1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88 
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101 
102 #include "gianfar.h"
103 
104 #define TX_TIMEOUT      (1*HZ)
105 
106 const char gfar_driver_version[] = "1.3";
107 
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115 			   struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 static int gfar_poll_sq(struct napi_struct *napi, int budget);
132 #ifdef CONFIG_NET_POLL_CONTROLLER
133 static void gfar_netpoll(struct net_device *dev);
134 #endif
135 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
136 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
137 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
138 			       int amount_pull, struct napi_struct *napi);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
144 				  const u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146 
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
150 
151 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
152 			    dma_addr_t buf)
153 {
154 	u32 lstatus;
155 
156 	bdp->bufPtr = buf;
157 
158 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
159 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
160 		lstatus |= BD_LFLAG(RXBD_WRAP);
161 
162 	eieio();
163 
164 	bdp->lstatus = lstatus;
165 }
166 
167 static int gfar_init_bds(struct net_device *ndev)
168 {
169 	struct gfar_private *priv = netdev_priv(ndev);
170 	struct gfar_priv_tx_q *tx_queue = NULL;
171 	struct gfar_priv_rx_q *rx_queue = NULL;
172 	struct txbd8 *txbdp;
173 	struct rxbd8 *rxbdp;
174 	int i, j;
175 
176 	for (i = 0; i < priv->num_tx_queues; i++) {
177 		tx_queue = priv->tx_queue[i];
178 		/* Initialize some variables in our dev structure */
179 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
180 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
181 		tx_queue->cur_tx = tx_queue->tx_bd_base;
182 		tx_queue->skb_curtx = 0;
183 		tx_queue->skb_dirtytx = 0;
184 
185 		/* Initialize Transmit Descriptor Ring */
186 		txbdp = tx_queue->tx_bd_base;
187 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
188 			txbdp->lstatus = 0;
189 			txbdp->bufPtr = 0;
190 			txbdp++;
191 		}
192 
193 		/* Set the last descriptor in the ring to indicate wrap */
194 		txbdp--;
195 		txbdp->status |= TXBD_WRAP;
196 	}
197 
198 	for (i = 0; i < priv->num_rx_queues; i++) {
199 		rx_queue = priv->rx_queue[i];
200 		rx_queue->cur_rx = rx_queue->rx_bd_base;
201 		rx_queue->skb_currx = 0;
202 		rxbdp = rx_queue->rx_bd_base;
203 
204 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
205 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
206 
207 			if (skb) {
208 				gfar_init_rxbdp(rx_queue, rxbdp,
209 						rxbdp->bufPtr);
210 			} else {
211 				skb = gfar_new_skb(ndev);
212 				if (!skb) {
213 					netdev_err(ndev, "Can't allocate RX buffers\n");
214 					return -ENOMEM;
215 				}
216 				rx_queue->rx_skbuff[j] = skb;
217 
218 				gfar_new_rxbdp(rx_queue, rxbdp, skb);
219 			}
220 
221 			rxbdp++;
222 		}
223 
224 	}
225 
226 	return 0;
227 }
228 
229 static int gfar_alloc_skb_resources(struct net_device *ndev)
230 {
231 	void *vaddr;
232 	dma_addr_t addr;
233 	int i, j, k;
234 	struct gfar_private *priv = netdev_priv(ndev);
235 	struct device *dev = priv->dev;
236 	struct gfar_priv_tx_q *tx_queue = NULL;
237 	struct gfar_priv_rx_q *rx_queue = NULL;
238 
239 	priv->total_tx_ring_size = 0;
240 	for (i = 0; i < priv->num_tx_queues; i++)
241 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
242 
243 	priv->total_rx_ring_size = 0;
244 	for (i = 0; i < priv->num_rx_queues; i++)
245 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
246 
247 	/* Allocate memory for the buffer descriptors */
248 	vaddr = dma_alloc_coherent(dev,
249 				   (priv->total_tx_ring_size *
250 				    sizeof(struct txbd8)) +
251 				   (priv->total_rx_ring_size *
252 				    sizeof(struct rxbd8)),
253 				   &addr, GFP_KERNEL);
254 	if (!vaddr)
255 		return -ENOMEM;
256 
257 	for (i = 0; i < priv->num_tx_queues; i++) {
258 		tx_queue = priv->tx_queue[i];
259 		tx_queue->tx_bd_base = vaddr;
260 		tx_queue->tx_bd_dma_base = addr;
261 		tx_queue->dev = ndev;
262 		/* enet DMA only understands physical addresses */
263 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
264 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
265 	}
266 
267 	/* Start the rx descriptor ring where the tx ring leaves off */
268 	for (i = 0; i < priv->num_rx_queues; i++) {
269 		rx_queue = priv->rx_queue[i];
270 		rx_queue->rx_bd_base = vaddr;
271 		rx_queue->rx_bd_dma_base = addr;
272 		rx_queue->dev = ndev;
273 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
274 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
275 	}
276 
277 	/* Setup the skbuff rings */
278 	for (i = 0; i < priv->num_tx_queues; i++) {
279 		tx_queue = priv->tx_queue[i];
280 		tx_queue->tx_skbuff =
281 			kmalloc_array(tx_queue->tx_ring_size,
282 				      sizeof(*tx_queue->tx_skbuff),
283 				      GFP_KERNEL);
284 		if (!tx_queue->tx_skbuff)
285 			goto cleanup;
286 
287 		for (k = 0; k < tx_queue->tx_ring_size; k++)
288 			tx_queue->tx_skbuff[k] = NULL;
289 	}
290 
291 	for (i = 0; i < priv->num_rx_queues; i++) {
292 		rx_queue = priv->rx_queue[i];
293 		rx_queue->rx_skbuff =
294 			kmalloc_array(rx_queue->rx_ring_size,
295 				      sizeof(*rx_queue->rx_skbuff),
296 				      GFP_KERNEL);
297 		if (!rx_queue->rx_skbuff)
298 			goto cleanup;
299 
300 		for (j = 0; j < rx_queue->rx_ring_size; j++)
301 			rx_queue->rx_skbuff[j] = NULL;
302 	}
303 
304 	if (gfar_init_bds(ndev))
305 		goto cleanup;
306 
307 	return 0;
308 
309 cleanup:
310 	free_skb_resources(priv);
311 	return -ENOMEM;
312 }
313 
314 static void gfar_init_tx_rx_base(struct gfar_private *priv)
315 {
316 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
317 	u32 __iomem *baddr;
318 	int i;
319 
320 	baddr = &regs->tbase0;
321 	for (i = 0; i < priv->num_tx_queues; i++) {
322 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
323 		baddr += 2;
324 	}
325 
326 	baddr = &regs->rbase0;
327 	for (i = 0; i < priv->num_rx_queues; i++) {
328 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
329 		baddr += 2;
330 	}
331 }
332 
333 static void gfar_init_mac(struct net_device *ndev)
334 {
335 	struct gfar_private *priv = netdev_priv(ndev);
336 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
337 	u32 rctrl = 0;
338 	u32 tctrl = 0;
339 	u32 attrs = 0;
340 
341 	/* write the tx/rx base registers */
342 	gfar_init_tx_rx_base(priv);
343 
344 	/* Configure the coalescing support */
345 	gfar_configure_coalescing_all(priv);
346 
347 	/* set this when rx hw offload (TOE) functions are being used */
348 	priv->uses_rxfcb = 0;
349 
350 	if (priv->rx_filer_enable) {
351 		rctrl |= RCTRL_FILREN;
352 		/* Program the RIR0 reg with the required distribution */
353 		gfar_write(&regs->rir0, DEFAULT_RIR0);
354 	}
355 
356 	/* Restore PROMISC mode */
357 	if (ndev->flags & IFF_PROMISC)
358 		rctrl |= RCTRL_PROM;
359 
360 	if (ndev->features & NETIF_F_RXCSUM) {
361 		rctrl |= RCTRL_CHECKSUMMING;
362 		priv->uses_rxfcb = 1;
363 	}
364 
365 	if (priv->extended_hash) {
366 		rctrl |= RCTRL_EXTHASH;
367 
368 		gfar_clear_exact_match(ndev);
369 		rctrl |= RCTRL_EMEN;
370 	}
371 
372 	if (priv->padding) {
373 		rctrl &= ~RCTRL_PAL_MASK;
374 		rctrl |= RCTRL_PADDING(priv->padding);
375 	}
376 
377 	/* Insert receive time stamps into padding alignment bytes */
378 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
379 		rctrl &= ~RCTRL_PAL_MASK;
380 		rctrl |= RCTRL_PADDING(8);
381 		priv->padding = 8;
382 	}
383 
384 	/* Enable HW time stamping if requested from user space */
385 	if (priv->hwts_rx_en) {
386 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
387 		priv->uses_rxfcb = 1;
388 	}
389 
390 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
391 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
392 		priv->uses_rxfcb = 1;
393 	}
394 
395 	/* Init rctrl based on our settings */
396 	gfar_write(&regs->rctrl, rctrl);
397 
398 	if (ndev->features & NETIF_F_IP_CSUM)
399 		tctrl |= TCTRL_INIT_CSUM;
400 
401 	if (priv->prio_sched_en)
402 		tctrl |= TCTRL_TXSCHED_PRIO;
403 	else {
404 		tctrl |= TCTRL_TXSCHED_WRRS;
405 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
406 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
407 	}
408 
409 	gfar_write(&regs->tctrl, tctrl);
410 
411 	/* Set the extraction length and index */
412 	attrs = ATTRELI_EL(priv->rx_stash_size) |
413 		ATTRELI_EI(priv->rx_stash_index);
414 
415 	gfar_write(&regs->attreli, attrs);
416 
417 	/* Start with defaults, and add stashing or locking
418 	 * depending on the approprate variables
419 	 */
420 	attrs = ATTR_INIT_SETTINGS;
421 
422 	if (priv->bd_stash_en)
423 		attrs |= ATTR_BDSTASH;
424 
425 	if (priv->rx_stash_size != 0)
426 		attrs |= ATTR_BUFSTASH;
427 
428 	gfar_write(&regs->attr, attrs);
429 
430 	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
431 	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
432 	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
433 }
434 
435 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
436 {
437 	struct gfar_private *priv = netdev_priv(dev);
438 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
439 	unsigned long tx_packets = 0, tx_bytes = 0;
440 	int i;
441 
442 	for (i = 0; i < priv->num_rx_queues; i++) {
443 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
444 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
445 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
446 	}
447 
448 	dev->stats.rx_packets = rx_packets;
449 	dev->stats.rx_bytes   = rx_bytes;
450 	dev->stats.rx_dropped = rx_dropped;
451 
452 	for (i = 0; i < priv->num_tx_queues; i++) {
453 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
454 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
455 	}
456 
457 	dev->stats.tx_bytes   = tx_bytes;
458 	dev->stats.tx_packets = tx_packets;
459 
460 	return &dev->stats;
461 }
462 
463 static const struct net_device_ops gfar_netdev_ops = {
464 	.ndo_open = gfar_enet_open,
465 	.ndo_start_xmit = gfar_start_xmit,
466 	.ndo_stop = gfar_close,
467 	.ndo_change_mtu = gfar_change_mtu,
468 	.ndo_set_features = gfar_set_features,
469 	.ndo_set_rx_mode = gfar_set_multi,
470 	.ndo_tx_timeout = gfar_timeout,
471 	.ndo_do_ioctl = gfar_ioctl,
472 	.ndo_get_stats = gfar_get_stats,
473 	.ndo_set_mac_address = eth_mac_addr,
474 	.ndo_validate_addr = eth_validate_addr,
475 #ifdef CONFIG_NET_POLL_CONTROLLER
476 	.ndo_poll_controller = gfar_netpoll,
477 #endif
478 };
479 
480 void lock_rx_qs(struct gfar_private *priv)
481 {
482 	int i;
483 
484 	for (i = 0; i < priv->num_rx_queues; i++)
485 		spin_lock(&priv->rx_queue[i]->rxlock);
486 }
487 
488 void lock_tx_qs(struct gfar_private *priv)
489 {
490 	int i;
491 
492 	for (i = 0; i < priv->num_tx_queues; i++)
493 		spin_lock(&priv->tx_queue[i]->txlock);
494 }
495 
496 void unlock_rx_qs(struct gfar_private *priv)
497 {
498 	int i;
499 
500 	for (i = 0; i < priv->num_rx_queues; i++)
501 		spin_unlock(&priv->rx_queue[i]->rxlock);
502 }
503 
504 void unlock_tx_qs(struct gfar_private *priv)
505 {
506 	int i;
507 
508 	for (i = 0; i < priv->num_tx_queues; i++)
509 		spin_unlock(&priv->tx_queue[i]->txlock);
510 }
511 
512 static void free_tx_pointers(struct gfar_private *priv)
513 {
514 	int i;
515 
516 	for (i = 0; i < priv->num_tx_queues; i++)
517 		kfree(priv->tx_queue[i]);
518 }
519 
520 static void free_rx_pointers(struct gfar_private *priv)
521 {
522 	int i;
523 
524 	for (i = 0; i < priv->num_rx_queues; i++)
525 		kfree(priv->rx_queue[i]);
526 }
527 
528 static void unmap_group_regs(struct gfar_private *priv)
529 {
530 	int i;
531 
532 	for (i = 0; i < MAXGROUPS; i++)
533 		if (priv->gfargrp[i].regs)
534 			iounmap(priv->gfargrp[i].regs);
535 }
536 
537 static void free_gfar_dev(struct gfar_private *priv)
538 {
539 	int i, j;
540 
541 	for (i = 0; i < priv->num_grps; i++)
542 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
543 			kfree(priv->gfargrp[i].irqinfo[j]);
544 			priv->gfargrp[i].irqinfo[j] = NULL;
545 		}
546 
547 	free_netdev(priv->ndev);
548 }
549 
550 static void disable_napi(struct gfar_private *priv)
551 {
552 	int i;
553 
554 	for (i = 0; i < priv->num_grps; i++)
555 		napi_disable(&priv->gfargrp[i].napi);
556 }
557 
558 static void enable_napi(struct gfar_private *priv)
559 {
560 	int i;
561 
562 	for (i = 0; i < priv->num_grps; i++)
563 		napi_enable(&priv->gfargrp[i].napi);
564 }
565 
566 static int gfar_parse_group(struct device_node *np,
567 			    struct gfar_private *priv, const char *model)
568 {
569 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
570 	u32 *queue_mask;
571 	int i;
572 
573 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
574 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
575 					  GFP_KERNEL);
576 		if (!grp->irqinfo[i])
577 			return -ENOMEM;
578 	}
579 
580 	grp->regs = of_iomap(np, 0);
581 	if (!grp->regs)
582 		return -ENOMEM;
583 
584 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
585 
586 	/* If we aren't the FEC we have multiple interrupts */
587 	if (model && strcasecmp(model, "FEC")) {
588 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
589 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
590 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
591 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
592 		    gfar_irq(grp, ER)->irq == NO_IRQ)
593 			return -EINVAL;
594 	}
595 
596 	grp->grp_id = priv->num_grps;
597 	grp->priv = priv;
598 	spin_lock_init(&grp->grplock);
599 	if (priv->mode == MQ_MG_MODE) {
600 		queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
601 		grp->rx_bit_map = queue_mask ?
602 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
603 		queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
604 		grp->tx_bit_map = queue_mask ?
605 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
606 	} else {
607 		grp->rx_bit_map = 0xFF;
608 		grp->tx_bit_map = 0xFF;
609 	}
610 	priv->num_grps++;
611 
612 	return 0;
613 }
614 
615 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
616 {
617 	const char *model;
618 	const char *ctype;
619 	const void *mac_addr;
620 	int err = 0, i;
621 	struct net_device *dev = NULL;
622 	struct gfar_private *priv = NULL;
623 	struct device_node *np = ofdev->dev.of_node;
624 	struct device_node *child = NULL;
625 	const u32 *stash;
626 	const u32 *stash_len;
627 	const u32 *stash_idx;
628 	unsigned int num_tx_qs, num_rx_qs;
629 	u32 *tx_queues, *rx_queues;
630 
631 	if (!np || !of_device_is_available(np))
632 		return -ENODEV;
633 
634 	/* parse the num of tx and rx queues */
635 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
636 	num_tx_qs = tx_queues ? *tx_queues : 1;
637 
638 	if (num_tx_qs > MAX_TX_QS) {
639 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
640 		       num_tx_qs, MAX_TX_QS);
641 		pr_err("Cannot do alloc_etherdev, aborting\n");
642 		return -EINVAL;
643 	}
644 
645 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
646 	num_rx_qs = rx_queues ? *rx_queues : 1;
647 
648 	if (num_rx_qs > MAX_RX_QS) {
649 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
650 		       num_rx_qs, MAX_RX_QS);
651 		pr_err("Cannot do alloc_etherdev, aborting\n");
652 		return -EINVAL;
653 	}
654 
655 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
656 	dev = *pdev;
657 	if (NULL == dev)
658 		return -ENOMEM;
659 
660 	priv = netdev_priv(dev);
661 	priv->ndev = dev;
662 
663 	priv->num_tx_queues = num_tx_qs;
664 	netif_set_real_num_rx_queues(dev, num_rx_qs);
665 	priv->num_rx_queues = num_rx_qs;
666 	priv->num_grps = 0x0;
667 
668 	/* Init Rx queue filer rule set linked list */
669 	INIT_LIST_HEAD(&priv->rx_list.list);
670 	priv->rx_list.count = 0;
671 	mutex_init(&priv->rx_queue_access);
672 
673 	model = of_get_property(np, "model", NULL);
674 
675 	for (i = 0; i < MAXGROUPS; i++)
676 		priv->gfargrp[i].regs = NULL;
677 
678 	/* Parse and initialize group specific information */
679 	if (of_device_is_compatible(np, "fsl,etsec2")) {
680 		priv->mode = MQ_MG_MODE;
681 		for_each_child_of_node(np, child) {
682 			err = gfar_parse_group(child, priv, model);
683 			if (err)
684 				goto err_grp_init;
685 		}
686 	} else {
687 		priv->mode = SQ_SG_MODE;
688 		err = gfar_parse_group(np, priv, model);
689 		if (err)
690 			goto err_grp_init;
691 	}
692 
693 	for (i = 0; i < priv->num_tx_queues; i++)
694 		priv->tx_queue[i] = NULL;
695 	for (i = 0; i < priv->num_rx_queues; i++)
696 		priv->rx_queue[i] = NULL;
697 
698 	for (i = 0; i < priv->num_tx_queues; i++) {
699 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
700 					    GFP_KERNEL);
701 		if (!priv->tx_queue[i]) {
702 			err = -ENOMEM;
703 			goto tx_alloc_failed;
704 		}
705 		priv->tx_queue[i]->tx_skbuff = NULL;
706 		priv->tx_queue[i]->qindex = i;
707 		priv->tx_queue[i]->dev = dev;
708 		spin_lock_init(&(priv->tx_queue[i]->txlock));
709 	}
710 
711 	for (i = 0; i < priv->num_rx_queues; i++) {
712 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
713 					    GFP_KERNEL);
714 		if (!priv->rx_queue[i]) {
715 			err = -ENOMEM;
716 			goto rx_alloc_failed;
717 		}
718 		priv->rx_queue[i]->rx_skbuff = NULL;
719 		priv->rx_queue[i]->qindex = i;
720 		priv->rx_queue[i]->dev = dev;
721 		spin_lock_init(&(priv->rx_queue[i]->rxlock));
722 	}
723 
724 
725 	stash = of_get_property(np, "bd-stash", NULL);
726 
727 	if (stash) {
728 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
729 		priv->bd_stash_en = 1;
730 	}
731 
732 	stash_len = of_get_property(np, "rx-stash-len", NULL);
733 
734 	if (stash_len)
735 		priv->rx_stash_size = *stash_len;
736 
737 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
738 
739 	if (stash_idx)
740 		priv->rx_stash_index = *stash_idx;
741 
742 	if (stash_len || stash_idx)
743 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
744 
745 	mac_addr = of_get_mac_address(np);
746 
747 	if (mac_addr)
748 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
749 
750 	if (model && !strcasecmp(model, "TSEC"))
751 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
752 				     FSL_GIANFAR_DEV_HAS_COALESCE |
753 				     FSL_GIANFAR_DEV_HAS_RMON |
754 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
755 
756 	if (model && !strcasecmp(model, "eTSEC"))
757 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
758 				     FSL_GIANFAR_DEV_HAS_COALESCE |
759 				     FSL_GIANFAR_DEV_HAS_RMON |
760 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
761 				     FSL_GIANFAR_DEV_HAS_PADDING |
762 				     FSL_GIANFAR_DEV_HAS_CSUM |
763 				     FSL_GIANFAR_DEV_HAS_VLAN |
764 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
765 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
766 				     FSL_GIANFAR_DEV_HAS_TIMER;
767 
768 	ctype = of_get_property(np, "phy-connection-type", NULL);
769 
770 	/* We only care about rgmii-id.  The rest are autodetected */
771 	if (ctype && !strcmp(ctype, "rgmii-id"))
772 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
773 	else
774 		priv->interface = PHY_INTERFACE_MODE_MII;
775 
776 	if (of_get_property(np, "fsl,magic-packet", NULL))
777 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
778 
779 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
780 
781 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
782 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
783 
784 	return 0;
785 
786 rx_alloc_failed:
787 	free_rx_pointers(priv);
788 tx_alloc_failed:
789 	free_tx_pointers(priv);
790 err_grp_init:
791 	unmap_group_regs(priv);
792 	free_gfar_dev(priv);
793 	return err;
794 }
795 
796 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
797 			       struct ifreq *ifr, int cmd)
798 {
799 	struct hwtstamp_config config;
800 	struct gfar_private *priv = netdev_priv(netdev);
801 
802 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
803 		return -EFAULT;
804 
805 	/* reserved for future extensions */
806 	if (config.flags)
807 		return -EINVAL;
808 
809 	switch (config.tx_type) {
810 	case HWTSTAMP_TX_OFF:
811 		priv->hwts_tx_en = 0;
812 		break;
813 	case HWTSTAMP_TX_ON:
814 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
815 			return -ERANGE;
816 		priv->hwts_tx_en = 1;
817 		break;
818 	default:
819 		return -ERANGE;
820 	}
821 
822 	switch (config.rx_filter) {
823 	case HWTSTAMP_FILTER_NONE:
824 		if (priv->hwts_rx_en) {
825 			stop_gfar(netdev);
826 			priv->hwts_rx_en = 0;
827 			startup_gfar(netdev);
828 		}
829 		break;
830 	default:
831 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
832 			return -ERANGE;
833 		if (!priv->hwts_rx_en) {
834 			stop_gfar(netdev);
835 			priv->hwts_rx_en = 1;
836 			startup_gfar(netdev);
837 		}
838 		config.rx_filter = HWTSTAMP_FILTER_ALL;
839 		break;
840 	}
841 
842 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
843 		-EFAULT : 0;
844 }
845 
846 /* Ioctl MII Interface */
847 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
848 {
849 	struct gfar_private *priv = netdev_priv(dev);
850 
851 	if (!netif_running(dev))
852 		return -EINVAL;
853 
854 	if (cmd == SIOCSHWTSTAMP)
855 		return gfar_hwtstamp_ioctl(dev, rq, cmd);
856 
857 	if (!priv->phydev)
858 		return -ENODEV;
859 
860 	return phy_mii_ioctl(priv->phydev, rq, cmd);
861 }
862 
863 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
864 {
865 	unsigned int new_bit_map = 0x0;
866 	int mask = 0x1 << (max_qs - 1), i;
867 
868 	for (i = 0; i < max_qs; i++) {
869 		if (bit_map & mask)
870 			new_bit_map = new_bit_map + (1 << i);
871 		mask = mask >> 0x1;
872 	}
873 	return new_bit_map;
874 }
875 
876 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
877 				   u32 class)
878 {
879 	u32 rqfpr = FPR_FILER_MASK;
880 	u32 rqfcr = 0x0;
881 
882 	rqfar--;
883 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
884 	priv->ftp_rqfpr[rqfar] = rqfpr;
885 	priv->ftp_rqfcr[rqfar] = rqfcr;
886 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
887 
888 	rqfar--;
889 	rqfcr = RQFCR_CMP_NOMATCH;
890 	priv->ftp_rqfpr[rqfar] = rqfpr;
891 	priv->ftp_rqfcr[rqfar] = rqfcr;
892 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
893 
894 	rqfar--;
895 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
896 	rqfpr = class;
897 	priv->ftp_rqfcr[rqfar] = rqfcr;
898 	priv->ftp_rqfpr[rqfar] = rqfpr;
899 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
900 
901 	rqfar--;
902 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
903 	rqfpr = class;
904 	priv->ftp_rqfcr[rqfar] = rqfcr;
905 	priv->ftp_rqfpr[rqfar] = rqfpr;
906 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
907 
908 	return rqfar;
909 }
910 
911 static void gfar_init_filer_table(struct gfar_private *priv)
912 {
913 	int i = 0x0;
914 	u32 rqfar = MAX_FILER_IDX;
915 	u32 rqfcr = 0x0;
916 	u32 rqfpr = FPR_FILER_MASK;
917 
918 	/* Default rule */
919 	rqfcr = RQFCR_CMP_MATCH;
920 	priv->ftp_rqfcr[rqfar] = rqfcr;
921 	priv->ftp_rqfpr[rqfar] = rqfpr;
922 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
923 
924 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
925 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
926 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
927 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
928 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
929 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
930 
931 	/* cur_filer_idx indicated the first non-masked rule */
932 	priv->cur_filer_idx = rqfar;
933 
934 	/* Rest are masked rules */
935 	rqfcr = RQFCR_CMP_NOMATCH;
936 	for (i = 0; i < rqfar; i++) {
937 		priv->ftp_rqfcr[i] = rqfcr;
938 		priv->ftp_rqfpr[i] = rqfpr;
939 		gfar_write_filer(priv, i, rqfcr, rqfpr);
940 	}
941 }
942 
943 static void gfar_detect_errata(struct gfar_private *priv)
944 {
945 	struct device *dev = &priv->ofdev->dev;
946 	unsigned int pvr = mfspr(SPRN_PVR);
947 	unsigned int svr = mfspr(SPRN_SVR);
948 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
949 	unsigned int rev = svr & 0xffff;
950 
951 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
952 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
953 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
954 		priv->errata |= GFAR_ERRATA_74;
955 
956 	/* MPC8313 and MPC837x all rev */
957 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
958 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
959 		priv->errata |= GFAR_ERRATA_76;
960 
961 	/* MPC8313 and MPC837x all rev */
962 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
963 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
964 		priv->errata |= GFAR_ERRATA_A002;
965 
966 	/* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
967 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
968 	    (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
969 		priv->errata |= GFAR_ERRATA_12;
970 
971 	if (priv->errata)
972 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
973 			 priv->errata);
974 }
975 
976 /* Set up the ethernet device structure, private data,
977  * and anything else we need before we start
978  */
979 static int gfar_probe(struct platform_device *ofdev)
980 {
981 	u32 tempval;
982 	struct net_device *dev = NULL;
983 	struct gfar_private *priv = NULL;
984 	struct gfar __iomem *regs = NULL;
985 	int err = 0, i, grp_idx = 0;
986 	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
987 	u32 isrg = 0;
988 	u32 __iomem *baddr;
989 
990 	err = gfar_of_init(ofdev, &dev);
991 
992 	if (err)
993 		return err;
994 
995 	priv = netdev_priv(dev);
996 	priv->ndev = dev;
997 	priv->ofdev = ofdev;
998 	priv->dev = &ofdev->dev;
999 	SET_NETDEV_DEV(dev, &ofdev->dev);
1000 
1001 	spin_lock_init(&priv->bflock);
1002 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1003 
1004 	platform_set_drvdata(ofdev, priv);
1005 	regs = priv->gfargrp[0].regs;
1006 
1007 	gfar_detect_errata(priv);
1008 
1009 	/* Stop the DMA engine now, in case it was running before
1010 	 * (The firmware could have used it, and left it running).
1011 	 */
1012 	gfar_halt(dev);
1013 
1014 	/* Reset MAC layer */
1015 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1016 
1017 	/* We need to delay at least 3 TX clocks */
1018 	udelay(2);
1019 
1020 	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1021 	gfar_write(&regs->maccfg1, tempval);
1022 
1023 	/* Initialize MACCFG2. */
1024 	tempval = MACCFG2_INIT_SETTINGS;
1025 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1026 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1027 	gfar_write(&regs->maccfg2, tempval);
1028 
1029 	/* Initialize ECNTRL */
1030 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1031 
1032 	/* Set the dev->base_addr to the gfar reg region */
1033 	dev->base_addr = (unsigned long) regs;
1034 
1035 	/* Fill in the dev structure */
1036 	dev->watchdog_timeo = TX_TIMEOUT;
1037 	dev->mtu = 1500;
1038 	dev->netdev_ops = &gfar_netdev_ops;
1039 	dev->ethtool_ops = &gfar_ethtool_ops;
1040 
1041 	/* Register for napi ...We are registering NAPI for each grp */
1042 	if (priv->mode == SQ_SG_MODE)
1043 		netif_napi_add(dev, &priv->gfargrp[0].napi, gfar_poll_sq,
1044 			       GFAR_DEV_WEIGHT);
1045 	else
1046 		for (i = 0; i < priv->num_grps; i++)
1047 			netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1048 				       GFAR_DEV_WEIGHT);
1049 
1050 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1051 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1052 				   NETIF_F_RXCSUM;
1053 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1054 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1055 	}
1056 
1057 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1058 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1059 				    NETIF_F_HW_VLAN_CTAG_RX;
1060 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1061 	}
1062 
1063 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1064 		priv->extended_hash = 1;
1065 		priv->hash_width = 9;
1066 
1067 		priv->hash_regs[0] = &regs->igaddr0;
1068 		priv->hash_regs[1] = &regs->igaddr1;
1069 		priv->hash_regs[2] = &regs->igaddr2;
1070 		priv->hash_regs[3] = &regs->igaddr3;
1071 		priv->hash_regs[4] = &regs->igaddr4;
1072 		priv->hash_regs[5] = &regs->igaddr5;
1073 		priv->hash_regs[6] = &regs->igaddr6;
1074 		priv->hash_regs[7] = &regs->igaddr7;
1075 		priv->hash_regs[8] = &regs->gaddr0;
1076 		priv->hash_regs[9] = &regs->gaddr1;
1077 		priv->hash_regs[10] = &regs->gaddr2;
1078 		priv->hash_regs[11] = &regs->gaddr3;
1079 		priv->hash_regs[12] = &regs->gaddr4;
1080 		priv->hash_regs[13] = &regs->gaddr5;
1081 		priv->hash_regs[14] = &regs->gaddr6;
1082 		priv->hash_regs[15] = &regs->gaddr7;
1083 
1084 	} else {
1085 		priv->extended_hash = 0;
1086 		priv->hash_width = 8;
1087 
1088 		priv->hash_regs[0] = &regs->gaddr0;
1089 		priv->hash_regs[1] = &regs->gaddr1;
1090 		priv->hash_regs[2] = &regs->gaddr2;
1091 		priv->hash_regs[3] = &regs->gaddr3;
1092 		priv->hash_regs[4] = &regs->gaddr4;
1093 		priv->hash_regs[5] = &regs->gaddr5;
1094 		priv->hash_regs[6] = &regs->gaddr6;
1095 		priv->hash_regs[7] = &regs->gaddr7;
1096 	}
1097 
1098 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1099 		priv->padding = DEFAULT_PADDING;
1100 	else
1101 		priv->padding = 0;
1102 
1103 	if (dev->features & NETIF_F_IP_CSUM ||
1104 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1105 		dev->needed_headroom = GMAC_FCB_LEN;
1106 
1107 	/* Program the isrg regs only if number of grps > 1 */
1108 	if (priv->num_grps > 1) {
1109 		baddr = &regs->isrg0;
1110 		for (i = 0; i < priv->num_grps; i++) {
1111 			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1112 			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1113 			gfar_write(baddr, isrg);
1114 			baddr++;
1115 			isrg = 0x0;
1116 		}
1117 	}
1118 
1119 	/* Need to reverse the bit maps as  bit_map's MSB is q0
1120 	 * but, for_each_set_bit parses from right to left, which
1121 	 * basically reverses the queue numbers
1122 	 */
1123 	for (i = 0; i< priv->num_grps; i++) {
1124 		priv->gfargrp[i].tx_bit_map =
1125 			reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1126 		priv->gfargrp[i].rx_bit_map =
1127 			reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1128 	}
1129 
1130 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1131 	 * also assign queues to groups
1132 	 */
1133 	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1134 		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1135 
1136 		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1137 				 priv->num_rx_queues) {
1138 			priv->gfargrp[grp_idx].num_rx_queues++;
1139 			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1140 			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1141 			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1142 		}
1143 		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1144 
1145 		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1146 				 priv->num_tx_queues) {
1147 			priv->gfargrp[grp_idx].num_tx_queues++;
1148 			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1149 			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1150 			tqueue = tqueue | (TQUEUE_EN0 >> i);
1151 		}
1152 		priv->gfargrp[grp_idx].rstat = rstat;
1153 		priv->gfargrp[grp_idx].tstat = tstat;
1154 		rstat = tstat =0;
1155 	}
1156 
1157 	gfar_write(&regs->rqueue, rqueue);
1158 	gfar_write(&regs->tqueue, tqueue);
1159 
1160 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1161 
1162 	/* Initializing some of the rx/tx queue level parameters */
1163 	for (i = 0; i < priv->num_tx_queues; i++) {
1164 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1165 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1166 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1167 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1168 	}
1169 
1170 	for (i = 0; i < priv->num_rx_queues; i++) {
1171 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1172 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1173 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1174 	}
1175 
1176 	/* always enable rx filer */
1177 	priv->rx_filer_enable = 1;
1178 	/* Enable most messages by default */
1179 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1180 	/* use pritority h/w tx queue scheduling for single queue devices */
1181 	if (priv->num_tx_queues == 1)
1182 		priv->prio_sched_en = 1;
1183 
1184 	/* Carrier starts down, phylib will bring it up */
1185 	netif_carrier_off(dev);
1186 
1187 	err = register_netdev(dev);
1188 
1189 	if (err) {
1190 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1191 		goto register_fail;
1192 	}
1193 
1194 	device_init_wakeup(&dev->dev,
1195 			   priv->device_flags &
1196 			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1197 
1198 	/* fill out IRQ number and name fields */
1199 	for (i = 0; i < priv->num_grps; i++) {
1200 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1201 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1202 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1203 				dev->name, "_g", '0' + i, "_tx");
1204 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1205 				dev->name, "_g", '0' + i, "_rx");
1206 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1207 				dev->name, "_g", '0' + i, "_er");
1208 		} else
1209 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1210 	}
1211 
1212 	/* Initialize the filer table */
1213 	gfar_init_filer_table(priv);
1214 
1215 	/* Create all the sysfs files */
1216 	gfar_init_sysfs(dev);
1217 
1218 	/* Print out the device info */
1219 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1220 
1221 	/* Even more device info helps when determining which kernel
1222 	 * provided which set of benchmarks.
1223 	 */
1224 	netdev_info(dev, "Running with NAPI enabled\n");
1225 	for (i = 0; i < priv->num_rx_queues; i++)
1226 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1227 			    i, priv->rx_queue[i]->rx_ring_size);
1228 	for (i = 0; i < priv->num_tx_queues; i++)
1229 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1230 			    i, priv->tx_queue[i]->tx_ring_size);
1231 
1232 	return 0;
1233 
1234 register_fail:
1235 	unmap_group_regs(priv);
1236 	free_tx_pointers(priv);
1237 	free_rx_pointers(priv);
1238 	if (priv->phy_node)
1239 		of_node_put(priv->phy_node);
1240 	if (priv->tbi_node)
1241 		of_node_put(priv->tbi_node);
1242 	free_gfar_dev(priv);
1243 	return err;
1244 }
1245 
1246 static int gfar_remove(struct platform_device *ofdev)
1247 {
1248 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1249 
1250 	if (priv->phy_node)
1251 		of_node_put(priv->phy_node);
1252 	if (priv->tbi_node)
1253 		of_node_put(priv->tbi_node);
1254 
1255 	unregister_netdev(priv->ndev);
1256 	unmap_group_regs(priv);
1257 	free_gfar_dev(priv);
1258 
1259 	return 0;
1260 }
1261 
1262 #ifdef CONFIG_PM
1263 
1264 static int gfar_suspend(struct device *dev)
1265 {
1266 	struct gfar_private *priv = dev_get_drvdata(dev);
1267 	struct net_device *ndev = priv->ndev;
1268 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1269 	unsigned long flags;
1270 	u32 tempval;
1271 
1272 	int magic_packet = priv->wol_en &&
1273 			   (priv->device_flags &
1274 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1275 
1276 	netif_device_detach(ndev);
1277 
1278 	if (netif_running(ndev)) {
1279 
1280 		local_irq_save(flags);
1281 		lock_tx_qs(priv);
1282 		lock_rx_qs(priv);
1283 
1284 		gfar_halt_nodisable(ndev);
1285 
1286 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1287 		tempval = gfar_read(&regs->maccfg1);
1288 
1289 		tempval &= ~MACCFG1_TX_EN;
1290 
1291 		if (!magic_packet)
1292 			tempval &= ~MACCFG1_RX_EN;
1293 
1294 		gfar_write(&regs->maccfg1, tempval);
1295 
1296 		unlock_rx_qs(priv);
1297 		unlock_tx_qs(priv);
1298 		local_irq_restore(flags);
1299 
1300 		disable_napi(priv);
1301 
1302 		if (magic_packet) {
1303 			/* Enable interrupt on Magic Packet */
1304 			gfar_write(&regs->imask, IMASK_MAG);
1305 
1306 			/* Enable Magic Packet mode */
1307 			tempval = gfar_read(&regs->maccfg2);
1308 			tempval |= MACCFG2_MPEN;
1309 			gfar_write(&regs->maccfg2, tempval);
1310 		} else {
1311 			phy_stop(priv->phydev);
1312 		}
1313 	}
1314 
1315 	return 0;
1316 }
1317 
1318 static int gfar_resume(struct device *dev)
1319 {
1320 	struct gfar_private *priv = dev_get_drvdata(dev);
1321 	struct net_device *ndev = priv->ndev;
1322 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1323 	unsigned long flags;
1324 	u32 tempval;
1325 	int magic_packet = priv->wol_en &&
1326 			   (priv->device_flags &
1327 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1328 
1329 	if (!netif_running(ndev)) {
1330 		netif_device_attach(ndev);
1331 		return 0;
1332 	}
1333 
1334 	if (!magic_packet && priv->phydev)
1335 		phy_start(priv->phydev);
1336 
1337 	/* Disable Magic Packet mode, in case something
1338 	 * else woke us up.
1339 	 */
1340 	local_irq_save(flags);
1341 	lock_tx_qs(priv);
1342 	lock_rx_qs(priv);
1343 
1344 	tempval = gfar_read(&regs->maccfg2);
1345 	tempval &= ~MACCFG2_MPEN;
1346 	gfar_write(&regs->maccfg2, tempval);
1347 
1348 	gfar_start(ndev);
1349 
1350 	unlock_rx_qs(priv);
1351 	unlock_tx_qs(priv);
1352 	local_irq_restore(flags);
1353 
1354 	netif_device_attach(ndev);
1355 
1356 	enable_napi(priv);
1357 
1358 	return 0;
1359 }
1360 
1361 static int gfar_restore(struct device *dev)
1362 {
1363 	struct gfar_private *priv = dev_get_drvdata(dev);
1364 	struct net_device *ndev = priv->ndev;
1365 
1366 	if (!netif_running(ndev)) {
1367 		netif_device_attach(ndev);
1368 
1369 		return 0;
1370 	}
1371 
1372 	if (gfar_init_bds(ndev)) {
1373 		free_skb_resources(priv);
1374 		return -ENOMEM;
1375 	}
1376 
1377 	init_registers(ndev);
1378 	gfar_set_mac_address(ndev);
1379 	gfar_init_mac(ndev);
1380 	gfar_start(ndev);
1381 
1382 	priv->oldlink = 0;
1383 	priv->oldspeed = 0;
1384 	priv->oldduplex = -1;
1385 
1386 	if (priv->phydev)
1387 		phy_start(priv->phydev);
1388 
1389 	netif_device_attach(ndev);
1390 	enable_napi(priv);
1391 
1392 	return 0;
1393 }
1394 
1395 static struct dev_pm_ops gfar_pm_ops = {
1396 	.suspend = gfar_suspend,
1397 	.resume = gfar_resume,
1398 	.freeze = gfar_suspend,
1399 	.thaw = gfar_resume,
1400 	.restore = gfar_restore,
1401 };
1402 
1403 #define GFAR_PM_OPS (&gfar_pm_ops)
1404 
1405 #else
1406 
1407 #define GFAR_PM_OPS NULL
1408 
1409 #endif
1410 
1411 /* Reads the controller's registers to determine what interface
1412  * connects it to the PHY.
1413  */
1414 static phy_interface_t gfar_get_interface(struct net_device *dev)
1415 {
1416 	struct gfar_private *priv = netdev_priv(dev);
1417 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1418 	u32 ecntrl;
1419 
1420 	ecntrl = gfar_read(&regs->ecntrl);
1421 
1422 	if (ecntrl & ECNTRL_SGMII_MODE)
1423 		return PHY_INTERFACE_MODE_SGMII;
1424 
1425 	if (ecntrl & ECNTRL_TBI_MODE) {
1426 		if (ecntrl & ECNTRL_REDUCED_MODE)
1427 			return PHY_INTERFACE_MODE_RTBI;
1428 		else
1429 			return PHY_INTERFACE_MODE_TBI;
1430 	}
1431 
1432 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1433 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1434 			return PHY_INTERFACE_MODE_RMII;
1435 		}
1436 		else {
1437 			phy_interface_t interface = priv->interface;
1438 
1439 			/* This isn't autodetected right now, so it must
1440 			 * be set by the device tree or platform code.
1441 			 */
1442 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1443 				return PHY_INTERFACE_MODE_RGMII_ID;
1444 
1445 			return PHY_INTERFACE_MODE_RGMII;
1446 		}
1447 	}
1448 
1449 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1450 		return PHY_INTERFACE_MODE_GMII;
1451 
1452 	return PHY_INTERFACE_MODE_MII;
1453 }
1454 
1455 
1456 /* Initializes driver's PHY state, and attaches to the PHY.
1457  * Returns 0 on success.
1458  */
1459 static int init_phy(struct net_device *dev)
1460 {
1461 	struct gfar_private *priv = netdev_priv(dev);
1462 	uint gigabit_support =
1463 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1464 		SUPPORTED_1000baseT_Full : 0;
1465 	phy_interface_t interface;
1466 
1467 	priv->oldlink = 0;
1468 	priv->oldspeed = 0;
1469 	priv->oldduplex = -1;
1470 
1471 	interface = gfar_get_interface(dev);
1472 
1473 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1474 				      interface);
1475 	if (!priv->phydev)
1476 		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1477 							 interface);
1478 	if (!priv->phydev) {
1479 		dev_err(&dev->dev, "could not attach to PHY\n");
1480 		return -ENODEV;
1481 	}
1482 
1483 	if (interface == PHY_INTERFACE_MODE_SGMII)
1484 		gfar_configure_serdes(dev);
1485 
1486 	/* Remove any features not supported by the controller */
1487 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1488 	priv->phydev->advertising = priv->phydev->supported;
1489 
1490 	return 0;
1491 }
1492 
1493 /* Initialize TBI PHY interface for communicating with the
1494  * SERDES lynx PHY on the chip.  We communicate with this PHY
1495  * through the MDIO bus on each controller, treating it as a
1496  * "normal" PHY at the address found in the TBIPA register.  We assume
1497  * that the TBIPA register is valid.  Either the MDIO bus code will set
1498  * it to a value that doesn't conflict with other PHYs on the bus, or the
1499  * value doesn't matter, as there are no other PHYs on the bus.
1500  */
1501 static void gfar_configure_serdes(struct net_device *dev)
1502 {
1503 	struct gfar_private *priv = netdev_priv(dev);
1504 	struct phy_device *tbiphy;
1505 
1506 	if (!priv->tbi_node) {
1507 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1508 				    "device tree specify a tbi-handle\n");
1509 		return;
1510 	}
1511 
1512 	tbiphy = of_phy_find_device(priv->tbi_node);
1513 	if (!tbiphy) {
1514 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1515 		return;
1516 	}
1517 
1518 	/* If the link is already up, we must already be ok, and don't need to
1519 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1520 	 * everything for us?  Resetting it takes the link down and requires
1521 	 * several seconds for it to come back.
1522 	 */
1523 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1524 		return;
1525 
1526 	/* Single clk mode, mii mode off(for serdes communication) */
1527 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1528 
1529 	phy_write(tbiphy, MII_ADVERTISE,
1530 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1531 		  ADVERTISE_1000XPSE_ASYM);
1532 
1533 	phy_write(tbiphy, MII_BMCR,
1534 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1535 		  BMCR_SPEED1000);
1536 }
1537 
1538 static void init_registers(struct net_device *dev)
1539 {
1540 	struct gfar_private *priv = netdev_priv(dev);
1541 	struct gfar __iomem *regs = NULL;
1542 	int i;
1543 
1544 	for (i = 0; i < priv->num_grps; i++) {
1545 		regs = priv->gfargrp[i].regs;
1546 		/* Clear IEVENT */
1547 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1548 
1549 		/* Initialize IMASK */
1550 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1551 	}
1552 
1553 	regs = priv->gfargrp[0].regs;
1554 	/* Init hash registers to zero */
1555 	gfar_write(&regs->igaddr0, 0);
1556 	gfar_write(&regs->igaddr1, 0);
1557 	gfar_write(&regs->igaddr2, 0);
1558 	gfar_write(&regs->igaddr3, 0);
1559 	gfar_write(&regs->igaddr4, 0);
1560 	gfar_write(&regs->igaddr5, 0);
1561 	gfar_write(&regs->igaddr6, 0);
1562 	gfar_write(&regs->igaddr7, 0);
1563 
1564 	gfar_write(&regs->gaddr0, 0);
1565 	gfar_write(&regs->gaddr1, 0);
1566 	gfar_write(&regs->gaddr2, 0);
1567 	gfar_write(&regs->gaddr3, 0);
1568 	gfar_write(&regs->gaddr4, 0);
1569 	gfar_write(&regs->gaddr5, 0);
1570 	gfar_write(&regs->gaddr6, 0);
1571 	gfar_write(&regs->gaddr7, 0);
1572 
1573 	/* Zero out the rmon mib registers if it has them */
1574 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1575 		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1576 
1577 		/* Mask off the CAM interrupts */
1578 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1579 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1580 	}
1581 
1582 	/* Initialize the max receive buffer length */
1583 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1584 
1585 	/* Initialize the Minimum Frame Length Register */
1586 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1587 }
1588 
1589 static int __gfar_is_rx_idle(struct gfar_private *priv)
1590 {
1591 	u32 res;
1592 
1593 	/* Normaly TSEC should not hang on GRS commands, so we should
1594 	 * actually wait for IEVENT_GRSC flag.
1595 	 */
1596 	if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1597 		return 0;
1598 
1599 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1600 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1601 	 * and the Rx can be safely reset.
1602 	 */
1603 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1604 	res &= 0x7f807f80;
1605 	if ((res & 0xffff) == (res >> 16))
1606 		return 1;
1607 
1608 	return 0;
1609 }
1610 
1611 /* Halt the receive and transmit queues */
1612 static void gfar_halt_nodisable(struct net_device *dev)
1613 {
1614 	struct gfar_private *priv = netdev_priv(dev);
1615 	struct gfar __iomem *regs = NULL;
1616 	u32 tempval;
1617 	int i;
1618 
1619 	for (i = 0; i < priv->num_grps; i++) {
1620 		regs = priv->gfargrp[i].regs;
1621 		/* Mask all interrupts */
1622 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1623 
1624 		/* Clear all interrupts */
1625 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1626 	}
1627 
1628 	regs = priv->gfargrp[0].regs;
1629 	/* Stop the DMA, and wait for it to stop */
1630 	tempval = gfar_read(&regs->dmactrl);
1631 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1632 	    (DMACTRL_GRS | DMACTRL_GTS)) {
1633 		int ret;
1634 
1635 		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1636 		gfar_write(&regs->dmactrl, tempval);
1637 
1638 		do {
1639 			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1640 				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1641 				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1642 			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1643 				ret = __gfar_is_rx_idle(priv);
1644 		} while (!ret);
1645 	}
1646 }
1647 
1648 /* Halt the receive and transmit queues */
1649 void gfar_halt(struct net_device *dev)
1650 {
1651 	struct gfar_private *priv = netdev_priv(dev);
1652 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1653 	u32 tempval;
1654 
1655 	gfar_halt_nodisable(dev);
1656 
1657 	/* Disable Rx and Tx */
1658 	tempval = gfar_read(&regs->maccfg1);
1659 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1660 	gfar_write(&regs->maccfg1, tempval);
1661 }
1662 
1663 static void free_grp_irqs(struct gfar_priv_grp *grp)
1664 {
1665 	free_irq(gfar_irq(grp, TX)->irq, grp);
1666 	free_irq(gfar_irq(grp, RX)->irq, grp);
1667 	free_irq(gfar_irq(grp, ER)->irq, grp);
1668 }
1669 
1670 void stop_gfar(struct net_device *dev)
1671 {
1672 	struct gfar_private *priv = netdev_priv(dev);
1673 	unsigned long flags;
1674 	int i;
1675 
1676 	phy_stop(priv->phydev);
1677 
1678 
1679 	/* Lock it down */
1680 	local_irq_save(flags);
1681 	lock_tx_qs(priv);
1682 	lock_rx_qs(priv);
1683 
1684 	gfar_halt(dev);
1685 
1686 	unlock_rx_qs(priv);
1687 	unlock_tx_qs(priv);
1688 	local_irq_restore(flags);
1689 
1690 	/* Free the IRQs */
1691 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1692 		for (i = 0; i < priv->num_grps; i++)
1693 			free_grp_irqs(&priv->gfargrp[i]);
1694 	} else {
1695 		for (i = 0; i < priv->num_grps; i++)
1696 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1697 				 &priv->gfargrp[i]);
1698 	}
1699 
1700 	free_skb_resources(priv);
1701 }
1702 
1703 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1704 {
1705 	struct txbd8 *txbdp;
1706 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1707 	int i, j;
1708 
1709 	txbdp = tx_queue->tx_bd_base;
1710 
1711 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1712 		if (!tx_queue->tx_skbuff[i])
1713 			continue;
1714 
1715 		dma_unmap_single(priv->dev, txbdp->bufPtr,
1716 				 txbdp->length, DMA_TO_DEVICE);
1717 		txbdp->lstatus = 0;
1718 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1719 		     j++) {
1720 			txbdp++;
1721 			dma_unmap_page(priv->dev, txbdp->bufPtr,
1722 				       txbdp->length, DMA_TO_DEVICE);
1723 		}
1724 		txbdp++;
1725 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1726 		tx_queue->tx_skbuff[i] = NULL;
1727 	}
1728 	kfree(tx_queue->tx_skbuff);
1729 	tx_queue->tx_skbuff = NULL;
1730 }
1731 
1732 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1733 {
1734 	struct rxbd8 *rxbdp;
1735 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1736 	int i;
1737 
1738 	rxbdp = rx_queue->rx_bd_base;
1739 
1740 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1741 		if (rx_queue->rx_skbuff[i]) {
1742 			dma_unmap_single(priv->dev, rxbdp->bufPtr,
1743 					 priv->rx_buffer_size,
1744 					 DMA_FROM_DEVICE);
1745 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1746 			rx_queue->rx_skbuff[i] = NULL;
1747 		}
1748 		rxbdp->lstatus = 0;
1749 		rxbdp->bufPtr = 0;
1750 		rxbdp++;
1751 	}
1752 	kfree(rx_queue->rx_skbuff);
1753 	rx_queue->rx_skbuff = NULL;
1754 }
1755 
1756 /* If there are any tx skbs or rx skbs still around, free them.
1757  * Then free tx_skbuff and rx_skbuff
1758  */
1759 static void free_skb_resources(struct gfar_private *priv)
1760 {
1761 	struct gfar_priv_tx_q *tx_queue = NULL;
1762 	struct gfar_priv_rx_q *rx_queue = NULL;
1763 	int i;
1764 
1765 	/* Go through all the buffer descriptors and free their data buffers */
1766 	for (i = 0; i < priv->num_tx_queues; i++) {
1767 		struct netdev_queue *txq;
1768 
1769 		tx_queue = priv->tx_queue[i];
1770 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1771 		if (tx_queue->tx_skbuff)
1772 			free_skb_tx_queue(tx_queue);
1773 		netdev_tx_reset_queue(txq);
1774 	}
1775 
1776 	for (i = 0; i < priv->num_rx_queues; i++) {
1777 		rx_queue = priv->rx_queue[i];
1778 		if (rx_queue->rx_skbuff)
1779 			free_skb_rx_queue(rx_queue);
1780 	}
1781 
1782 	dma_free_coherent(priv->dev,
1783 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1784 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1785 			  priv->tx_queue[0]->tx_bd_base,
1786 			  priv->tx_queue[0]->tx_bd_dma_base);
1787 }
1788 
1789 void gfar_start(struct net_device *dev)
1790 {
1791 	struct gfar_private *priv = netdev_priv(dev);
1792 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1793 	u32 tempval;
1794 	int i = 0;
1795 
1796 	/* Enable Rx and Tx in MACCFG1 */
1797 	tempval = gfar_read(&regs->maccfg1);
1798 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1799 	gfar_write(&regs->maccfg1, tempval);
1800 
1801 	/* Initialize DMACTRL to have WWR and WOP */
1802 	tempval = gfar_read(&regs->dmactrl);
1803 	tempval |= DMACTRL_INIT_SETTINGS;
1804 	gfar_write(&regs->dmactrl, tempval);
1805 
1806 	/* Make sure we aren't stopped */
1807 	tempval = gfar_read(&regs->dmactrl);
1808 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1809 	gfar_write(&regs->dmactrl, tempval);
1810 
1811 	for (i = 0; i < priv->num_grps; i++) {
1812 		regs = priv->gfargrp[i].regs;
1813 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1814 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1815 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1816 		/* Unmask the interrupts we look for */
1817 		gfar_write(&regs->imask, IMASK_DEFAULT);
1818 	}
1819 
1820 	dev->trans_start = jiffies; /* prevent tx timeout */
1821 }
1822 
1823 static void gfar_configure_coalescing(struct gfar_private *priv,
1824 			       unsigned long tx_mask, unsigned long rx_mask)
1825 {
1826 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1827 	u32 __iomem *baddr;
1828 
1829 	if (priv->mode == MQ_MG_MODE) {
1830 		int i = 0;
1831 
1832 		baddr = &regs->txic0;
1833 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1834 			gfar_write(baddr + i, 0);
1835 			if (likely(priv->tx_queue[i]->txcoalescing))
1836 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
1837 		}
1838 
1839 		baddr = &regs->rxic0;
1840 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1841 			gfar_write(baddr + i, 0);
1842 			if (likely(priv->rx_queue[i]->rxcoalescing))
1843 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1844 		}
1845 	} else {
1846 		/* Backward compatible case -- even if we enable
1847 		 * multiple queues, there's only single reg to program
1848 		 */
1849 		gfar_write(&regs->txic, 0);
1850 		if (likely(priv->tx_queue[0]->txcoalescing))
1851 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1852 
1853 		gfar_write(&regs->rxic, 0);
1854 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
1855 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1856 	}
1857 }
1858 
1859 void gfar_configure_coalescing_all(struct gfar_private *priv)
1860 {
1861 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
1862 }
1863 
1864 static int register_grp_irqs(struct gfar_priv_grp *grp)
1865 {
1866 	struct gfar_private *priv = grp->priv;
1867 	struct net_device *dev = priv->ndev;
1868 	int err;
1869 
1870 	/* If the device has multiple interrupts, register for
1871 	 * them.  Otherwise, only register for the one
1872 	 */
1873 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1874 		/* Install our interrupt handlers for Error,
1875 		 * Transmit, and Receive
1876 		 */
1877 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1878 				  gfar_irq(grp, ER)->name, grp);
1879 		if (err < 0) {
1880 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1881 				  gfar_irq(grp, ER)->irq);
1882 
1883 			goto err_irq_fail;
1884 		}
1885 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1886 				  gfar_irq(grp, TX)->name, grp);
1887 		if (err < 0) {
1888 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1889 				  gfar_irq(grp, TX)->irq);
1890 			goto tx_irq_fail;
1891 		}
1892 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1893 				  gfar_irq(grp, RX)->name, grp);
1894 		if (err < 0) {
1895 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1896 				  gfar_irq(grp, RX)->irq);
1897 			goto rx_irq_fail;
1898 		}
1899 	} else {
1900 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1901 				  gfar_irq(grp, TX)->name, grp);
1902 		if (err < 0) {
1903 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1904 				  gfar_irq(grp, TX)->irq);
1905 			goto err_irq_fail;
1906 		}
1907 	}
1908 
1909 	return 0;
1910 
1911 rx_irq_fail:
1912 	free_irq(gfar_irq(grp, TX)->irq, grp);
1913 tx_irq_fail:
1914 	free_irq(gfar_irq(grp, ER)->irq, grp);
1915 err_irq_fail:
1916 	return err;
1917 
1918 }
1919 
1920 /* Bring the controller up and running */
1921 int startup_gfar(struct net_device *ndev)
1922 {
1923 	struct gfar_private *priv = netdev_priv(ndev);
1924 	struct gfar __iomem *regs = NULL;
1925 	int err, i, j;
1926 
1927 	for (i = 0; i < priv->num_grps; i++) {
1928 		regs= priv->gfargrp[i].regs;
1929 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1930 	}
1931 
1932 	regs= priv->gfargrp[0].regs;
1933 	err = gfar_alloc_skb_resources(ndev);
1934 	if (err)
1935 		return err;
1936 
1937 	gfar_init_mac(ndev);
1938 
1939 	for (i = 0; i < priv->num_grps; i++) {
1940 		err = register_grp_irqs(&priv->gfargrp[i]);
1941 		if (err) {
1942 			for (j = 0; j < i; j++)
1943 				free_grp_irqs(&priv->gfargrp[j]);
1944 			goto irq_fail;
1945 		}
1946 	}
1947 
1948 	/* Start the controller */
1949 	gfar_start(ndev);
1950 
1951 	phy_start(priv->phydev);
1952 
1953 	gfar_configure_coalescing_all(priv);
1954 
1955 	return 0;
1956 
1957 irq_fail:
1958 	free_skb_resources(priv);
1959 	return err;
1960 }
1961 
1962 /* Called when something needs to use the ethernet device
1963  * Returns 0 for success.
1964  */
1965 static int gfar_enet_open(struct net_device *dev)
1966 {
1967 	struct gfar_private *priv = netdev_priv(dev);
1968 	int err;
1969 
1970 	enable_napi(priv);
1971 
1972 	/* Initialize a bunch of registers */
1973 	init_registers(dev);
1974 
1975 	gfar_set_mac_address(dev);
1976 
1977 	err = init_phy(dev);
1978 
1979 	if (err) {
1980 		disable_napi(priv);
1981 		return err;
1982 	}
1983 
1984 	err = startup_gfar(dev);
1985 	if (err) {
1986 		disable_napi(priv);
1987 		return err;
1988 	}
1989 
1990 	netif_tx_start_all_queues(dev);
1991 
1992 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
1993 
1994 	return err;
1995 }
1996 
1997 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1998 {
1999 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2000 
2001 	memset(fcb, 0, GMAC_FCB_LEN);
2002 
2003 	return fcb;
2004 }
2005 
2006 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2007 				    int fcb_length)
2008 {
2009 	/* If we're here, it's a IP packet with a TCP or UDP
2010 	 * payload.  We set it to checksum, using a pseudo-header
2011 	 * we provide
2012 	 */
2013 	u8 flags = TXFCB_DEFAULT;
2014 
2015 	/* Tell the controller what the protocol is
2016 	 * And provide the already calculated phcs
2017 	 */
2018 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2019 		flags |= TXFCB_UDP;
2020 		fcb->phcs = udp_hdr(skb)->check;
2021 	} else
2022 		fcb->phcs = tcp_hdr(skb)->check;
2023 
2024 	/* l3os is the distance between the start of the
2025 	 * frame (skb->data) and the start of the IP hdr.
2026 	 * l4os is the distance between the start of the
2027 	 * l3 hdr and the l4 hdr
2028 	 */
2029 	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2030 	fcb->l4os = skb_network_header_len(skb);
2031 
2032 	fcb->flags = flags;
2033 }
2034 
2035 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2036 {
2037 	fcb->flags |= TXFCB_VLN;
2038 	fcb->vlctl = vlan_tx_tag_get(skb);
2039 }
2040 
2041 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2042 				      struct txbd8 *base, int ring_size)
2043 {
2044 	struct txbd8 *new_bd = bdp + stride;
2045 
2046 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2047 }
2048 
2049 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2050 				      int ring_size)
2051 {
2052 	return skip_txbd(bdp, 1, base, ring_size);
2053 }
2054 
2055 /* This is called by the kernel when a frame is ready for transmission.
2056  * It is pointed to by the dev->hard_start_xmit function pointer
2057  */
2058 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2059 {
2060 	struct gfar_private *priv = netdev_priv(dev);
2061 	struct gfar_priv_tx_q *tx_queue = NULL;
2062 	struct netdev_queue *txq;
2063 	struct gfar __iomem *regs = NULL;
2064 	struct txfcb *fcb = NULL;
2065 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2066 	u32 lstatus;
2067 	int i, rq = 0, do_tstamp = 0;
2068 	u32 bufaddr;
2069 	unsigned long flags;
2070 	unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2071 
2072 	/* TOE=1 frames larger than 2500 bytes may see excess delays
2073 	 * before start of transmission.
2074 	 */
2075 	if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2076 		     skb->ip_summed == CHECKSUM_PARTIAL &&
2077 		     skb->len > 2500)) {
2078 		int ret;
2079 
2080 		ret = skb_checksum_help(skb);
2081 		if (ret)
2082 			return ret;
2083 	}
2084 
2085 	rq = skb->queue_mapping;
2086 	tx_queue = priv->tx_queue[rq];
2087 	txq = netdev_get_tx_queue(dev, rq);
2088 	base = tx_queue->tx_bd_base;
2089 	regs = tx_queue->grp->regs;
2090 
2091 	/* check if time stamp should be generated */
2092 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2093 		     priv->hwts_tx_en)) {
2094 		do_tstamp = 1;
2095 		fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2096 	}
2097 
2098 	/* make space for additional header when fcb is needed */
2099 	if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2100 	     vlan_tx_tag_present(skb) ||
2101 	     unlikely(do_tstamp)) &&
2102 	    (skb_headroom(skb) < fcb_length)) {
2103 		struct sk_buff *skb_new;
2104 
2105 		skb_new = skb_realloc_headroom(skb, fcb_length);
2106 		if (!skb_new) {
2107 			dev->stats.tx_errors++;
2108 			kfree_skb(skb);
2109 			return NETDEV_TX_OK;
2110 		}
2111 
2112 		if (skb->sk)
2113 			skb_set_owner_w(skb_new, skb->sk);
2114 		consume_skb(skb);
2115 		skb = skb_new;
2116 	}
2117 
2118 	/* total number of fragments in the SKB */
2119 	nr_frags = skb_shinfo(skb)->nr_frags;
2120 
2121 	/* calculate the required number of TxBDs for this skb */
2122 	if (unlikely(do_tstamp))
2123 		nr_txbds = nr_frags + 2;
2124 	else
2125 		nr_txbds = nr_frags + 1;
2126 
2127 	/* check if there is space to queue this packet */
2128 	if (nr_txbds > tx_queue->num_txbdfree) {
2129 		/* no space, stop the queue */
2130 		netif_tx_stop_queue(txq);
2131 		dev->stats.tx_fifo_errors++;
2132 		return NETDEV_TX_BUSY;
2133 	}
2134 
2135 	/* Update transmit stats */
2136 	tx_queue->stats.tx_bytes += skb->len;
2137 	tx_queue->stats.tx_packets++;
2138 
2139 	txbdp = txbdp_start = tx_queue->cur_tx;
2140 	lstatus = txbdp->lstatus;
2141 
2142 	/* Time stamp insertion requires one additional TxBD */
2143 	if (unlikely(do_tstamp))
2144 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2145 						 tx_queue->tx_ring_size);
2146 
2147 	if (nr_frags == 0) {
2148 		if (unlikely(do_tstamp))
2149 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2150 							  TXBD_INTERRUPT);
2151 		else
2152 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2153 	} else {
2154 		/* Place the fragment addresses and lengths into the TxBDs */
2155 		for (i = 0; i < nr_frags; i++) {
2156 			/* Point at the next BD, wrapping as needed */
2157 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2158 
2159 			length = skb_shinfo(skb)->frags[i].size;
2160 
2161 			lstatus = txbdp->lstatus | length |
2162 				  BD_LFLAG(TXBD_READY);
2163 
2164 			/* Handle the last BD specially */
2165 			if (i == nr_frags - 1)
2166 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2167 
2168 			bufaddr = skb_frag_dma_map(priv->dev,
2169 						   &skb_shinfo(skb)->frags[i],
2170 						   0,
2171 						   length,
2172 						   DMA_TO_DEVICE);
2173 
2174 			/* set the TxBD length and buffer pointer */
2175 			txbdp->bufPtr = bufaddr;
2176 			txbdp->lstatus = lstatus;
2177 		}
2178 
2179 		lstatus = txbdp_start->lstatus;
2180 	}
2181 
2182 	/* Add TxPAL between FCB and frame if required */
2183 	if (unlikely(do_tstamp)) {
2184 		skb_push(skb, GMAC_TXPAL_LEN);
2185 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2186 	}
2187 
2188 	/* Set up checksumming */
2189 	if (CHECKSUM_PARTIAL == skb->ip_summed) {
2190 		fcb = gfar_add_fcb(skb);
2191 		/* as specified by errata */
2192 		if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2193 			     ((unsigned long)fcb % 0x20) > 0x18)) {
2194 			__skb_pull(skb, GMAC_FCB_LEN);
2195 			skb_checksum_help(skb);
2196 		} else {
2197 			lstatus |= BD_LFLAG(TXBD_TOE);
2198 			gfar_tx_checksum(skb, fcb, fcb_length);
2199 		}
2200 	}
2201 
2202 	if (vlan_tx_tag_present(skb)) {
2203 		if (unlikely(NULL == fcb)) {
2204 			fcb = gfar_add_fcb(skb);
2205 			lstatus |= BD_LFLAG(TXBD_TOE);
2206 		}
2207 
2208 		gfar_tx_vlan(skb, fcb);
2209 	}
2210 
2211 	/* Setup tx hardware time stamping if requested */
2212 	if (unlikely(do_tstamp)) {
2213 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2214 		if (fcb == NULL)
2215 			fcb = gfar_add_fcb(skb);
2216 		fcb->ptp = 1;
2217 		lstatus |= BD_LFLAG(TXBD_TOE);
2218 	}
2219 
2220 	txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2221 					     skb_headlen(skb), DMA_TO_DEVICE);
2222 
2223 	/* If time stamping is requested one additional TxBD must be set up. The
2224 	 * first TxBD points to the FCB and must have a data length of
2225 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2226 	 * the full frame length.
2227 	 */
2228 	if (unlikely(do_tstamp)) {
2229 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2230 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2231 					 (skb_headlen(skb) - fcb_length);
2232 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2233 	} else {
2234 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2235 	}
2236 
2237 	netdev_tx_sent_queue(txq, skb->len);
2238 
2239 	/* We can work in parallel with gfar_clean_tx_ring(), except
2240 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2241 	 * when we were reading the num_txbdfree and checking for available
2242 	 * space, that's because outside of this function it can only grow,
2243 	 * and once we've got needed space, it cannot suddenly disappear.
2244 	 *
2245 	 * The lock also protects us from gfar_error(), which can modify
2246 	 * regs->tstat and thus retrigger the transfers, which is why we
2247 	 * also must grab the lock before setting ready bit for the first
2248 	 * to be transmitted BD.
2249 	 */
2250 	spin_lock_irqsave(&tx_queue->txlock, flags);
2251 
2252 	/* The powerpc-specific eieio() is used, as wmb() has too strong
2253 	 * semantics (it requires synchronization between cacheable and
2254 	 * uncacheable mappings, which eieio doesn't provide and which we
2255 	 * don't need), thus requiring a more expensive sync instruction.  At
2256 	 * some point, the set of architecture-independent barrier functions
2257 	 * should be expanded to include weaker barriers.
2258 	 */
2259 	eieio();
2260 
2261 	txbdp_start->lstatus = lstatus;
2262 
2263 	eieio(); /* force lstatus write before tx_skbuff */
2264 
2265 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2266 
2267 	/* Update the current skb pointer to the next entry we will use
2268 	 * (wrapping if necessary)
2269 	 */
2270 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2271 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2272 
2273 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2274 
2275 	/* reduce TxBD free count */
2276 	tx_queue->num_txbdfree -= (nr_txbds);
2277 
2278 	/* If the next BD still needs to be cleaned up, then the bds
2279 	 * are full.  We need to tell the kernel to stop sending us stuff.
2280 	 */
2281 	if (!tx_queue->num_txbdfree) {
2282 		netif_tx_stop_queue(txq);
2283 
2284 		dev->stats.tx_fifo_errors++;
2285 	}
2286 
2287 	/* Tell the DMA to go go go */
2288 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2289 
2290 	/* Unlock priv */
2291 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2292 
2293 	return NETDEV_TX_OK;
2294 }
2295 
2296 /* Stops the kernel queue, and halts the controller */
2297 static int gfar_close(struct net_device *dev)
2298 {
2299 	struct gfar_private *priv = netdev_priv(dev);
2300 
2301 	disable_napi(priv);
2302 
2303 	cancel_work_sync(&priv->reset_task);
2304 	stop_gfar(dev);
2305 
2306 	/* Disconnect from the PHY */
2307 	phy_disconnect(priv->phydev);
2308 	priv->phydev = NULL;
2309 
2310 	netif_tx_stop_all_queues(dev);
2311 
2312 	return 0;
2313 }
2314 
2315 /* Changes the mac address if the controller is not running. */
2316 static int gfar_set_mac_address(struct net_device *dev)
2317 {
2318 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2319 
2320 	return 0;
2321 }
2322 
2323 /* Check if rx parser should be activated */
2324 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2325 {
2326 	struct gfar __iomem *regs;
2327 	u32 tempval;
2328 
2329 	regs = priv->gfargrp[0].regs;
2330 
2331 	tempval = gfar_read(&regs->rctrl);
2332 	/* If parse is no longer required, then disable parser */
2333 	if (tempval & RCTRL_REQ_PARSER) {
2334 		tempval |= RCTRL_PRSDEP_INIT;
2335 		priv->uses_rxfcb = 1;
2336 	} else {
2337 		tempval &= ~RCTRL_PRSDEP_INIT;
2338 		priv->uses_rxfcb = 0;
2339 	}
2340 	gfar_write(&regs->rctrl, tempval);
2341 }
2342 
2343 /* Enables and disables VLAN insertion/extraction */
2344 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2345 {
2346 	struct gfar_private *priv = netdev_priv(dev);
2347 	struct gfar __iomem *regs = NULL;
2348 	unsigned long flags;
2349 	u32 tempval;
2350 
2351 	regs = priv->gfargrp[0].regs;
2352 	local_irq_save(flags);
2353 	lock_rx_qs(priv);
2354 
2355 	if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2356 		/* Enable VLAN tag insertion */
2357 		tempval = gfar_read(&regs->tctrl);
2358 		tempval |= TCTRL_VLINS;
2359 		gfar_write(&regs->tctrl, tempval);
2360 	} else {
2361 		/* Disable VLAN tag insertion */
2362 		tempval = gfar_read(&regs->tctrl);
2363 		tempval &= ~TCTRL_VLINS;
2364 		gfar_write(&regs->tctrl, tempval);
2365 	}
2366 
2367 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2368 		/* Enable VLAN tag extraction */
2369 		tempval = gfar_read(&regs->rctrl);
2370 		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2371 		gfar_write(&regs->rctrl, tempval);
2372 		priv->uses_rxfcb = 1;
2373 	} else {
2374 		/* Disable VLAN tag extraction */
2375 		tempval = gfar_read(&regs->rctrl);
2376 		tempval &= ~RCTRL_VLEX;
2377 		gfar_write(&regs->rctrl, tempval);
2378 
2379 		gfar_check_rx_parser_mode(priv);
2380 	}
2381 
2382 	gfar_change_mtu(dev, dev->mtu);
2383 
2384 	unlock_rx_qs(priv);
2385 	local_irq_restore(flags);
2386 }
2387 
2388 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2389 {
2390 	int tempsize, tempval;
2391 	struct gfar_private *priv = netdev_priv(dev);
2392 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2393 	int oldsize = priv->rx_buffer_size;
2394 	int frame_size = new_mtu + ETH_HLEN;
2395 
2396 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2397 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2398 		return -EINVAL;
2399 	}
2400 
2401 	if (priv->uses_rxfcb)
2402 		frame_size += GMAC_FCB_LEN;
2403 
2404 	frame_size += priv->padding;
2405 
2406 	tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2407 		   INCREMENTAL_BUFFER_SIZE;
2408 
2409 	/* Only stop and start the controller if it isn't already
2410 	 * stopped, and we changed something
2411 	 */
2412 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2413 		stop_gfar(dev);
2414 
2415 	priv->rx_buffer_size = tempsize;
2416 
2417 	dev->mtu = new_mtu;
2418 
2419 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2420 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2421 
2422 	/* If the mtu is larger than the max size for standard
2423 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2424 	 * to allow huge frames, and to check the length
2425 	 */
2426 	tempval = gfar_read(&regs->maccfg2);
2427 
2428 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2429 	    gfar_has_errata(priv, GFAR_ERRATA_74))
2430 		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2431 	else
2432 		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2433 
2434 	gfar_write(&regs->maccfg2, tempval);
2435 
2436 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2437 		startup_gfar(dev);
2438 
2439 	return 0;
2440 }
2441 
2442 /* gfar_reset_task gets scheduled when a packet has not been
2443  * transmitted after a set amount of time.
2444  * For now, assume that clearing out all the structures, and
2445  * starting over will fix the problem.
2446  */
2447 static void gfar_reset_task(struct work_struct *work)
2448 {
2449 	struct gfar_private *priv = container_of(work, struct gfar_private,
2450 						 reset_task);
2451 	struct net_device *dev = priv->ndev;
2452 
2453 	if (dev->flags & IFF_UP) {
2454 		netif_tx_stop_all_queues(dev);
2455 		stop_gfar(dev);
2456 		startup_gfar(dev);
2457 		netif_tx_start_all_queues(dev);
2458 	}
2459 
2460 	netif_tx_schedule_all(dev);
2461 }
2462 
2463 static void gfar_timeout(struct net_device *dev)
2464 {
2465 	struct gfar_private *priv = netdev_priv(dev);
2466 
2467 	dev->stats.tx_errors++;
2468 	schedule_work(&priv->reset_task);
2469 }
2470 
2471 static void gfar_align_skb(struct sk_buff *skb)
2472 {
2473 	/* We need the data buffer to be aligned properly.  We will reserve
2474 	 * as many bytes as needed to align the data properly
2475 	 */
2476 	skb_reserve(skb, RXBUF_ALIGNMENT -
2477 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2478 }
2479 
2480 /* Interrupt Handler for Transmit complete */
2481 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2482 {
2483 	struct net_device *dev = tx_queue->dev;
2484 	struct netdev_queue *txq;
2485 	struct gfar_private *priv = netdev_priv(dev);
2486 	struct txbd8 *bdp, *next = NULL;
2487 	struct txbd8 *lbdp = NULL;
2488 	struct txbd8 *base = tx_queue->tx_bd_base;
2489 	struct sk_buff *skb;
2490 	int skb_dirtytx;
2491 	int tx_ring_size = tx_queue->tx_ring_size;
2492 	int frags = 0, nr_txbds = 0;
2493 	int i;
2494 	int howmany = 0;
2495 	int tqi = tx_queue->qindex;
2496 	unsigned int bytes_sent = 0;
2497 	u32 lstatus;
2498 	size_t buflen;
2499 
2500 	txq = netdev_get_tx_queue(dev, tqi);
2501 	bdp = tx_queue->dirty_tx;
2502 	skb_dirtytx = tx_queue->skb_dirtytx;
2503 
2504 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2505 		unsigned long flags;
2506 
2507 		frags = skb_shinfo(skb)->nr_frags;
2508 
2509 		/* When time stamping, one additional TxBD must be freed.
2510 		 * Also, we need to dma_unmap_single() the TxPAL.
2511 		 */
2512 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2513 			nr_txbds = frags + 2;
2514 		else
2515 			nr_txbds = frags + 1;
2516 
2517 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2518 
2519 		lstatus = lbdp->lstatus;
2520 
2521 		/* Only clean completed frames */
2522 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2523 		    (lstatus & BD_LENGTH_MASK))
2524 			break;
2525 
2526 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2527 			next = next_txbd(bdp, base, tx_ring_size);
2528 			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2529 		} else
2530 			buflen = bdp->length;
2531 
2532 		dma_unmap_single(priv->dev, bdp->bufPtr,
2533 				 buflen, DMA_TO_DEVICE);
2534 
2535 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2536 			struct skb_shared_hwtstamps shhwtstamps;
2537 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2538 
2539 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2540 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2541 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2542 			skb_tstamp_tx(skb, &shhwtstamps);
2543 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2544 			bdp = next;
2545 		}
2546 
2547 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2548 		bdp = next_txbd(bdp, base, tx_ring_size);
2549 
2550 		for (i = 0; i < frags; i++) {
2551 			dma_unmap_page(priv->dev, bdp->bufPtr,
2552 				       bdp->length, DMA_TO_DEVICE);
2553 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2554 			bdp = next_txbd(bdp, base, tx_ring_size);
2555 		}
2556 
2557 		bytes_sent += skb->len;
2558 
2559 		dev_kfree_skb_any(skb);
2560 
2561 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2562 
2563 		skb_dirtytx = (skb_dirtytx + 1) &
2564 			      TX_RING_MOD_MASK(tx_ring_size);
2565 
2566 		howmany++;
2567 		spin_lock_irqsave(&tx_queue->txlock, flags);
2568 		tx_queue->num_txbdfree += nr_txbds;
2569 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2570 	}
2571 
2572 	/* If we freed a buffer, we can restart transmission, if necessary */
2573 	if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2574 		netif_wake_subqueue(dev, tqi);
2575 
2576 	/* Update dirty indicators */
2577 	tx_queue->skb_dirtytx = skb_dirtytx;
2578 	tx_queue->dirty_tx = bdp;
2579 
2580 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2581 }
2582 
2583 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2584 {
2585 	unsigned long flags;
2586 
2587 	spin_lock_irqsave(&gfargrp->grplock, flags);
2588 	if (napi_schedule_prep(&gfargrp->napi)) {
2589 		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2590 		__napi_schedule(&gfargrp->napi);
2591 	} else {
2592 		/* Clear IEVENT, so interrupts aren't called again
2593 		 * because of the packets that have already arrived.
2594 		 */
2595 		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2596 	}
2597 	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2598 
2599 }
2600 
2601 /* Interrupt Handler for Transmit complete */
2602 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2603 {
2604 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2605 	return IRQ_HANDLED;
2606 }
2607 
2608 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2609 			   struct sk_buff *skb)
2610 {
2611 	struct net_device *dev = rx_queue->dev;
2612 	struct gfar_private *priv = netdev_priv(dev);
2613 	dma_addr_t buf;
2614 
2615 	buf = dma_map_single(priv->dev, skb->data,
2616 			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2617 	gfar_init_rxbdp(rx_queue, bdp, buf);
2618 }
2619 
2620 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2621 {
2622 	struct gfar_private *priv = netdev_priv(dev);
2623 	struct sk_buff *skb;
2624 
2625 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2626 	if (!skb)
2627 		return NULL;
2628 
2629 	gfar_align_skb(skb);
2630 
2631 	return skb;
2632 }
2633 
2634 struct sk_buff *gfar_new_skb(struct net_device *dev)
2635 {
2636 	return gfar_alloc_skb(dev);
2637 }
2638 
2639 static inline void count_errors(unsigned short status, struct net_device *dev)
2640 {
2641 	struct gfar_private *priv = netdev_priv(dev);
2642 	struct net_device_stats *stats = &dev->stats;
2643 	struct gfar_extra_stats *estats = &priv->extra_stats;
2644 
2645 	/* If the packet was truncated, none of the other errors matter */
2646 	if (status & RXBD_TRUNCATED) {
2647 		stats->rx_length_errors++;
2648 
2649 		atomic64_inc(&estats->rx_trunc);
2650 
2651 		return;
2652 	}
2653 	/* Count the errors, if there were any */
2654 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2655 		stats->rx_length_errors++;
2656 
2657 		if (status & RXBD_LARGE)
2658 			atomic64_inc(&estats->rx_large);
2659 		else
2660 			atomic64_inc(&estats->rx_short);
2661 	}
2662 	if (status & RXBD_NONOCTET) {
2663 		stats->rx_frame_errors++;
2664 		atomic64_inc(&estats->rx_nonoctet);
2665 	}
2666 	if (status & RXBD_CRCERR) {
2667 		atomic64_inc(&estats->rx_crcerr);
2668 		stats->rx_crc_errors++;
2669 	}
2670 	if (status & RXBD_OVERRUN) {
2671 		atomic64_inc(&estats->rx_overrun);
2672 		stats->rx_crc_errors++;
2673 	}
2674 }
2675 
2676 irqreturn_t gfar_receive(int irq, void *grp_id)
2677 {
2678 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2679 	return IRQ_HANDLED;
2680 }
2681 
2682 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2683 {
2684 	/* If valid headers were found, and valid sums
2685 	 * were verified, then we tell the kernel that no
2686 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2687 	 */
2688 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2689 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2690 	else
2691 		skb_checksum_none_assert(skb);
2692 }
2693 
2694 
2695 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2696 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2697 			       int amount_pull, struct napi_struct *napi)
2698 {
2699 	struct gfar_private *priv = netdev_priv(dev);
2700 	struct rxfcb *fcb = NULL;
2701 
2702 	/* fcb is at the beginning if exists */
2703 	fcb = (struct rxfcb *)skb->data;
2704 
2705 	/* Remove the FCB from the skb
2706 	 * Remove the padded bytes, if there are any
2707 	 */
2708 	if (amount_pull) {
2709 		skb_record_rx_queue(skb, fcb->rq);
2710 		skb_pull(skb, amount_pull);
2711 	}
2712 
2713 	/* Get receive timestamp from the skb */
2714 	if (priv->hwts_rx_en) {
2715 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2716 		u64 *ns = (u64 *) skb->data;
2717 
2718 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2719 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2720 	}
2721 
2722 	if (priv->padding)
2723 		skb_pull(skb, priv->padding);
2724 
2725 	if (dev->features & NETIF_F_RXCSUM)
2726 		gfar_rx_checksum(skb, fcb);
2727 
2728 	/* Tell the skb what kind of packet this is */
2729 	skb->protocol = eth_type_trans(skb, dev);
2730 
2731 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2732 	 * Even if vlan rx accel is disabled, on some chips
2733 	 * RXFCB_VLN is pseudo randomly set.
2734 	 */
2735 	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2736 	    fcb->flags & RXFCB_VLN)
2737 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2738 
2739 	/* Send the packet up the stack */
2740 	napi_gro_receive(napi, skb);
2741 
2742 }
2743 
2744 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2745  * until the budget/quota has been reached. Returns the number
2746  * of frames handled
2747  */
2748 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2749 {
2750 	struct net_device *dev = rx_queue->dev;
2751 	struct rxbd8 *bdp, *base;
2752 	struct sk_buff *skb;
2753 	int pkt_len;
2754 	int amount_pull;
2755 	int howmany = 0;
2756 	struct gfar_private *priv = netdev_priv(dev);
2757 
2758 	/* Get the first full descriptor */
2759 	bdp = rx_queue->cur_rx;
2760 	base = rx_queue->rx_bd_base;
2761 
2762 	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2763 
2764 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2765 		struct sk_buff *newskb;
2766 
2767 		rmb();
2768 
2769 		/* Add another skb for the future */
2770 		newskb = gfar_new_skb(dev);
2771 
2772 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2773 
2774 		dma_unmap_single(priv->dev, bdp->bufPtr,
2775 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2776 
2777 		if (unlikely(!(bdp->status & RXBD_ERR) &&
2778 			     bdp->length > priv->rx_buffer_size))
2779 			bdp->status = RXBD_LARGE;
2780 
2781 		/* We drop the frame if we failed to allocate a new buffer */
2782 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2783 			     bdp->status & RXBD_ERR)) {
2784 			count_errors(bdp->status, dev);
2785 
2786 			if (unlikely(!newskb))
2787 				newskb = skb;
2788 			else if (skb)
2789 				dev_kfree_skb(skb);
2790 		} else {
2791 			/* Increment the number of packets */
2792 			rx_queue->stats.rx_packets++;
2793 			howmany++;
2794 
2795 			if (likely(skb)) {
2796 				pkt_len = bdp->length - ETH_FCS_LEN;
2797 				/* Remove the FCS from the packet length */
2798 				skb_put(skb, pkt_len);
2799 				rx_queue->stats.rx_bytes += pkt_len;
2800 				skb_record_rx_queue(skb, rx_queue->qindex);
2801 				gfar_process_frame(dev, skb, amount_pull,
2802 						   &rx_queue->grp->napi);
2803 
2804 			} else {
2805 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2806 				rx_queue->stats.rx_dropped++;
2807 				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2808 			}
2809 
2810 		}
2811 
2812 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2813 
2814 		/* Setup the new bdp */
2815 		gfar_new_rxbdp(rx_queue, bdp, newskb);
2816 
2817 		/* Update to the next pointer */
2818 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2819 
2820 		/* update to point at the next skb */
2821 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2822 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2823 	}
2824 
2825 	/* Update the current rxbd pointer to be the next one */
2826 	rx_queue->cur_rx = bdp;
2827 
2828 	return howmany;
2829 }
2830 
2831 static int gfar_poll_sq(struct napi_struct *napi, int budget)
2832 {
2833 	struct gfar_priv_grp *gfargrp =
2834 		container_of(napi, struct gfar_priv_grp, napi);
2835 	struct gfar __iomem *regs = gfargrp->regs;
2836 	struct gfar_priv_tx_q *tx_queue = gfargrp->priv->tx_queue[0];
2837 	struct gfar_priv_rx_q *rx_queue = gfargrp->priv->rx_queue[0];
2838 	int work_done = 0;
2839 
2840 	/* Clear IEVENT, so interrupts aren't called again
2841 	 * because of the packets that have already arrived
2842 	 */
2843 	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2844 
2845 	/* run Tx cleanup to completion */
2846 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2847 		gfar_clean_tx_ring(tx_queue);
2848 
2849 	work_done = gfar_clean_rx_ring(rx_queue, budget);
2850 
2851 	if (work_done < budget) {
2852 		napi_complete(napi);
2853 		/* Clear the halt bit in RSTAT */
2854 		gfar_write(&regs->rstat, gfargrp->rstat);
2855 
2856 		gfar_write(&regs->imask, IMASK_DEFAULT);
2857 
2858 		/* If we are coalescing interrupts, update the timer
2859 		 * Otherwise, clear it
2860 		 */
2861 		gfar_write(&regs->txic, 0);
2862 		if (likely(tx_queue->txcoalescing))
2863 			gfar_write(&regs->txic, tx_queue->txic);
2864 
2865 		gfar_write(&regs->rxic, 0);
2866 		if (unlikely(rx_queue->rxcoalescing))
2867 			gfar_write(&regs->rxic, rx_queue->rxic);
2868 	}
2869 
2870 	return work_done;
2871 }
2872 
2873 static int gfar_poll(struct napi_struct *napi, int budget)
2874 {
2875 	struct gfar_priv_grp *gfargrp =
2876 		container_of(napi, struct gfar_priv_grp, napi);
2877 	struct gfar_private *priv = gfargrp->priv;
2878 	struct gfar __iomem *regs = gfargrp->regs;
2879 	struct gfar_priv_tx_q *tx_queue = NULL;
2880 	struct gfar_priv_rx_q *rx_queue = NULL;
2881 	int work_done = 0, work_done_per_q = 0;
2882 	int i, budget_per_q = 0;
2883 	int has_tx_work;
2884 	unsigned long rstat_rxf;
2885 	int num_act_queues;
2886 
2887 	/* Clear IEVENT, so interrupts aren't called again
2888 	 * because of the packets that have already arrived
2889 	 */
2890 	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2891 
2892 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2893 
2894 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2895 	if (num_act_queues)
2896 		budget_per_q = budget/num_act_queues;
2897 
2898 	while (1) {
2899 		has_tx_work = 0;
2900 		for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2901 			tx_queue = priv->tx_queue[i];
2902 			/* run Tx cleanup to completion */
2903 			if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2904 				gfar_clean_tx_ring(tx_queue);
2905 				has_tx_work = 1;
2906 			}
2907 		}
2908 
2909 		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2910 			/* skip queue if not active */
2911 			if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2912 				continue;
2913 
2914 			rx_queue = priv->rx_queue[i];
2915 			work_done_per_q =
2916 				gfar_clean_rx_ring(rx_queue, budget_per_q);
2917 			work_done += work_done_per_q;
2918 
2919 			/* finished processing this queue */
2920 			if (work_done_per_q < budget_per_q) {
2921 				/* clear active queue hw indication */
2922 				gfar_write(&regs->rstat,
2923 					   RSTAT_CLEAR_RXF0 >> i);
2924 				rstat_rxf &= ~(RSTAT_CLEAR_RXF0 >> i);
2925 				num_act_queues--;
2926 
2927 				if (!num_act_queues)
2928 					break;
2929 				/* recompute budget per Rx queue */
2930 				budget_per_q =
2931 					(budget - work_done) / num_act_queues;
2932 			}
2933 		}
2934 
2935 		if (work_done >= budget)
2936 			break;
2937 
2938 		if (!num_act_queues && !has_tx_work) {
2939 
2940 			napi_complete(napi);
2941 
2942 			/* Clear the halt bit in RSTAT */
2943 			gfar_write(&regs->rstat, gfargrp->rstat);
2944 
2945 			gfar_write(&regs->imask, IMASK_DEFAULT);
2946 
2947 			/* If we are coalescing interrupts, update the timer
2948 			 * Otherwise, clear it
2949 			 */
2950 			gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2951 						  gfargrp->tx_bit_map);
2952 			break;
2953 		}
2954 	}
2955 
2956 	return work_done;
2957 }
2958 
2959 #ifdef CONFIG_NET_POLL_CONTROLLER
2960 /* Polling 'interrupt' - used by things like netconsole to send skbs
2961  * without having to re-enable interrupts. It's not called while
2962  * the interrupt routine is executing.
2963  */
2964 static void gfar_netpoll(struct net_device *dev)
2965 {
2966 	struct gfar_private *priv = netdev_priv(dev);
2967 	int i;
2968 
2969 	/* If the device has multiple interrupts, run tx/rx */
2970 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2971 		for (i = 0; i < priv->num_grps; i++) {
2972 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2973 
2974 			disable_irq(gfar_irq(grp, TX)->irq);
2975 			disable_irq(gfar_irq(grp, RX)->irq);
2976 			disable_irq(gfar_irq(grp, ER)->irq);
2977 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2978 			enable_irq(gfar_irq(grp, ER)->irq);
2979 			enable_irq(gfar_irq(grp, RX)->irq);
2980 			enable_irq(gfar_irq(grp, TX)->irq);
2981 		}
2982 	} else {
2983 		for (i = 0; i < priv->num_grps; i++) {
2984 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2985 
2986 			disable_irq(gfar_irq(grp, TX)->irq);
2987 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2988 			enable_irq(gfar_irq(grp, TX)->irq);
2989 		}
2990 	}
2991 }
2992 #endif
2993 
2994 /* The interrupt handler for devices with one interrupt */
2995 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2996 {
2997 	struct gfar_priv_grp *gfargrp = grp_id;
2998 
2999 	/* Save ievent for future reference */
3000 	u32 events = gfar_read(&gfargrp->regs->ievent);
3001 
3002 	/* Check for reception */
3003 	if (events & IEVENT_RX_MASK)
3004 		gfar_receive(irq, grp_id);
3005 
3006 	/* Check for transmit completion */
3007 	if (events & IEVENT_TX_MASK)
3008 		gfar_transmit(irq, grp_id);
3009 
3010 	/* Check for errors */
3011 	if (events & IEVENT_ERR_MASK)
3012 		gfar_error(irq, grp_id);
3013 
3014 	return IRQ_HANDLED;
3015 }
3016 
3017 /* Called every time the controller might need to be made
3018  * aware of new link state.  The PHY code conveys this
3019  * information through variables in the phydev structure, and this
3020  * function converts those variables into the appropriate
3021  * register values, and can bring down the device if needed.
3022  */
3023 static void adjust_link(struct net_device *dev)
3024 {
3025 	struct gfar_private *priv = netdev_priv(dev);
3026 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3027 	unsigned long flags;
3028 	struct phy_device *phydev = priv->phydev;
3029 	int new_state = 0;
3030 
3031 	local_irq_save(flags);
3032 	lock_tx_qs(priv);
3033 
3034 	if (phydev->link) {
3035 		u32 tempval = gfar_read(&regs->maccfg2);
3036 		u32 ecntrl = gfar_read(&regs->ecntrl);
3037 
3038 		/* Now we make sure that we can be in full duplex mode.
3039 		 * If not, we operate in half-duplex mode.
3040 		 */
3041 		if (phydev->duplex != priv->oldduplex) {
3042 			new_state = 1;
3043 			if (!(phydev->duplex))
3044 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3045 			else
3046 				tempval |= MACCFG2_FULL_DUPLEX;
3047 
3048 			priv->oldduplex = phydev->duplex;
3049 		}
3050 
3051 		if (phydev->speed != priv->oldspeed) {
3052 			new_state = 1;
3053 			switch (phydev->speed) {
3054 			case 1000:
3055 				tempval =
3056 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3057 
3058 				ecntrl &= ~(ECNTRL_R100);
3059 				break;
3060 			case 100:
3061 			case 10:
3062 				tempval =
3063 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3064 
3065 				/* Reduced mode distinguishes
3066 				 * between 10 and 100
3067 				 */
3068 				if (phydev->speed == SPEED_100)
3069 					ecntrl |= ECNTRL_R100;
3070 				else
3071 					ecntrl &= ~(ECNTRL_R100);
3072 				break;
3073 			default:
3074 				netif_warn(priv, link, dev,
3075 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3076 					   phydev->speed);
3077 				break;
3078 			}
3079 
3080 			priv->oldspeed = phydev->speed;
3081 		}
3082 
3083 		gfar_write(&regs->maccfg2, tempval);
3084 		gfar_write(&regs->ecntrl, ecntrl);
3085 
3086 		if (!priv->oldlink) {
3087 			new_state = 1;
3088 			priv->oldlink = 1;
3089 		}
3090 	} else if (priv->oldlink) {
3091 		new_state = 1;
3092 		priv->oldlink = 0;
3093 		priv->oldspeed = 0;
3094 		priv->oldduplex = -1;
3095 	}
3096 
3097 	if (new_state && netif_msg_link(priv))
3098 		phy_print_status(phydev);
3099 	unlock_tx_qs(priv);
3100 	local_irq_restore(flags);
3101 }
3102 
3103 /* Update the hash table based on the current list of multicast
3104  * addresses we subscribe to.  Also, change the promiscuity of
3105  * the device based on the flags (this function is called
3106  * whenever dev->flags is changed
3107  */
3108 static void gfar_set_multi(struct net_device *dev)
3109 {
3110 	struct netdev_hw_addr *ha;
3111 	struct gfar_private *priv = netdev_priv(dev);
3112 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3113 	u32 tempval;
3114 
3115 	if (dev->flags & IFF_PROMISC) {
3116 		/* Set RCTRL to PROM */
3117 		tempval = gfar_read(&regs->rctrl);
3118 		tempval |= RCTRL_PROM;
3119 		gfar_write(&regs->rctrl, tempval);
3120 	} else {
3121 		/* Set RCTRL to not PROM */
3122 		tempval = gfar_read(&regs->rctrl);
3123 		tempval &= ~(RCTRL_PROM);
3124 		gfar_write(&regs->rctrl, tempval);
3125 	}
3126 
3127 	if (dev->flags & IFF_ALLMULTI) {
3128 		/* Set the hash to rx all multicast frames */
3129 		gfar_write(&regs->igaddr0, 0xffffffff);
3130 		gfar_write(&regs->igaddr1, 0xffffffff);
3131 		gfar_write(&regs->igaddr2, 0xffffffff);
3132 		gfar_write(&regs->igaddr3, 0xffffffff);
3133 		gfar_write(&regs->igaddr4, 0xffffffff);
3134 		gfar_write(&regs->igaddr5, 0xffffffff);
3135 		gfar_write(&regs->igaddr6, 0xffffffff);
3136 		gfar_write(&regs->igaddr7, 0xffffffff);
3137 		gfar_write(&regs->gaddr0, 0xffffffff);
3138 		gfar_write(&regs->gaddr1, 0xffffffff);
3139 		gfar_write(&regs->gaddr2, 0xffffffff);
3140 		gfar_write(&regs->gaddr3, 0xffffffff);
3141 		gfar_write(&regs->gaddr4, 0xffffffff);
3142 		gfar_write(&regs->gaddr5, 0xffffffff);
3143 		gfar_write(&regs->gaddr6, 0xffffffff);
3144 		gfar_write(&regs->gaddr7, 0xffffffff);
3145 	} else {
3146 		int em_num;
3147 		int idx;
3148 
3149 		/* zero out the hash */
3150 		gfar_write(&regs->igaddr0, 0x0);
3151 		gfar_write(&regs->igaddr1, 0x0);
3152 		gfar_write(&regs->igaddr2, 0x0);
3153 		gfar_write(&regs->igaddr3, 0x0);
3154 		gfar_write(&regs->igaddr4, 0x0);
3155 		gfar_write(&regs->igaddr5, 0x0);
3156 		gfar_write(&regs->igaddr6, 0x0);
3157 		gfar_write(&regs->igaddr7, 0x0);
3158 		gfar_write(&regs->gaddr0, 0x0);
3159 		gfar_write(&regs->gaddr1, 0x0);
3160 		gfar_write(&regs->gaddr2, 0x0);
3161 		gfar_write(&regs->gaddr3, 0x0);
3162 		gfar_write(&regs->gaddr4, 0x0);
3163 		gfar_write(&regs->gaddr5, 0x0);
3164 		gfar_write(&regs->gaddr6, 0x0);
3165 		gfar_write(&regs->gaddr7, 0x0);
3166 
3167 		/* If we have extended hash tables, we need to
3168 		 * clear the exact match registers to prepare for
3169 		 * setting them
3170 		 */
3171 		if (priv->extended_hash) {
3172 			em_num = GFAR_EM_NUM + 1;
3173 			gfar_clear_exact_match(dev);
3174 			idx = 1;
3175 		} else {
3176 			idx = 0;
3177 			em_num = 0;
3178 		}
3179 
3180 		if (netdev_mc_empty(dev))
3181 			return;
3182 
3183 		/* Parse the list, and set the appropriate bits */
3184 		netdev_for_each_mc_addr(ha, dev) {
3185 			if (idx < em_num) {
3186 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3187 				idx++;
3188 			} else
3189 				gfar_set_hash_for_addr(dev, ha->addr);
3190 		}
3191 	}
3192 }
3193 
3194 
3195 /* Clears each of the exact match registers to zero, so they
3196  * don't interfere with normal reception
3197  */
3198 static void gfar_clear_exact_match(struct net_device *dev)
3199 {
3200 	int idx;
3201 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3202 
3203 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3204 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3205 }
3206 
3207 /* Set the appropriate hash bit for the given addr */
3208 /* The algorithm works like so:
3209  * 1) Take the Destination Address (ie the multicast address), and
3210  * do a CRC on it (little endian), and reverse the bits of the
3211  * result.
3212  * 2) Use the 8 most significant bits as a hash into a 256-entry
3213  * table.  The table is controlled through 8 32-bit registers:
3214  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3215  * gaddr7.  This means that the 3 most significant bits in the
3216  * hash index which gaddr register to use, and the 5 other bits
3217  * indicate which bit (assuming an IBM numbering scheme, which
3218  * for PowerPC (tm) is usually the case) in the register holds
3219  * the entry.
3220  */
3221 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3222 {
3223 	u32 tempval;
3224 	struct gfar_private *priv = netdev_priv(dev);
3225 	u32 result = ether_crc(ETH_ALEN, addr);
3226 	int width = priv->hash_width;
3227 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3228 	u8 whichreg = result >> (32 - width + 5);
3229 	u32 value = (1 << (31-whichbit));
3230 
3231 	tempval = gfar_read(priv->hash_regs[whichreg]);
3232 	tempval |= value;
3233 	gfar_write(priv->hash_regs[whichreg], tempval);
3234 }
3235 
3236 
3237 /* There are multiple MAC Address register pairs on some controllers
3238  * This function sets the numth pair to a given address
3239  */
3240 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3241 				  const u8 *addr)
3242 {
3243 	struct gfar_private *priv = netdev_priv(dev);
3244 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3245 	int idx;
3246 	char tmpbuf[ETH_ALEN];
3247 	u32 tempval;
3248 	u32 __iomem *macptr = &regs->macstnaddr1;
3249 
3250 	macptr += num*2;
3251 
3252 	/* Now copy it into the mac registers backwards, cuz
3253 	 * little endian is silly
3254 	 */
3255 	for (idx = 0; idx < ETH_ALEN; idx++)
3256 		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3257 
3258 	gfar_write(macptr, *((u32 *) (tmpbuf)));
3259 
3260 	tempval = *((u32 *) (tmpbuf + 4));
3261 
3262 	gfar_write(macptr+1, tempval);
3263 }
3264 
3265 /* GFAR error interrupt handler */
3266 static irqreturn_t gfar_error(int irq, void *grp_id)
3267 {
3268 	struct gfar_priv_grp *gfargrp = grp_id;
3269 	struct gfar __iomem *regs = gfargrp->regs;
3270 	struct gfar_private *priv= gfargrp->priv;
3271 	struct net_device *dev = priv->ndev;
3272 
3273 	/* Save ievent for future reference */
3274 	u32 events = gfar_read(&regs->ievent);
3275 
3276 	/* Clear IEVENT */
3277 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3278 
3279 	/* Magic Packet is not an error. */
3280 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3281 	    (events & IEVENT_MAG))
3282 		events &= ~IEVENT_MAG;
3283 
3284 	/* Hmm... */
3285 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3286 		netdev_dbg(dev,
3287 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3288 			   events, gfar_read(&regs->imask));
3289 
3290 	/* Update the error counters */
3291 	if (events & IEVENT_TXE) {
3292 		dev->stats.tx_errors++;
3293 
3294 		if (events & IEVENT_LC)
3295 			dev->stats.tx_window_errors++;
3296 		if (events & IEVENT_CRL)
3297 			dev->stats.tx_aborted_errors++;
3298 		if (events & IEVENT_XFUN) {
3299 			unsigned long flags;
3300 
3301 			netif_dbg(priv, tx_err, dev,
3302 				  "TX FIFO underrun, packet dropped\n");
3303 			dev->stats.tx_dropped++;
3304 			atomic64_inc(&priv->extra_stats.tx_underrun);
3305 
3306 			local_irq_save(flags);
3307 			lock_tx_qs(priv);
3308 
3309 			/* Reactivate the Tx Queues */
3310 			gfar_write(&regs->tstat, gfargrp->tstat);
3311 
3312 			unlock_tx_qs(priv);
3313 			local_irq_restore(flags);
3314 		}
3315 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3316 	}
3317 	if (events & IEVENT_BSY) {
3318 		dev->stats.rx_errors++;
3319 		atomic64_inc(&priv->extra_stats.rx_bsy);
3320 
3321 		gfar_receive(irq, grp_id);
3322 
3323 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3324 			  gfar_read(&regs->rstat));
3325 	}
3326 	if (events & IEVENT_BABR) {
3327 		dev->stats.rx_errors++;
3328 		atomic64_inc(&priv->extra_stats.rx_babr);
3329 
3330 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3331 	}
3332 	if (events & IEVENT_EBERR) {
3333 		atomic64_inc(&priv->extra_stats.eberr);
3334 		netif_dbg(priv, rx_err, dev, "bus error\n");
3335 	}
3336 	if (events & IEVENT_RXC)
3337 		netif_dbg(priv, rx_status, dev, "control frame\n");
3338 
3339 	if (events & IEVENT_BABT) {
3340 		atomic64_inc(&priv->extra_stats.tx_babt);
3341 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3342 	}
3343 	return IRQ_HANDLED;
3344 }
3345 
3346 static struct of_device_id gfar_match[] =
3347 {
3348 	{
3349 		.type = "network",
3350 		.compatible = "gianfar",
3351 	},
3352 	{
3353 		.compatible = "fsl,etsec2",
3354 	},
3355 	{},
3356 };
3357 MODULE_DEVICE_TABLE(of, gfar_match);
3358 
3359 /* Structure for a device driver */
3360 static struct platform_driver gfar_driver = {
3361 	.driver = {
3362 		.name = "fsl-gianfar",
3363 		.owner = THIS_MODULE,
3364 		.pm = GFAR_PM_OPS,
3365 		.of_match_table = gfar_match,
3366 	},
3367 	.probe = gfar_probe,
3368 	.remove = gfar_remove,
3369 };
3370 
3371 module_platform_driver(gfar_driver);
3372