizeof(struct qe_bd); 2339 } 2340 bd -= sizeof(struct qe_bd); 2341 /* set bd status and length */ 2342 out_be32((u32 __iomem *)bd, R_W); /* for last BD set Wrap bit */ 2343 } 2344 2345 return 0; 2346 } 2347 2348 static int ucc_geth_startup(struct ucc_geth_private *ugeth) 2349 { 2350 struct ucc_geth_82xx_address_filtering_pram __iomem *p_82xx_addr_filt; 2351 struct ucc_geth_init_pram __iomem *p_init_enet_pram; 2352 struct ucc_fast_private *uccf; 2353 struct ucc_geth_info *ug_info; 2354 struct ucc_fast_info *uf_info; 2355 struct ucc_fast __iomem *uf_regs; 2356 struct ucc_geth __iomem *ug_regs; 2357 int ret_val = -EINVAL; 2358 u32 remoder = UCC_GETH_REMODER_INIT; 2359 u32 init_enet_pram_offset, cecr_subblock, command; 2360 u32 ifstat, i, j, size, l2qt, l3qt; 2361 u16 temoder = UCC_GETH_TEMODER_INIT; 2362 u16 test; 2363 u8 function_code = 0; 2364 u8 __iomem *endOfRing; 2365 u8 numThreadsRxNumerical, numThreadsTxNumerical; 2366 2367 ugeth_vdbg("%s: IN", __func__); 2368 uccf = ugeth->uccf; 2369 ug_info = ugeth->ug_info; 2370 uf_info = &ug_info->uf_info; 2371 uf_regs = uccf->uf_regs; 2372 ug_regs = ugeth->ug_regs; 2373 2374 switch (ug_info->numThreadsRx) { 2375 case UCC_GETH_NUM_OF_THREADS_1: 2376 numThreadsRxNumerical = 1; 2377 break; 2378 case UCC_GETH_NUM_OF_THREADS_2: 2379 numThreadsRxNumerical = 2; 2380 break; 2381 case UCC_GETH_NUM_OF_THREADS_4: 2382 numThreadsRxNumerical = 4; 2383 break; 2384 case UCC_GETH_NUM_OF_THREADS_6: 2385 numThreadsRxNumerical = 6; 2386 break; 2387 case UCC_GETH_NUM_OF_THREADS_8: 2388 numThreadsRxNumerical = 8; 2389 break; 2390 default: 2391 if (netif_msg_ifup(ugeth)) 2392 pr_err("Bad number of Rx threads value\n"); 2393 return -EINVAL; 2394 } 2395 2396 switch (ug_info->numThreadsTx) { 2397 case UCC_GETH_NUM_OF_THREADS_1: 2398 numThreadsTxNumerical = 1; 2399 break; 2400 case UCC_GETH_NUM_OF_THREADS_2: 2401 numThreadsTxNumerical = 2; 2402 break; 2403 case UCC_GETH_NUM_OF_THREADS_4: 2404 numThreadsTxNumerical = 4; 2405 break; 2406 case UCC_GETH_NUM_OF_THREADS_6: 2407 numThreadsTxNumerical = 6; 2408 break; 2409 case UCC_GETH_NUM_OF_THREADS_8: 2410 numThreadsTxNumerical = 8; 2411 break; 2412 default: 2413 if (netif_msg_ifup(ugeth)) 2414 pr_err("Bad number of Tx threads value\n"); 2415 return -EINVAL; 2416 } 2417 2418 /* Calculate rx_extended_features */ 2419 ugeth->rx_non_dynamic_extended_features = ug_info->ipCheckSumCheck || 2420 ug_info->ipAddressAlignment || 2421 (ug_info->numStationAddresses != 2422 UCC_GETH_NUM_OF_STATION_ADDRESSES_1); 2423 2424 ugeth->rx_extended_features = ugeth->rx_non_dynamic_extended_features || 2425 (ug_info->vlanOperationTagged != UCC_GETH_VLAN_OPERATION_TAGGED_NOP) || 2426 (ug_info->vlanOperationNonTagged != 2427 UCC_GETH_VLAN_OPERATION_NON_TAGGED_NOP); 2428 2429 init_default_reg_vals(&uf_regs->upsmr, 2430 &ug_regs->maccfg1, &ug_regs->maccfg2); 2431 2432 /* Set UPSMR */ 2433 /* For more details see the hardware spec. */ 2434 init_rx_parameters(ug_info->bro, 2435 ug_info->rsh, ug_info->pro, &uf_regs->upsmr); 2436 2437 /* We're going to ignore other registers for now, */ 2438 /* except as needed to get up and running */ 2439 2440 /* Set MACCFG1 */ 2441 /* For more details see the hardware spec. */ 2442 init_flow_control_params(ug_info->aufc, 2443 ug_info->receiveFlowControl, 2444 ug_info->transmitFlowControl, 2445 ug_info->pausePeriod, 2446 ug_info->extensionField, 2447 &uf_regs->upsmr, 2448 &ug_regs->uempr, &ug_regs->maccfg1); 2449 2450 setbits32(&ug_regs->maccfg1, MACCFG1_ENABLE_RX | MACCFG1_ENABLE_TX); 2451 2452 /* Set IPGIFG */ 2453 /* For more details see the hardware spec. */ 2454 ret_val = init_inter_frame_gap_params(ug_info->nonBackToBackIfgPart1, 2455 ug_info->nonBackToBackIfgPart2, 2456 ug_info-> 2457 miminumInterFrameGapEnforcement, 2458 ug_info->backToBackInterFrameGap, 2459 &ug_regs->ipgifg); 2460 if (ret_val != 0) { 2461 if (netif_msg_ifup(ugeth)) 2462 pr_err("IPGIFG initialization parameter too large\n"); 2463 return ret_val; 2464 } 2465 2466 /* Set HAFDUP */ 2467 /* For more details see the hardware spec. */ 2468 ret_val = init_half_duplex_params(ug_info->altBeb, 2469 ug_info->backPressureNoBackoff, 2470 ug_info->noBackoff, 2471 ug_info->excessDefer, 2472 ug_info->altBebTruncation, 2473 ug_info->maxRetransmission, 2474 ug_info->collisionWindow, 2475 &ug_regs->hafdup); 2476 if (ret_val != 0) { 2477 if (netif_msg_ifup(ugeth)) 2478 pr_err("Half Duplex initialization parameter too large\n"); 2479 return ret_val; 2480 } 2481 2482 /* Set IFSTAT */ 2483 /* For more details see the hardware spec. */ 2484 /* Read only - resets upon read */ 2485 ifstat = in_be32(&ug_regs->ifstat); 2486 2487 /* Clear UEMPR */ 2488 /* For more details see the hardware spec. */ 2489 out_be32(&ug_regs->uempr, 0); 2490 2491 /* Set UESCR */ 2492 /* For more details see the hardware spec. */ 2493 init_hw_statistics_gathering_mode((ug_info->statisticsMode & 2494 UCC_GETH_STATISTICS_GATHERING_MODE_HARDWARE), 2495 0, &uf_regs->upsmr, &ug_regs->uescr); 2496 2497 ret_val = ucc_geth_alloc_tx(ugeth); 2498 if (ret_val != 0) 2499 return ret_val; 2500 2501 ret_val = ucc_geth_alloc_rx(ugeth); 2502 if (ret_val != 0) 2503 return ret_val; 2504 2505 /* 2506 * Global PRAM 2507 */ 2508 /* Tx global PRAM */ 2509 /* Allocate global tx parameter RAM page */ 2510 ugeth->tx_glbl_pram_offset = 2511 qe_muram_alloc(sizeof(struct ucc_geth_tx_global_pram), 2512 UCC_GETH_TX_GLOBAL_PRAM_ALIGNMENT); 2513 if (IS_ERR_VALUE(ugeth->tx_glbl_pram_offset)) { 2514 if (netif_msg_ifup(ugeth)) 2515 pr_err("Can not allocate DPRAM memory for p_tx_glbl_pram\n"); 2516 return -ENOMEM; 2517 } 2518 ugeth->p_tx_glbl_pram = 2519 (struct ucc_geth_tx_global_pram __iomem *) qe_muram_addr(ugeth-> 2520 tx_glbl_pram_offset); 2521 /* Zero out p_tx_glbl_pram */ 2522 memset_io((void __iomem *)ugeth->p_tx_glbl_pram, 0, sizeof(struct ucc_geth_tx_global_pram)); 2523 2524 /* Fill global PRAM */ 2525 2526 /* TQPTR */ 2527 /* Size varies with number of Tx threads */ 2528 ugeth->thread_dat_tx_offset = 2529 qe_muram_alloc(numThreadsTxNumerical * 2530 sizeof(struct ucc_geth_thread_data_tx) + 2531 32 * (numThreadsTxNumerical == 1), 2532 UCC_GETH_THREAD_DATA_ALIGNMENT); 2533 if (IS_ERR_VALUE(ugeth->thread_dat_tx_offset)) { 2534 if (netif_msg_ifup(ugeth)) 2535 pr_err("Can not allocate DPRAM memory for p_thread_data_tx\n"); 2536 return -ENOMEM; 2537 } 2538 2539 ugeth->p_thread_data_tx = 2540 (struct ucc_geth_thread_data_tx __iomem *) qe_muram_addr(ugeth-> 2541 thread_dat_tx_offset); 2542 out_be32(&ugeth->p_tx_glbl_pram->tqptr, ugeth->thread_dat_tx_offset); 2543 2544 /* vtagtable */ 2545 for (i = 0; i < UCC_GETH_TX_VTAG_TABLE_ENTRY_MAX; i++) 2546 out_be32(&ugeth->p_tx_glbl_pram->vtagtable[i], 2547 ug_info->vtagtable[i]); 2548 2549 /* iphoffset */ 2550 for (i = 0; i < TX_IP_OFFSET_ENTRY_MAX; i++) 2551 out_8(&ugeth->p_tx_glbl_pram->iphoffset[i], 2552 ug_info->iphoffset[i]); 2553 2554 /* SQPTR */ 2555 /* Size varies with number of Tx queues */ 2556 ugeth->send_q_mem_reg_offset = 2557 qe_muram_alloc(ug_info->numQueuesTx * 2558 sizeof(struct ucc_geth_send_queue_qd), 2559 UCC_GETH_SEND_QUEUE_QUEUE_DESCRIPTOR_ALIGNMENT); 2560 if (IS_ERR_VALUE(ugeth->send_q_mem_reg_offset)) { 2561 if (netif_msg_ifup(ugeth)) 2562 pr_err("Can not allocate DPRAM memory for p_send_q_mem_reg\n"); 2563 return -ENOMEM; 2564 } 2565 2566 ugeth->p_send_q_mem_reg = 2567 (struct ucc_geth_send_queue_mem_region __iomem *) qe_muram_addr(ugeth-> 2568 send_q_mem_reg_offset); 2569 out_be32(&ugeth->p_tx_glbl_pram->sqptr, ugeth->send_q_mem_reg_offset); 2570 2571 /* Setup the table */ 2572 /* Assume BD rings are already established */ 2573 for (i = 0; i < ug_info->numQueuesTx; i++) { 2574 endOfRing = 2575 ugeth->p_tx_bd_ring[i] + (ug_info->bdRingLenTx[i] - 2576 1) * sizeof(struct qe_bd); 2577 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) { 2578 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base, 2579 (u32) virt_to_phys(ugeth->p_tx_bd_ring[i])); 2580 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i]. 2581 last_bd_completed_address, 2582 (u32) virt_to_phys(endOfRing)); 2583 } else if (ugeth->ug_info->uf_info.bd_mem_part == 2584 MEM_PART_MURAM) { 2585 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i].bd_ring_base, 2586 (u32)qe_muram_dma(ugeth->p_tx_bd_ring[i])); 2587 out_be32(&ugeth->p_send_q_mem_reg->sqqd[i]. 2588 last_bd_completed_address, 2589 (u32)qe_muram_dma(endOfRing)); 2590 } 2591 } 2592 2593 /* schedulerbasepointer */ 2594 2595 if (ug_info->numQueuesTx > 1) { 2596 /* scheduler exists only if more than 1 tx queue */ 2597 ugeth->scheduler_offset = 2598 qe_muram_alloc(sizeof(struct ucc_geth_scheduler), 2599 UCC_GETH_SCHEDULER_ALIGNMENT); 2600 if (IS_ERR_VALUE(ugeth->scheduler_offset)) { 2601 if (netif_msg_ifup(ugeth)) 2602 pr_err("Can not allocate DPRAM memory for p_scheduler\n"); 2603 return -ENOMEM; 2604 } 2605 2606 ugeth->p_scheduler = 2607 (struct ucc_geth_scheduler __iomem *) qe_muram_addr(ugeth-> 2608 scheduler_offset); 2609 out_be32(&ugeth->p_tx_glbl_pram->schedulerbasepointer, 2610 ugeth->scheduler_offset); 2611 /* Zero out p_scheduler */ 2612 memset_io((void __iomem *)ugeth->p_scheduler, 0, sizeof(struct ucc_geth_scheduler)); 2613 2614 /* Set values in scheduler */ 2615 out_be32(&ugeth->p_scheduler->mblinterval, 2616 ug_info->mblinterval); 2617 out_be16(&ugeth->p_scheduler->nortsrbytetime, 2618 ug_info->nortsrbytetime); 2619 out_8(&ugeth->p_scheduler->fracsiz, ug_info->fracsiz); 2620 out_8(&ugeth->p_scheduler->strictpriorityq, 2621 ug_info->strictpriorityq); 2622 out_8(&ugeth->p_scheduler->txasap, ug_info->txasap); 2623 out_8(&ugeth->p_scheduler->extrabw, ug_info->extrabw); 2624 for (i = 0; i < NUM_TX_QUEUES; i++) 2625 out_8(&ugeth->p_scheduler->weightfactor[i], 2626 ug_info->weightfactor[i]); 2627 2628 /* Set pointers to cpucount registers in scheduler */ 2629 ugeth->p_cpucount[0] = &(ugeth->p_scheduler->cpucount0); 2630 ugeth->p_cpucount[1] = &(ugeth->p_scheduler->cpucount1); 2631 ugeth->p_cpucount[2] = &(ugeth->p_scheduler->cpucount2); 2632 ugeth->p_cpucount[3] = &(ugeth->p_scheduler->cpucount3); 2633 ugeth->p_cpucount[4] = &(ugeth->p_scheduler->cpucount4); 2634 ugeth->p_cpucount[5] = &(ugeth->p_scheduler->cpucount5); 2635 ugeth->p_cpucount[6] = &(ugeth->p_scheduler->cpucount6); 2636 ugeth->p_cpucount[7] = &(ugeth->p_scheduler->cpucount7); 2637 } 2638 2639 /* schedulerbasepointer */ 2640 /* TxRMON_PTR (statistics) */ 2641 if (ug_info-> 2642 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX) { 2643 ugeth->tx_fw_statistics_pram_offset = 2644 qe_muram_alloc(sizeof 2645 (struct ucc_geth_tx_firmware_statistics_pram), 2646 UCC_GETH_TX_STATISTICS_ALIGNMENT); 2647 if (IS_ERR_VALUE(ugeth->tx_fw_statistics_pram_offset)) { 2648 if (netif_msg_ifup(ugeth)) 2649 pr_err("Can not allocate DPRAM memory for p_tx_fw_statistics_pram\n"); 2650 return -ENOMEM; 2651 } 2652 ugeth->p_tx_fw_statistics_pram = 2653 (struct ucc_geth_tx_firmware_statistics_pram __iomem *) 2654 qe_muram_addr(ugeth->tx_fw_statistics_pram_offset); 2655 /* Zero out p_tx_fw_statistics_pram */ 2656 memset_io((void __iomem *)ugeth->p_tx_fw_statistics_pram, 2657 0, sizeof(struct ucc_geth_tx_firmware_statistics_pram)); 2658 } 2659 2660 /* temoder */ 2661 /* Already has speed set */ 2662 2663 if (ug_info->numQueuesTx > 1) 2664 temoder |= TEMODER_SCHEDULER_ENABLE; 2665 if (ug_info->ipCheckSumGenerate) 2666 temoder |= TEMODER_IP_CHECKSUM_GENERATE; 2667 temoder |= ((ug_info->numQueuesTx - 1) << TEMODER_NUM_OF_QUEUES_SHIFT); 2668 out_be16(&ugeth->p_tx_glbl_pram->temoder, temoder); 2669 2670 test = in_be16(&ugeth->p_tx_glbl_pram->temoder); 2671 2672 /* Function code register value to be used later */ 2673 function_code = UCC_BMR_BO_BE | UCC_BMR_GBL; 2674 /* Required for QE */ 2675 2676 /* function code register */ 2677 out_be32(&ugeth->p_tx_glbl_pram->tstate, ((u32) function_code) << 24); 2678 2679 /* Rx global PRAM */ 2680 /* Allocate global rx parameter RAM page */ 2681 ugeth->rx_glbl_pram_offset = 2682 qe_muram_alloc(sizeof(struct ucc_geth_rx_global_pram), 2683 UCC_GETH_RX_GLOBAL_PRAM_ALIGNMENT); 2684 if (IS_ERR_VALUE(ugeth->rx_glbl_pram_offset)) { 2685 if (netif_msg_ifup(ugeth)) 2686 pr_err("Can not allocate DPRAM memory for p_rx_glbl_pram\n"); 2687 return -ENOMEM; 2688 } 2689 ugeth->p_rx_glbl_pram = 2690 (struct ucc_geth_rx_global_pram __iomem *) qe_muram_addr(ugeth-> 2691 rx_glbl_pram_offset); 2692 /* Zero out p_rx_glbl_pram */ 2693 memset_io((void __iomem *)ugeth->p_rx_glbl_pram, 0, sizeof(struct ucc_geth_rx_global_pram)); 2694 2695 /* Fill global PRAM */ 2696 2697 /* RQPTR */ 2698 /* Size varies with number of Rx threads */ 2699 ugeth->thread_dat_rx_offset = 2700 qe_muram_alloc(numThreadsRxNumerical * 2701 sizeof(struct ucc_geth_thread_data_rx), 2702 UCC_GETH_THREAD_DATA_ALIGNMENT); 2703 if (IS_ERR_VALUE(ugeth->thread_dat_rx_offset)) { 2704 if (netif_msg_ifup(ugeth)) 2705 pr_err("Can not allocate DPRAM memory for p_thread_data_rx\n"); 2706 return -ENOMEM; 2707 } 2708 2709 ugeth->p_thread_data_rx = 2710 (struct ucc_geth_thread_data_rx __iomem *) qe_muram_addr(ugeth-> 2711 thread_dat_rx_offset); 2712 out_be32(&ugeth->p_rx_glbl_pram->rqptr, ugeth->thread_dat_rx_offset); 2713 2714 /* typeorlen */ 2715 out_be16(&ugeth->p_rx_glbl_pram->typeorlen, ug_info->typeorlen); 2716 2717 /* rxrmonbaseptr (statistics) */ 2718 if (ug_info-> 2719 statisticsMode & UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX) { 2720 ugeth->rx_fw_statistics_pram_offset = 2721 qe_muram_alloc(sizeof 2722 (struct ucc_geth_rx_firmware_statistics_pram), 2723 UCC_GETH_RX_STATISTICS_ALIGNMENT); 2724 if (IS_ERR_VALUE(ugeth->rx_fw_statistics_pram_offset)) { 2725 if (netif_msg_ifup(ugeth)) 2726 pr_err("Can not allocate DPRAM memory for p_rx_fw_statistics_pram\n"); 2727 return -ENOMEM; 2728 } 2729 ugeth->p_rx_fw_statistics_pram = 2730 (struct ucc_geth_rx_firmware_statistics_pram __iomem *) 2731 qe_muram_addr(ugeth->rx_fw_statistics_pram_offset); 2732 /* Zero out p_rx_fw_statistics_pram */ 2733 memset_io((void __iomem *)ugeth->p_rx_fw_statistics_pram, 0, 2734 sizeof(struct ucc_geth_rx_firmware_statistics_pram)); 2735 } 2736 2737 /* intCoalescingPtr */ 2738 2739 /* Size varies with number of Rx queues */ 2740 ugeth->rx_irq_coalescing_tbl_offset = 2741 qe_muram_alloc(ug_info->numQueuesRx * 2742 sizeof(struct ucc_geth_rx_interrupt_coalescing_entry) 2743 + 4, UCC_GETH_RX_INTERRUPT_COALESCING_ALIGNMENT); 2744 if (IS_ERR_VALUE(ugeth->rx_irq_coalescing_tbl_offset)) { 2745 if (netif_msg_ifup(ugeth)) 2746 pr_err("Can not allocate DPRAM memory for p_rx_irq_coalescing_tbl\n"); 2747 return -ENOMEM; 2748 } 2749 2750 ugeth->p_rx_irq_coalescing_tbl = 2751 (struct ucc_geth_rx_interrupt_coalescing_table __iomem *) 2752 qe_muram_addr(ugeth->rx_irq_coalescing_tbl_offset); 2753 out_be32(&ugeth->p_rx_glbl_pram->intcoalescingptr, 2754 ugeth->rx_irq_coalescing_tbl_offset); 2755 2756 /* Fill interrupt coalescing table */ 2757 for (i = 0; i < ug_info->numQueuesRx; i++) { 2758 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i]. 2759 interruptcoalescingmaxvalue, 2760 ug_info->interruptcoalescingmaxvalue[i]); 2761 out_be32(&ugeth->p_rx_irq_coalescing_tbl->coalescingentry[i]. 2762 interruptcoalescingcounter, 2763 ug_info->interruptcoalescingmaxvalue[i]); 2764 } 2765 2766 /* MRBLR */ 2767 init_max_rx_buff_len(uf_info->max_rx_buf_length, 2768 &ugeth->p_rx_glbl_pram->mrblr); 2769 /* MFLR */ 2770 out_be16(&ugeth->p_rx_glbl_pram->mflr, ug_info->maxFrameLength); 2771 /* MINFLR */ 2772 init_min_frame_len(ug_info->minFrameLength, 2773 &ugeth->p_rx_glbl_pram->minflr, 2774 &ugeth->p_rx_glbl_pram->mrblr); 2775 /* MAXD1 */ 2776 out_be16(&ugeth->p_rx_glbl_pram->maxd1, ug_info->maxD1Length); 2777 /* MAXD2 */ 2778 out_be16(&ugeth->p_rx_glbl_pram->maxd2, ug_info->maxD2Length); 2779 2780 /* l2qt */ 2781 l2qt = 0; 2782 for (i = 0; i < UCC_GETH_VLAN_PRIORITY_MAX; i++) 2783 l2qt |= (ug_info->l2qt[i] << (28 - 4 * i)); 2784 out_be32(&ugeth->p_rx_glbl_pram->l2qt, l2qt); 2785 2786 /* l3qt */ 2787 for (j = 0; j < UCC_GETH_IP_PRIORITY_MAX; j += 8) { 2788 l3qt = 0; 2789 for (i = 0; i < 8; i++) 2790 l3qt |= (ug_info->l3qt[j + i] << (28 - 4 * i)); 2791 out_be32(&ugeth->p_rx_glbl_pram->l3qt[j/8], l3qt); 2792 } 2793 2794 /* vlantype */ 2795 out_be16(&ugeth->p_rx_glbl_pram->vlantype, ug_info->vlantype); 2796 2797 /* vlantci */ 2798 out_be16(&ugeth->p_rx_glbl_pram->vlantci, ug_info->vlantci); 2799 2800 /* ecamptr */ 2801 out_be32(&ugeth->p_rx_glbl_pram->ecamptr, ug_info->ecamptr); 2802 2803 /* RBDQPTR */ 2804 /* Size varies with number of Rx queues */ 2805 ugeth->rx_bd_qs_tbl_offset = 2806 qe_muram_alloc(ug_info->numQueuesRx * 2807 (sizeof(struct ucc_geth_rx_bd_queues_entry) + 2808 sizeof(struct ucc_geth_rx_prefetched_bds)), 2809 UCC_GETH_RX_BD_QUEUES_ALIGNMENT); 2810 if (IS_ERR_VALUE(ugeth->rx_bd_qs_tbl_offset)) { 2811 if (netif_msg_ifup(ugeth)) 2812 pr_err("Can not allocate DPRAM memory for p_rx_bd_qs_tbl\n"); 2813 return -ENOMEM; 2814 } 2815 2816 ugeth->p_rx_bd_qs_tbl = 2817 (struct ucc_geth_rx_bd_queues_entry __iomem *) qe_muram_addr(ugeth-> 2818 rx_bd_qs_tbl_offset); 2819 out_be32(&ugeth->p_rx_glbl_pram->rbdqptr, ugeth->rx_bd_qs_tbl_offset); 2820 /* Zero out p_rx_bd_qs_tbl */ 2821 memset_io((void __iomem *)ugeth->p_rx_bd_qs_tbl, 2822 0, 2823 ug_info->numQueuesRx * (sizeof(struct ucc_geth_rx_bd_queues_entry) + 2824 sizeof(struct ucc_geth_rx_prefetched_bds))); 2825 2826 /* Setup the table */ 2827 /* Assume BD rings are already established */ 2828 for (i = 0; i < ug_info->numQueuesRx; i++) { 2829 if (ugeth->ug_info->uf_info.bd_mem_part == MEM_PART_SYSTEM) { 2830 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr, 2831 (u32) virt_to_phys(ugeth->p_rx_bd_ring[i])); 2832 } else if (ugeth->ug_info->uf_info.bd_mem_part == 2833 MEM_PART_MURAM) { 2834 out_be32(&ugeth->p_rx_bd_qs_tbl[i].externalbdbaseptr, 2835 (u32)qe_muram_dma(ugeth->p_rx_bd_ring[i])); 2836 } 2837 /* rest of fields handled by QE */ 2838 } 2839 2840 /* remoder */ 2841 /* Already has speed set */ 2842 2843 if (ugeth->rx_extended_features) 2844 remoder |= REMODER_RX_EXTENDED_FEATURES; 2845 if (ug_info->rxExtendedFiltering) 2846 remoder |= REMODER_RX_EXTENDED_FILTERING; 2847 if (ug_info->dynamicMaxFrameLength) 2848 remoder |= REMODER_DYNAMIC_MAX_FRAME_LENGTH; 2849 if (ug_info->dynamicMinFrameLength) 2850 remoder |= REMODER_DYNAMIC_MIN_FRAME_LENGTH; 2851 remoder |= 2852 ug_info->vlanOperationTagged << REMODER_VLAN_OPERATION_TAGGED_SHIFT; 2853 remoder |= 2854 ug_info-> 2855 vlanOperationNonTagged << REMODER_VLAN_OPERATION_NON_TAGGED_SHIFT; 2856 remoder |= ug_info->rxQoSMode << REMODER_RX_QOS_MODE_SHIFT; 2857 remoder |= ((ug_info->numQueuesRx - 1) << REMODER_NUM_OF_QUEUES_SHIFT); 2858 if (ug_info->ipCheckSumCheck) 2859 remoder |= REMODER_IP_CHECKSUM_CHECK; 2860 if (ug_info->ipAddressAlignment) 2861 remoder |= REMODER_IP_ADDRESS_ALIGNMENT; 2862 out_be32(&ugeth->p_rx_glbl_pram->remoder, remoder); 2863 2864 /* Note that this function must be called */ 2865 /* ONLY AFTER p_tx_fw_statistics_pram */ 2866 /* andp_UccGethRxFirmwareStatisticsPram are allocated ! */ 2867 init_firmware_statistics_gathering_mode((ug_info-> 2868 statisticsMode & 2869 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_TX), 2870 (ug_info->statisticsMode & 2871 UCC_GETH_STATISTICS_GATHERING_MODE_FIRMWARE_RX), 2872 &ugeth->p_tx_glbl_pram->txrmonbaseptr, 2873 ugeth->tx_fw_statistics_pram_offset, 2874 &ugeth->p_rx_glbl_pram->rxrmonbaseptr, 2875 ugeth->rx_fw_statistics_pram_offset, 2876 &ugeth->p_tx_glbl_pram->temoder, 2877 &ugeth->p_rx_glbl_pram->remoder); 2878 2879 /* function code register */ 2880 out_8(&ugeth->p_rx_glbl_pram->rstate, function_code); 2881 2882 /* initialize extended filtering */ 2883 if (ug_info->rxExtendedFiltering) { 2884 if (!ug_info->extendedFilteringChainPointer) { 2885 if (netif_msg_ifup(ugeth)) 2886 pr_err("Null Extended Filtering Chain Pointer\n"); 2887 return -EINVAL; 2888 } 2889 2890 /* Allocate memory for extended filtering Mode Global 2891 Parameters */ 2892 ugeth->exf_glbl_param_offset = 2893 qe_muram_alloc(sizeof(struct ucc_geth_exf_global_pram), 2894 UCC_GETH_RX_EXTENDED_FILTERING_GLOBAL_PARAMETERS_ALIGNMENT); 2895 if (IS_ERR_VALUE(ugeth->exf_glbl_param_offset)) { 2896 if (netif_msg_ifup(ugeth)) 2897 pr_err("Can not allocate DPRAM memory for p_exf_glbl_param\n"); 2898 return -ENOMEM; 2899 } 2900 2901 ugeth->p_exf_glbl_param = 2902 (struct ucc_geth_exf_global_pram __iomem *) qe_muram_addr(ugeth-> 2903 exf_glbl_param_offset); 2904 out_be32(&ugeth->p_rx_glbl_pram->exfGlobalParam, 2905 ugeth->exf_glbl_param_offset); 2906 out_be32(&ugeth->p_exf_glbl_param->l2pcdptr, 2907 (u32) ug_info->extendedFilteringChainPointer); 2908 2909 } else { /* initialize 82xx style address filtering */ 2910 2911 /* Init individual address recognition registers to disabled */ 2912 2913 for (j = 0; j < NUM_OF_PADDRS; j++) 2914 ugeth_82xx_filtering_clear_addr_in_paddr(ugeth, (u8) j); 2915 2916 p_82xx_addr_filt = 2917 (struct ucc_geth_82xx_address_filtering_pram __iomem *) ugeth-> 2918 p_rx_glbl_pram->addressfiltering; 2919 2920 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth, 2921 ENET_ADDR_TYPE_GROUP); 2922 ugeth_82xx_filtering_clear_all_addr_in_hash(ugeth, 2923 ENET_ADDR_TYPE_INDIVIDUAL); 2924 } 2925 2926 /* 2927 * Initialize UCC at QE level 2928 */ 2929 2930 command = QE_INIT_TX_RX; 2931 2932 /* Allocate shadow InitEnet command parameter structure. 2933 * This is needed because after the InitEnet command is executed, 2934 * the structure in DPRAM is released, because DPRAM is a premium 2935 * resource. 2936 * This shadow structure keeps a copy of what was done so that the 2937 * allocated resources can be released when the channel is freed. 2938 */ 2939 if (!(ugeth->p_init_enet_param_shadow = 2940 kmalloc(sizeof(struct ucc_geth_init_pram), GFP_KERNEL))) { 2941 if (netif_msg_ifup(ugeth)) 2942 pr_err("Can not allocate memory for p_UccInitEnetParamShadows\n"); 2943 return -ENOMEM; 2944 } 2945 /* Zero out *p_init_enet_param_shadow */ 2946 memset((char *)ugeth->p_init_enet_param_shadow, 2947 0, sizeof(struct ucc_geth_init_pram)); 2948 2949 /* Fill shadow InitEnet command parameter structure */ 2950 2951 ugeth->p_init_enet_param_shadow->resinit1 = 2952 ENET_INIT_PARAM_MAGIC_RES_INIT1; 2953 ugeth->p_init_enet_param_shadow->resinit2 = 2954 ENET_INIT_PARAM_MAGIC_RES_INIT2; 2955 ugeth->p_init_enet_param_shadow->resinit3 = 2956 ENET_INIT_PARAM_MAGIC_RES_INIT3; 2957 ugeth->p_init_enet_param_shadow->resinit4 = 2958 ENET_INIT_PARAM_MAGIC_RES_INIT4; 2959 ugeth->p_init_enet_param_shadow->resinit5 = 2960 ENET_INIT_PARAM_MAGIC_RES_INIT5; 2961 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |= 2962 ((u32) ug_info->numThreadsRx) << ENET_INIT_PARAM_RGF_SHIFT; 2963 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |= 2964 ((u32) ug_info->numThreadsTx) << ENET_INIT_PARAM_TGF_SHIFT; 2965 2966 ugeth->p_init_enet_param_shadow->rgftgfrxglobal |= 2967 ugeth->rx_glbl_pram_offset | ug_info->riscRx; 2968 if ((ug_info->largestexternallookupkeysize != 2969 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_NONE) && 2970 (ug_info->largestexternallookupkeysize != 2971 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) && 2972 (ug_info->largestexternallookupkeysize != 2973 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES)) { 2974 if (netif_msg_ifup(ugeth)) 2975 pr_err("Invalid largest External Lookup Key Size\n"); 2976 return -EINVAL; 2977 } 2978 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize = 2979 ug_info->largestexternallookupkeysize; 2980 size = sizeof(struct ucc_geth_thread_rx_pram); 2981 if (ug_info->rxExtendedFiltering) { 2982 size += THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING; 2983 if (ug_info->largestexternallookupkeysize == 2984 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_8_BYTES) 2985 size += 2986 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_8; 2987 if (ug_info->largestexternallookupkeysize == 2988 QE_FLTR_LARGEST_EXTERNAL_TABLE_LOOKUP_KEY_SIZE_16_BYTES) 2989 size += 2990 THREAD_RX_PRAM_ADDITIONAL_FOR_EXTENDED_FILTERING_16; 2991 } 2992 2993 if ((ret_val = fill_init_enet_entries(ugeth, &(ugeth-> 2994 p_init_enet_param_shadow->rxthread[0]), 2995 (u8) (numThreadsRxNumerical + 1) 2996 /* Rx needs one extra for terminator */ 2997 , size, UCC_GETH_THREAD_RX_PRAM_ALIGNMENT, 2998 ug_info->riscRx, 1)) != 0) { 2999 if (netif_msg_ifup(ugeth)) 3000 pr_err("Can not fill p_init_enet_param_shadow\n"); 3001 return ret_val; 3002 } 3003 3004 ugeth->p_init_enet_param_shadow->txglobal = 3005 ugeth->tx_glbl_pram_offset | ug_info->riscTx; 3006 if ((ret_val = 3007 fill_init_enet_entries(ugeth, 3008 &(ugeth->p_init_enet_param_shadow-> 3009 txthread[0]), numThreadsTxNumerical, 3010 sizeof(struct ucc_geth_thread_tx_pram), 3011 UCC_GETH_THREAD_TX_PRAM_ALIGNMENT, 3012 ug_info->riscTx, 0)) != 0) { 3013 if (netif_msg_ifup(ugeth)) 3014 pr_err("Can not fill p_init_enet_param_shadow\n"); 3015 return ret_val; 3016 } 3017 3018 /* Load Rx bds with buffers */ 3019 for (i = 0; i < ug_info->numQueuesRx; i++) { 3020 if ((ret_val = rx_bd_buffer_set(ugeth, (u8) i)) != 0) { 3021 if (netif_msg_ifup(ugeth)) 3022 pr_err("Can not fill Rx bds with buffers\n"); 3023 return ret_val; 3024 } 3025 } 3026 3027 /* Allocate InitEnet command parameter structure */ 3028 init_enet_pram_offset = qe_muram_alloc(sizeof(struct ucc_geth_init_pram), 4); 3029 if (IS_ERR_VALUE(init_enet_pram_offset)) { 3030 if (netif_msg_ifup(ugeth)) 3031 pr_err("Can not allocate DPRAM memory for p_init_enet_pram\n"); 3032 return -ENOMEM; 3033 } 3034 p_init_enet_pram = 3035 (struct ucc_geth_init_pram __iomem *) qe_muram_addr(init_enet_pram_offset); 3036 3037 /* Copy shadow InitEnet command parameter structure into PRAM */ 3038 out_8(&p_init_enet_pram->resinit1, 3039 ugeth->p_init_enet_param_shadow->resinit1); 3040 out_8(&p_init_enet_pram->resinit2, 3041 ugeth->p_init_enet_param_shadow->resinit2); 3042 out_8(&p_init_enet_pram->resinit3, 3043 ugeth->p_init_enet_param_shadow->resinit3); 3044 out_8(&p_init_enet_pram->resinit4, 3045 ugeth->p_init_enet_param_shadow->resinit4); 3046 out_be16(&p_init_enet_pram->resinit5, 3047 ugeth->p_init_enet_param_shadow->resinit5); 3048 out_8(&p_init_enet_pram->largestexternallookupkeysize, 3049 ugeth->p_init_enet_param_shadow->largestexternallookupkeysize); 3050 out_be32(&p_init_enet_pram->rgftgfrxglobal, 3051 ugeth->p_init_enet_param_shadow->rgftgfrxglobal); 3052 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_RX; i++) 3053 out_be32(&p_init_enet_pram->rxthread[i], 3054 ugeth->p_init_enet_param_shadow->rxthread[i]); 3055 out_be32(&p_init_enet_pram->txglobal, 3056 ugeth->p_init_enet_param_shadow->txglobal); 3057 for (i = 0; i < ENET_INIT_PARAM_MAX_ENTRIES_TX; i++) 3058 out_be32(&p_init_enet_pram->txthread[i], 3059 ugeth->p_init_enet_param_shadow->txthread[i]); 3060 3061 /* Issue QE command */ 3062 cecr_subblock = 3063 ucc_fast_get_qe_cr_subblock(ugeth->ug_info->uf_info.ucc_num); 3064 qe_issue_cmd(command, cecr_subblock, QE_CR_PROTOCOL_ETHERNET, 3065 init_enet_pram_offset); 3066 3067 /* Free InitEnet command parameter */ 3068 qe_muram_free(init_enet_pram_offset); 3069 3070 return 0; 3071 } 3072 3073 /* This is called by the kernel when a frame is ready for transmission. */ 3074 /* It is pointed to by the dev->hard_start_xmit function pointer */ 3075 static netdev_tx_t 3076 ucc_geth_start_xmit(struct sk_buff *skb, struct net_device *dev) 3077 { 3078 struct ucc_geth_private *ugeth = netdev_priv(dev); 3079 #ifdef CONFIG_UGETH_TX_ON_DEMAND 3080 struct ucc_fast_private *uccf; 3081 #endif 3082 u8 __iomem *bd; /* BD pointer */ 3083 u32 bd_status; 3084 u8 txQ = 0; 3085 unsigned long flags; 3086 3087 ugeth_vdbg("%s: IN", __func__); 3088 3089 netdev_sent_queue(dev, skb->len); 3090 spin_lock_irqsave(&ugeth->lock, flags); 3091 3092 dev->stats.tx_bytes += skb->len; 3093 3094 /* Start from the next BD that should be filled */ 3095 bd = ugeth->txBd[txQ]; 3096 bd_status = in_be32((u32 __iomem *)bd); 3097 /* Save the skb pointer so we can free it later */ 3098 ugeth->tx_skbuff[txQ][ugeth->skb_curtx[txQ]] = skb; 3099 3100 /* Update the current skb pointer (wrapping if this was the last) */ 3101 ugeth->skb_curtx[txQ] = 3102 (ugeth->skb_curtx[txQ] + 3103 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]); 3104 3105 /* set up the buffer descriptor */ 3106 out_be32(&((struct qe_bd __iomem *)bd)->buf, 3107 dma_map_single(ugeth->dev, skb->data, 3108 skb->len, DMA_TO_DEVICE)); 3109 3110 /* printk(KERN_DEBUG"skb->data is 0x%x\n",skb->data); */ 3111 3112 bd_status = (bd_status & T_W) | T_R | T_I | T_L | skb->len; 3113 3114 /* set bd status and length */ 3115 out_be32((u32 __iomem *)bd, bd_status); 3116 3117 /* Move to next BD in the ring */ 3118 if (!(bd_status & T_W)) 3119 bd += sizeof(struct qe_bd); 3120 else 3121 bd = ugeth->p_tx_bd_ring[txQ]; 3122 3123 /* If the next BD still needs to be cleaned up, then the bds 3124 are full. We need to tell the kernel to stop sending us stuff. */ 3125 if (bd == ugeth->confBd[txQ]) { 3126 if (!netif_queue_stopped(dev)) 3127 netif_stop_queue(dev); 3128 } 3129 3130 ugeth->txBd[txQ] = bd; 3131 3132 skb_tx_timestamp(skb); 3133 3134 if (ugeth->p_scheduler) { 3135 ugeth->cpucount[txQ]++; 3136 /* Indicate to QE that there are more Tx bds ready for 3137 transmission */ 3138 /* This is done by writing a running counter of the bd 3139 count to the scheduler PRAM. */ 3140 out_be16(ugeth->p_cpucount[txQ], ugeth->cpucount[txQ]); 3141 } 3142 3143 #ifdef CONFIG_UGETH_TX_ON_DEMAND 3144 uccf = ugeth->uccf; 3145 out_be16(uccf->p_utodr, UCC_FAST_TOD); 3146 #endif 3147 spin_unlock_irqrestore(&ugeth->lock, flags); 3148 3149 return NETDEV_TX_OK; 3150 } 3151 3152 static int ucc_geth_rx(struct ucc_geth_private *ugeth, u8 rxQ, int rx_work_limit) 3153 { 3154 struct sk_buff *skb; 3155 u8 __iomem *bd; 3156 u16 length, howmany = 0; 3157 u32 bd_status; 3158 u8 *bdBuffer; 3159 struct net_device *dev; 3160 3161 ugeth_vdbg("%s: IN", __func__); 3162 3163 dev = ugeth->ndev; 3164 3165 /* collect received buffers */ 3166 bd = ugeth->rxBd[rxQ]; 3167 3168 bd_status = in_be32((u32 __iomem *)bd); 3169 3170 /* while there are received buffers and BD is full (~R_E) */ 3171 while (!((bd_status & (R_E)) || (--rx_work_limit < 0))) { 3172 bdBuffer = (u8 *) in_be32(&((struct qe_bd __iomem *)bd)->buf); 3173 length = (u16) ((bd_status & BD_LENGTH_MASK) - 4); 3174 skb = ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]]; 3175 3176 /* determine whether buffer is first, last, first and last 3177 (single buffer frame) or middle (not first and not last) */ 3178 if (!skb || 3179 (!(bd_status & (R_F | R_L))) || 3180 (bd_status & R_ERRORS_FATAL)) { 3181 if (netif_msg_rx_err(ugeth)) 3182 pr_err("%d: ERROR!!! skb - 0x%08x\n", 3183 __LINE__, (u32)skb); 3184 dev_kfree_skb(skb); 3185 3186 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = NULL; 3187 dev->stats.rx_dropped++; 3188 } else { 3189 dev->stats.rx_packets++; 3190 howmany++; 3191 3192 /* Prep the skb for the packet */ 3193 skb_put(skb, length); 3194 3195 /* Tell the skb what kind of packet this is */ 3196 skb->protocol = eth_type_trans(skb, ugeth->ndev); 3197 3198 dev->stats.rx_bytes += length; 3199 /* Send the packet up the stack */ 3200 netif_receive_skb(skb); 3201 } 3202 3203 skb = get_new_skb(ugeth, bd); 3204 if (!skb) { 3205 if (netif_msg_rx_err(ugeth)) 3206 pr_warn("No Rx Data Buffer\n"); 3207 dev->stats.rx_dropped++; 3208 break; 3209 } 3210 3211 ugeth->rx_skbuff[rxQ][ugeth->skb_currx[rxQ]] = skb; 3212 3213 /* update to point at the next skb */ 3214 ugeth->skb_currx[rxQ] = 3215 (ugeth->skb_currx[rxQ] + 3216 1) & RX_RING_MOD_MASK(ugeth->ug_info->bdRingLenRx[rxQ]); 3217 3218 if (bd_status & R_W) 3219 bd = ugeth->p_rx_bd_ring[rxQ]; 3220 else 3221 bd += sizeof(struct qe_bd); 3222 3223 bd_status = in_be32((u32 __iomem *)bd); 3224 } 3225 3226 ugeth->rxBd[rxQ] = bd; 3227 return howmany; 3228 } 3229 3230 static int ucc_geth_tx(struct net_device *dev, u8 txQ) 3231 { 3232 /* Start from the next BD that should be filled */ 3233 struct ucc_geth_private *ugeth = netdev_priv(dev); 3234 unsigned int bytes_sent = 0; 3235 int howmany = 0; 3236 u8 __iomem *bd; /* BD pointer */ 3237 u32 bd_status; 3238 3239 bd = ugeth->confBd[txQ]; 3240 bd_status = in_be32((u32 __iomem *)bd); 3241 3242 /* Normal processing. */ 3243 while ((bd_status & T_R) == 0) { 3244 struct sk_buff *skb; 3245 3246 /* BD contains already transmitted buffer. */ 3247 /* Handle the transmitted buffer and release */ 3248 /* the BD to be used with the current frame */ 3249 3250 skb = ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]]; 3251 if (!skb) 3252 break; 3253 howmany++; 3254 bytes_sent += skb->len; 3255 dev->stats.tx_packets++; 3256 3257 dev_consume_skb_any(skb); 3258 3259 ugeth->tx_skbuff[txQ][ugeth->skb_dirtytx[txQ]] = NULL; 3260 ugeth->skb_dirtytx[txQ] = 3261 (ugeth->skb_dirtytx[txQ] + 3262 1) & TX_RING_MOD_MASK(ugeth->ug_info->bdRingLenTx[txQ]); 3263 3264 /* We freed a buffer, so now we can restart transmission */ 3265 if (netif_queue_stopped(dev)) 3266 netif_wake_queue(dev); 3267 3268 /* Advance the confirmation BD pointer */ 3269 if (!(bd_status & T_W)) 3270 bd += sizeof(struct qe_bd); 3271 else 3272 bd = ugeth->p_tx_bd_ring[txQ]; 3273 bd_status = in_be32((u32 __iomem *)bd); 3274 } 3275 ugeth->confBd[txQ] = bd; 3276 netdev_completed_queue(dev, howmany, bytes_sent); 3277 return 0; 3278 } 3279 3280 static int ucc_geth_poll(struct napi_struct *napi, int budget) 3281 { 3282 struct ucc_geth_private *ugeth = container_of(napi, struct ucc_geth_private, napi); 3283 struct ucc_geth_info *ug_info; 3284 int howmany, i; 3285 3286 ug_info = ugeth->ug_info; 3287 3288 /* Tx event processing */ 3289 spin_lock(&ugeth->lock); 3290 for (i = 0; i < ug_info->numQueuesTx; i++) 3291 ucc_geth_tx(ugeth->ndev, i); 3292 spin_unlock(&ugeth->lock); 3293 3294 howmany = 0; 3295 for (i = 0; i < ug_info->numQueuesRx; i++) 3296 howmany += ucc_geth_rx(ugeth, i, budget - howmany); 3297 3298 if (howmany < budget) { 3299 napi_complete_done(napi, howmany); 3300 setbits32(ugeth->uccf->p_uccm, UCCE_RX_EVENTS | UCCE_TX_EVENTS); 3301 } 3302 3303 return howmany; 3304 } 3305 3306 static irqreturn_t ucc_geth_irq_handler(int irq, void *info) 3307 { 3308 struct net_device *dev = info; 3309 struct ucc_geth_private *ugeth = netdev_priv(dev); 3310 struct ucc_fast_private *uccf; 3311 struct ucc_geth_info *ug_info; 3312 register u32 ucce; 3313 register u32 uccm; 3314 3315 ugeth_vdbg("%s: IN", __func__); 3316 3317 uccf = ugeth->uccf; 3318 ug_info = ugeth->ug_info; 3319 3320 /* read and clear events */ 3321 ucce = (u32) in_be32(uccf->p_ucce); 3322 uccm = (u32) in_be32(uccf->p_uccm); 3323 ucce &= uccm; 3324 out_be32(uccf->p_ucce, ucce); 3325 3326 /* check for receive events that require processing */ 3327 if (ucce & (UCCE_RX_EVENTS | UCCE_TX_EVENTS)) { 3328 if (napi_schedule_prep(&ugeth->napi)) { 3329 uccm &= ~(UCCE_RX_EVENTS | UCCE_TX_EVENTS); 3330 out_be32(uccf->p_uccm, uccm); 3331 __napi_schedule(&ugeth->napi); 3332 } 3333 } 3334 3335 /* Errors and other events */ 3336 if (ucce & UCCE_OTHER) { 3337 if (ucce & UCC_GETH_UCCE_BSY) 3338 dev->stats.rx_errors++; 3339 if (ucce & UCC_GETH_UCCE_TXE) 3340 dev->stats.tx_errors++; 3341 } 3342 3343 return IRQ_HANDLED; 3344 } 3345 3346 #ifdef CONFIG_NET_POLL_CONTROLLER 3347 /* 3348 * Polling 'interrupt' - used by things like netconsole to send skbs 3349 * without having to re-enable interrupts. It's not called while 3350 * the interrupt routine is executing. 3351 */ 3352 static void ucc_netpoll(struct net_device *dev) 3353 { 3354 struct ucc_geth_private *ugeth = netdev_priv(dev); 3355 int irq = ugeth->ug_info->uf_info.irq; 3356 3357 disable_irq(irq); 3358 ucc_geth_irq_handler(irq, dev); 3359 enable_irq(irq); 3360 } 3361 #endif /* CONFIG_NET_POLL_CONTROLLER */ 3362 3363 static int ucc_geth_set_mac_addr(struct net_device *dev, void *p) 3364 { 3365 struct ucc_geth_private *ugeth = netdev_priv(dev); 3366 struct sockaddr *addr = p; 3367 3368 if (!is_valid_ether_addr(addr->sa_data)) 3369 return -EADDRNOTAVAIL; 3370 3371 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 3372 3373 /* 3374 * If device is not running, we will set mac addr register 3375 * when opening the device. 3376 */ 3377 if (!netif_running(dev)) 3378 return 0; 3379 3380 spin_lock_irq(&ugeth->lock); 3381 init_mac_station_addr_regs(dev->dev_addr[0], 3382 dev->dev_addr[1], 3383 dev->dev_addr[2], 3384 dev->dev_addr[3], 3385 dev->dev_addr[4], 3386 dev->dev_addr[5], 3387 &ugeth->ug_regs->macstnaddr1, 3388 &ugeth->ug_regs->macstnaddr2); 3389 spin_unlock_irq(&ugeth->lock); 3390 3391 return 0; 3392 } 3393 3394 static int ucc_geth_init_mac(struct ucc_geth_private *ugeth) 3395 { 3396 struct net_device *dev = ugeth->ndev; 3397 int err; 3398 3399 err = ucc_struct_init(ugeth); 3400 if (err) { 3401 netif_err(ugeth, ifup, dev, "Cannot configure internal struct, aborting\n"); 3402 goto err; 3403 } 3404 3405 err = ucc_geth_startup(ugeth); 3406 if (err) { 3407 netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n"); 3408 goto err; 3409 } 3410 3411 err = adjust_enet_interface(ugeth); 3412 if (err) { 3413 netif_err(ugeth, ifup, dev, "Cannot configure net device, aborting\n"); 3414 goto err; 3415 } 3416 3417 /* Set MACSTNADDR1, MACSTNADDR2 */ 3418 /* For more details see the hardware spec. */ 3419 init_mac_station_addr_regs(dev->dev_addr[0], 3420 dev->dev_addr[1], 3421 dev->dev_addr[2], 3422 dev->dev_addr[3], 3423 dev->dev_addr[4], 3424 dev->dev_addr[5], 3425 &ugeth->ug_regs->macstnaddr1, 3426 &ugeth->ug_regs->macstnaddr2); 3427 3428 err = ugeth_enable(ugeth, COMM_DIR_RX_AND_TX); 3429 if (err) { 3430 netif_err(ugeth, ifup, dev, "Cannot enable net device, aborting\n"); 3431 goto err; 3432 } 3433 3434 return 0; 3435 err: 3436 ucc_geth_stop(ugeth); 3437 return err; 3438 } 3439 3440 /* Called when something needs to use the ethernet device */ 3441 /* Returns 0 for success. */ 3442 static int ucc_geth_open(struct net_device *dev) 3443 { 3444 struct ucc_geth_private *ugeth = netdev_priv(dev); 3445 int err; 3446 3447 ugeth_vdbg("%s: IN", __func__); 3448 3449 /* Test station address */ 3450 if (dev->dev_addr[0] & ENET_GROUP_ADDR) { 3451 netif_err(ugeth, ifup, dev, 3452 "Multicast address used for station address - is this what you wanted?\n"); 3453 return -EINVAL; 3454 } 3455 3456 err = init_phy(dev); 3457 if (err) { 3458 netif_err(ugeth, ifup, dev, "Cannot initialize PHY, aborting\n"); 3459 return err; 3460 } 3461 3462 err = ucc_geth_init_mac(ugeth); 3463 if (err) { 3464 netif_err(ugeth, ifup, dev, "Cannot initialize MAC, aborting\n"); 3465 goto err; 3466 } 3467 3468 err = request_irq(ugeth->ug_info->uf_info.irq, ucc_geth_irq_handler, 3469 0, "UCC Geth", dev); 3470 if (err) { 3471 netif_err(ugeth, ifup, dev, "Cannot get IRQ for net device, aborting\n"); 3472 goto err; 3473 } 3474 3475 phy_start(ugeth->phydev); 3476 napi_enable(&ugeth->napi); 3477 netdev_reset_queue(dev); 3478 netif_start_queue(dev); 3479 3480 device_set_wakeup_capable(&dev->dev, 3481 qe_alive_during_sleep() || ugeth->phydev->irq); 3482 device_set_wakeup_enable(&dev->dev, ugeth->wol_en); 3483 3484 return err; 3485 3486 err: 3487 ucc_geth_stop(ugeth); 3488 return err; 3489 } 3490 3491 /* Stops the kernel queue, and halts the controller */ 3492 static int ucc_geth_close(struct net_device *dev) 3493 { 3494 struct ucc_geth_private *ugeth = netdev_priv(dev); 3495 3496 ugeth_vdbg("%s: IN", __func__); 3497 3498 napi_disable(&ugeth->napi); 3499 3500 cancel_work_sync(&ugeth->timeout_work); 3501 ucc_geth_stop(ugeth); 3502 phy_disconnect(ugeth->phydev); 3503 ugeth->phydev = NULL; 3504 3505 free_irq(ugeth->ug_info->uf_info.irq, ugeth->ndev); 3506 3507 netif_stop_queue(dev); 3508 netdev_reset_queue(dev); 3509 3510 return 0; 3511 } 3512 3513 /* Reopen device. This will reset the MAC and PHY. */ 3514 static void ucc_geth_timeout_work(struct work_struct *work) 3515 { 3516 struct ucc_geth_private *ugeth; 3517 struct net_device *dev; 3518 3519 ugeth = container_of(work, struct ucc_geth_private, timeout_work); 3520 dev = ugeth->ndev; 3521 3522 ugeth_vdbg("%s: IN", __func__); 3523 3524 dev->stats.tx_errors++; 3525 3526 ugeth_dump_regs(ugeth); 3527 3528 if (dev->flags & IFF_UP) { 3529 /* 3530 * Must reset MAC *and* PHY. This is done by reopening 3531 * the device. 3532 */ 3533 netif_tx_stop_all_queues(dev); 3534 ucc_geth_stop(ugeth); 3535 ucc_geth_init_mac(ugeth); 3536 /* Must start PHY here */ 3537 phy_start(ugeth->phydev); 3538 netif_tx_start_all_queues(dev); 3539 } 3540 3541 netif_tx_schedule_all(dev); 3542 } 3543 3544 /* 3545 * ucc_geth_timeout gets called when a packet has not been 3546 * transmitted after a set amount of time. 3547 */ 3548 static void ucc_geth_timeout(struct net_device *dev, unsigned int txqueue) 3549 { 3550 struct ucc_geth_private *ugeth = netdev_priv(dev); 3551 3552 schedule_work(&ugeth->timeout_work); 3553 } 3554 3555 3556 #ifdef CONFIG_PM 3557 3558 static int ucc_geth_suspend(struct platform_device *ofdev, pm_message_t state) 3559 { 3560 struct net_device *ndev = platform_get_drvdata(ofdev); 3561 struct ucc_geth_private *ugeth = netdev_priv(ndev); 3562 3563 if (!netif_running(ndev)) 3564 return 0; 3565 3566 netif_device_detach(ndev); 3567 napi_disable(&ugeth->napi); 3568 3569 /* 3570 * Disable the controller, otherwise we'll wakeup on any network 3571 * activity. 3572 */ 3573 ugeth_disable(ugeth, COMM_DIR_RX_AND_TX); 3574 3575 if (ugeth->wol_en & WAKE_MAGIC) { 3576 setbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD); 3577 setbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE); 3578 ucc_fast_enable(ugeth->uccf, COMM_DIR_RX_AND_TX); 3579 } else if (!(ugeth->wol_en & WAKE_PHY)) { 3580 phy_stop(ugeth->phydev); 3581 } 3582 3583 return 0; 3584 } 3585 3586 static int ucc_geth_resume(struct platform_device *ofdev) 3587 { 3588 struct net_device *ndev = platform_get_drvdata(ofdev); 3589 struct ucc_geth_private *ugeth = netdev_priv(ndev); 3590 int err; 3591 3592 if (!netif_running(ndev)) 3593 return 0; 3594 3595 if (qe_alive_during_sleep()) { 3596 if (ugeth->wol_en & WAKE_MAGIC) { 3597 ucc_fast_disable(ugeth->uccf, COMM_DIR_RX_AND_TX); 3598 clrbits32(&ugeth->ug_regs->maccfg2, MACCFG2_MPE); 3599 clrbits32(ugeth->uccf->p_uccm, UCC_GETH_UCCE_MPD); 3600 } 3601 ugeth_enable(ugeth, COMM_DIR_RX_AND_TX); 3602 } else { 3603 /* 3604 * Full reinitialization is required if QE shuts down 3605 * during sleep. 3606 */ 3607 ucc_geth_memclean(ugeth); 3608 3609 err = ucc_geth_init_mac(ugeth); 3610 if (err) { 3611 netdev_err(ndev, "Cannot initialize MAC, aborting\n"); 3612 return err; 3613 } 3614 } 3615 3616 ugeth->oldlink = 0; 3617 ugeth->oldspeed = 0; 3618 ugeth->oldduplex = -1; 3619 3620 phy_stop(ugeth->phydev); 3621 phy_start(ugeth->phydev); 3622 3623 napi_enable(&ugeth->napi); 3624 netif_device_attach(ndev); 3625 3626 return 0; 3627 } 3628 3629 #else 3630 #define ucc_geth_suspend NULL 3631 #define ucc_geth_resume NULL 3632 #endif 3633 3634 static phy_interface_t to_phy_interface(const char *phy_connection_type) 3635 { 3636 if (strcasecmp(phy_connection_type, "mii") == 0) 3637 return PHY_INTERFACE_MODE_MII; 3638 if (strcasecmp(phy_connection_type, "gmii") == 0) 3639 return PHY_INTERFACE_MODE_GMII; 3640 if (strcasecmp(phy_connection_type, "tbi") == 0) 3641 return PHY_INTERFACE_MODE_TBI; 3642 if (strcasecmp(phy_connection_type, "rmii") == 0) 3643 return PHY_INTERFACE_MODE_RMII; 3644 if (strcasecmp(phy_connection_type, "rgmii") == 0) 3645 return PHY_INTERFACE_MODE_RGMII; 3646 if (strcasecmp(phy_connection_type, "rgmii-id") == 0) 3647 return PHY_INTERFACE_MODE_RGMII_ID; 3648 if (strcasecmp(phy_connection_type, "rgmii-txid") == 0) 3649 return PHY_INTERFACE_MODE_RGMII_TXID; 3650 if (strcasecmp(phy_connection_type, "rgmii-rxid") == 0) 3651 return PHY_INTERFACE_MODE_RGMII_RXID; 3652 if (strcasecmp(phy_connection_type, "rtbi") == 0) 3653 return PHY_INTERFACE_MODE_RTBI; 3654 if (strcasecmp(phy_connection_type, "sgmii") == 0) 3655 return PHY_INTERFACE_MODE_SGMII; 3656 3657 return PHY_INTERFACE_MODE_MII; 3658 } 3659 3660 static int ucc_geth_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3661 { 3662 struct ucc_geth_private *ugeth = netdev_priv(dev); 3663 3664 if (!netif_running(dev)) 3665 return -EINVAL; 3666 3667 if (!ugeth->phydev) 3668 return -ENODEV; 3669 3670 return phy_mii_ioctl(ugeth->phydev, rq, cmd); 3671 } 3672 3673 static const struct net_device_ops ucc_geth_netdev_ops = { 3674 .ndo_open = ucc_geth_open, 3675 .ndo_stop = ucc_geth_close, 3676 .ndo_start_xmit = ucc_geth_start_xmit, 3677 .ndo_validate_addr = eth_validate_addr, 3678 .ndo_change_carrier = fixed_phy_change_carrier, 3679 .ndo_set_mac_address = ucc_geth_set_mac_addr, 3680 .ndo_set_rx_mode = ucc_geth_set_multi, 3681 .ndo_tx_timeout = ucc_geth_timeout, 3682 .ndo_do_ioctl = ucc_geth_ioctl, 3683 #ifdef CONFIG_NET_POLL_CONTROLLER 3684 .ndo_poll_controller = ucc_netpoll, 3685 #endif 3686 }; 3687 3688 static int ucc_geth_probe(struct platform_device* ofdev) 3689 { 3690 struct device *device = &ofdev->dev; 3691 struct device_node *np = ofdev->dev.of_node; 3692 struct net_device *dev = NULL; 3693 struct ucc_geth_private *ugeth = NULL; 3694 struct ucc_geth_info *ug_info; 3695 struct resource res; 3696 int err, ucc_num, max_speed = 0; 3697 const unsigned int *prop; 3698 const char *sprop; 3699 const void *mac_addr; 3700 phy_interface_t phy_interface; 3701 static const int enet_to_speed[] = { 3702 SPEED_10, SPEED_10, SPEED_10, 3703 SPEED_100, SPEED_100, SPEED_100, 3704 SPEED_1000, SPEED_1000, SPEED_1000, SPEED_1000, 3705 }; 3706 static const phy_interface_t enet_to_phy_interface[] = { 3707 PHY_INTERFACE_MODE_MII, PHY_INTERFACE_MODE_RMII, 3708 PHY_INTERFACE_MODE_RGMII, PHY_INTERFACE_MODE_MII, 3709 PHY_INTERFACE_MODE_RMII, PHY_INTERFACE_MODE_RGMII, 3710 PHY_INTERFACE_MODE_GMII, PHY_INTERFACE_MODE_RGMII, 3711 PHY_INTERFACE_MODE_TBI, PHY_INTERFACE_MODE_RTBI, 3712 PHY_INTERFACE_MODE_SGMII, 3713 }; 3714 3715 ugeth_vdbg("%s: IN", __func__); 3716 3717 prop = of_get_property(np, "cell-index", NULL); 3718 if (!prop) { 3719 prop = of_get_property(np, "device-id", NULL); 3720 if (!prop) 3721 return -ENODEV; 3722 } 3723 3724 ucc_num = *prop - 1; 3725 if ((ucc_num < 0) || (ucc_num > 7)) 3726 return -ENODEV; 3727 3728 ug_info = &ugeth_info[ucc_num]; 3729 if (ug_info == NULL) { 3730 if (netif_msg_probe(&debug)) 3731 pr_err("[%d] Missing additional data!\n", ucc_num); 3732 return -ENODEV; 3733 } 3734 3735 ug_info->uf_info.ucc_num = ucc_num; 3736 3737 sprop = of_get_property(np, "rx-clock-name", NULL); 3738 if (sprop) { 3739 ug_info->uf_info.rx_clock = qe_clock_source(sprop); 3740 if ((ug_info->uf_info.rx_clock < QE_CLK_NONE) || 3741 (ug_info->uf_info.rx_clock > QE_CLK24)) { 3742 pr_err("invalid rx-clock-name property\n"); 3743 return -EINVAL; 3744 } 3745 } else { 3746 prop = of_get_property(np, "rx-clock", NULL); 3747 if (!prop) { 3748 /* If both rx-clock-name and rx-clock are missing, 3749 we want to tell people to use rx-clock-name. */ 3750 pr_err("missing rx-clock-name property\n"); 3751 return -EINVAL; 3752 } 3753 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) { 3754 pr_err("invalid rx-clock property\n"); 3755 return -EINVAL; 3756 } 3757 ug_info->uf_info.rx_clock = *prop; 3758 } 3759 3760 sprop = of_get_property(np, "tx-clock-name", NULL); 3761 if (sprop) { 3762 ug_info->uf_info.tx_clock = qe_clock_source(sprop); 3763 if ((ug_info->uf_info.tx_clock < QE_CLK_NONE) || 3764 (ug_info->uf_info.tx_clock > QE_CLK24)) { 3765 pr_err("invalid tx-clock-name property\n"); 3766 return -EINVAL; 3767 } 3768 } else { 3769 prop = of_get_property(np, "tx-clock", NULL); 3770 if (!prop) { 3771 pr_err("missing tx-clock-name property\n"); 3772 return -EINVAL; 3773 } 3774 if ((*prop < QE_CLK_NONE) || (*prop > QE_CLK24)) { 3775 pr_err("invalid tx-clock property\n"); 3776 return -EINVAL; 3777 } 3778 ug_info->uf_info.tx_clock = *prop; 3779 } 3780 3781 err = of_address_to_resource(np, 0, &res); 3782 if (err) 3783 return -EINVAL; 3784 3785 ug_info->uf_info.regs = res.start; 3786 ug_info->uf_info.irq = irq_of_parse_and_map(np, 0); 3787 3788 ug_info->phy_node = of_parse_phandle(np, "phy-handle", 0); 3789 if (!ug_info->phy_node && of_phy_is_fixed_link(np)) { 3790 /* 3791 * In the case of a fixed PHY, the DT node associated 3792 * to the PHY is the Ethernet MAC DT node. 3793 */ 3794 err = of_phy_register_fixed_link(np); 3795 if (err) 3796 return err; 3797 ug_info->phy_node = of_node_get(np); 3798 } 3799 3800 /* Find the TBI PHY node. If it's not there, we don't support SGMII */ 3801 ug_info->tbi_node = of_parse_phandle(np, "tbi-handle", 0); 3802 3803 /* get the phy interface type, or default to MII */ 3804 prop = of_get_property(np, "phy-connection-type", NULL); 3805 if (!prop) { 3806 /* handle interface property present in old trees */ 3807 prop = of_get_property(ug_info->phy_node, "interface", NULL); 3808 if (prop != NULL) { 3809 phy_interface = enet_to_phy_interface[*prop]; 3810 max_speed = enet_to_speed[*prop]; 3811 } else 3812 phy_interface = PHY_INTERFACE_MODE_MII; 3813 } else { 3814 phy_interface = to_phy_interface((const char *)prop); 3815 } 3816 3817 /* get speed, or derive from PHY interface */ 3818 if (max_speed == 0) 3819 switch (phy_interface) { 3820 case PHY_INTERFACE_MODE_GMII: 3821 case PHY_INTERFACE_MODE_RGMII: 3822 case PHY_INTERFACE_MODE_RGMII_ID: 3823 case PHY_INTERFACE_MODE_RGMII_RXID: 3824 case PHY_INTERFACE_MODE_RGMII_TXID: 3825 case PHY_INTERFACE_MODE_TBI: 3826 case PHY_INTERFACE_MODE_RTBI: 3827 case PHY_INTERFACE_MODE_SGMII: 3828 max_speed = SPEED_1000; 3829 break; 3830 default: 3831 max_speed = SPEED_100; 3832 break; 3833 } 3834 3835 if (max_speed == SPEED_1000) { 3836 unsigned int snums = qe_get_num_of_snums(); 3837 3838 /* configure muram FIFOs for gigabit operation */ 3839 ug_info->uf_info.urfs = UCC_GETH_URFS_GIGA_INIT; 3840 ug_info->uf_info.urfet = UCC_GETH_URFET_GIGA_INIT; 3841 ug_info->uf_info.urfset = UCC_GETH_URFSET_GIGA_INIT; 3842 ug_info->uf_info.utfs = UCC_GETH_UTFS_GIGA_INIT; 3843 ug_info->uf_info.utfet = UCC_GETH_UTFET_GIGA_INIT; 3844 ug_info->uf_info.utftt = UCC_GETH_UTFTT_GIGA_INIT; 3845 ug_info->numThreadsTx = UCC_GETH_NUM_OF_THREADS_4; 3846 3847 /* If QE's snum number is 46/76 which means we need to support 3848 * 4 UECs at 1000Base-T simultaneously, we need to allocate 3849 * more Threads to Rx. 3850 */ 3851 if ((snums == 76) || (snums == 46)) 3852 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_6; 3853 else 3854 ug_info->numThreadsRx = UCC_GETH_NUM_OF_THREADS_4; 3855 } 3856 3857 if (netif_msg_probe(&debug)) 3858 pr_info("UCC%1d at 0x%8llx (irq = %d)\n", 3859 ug_info->uf_info.ucc_num + 1, 3860 (u64)ug_info->uf_info.regs, 3861 ug_info->uf_info.irq); 3862 3863 /* Create an ethernet device instance */ 3864 dev = alloc_etherdev(sizeof(*ugeth)); 3865 3866 if (dev == NULL) { 3867 err = -ENOMEM; 3868 goto err_deregister_fixed_link; 3869 } 3870 3871 ugeth = netdev_priv(dev); 3872 spin_lock_init(&ugeth->lock); 3873 3874 /* Create CQs for hash tables */ 3875 INIT_LIST_HEAD(&ugeth->group_hash_q); 3876 INIT_LIST_HEAD(&ugeth->ind_hash_q); 3877 3878 dev_set_drvdata(device, dev); 3879 3880 /* Set the dev->base_addr to the gfar reg region */ 3881 dev->base_addr = (unsigned long)(ug_info->uf_info.regs); 3882 3883 SET_NETDEV_DEV(dev, device); 3884 3885 /* Fill in the dev structure */ 3886 uec_set_ethtool_ops(dev); 3887 dev->netdev_ops = &ucc_geth_netdev_ops; 3888 dev->watchdog_timeo = TX_TIMEOUT; 3889 INIT_WORK(&ugeth->timeout_work, ucc_geth_timeout_work); 3890 netif_napi_add(dev, &ugeth->napi, ucc_geth_poll, 64); 3891 dev->mtu = 1500; 3892 3893 ugeth->msg_enable = netif_msg_init(debug.msg_enable, UGETH_MSG_DEFAULT); 3894 ugeth->phy_interface = phy_interface; 3895 ugeth->max_speed = max_speed; 3896 3897 /* Carrier starts down, phylib will bring it up */ 3898 netif_carrier_off(dev); 3899 3900 err = register_netdev(dev); 3901 if (err) { 3902 if (netif_msg_probe(ugeth)) 3903 pr_err("%s: Cannot register net device, aborting\n", 3904 dev->name); 3905 goto err_free_netdev; 3906 } 3907 3908 mac_addr = of_get_mac_address(np); 3909 if (!IS_ERR(mac_addr)) 3910 ether_addr_copy(dev->dev_addr, mac_addr); 3911 3912 ugeth->ug_info = ug_info; 3913 ugeth->dev = device; 3914 ugeth->ndev = dev; 3915 ugeth->node = np; 3916 3917 return 0; 3918 3919 err_free_netdev: 3920 free_netdev(dev); 3921 err_deregister_fixed_link: 3922 if (of_phy_is_fixed_link(np)) 3923 of_phy_deregister_fixed_link(np); 3924 of_node_put(ug_info->tbi_node); 3925 of_node_put(ug_info->phy_node); 3926 3927 return err; 3928 } 3929 3930 static int ucc_geth_remove(struct platform_device* ofdev) 3931 { 3932 struct net_device *dev = platform_get_drvdata(ofdev); 3933 struct ucc_geth_private *ugeth = netdev_priv(dev); 3934 struct device_node *np = ofdev->dev.of_node; 3935 3936 unregister_netdev(dev); 3937 free_netdev(dev); 3938 ucc_geth_memclean(ugeth); 3939 if (of_phy_is_fixed_link(np)) 3940 of_phy_deregister_fixed_link(np); 3941 of_node_put(ugeth->ug_info->tbi_node); 3942 of_node_put(ugeth->ug_info->phy_node); 3943 3944 return 0; 3945 } 3946 3947 static const struct of_device_id ucc_geth_match[] = { 3948 { 3949 .type = "network", 3950 .compatible = "ucc_geth", 3951 }, 3952 {}, 3953 }; 3954 3955 MODULE_DEVICE_TABLE(of, ucc_geth_match); 3956 3957 static struct platform_driver ucc_geth_driver = { 3958 .driver = { 3959 .name = DRV_NAME, 3960 .of_match_table = ucc_geth_match, 3961 }, 3962 .probe = ucc_geth_probe, 3963 .remove = ucc_geth_remove, 3964 .suspend = ucc_geth_suspend, 3965 .resume = ucc_geth_resume, 3966 }; 3967 3968 static int __init ucc_geth_init(void) 3969 { 3970 int i, ret; 3971 3972 if (netif_msg_drv(&debug)) 3973 pr_info(DRV_DESC "\n"); 3974 for (i = 0; i < 8; i++) 3975 memcpy(&(ugeth_info[i]), &ugeth_primary_info, 3976 sizeof(ugeth_primary_info)); 3977 3978 ret = platform_driver_register(&ucc_geth_driver); 3979 3980 return ret; 3981 } 3982 3983 static void __exit ucc_geth_exit(void) 3984 { 3985 platform_driver_unregister(&ucc_geth_driver); 3986 } 3987 3988 module_init(ucc_geth_init); 3989 module_exit(ucc_geth_exit); 3990 3991 MODULE_AUTHOR("Freescale Semiconductor, Inc"); 3992 MODULE_DESCRIPTION(DRV_DESC); 3993 MODULE_VERSION(DRV_VERSION); 3994 MODULE_LICENSE("GPL"); 3995