1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* drivers/net/ethernet/freescale/gianfar.c
3  *
4  * Gianfar Ethernet Driver
5  * This driver is designed for the non-CPM ethernet controllers
6  * on the 85xx and 83xx family of integrated processors
7  * Based on 8260_io/fcc_enet.c
8  *
9  * Author: Andy Fleming
10  * Maintainer: Kumar Gala
11  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
12  *
13  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
14  * Copyright 2007 MontaVista Software, Inc.
15  *
16  *  Gianfar:  AKA Lambda Draconis, "Dragon"
17  *  RA 11 31 24.2
18  *  Dec +69 19 52
19  *  V 3.84
20  *  B-V +1.62
21  *
22  *  Theory of operation
23  *
24  *  The driver is initialized through of_device. Configuration information
25  *  is therefore conveyed through an OF-style device tree.
26  *
27  *  The Gianfar Ethernet Controller uses a ring of buffer
28  *  descriptors.  The beginning is indicated by a register
29  *  pointing to the physical address of the start of the ring.
30  *  The end is determined by a "wrap" bit being set in the
31  *  last descriptor of the ring.
32  *
33  *  When a packet is received, the RXF bit in the
34  *  IEVENT register is set, triggering an interrupt when the
35  *  corresponding bit in the IMASK register is also set (if
36  *  interrupt coalescing is active, then the interrupt may not
37  *  happen immediately, but will wait until either a set number
38  *  of frames or amount of time have passed).  In NAPI, the
39  *  interrupt handler will signal there is work to be done, and
40  *  exit. This method will start at the last known empty
41  *  descriptor, and process every subsequent descriptor until there
42  *  are none left with data (NAPI will stop after a set number of
43  *  packets to give time to other tasks, but will eventually
44  *  process all the packets).  The data arrives inside a
45  *  pre-allocated skb, and so after the skb is passed up to the
46  *  stack, a new skb must be allocated, and the address field in
47  *  the buffer descriptor must be updated to indicate this new
48  *  skb.
49  *
50  *  When the kernel requests that a packet be transmitted, the
51  *  driver starts where it left off last time, and points the
52  *  descriptor at the buffer which was passed in.  The driver
53  *  then informs the DMA engine that there are packets ready to
54  *  be transmitted.  Once the controller is finished transmitting
55  *  the packet, an interrupt may be triggered (under the same
56  *  conditions as for reception, but depending on the TXF bit).
57  *  The driver then cleans up the buffer.
58  */
59 
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61 #define DEBUG
62 
63 #include <linux/kernel.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/unistd.h>
67 #include <linux/slab.h>
68 #include <linux/interrupt.h>
69 #include <linux/delay.h>
70 #include <linux/netdevice.h>
71 #include <linux/etherdevice.h>
72 #include <linux/skbuff.h>
73 #include <linux/if_vlan.h>
74 #include <linux/spinlock.h>
75 #include <linux/mm.h>
76 #include <linux/of_address.h>
77 #include <linux/of_irq.h>
78 #include <linux/of_mdio.h>
79 #include <linux/of_platform.h>
80 #include <linux/ip.h>
81 #include <linux/tcp.h>
82 #include <linux/udp.h>
83 #include <linux/in.h>
84 #include <linux/net_tstamp.h>
85 
86 #include <asm/io.h>
87 #ifdef CONFIG_PPC
88 #include <asm/reg.h>
89 #include <asm/mpc85xx.h>
90 #endif
91 #include <asm/irq.h>
92 #include <linux/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101 
102 #include "gianfar.h"
103 
104 #define TX_TIMEOUT      (5*HZ)
105 
106 MODULE_AUTHOR("Freescale Semiconductor, Inc");
107 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
108 MODULE_LICENSE("GPL");
109 
110 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
111 			    dma_addr_t buf)
112 {
113 	u32 lstatus;
114 
115 	bdp->bufPtr = cpu_to_be32(buf);
116 
117 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
118 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
119 		lstatus |= BD_LFLAG(RXBD_WRAP);
120 
121 	gfar_wmb();
122 
123 	bdp->lstatus = cpu_to_be32(lstatus);
124 }
125 
126 static void gfar_init_tx_rx_base(struct gfar_private *priv)
127 {
128 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
129 	u32 __iomem *baddr;
130 	int i;
131 
132 	baddr = &regs->tbase0;
133 	for (i = 0; i < priv->num_tx_queues; i++) {
134 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
135 		baddr += 2;
136 	}
137 
138 	baddr = &regs->rbase0;
139 	for (i = 0; i < priv->num_rx_queues; i++) {
140 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
141 		baddr += 2;
142 	}
143 }
144 
145 static void gfar_init_rqprm(struct gfar_private *priv)
146 {
147 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
148 	u32 __iomem *baddr;
149 	int i;
150 
151 	baddr = &regs->rqprm0;
152 	for (i = 0; i < priv->num_rx_queues; i++) {
153 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
154 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
155 		baddr++;
156 	}
157 }
158 
159 static void gfar_rx_offload_en(struct gfar_private *priv)
160 {
161 	/* set this when rx hw offload (TOE) functions are being used */
162 	priv->uses_rxfcb = 0;
163 
164 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
165 		priv->uses_rxfcb = 1;
166 
167 	if (priv->hwts_rx_en || priv->rx_filer_enable)
168 		priv->uses_rxfcb = 1;
169 }
170 
171 static void gfar_mac_rx_config(struct gfar_private *priv)
172 {
173 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
174 	u32 rctrl = 0;
175 
176 	if (priv->rx_filer_enable) {
177 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
178 		/* Program the RIR0 reg with the required distribution */
179 		if (priv->poll_mode == GFAR_SQ_POLLING)
180 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
181 		else /* GFAR_MQ_POLLING */
182 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
183 	}
184 
185 	/* Restore PROMISC mode */
186 	if (priv->ndev->flags & IFF_PROMISC)
187 		rctrl |= RCTRL_PROM;
188 
189 	if (priv->ndev->features & NETIF_F_RXCSUM)
190 		rctrl |= RCTRL_CHECKSUMMING;
191 
192 	if (priv->extended_hash)
193 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
194 
195 	if (priv->padding) {
196 		rctrl &= ~RCTRL_PAL_MASK;
197 		rctrl |= RCTRL_PADDING(priv->padding);
198 	}
199 
200 	/* Enable HW time stamping if requested from user space */
201 	if (priv->hwts_rx_en)
202 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
203 
204 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
205 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
206 
207 	/* Clear the LFC bit */
208 	gfar_write(&regs->rctrl, rctrl);
209 	/* Init flow control threshold values */
210 	gfar_init_rqprm(priv);
211 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
212 	rctrl |= RCTRL_LFC;
213 
214 	/* Init rctrl based on our settings */
215 	gfar_write(&regs->rctrl, rctrl);
216 }
217 
218 static void gfar_mac_tx_config(struct gfar_private *priv)
219 {
220 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
221 	u32 tctrl = 0;
222 
223 	if (priv->ndev->features & NETIF_F_IP_CSUM)
224 		tctrl |= TCTRL_INIT_CSUM;
225 
226 	if (priv->prio_sched_en)
227 		tctrl |= TCTRL_TXSCHED_PRIO;
228 	else {
229 		tctrl |= TCTRL_TXSCHED_WRRS;
230 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
231 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
232 	}
233 
234 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
235 		tctrl |= TCTRL_VLINS;
236 
237 	gfar_write(&regs->tctrl, tctrl);
238 }
239 
240 static void gfar_configure_coalescing(struct gfar_private *priv,
241 			       unsigned long tx_mask, unsigned long rx_mask)
242 {
243 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
244 	u32 __iomem *baddr;
245 
246 	if (priv->mode == MQ_MG_MODE) {
247 		int i = 0;
248 
249 		baddr = &regs->txic0;
250 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
251 			gfar_write(baddr + i, 0);
252 			if (likely(priv->tx_queue[i]->txcoalescing))
253 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
254 		}
255 
256 		baddr = &regs->rxic0;
257 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
258 			gfar_write(baddr + i, 0);
259 			if (likely(priv->rx_queue[i]->rxcoalescing))
260 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
261 		}
262 	} else {
263 		/* Backward compatible case -- even if we enable
264 		 * multiple queues, there's only single reg to program
265 		 */
266 		gfar_write(&regs->txic, 0);
267 		if (likely(priv->tx_queue[0]->txcoalescing))
268 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
269 
270 		gfar_write(&regs->rxic, 0);
271 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
272 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
273 	}
274 }
275 
276 static void gfar_configure_coalescing_all(struct gfar_private *priv)
277 {
278 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
279 }
280 
281 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
282 {
283 	struct gfar_private *priv = netdev_priv(dev);
284 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
285 	unsigned long tx_packets = 0, tx_bytes = 0;
286 	int i;
287 
288 	for (i = 0; i < priv->num_rx_queues; i++) {
289 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
290 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
291 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
292 	}
293 
294 	dev->stats.rx_packets = rx_packets;
295 	dev->stats.rx_bytes   = rx_bytes;
296 	dev->stats.rx_dropped = rx_dropped;
297 
298 	for (i = 0; i < priv->num_tx_queues; i++) {
299 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
300 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
301 	}
302 
303 	dev->stats.tx_bytes   = tx_bytes;
304 	dev->stats.tx_packets = tx_packets;
305 
306 	return &dev->stats;
307 }
308 
309 /* Set the appropriate hash bit for the given addr */
310 /* The algorithm works like so:
311  * 1) Take the Destination Address (ie the multicast address), and
312  * do a CRC on it (little endian), and reverse the bits of the
313  * result.
314  * 2) Use the 8 most significant bits as a hash into a 256-entry
315  * table.  The table is controlled through 8 32-bit registers:
316  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
317  * gaddr7.  This means that the 3 most significant bits in the
318  * hash index which gaddr register to use, and the 5 other bits
319  * indicate which bit (assuming an IBM numbering scheme, which
320  * for PowerPC (tm) is usually the case) in the register holds
321  * the entry.
322  */
323 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
324 {
325 	u32 tempval;
326 	struct gfar_private *priv = netdev_priv(dev);
327 	u32 result = ether_crc(ETH_ALEN, addr);
328 	int width = priv->hash_width;
329 	u8 whichbit = (result >> (32 - width)) & 0x1f;
330 	u8 whichreg = result >> (32 - width + 5);
331 	u32 value = (1 << (31-whichbit));
332 
333 	tempval = gfar_read(priv->hash_regs[whichreg]);
334 	tempval |= value;
335 	gfar_write(priv->hash_regs[whichreg], tempval);
336 }
337 
338 /* There are multiple MAC Address register pairs on some controllers
339  * This function sets the numth pair to a given address
340  */
341 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
342 				  const u8 *addr)
343 {
344 	struct gfar_private *priv = netdev_priv(dev);
345 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 	u32 tempval;
347 	u32 __iomem *macptr = &regs->macstnaddr1;
348 
349 	macptr += num*2;
350 
351 	/* For a station address of 0x12345678ABCD in transmission
352 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
353 	 * MACnADDR2 is set to 0x34120000.
354 	 */
355 	tempval = (addr[5] << 24) | (addr[4] << 16) |
356 		  (addr[3] << 8)  |  addr[2];
357 
358 	gfar_write(macptr, tempval);
359 
360 	tempval = (addr[1] << 24) | (addr[0] << 16);
361 
362 	gfar_write(macptr+1, tempval);
363 }
364 
365 static int gfar_set_mac_addr(struct net_device *dev, void *p)
366 {
367 	eth_mac_addr(dev, p);
368 
369 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
370 
371 	return 0;
372 }
373 
374 static void gfar_ints_disable(struct gfar_private *priv)
375 {
376 	int i;
377 	for (i = 0; i < priv->num_grps; i++) {
378 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
379 		/* Clear IEVENT */
380 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
381 
382 		/* Initialize IMASK */
383 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
384 	}
385 }
386 
387 static void gfar_ints_enable(struct gfar_private *priv)
388 {
389 	int i;
390 	for (i = 0; i < priv->num_grps; i++) {
391 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
392 		/* Unmask the interrupts we look for */
393 		gfar_write(&regs->imask, IMASK_DEFAULT);
394 	}
395 }
396 
397 static int gfar_alloc_tx_queues(struct gfar_private *priv)
398 {
399 	int i;
400 
401 	for (i = 0; i < priv->num_tx_queues; i++) {
402 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
403 					    GFP_KERNEL);
404 		if (!priv->tx_queue[i])
405 			return -ENOMEM;
406 
407 		priv->tx_queue[i]->tx_skbuff = NULL;
408 		priv->tx_queue[i]->qindex = i;
409 		priv->tx_queue[i]->dev = priv->ndev;
410 		spin_lock_init(&(priv->tx_queue[i]->txlock));
411 	}
412 	return 0;
413 }
414 
415 static int gfar_alloc_rx_queues(struct gfar_private *priv)
416 {
417 	int i;
418 
419 	for (i = 0; i < priv->num_rx_queues; i++) {
420 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
421 					    GFP_KERNEL);
422 		if (!priv->rx_queue[i])
423 			return -ENOMEM;
424 
425 		priv->rx_queue[i]->qindex = i;
426 		priv->rx_queue[i]->ndev = priv->ndev;
427 	}
428 	return 0;
429 }
430 
431 static void gfar_free_tx_queues(struct gfar_private *priv)
432 {
433 	int i;
434 
435 	for (i = 0; i < priv->num_tx_queues; i++)
436 		kfree(priv->tx_queue[i]);
437 }
438 
439 static void gfar_free_rx_queues(struct gfar_private *priv)
440 {
441 	int i;
442 
443 	for (i = 0; i < priv->num_rx_queues; i++)
444 		kfree(priv->rx_queue[i]);
445 }
446 
447 static void unmap_group_regs(struct gfar_private *priv)
448 {
449 	int i;
450 
451 	for (i = 0; i < MAXGROUPS; i++)
452 		if (priv->gfargrp[i].regs)
453 			iounmap(priv->gfargrp[i].regs);
454 }
455 
456 static void free_gfar_dev(struct gfar_private *priv)
457 {
458 	int i, j;
459 
460 	for (i = 0; i < priv->num_grps; i++)
461 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
462 			kfree(priv->gfargrp[i].irqinfo[j]);
463 			priv->gfargrp[i].irqinfo[j] = NULL;
464 		}
465 
466 	free_netdev(priv->ndev);
467 }
468 
469 static void disable_napi(struct gfar_private *priv)
470 {
471 	int i;
472 
473 	for (i = 0; i < priv->num_grps; i++) {
474 		napi_disable(&priv->gfargrp[i].napi_rx);
475 		napi_disable(&priv->gfargrp[i].napi_tx);
476 	}
477 }
478 
479 static void enable_napi(struct gfar_private *priv)
480 {
481 	int i;
482 
483 	for (i = 0; i < priv->num_grps; i++) {
484 		napi_enable(&priv->gfargrp[i].napi_rx);
485 		napi_enable(&priv->gfargrp[i].napi_tx);
486 	}
487 }
488 
489 static int gfar_parse_group(struct device_node *np,
490 			    struct gfar_private *priv, const char *model)
491 {
492 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
493 	int i;
494 
495 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
496 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
497 					  GFP_KERNEL);
498 		if (!grp->irqinfo[i])
499 			return -ENOMEM;
500 	}
501 
502 	grp->regs = of_iomap(np, 0);
503 	if (!grp->regs)
504 		return -ENOMEM;
505 
506 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
507 
508 	/* If we aren't the FEC we have multiple interrupts */
509 	if (model && strcasecmp(model, "FEC")) {
510 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
511 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
512 		if (!gfar_irq(grp, TX)->irq ||
513 		    !gfar_irq(grp, RX)->irq ||
514 		    !gfar_irq(grp, ER)->irq)
515 			return -EINVAL;
516 	}
517 
518 	grp->priv = priv;
519 	spin_lock_init(&grp->grplock);
520 	if (priv->mode == MQ_MG_MODE) {
521 		u32 rxq_mask, txq_mask;
522 		int ret;
523 
524 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
525 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
526 
527 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
528 		if (!ret) {
529 			grp->rx_bit_map = rxq_mask ?
530 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
531 		}
532 
533 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
534 		if (!ret) {
535 			grp->tx_bit_map = txq_mask ?
536 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
537 		}
538 
539 		if (priv->poll_mode == GFAR_SQ_POLLING) {
540 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
541 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
542 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
543 		}
544 	} else {
545 		grp->rx_bit_map = 0xFF;
546 		grp->tx_bit_map = 0xFF;
547 	}
548 
549 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
550 	 * right to left, so we need to revert the 8 bits to get the q index
551 	 */
552 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
553 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
554 
555 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
556 	 * also assign queues to groups
557 	 */
558 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
559 		if (!grp->rx_queue)
560 			grp->rx_queue = priv->rx_queue[i];
561 		grp->num_rx_queues++;
562 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
563 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
564 		priv->rx_queue[i]->grp = grp;
565 	}
566 
567 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
568 		if (!grp->tx_queue)
569 			grp->tx_queue = priv->tx_queue[i];
570 		grp->num_tx_queues++;
571 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
572 		priv->tqueue |= (TQUEUE_EN0 >> i);
573 		priv->tx_queue[i]->grp = grp;
574 	}
575 
576 	priv->num_grps++;
577 
578 	return 0;
579 }
580 
581 static int gfar_of_group_count(struct device_node *np)
582 {
583 	struct device_node *child;
584 	int num = 0;
585 
586 	for_each_available_child_of_node(np, child)
587 		if (of_node_name_eq(child, "queue-group"))
588 			num++;
589 
590 	return num;
591 }
592 
593 /* Reads the controller's registers to determine what interface
594  * connects it to the PHY.
595  */
596 static phy_interface_t gfar_get_interface(struct net_device *dev)
597 {
598 	struct gfar_private *priv = netdev_priv(dev);
599 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
600 	u32 ecntrl;
601 
602 	ecntrl = gfar_read(&regs->ecntrl);
603 
604 	if (ecntrl & ECNTRL_SGMII_MODE)
605 		return PHY_INTERFACE_MODE_SGMII;
606 
607 	if (ecntrl & ECNTRL_TBI_MODE) {
608 		if (ecntrl & ECNTRL_REDUCED_MODE)
609 			return PHY_INTERFACE_MODE_RTBI;
610 		else
611 			return PHY_INTERFACE_MODE_TBI;
612 	}
613 
614 	if (ecntrl & ECNTRL_REDUCED_MODE) {
615 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
616 			return PHY_INTERFACE_MODE_RMII;
617 		}
618 		else {
619 			phy_interface_t interface = priv->interface;
620 
621 			/* This isn't autodetected right now, so it must
622 			 * be set by the device tree or platform code.
623 			 */
624 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
625 				return PHY_INTERFACE_MODE_RGMII_ID;
626 
627 			return PHY_INTERFACE_MODE_RGMII;
628 		}
629 	}
630 
631 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
632 		return PHY_INTERFACE_MODE_GMII;
633 
634 	return PHY_INTERFACE_MODE_MII;
635 }
636 
637 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
638 {
639 	const char *model;
640 	const void *mac_addr;
641 	int err = 0, i;
642 	phy_interface_t interface;
643 	struct net_device *dev = NULL;
644 	struct gfar_private *priv = NULL;
645 	struct device_node *np = ofdev->dev.of_node;
646 	struct device_node *child = NULL;
647 	u32 stash_len = 0;
648 	u32 stash_idx = 0;
649 	unsigned int num_tx_qs, num_rx_qs;
650 	unsigned short mode, poll_mode;
651 
652 	if (!np)
653 		return -ENODEV;
654 
655 	if (of_device_is_compatible(np, "fsl,etsec2")) {
656 		mode = MQ_MG_MODE;
657 		poll_mode = GFAR_SQ_POLLING;
658 	} else {
659 		mode = SQ_SG_MODE;
660 		poll_mode = GFAR_SQ_POLLING;
661 	}
662 
663 	if (mode == SQ_SG_MODE) {
664 		num_tx_qs = 1;
665 		num_rx_qs = 1;
666 	} else { /* MQ_MG_MODE */
667 		/* get the actual number of supported groups */
668 		unsigned int num_grps = gfar_of_group_count(np);
669 
670 		if (num_grps == 0 || num_grps > MAXGROUPS) {
671 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
672 				num_grps);
673 			pr_err("Cannot do alloc_etherdev, aborting\n");
674 			return -EINVAL;
675 		}
676 
677 		if (poll_mode == GFAR_SQ_POLLING) {
678 			num_tx_qs = num_grps; /* one txq per int group */
679 			num_rx_qs = num_grps; /* one rxq per int group */
680 		} else { /* GFAR_MQ_POLLING */
681 			u32 tx_queues, rx_queues;
682 			int ret;
683 
684 			/* parse the num of HW tx and rx queues */
685 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
686 						   &tx_queues);
687 			num_tx_qs = ret ? 1 : tx_queues;
688 
689 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
690 						   &rx_queues);
691 			num_rx_qs = ret ? 1 : rx_queues;
692 		}
693 	}
694 
695 	if (num_tx_qs > MAX_TX_QS) {
696 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
697 		       num_tx_qs, MAX_TX_QS);
698 		pr_err("Cannot do alloc_etherdev, aborting\n");
699 		return -EINVAL;
700 	}
701 
702 	if (num_rx_qs > MAX_RX_QS) {
703 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
704 		       num_rx_qs, MAX_RX_QS);
705 		pr_err("Cannot do alloc_etherdev, aborting\n");
706 		return -EINVAL;
707 	}
708 
709 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
710 	dev = *pdev;
711 	if (NULL == dev)
712 		return -ENOMEM;
713 
714 	priv = netdev_priv(dev);
715 	priv->ndev = dev;
716 
717 	priv->mode = mode;
718 	priv->poll_mode = poll_mode;
719 
720 	priv->num_tx_queues = num_tx_qs;
721 	netif_set_real_num_rx_queues(dev, num_rx_qs);
722 	priv->num_rx_queues = num_rx_qs;
723 
724 	err = gfar_alloc_tx_queues(priv);
725 	if (err)
726 		goto tx_alloc_failed;
727 
728 	err = gfar_alloc_rx_queues(priv);
729 	if (err)
730 		goto rx_alloc_failed;
731 
732 	err = of_property_read_string(np, "model", &model);
733 	if (err) {
734 		pr_err("Device model property missing, aborting\n");
735 		goto rx_alloc_failed;
736 	}
737 
738 	/* Init Rx queue filer rule set linked list */
739 	INIT_LIST_HEAD(&priv->rx_list.list);
740 	priv->rx_list.count = 0;
741 	mutex_init(&priv->rx_queue_access);
742 
743 	for (i = 0; i < MAXGROUPS; i++)
744 		priv->gfargrp[i].regs = NULL;
745 
746 	/* Parse and initialize group specific information */
747 	if (priv->mode == MQ_MG_MODE) {
748 		for_each_available_child_of_node(np, child) {
749 			if (!of_node_name_eq(child, "queue-group"))
750 				continue;
751 
752 			err = gfar_parse_group(child, priv, model);
753 			if (err) {
754 				of_node_put(child);
755 				goto err_grp_init;
756 			}
757 		}
758 	} else { /* SQ_SG_MODE */
759 		err = gfar_parse_group(np, priv, model);
760 		if (err)
761 			goto err_grp_init;
762 	}
763 
764 	if (of_property_read_bool(np, "bd-stash")) {
765 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
766 		priv->bd_stash_en = 1;
767 	}
768 
769 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
770 
771 	if (err == 0)
772 		priv->rx_stash_size = stash_len;
773 
774 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
775 
776 	if (err == 0)
777 		priv->rx_stash_index = stash_idx;
778 
779 	if (stash_len || stash_idx)
780 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
781 
782 	mac_addr = of_get_mac_address(np);
783 
784 	if (!IS_ERR(mac_addr)) {
785 		ether_addr_copy(dev->dev_addr, mac_addr);
786 	} else {
787 		eth_hw_addr_random(dev);
788 		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
789 	}
790 
791 	if (model && !strcasecmp(model, "TSEC"))
792 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
793 				     FSL_GIANFAR_DEV_HAS_COALESCE |
794 				     FSL_GIANFAR_DEV_HAS_RMON |
795 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
796 
797 	if (model && !strcasecmp(model, "eTSEC"))
798 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
799 				     FSL_GIANFAR_DEV_HAS_COALESCE |
800 				     FSL_GIANFAR_DEV_HAS_RMON |
801 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
802 				     FSL_GIANFAR_DEV_HAS_CSUM |
803 				     FSL_GIANFAR_DEV_HAS_VLAN |
804 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
805 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
806 				     FSL_GIANFAR_DEV_HAS_TIMER |
807 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
808 
809 	/* Use PHY connection type from the DT node if one is specified there.
810 	 * rgmii-id really needs to be specified. Other types can be
811 	 * detected by hardware
812 	 */
813 	err = of_get_phy_mode(np, &interface);
814 	if (!err)
815 		priv->interface = interface;
816 	else
817 		priv->interface = gfar_get_interface(dev);
818 
819 	if (of_find_property(np, "fsl,magic-packet", NULL))
820 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
821 
822 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
823 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
824 
825 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
826 
827 	/* In the case of a fixed PHY, the DT node associated
828 	 * to the PHY is the Ethernet MAC DT node.
829 	 */
830 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
831 		err = of_phy_register_fixed_link(np);
832 		if (err)
833 			goto err_grp_init;
834 
835 		priv->phy_node = of_node_get(np);
836 	}
837 
838 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
839 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
840 
841 	return 0;
842 
843 err_grp_init:
844 	unmap_group_regs(priv);
845 rx_alloc_failed:
846 	gfar_free_rx_queues(priv);
847 tx_alloc_failed:
848 	gfar_free_tx_queues(priv);
849 	free_gfar_dev(priv);
850 	return err;
851 }
852 
853 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
854 				   u32 class)
855 {
856 	u32 rqfpr = FPR_FILER_MASK;
857 	u32 rqfcr = 0x0;
858 
859 	rqfar--;
860 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
861 	priv->ftp_rqfpr[rqfar] = rqfpr;
862 	priv->ftp_rqfcr[rqfar] = rqfcr;
863 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
864 
865 	rqfar--;
866 	rqfcr = RQFCR_CMP_NOMATCH;
867 	priv->ftp_rqfpr[rqfar] = rqfpr;
868 	priv->ftp_rqfcr[rqfar] = rqfcr;
869 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
870 
871 	rqfar--;
872 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
873 	rqfpr = class;
874 	priv->ftp_rqfcr[rqfar] = rqfcr;
875 	priv->ftp_rqfpr[rqfar] = rqfpr;
876 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
877 
878 	rqfar--;
879 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
880 	rqfpr = class;
881 	priv->ftp_rqfcr[rqfar] = rqfcr;
882 	priv->ftp_rqfpr[rqfar] = rqfpr;
883 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
884 
885 	return rqfar;
886 }
887 
888 static void gfar_init_filer_table(struct gfar_private *priv)
889 {
890 	int i = 0x0;
891 	u32 rqfar = MAX_FILER_IDX;
892 	u32 rqfcr = 0x0;
893 	u32 rqfpr = FPR_FILER_MASK;
894 
895 	/* Default rule */
896 	rqfcr = RQFCR_CMP_MATCH;
897 	priv->ftp_rqfcr[rqfar] = rqfcr;
898 	priv->ftp_rqfpr[rqfar] = rqfpr;
899 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
900 
901 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
902 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
903 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
904 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
905 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
906 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
907 
908 	/* cur_filer_idx indicated the first non-masked rule */
909 	priv->cur_filer_idx = rqfar;
910 
911 	/* Rest are masked rules */
912 	rqfcr = RQFCR_CMP_NOMATCH;
913 	for (i = 0; i < rqfar; i++) {
914 		priv->ftp_rqfcr[i] = rqfcr;
915 		priv->ftp_rqfpr[i] = rqfpr;
916 		gfar_write_filer(priv, i, rqfcr, rqfpr);
917 	}
918 }
919 
920 #ifdef CONFIG_PPC
921 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
922 {
923 	unsigned int pvr = mfspr(SPRN_PVR);
924 	unsigned int svr = mfspr(SPRN_SVR);
925 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
926 	unsigned int rev = svr & 0xffff;
927 
928 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
929 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
930 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
931 		priv->errata |= GFAR_ERRATA_74;
932 
933 	/* MPC8313 and MPC837x all rev */
934 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
935 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
936 		priv->errata |= GFAR_ERRATA_76;
937 
938 	/* MPC8313 Rev < 2.0 */
939 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
940 		priv->errata |= GFAR_ERRATA_12;
941 }
942 
943 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
944 {
945 	unsigned int svr = mfspr(SPRN_SVR);
946 
947 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
948 		priv->errata |= GFAR_ERRATA_12;
949 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
950 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
951 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
952 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
953 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
954 }
955 #endif
956 
957 static void gfar_detect_errata(struct gfar_private *priv)
958 {
959 	struct device *dev = &priv->ofdev->dev;
960 
961 	/* no plans to fix */
962 	priv->errata |= GFAR_ERRATA_A002;
963 
964 #ifdef CONFIG_PPC
965 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
966 		__gfar_detect_errata_85xx(priv);
967 	else /* non-mpc85xx parts, i.e. e300 core based */
968 		__gfar_detect_errata_83xx(priv);
969 #endif
970 
971 	if (priv->errata)
972 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
973 			 priv->errata);
974 }
975 
976 static void gfar_init_addr_hash_table(struct gfar_private *priv)
977 {
978 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
979 
980 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
981 		priv->extended_hash = 1;
982 		priv->hash_width = 9;
983 
984 		priv->hash_regs[0] = &regs->igaddr0;
985 		priv->hash_regs[1] = &regs->igaddr1;
986 		priv->hash_regs[2] = &regs->igaddr2;
987 		priv->hash_regs[3] = &regs->igaddr3;
988 		priv->hash_regs[4] = &regs->igaddr4;
989 		priv->hash_regs[5] = &regs->igaddr5;
990 		priv->hash_regs[6] = &regs->igaddr6;
991 		priv->hash_regs[7] = &regs->igaddr7;
992 		priv->hash_regs[8] = &regs->gaddr0;
993 		priv->hash_regs[9] = &regs->gaddr1;
994 		priv->hash_regs[10] = &regs->gaddr2;
995 		priv->hash_regs[11] = &regs->gaddr3;
996 		priv->hash_regs[12] = &regs->gaddr4;
997 		priv->hash_regs[13] = &regs->gaddr5;
998 		priv->hash_regs[14] = &regs->gaddr6;
999 		priv->hash_regs[15] = &regs->gaddr7;
1000 
1001 	} else {
1002 		priv->extended_hash = 0;
1003 		priv->hash_width = 8;
1004 
1005 		priv->hash_regs[0] = &regs->gaddr0;
1006 		priv->hash_regs[1] = &regs->gaddr1;
1007 		priv->hash_regs[2] = &regs->gaddr2;
1008 		priv->hash_regs[3] = &regs->gaddr3;
1009 		priv->hash_regs[4] = &regs->gaddr4;
1010 		priv->hash_regs[5] = &regs->gaddr5;
1011 		priv->hash_regs[6] = &regs->gaddr6;
1012 		priv->hash_regs[7] = &regs->gaddr7;
1013 	}
1014 }
1015 
1016 static int __gfar_is_rx_idle(struct gfar_private *priv)
1017 {
1018 	u32 res;
1019 
1020 	/* Normaly TSEC should not hang on GRS commands, so we should
1021 	 * actually wait for IEVENT_GRSC flag.
1022 	 */
1023 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1024 		return 0;
1025 
1026 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1027 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1028 	 * and the Rx can be safely reset.
1029 	 */
1030 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1031 	res &= 0x7f807f80;
1032 	if ((res & 0xffff) == (res >> 16))
1033 		return 1;
1034 
1035 	return 0;
1036 }
1037 
1038 /* Halt the receive and transmit queues */
1039 static void gfar_halt_nodisable(struct gfar_private *priv)
1040 {
1041 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1042 	u32 tempval;
1043 	unsigned int timeout;
1044 	int stopped;
1045 
1046 	gfar_ints_disable(priv);
1047 
1048 	if (gfar_is_dma_stopped(priv))
1049 		return;
1050 
1051 	/* Stop the DMA, and wait for it to stop */
1052 	tempval = gfar_read(&regs->dmactrl);
1053 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1054 	gfar_write(&regs->dmactrl, tempval);
1055 
1056 retry:
1057 	timeout = 1000;
1058 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1059 		cpu_relax();
1060 		timeout--;
1061 	}
1062 
1063 	if (!timeout)
1064 		stopped = gfar_is_dma_stopped(priv);
1065 
1066 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1067 	    !__gfar_is_rx_idle(priv))
1068 		goto retry;
1069 }
1070 
1071 /* Halt the receive and transmit queues */
1072 static void gfar_halt(struct gfar_private *priv)
1073 {
1074 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1075 	u32 tempval;
1076 
1077 	/* Dissable the Rx/Tx hw queues */
1078 	gfar_write(&regs->rqueue, 0);
1079 	gfar_write(&regs->tqueue, 0);
1080 
1081 	mdelay(10);
1082 
1083 	gfar_halt_nodisable(priv);
1084 
1085 	/* Disable Rx/Tx DMA */
1086 	tempval = gfar_read(&regs->maccfg1);
1087 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1088 	gfar_write(&regs->maccfg1, tempval);
1089 }
1090 
1091 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1092 {
1093 	struct txbd8 *txbdp;
1094 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1095 	int i, j;
1096 
1097 	txbdp = tx_queue->tx_bd_base;
1098 
1099 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1100 		if (!tx_queue->tx_skbuff[i])
1101 			continue;
1102 
1103 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1104 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1105 		txbdp->lstatus = 0;
1106 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1107 		     j++) {
1108 			txbdp++;
1109 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1110 				       be16_to_cpu(txbdp->length),
1111 				       DMA_TO_DEVICE);
1112 		}
1113 		txbdp++;
1114 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1115 		tx_queue->tx_skbuff[i] = NULL;
1116 	}
1117 	kfree(tx_queue->tx_skbuff);
1118 	tx_queue->tx_skbuff = NULL;
1119 }
1120 
1121 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1122 {
1123 	int i;
1124 
1125 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1126 
1127 	dev_kfree_skb(rx_queue->skb);
1128 
1129 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1130 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1131 
1132 		rxbdp->lstatus = 0;
1133 		rxbdp->bufPtr = 0;
1134 		rxbdp++;
1135 
1136 		if (!rxb->page)
1137 			continue;
1138 
1139 		dma_unmap_page(rx_queue->dev, rxb->dma,
1140 			       PAGE_SIZE, DMA_FROM_DEVICE);
1141 		__free_page(rxb->page);
1142 
1143 		rxb->page = NULL;
1144 	}
1145 
1146 	kfree(rx_queue->rx_buff);
1147 	rx_queue->rx_buff = NULL;
1148 }
1149 
1150 /* If there are any tx skbs or rx skbs still around, free them.
1151  * Then free tx_skbuff and rx_skbuff
1152  */
1153 static void free_skb_resources(struct gfar_private *priv)
1154 {
1155 	struct gfar_priv_tx_q *tx_queue = NULL;
1156 	struct gfar_priv_rx_q *rx_queue = NULL;
1157 	int i;
1158 
1159 	/* Go through all the buffer descriptors and free their data buffers */
1160 	for (i = 0; i < priv->num_tx_queues; i++) {
1161 		struct netdev_queue *txq;
1162 
1163 		tx_queue = priv->tx_queue[i];
1164 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1165 		if (tx_queue->tx_skbuff)
1166 			free_skb_tx_queue(tx_queue);
1167 		netdev_tx_reset_queue(txq);
1168 	}
1169 
1170 	for (i = 0; i < priv->num_rx_queues; i++) {
1171 		rx_queue = priv->rx_queue[i];
1172 		if (rx_queue->rx_buff)
1173 			free_skb_rx_queue(rx_queue);
1174 	}
1175 
1176 	dma_free_coherent(priv->dev,
1177 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1178 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1179 			  priv->tx_queue[0]->tx_bd_base,
1180 			  priv->tx_queue[0]->tx_bd_dma_base);
1181 }
1182 
1183 void stop_gfar(struct net_device *dev)
1184 {
1185 	struct gfar_private *priv = netdev_priv(dev);
1186 
1187 	netif_tx_stop_all_queues(dev);
1188 
1189 	smp_mb__before_atomic();
1190 	set_bit(GFAR_DOWN, &priv->state);
1191 	smp_mb__after_atomic();
1192 
1193 	disable_napi(priv);
1194 
1195 	/* disable ints and gracefully shut down Rx/Tx DMA */
1196 	gfar_halt(priv);
1197 
1198 	phy_stop(dev->phydev);
1199 
1200 	free_skb_resources(priv);
1201 }
1202 
1203 static void gfar_start(struct gfar_private *priv)
1204 {
1205 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1206 	u32 tempval;
1207 	int i = 0;
1208 
1209 	/* Enable Rx/Tx hw queues */
1210 	gfar_write(&regs->rqueue, priv->rqueue);
1211 	gfar_write(&regs->tqueue, priv->tqueue);
1212 
1213 	/* Initialize DMACTRL to have WWR and WOP */
1214 	tempval = gfar_read(&regs->dmactrl);
1215 	tempval |= DMACTRL_INIT_SETTINGS;
1216 	gfar_write(&regs->dmactrl, tempval);
1217 
1218 	/* Make sure we aren't stopped */
1219 	tempval = gfar_read(&regs->dmactrl);
1220 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1221 	gfar_write(&regs->dmactrl, tempval);
1222 
1223 	for (i = 0; i < priv->num_grps; i++) {
1224 		regs = priv->gfargrp[i].regs;
1225 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1226 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1227 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1228 	}
1229 
1230 	/* Enable Rx/Tx DMA */
1231 	tempval = gfar_read(&regs->maccfg1);
1232 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1233 	gfar_write(&regs->maccfg1, tempval);
1234 
1235 	gfar_ints_enable(priv);
1236 
1237 	netif_trans_update(priv->ndev); /* prevent tx timeout */
1238 }
1239 
1240 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1241 {
1242 	struct page *page;
1243 	dma_addr_t addr;
1244 
1245 	page = dev_alloc_page();
1246 	if (unlikely(!page))
1247 		return false;
1248 
1249 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1250 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1251 		__free_page(page);
1252 
1253 		return false;
1254 	}
1255 
1256 	rxb->dma = addr;
1257 	rxb->page = page;
1258 	rxb->page_offset = 0;
1259 
1260 	return true;
1261 }
1262 
1263 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1264 {
1265 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1266 	struct gfar_extra_stats *estats = &priv->extra_stats;
1267 
1268 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1269 	atomic64_inc(&estats->rx_alloc_err);
1270 }
1271 
1272 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1273 				int alloc_cnt)
1274 {
1275 	struct rxbd8 *bdp;
1276 	struct gfar_rx_buff *rxb;
1277 	int i;
1278 
1279 	i = rx_queue->next_to_use;
1280 	bdp = &rx_queue->rx_bd_base[i];
1281 	rxb = &rx_queue->rx_buff[i];
1282 
1283 	while (alloc_cnt--) {
1284 		/* try reuse page */
1285 		if (unlikely(!rxb->page)) {
1286 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1287 				gfar_rx_alloc_err(rx_queue);
1288 				break;
1289 			}
1290 		}
1291 
1292 		/* Setup the new RxBD */
1293 		gfar_init_rxbdp(rx_queue, bdp,
1294 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1295 
1296 		/* Update to the next pointer */
1297 		bdp++;
1298 		rxb++;
1299 
1300 		if (unlikely(++i == rx_queue->rx_ring_size)) {
1301 			i = 0;
1302 			bdp = rx_queue->rx_bd_base;
1303 			rxb = rx_queue->rx_buff;
1304 		}
1305 	}
1306 
1307 	rx_queue->next_to_use = i;
1308 	rx_queue->next_to_alloc = i;
1309 }
1310 
1311 static void gfar_init_bds(struct net_device *ndev)
1312 {
1313 	struct gfar_private *priv = netdev_priv(ndev);
1314 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1315 	struct gfar_priv_tx_q *tx_queue = NULL;
1316 	struct gfar_priv_rx_q *rx_queue = NULL;
1317 	struct txbd8 *txbdp;
1318 	u32 __iomem *rfbptr;
1319 	int i, j;
1320 
1321 	for (i = 0; i < priv->num_tx_queues; i++) {
1322 		tx_queue = priv->tx_queue[i];
1323 		/* Initialize some variables in our dev structure */
1324 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1325 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1326 		tx_queue->cur_tx = tx_queue->tx_bd_base;
1327 		tx_queue->skb_curtx = 0;
1328 		tx_queue->skb_dirtytx = 0;
1329 
1330 		/* Initialize Transmit Descriptor Ring */
1331 		txbdp = tx_queue->tx_bd_base;
1332 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1333 			txbdp->lstatus = 0;
1334 			txbdp->bufPtr = 0;
1335 			txbdp++;
1336 		}
1337 
1338 		/* Set the last descriptor in the ring to indicate wrap */
1339 		txbdp--;
1340 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1341 					    TXBD_WRAP);
1342 	}
1343 
1344 	rfbptr = &regs->rfbptr0;
1345 	for (i = 0; i < priv->num_rx_queues; i++) {
1346 		rx_queue = priv->rx_queue[i];
1347 
1348 		rx_queue->next_to_clean = 0;
1349 		rx_queue->next_to_use = 0;
1350 		rx_queue->next_to_alloc = 0;
1351 
1352 		/* make sure next_to_clean != next_to_use after this
1353 		 * by leaving at least 1 unused descriptor
1354 		 */
1355 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1356 
1357 		rx_queue->rfbptr = rfbptr;
1358 		rfbptr += 2;
1359 	}
1360 }
1361 
1362 static int gfar_alloc_skb_resources(struct net_device *ndev)
1363 {
1364 	void *vaddr;
1365 	dma_addr_t addr;
1366 	int i, j;
1367 	struct gfar_private *priv = netdev_priv(ndev);
1368 	struct device *dev = priv->dev;
1369 	struct gfar_priv_tx_q *tx_queue = NULL;
1370 	struct gfar_priv_rx_q *rx_queue = NULL;
1371 
1372 	priv->total_tx_ring_size = 0;
1373 	for (i = 0; i < priv->num_tx_queues; i++)
1374 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1375 
1376 	priv->total_rx_ring_size = 0;
1377 	for (i = 0; i < priv->num_rx_queues; i++)
1378 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1379 
1380 	/* Allocate memory for the buffer descriptors */
1381 	vaddr = dma_alloc_coherent(dev,
1382 				   (priv->total_tx_ring_size *
1383 				    sizeof(struct txbd8)) +
1384 				   (priv->total_rx_ring_size *
1385 				    sizeof(struct rxbd8)),
1386 				   &addr, GFP_KERNEL);
1387 	if (!vaddr)
1388 		return -ENOMEM;
1389 
1390 	for (i = 0; i < priv->num_tx_queues; i++) {
1391 		tx_queue = priv->tx_queue[i];
1392 		tx_queue->tx_bd_base = vaddr;
1393 		tx_queue->tx_bd_dma_base = addr;
1394 		tx_queue->dev = ndev;
1395 		/* enet DMA only understands physical addresses */
1396 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1397 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1398 	}
1399 
1400 	/* Start the rx descriptor ring where the tx ring leaves off */
1401 	for (i = 0; i < priv->num_rx_queues; i++) {
1402 		rx_queue = priv->rx_queue[i];
1403 		rx_queue->rx_bd_base = vaddr;
1404 		rx_queue->rx_bd_dma_base = addr;
1405 		rx_queue->ndev = ndev;
1406 		rx_queue->dev = dev;
1407 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1408 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1409 	}
1410 
1411 	/* Setup the skbuff rings */
1412 	for (i = 0; i < priv->num_tx_queues; i++) {
1413 		tx_queue = priv->tx_queue[i];
1414 		tx_queue->tx_skbuff =
1415 			kmalloc_array(tx_queue->tx_ring_size,
1416 				      sizeof(*tx_queue->tx_skbuff),
1417 				      GFP_KERNEL);
1418 		if (!tx_queue->tx_skbuff)
1419 			goto cleanup;
1420 
1421 		for (j = 0; j < tx_queue->tx_ring_size; j++)
1422 			tx_queue->tx_skbuff[j] = NULL;
1423 	}
1424 
1425 	for (i = 0; i < priv->num_rx_queues; i++) {
1426 		rx_queue = priv->rx_queue[i];
1427 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1428 					    sizeof(*rx_queue->rx_buff),
1429 					    GFP_KERNEL);
1430 		if (!rx_queue->rx_buff)
1431 			goto cleanup;
1432 	}
1433 
1434 	gfar_init_bds(ndev);
1435 
1436 	return 0;
1437 
1438 cleanup:
1439 	free_skb_resources(priv);
1440 	return -ENOMEM;
1441 }
1442 
1443 /* Bring the controller up and running */
1444 int startup_gfar(struct net_device *ndev)
1445 {
1446 	struct gfar_private *priv = netdev_priv(ndev);
1447 	int err;
1448 
1449 	gfar_mac_reset(priv);
1450 
1451 	err = gfar_alloc_skb_resources(ndev);
1452 	if (err)
1453 		return err;
1454 
1455 	gfar_init_tx_rx_base(priv);
1456 
1457 	smp_mb__before_atomic();
1458 	clear_bit(GFAR_DOWN, &priv->state);
1459 	smp_mb__after_atomic();
1460 
1461 	/* Start Rx/Tx DMA and enable the interrupts */
1462 	gfar_start(priv);
1463 
1464 	/* force link state update after mac reset */
1465 	priv->oldlink = 0;
1466 	priv->oldspeed = 0;
1467 	priv->oldduplex = -1;
1468 
1469 	phy_start(ndev->phydev);
1470 
1471 	enable_napi(priv);
1472 
1473 	netif_tx_wake_all_queues(ndev);
1474 
1475 	return 0;
1476 }
1477 
1478 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1479 {
1480 	struct net_device *ndev = priv->ndev;
1481 	struct phy_device *phydev = ndev->phydev;
1482 	u32 val = 0;
1483 
1484 	if (!phydev->duplex)
1485 		return val;
1486 
1487 	if (!priv->pause_aneg_en) {
1488 		if (priv->tx_pause_en)
1489 			val |= MACCFG1_TX_FLOW;
1490 		if (priv->rx_pause_en)
1491 			val |= MACCFG1_RX_FLOW;
1492 	} else {
1493 		u16 lcl_adv, rmt_adv;
1494 		u8 flowctrl;
1495 		/* get link partner capabilities */
1496 		rmt_adv = 0;
1497 		if (phydev->pause)
1498 			rmt_adv = LPA_PAUSE_CAP;
1499 		if (phydev->asym_pause)
1500 			rmt_adv |= LPA_PAUSE_ASYM;
1501 
1502 		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1503 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1504 		if (flowctrl & FLOW_CTRL_TX)
1505 			val |= MACCFG1_TX_FLOW;
1506 		if (flowctrl & FLOW_CTRL_RX)
1507 			val |= MACCFG1_RX_FLOW;
1508 	}
1509 
1510 	return val;
1511 }
1512 
1513 static noinline void gfar_update_link_state(struct gfar_private *priv)
1514 {
1515 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1516 	struct net_device *ndev = priv->ndev;
1517 	struct phy_device *phydev = ndev->phydev;
1518 	struct gfar_priv_rx_q *rx_queue = NULL;
1519 	int i;
1520 
1521 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1522 		return;
1523 
1524 	if (phydev->link) {
1525 		u32 tempval1 = gfar_read(&regs->maccfg1);
1526 		u32 tempval = gfar_read(&regs->maccfg2);
1527 		u32 ecntrl = gfar_read(&regs->ecntrl);
1528 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1529 
1530 		if (phydev->duplex != priv->oldduplex) {
1531 			if (!(phydev->duplex))
1532 				tempval &= ~(MACCFG2_FULL_DUPLEX);
1533 			else
1534 				tempval |= MACCFG2_FULL_DUPLEX;
1535 
1536 			priv->oldduplex = phydev->duplex;
1537 		}
1538 
1539 		if (phydev->speed != priv->oldspeed) {
1540 			switch (phydev->speed) {
1541 			case 1000:
1542 				tempval =
1543 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1544 
1545 				ecntrl &= ~(ECNTRL_R100);
1546 				break;
1547 			case 100:
1548 			case 10:
1549 				tempval =
1550 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1551 
1552 				/* Reduced mode distinguishes
1553 				 * between 10 and 100
1554 				 */
1555 				if (phydev->speed == SPEED_100)
1556 					ecntrl |= ECNTRL_R100;
1557 				else
1558 					ecntrl &= ~(ECNTRL_R100);
1559 				break;
1560 			default:
1561 				netif_warn(priv, link, priv->ndev,
1562 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1563 					   phydev->speed);
1564 				break;
1565 			}
1566 
1567 			priv->oldspeed = phydev->speed;
1568 		}
1569 
1570 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1571 		tempval1 |= gfar_get_flowctrl_cfg(priv);
1572 
1573 		/* Turn last free buffer recording on */
1574 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1575 			for (i = 0; i < priv->num_rx_queues; i++) {
1576 				u32 bdp_dma;
1577 
1578 				rx_queue = priv->rx_queue[i];
1579 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1580 				gfar_write(rx_queue->rfbptr, bdp_dma);
1581 			}
1582 
1583 			priv->tx_actual_en = 1;
1584 		}
1585 
1586 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1587 			priv->tx_actual_en = 0;
1588 
1589 		gfar_write(&regs->maccfg1, tempval1);
1590 		gfar_write(&regs->maccfg2, tempval);
1591 		gfar_write(&regs->ecntrl, ecntrl);
1592 
1593 		if (!priv->oldlink)
1594 			priv->oldlink = 1;
1595 
1596 	} else if (priv->oldlink) {
1597 		priv->oldlink = 0;
1598 		priv->oldspeed = 0;
1599 		priv->oldduplex = -1;
1600 	}
1601 
1602 	if (netif_msg_link(priv))
1603 		phy_print_status(phydev);
1604 }
1605 
1606 /* Called every time the controller might need to be made
1607  * aware of new link state.  The PHY code conveys this
1608  * information through variables in the phydev structure, and this
1609  * function converts those variables into the appropriate
1610  * register values, and can bring down the device if needed.
1611  */
1612 static void adjust_link(struct net_device *dev)
1613 {
1614 	struct gfar_private *priv = netdev_priv(dev);
1615 	struct phy_device *phydev = dev->phydev;
1616 
1617 	if (unlikely(phydev->link != priv->oldlink ||
1618 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1619 				       phydev->speed != priv->oldspeed))))
1620 		gfar_update_link_state(priv);
1621 }
1622 
1623 /* Initialize TBI PHY interface for communicating with the
1624  * SERDES lynx PHY on the chip.  We communicate with this PHY
1625  * through the MDIO bus on each controller, treating it as a
1626  * "normal" PHY at the address found in the TBIPA register.  We assume
1627  * that the TBIPA register is valid.  Either the MDIO bus code will set
1628  * it to a value that doesn't conflict with other PHYs on the bus, or the
1629  * value doesn't matter, as there are no other PHYs on the bus.
1630  */
1631 static void gfar_configure_serdes(struct net_device *dev)
1632 {
1633 	struct gfar_private *priv = netdev_priv(dev);
1634 	struct phy_device *tbiphy;
1635 
1636 	if (!priv->tbi_node) {
1637 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1638 				    "device tree specify a tbi-handle\n");
1639 		return;
1640 	}
1641 
1642 	tbiphy = of_phy_find_device(priv->tbi_node);
1643 	if (!tbiphy) {
1644 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1645 		return;
1646 	}
1647 
1648 	/* If the link is already up, we must already be ok, and don't need to
1649 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1650 	 * everything for us?  Resetting it takes the link down and requires
1651 	 * several seconds for it to come back.
1652 	 */
1653 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1654 		put_device(&tbiphy->mdio.dev);
1655 		return;
1656 	}
1657 
1658 	/* Single clk mode, mii mode off(for serdes communication) */
1659 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1660 
1661 	phy_write(tbiphy, MII_ADVERTISE,
1662 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1663 		  ADVERTISE_1000XPSE_ASYM);
1664 
1665 	phy_write(tbiphy, MII_BMCR,
1666 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1667 		  BMCR_SPEED1000);
1668 
1669 	put_device(&tbiphy->mdio.dev);
1670 }
1671 
1672 /* Initializes driver's PHY state, and attaches to the PHY.
1673  * Returns 0 on success.
1674  */
1675 static int init_phy(struct net_device *dev)
1676 {
1677 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1678 	struct gfar_private *priv = netdev_priv(dev);
1679 	phy_interface_t interface = priv->interface;
1680 	struct phy_device *phydev;
1681 	struct ethtool_eee edata;
1682 
1683 	linkmode_set_bit_array(phy_10_100_features_array,
1684 			       ARRAY_SIZE(phy_10_100_features_array),
1685 			       mask);
1686 	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1687 	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1688 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1689 		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1690 
1691 	priv->oldlink = 0;
1692 	priv->oldspeed = 0;
1693 	priv->oldduplex = -1;
1694 
1695 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1696 				interface);
1697 	if (!phydev) {
1698 		dev_err(&dev->dev, "could not attach to PHY\n");
1699 		return -ENODEV;
1700 	}
1701 
1702 	if (interface == PHY_INTERFACE_MODE_SGMII)
1703 		gfar_configure_serdes(dev);
1704 
1705 	/* Remove any features not supported by the controller */
1706 	linkmode_and(phydev->supported, phydev->supported, mask);
1707 	linkmode_copy(phydev->advertising, phydev->supported);
1708 
1709 	/* Add support for flow control */
1710 	phy_support_asym_pause(phydev);
1711 
1712 	/* disable EEE autoneg, EEE not supported by eTSEC */
1713 	memset(&edata, 0, sizeof(struct ethtool_eee));
1714 	phy_ethtool_set_eee(phydev, &edata);
1715 
1716 	return 0;
1717 }
1718 
1719 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1720 {
1721 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1722 
1723 	memset(fcb, 0, GMAC_FCB_LEN);
1724 
1725 	return fcb;
1726 }
1727 
1728 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1729 				    int fcb_length)
1730 {
1731 	/* If we're here, it's a IP packet with a TCP or UDP
1732 	 * payload.  We set it to checksum, using a pseudo-header
1733 	 * we provide
1734 	 */
1735 	u8 flags = TXFCB_DEFAULT;
1736 
1737 	/* Tell the controller what the protocol is
1738 	 * And provide the already calculated phcs
1739 	 */
1740 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1741 		flags |= TXFCB_UDP;
1742 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1743 	} else
1744 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1745 
1746 	/* l3os is the distance between the start of the
1747 	 * frame (skb->data) and the start of the IP hdr.
1748 	 * l4os is the distance between the start of the
1749 	 * l3 hdr and the l4 hdr
1750 	 */
1751 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1752 	fcb->l4os = skb_network_header_len(skb);
1753 
1754 	fcb->flags = flags;
1755 }
1756 
1757 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1758 {
1759 	fcb->flags |= TXFCB_VLN;
1760 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1761 }
1762 
1763 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1764 				      struct txbd8 *base, int ring_size)
1765 {
1766 	struct txbd8 *new_bd = bdp + stride;
1767 
1768 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1769 }
1770 
1771 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1772 				      int ring_size)
1773 {
1774 	return skip_txbd(bdp, 1, base, ring_size);
1775 }
1776 
1777 /* eTSEC12: csum generation not supported for some fcb offsets */
1778 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1779 				       unsigned long fcb_addr)
1780 {
1781 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1782 	       (fcb_addr % 0x20) > 0x18);
1783 }
1784 
1785 /* eTSEC76: csum generation for frames larger than 2500 may
1786  * cause excess delays before start of transmission
1787  */
1788 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1789 				       unsigned int len)
1790 {
1791 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1792 	       (len > 2500));
1793 }
1794 
1795 /* This is called by the kernel when a frame is ready for transmission.
1796  * It is pointed to by the dev->hard_start_xmit function pointer
1797  */
1798 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1799 {
1800 	struct gfar_private *priv = netdev_priv(dev);
1801 	struct gfar_priv_tx_q *tx_queue = NULL;
1802 	struct netdev_queue *txq;
1803 	struct gfar __iomem *regs = NULL;
1804 	struct txfcb *fcb = NULL;
1805 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1806 	u32 lstatus;
1807 	skb_frag_t *frag;
1808 	int i, rq = 0;
1809 	int do_tstamp, do_csum, do_vlan;
1810 	u32 bufaddr;
1811 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1812 
1813 	rq = skb->queue_mapping;
1814 	tx_queue = priv->tx_queue[rq];
1815 	txq = netdev_get_tx_queue(dev, rq);
1816 	base = tx_queue->tx_bd_base;
1817 	regs = tx_queue->grp->regs;
1818 
1819 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1820 	do_vlan = skb_vlan_tag_present(skb);
1821 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1822 		    priv->hwts_tx_en;
1823 
1824 	if (do_csum || do_vlan)
1825 		fcb_len = GMAC_FCB_LEN;
1826 
1827 	/* check if time stamp should be generated */
1828 	if (unlikely(do_tstamp))
1829 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1830 
1831 	/* make space for additional header when fcb is needed */
1832 	if (fcb_len) {
1833 		if (unlikely(skb_cow_head(skb, fcb_len))) {
1834 			dev->stats.tx_errors++;
1835 			dev_kfree_skb_any(skb);
1836 			return NETDEV_TX_OK;
1837 		}
1838 	}
1839 
1840 	/* total number of fragments in the SKB */
1841 	nr_frags = skb_shinfo(skb)->nr_frags;
1842 
1843 	/* calculate the required number of TxBDs for this skb */
1844 	if (unlikely(do_tstamp))
1845 		nr_txbds = nr_frags + 2;
1846 	else
1847 		nr_txbds = nr_frags + 1;
1848 
1849 	/* check if there is space to queue this packet */
1850 	if (nr_txbds > tx_queue->num_txbdfree) {
1851 		/* no space, stop the queue */
1852 		netif_tx_stop_queue(txq);
1853 		dev->stats.tx_fifo_errors++;
1854 		return NETDEV_TX_BUSY;
1855 	}
1856 
1857 	/* Update transmit stats */
1858 	bytes_sent = skb->len;
1859 	tx_queue->stats.tx_bytes += bytes_sent;
1860 	/* keep Tx bytes on wire for BQL accounting */
1861 	GFAR_CB(skb)->bytes_sent = bytes_sent;
1862 	tx_queue->stats.tx_packets++;
1863 
1864 	txbdp = txbdp_start = tx_queue->cur_tx;
1865 	lstatus = be32_to_cpu(txbdp->lstatus);
1866 
1867 	/* Add TxPAL between FCB and frame if required */
1868 	if (unlikely(do_tstamp)) {
1869 		skb_push(skb, GMAC_TXPAL_LEN);
1870 		memset(skb->data, 0, GMAC_TXPAL_LEN);
1871 	}
1872 
1873 	/* Add TxFCB if required */
1874 	if (fcb_len) {
1875 		fcb = gfar_add_fcb(skb);
1876 		lstatus |= BD_LFLAG(TXBD_TOE);
1877 	}
1878 
1879 	/* Set up checksumming */
1880 	if (do_csum) {
1881 		gfar_tx_checksum(skb, fcb, fcb_len);
1882 
1883 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1884 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1885 			__skb_pull(skb, GMAC_FCB_LEN);
1886 			skb_checksum_help(skb);
1887 			if (do_vlan || do_tstamp) {
1888 				/* put back a new fcb for vlan/tstamp TOE */
1889 				fcb = gfar_add_fcb(skb);
1890 			} else {
1891 				/* Tx TOE not used */
1892 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1893 				fcb = NULL;
1894 			}
1895 		}
1896 	}
1897 
1898 	if (do_vlan)
1899 		gfar_tx_vlan(skb, fcb);
1900 
1901 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1902 				 DMA_TO_DEVICE);
1903 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1904 		goto dma_map_err;
1905 
1906 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1907 
1908 	/* Time stamp insertion requires one additional TxBD */
1909 	if (unlikely(do_tstamp))
1910 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1911 						 tx_queue->tx_ring_size);
1912 
1913 	if (likely(!nr_frags)) {
1914 		if (likely(!do_tstamp))
1915 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1916 	} else {
1917 		u32 lstatus_start = lstatus;
1918 
1919 		/* Place the fragment addresses and lengths into the TxBDs */
1920 		frag = &skb_shinfo(skb)->frags[0];
1921 		for (i = 0; i < nr_frags; i++, frag++) {
1922 			unsigned int size;
1923 
1924 			/* Point at the next BD, wrapping as needed */
1925 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1926 
1927 			size = skb_frag_size(frag);
1928 
1929 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1930 				  BD_LFLAG(TXBD_READY);
1931 
1932 			/* Handle the last BD specially */
1933 			if (i == nr_frags - 1)
1934 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1935 
1936 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1937 						   size, DMA_TO_DEVICE);
1938 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1939 				goto dma_map_err;
1940 
1941 			/* set the TxBD length and buffer pointer */
1942 			txbdp->bufPtr = cpu_to_be32(bufaddr);
1943 			txbdp->lstatus = cpu_to_be32(lstatus);
1944 		}
1945 
1946 		lstatus = lstatus_start;
1947 	}
1948 
1949 	/* If time stamping is requested one additional TxBD must be set up. The
1950 	 * first TxBD points to the FCB and must have a data length of
1951 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1952 	 * the full frame length.
1953 	 */
1954 	if (unlikely(do_tstamp)) {
1955 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1956 
1957 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1958 		bufaddr += fcb_len;
1959 
1960 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1961 			      (skb_headlen(skb) - fcb_len);
1962 		if (!nr_frags)
1963 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1964 
1965 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1966 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1967 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1968 
1969 		/* Setup tx hardware time stamping */
1970 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1971 		fcb->ptp = 1;
1972 	} else {
1973 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1974 	}
1975 
1976 	netdev_tx_sent_queue(txq, bytes_sent);
1977 
1978 	gfar_wmb();
1979 
1980 	txbdp_start->lstatus = cpu_to_be32(lstatus);
1981 
1982 	gfar_wmb(); /* force lstatus write before tx_skbuff */
1983 
1984 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1985 
1986 	/* Update the current skb pointer to the next entry we will use
1987 	 * (wrapping if necessary)
1988 	 */
1989 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1990 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1991 
1992 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1993 
1994 	/* We can work in parallel with gfar_clean_tx_ring(), except
1995 	 * when modifying num_txbdfree. Note that we didn't grab the lock
1996 	 * when we were reading the num_txbdfree and checking for available
1997 	 * space, that's because outside of this function it can only grow.
1998 	 */
1999 	spin_lock_bh(&tx_queue->txlock);
2000 	/* reduce TxBD free count */
2001 	tx_queue->num_txbdfree -= (nr_txbds);
2002 	spin_unlock_bh(&tx_queue->txlock);
2003 
2004 	/* If the next BD still needs to be cleaned up, then the bds
2005 	 * are full.  We need to tell the kernel to stop sending us stuff.
2006 	 */
2007 	if (!tx_queue->num_txbdfree) {
2008 		netif_tx_stop_queue(txq);
2009 
2010 		dev->stats.tx_fifo_errors++;
2011 	}
2012 
2013 	/* Tell the DMA to go go go */
2014 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2015 
2016 	return NETDEV_TX_OK;
2017 
2018 dma_map_err:
2019 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2020 	if (do_tstamp)
2021 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2022 	for (i = 0; i < nr_frags; i++) {
2023 		lstatus = be32_to_cpu(txbdp->lstatus);
2024 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2025 			break;
2026 
2027 		lstatus &= ~BD_LFLAG(TXBD_READY);
2028 		txbdp->lstatus = cpu_to_be32(lstatus);
2029 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2030 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2031 			       DMA_TO_DEVICE);
2032 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2033 	}
2034 	gfar_wmb();
2035 	dev_kfree_skb_any(skb);
2036 	return NETDEV_TX_OK;
2037 }
2038 
2039 /* Changes the mac address if the controller is not running. */
2040 static int gfar_set_mac_address(struct net_device *dev)
2041 {
2042 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2043 
2044 	return 0;
2045 }
2046 
2047 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2048 {
2049 	struct gfar_private *priv = netdev_priv(dev);
2050 
2051 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2052 		cpu_relax();
2053 
2054 	if (dev->flags & IFF_UP)
2055 		stop_gfar(dev);
2056 
2057 	dev->mtu = new_mtu;
2058 
2059 	if (dev->flags & IFF_UP)
2060 		startup_gfar(dev);
2061 
2062 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2063 
2064 	return 0;
2065 }
2066 
2067 static void reset_gfar(struct net_device *ndev)
2068 {
2069 	struct gfar_private *priv = netdev_priv(ndev);
2070 
2071 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2072 		cpu_relax();
2073 
2074 	stop_gfar(ndev);
2075 	startup_gfar(ndev);
2076 
2077 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2078 }
2079 
2080 /* gfar_reset_task gets scheduled when a packet has not been
2081  * transmitted after a set amount of time.
2082  * For now, assume that clearing out all the structures, and
2083  * starting over will fix the problem.
2084  */
2085 static void gfar_reset_task(struct work_struct *work)
2086 {
2087 	struct gfar_private *priv = container_of(work, struct gfar_private,
2088 						 reset_task);
2089 	reset_gfar(priv->ndev);
2090 }
2091 
2092 static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2093 {
2094 	struct gfar_private *priv = netdev_priv(dev);
2095 
2096 	dev->stats.tx_errors++;
2097 	schedule_work(&priv->reset_task);
2098 }
2099 
2100 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2101 {
2102 	struct hwtstamp_config config;
2103 	struct gfar_private *priv = netdev_priv(netdev);
2104 
2105 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2106 		return -EFAULT;
2107 
2108 	/* reserved for future extensions */
2109 	if (config.flags)
2110 		return -EINVAL;
2111 
2112 	switch (config.tx_type) {
2113 	case HWTSTAMP_TX_OFF:
2114 		priv->hwts_tx_en = 0;
2115 		break;
2116 	case HWTSTAMP_TX_ON:
2117 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2118 			return -ERANGE;
2119 		priv->hwts_tx_en = 1;
2120 		break;
2121 	default:
2122 		return -ERANGE;
2123 	}
2124 
2125 	switch (config.rx_filter) {
2126 	case HWTSTAMP_FILTER_NONE:
2127 		if (priv->hwts_rx_en) {
2128 			priv->hwts_rx_en = 0;
2129 			reset_gfar(netdev);
2130 		}
2131 		break;
2132 	default:
2133 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2134 			return -ERANGE;
2135 		if (!priv->hwts_rx_en) {
2136 			priv->hwts_rx_en = 1;
2137 			reset_gfar(netdev);
2138 		}
2139 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2140 		break;
2141 	}
2142 
2143 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2144 		-EFAULT : 0;
2145 }
2146 
2147 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2148 {
2149 	struct hwtstamp_config config;
2150 	struct gfar_private *priv = netdev_priv(netdev);
2151 
2152 	config.flags = 0;
2153 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2154 	config.rx_filter = (priv->hwts_rx_en ?
2155 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2156 
2157 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2158 		-EFAULT : 0;
2159 }
2160 
2161 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2162 {
2163 	struct phy_device *phydev = dev->phydev;
2164 
2165 	if (!netif_running(dev))
2166 		return -EINVAL;
2167 
2168 	if (cmd == SIOCSHWTSTAMP)
2169 		return gfar_hwtstamp_set(dev, rq);
2170 	if (cmd == SIOCGHWTSTAMP)
2171 		return gfar_hwtstamp_get(dev, rq);
2172 
2173 	if (!phydev)
2174 		return -ENODEV;
2175 
2176 	return phy_mii_ioctl(phydev, rq, cmd);
2177 }
2178 
2179 /* Interrupt Handler for Transmit complete */
2180 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2181 {
2182 	struct net_device *dev = tx_queue->dev;
2183 	struct netdev_queue *txq;
2184 	struct gfar_private *priv = netdev_priv(dev);
2185 	struct txbd8 *bdp, *next = NULL;
2186 	struct txbd8 *lbdp = NULL;
2187 	struct txbd8 *base = tx_queue->tx_bd_base;
2188 	struct sk_buff *skb;
2189 	int skb_dirtytx;
2190 	int tx_ring_size = tx_queue->tx_ring_size;
2191 	int frags = 0, nr_txbds = 0;
2192 	int i;
2193 	int howmany = 0;
2194 	int tqi = tx_queue->qindex;
2195 	unsigned int bytes_sent = 0;
2196 	u32 lstatus;
2197 	size_t buflen;
2198 
2199 	txq = netdev_get_tx_queue(dev, tqi);
2200 	bdp = tx_queue->dirty_tx;
2201 	skb_dirtytx = tx_queue->skb_dirtytx;
2202 
2203 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2204 		bool do_tstamp;
2205 
2206 		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2207 			    priv->hwts_tx_en;
2208 
2209 		frags = skb_shinfo(skb)->nr_frags;
2210 
2211 		/* When time stamping, one additional TxBD must be freed.
2212 		 * Also, we need to dma_unmap_single() the TxPAL.
2213 		 */
2214 		if (unlikely(do_tstamp))
2215 			nr_txbds = frags + 2;
2216 		else
2217 			nr_txbds = frags + 1;
2218 
2219 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2220 
2221 		lstatus = be32_to_cpu(lbdp->lstatus);
2222 
2223 		/* Only clean completed frames */
2224 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2225 		    (lstatus & BD_LENGTH_MASK))
2226 			break;
2227 
2228 		if (unlikely(do_tstamp)) {
2229 			next = next_txbd(bdp, base, tx_ring_size);
2230 			buflen = be16_to_cpu(next->length) +
2231 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2232 		} else
2233 			buflen = be16_to_cpu(bdp->length);
2234 
2235 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2236 				 buflen, DMA_TO_DEVICE);
2237 
2238 		if (unlikely(do_tstamp)) {
2239 			struct skb_shared_hwtstamps shhwtstamps;
2240 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2241 					  ~0x7UL);
2242 
2243 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2244 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2245 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2246 			skb_tstamp_tx(skb, &shhwtstamps);
2247 			gfar_clear_txbd_status(bdp);
2248 			bdp = next;
2249 		}
2250 
2251 		gfar_clear_txbd_status(bdp);
2252 		bdp = next_txbd(bdp, base, tx_ring_size);
2253 
2254 		for (i = 0; i < frags; i++) {
2255 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2256 				       be16_to_cpu(bdp->length),
2257 				       DMA_TO_DEVICE);
2258 			gfar_clear_txbd_status(bdp);
2259 			bdp = next_txbd(bdp, base, tx_ring_size);
2260 		}
2261 
2262 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2263 
2264 		dev_kfree_skb_any(skb);
2265 
2266 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2267 
2268 		skb_dirtytx = (skb_dirtytx + 1) &
2269 			      TX_RING_MOD_MASK(tx_ring_size);
2270 
2271 		howmany++;
2272 		spin_lock(&tx_queue->txlock);
2273 		tx_queue->num_txbdfree += nr_txbds;
2274 		spin_unlock(&tx_queue->txlock);
2275 	}
2276 
2277 	/* If we freed a buffer, we can restart transmission, if necessary */
2278 	if (tx_queue->num_txbdfree &&
2279 	    netif_tx_queue_stopped(txq) &&
2280 	    !(test_bit(GFAR_DOWN, &priv->state)))
2281 		netif_wake_subqueue(priv->ndev, tqi);
2282 
2283 	/* Update dirty indicators */
2284 	tx_queue->skb_dirtytx = skb_dirtytx;
2285 	tx_queue->dirty_tx = bdp;
2286 
2287 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2288 }
2289 
2290 static void count_errors(u32 lstatus, struct net_device *ndev)
2291 {
2292 	struct gfar_private *priv = netdev_priv(ndev);
2293 	struct net_device_stats *stats = &ndev->stats;
2294 	struct gfar_extra_stats *estats = &priv->extra_stats;
2295 
2296 	/* If the packet was truncated, none of the other errors matter */
2297 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2298 		stats->rx_length_errors++;
2299 
2300 		atomic64_inc(&estats->rx_trunc);
2301 
2302 		return;
2303 	}
2304 	/* Count the errors, if there were any */
2305 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2306 		stats->rx_length_errors++;
2307 
2308 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2309 			atomic64_inc(&estats->rx_large);
2310 		else
2311 			atomic64_inc(&estats->rx_short);
2312 	}
2313 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2314 		stats->rx_frame_errors++;
2315 		atomic64_inc(&estats->rx_nonoctet);
2316 	}
2317 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2318 		atomic64_inc(&estats->rx_crcerr);
2319 		stats->rx_crc_errors++;
2320 	}
2321 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2322 		atomic64_inc(&estats->rx_overrun);
2323 		stats->rx_over_errors++;
2324 	}
2325 }
2326 
2327 static irqreturn_t gfar_receive(int irq, void *grp_id)
2328 {
2329 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2330 	unsigned long flags;
2331 	u32 imask, ievent;
2332 
2333 	ievent = gfar_read(&grp->regs->ievent);
2334 
2335 	if (unlikely(ievent & IEVENT_FGPI)) {
2336 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2337 		return IRQ_HANDLED;
2338 	}
2339 
2340 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2341 		spin_lock_irqsave(&grp->grplock, flags);
2342 		imask = gfar_read(&grp->regs->imask);
2343 		imask &= IMASK_RX_DISABLED;
2344 		gfar_write(&grp->regs->imask, imask);
2345 		spin_unlock_irqrestore(&grp->grplock, flags);
2346 		__napi_schedule(&grp->napi_rx);
2347 	} else {
2348 		/* Clear IEVENT, so interrupts aren't called again
2349 		 * because of the packets that have already arrived.
2350 		 */
2351 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2352 	}
2353 
2354 	return IRQ_HANDLED;
2355 }
2356 
2357 /* Interrupt Handler for Transmit complete */
2358 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2359 {
2360 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2361 	unsigned long flags;
2362 	u32 imask;
2363 
2364 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2365 		spin_lock_irqsave(&grp->grplock, flags);
2366 		imask = gfar_read(&grp->regs->imask);
2367 		imask &= IMASK_TX_DISABLED;
2368 		gfar_write(&grp->regs->imask, imask);
2369 		spin_unlock_irqrestore(&grp->grplock, flags);
2370 		__napi_schedule(&grp->napi_tx);
2371 	} else {
2372 		/* Clear IEVENT, so interrupts aren't called again
2373 		 * because of the packets that have already arrived.
2374 		 */
2375 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2376 	}
2377 
2378 	return IRQ_HANDLED;
2379 }
2380 
2381 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2382 			     struct sk_buff *skb, bool first)
2383 {
2384 	int size = lstatus & BD_LENGTH_MASK;
2385 	struct page *page = rxb->page;
2386 
2387 	if (likely(first)) {
2388 		skb_put(skb, size);
2389 	} else {
2390 		/* the last fragments' length contains the full frame length */
2391 		if (lstatus & BD_LFLAG(RXBD_LAST))
2392 			size -= skb->len;
2393 
2394 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2395 				rxb->page_offset + RXBUF_ALIGNMENT,
2396 				size, GFAR_RXB_TRUESIZE);
2397 	}
2398 
2399 	/* try reuse page */
2400 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2401 		return false;
2402 
2403 	/* change offset to the other half */
2404 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2405 
2406 	page_ref_inc(page);
2407 
2408 	return true;
2409 }
2410 
2411 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2412 			       struct gfar_rx_buff *old_rxb)
2413 {
2414 	struct gfar_rx_buff *new_rxb;
2415 	u16 nta = rxq->next_to_alloc;
2416 
2417 	new_rxb = &rxq->rx_buff[nta];
2418 
2419 	/* find next buf that can reuse a page */
2420 	nta++;
2421 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2422 
2423 	/* copy page reference */
2424 	*new_rxb = *old_rxb;
2425 
2426 	/* sync for use by the device */
2427 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2428 					 old_rxb->page_offset,
2429 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2430 }
2431 
2432 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2433 					    u32 lstatus, struct sk_buff *skb)
2434 {
2435 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2436 	struct page *page = rxb->page;
2437 	bool first = false;
2438 
2439 	if (likely(!skb)) {
2440 		void *buff_addr = page_address(page) + rxb->page_offset;
2441 
2442 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2443 		if (unlikely(!skb)) {
2444 			gfar_rx_alloc_err(rx_queue);
2445 			return NULL;
2446 		}
2447 		skb_reserve(skb, RXBUF_ALIGNMENT);
2448 		first = true;
2449 	}
2450 
2451 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2452 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2453 
2454 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2455 		/* reuse the free half of the page */
2456 		gfar_reuse_rx_page(rx_queue, rxb);
2457 	} else {
2458 		/* page cannot be reused, unmap it */
2459 		dma_unmap_page(rx_queue->dev, rxb->dma,
2460 			       PAGE_SIZE, DMA_FROM_DEVICE);
2461 	}
2462 
2463 	/* clear rxb content */
2464 	rxb->page = NULL;
2465 
2466 	return skb;
2467 }
2468 
2469 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2470 {
2471 	/* If valid headers were found, and valid sums
2472 	 * were verified, then we tell the kernel that no
2473 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2474 	 */
2475 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2476 	    (RXFCB_CIP | RXFCB_CTU))
2477 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2478 	else
2479 		skb_checksum_none_assert(skb);
2480 }
2481 
2482 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2483 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2484 {
2485 	struct gfar_private *priv = netdev_priv(ndev);
2486 	struct rxfcb *fcb = NULL;
2487 
2488 	/* fcb is at the beginning if exists */
2489 	fcb = (struct rxfcb *)skb->data;
2490 
2491 	/* Remove the FCB from the skb
2492 	 * Remove the padded bytes, if there are any
2493 	 */
2494 	if (priv->uses_rxfcb)
2495 		skb_pull(skb, GMAC_FCB_LEN);
2496 
2497 	/* Get receive timestamp from the skb */
2498 	if (priv->hwts_rx_en) {
2499 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2500 		u64 *ns = (u64 *) skb->data;
2501 
2502 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2503 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2504 	}
2505 
2506 	if (priv->padding)
2507 		skb_pull(skb, priv->padding);
2508 
2509 	/* Trim off the FCS */
2510 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2511 
2512 	if (ndev->features & NETIF_F_RXCSUM)
2513 		gfar_rx_checksum(skb, fcb);
2514 
2515 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2516 	 * Even if vlan rx accel is disabled, on some chips
2517 	 * RXFCB_VLN is pseudo randomly set.
2518 	 */
2519 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2520 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2521 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2522 				       be16_to_cpu(fcb->vlctl));
2523 }
2524 
2525 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2526  * until the budget/quota has been reached. Returns the number
2527  * of frames handled
2528  */
2529 static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2530 			      int rx_work_limit)
2531 {
2532 	struct net_device *ndev = rx_queue->ndev;
2533 	struct gfar_private *priv = netdev_priv(ndev);
2534 	struct rxbd8 *bdp;
2535 	int i, howmany = 0;
2536 	struct sk_buff *skb = rx_queue->skb;
2537 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2538 	unsigned int total_bytes = 0, total_pkts = 0;
2539 
2540 	/* Get the first full descriptor */
2541 	i = rx_queue->next_to_clean;
2542 
2543 	while (rx_work_limit--) {
2544 		u32 lstatus;
2545 
2546 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2547 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2548 			cleaned_cnt = 0;
2549 		}
2550 
2551 		bdp = &rx_queue->rx_bd_base[i];
2552 		lstatus = be32_to_cpu(bdp->lstatus);
2553 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2554 			break;
2555 
2556 		/* order rx buffer descriptor reads */
2557 		rmb();
2558 
2559 		/* fetch next to clean buffer from the ring */
2560 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2561 		if (unlikely(!skb))
2562 			break;
2563 
2564 		cleaned_cnt++;
2565 		howmany++;
2566 
2567 		if (unlikely(++i == rx_queue->rx_ring_size))
2568 			i = 0;
2569 
2570 		rx_queue->next_to_clean = i;
2571 
2572 		/* fetch next buffer if not the last in frame */
2573 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2574 			continue;
2575 
2576 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2577 			count_errors(lstatus, ndev);
2578 
2579 			/* discard faulty buffer */
2580 			dev_kfree_skb(skb);
2581 			skb = NULL;
2582 			rx_queue->stats.rx_dropped++;
2583 			continue;
2584 		}
2585 
2586 		gfar_process_frame(ndev, skb);
2587 
2588 		/* Increment the number of packets */
2589 		total_pkts++;
2590 		total_bytes += skb->len;
2591 
2592 		skb_record_rx_queue(skb, rx_queue->qindex);
2593 
2594 		skb->protocol = eth_type_trans(skb, ndev);
2595 
2596 		/* Send the packet up the stack */
2597 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2598 
2599 		skb = NULL;
2600 	}
2601 
2602 	/* Store incomplete frames for completion */
2603 	rx_queue->skb = skb;
2604 
2605 	rx_queue->stats.rx_packets += total_pkts;
2606 	rx_queue->stats.rx_bytes += total_bytes;
2607 
2608 	if (cleaned_cnt)
2609 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2610 
2611 	/* Update Last Free RxBD pointer for LFC */
2612 	if (unlikely(priv->tx_actual_en)) {
2613 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2614 
2615 		gfar_write(rx_queue->rfbptr, bdp_dma);
2616 	}
2617 
2618 	return howmany;
2619 }
2620 
2621 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2622 {
2623 	struct gfar_priv_grp *gfargrp =
2624 		container_of(napi, struct gfar_priv_grp, napi_rx);
2625 	struct gfar __iomem *regs = gfargrp->regs;
2626 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2627 	int work_done = 0;
2628 
2629 	/* Clear IEVENT, so interrupts aren't called again
2630 	 * because of the packets that have already arrived
2631 	 */
2632 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2633 
2634 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2635 
2636 	if (work_done < budget) {
2637 		u32 imask;
2638 		napi_complete_done(napi, work_done);
2639 		/* Clear the halt bit in RSTAT */
2640 		gfar_write(&regs->rstat, gfargrp->rstat);
2641 
2642 		spin_lock_irq(&gfargrp->grplock);
2643 		imask = gfar_read(&regs->imask);
2644 		imask |= IMASK_RX_DEFAULT;
2645 		gfar_write(&regs->imask, imask);
2646 		spin_unlock_irq(&gfargrp->grplock);
2647 	}
2648 
2649 	return work_done;
2650 }
2651 
2652 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2653 {
2654 	struct gfar_priv_grp *gfargrp =
2655 		container_of(napi, struct gfar_priv_grp, napi_tx);
2656 	struct gfar __iomem *regs = gfargrp->regs;
2657 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2658 	u32 imask;
2659 
2660 	/* Clear IEVENT, so interrupts aren't called again
2661 	 * because of the packets that have already arrived
2662 	 */
2663 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2664 
2665 	/* run Tx cleanup to completion */
2666 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2667 		gfar_clean_tx_ring(tx_queue);
2668 
2669 	napi_complete(napi);
2670 
2671 	spin_lock_irq(&gfargrp->grplock);
2672 	imask = gfar_read(&regs->imask);
2673 	imask |= IMASK_TX_DEFAULT;
2674 	gfar_write(&regs->imask, imask);
2675 	spin_unlock_irq(&gfargrp->grplock);
2676 
2677 	return 0;
2678 }
2679 
2680 static int gfar_poll_rx(struct napi_struct *napi, int budget)
2681 {
2682 	struct gfar_priv_grp *gfargrp =
2683 		container_of(napi, struct gfar_priv_grp, napi_rx);
2684 	struct gfar_private *priv = gfargrp->priv;
2685 	struct gfar __iomem *regs = gfargrp->regs;
2686 	struct gfar_priv_rx_q *rx_queue = NULL;
2687 	int work_done = 0, work_done_per_q = 0;
2688 	int i, budget_per_q = 0;
2689 	unsigned long rstat_rxf;
2690 	int num_act_queues;
2691 
2692 	/* Clear IEVENT, so interrupts aren't called again
2693 	 * because of the packets that have already arrived
2694 	 */
2695 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2696 
2697 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2698 
2699 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2700 	if (num_act_queues)
2701 		budget_per_q = budget/num_act_queues;
2702 
2703 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2704 		/* skip queue if not active */
2705 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2706 			continue;
2707 
2708 		rx_queue = priv->rx_queue[i];
2709 		work_done_per_q =
2710 			gfar_clean_rx_ring(rx_queue, budget_per_q);
2711 		work_done += work_done_per_q;
2712 
2713 		/* finished processing this queue */
2714 		if (work_done_per_q < budget_per_q) {
2715 			/* clear active queue hw indication */
2716 			gfar_write(&regs->rstat,
2717 				   RSTAT_CLEAR_RXF0 >> i);
2718 			num_act_queues--;
2719 
2720 			if (!num_act_queues)
2721 				break;
2722 		}
2723 	}
2724 
2725 	if (!num_act_queues) {
2726 		u32 imask;
2727 		napi_complete_done(napi, work_done);
2728 
2729 		/* Clear the halt bit in RSTAT */
2730 		gfar_write(&regs->rstat, gfargrp->rstat);
2731 
2732 		spin_lock_irq(&gfargrp->grplock);
2733 		imask = gfar_read(&regs->imask);
2734 		imask |= IMASK_RX_DEFAULT;
2735 		gfar_write(&regs->imask, imask);
2736 		spin_unlock_irq(&gfargrp->grplock);
2737 	}
2738 
2739 	return work_done;
2740 }
2741 
2742 static int gfar_poll_tx(struct napi_struct *napi, int budget)
2743 {
2744 	struct gfar_priv_grp *gfargrp =
2745 		container_of(napi, struct gfar_priv_grp, napi_tx);
2746 	struct gfar_private *priv = gfargrp->priv;
2747 	struct gfar __iomem *regs = gfargrp->regs;
2748 	struct gfar_priv_tx_q *tx_queue = NULL;
2749 	int has_tx_work = 0;
2750 	int i;
2751 
2752 	/* Clear IEVENT, so interrupts aren't called again
2753 	 * because of the packets that have already arrived
2754 	 */
2755 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2756 
2757 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2758 		tx_queue = priv->tx_queue[i];
2759 		/* run Tx cleanup to completion */
2760 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2761 			gfar_clean_tx_ring(tx_queue);
2762 			has_tx_work = 1;
2763 		}
2764 	}
2765 
2766 	if (!has_tx_work) {
2767 		u32 imask;
2768 		napi_complete(napi);
2769 
2770 		spin_lock_irq(&gfargrp->grplock);
2771 		imask = gfar_read(&regs->imask);
2772 		imask |= IMASK_TX_DEFAULT;
2773 		gfar_write(&regs->imask, imask);
2774 		spin_unlock_irq(&gfargrp->grplock);
2775 	}
2776 
2777 	return 0;
2778 }
2779 
2780 /* GFAR error interrupt handler */
2781 static irqreturn_t gfar_error(int irq, void *grp_id)
2782 {
2783 	struct gfar_priv_grp *gfargrp = grp_id;
2784 	struct gfar __iomem *regs = gfargrp->regs;
2785 	struct gfar_private *priv= gfargrp->priv;
2786 	struct net_device *dev = priv->ndev;
2787 
2788 	/* Save ievent for future reference */
2789 	u32 events = gfar_read(&regs->ievent);
2790 
2791 	/* Clear IEVENT */
2792 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2793 
2794 	/* Magic Packet is not an error. */
2795 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2796 	    (events & IEVENT_MAG))
2797 		events &= ~IEVENT_MAG;
2798 
2799 	/* Hmm... */
2800 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2801 		netdev_dbg(dev,
2802 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2803 			   events, gfar_read(&regs->imask));
2804 
2805 	/* Update the error counters */
2806 	if (events & IEVENT_TXE) {
2807 		dev->stats.tx_errors++;
2808 
2809 		if (events & IEVENT_LC)
2810 			dev->stats.tx_window_errors++;
2811 		if (events & IEVENT_CRL)
2812 			dev->stats.tx_aborted_errors++;
2813 		if (events & IEVENT_XFUN) {
2814 			netif_dbg(priv, tx_err, dev,
2815 				  "TX FIFO underrun, packet dropped\n");
2816 			dev->stats.tx_dropped++;
2817 			atomic64_inc(&priv->extra_stats.tx_underrun);
2818 
2819 			schedule_work(&priv->reset_task);
2820 		}
2821 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2822 	}
2823 	if (events & IEVENT_BSY) {
2824 		dev->stats.rx_over_errors++;
2825 		atomic64_inc(&priv->extra_stats.rx_bsy);
2826 
2827 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2828 			  gfar_read(&regs->rstat));
2829 	}
2830 	if (events & IEVENT_BABR) {
2831 		dev->stats.rx_errors++;
2832 		atomic64_inc(&priv->extra_stats.rx_babr);
2833 
2834 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2835 	}
2836 	if (events & IEVENT_EBERR) {
2837 		atomic64_inc(&priv->extra_stats.eberr);
2838 		netif_dbg(priv, rx_err, dev, "bus error\n");
2839 	}
2840 	if (events & IEVENT_RXC)
2841 		netif_dbg(priv, rx_status, dev, "control frame\n");
2842 
2843 	if (events & IEVENT_BABT) {
2844 		atomic64_inc(&priv->extra_stats.tx_babt);
2845 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2846 	}
2847 	return IRQ_HANDLED;
2848 }
2849 
2850 /* The interrupt handler for devices with one interrupt */
2851 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2852 {
2853 	struct gfar_priv_grp *gfargrp = grp_id;
2854 
2855 	/* Save ievent for future reference */
2856 	u32 events = gfar_read(&gfargrp->regs->ievent);
2857 
2858 	/* Check for reception */
2859 	if (events & IEVENT_RX_MASK)
2860 		gfar_receive(irq, grp_id);
2861 
2862 	/* Check for transmit completion */
2863 	if (events & IEVENT_TX_MASK)
2864 		gfar_transmit(irq, grp_id);
2865 
2866 	/* Check for errors */
2867 	if (events & IEVENT_ERR_MASK)
2868 		gfar_error(irq, grp_id);
2869 
2870 	return IRQ_HANDLED;
2871 }
2872 
2873 #ifdef CONFIG_NET_POLL_CONTROLLER
2874 /* Polling 'interrupt' - used by things like netconsole to send skbs
2875  * without having to re-enable interrupts. It's not called while
2876  * the interrupt routine is executing.
2877  */
2878 static void gfar_netpoll(struct net_device *dev)
2879 {
2880 	struct gfar_private *priv = netdev_priv(dev);
2881 	int i;
2882 
2883 	/* If the device has multiple interrupts, run tx/rx */
2884 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2885 		for (i = 0; i < priv->num_grps; i++) {
2886 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2887 
2888 			disable_irq(gfar_irq(grp, TX)->irq);
2889 			disable_irq(gfar_irq(grp, RX)->irq);
2890 			disable_irq(gfar_irq(grp, ER)->irq);
2891 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2892 			enable_irq(gfar_irq(grp, ER)->irq);
2893 			enable_irq(gfar_irq(grp, RX)->irq);
2894 			enable_irq(gfar_irq(grp, TX)->irq);
2895 		}
2896 	} else {
2897 		for (i = 0; i < priv->num_grps; i++) {
2898 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2899 
2900 			disable_irq(gfar_irq(grp, TX)->irq);
2901 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2902 			enable_irq(gfar_irq(grp, TX)->irq);
2903 		}
2904 	}
2905 }
2906 #endif
2907 
2908 static void free_grp_irqs(struct gfar_priv_grp *grp)
2909 {
2910 	free_irq(gfar_irq(grp, TX)->irq, grp);
2911 	free_irq(gfar_irq(grp, RX)->irq, grp);
2912 	free_irq(gfar_irq(grp, ER)->irq, grp);
2913 }
2914 
2915 static int register_grp_irqs(struct gfar_priv_grp *grp)
2916 {
2917 	struct gfar_private *priv = grp->priv;
2918 	struct net_device *dev = priv->ndev;
2919 	int err;
2920 
2921 	/* If the device has multiple interrupts, register for
2922 	 * them.  Otherwise, only register for the one
2923 	 */
2924 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2925 		/* Install our interrupt handlers for Error,
2926 		 * Transmit, and Receive
2927 		 */
2928 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2929 				  gfar_irq(grp, ER)->name, grp);
2930 		if (err < 0) {
2931 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2932 				  gfar_irq(grp, ER)->irq);
2933 
2934 			goto err_irq_fail;
2935 		}
2936 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2937 
2938 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2939 				  gfar_irq(grp, TX)->name, grp);
2940 		if (err < 0) {
2941 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2942 				  gfar_irq(grp, TX)->irq);
2943 			goto tx_irq_fail;
2944 		}
2945 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2946 				  gfar_irq(grp, RX)->name, grp);
2947 		if (err < 0) {
2948 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2949 				  gfar_irq(grp, RX)->irq);
2950 			goto rx_irq_fail;
2951 		}
2952 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2953 
2954 	} else {
2955 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2956 				  gfar_irq(grp, TX)->name, grp);
2957 		if (err < 0) {
2958 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2959 				  gfar_irq(grp, TX)->irq);
2960 			goto err_irq_fail;
2961 		}
2962 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2963 	}
2964 
2965 	return 0;
2966 
2967 rx_irq_fail:
2968 	free_irq(gfar_irq(grp, TX)->irq, grp);
2969 tx_irq_fail:
2970 	free_irq(gfar_irq(grp, ER)->irq, grp);
2971 err_irq_fail:
2972 	return err;
2973 
2974 }
2975 
2976 static void gfar_free_irq(struct gfar_private *priv)
2977 {
2978 	int i;
2979 
2980 	/* Free the IRQs */
2981 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2982 		for (i = 0; i < priv->num_grps; i++)
2983 			free_grp_irqs(&priv->gfargrp[i]);
2984 	} else {
2985 		for (i = 0; i < priv->num_grps; i++)
2986 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2987 				 &priv->gfargrp[i]);
2988 	}
2989 }
2990 
2991 static int gfar_request_irq(struct gfar_private *priv)
2992 {
2993 	int err, i, j;
2994 
2995 	for (i = 0; i < priv->num_grps; i++) {
2996 		err = register_grp_irqs(&priv->gfargrp[i]);
2997 		if (err) {
2998 			for (j = 0; j < i; j++)
2999 				free_grp_irqs(&priv->gfargrp[j]);
3000 			return err;
3001 		}
3002 	}
3003 
3004 	return 0;
3005 }
3006 
3007 /* Called when something needs to use the ethernet device
3008  * Returns 0 for success.
3009  */
3010 static int gfar_enet_open(struct net_device *dev)
3011 {
3012 	struct gfar_private *priv = netdev_priv(dev);
3013 	int err;
3014 
3015 	err = init_phy(dev);
3016 	if (err)
3017 		return err;
3018 
3019 	err = gfar_request_irq(priv);
3020 	if (err)
3021 		return err;
3022 
3023 	err = startup_gfar(dev);
3024 	if (err)
3025 		return err;
3026 
3027 	return err;
3028 }
3029 
3030 /* Stops the kernel queue, and halts the controller */
3031 static int gfar_close(struct net_device *dev)
3032 {
3033 	struct gfar_private *priv = netdev_priv(dev);
3034 
3035 	cancel_work_sync(&priv->reset_task);
3036 	stop_gfar(dev);
3037 
3038 	/* Disconnect from the PHY */
3039 	phy_disconnect(dev->phydev);
3040 
3041 	gfar_free_irq(priv);
3042 
3043 	return 0;
3044 }
3045 
3046 /* Clears each of the exact match registers to zero, so they
3047  * don't interfere with normal reception
3048  */
3049 static void gfar_clear_exact_match(struct net_device *dev)
3050 {
3051 	int idx;
3052 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3053 
3054 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3055 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3056 }
3057 
3058 /* Update the hash table based on the current list of multicast
3059  * addresses we subscribe to.  Also, change the promiscuity of
3060  * the device based on the flags (this function is called
3061  * whenever dev->flags is changed
3062  */
3063 static void gfar_set_multi(struct net_device *dev)
3064 {
3065 	struct netdev_hw_addr *ha;
3066 	struct gfar_private *priv = netdev_priv(dev);
3067 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3068 	u32 tempval;
3069 
3070 	if (dev->flags & IFF_PROMISC) {
3071 		/* Set RCTRL to PROM */
3072 		tempval = gfar_read(&regs->rctrl);
3073 		tempval |= RCTRL_PROM;
3074 		gfar_write(&regs->rctrl, tempval);
3075 	} else {
3076 		/* Set RCTRL to not PROM */
3077 		tempval = gfar_read(&regs->rctrl);
3078 		tempval &= ~(RCTRL_PROM);
3079 		gfar_write(&regs->rctrl, tempval);
3080 	}
3081 
3082 	if (dev->flags & IFF_ALLMULTI) {
3083 		/* Set the hash to rx all multicast frames */
3084 		gfar_write(&regs->igaddr0, 0xffffffff);
3085 		gfar_write(&regs->igaddr1, 0xffffffff);
3086 		gfar_write(&regs->igaddr2, 0xffffffff);
3087 		gfar_write(&regs->igaddr3, 0xffffffff);
3088 		gfar_write(&regs->igaddr4, 0xffffffff);
3089 		gfar_write(&regs->igaddr5, 0xffffffff);
3090 		gfar_write(&regs->igaddr6, 0xffffffff);
3091 		gfar_write(&regs->igaddr7, 0xffffffff);
3092 		gfar_write(&regs->gaddr0, 0xffffffff);
3093 		gfar_write(&regs->gaddr1, 0xffffffff);
3094 		gfar_write(&regs->gaddr2, 0xffffffff);
3095 		gfar_write(&regs->gaddr3, 0xffffffff);
3096 		gfar_write(&regs->gaddr4, 0xffffffff);
3097 		gfar_write(&regs->gaddr5, 0xffffffff);
3098 		gfar_write(&regs->gaddr6, 0xffffffff);
3099 		gfar_write(&regs->gaddr7, 0xffffffff);
3100 	} else {
3101 		int em_num;
3102 		int idx;
3103 
3104 		/* zero out the hash */
3105 		gfar_write(&regs->igaddr0, 0x0);
3106 		gfar_write(&regs->igaddr1, 0x0);
3107 		gfar_write(&regs->igaddr2, 0x0);
3108 		gfar_write(&regs->igaddr3, 0x0);
3109 		gfar_write(&regs->igaddr4, 0x0);
3110 		gfar_write(&regs->igaddr5, 0x0);
3111 		gfar_write(&regs->igaddr6, 0x0);
3112 		gfar_write(&regs->igaddr7, 0x0);
3113 		gfar_write(&regs->gaddr0, 0x0);
3114 		gfar_write(&regs->gaddr1, 0x0);
3115 		gfar_write(&regs->gaddr2, 0x0);
3116 		gfar_write(&regs->gaddr3, 0x0);
3117 		gfar_write(&regs->gaddr4, 0x0);
3118 		gfar_write(&regs->gaddr5, 0x0);
3119 		gfar_write(&regs->gaddr6, 0x0);
3120 		gfar_write(&regs->gaddr7, 0x0);
3121 
3122 		/* If we have extended hash tables, we need to
3123 		 * clear the exact match registers to prepare for
3124 		 * setting them
3125 		 */
3126 		if (priv->extended_hash) {
3127 			em_num = GFAR_EM_NUM + 1;
3128 			gfar_clear_exact_match(dev);
3129 			idx = 1;
3130 		} else {
3131 			idx = 0;
3132 			em_num = 0;
3133 		}
3134 
3135 		if (netdev_mc_empty(dev))
3136 			return;
3137 
3138 		/* Parse the list, and set the appropriate bits */
3139 		netdev_for_each_mc_addr(ha, dev) {
3140 			if (idx < em_num) {
3141 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3142 				idx++;
3143 			} else
3144 				gfar_set_hash_for_addr(dev, ha->addr);
3145 		}
3146 	}
3147 }
3148 
3149 void gfar_mac_reset(struct gfar_private *priv)
3150 {
3151 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3152 	u32 tempval;
3153 
3154 	/* Reset MAC layer */
3155 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
3156 
3157 	/* We need to delay at least 3 TX clocks */
3158 	udelay(3);
3159 
3160 	/* the soft reset bit is not self-resetting, so we need to
3161 	 * clear it before resuming normal operation
3162 	 */
3163 	gfar_write(&regs->maccfg1, 0);
3164 
3165 	udelay(3);
3166 
3167 	gfar_rx_offload_en(priv);
3168 
3169 	/* Initialize the max receive frame/buffer lengths */
3170 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3171 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3172 
3173 	/* Initialize the Minimum Frame Length Register */
3174 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3175 
3176 	/* Initialize MACCFG2. */
3177 	tempval = MACCFG2_INIT_SETTINGS;
3178 
3179 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3180 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3181 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3182 	 */
3183 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3184 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3185 
3186 	gfar_write(&regs->maccfg2, tempval);
3187 
3188 	/* Clear mac addr hash registers */
3189 	gfar_write(&regs->igaddr0, 0);
3190 	gfar_write(&regs->igaddr1, 0);
3191 	gfar_write(&regs->igaddr2, 0);
3192 	gfar_write(&regs->igaddr3, 0);
3193 	gfar_write(&regs->igaddr4, 0);
3194 	gfar_write(&regs->igaddr5, 0);
3195 	gfar_write(&regs->igaddr6, 0);
3196 	gfar_write(&regs->igaddr7, 0);
3197 
3198 	gfar_write(&regs->gaddr0, 0);
3199 	gfar_write(&regs->gaddr1, 0);
3200 	gfar_write(&regs->gaddr2, 0);
3201 	gfar_write(&regs->gaddr3, 0);
3202 	gfar_write(&regs->gaddr4, 0);
3203 	gfar_write(&regs->gaddr5, 0);
3204 	gfar_write(&regs->gaddr6, 0);
3205 	gfar_write(&regs->gaddr7, 0);
3206 
3207 	if (priv->extended_hash)
3208 		gfar_clear_exact_match(priv->ndev);
3209 
3210 	gfar_mac_rx_config(priv);
3211 
3212 	gfar_mac_tx_config(priv);
3213 
3214 	gfar_set_mac_address(priv->ndev);
3215 
3216 	gfar_set_multi(priv->ndev);
3217 
3218 	/* clear ievent and imask before configuring coalescing */
3219 	gfar_ints_disable(priv);
3220 
3221 	/* Configure the coalescing support */
3222 	gfar_configure_coalescing_all(priv);
3223 }
3224 
3225 static void gfar_hw_init(struct gfar_private *priv)
3226 {
3227 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3228 	u32 attrs;
3229 
3230 	/* Stop the DMA engine now, in case it was running before
3231 	 * (The firmware could have used it, and left it running).
3232 	 */
3233 	gfar_halt(priv);
3234 
3235 	gfar_mac_reset(priv);
3236 
3237 	/* Zero out the rmon mib registers if it has them */
3238 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3239 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3240 
3241 		/* Mask off the CAM interrupts */
3242 		gfar_write(&regs->rmon.cam1, 0xffffffff);
3243 		gfar_write(&regs->rmon.cam2, 0xffffffff);
3244 	}
3245 
3246 	/* Initialize ECNTRL */
3247 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3248 
3249 	/* Set the extraction length and index */
3250 	attrs = ATTRELI_EL(priv->rx_stash_size) |
3251 		ATTRELI_EI(priv->rx_stash_index);
3252 
3253 	gfar_write(&regs->attreli, attrs);
3254 
3255 	/* Start with defaults, and add stashing
3256 	 * depending on driver parameters
3257 	 */
3258 	attrs = ATTR_INIT_SETTINGS;
3259 
3260 	if (priv->bd_stash_en)
3261 		attrs |= ATTR_BDSTASH;
3262 
3263 	if (priv->rx_stash_size != 0)
3264 		attrs |= ATTR_BUFSTASH;
3265 
3266 	gfar_write(&regs->attr, attrs);
3267 
3268 	/* FIFO configs */
3269 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3270 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3271 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3272 
3273 	/* Program the interrupt steering regs, only for MG devices */
3274 	if (priv->num_grps > 1)
3275 		gfar_write_isrg(priv);
3276 }
3277 
3278 static const struct net_device_ops gfar_netdev_ops = {
3279 	.ndo_open = gfar_enet_open,
3280 	.ndo_start_xmit = gfar_start_xmit,
3281 	.ndo_stop = gfar_close,
3282 	.ndo_change_mtu = gfar_change_mtu,
3283 	.ndo_set_features = gfar_set_features,
3284 	.ndo_set_rx_mode = gfar_set_multi,
3285 	.ndo_tx_timeout = gfar_timeout,
3286 	.ndo_do_ioctl = gfar_ioctl,
3287 	.ndo_get_stats = gfar_get_stats,
3288 	.ndo_change_carrier = fixed_phy_change_carrier,
3289 	.ndo_set_mac_address = gfar_set_mac_addr,
3290 	.ndo_validate_addr = eth_validate_addr,
3291 #ifdef CONFIG_NET_POLL_CONTROLLER
3292 	.ndo_poll_controller = gfar_netpoll,
3293 #endif
3294 };
3295 
3296 /* Set up the ethernet device structure, private data,
3297  * and anything else we need before we start
3298  */
3299 static int gfar_probe(struct platform_device *ofdev)
3300 {
3301 	struct device_node *np = ofdev->dev.of_node;
3302 	struct net_device *dev = NULL;
3303 	struct gfar_private *priv = NULL;
3304 	int err = 0, i;
3305 
3306 	err = gfar_of_init(ofdev, &dev);
3307 
3308 	if (err)
3309 		return err;
3310 
3311 	priv = netdev_priv(dev);
3312 	priv->ndev = dev;
3313 	priv->ofdev = ofdev;
3314 	priv->dev = &ofdev->dev;
3315 	SET_NETDEV_DEV(dev, &ofdev->dev);
3316 
3317 	INIT_WORK(&priv->reset_task, gfar_reset_task);
3318 
3319 	platform_set_drvdata(ofdev, priv);
3320 
3321 	gfar_detect_errata(priv);
3322 
3323 	/* Set the dev->base_addr to the gfar reg region */
3324 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3325 
3326 	/* Fill in the dev structure */
3327 	dev->watchdog_timeo = TX_TIMEOUT;
3328 	/* MTU range: 50 - 9586 */
3329 	dev->mtu = 1500;
3330 	dev->min_mtu = 50;
3331 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3332 	dev->netdev_ops = &gfar_netdev_ops;
3333 	dev->ethtool_ops = &gfar_ethtool_ops;
3334 
3335 	/* Register for napi ...We are registering NAPI for each grp */
3336 	for (i = 0; i < priv->num_grps; i++) {
3337 		if (priv->poll_mode == GFAR_SQ_POLLING) {
3338 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3339 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3340 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3341 				       gfar_poll_tx_sq, 2);
3342 		} else {
3343 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3344 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
3345 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3346 				       gfar_poll_tx, 2);
3347 		}
3348 	}
3349 
3350 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3351 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3352 				   NETIF_F_RXCSUM;
3353 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3354 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3355 	}
3356 
3357 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3358 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3359 				    NETIF_F_HW_VLAN_CTAG_RX;
3360 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3361 	}
3362 
3363 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3364 
3365 	gfar_init_addr_hash_table(priv);
3366 
3367 	/* Insert receive time stamps into padding alignment bytes, and
3368 	 * plus 2 bytes padding to ensure the cpu alignment.
3369 	 */
3370 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3371 		priv->padding = 8 + DEFAULT_PADDING;
3372 
3373 	if (dev->features & NETIF_F_IP_CSUM ||
3374 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3375 		dev->needed_headroom = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
3376 
3377 	/* Initializing some of the rx/tx queue level parameters */
3378 	for (i = 0; i < priv->num_tx_queues; i++) {
3379 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3380 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3381 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3382 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3383 	}
3384 
3385 	for (i = 0; i < priv->num_rx_queues; i++) {
3386 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3387 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3388 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3389 	}
3390 
3391 	/* Always enable rx filer if available */
3392 	priv->rx_filer_enable =
3393 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3394 	/* Enable most messages by default */
3395 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3396 	/* use pritority h/w tx queue scheduling for single queue devices */
3397 	if (priv->num_tx_queues == 1)
3398 		priv->prio_sched_en = 1;
3399 
3400 	set_bit(GFAR_DOWN, &priv->state);
3401 
3402 	gfar_hw_init(priv);
3403 
3404 	/* Carrier starts down, phylib will bring it up */
3405 	netif_carrier_off(dev);
3406 
3407 	err = register_netdev(dev);
3408 
3409 	if (err) {
3410 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3411 		goto register_fail;
3412 	}
3413 
3414 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3415 		priv->wol_supported |= GFAR_WOL_MAGIC;
3416 
3417 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3418 	    priv->rx_filer_enable)
3419 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3420 
3421 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3422 
3423 	/* fill out IRQ number and name fields */
3424 	for (i = 0; i < priv->num_grps; i++) {
3425 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3426 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3427 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3428 				dev->name, "_g", '0' + i, "_tx");
3429 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3430 				dev->name, "_g", '0' + i, "_rx");
3431 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3432 				dev->name, "_g", '0' + i, "_er");
3433 		} else
3434 			strcpy(gfar_irq(grp, TX)->name, dev->name);
3435 	}
3436 
3437 	/* Initialize the filer table */
3438 	gfar_init_filer_table(priv);
3439 
3440 	/* Print out the device info */
3441 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3442 
3443 	/* Even more device info helps when determining which kernel
3444 	 * provided which set of benchmarks.
3445 	 */
3446 	netdev_info(dev, "Running with NAPI enabled\n");
3447 	for (i = 0; i < priv->num_rx_queues; i++)
3448 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3449 			    i, priv->rx_queue[i]->rx_ring_size);
3450 	for (i = 0; i < priv->num_tx_queues; i++)
3451 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3452 			    i, priv->tx_queue[i]->tx_ring_size);
3453 
3454 	return 0;
3455 
3456 register_fail:
3457 	if (of_phy_is_fixed_link(np))
3458 		of_phy_deregister_fixed_link(np);
3459 	unmap_group_regs(priv);
3460 	gfar_free_rx_queues(priv);
3461 	gfar_free_tx_queues(priv);
3462 	of_node_put(priv->phy_node);
3463 	of_node_put(priv->tbi_node);
3464 	free_gfar_dev(priv);
3465 	return err;
3466 }
3467 
3468 static int gfar_remove(struct platform_device *ofdev)
3469 {
3470 	struct gfar_private *priv = platform_get_drvdata(ofdev);
3471 	struct device_node *np = ofdev->dev.of_node;
3472 
3473 	of_node_put(priv->phy_node);
3474 	of_node_put(priv->tbi_node);
3475 
3476 	unregister_netdev(priv->ndev);
3477 
3478 	if (of_phy_is_fixed_link(np))
3479 		of_phy_deregister_fixed_link(np);
3480 
3481 	unmap_group_regs(priv);
3482 	gfar_free_rx_queues(priv);
3483 	gfar_free_tx_queues(priv);
3484 	free_gfar_dev(priv);
3485 
3486 	return 0;
3487 }
3488 
3489 #ifdef CONFIG_PM
3490 
3491 static void __gfar_filer_disable(struct gfar_private *priv)
3492 {
3493 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3494 	u32 temp;
3495 
3496 	temp = gfar_read(&regs->rctrl);
3497 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3498 	gfar_write(&regs->rctrl, temp);
3499 }
3500 
3501 static void __gfar_filer_enable(struct gfar_private *priv)
3502 {
3503 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3504 	u32 temp;
3505 
3506 	temp = gfar_read(&regs->rctrl);
3507 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3508 	gfar_write(&regs->rctrl, temp);
3509 }
3510 
3511 /* Filer rules implementing wol capabilities */
3512 static void gfar_filer_config_wol(struct gfar_private *priv)
3513 {
3514 	unsigned int i;
3515 	u32 rqfcr;
3516 
3517 	__gfar_filer_disable(priv);
3518 
3519 	/* clear the filer table, reject any packet by default */
3520 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3521 	for (i = 0; i <= MAX_FILER_IDX; i++)
3522 		gfar_write_filer(priv, i, rqfcr, 0);
3523 
3524 	i = 0;
3525 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3526 		/* unicast packet, accept it */
3527 		struct net_device *ndev = priv->ndev;
3528 		/* get the default rx queue index */
3529 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3530 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3531 				    (ndev->dev_addr[1] << 8) |
3532 				     ndev->dev_addr[2];
3533 
3534 		rqfcr = (qindex << 10) | RQFCR_AND |
3535 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3536 
3537 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3538 
3539 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3540 				(ndev->dev_addr[4] << 8) |
3541 				 ndev->dev_addr[5];
3542 		rqfcr = (qindex << 10) | RQFCR_GPI |
3543 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3544 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3545 	}
3546 
3547 	__gfar_filer_enable(priv);
3548 }
3549 
3550 static void gfar_filer_restore_table(struct gfar_private *priv)
3551 {
3552 	u32 rqfcr, rqfpr;
3553 	unsigned int i;
3554 
3555 	__gfar_filer_disable(priv);
3556 
3557 	for (i = 0; i <= MAX_FILER_IDX; i++) {
3558 		rqfcr = priv->ftp_rqfcr[i];
3559 		rqfpr = priv->ftp_rqfpr[i];
3560 		gfar_write_filer(priv, i, rqfcr, rqfpr);
3561 	}
3562 
3563 	__gfar_filer_enable(priv);
3564 }
3565 
3566 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3567 static void gfar_start_wol_filer(struct gfar_private *priv)
3568 {
3569 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3570 	u32 tempval;
3571 	int i = 0;
3572 
3573 	/* Enable Rx hw queues */
3574 	gfar_write(&regs->rqueue, priv->rqueue);
3575 
3576 	/* Initialize DMACTRL to have WWR and WOP */
3577 	tempval = gfar_read(&regs->dmactrl);
3578 	tempval |= DMACTRL_INIT_SETTINGS;
3579 	gfar_write(&regs->dmactrl, tempval);
3580 
3581 	/* Make sure we aren't stopped */
3582 	tempval = gfar_read(&regs->dmactrl);
3583 	tempval &= ~DMACTRL_GRS;
3584 	gfar_write(&regs->dmactrl, tempval);
3585 
3586 	for (i = 0; i < priv->num_grps; i++) {
3587 		regs = priv->gfargrp[i].regs;
3588 		/* Clear RHLT, so that the DMA starts polling now */
3589 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3590 		/* enable the Filer General Purpose Interrupt */
3591 		gfar_write(&regs->imask, IMASK_FGPI);
3592 	}
3593 
3594 	/* Enable Rx DMA */
3595 	tempval = gfar_read(&regs->maccfg1);
3596 	tempval |= MACCFG1_RX_EN;
3597 	gfar_write(&regs->maccfg1, tempval);
3598 }
3599 
3600 static int gfar_suspend(struct device *dev)
3601 {
3602 	struct gfar_private *priv = dev_get_drvdata(dev);
3603 	struct net_device *ndev = priv->ndev;
3604 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3605 	u32 tempval;
3606 	u16 wol = priv->wol_opts;
3607 
3608 	if (!netif_running(ndev))
3609 		return 0;
3610 
3611 	disable_napi(priv);
3612 	netif_tx_lock(ndev);
3613 	netif_device_detach(ndev);
3614 	netif_tx_unlock(ndev);
3615 
3616 	gfar_halt(priv);
3617 
3618 	if (wol & GFAR_WOL_MAGIC) {
3619 		/* Enable interrupt on Magic Packet */
3620 		gfar_write(&regs->imask, IMASK_MAG);
3621 
3622 		/* Enable Magic Packet mode */
3623 		tempval = gfar_read(&regs->maccfg2);
3624 		tempval |= MACCFG2_MPEN;
3625 		gfar_write(&regs->maccfg2, tempval);
3626 
3627 		/* re-enable the Rx block */
3628 		tempval = gfar_read(&regs->maccfg1);
3629 		tempval |= MACCFG1_RX_EN;
3630 		gfar_write(&regs->maccfg1, tempval);
3631 
3632 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3633 		gfar_filer_config_wol(priv);
3634 		gfar_start_wol_filer(priv);
3635 
3636 	} else {
3637 		phy_stop(ndev->phydev);
3638 	}
3639 
3640 	return 0;
3641 }
3642 
3643 static int gfar_resume(struct device *dev)
3644 {
3645 	struct gfar_private *priv = dev_get_drvdata(dev);
3646 	struct net_device *ndev = priv->ndev;
3647 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3648 	u32 tempval;
3649 	u16 wol = priv->wol_opts;
3650 
3651 	if (!netif_running(ndev))
3652 		return 0;
3653 
3654 	if (wol & GFAR_WOL_MAGIC) {
3655 		/* Disable Magic Packet mode */
3656 		tempval = gfar_read(&regs->maccfg2);
3657 		tempval &= ~MACCFG2_MPEN;
3658 		gfar_write(&regs->maccfg2, tempval);
3659 
3660 	} else if (wol & GFAR_WOL_FILER_UCAST) {
3661 		/* need to stop rx only, tx is already down */
3662 		gfar_halt(priv);
3663 		gfar_filer_restore_table(priv);
3664 
3665 	} else {
3666 		phy_start(ndev->phydev);
3667 	}
3668 
3669 	gfar_start(priv);
3670 
3671 	netif_device_attach(ndev);
3672 	enable_napi(priv);
3673 
3674 	return 0;
3675 }
3676 
3677 static int gfar_restore(struct device *dev)
3678 {
3679 	struct gfar_private *priv = dev_get_drvdata(dev);
3680 	struct net_device *ndev = priv->ndev;
3681 
3682 	if (!netif_running(ndev)) {
3683 		netif_device_attach(ndev);
3684 
3685 		return 0;
3686 	}
3687 
3688 	gfar_init_bds(ndev);
3689 
3690 	gfar_mac_reset(priv);
3691 
3692 	gfar_init_tx_rx_base(priv);
3693 
3694 	gfar_start(priv);
3695 
3696 	priv->oldlink = 0;
3697 	priv->oldspeed = 0;
3698 	priv->oldduplex = -1;
3699 
3700 	if (ndev->phydev)
3701 		phy_start(ndev->phydev);
3702 
3703 	netif_device_attach(ndev);
3704 	enable_napi(priv);
3705 
3706 	return 0;
3707 }
3708 
3709 static const struct dev_pm_ops gfar_pm_ops = {
3710 	.suspend = gfar_suspend,
3711 	.resume = gfar_resume,
3712 	.freeze = gfar_suspend,
3713 	.thaw = gfar_resume,
3714 	.restore = gfar_restore,
3715 };
3716 
3717 #define GFAR_PM_OPS (&gfar_pm_ops)
3718 
3719 #else
3720 
3721 #define GFAR_PM_OPS NULL
3722 
3723 #endif
3724 
3725 static const struct of_device_id gfar_match[] =
3726 {
3727 	{
3728 		.type = "network",
3729 		.compatible = "gianfar",
3730 	},
3731 	{
3732 		.compatible = "fsl,etsec2",
3733 	},
3734 	{},
3735 };
3736 MODULE_DEVICE_TABLE(of, gfar_match);
3737 
3738 /* Structure for a device driver */
3739 static struct platform_driver gfar_driver = {
3740 	.driver = {
3741 		.name = "fsl-gianfar",
3742 		.pm = GFAR_PM_OPS,
3743 		.of_match_table = gfar_match,
3744 	},
3745 	.probe = gfar_probe,
3746 	.remove = gfar_remove,
3747 };
3748 
3749 module_platform_driver(gfar_driver);
3750