1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88 
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101 
102 #include "gianfar.h"
103 
104 #define TX_TIMEOUT      (1*HZ)
105 
106 const char gfar_driver_version[] = "1.3";
107 
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115 			   struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137 			       int amount_pull, struct napi_struct *napi);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
143 				  const u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145 
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149 
150 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
151 			    dma_addr_t buf)
152 {
153 	u32 lstatus;
154 
155 	bdp->bufPtr = buf;
156 
157 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
158 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
159 		lstatus |= BD_LFLAG(RXBD_WRAP);
160 
161 	eieio();
162 
163 	bdp->lstatus = lstatus;
164 }
165 
166 static int gfar_init_bds(struct net_device *ndev)
167 {
168 	struct gfar_private *priv = netdev_priv(ndev);
169 	struct gfar_priv_tx_q *tx_queue = NULL;
170 	struct gfar_priv_rx_q *rx_queue = NULL;
171 	struct txbd8 *txbdp;
172 	struct rxbd8 *rxbdp;
173 	int i, j;
174 
175 	for (i = 0; i < priv->num_tx_queues; i++) {
176 		tx_queue = priv->tx_queue[i];
177 		/* Initialize some variables in our dev structure */
178 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
180 		tx_queue->cur_tx = tx_queue->tx_bd_base;
181 		tx_queue->skb_curtx = 0;
182 		tx_queue->skb_dirtytx = 0;
183 
184 		/* Initialize Transmit Descriptor Ring */
185 		txbdp = tx_queue->tx_bd_base;
186 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
187 			txbdp->lstatus = 0;
188 			txbdp->bufPtr = 0;
189 			txbdp++;
190 		}
191 
192 		/* Set the last descriptor in the ring to indicate wrap */
193 		txbdp--;
194 		txbdp->status |= TXBD_WRAP;
195 	}
196 
197 	for (i = 0; i < priv->num_rx_queues; i++) {
198 		rx_queue = priv->rx_queue[i];
199 		rx_queue->cur_rx = rx_queue->rx_bd_base;
200 		rx_queue->skb_currx = 0;
201 		rxbdp = rx_queue->rx_bd_base;
202 
203 		for (j = 0; j < rx_queue->rx_ring_size; j++) {
204 			struct sk_buff *skb = rx_queue->rx_skbuff[j];
205 
206 			if (skb) {
207 				gfar_init_rxbdp(rx_queue, rxbdp,
208 						rxbdp->bufPtr);
209 			} else {
210 				skb = gfar_new_skb(ndev);
211 				if (!skb) {
212 					netdev_err(ndev, "Can't allocate RX buffers\n");
213 					return -ENOMEM;
214 				}
215 				rx_queue->rx_skbuff[j] = skb;
216 
217 				gfar_new_rxbdp(rx_queue, rxbdp, skb);
218 			}
219 
220 			rxbdp++;
221 		}
222 
223 	}
224 
225 	return 0;
226 }
227 
228 static int gfar_alloc_skb_resources(struct net_device *ndev)
229 {
230 	void *vaddr;
231 	dma_addr_t addr;
232 	int i, j, k;
233 	struct gfar_private *priv = netdev_priv(ndev);
234 	struct device *dev = priv->dev;
235 	struct gfar_priv_tx_q *tx_queue = NULL;
236 	struct gfar_priv_rx_q *rx_queue = NULL;
237 
238 	priv->total_tx_ring_size = 0;
239 	for (i = 0; i < priv->num_tx_queues; i++)
240 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
241 
242 	priv->total_rx_ring_size = 0;
243 	for (i = 0; i < priv->num_rx_queues; i++)
244 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
245 
246 	/* Allocate memory for the buffer descriptors */
247 	vaddr = dma_alloc_coherent(dev,
248 				   (priv->total_tx_ring_size *
249 				    sizeof(struct txbd8)) +
250 				   (priv->total_rx_ring_size *
251 				    sizeof(struct rxbd8)),
252 				   &addr, GFP_KERNEL);
253 	if (!vaddr)
254 		return -ENOMEM;
255 
256 	for (i = 0; i < priv->num_tx_queues; i++) {
257 		tx_queue = priv->tx_queue[i];
258 		tx_queue->tx_bd_base = vaddr;
259 		tx_queue->tx_bd_dma_base = addr;
260 		tx_queue->dev = ndev;
261 		/* enet DMA only understands physical addresses */
262 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
263 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
264 	}
265 
266 	/* Start the rx descriptor ring where the tx ring leaves off */
267 	for (i = 0; i < priv->num_rx_queues; i++) {
268 		rx_queue = priv->rx_queue[i];
269 		rx_queue->rx_bd_base = vaddr;
270 		rx_queue->rx_bd_dma_base = addr;
271 		rx_queue->dev = ndev;
272 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
273 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
274 	}
275 
276 	/* Setup the skbuff rings */
277 	for (i = 0; i < priv->num_tx_queues; i++) {
278 		tx_queue = priv->tx_queue[i];
279 		tx_queue->tx_skbuff =
280 			kmalloc_array(tx_queue->tx_ring_size,
281 				      sizeof(*tx_queue->tx_skbuff),
282 				      GFP_KERNEL);
283 		if (!tx_queue->tx_skbuff)
284 			goto cleanup;
285 
286 		for (k = 0; k < tx_queue->tx_ring_size; k++)
287 			tx_queue->tx_skbuff[k] = NULL;
288 	}
289 
290 	for (i = 0; i < priv->num_rx_queues; i++) {
291 		rx_queue = priv->rx_queue[i];
292 		rx_queue->rx_skbuff =
293 			kmalloc_array(rx_queue->rx_ring_size,
294 				      sizeof(*rx_queue->rx_skbuff),
295 				      GFP_KERNEL);
296 		if (!rx_queue->rx_skbuff)
297 			goto cleanup;
298 
299 		for (j = 0; j < rx_queue->rx_ring_size; j++)
300 			rx_queue->rx_skbuff[j] = NULL;
301 	}
302 
303 	if (gfar_init_bds(ndev))
304 		goto cleanup;
305 
306 	return 0;
307 
308 cleanup:
309 	free_skb_resources(priv);
310 	return -ENOMEM;
311 }
312 
313 static void gfar_init_tx_rx_base(struct gfar_private *priv)
314 {
315 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
316 	u32 __iomem *baddr;
317 	int i;
318 
319 	baddr = &regs->tbase0;
320 	for (i = 0; i < priv->num_tx_queues; i++) {
321 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
322 		baddr += 2;
323 	}
324 
325 	baddr = &regs->rbase0;
326 	for (i = 0; i < priv->num_rx_queues; i++) {
327 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
328 		baddr += 2;
329 	}
330 }
331 
332 static void gfar_init_mac(struct net_device *ndev)
333 {
334 	struct gfar_private *priv = netdev_priv(ndev);
335 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
336 	u32 rctrl = 0;
337 	u32 tctrl = 0;
338 	u32 attrs = 0;
339 
340 	/* write the tx/rx base registers */
341 	gfar_init_tx_rx_base(priv);
342 
343 	/* Configure the coalescing support */
344 	gfar_configure_coalescing_all(priv);
345 
346 	/* set this when rx hw offload (TOE) functions are being used */
347 	priv->uses_rxfcb = 0;
348 
349 	if (priv->rx_filer_enable) {
350 		rctrl |= RCTRL_FILREN;
351 		/* Program the RIR0 reg with the required distribution */
352 		gfar_write(&regs->rir0, DEFAULT_RIR0);
353 	}
354 
355 	/* Restore PROMISC mode */
356 	if (ndev->flags & IFF_PROMISC)
357 		rctrl |= RCTRL_PROM;
358 
359 	if (ndev->features & NETIF_F_RXCSUM) {
360 		rctrl |= RCTRL_CHECKSUMMING;
361 		priv->uses_rxfcb = 1;
362 	}
363 
364 	if (priv->extended_hash) {
365 		rctrl |= RCTRL_EXTHASH;
366 
367 		gfar_clear_exact_match(ndev);
368 		rctrl |= RCTRL_EMEN;
369 	}
370 
371 	if (priv->padding) {
372 		rctrl &= ~RCTRL_PAL_MASK;
373 		rctrl |= RCTRL_PADDING(priv->padding);
374 	}
375 
376 	/* Insert receive time stamps into padding alignment bytes */
377 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
378 		rctrl &= ~RCTRL_PAL_MASK;
379 		rctrl |= RCTRL_PADDING(8);
380 		priv->padding = 8;
381 	}
382 
383 	/* Enable HW time stamping if requested from user space */
384 	if (priv->hwts_rx_en) {
385 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
386 		priv->uses_rxfcb = 1;
387 	}
388 
389 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
390 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
391 		priv->uses_rxfcb = 1;
392 	}
393 
394 	/* Init rctrl based on our settings */
395 	gfar_write(&regs->rctrl, rctrl);
396 
397 	if (ndev->features & NETIF_F_IP_CSUM)
398 		tctrl |= TCTRL_INIT_CSUM;
399 
400 	if (priv->prio_sched_en)
401 		tctrl |= TCTRL_TXSCHED_PRIO;
402 	else {
403 		tctrl |= TCTRL_TXSCHED_WRRS;
404 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
405 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
406 	}
407 
408 	gfar_write(&regs->tctrl, tctrl);
409 
410 	/* Set the extraction length and index */
411 	attrs = ATTRELI_EL(priv->rx_stash_size) |
412 		ATTRELI_EI(priv->rx_stash_index);
413 
414 	gfar_write(&regs->attreli, attrs);
415 
416 	/* Start with defaults, and add stashing or locking
417 	 * depending on the approprate variables
418 	 */
419 	attrs = ATTR_INIT_SETTINGS;
420 
421 	if (priv->bd_stash_en)
422 		attrs |= ATTR_BDSTASH;
423 
424 	if (priv->rx_stash_size != 0)
425 		attrs |= ATTR_BUFSTASH;
426 
427 	gfar_write(&regs->attr, attrs);
428 
429 	gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
430 	gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
431 	gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
432 }
433 
434 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
435 {
436 	struct gfar_private *priv = netdev_priv(dev);
437 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
438 	unsigned long tx_packets = 0, tx_bytes = 0;
439 	int i;
440 
441 	for (i = 0; i < priv->num_rx_queues; i++) {
442 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
443 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
444 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
445 	}
446 
447 	dev->stats.rx_packets = rx_packets;
448 	dev->stats.rx_bytes   = rx_bytes;
449 	dev->stats.rx_dropped = rx_dropped;
450 
451 	for (i = 0; i < priv->num_tx_queues; i++) {
452 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
453 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
454 	}
455 
456 	dev->stats.tx_bytes   = tx_bytes;
457 	dev->stats.tx_packets = tx_packets;
458 
459 	return &dev->stats;
460 }
461 
462 static const struct net_device_ops gfar_netdev_ops = {
463 	.ndo_open = gfar_enet_open,
464 	.ndo_start_xmit = gfar_start_xmit,
465 	.ndo_stop = gfar_close,
466 	.ndo_change_mtu = gfar_change_mtu,
467 	.ndo_set_features = gfar_set_features,
468 	.ndo_set_rx_mode = gfar_set_multi,
469 	.ndo_tx_timeout = gfar_timeout,
470 	.ndo_do_ioctl = gfar_ioctl,
471 	.ndo_get_stats = gfar_get_stats,
472 	.ndo_set_mac_address = eth_mac_addr,
473 	.ndo_validate_addr = eth_validate_addr,
474 #ifdef CONFIG_NET_POLL_CONTROLLER
475 	.ndo_poll_controller = gfar_netpoll,
476 #endif
477 };
478 
479 void lock_rx_qs(struct gfar_private *priv)
480 {
481 	int i;
482 
483 	for (i = 0; i < priv->num_rx_queues; i++)
484 		spin_lock(&priv->rx_queue[i]->rxlock);
485 }
486 
487 void lock_tx_qs(struct gfar_private *priv)
488 {
489 	int i;
490 
491 	for (i = 0; i < priv->num_tx_queues; i++)
492 		spin_lock(&priv->tx_queue[i]->txlock);
493 }
494 
495 void unlock_rx_qs(struct gfar_private *priv)
496 {
497 	int i;
498 
499 	for (i = 0; i < priv->num_rx_queues; i++)
500 		spin_unlock(&priv->rx_queue[i]->rxlock);
501 }
502 
503 void unlock_tx_qs(struct gfar_private *priv)
504 {
505 	int i;
506 
507 	for (i = 0; i < priv->num_tx_queues; i++)
508 		spin_unlock(&priv->tx_queue[i]->txlock);
509 }
510 
511 static void free_tx_pointers(struct gfar_private *priv)
512 {
513 	int i;
514 
515 	for (i = 0; i < priv->num_tx_queues; i++)
516 		kfree(priv->tx_queue[i]);
517 }
518 
519 static void free_rx_pointers(struct gfar_private *priv)
520 {
521 	int i;
522 
523 	for (i = 0; i < priv->num_rx_queues; i++)
524 		kfree(priv->rx_queue[i]);
525 }
526 
527 static void unmap_group_regs(struct gfar_private *priv)
528 {
529 	int i;
530 
531 	for (i = 0; i < MAXGROUPS; i++)
532 		if (priv->gfargrp[i].regs)
533 			iounmap(priv->gfargrp[i].regs);
534 }
535 
536 static void free_gfar_dev(struct gfar_private *priv)
537 {
538 	int i, j;
539 
540 	for (i = 0; i < priv->num_grps; i++)
541 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
542 			kfree(priv->gfargrp[i].irqinfo[j]);
543 			priv->gfargrp[i].irqinfo[j] = NULL;
544 		}
545 
546 	free_netdev(priv->ndev);
547 }
548 
549 static void disable_napi(struct gfar_private *priv)
550 {
551 	int i;
552 
553 	for (i = 0; i < priv->num_grps; i++)
554 		napi_disable(&priv->gfargrp[i].napi);
555 }
556 
557 static void enable_napi(struct gfar_private *priv)
558 {
559 	int i;
560 
561 	for (i = 0; i < priv->num_grps; i++)
562 		napi_enable(&priv->gfargrp[i].napi);
563 }
564 
565 static int gfar_parse_group(struct device_node *np,
566 			    struct gfar_private *priv, const char *model)
567 {
568 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
569 	u32 *queue_mask;
570 	int i;
571 
572 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
573 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
574 					  GFP_KERNEL);
575 		if (!grp->irqinfo[i])
576 			return -ENOMEM;
577 	}
578 
579 	grp->regs = of_iomap(np, 0);
580 	if (!grp->regs)
581 		return -ENOMEM;
582 
583 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
584 
585 	/* If we aren't the FEC we have multiple interrupts */
586 	if (model && strcasecmp(model, "FEC")) {
587 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
588 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
589 		if (gfar_irq(grp, TX)->irq == NO_IRQ ||
590 		    gfar_irq(grp, RX)->irq == NO_IRQ ||
591 		    gfar_irq(grp, ER)->irq == NO_IRQ)
592 			return -EINVAL;
593 	}
594 
595 	grp->grp_id = priv->num_grps;
596 	grp->priv = priv;
597 	spin_lock_init(&grp->grplock);
598 	if (priv->mode == MQ_MG_MODE) {
599 		queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
600 		grp->rx_bit_map = queue_mask ?
601 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
602 		queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
603 		grp->tx_bit_map = queue_mask ?
604 			*queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
605 	} else {
606 		grp->rx_bit_map = 0xFF;
607 		grp->tx_bit_map = 0xFF;
608 	}
609 	priv->num_grps++;
610 
611 	return 0;
612 }
613 
614 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
615 {
616 	const char *model;
617 	const char *ctype;
618 	const void *mac_addr;
619 	int err = 0, i;
620 	struct net_device *dev = NULL;
621 	struct gfar_private *priv = NULL;
622 	struct device_node *np = ofdev->dev.of_node;
623 	struct device_node *child = NULL;
624 	const u32 *stash;
625 	const u32 *stash_len;
626 	const u32 *stash_idx;
627 	unsigned int num_tx_qs, num_rx_qs;
628 	u32 *tx_queues, *rx_queues;
629 
630 	if (!np || !of_device_is_available(np))
631 		return -ENODEV;
632 
633 	/* parse the num of tx and rx queues */
634 	tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
635 	num_tx_qs = tx_queues ? *tx_queues : 1;
636 
637 	if (num_tx_qs > MAX_TX_QS) {
638 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
639 		       num_tx_qs, MAX_TX_QS);
640 		pr_err("Cannot do alloc_etherdev, aborting\n");
641 		return -EINVAL;
642 	}
643 
644 	rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
645 	num_rx_qs = rx_queues ? *rx_queues : 1;
646 
647 	if (num_rx_qs > MAX_RX_QS) {
648 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
649 		       num_rx_qs, MAX_RX_QS);
650 		pr_err("Cannot do alloc_etherdev, aborting\n");
651 		return -EINVAL;
652 	}
653 
654 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
655 	dev = *pdev;
656 	if (NULL == dev)
657 		return -ENOMEM;
658 
659 	priv = netdev_priv(dev);
660 	priv->ndev = dev;
661 
662 	priv->num_tx_queues = num_tx_qs;
663 	netif_set_real_num_rx_queues(dev, num_rx_qs);
664 	priv->num_rx_queues = num_rx_qs;
665 	priv->num_grps = 0x0;
666 
667 	/* Init Rx queue filer rule set linked list */
668 	INIT_LIST_HEAD(&priv->rx_list.list);
669 	priv->rx_list.count = 0;
670 	mutex_init(&priv->rx_queue_access);
671 
672 	model = of_get_property(np, "model", NULL);
673 
674 	for (i = 0; i < MAXGROUPS; i++)
675 		priv->gfargrp[i].regs = NULL;
676 
677 	/* Parse and initialize group specific information */
678 	if (of_device_is_compatible(np, "fsl,etsec2")) {
679 		priv->mode = MQ_MG_MODE;
680 		for_each_child_of_node(np, child) {
681 			err = gfar_parse_group(child, priv, model);
682 			if (err)
683 				goto err_grp_init;
684 		}
685 	} else {
686 		priv->mode = SQ_SG_MODE;
687 		err = gfar_parse_group(np, priv, model);
688 		if (err)
689 			goto err_grp_init;
690 	}
691 
692 	for (i = 0; i < priv->num_tx_queues; i++)
693 		priv->tx_queue[i] = NULL;
694 	for (i = 0; i < priv->num_rx_queues; i++)
695 		priv->rx_queue[i] = NULL;
696 
697 	for (i = 0; i < priv->num_tx_queues; i++) {
698 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
699 					    GFP_KERNEL);
700 		if (!priv->tx_queue[i]) {
701 			err = -ENOMEM;
702 			goto tx_alloc_failed;
703 		}
704 		priv->tx_queue[i]->tx_skbuff = NULL;
705 		priv->tx_queue[i]->qindex = i;
706 		priv->tx_queue[i]->dev = dev;
707 		spin_lock_init(&(priv->tx_queue[i]->txlock));
708 	}
709 
710 	for (i = 0; i < priv->num_rx_queues; i++) {
711 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
712 					    GFP_KERNEL);
713 		if (!priv->rx_queue[i]) {
714 			err = -ENOMEM;
715 			goto rx_alloc_failed;
716 		}
717 		priv->rx_queue[i]->rx_skbuff = NULL;
718 		priv->rx_queue[i]->qindex = i;
719 		priv->rx_queue[i]->dev = dev;
720 		spin_lock_init(&(priv->rx_queue[i]->rxlock));
721 	}
722 
723 
724 	stash = of_get_property(np, "bd-stash", NULL);
725 
726 	if (stash) {
727 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
728 		priv->bd_stash_en = 1;
729 	}
730 
731 	stash_len = of_get_property(np, "rx-stash-len", NULL);
732 
733 	if (stash_len)
734 		priv->rx_stash_size = *stash_len;
735 
736 	stash_idx = of_get_property(np, "rx-stash-idx", NULL);
737 
738 	if (stash_idx)
739 		priv->rx_stash_index = *stash_idx;
740 
741 	if (stash_len || stash_idx)
742 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
743 
744 	mac_addr = of_get_mac_address(np);
745 
746 	if (mac_addr)
747 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
748 
749 	if (model && !strcasecmp(model, "TSEC"))
750 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
751 				     FSL_GIANFAR_DEV_HAS_COALESCE |
752 				     FSL_GIANFAR_DEV_HAS_RMON |
753 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
754 
755 	if (model && !strcasecmp(model, "eTSEC"))
756 		priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
757 				     FSL_GIANFAR_DEV_HAS_COALESCE |
758 				     FSL_GIANFAR_DEV_HAS_RMON |
759 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
760 				     FSL_GIANFAR_DEV_HAS_PADDING |
761 				     FSL_GIANFAR_DEV_HAS_CSUM |
762 				     FSL_GIANFAR_DEV_HAS_VLAN |
763 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
764 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
765 				     FSL_GIANFAR_DEV_HAS_TIMER;
766 
767 	ctype = of_get_property(np, "phy-connection-type", NULL);
768 
769 	/* We only care about rgmii-id.  The rest are autodetected */
770 	if (ctype && !strcmp(ctype, "rgmii-id"))
771 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
772 	else
773 		priv->interface = PHY_INTERFACE_MODE_MII;
774 
775 	if (of_get_property(np, "fsl,magic-packet", NULL))
776 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
777 
778 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
779 
780 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
781 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
782 
783 	return 0;
784 
785 rx_alloc_failed:
786 	free_rx_pointers(priv);
787 tx_alloc_failed:
788 	free_tx_pointers(priv);
789 err_grp_init:
790 	unmap_group_regs(priv);
791 	free_gfar_dev(priv);
792 	return err;
793 }
794 
795 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
796 			       struct ifreq *ifr, int cmd)
797 {
798 	struct hwtstamp_config config;
799 	struct gfar_private *priv = netdev_priv(netdev);
800 
801 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
802 		return -EFAULT;
803 
804 	/* reserved for future extensions */
805 	if (config.flags)
806 		return -EINVAL;
807 
808 	switch (config.tx_type) {
809 	case HWTSTAMP_TX_OFF:
810 		priv->hwts_tx_en = 0;
811 		break;
812 	case HWTSTAMP_TX_ON:
813 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
814 			return -ERANGE;
815 		priv->hwts_tx_en = 1;
816 		break;
817 	default:
818 		return -ERANGE;
819 	}
820 
821 	switch (config.rx_filter) {
822 	case HWTSTAMP_FILTER_NONE:
823 		if (priv->hwts_rx_en) {
824 			stop_gfar(netdev);
825 			priv->hwts_rx_en = 0;
826 			startup_gfar(netdev);
827 		}
828 		break;
829 	default:
830 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
831 			return -ERANGE;
832 		if (!priv->hwts_rx_en) {
833 			stop_gfar(netdev);
834 			priv->hwts_rx_en = 1;
835 			startup_gfar(netdev);
836 		}
837 		config.rx_filter = HWTSTAMP_FILTER_ALL;
838 		break;
839 	}
840 
841 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
842 		-EFAULT : 0;
843 }
844 
845 /* Ioctl MII Interface */
846 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
847 {
848 	struct gfar_private *priv = netdev_priv(dev);
849 
850 	if (!netif_running(dev))
851 		return -EINVAL;
852 
853 	if (cmd == SIOCSHWTSTAMP)
854 		return gfar_hwtstamp_ioctl(dev, rq, cmd);
855 
856 	if (!priv->phydev)
857 		return -ENODEV;
858 
859 	return phy_mii_ioctl(priv->phydev, rq, cmd);
860 }
861 
862 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
863 {
864 	unsigned int new_bit_map = 0x0;
865 	int mask = 0x1 << (max_qs - 1), i;
866 
867 	for (i = 0; i < max_qs; i++) {
868 		if (bit_map & mask)
869 			new_bit_map = new_bit_map + (1 << i);
870 		mask = mask >> 0x1;
871 	}
872 	return new_bit_map;
873 }
874 
875 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
876 				   u32 class)
877 {
878 	u32 rqfpr = FPR_FILER_MASK;
879 	u32 rqfcr = 0x0;
880 
881 	rqfar--;
882 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
883 	priv->ftp_rqfpr[rqfar] = rqfpr;
884 	priv->ftp_rqfcr[rqfar] = rqfcr;
885 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
886 
887 	rqfar--;
888 	rqfcr = RQFCR_CMP_NOMATCH;
889 	priv->ftp_rqfpr[rqfar] = rqfpr;
890 	priv->ftp_rqfcr[rqfar] = rqfcr;
891 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
892 
893 	rqfar--;
894 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
895 	rqfpr = class;
896 	priv->ftp_rqfcr[rqfar] = rqfcr;
897 	priv->ftp_rqfpr[rqfar] = rqfpr;
898 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
899 
900 	rqfar--;
901 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
902 	rqfpr = class;
903 	priv->ftp_rqfcr[rqfar] = rqfcr;
904 	priv->ftp_rqfpr[rqfar] = rqfpr;
905 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
906 
907 	return rqfar;
908 }
909 
910 static void gfar_init_filer_table(struct gfar_private *priv)
911 {
912 	int i = 0x0;
913 	u32 rqfar = MAX_FILER_IDX;
914 	u32 rqfcr = 0x0;
915 	u32 rqfpr = FPR_FILER_MASK;
916 
917 	/* Default rule */
918 	rqfcr = RQFCR_CMP_MATCH;
919 	priv->ftp_rqfcr[rqfar] = rqfcr;
920 	priv->ftp_rqfpr[rqfar] = rqfpr;
921 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
922 
923 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
924 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
925 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
926 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
927 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
928 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
929 
930 	/* cur_filer_idx indicated the first non-masked rule */
931 	priv->cur_filer_idx = rqfar;
932 
933 	/* Rest are masked rules */
934 	rqfcr = RQFCR_CMP_NOMATCH;
935 	for (i = 0; i < rqfar; i++) {
936 		priv->ftp_rqfcr[i] = rqfcr;
937 		priv->ftp_rqfpr[i] = rqfpr;
938 		gfar_write_filer(priv, i, rqfcr, rqfpr);
939 	}
940 }
941 
942 static void gfar_detect_errata(struct gfar_private *priv)
943 {
944 	struct device *dev = &priv->ofdev->dev;
945 	unsigned int pvr = mfspr(SPRN_PVR);
946 	unsigned int svr = mfspr(SPRN_SVR);
947 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
948 	unsigned int rev = svr & 0xffff;
949 
950 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
951 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
952 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953 		priv->errata |= GFAR_ERRATA_74;
954 
955 	/* MPC8313 and MPC837x all rev */
956 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
957 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
958 		priv->errata |= GFAR_ERRATA_76;
959 
960 	/* MPC8313 and MPC837x all rev */
961 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
962 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
963 		priv->errata |= GFAR_ERRATA_A002;
964 
965 	/* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
966 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
967 	    (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
968 		priv->errata |= GFAR_ERRATA_12;
969 
970 	if (priv->errata)
971 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
972 			 priv->errata);
973 }
974 
975 /* Set up the ethernet device structure, private data,
976  * and anything else we need before we start
977  */
978 static int gfar_probe(struct platform_device *ofdev)
979 {
980 	u32 tempval;
981 	struct net_device *dev = NULL;
982 	struct gfar_private *priv = NULL;
983 	struct gfar __iomem *regs = NULL;
984 	int err = 0, i, grp_idx = 0;
985 	u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
986 	u32 isrg = 0;
987 	u32 __iomem *baddr;
988 
989 	err = gfar_of_init(ofdev, &dev);
990 
991 	if (err)
992 		return err;
993 
994 	priv = netdev_priv(dev);
995 	priv->ndev = dev;
996 	priv->ofdev = ofdev;
997 	priv->dev = &ofdev->dev;
998 	SET_NETDEV_DEV(dev, &ofdev->dev);
999 
1000 	spin_lock_init(&priv->bflock);
1001 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1002 
1003 	dev_set_drvdata(&ofdev->dev, priv);
1004 	regs = priv->gfargrp[0].regs;
1005 
1006 	gfar_detect_errata(priv);
1007 
1008 	/* Stop the DMA engine now, in case it was running before
1009 	 * (The firmware could have used it, and left it running).
1010 	 */
1011 	gfar_halt(dev);
1012 
1013 	/* Reset MAC layer */
1014 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1015 
1016 	/* We need to delay at least 3 TX clocks */
1017 	udelay(2);
1018 
1019 	tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1020 	gfar_write(&regs->maccfg1, tempval);
1021 
1022 	/* Initialize MACCFG2. */
1023 	tempval = MACCFG2_INIT_SETTINGS;
1024 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1025 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1026 	gfar_write(&regs->maccfg2, tempval);
1027 
1028 	/* Initialize ECNTRL */
1029 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1030 
1031 	/* Set the dev->base_addr to the gfar reg region */
1032 	dev->base_addr = (unsigned long) regs;
1033 
1034 	/* Fill in the dev structure */
1035 	dev->watchdog_timeo = TX_TIMEOUT;
1036 	dev->mtu = 1500;
1037 	dev->netdev_ops = &gfar_netdev_ops;
1038 	dev->ethtool_ops = &gfar_ethtool_ops;
1039 
1040 	/* Register for napi ...We are registering NAPI for each grp */
1041 	for (i = 0; i < priv->num_grps; i++)
1042 		netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1043 			       GFAR_DEV_WEIGHT);
1044 
1045 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1046 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1047 				   NETIF_F_RXCSUM;
1048 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1049 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1050 	}
1051 
1052 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1053 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1054 				    NETIF_F_HW_VLAN_CTAG_RX;
1055 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1056 	}
1057 
1058 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1059 		priv->extended_hash = 1;
1060 		priv->hash_width = 9;
1061 
1062 		priv->hash_regs[0] = &regs->igaddr0;
1063 		priv->hash_regs[1] = &regs->igaddr1;
1064 		priv->hash_regs[2] = &regs->igaddr2;
1065 		priv->hash_regs[3] = &regs->igaddr3;
1066 		priv->hash_regs[4] = &regs->igaddr4;
1067 		priv->hash_regs[5] = &regs->igaddr5;
1068 		priv->hash_regs[6] = &regs->igaddr6;
1069 		priv->hash_regs[7] = &regs->igaddr7;
1070 		priv->hash_regs[8] = &regs->gaddr0;
1071 		priv->hash_regs[9] = &regs->gaddr1;
1072 		priv->hash_regs[10] = &regs->gaddr2;
1073 		priv->hash_regs[11] = &regs->gaddr3;
1074 		priv->hash_regs[12] = &regs->gaddr4;
1075 		priv->hash_regs[13] = &regs->gaddr5;
1076 		priv->hash_regs[14] = &regs->gaddr6;
1077 		priv->hash_regs[15] = &regs->gaddr7;
1078 
1079 	} else {
1080 		priv->extended_hash = 0;
1081 		priv->hash_width = 8;
1082 
1083 		priv->hash_regs[0] = &regs->gaddr0;
1084 		priv->hash_regs[1] = &regs->gaddr1;
1085 		priv->hash_regs[2] = &regs->gaddr2;
1086 		priv->hash_regs[3] = &regs->gaddr3;
1087 		priv->hash_regs[4] = &regs->gaddr4;
1088 		priv->hash_regs[5] = &regs->gaddr5;
1089 		priv->hash_regs[6] = &regs->gaddr6;
1090 		priv->hash_regs[7] = &regs->gaddr7;
1091 	}
1092 
1093 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1094 		priv->padding = DEFAULT_PADDING;
1095 	else
1096 		priv->padding = 0;
1097 
1098 	if (dev->features & NETIF_F_IP_CSUM ||
1099 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1100 		dev->needed_headroom = GMAC_FCB_LEN;
1101 
1102 	/* Program the isrg regs only if number of grps > 1 */
1103 	if (priv->num_grps > 1) {
1104 		baddr = &regs->isrg0;
1105 		for (i = 0; i < priv->num_grps; i++) {
1106 			isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1107 			isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1108 			gfar_write(baddr, isrg);
1109 			baddr++;
1110 			isrg = 0x0;
1111 		}
1112 	}
1113 
1114 	/* Need to reverse the bit maps as  bit_map's MSB is q0
1115 	 * but, for_each_set_bit parses from right to left, which
1116 	 * basically reverses the queue numbers
1117 	 */
1118 	for (i = 0; i< priv->num_grps; i++) {
1119 		priv->gfargrp[i].tx_bit_map =
1120 			reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1121 		priv->gfargrp[i].rx_bit_map =
1122 			reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1123 	}
1124 
1125 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1126 	 * also assign queues to groups
1127 	 */
1128 	for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1129 		priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1130 
1131 		for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1132 				 priv->num_rx_queues) {
1133 			priv->gfargrp[grp_idx].num_rx_queues++;
1134 			priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1135 			rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1136 			rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1137 		}
1138 		priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1139 
1140 		for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1141 				 priv->num_tx_queues) {
1142 			priv->gfargrp[grp_idx].num_tx_queues++;
1143 			priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1144 			tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1145 			tqueue = tqueue | (TQUEUE_EN0 >> i);
1146 		}
1147 		priv->gfargrp[grp_idx].rstat = rstat;
1148 		priv->gfargrp[grp_idx].tstat = tstat;
1149 		rstat = tstat =0;
1150 	}
1151 
1152 	gfar_write(&regs->rqueue, rqueue);
1153 	gfar_write(&regs->tqueue, tqueue);
1154 
1155 	priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1156 
1157 	/* Initializing some of the rx/tx queue level parameters */
1158 	for (i = 0; i < priv->num_tx_queues; i++) {
1159 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1160 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1161 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1162 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1163 	}
1164 
1165 	for (i = 0; i < priv->num_rx_queues; i++) {
1166 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1167 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1168 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1169 	}
1170 
1171 	/* always enable rx filer */
1172 	priv->rx_filer_enable = 1;
1173 	/* Enable most messages by default */
1174 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1175 	/* use pritority h/w tx queue scheduling for single queue devices */
1176 	if (priv->num_tx_queues == 1)
1177 		priv->prio_sched_en = 1;
1178 
1179 	/* Carrier starts down, phylib will bring it up */
1180 	netif_carrier_off(dev);
1181 
1182 	err = register_netdev(dev);
1183 
1184 	if (err) {
1185 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1186 		goto register_fail;
1187 	}
1188 
1189 	device_init_wakeup(&dev->dev,
1190 			   priv->device_flags &
1191 			   FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1192 
1193 	/* fill out IRQ number and name fields */
1194 	for (i = 0; i < priv->num_grps; i++) {
1195 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1196 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1197 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1198 				dev->name, "_g", '0' + i, "_tx");
1199 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1200 				dev->name, "_g", '0' + i, "_rx");
1201 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1202 				dev->name, "_g", '0' + i, "_er");
1203 		} else
1204 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1205 	}
1206 
1207 	/* Initialize the filer table */
1208 	gfar_init_filer_table(priv);
1209 
1210 	/* Create all the sysfs files */
1211 	gfar_init_sysfs(dev);
1212 
1213 	/* Print out the device info */
1214 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1215 
1216 	/* Even more device info helps when determining which kernel
1217 	 * provided which set of benchmarks.
1218 	 */
1219 	netdev_info(dev, "Running with NAPI enabled\n");
1220 	for (i = 0; i < priv->num_rx_queues; i++)
1221 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1222 			    i, priv->rx_queue[i]->rx_ring_size);
1223 	for (i = 0; i < priv->num_tx_queues; i++)
1224 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1225 			    i, priv->tx_queue[i]->tx_ring_size);
1226 
1227 	return 0;
1228 
1229 register_fail:
1230 	unmap_group_regs(priv);
1231 	free_tx_pointers(priv);
1232 	free_rx_pointers(priv);
1233 	if (priv->phy_node)
1234 		of_node_put(priv->phy_node);
1235 	if (priv->tbi_node)
1236 		of_node_put(priv->tbi_node);
1237 	free_gfar_dev(priv);
1238 	return err;
1239 }
1240 
1241 static int gfar_remove(struct platform_device *ofdev)
1242 {
1243 	struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1244 
1245 	if (priv->phy_node)
1246 		of_node_put(priv->phy_node);
1247 	if (priv->tbi_node)
1248 		of_node_put(priv->tbi_node);
1249 
1250 	dev_set_drvdata(&ofdev->dev, NULL);
1251 
1252 	unregister_netdev(priv->ndev);
1253 	unmap_group_regs(priv);
1254 	free_gfar_dev(priv);
1255 
1256 	return 0;
1257 }
1258 
1259 #ifdef CONFIG_PM
1260 
1261 static int gfar_suspend(struct device *dev)
1262 {
1263 	struct gfar_private *priv = dev_get_drvdata(dev);
1264 	struct net_device *ndev = priv->ndev;
1265 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1266 	unsigned long flags;
1267 	u32 tempval;
1268 
1269 	int magic_packet = priv->wol_en &&
1270 			   (priv->device_flags &
1271 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1272 
1273 	netif_device_detach(ndev);
1274 
1275 	if (netif_running(ndev)) {
1276 
1277 		local_irq_save(flags);
1278 		lock_tx_qs(priv);
1279 		lock_rx_qs(priv);
1280 
1281 		gfar_halt_nodisable(ndev);
1282 
1283 		/* Disable Tx, and Rx if wake-on-LAN is disabled. */
1284 		tempval = gfar_read(&regs->maccfg1);
1285 
1286 		tempval &= ~MACCFG1_TX_EN;
1287 
1288 		if (!magic_packet)
1289 			tempval &= ~MACCFG1_RX_EN;
1290 
1291 		gfar_write(&regs->maccfg1, tempval);
1292 
1293 		unlock_rx_qs(priv);
1294 		unlock_tx_qs(priv);
1295 		local_irq_restore(flags);
1296 
1297 		disable_napi(priv);
1298 
1299 		if (magic_packet) {
1300 			/* Enable interrupt on Magic Packet */
1301 			gfar_write(&regs->imask, IMASK_MAG);
1302 
1303 			/* Enable Magic Packet mode */
1304 			tempval = gfar_read(&regs->maccfg2);
1305 			tempval |= MACCFG2_MPEN;
1306 			gfar_write(&regs->maccfg2, tempval);
1307 		} else {
1308 			phy_stop(priv->phydev);
1309 		}
1310 	}
1311 
1312 	return 0;
1313 }
1314 
1315 static int gfar_resume(struct device *dev)
1316 {
1317 	struct gfar_private *priv = dev_get_drvdata(dev);
1318 	struct net_device *ndev = priv->ndev;
1319 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1320 	unsigned long flags;
1321 	u32 tempval;
1322 	int magic_packet = priv->wol_en &&
1323 			   (priv->device_flags &
1324 			    FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1325 
1326 	if (!netif_running(ndev)) {
1327 		netif_device_attach(ndev);
1328 		return 0;
1329 	}
1330 
1331 	if (!magic_packet && priv->phydev)
1332 		phy_start(priv->phydev);
1333 
1334 	/* Disable Magic Packet mode, in case something
1335 	 * else woke us up.
1336 	 */
1337 	local_irq_save(flags);
1338 	lock_tx_qs(priv);
1339 	lock_rx_qs(priv);
1340 
1341 	tempval = gfar_read(&regs->maccfg2);
1342 	tempval &= ~MACCFG2_MPEN;
1343 	gfar_write(&regs->maccfg2, tempval);
1344 
1345 	gfar_start(ndev);
1346 
1347 	unlock_rx_qs(priv);
1348 	unlock_tx_qs(priv);
1349 	local_irq_restore(flags);
1350 
1351 	netif_device_attach(ndev);
1352 
1353 	enable_napi(priv);
1354 
1355 	return 0;
1356 }
1357 
1358 static int gfar_restore(struct device *dev)
1359 {
1360 	struct gfar_private *priv = dev_get_drvdata(dev);
1361 	struct net_device *ndev = priv->ndev;
1362 
1363 	if (!netif_running(ndev)) {
1364 		netif_device_attach(ndev);
1365 
1366 		return 0;
1367 	}
1368 
1369 	if (gfar_init_bds(ndev)) {
1370 		free_skb_resources(priv);
1371 		return -ENOMEM;
1372 	}
1373 
1374 	init_registers(ndev);
1375 	gfar_set_mac_address(ndev);
1376 	gfar_init_mac(ndev);
1377 	gfar_start(ndev);
1378 
1379 	priv->oldlink = 0;
1380 	priv->oldspeed = 0;
1381 	priv->oldduplex = -1;
1382 
1383 	if (priv->phydev)
1384 		phy_start(priv->phydev);
1385 
1386 	netif_device_attach(ndev);
1387 	enable_napi(priv);
1388 
1389 	return 0;
1390 }
1391 
1392 static struct dev_pm_ops gfar_pm_ops = {
1393 	.suspend = gfar_suspend,
1394 	.resume = gfar_resume,
1395 	.freeze = gfar_suspend,
1396 	.thaw = gfar_resume,
1397 	.restore = gfar_restore,
1398 };
1399 
1400 #define GFAR_PM_OPS (&gfar_pm_ops)
1401 
1402 #else
1403 
1404 #define GFAR_PM_OPS NULL
1405 
1406 #endif
1407 
1408 /* Reads the controller's registers to determine what interface
1409  * connects it to the PHY.
1410  */
1411 static phy_interface_t gfar_get_interface(struct net_device *dev)
1412 {
1413 	struct gfar_private *priv = netdev_priv(dev);
1414 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1415 	u32 ecntrl;
1416 
1417 	ecntrl = gfar_read(&regs->ecntrl);
1418 
1419 	if (ecntrl & ECNTRL_SGMII_MODE)
1420 		return PHY_INTERFACE_MODE_SGMII;
1421 
1422 	if (ecntrl & ECNTRL_TBI_MODE) {
1423 		if (ecntrl & ECNTRL_REDUCED_MODE)
1424 			return PHY_INTERFACE_MODE_RTBI;
1425 		else
1426 			return PHY_INTERFACE_MODE_TBI;
1427 	}
1428 
1429 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1430 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1431 			return PHY_INTERFACE_MODE_RMII;
1432 		}
1433 		else {
1434 			phy_interface_t interface = priv->interface;
1435 
1436 			/* This isn't autodetected right now, so it must
1437 			 * be set by the device tree or platform code.
1438 			 */
1439 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1440 				return PHY_INTERFACE_MODE_RGMII_ID;
1441 
1442 			return PHY_INTERFACE_MODE_RGMII;
1443 		}
1444 	}
1445 
1446 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1447 		return PHY_INTERFACE_MODE_GMII;
1448 
1449 	return PHY_INTERFACE_MODE_MII;
1450 }
1451 
1452 
1453 /* Initializes driver's PHY state, and attaches to the PHY.
1454  * Returns 0 on success.
1455  */
1456 static int init_phy(struct net_device *dev)
1457 {
1458 	struct gfar_private *priv = netdev_priv(dev);
1459 	uint gigabit_support =
1460 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1461 		SUPPORTED_1000baseT_Full : 0;
1462 	phy_interface_t interface;
1463 
1464 	priv->oldlink = 0;
1465 	priv->oldspeed = 0;
1466 	priv->oldduplex = -1;
1467 
1468 	interface = gfar_get_interface(dev);
1469 
1470 	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1471 				      interface);
1472 	if (!priv->phydev)
1473 		priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1474 							 interface);
1475 	if (!priv->phydev) {
1476 		dev_err(&dev->dev, "could not attach to PHY\n");
1477 		return -ENODEV;
1478 	}
1479 
1480 	if (interface == PHY_INTERFACE_MODE_SGMII)
1481 		gfar_configure_serdes(dev);
1482 
1483 	/* Remove any features not supported by the controller */
1484 	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1485 	priv->phydev->advertising = priv->phydev->supported;
1486 
1487 	return 0;
1488 }
1489 
1490 /* Initialize TBI PHY interface for communicating with the
1491  * SERDES lynx PHY on the chip.  We communicate with this PHY
1492  * through the MDIO bus on each controller, treating it as a
1493  * "normal" PHY at the address found in the TBIPA register.  We assume
1494  * that the TBIPA register is valid.  Either the MDIO bus code will set
1495  * it to a value that doesn't conflict with other PHYs on the bus, or the
1496  * value doesn't matter, as there are no other PHYs on the bus.
1497  */
1498 static void gfar_configure_serdes(struct net_device *dev)
1499 {
1500 	struct gfar_private *priv = netdev_priv(dev);
1501 	struct phy_device *tbiphy;
1502 
1503 	if (!priv->tbi_node) {
1504 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1505 				    "device tree specify a tbi-handle\n");
1506 		return;
1507 	}
1508 
1509 	tbiphy = of_phy_find_device(priv->tbi_node);
1510 	if (!tbiphy) {
1511 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1512 		return;
1513 	}
1514 
1515 	/* If the link is already up, we must already be ok, and don't need to
1516 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1517 	 * everything for us?  Resetting it takes the link down and requires
1518 	 * several seconds for it to come back.
1519 	 */
1520 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1521 		return;
1522 
1523 	/* Single clk mode, mii mode off(for serdes communication) */
1524 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1525 
1526 	phy_write(tbiphy, MII_ADVERTISE,
1527 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1528 		  ADVERTISE_1000XPSE_ASYM);
1529 
1530 	phy_write(tbiphy, MII_BMCR,
1531 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1532 		  BMCR_SPEED1000);
1533 }
1534 
1535 static void init_registers(struct net_device *dev)
1536 {
1537 	struct gfar_private *priv = netdev_priv(dev);
1538 	struct gfar __iomem *regs = NULL;
1539 	int i;
1540 
1541 	for (i = 0; i < priv->num_grps; i++) {
1542 		regs = priv->gfargrp[i].regs;
1543 		/* Clear IEVENT */
1544 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1545 
1546 		/* Initialize IMASK */
1547 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1548 	}
1549 
1550 	regs = priv->gfargrp[0].regs;
1551 	/* Init hash registers to zero */
1552 	gfar_write(&regs->igaddr0, 0);
1553 	gfar_write(&regs->igaddr1, 0);
1554 	gfar_write(&regs->igaddr2, 0);
1555 	gfar_write(&regs->igaddr3, 0);
1556 	gfar_write(&regs->igaddr4, 0);
1557 	gfar_write(&regs->igaddr5, 0);
1558 	gfar_write(&regs->igaddr6, 0);
1559 	gfar_write(&regs->igaddr7, 0);
1560 
1561 	gfar_write(&regs->gaddr0, 0);
1562 	gfar_write(&regs->gaddr1, 0);
1563 	gfar_write(&regs->gaddr2, 0);
1564 	gfar_write(&regs->gaddr3, 0);
1565 	gfar_write(&regs->gaddr4, 0);
1566 	gfar_write(&regs->gaddr5, 0);
1567 	gfar_write(&regs->gaddr6, 0);
1568 	gfar_write(&regs->gaddr7, 0);
1569 
1570 	/* Zero out the rmon mib registers if it has them */
1571 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1572 		memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1573 
1574 		/* Mask off the CAM interrupts */
1575 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1576 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1577 	}
1578 
1579 	/* Initialize the max receive buffer length */
1580 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
1581 
1582 	/* Initialize the Minimum Frame Length Register */
1583 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1584 }
1585 
1586 static int __gfar_is_rx_idle(struct gfar_private *priv)
1587 {
1588 	u32 res;
1589 
1590 	/* Normaly TSEC should not hang on GRS commands, so we should
1591 	 * actually wait for IEVENT_GRSC flag.
1592 	 */
1593 	if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1594 		return 0;
1595 
1596 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1597 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1598 	 * and the Rx can be safely reset.
1599 	 */
1600 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1601 	res &= 0x7f807f80;
1602 	if ((res & 0xffff) == (res >> 16))
1603 		return 1;
1604 
1605 	return 0;
1606 }
1607 
1608 /* Halt the receive and transmit queues */
1609 static void gfar_halt_nodisable(struct net_device *dev)
1610 {
1611 	struct gfar_private *priv = netdev_priv(dev);
1612 	struct gfar __iomem *regs = NULL;
1613 	u32 tempval;
1614 	int i;
1615 
1616 	for (i = 0; i < priv->num_grps; i++) {
1617 		regs = priv->gfargrp[i].regs;
1618 		/* Mask all interrupts */
1619 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1620 
1621 		/* Clear all interrupts */
1622 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1623 	}
1624 
1625 	regs = priv->gfargrp[0].regs;
1626 	/* Stop the DMA, and wait for it to stop */
1627 	tempval = gfar_read(&regs->dmactrl);
1628 	if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1629 	    (DMACTRL_GRS | DMACTRL_GTS)) {
1630 		int ret;
1631 
1632 		tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1633 		gfar_write(&regs->dmactrl, tempval);
1634 
1635 		do {
1636 			ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1637 				 (IEVENT_GRSC | IEVENT_GTSC)) ==
1638 				 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1639 			if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1640 				ret = __gfar_is_rx_idle(priv);
1641 		} while (!ret);
1642 	}
1643 }
1644 
1645 /* Halt the receive and transmit queues */
1646 void gfar_halt(struct net_device *dev)
1647 {
1648 	struct gfar_private *priv = netdev_priv(dev);
1649 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1650 	u32 tempval;
1651 
1652 	gfar_halt_nodisable(dev);
1653 
1654 	/* Disable Rx and Tx */
1655 	tempval = gfar_read(&regs->maccfg1);
1656 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1657 	gfar_write(&regs->maccfg1, tempval);
1658 }
1659 
1660 static void free_grp_irqs(struct gfar_priv_grp *grp)
1661 {
1662 	free_irq(gfar_irq(grp, TX)->irq, grp);
1663 	free_irq(gfar_irq(grp, RX)->irq, grp);
1664 	free_irq(gfar_irq(grp, ER)->irq, grp);
1665 }
1666 
1667 void stop_gfar(struct net_device *dev)
1668 {
1669 	struct gfar_private *priv = netdev_priv(dev);
1670 	unsigned long flags;
1671 	int i;
1672 
1673 	phy_stop(priv->phydev);
1674 
1675 
1676 	/* Lock it down */
1677 	local_irq_save(flags);
1678 	lock_tx_qs(priv);
1679 	lock_rx_qs(priv);
1680 
1681 	gfar_halt(dev);
1682 
1683 	unlock_rx_qs(priv);
1684 	unlock_tx_qs(priv);
1685 	local_irq_restore(flags);
1686 
1687 	/* Free the IRQs */
1688 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1689 		for (i = 0; i < priv->num_grps; i++)
1690 			free_grp_irqs(&priv->gfargrp[i]);
1691 	} else {
1692 		for (i = 0; i < priv->num_grps; i++)
1693 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1694 				 &priv->gfargrp[i]);
1695 	}
1696 
1697 	free_skb_resources(priv);
1698 }
1699 
1700 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1701 {
1702 	struct txbd8 *txbdp;
1703 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1704 	int i, j;
1705 
1706 	txbdp = tx_queue->tx_bd_base;
1707 
1708 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1709 		if (!tx_queue->tx_skbuff[i])
1710 			continue;
1711 
1712 		dma_unmap_single(priv->dev, txbdp->bufPtr,
1713 				 txbdp->length, DMA_TO_DEVICE);
1714 		txbdp->lstatus = 0;
1715 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1716 		     j++) {
1717 			txbdp++;
1718 			dma_unmap_page(priv->dev, txbdp->bufPtr,
1719 				       txbdp->length, DMA_TO_DEVICE);
1720 		}
1721 		txbdp++;
1722 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1723 		tx_queue->tx_skbuff[i] = NULL;
1724 	}
1725 	kfree(tx_queue->tx_skbuff);
1726 	tx_queue->tx_skbuff = NULL;
1727 }
1728 
1729 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1730 {
1731 	struct rxbd8 *rxbdp;
1732 	struct gfar_private *priv = netdev_priv(rx_queue->dev);
1733 	int i;
1734 
1735 	rxbdp = rx_queue->rx_bd_base;
1736 
1737 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1738 		if (rx_queue->rx_skbuff[i]) {
1739 			dma_unmap_single(priv->dev, rxbdp->bufPtr,
1740 					 priv->rx_buffer_size,
1741 					 DMA_FROM_DEVICE);
1742 			dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1743 			rx_queue->rx_skbuff[i] = NULL;
1744 		}
1745 		rxbdp->lstatus = 0;
1746 		rxbdp->bufPtr = 0;
1747 		rxbdp++;
1748 	}
1749 	kfree(rx_queue->rx_skbuff);
1750 	rx_queue->rx_skbuff = NULL;
1751 }
1752 
1753 /* If there are any tx skbs or rx skbs still around, free them.
1754  * Then free tx_skbuff and rx_skbuff
1755  */
1756 static void free_skb_resources(struct gfar_private *priv)
1757 {
1758 	struct gfar_priv_tx_q *tx_queue = NULL;
1759 	struct gfar_priv_rx_q *rx_queue = NULL;
1760 	int i;
1761 
1762 	/* Go through all the buffer descriptors and free their data buffers */
1763 	for (i = 0; i < priv->num_tx_queues; i++) {
1764 		struct netdev_queue *txq;
1765 
1766 		tx_queue = priv->tx_queue[i];
1767 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1768 		if (tx_queue->tx_skbuff)
1769 			free_skb_tx_queue(tx_queue);
1770 		netdev_tx_reset_queue(txq);
1771 	}
1772 
1773 	for (i = 0; i < priv->num_rx_queues; i++) {
1774 		rx_queue = priv->rx_queue[i];
1775 		if (rx_queue->rx_skbuff)
1776 			free_skb_rx_queue(rx_queue);
1777 	}
1778 
1779 	dma_free_coherent(priv->dev,
1780 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1781 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1782 			  priv->tx_queue[0]->tx_bd_base,
1783 			  priv->tx_queue[0]->tx_bd_dma_base);
1784 }
1785 
1786 void gfar_start(struct net_device *dev)
1787 {
1788 	struct gfar_private *priv = netdev_priv(dev);
1789 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1790 	u32 tempval;
1791 	int i = 0;
1792 
1793 	/* Enable Rx and Tx in MACCFG1 */
1794 	tempval = gfar_read(&regs->maccfg1);
1795 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1796 	gfar_write(&regs->maccfg1, tempval);
1797 
1798 	/* Initialize DMACTRL to have WWR and WOP */
1799 	tempval = gfar_read(&regs->dmactrl);
1800 	tempval |= DMACTRL_INIT_SETTINGS;
1801 	gfar_write(&regs->dmactrl, tempval);
1802 
1803 	/* Make sure we aren't stopped */
1804 	tempval = gfar_read(&regs->dmactrl);
1805 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1806 	gfar_write(&regs->dmactrl, tempval);
1807 
1808 	for (i = 0; i < priv->num_grps; i++) {
1809 		regs = priv->gfargrp[i].regs;
1810 		/* Clear THLT/RHLT, so that the DMA starts polling now */
1811 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1812 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1813 		/* Unmask the interrupts we look for */
1814 		gfar_write(&regs->imask, IMASK_DEFAULT);
1815 	}
1816 
1817 	dev->trans_start = jiffies; /* prevent tx timeout */
1818 }
1819 
1820 static void gfar_configure_coalescing(struct gfar_private *priv,
1821 			       unsigned long tx_mask, unsigned long rx_mask)
1822 {
1823 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1824 	u32 __iomem *baddr;
1825 
1826 	if (priv->mode == MQ_MG_MODE) {
1827 		int i = 0;
1828 
1829 		baddr = &regs->txic0;
1830 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1831 			gfar_write(baddr + i, 0);
1832 			if (likely(priv->tx_queue[i]->txcoalescing))
1833 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
1834 		}
1835 
1836 		baddr = &regs->rxic0;
1837 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1838 			gfar_write(baddr + i, 0);
1839 			if (likely(priv->rx_queue[i]->rxcoalescing))
1840 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1841 		}
1842 	} else {
1843 		/* Backward compatible case -- even if we enable
1844 		 * multiple queues, there's only single reg to program
1845 		 */
1846 		gfar_write(&regs->txic, 0);
1847 		if (likely(priv->tx_queue[0]->txcoalescing))
1848 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1849 
1850 		gfar_write(&regs->rxic, 0);
1851 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
1852 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1853 	}
1854 }
1855 
1856 void gfar_configure_coalescing_all(struct gfar_private *priv)
1857 {
1858 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
1859 }
1860 
1861 static int register_grp_irqs(struct gfar_priv_grp *grp)
1862 {
1863 	struct gfar_private *priv = grp->priv;
1864 	struct net_device *dev = priv->ndev;
1865 	int err;
1866 
1867 	/* If the device has multiple interrupts, register for
1868 	 * them.  Otherwise, only register for the one
1869 	 */
1870 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1871 		/* Install our interrupt handlers for Error,
1872 		 * Transmit, and Receive
1873 		 */
1874 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1875 				  gfar_irq(grp, ER)->name, grp);
1876 		if (err < 0) {
1877 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1878 				  gfar_irq(grp, ER)->irq);
1879 
1880 			goto err_irq_fail;
1881 		}
1882 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1883 				  gfar_irq(grp, TX)->name, grp);
1884 		if (err < 0) {
1885 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1886 				  gfar_irq(grp, TX)->irq);
1887 			goto tx_irq_fail;
1888 		}
1889 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1890 				  gfar_irq(grp, RX)->name, grp);
1891 		if (err < 0) {
1892 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1893 				  gfar_irq(grp, RX)->irq);
1894 			goto rx_irq_fail;
1895 		}
1896 	} else {
1897 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1898 				  gfar_irq(grp, TX)->name, grp);
1899 		if (err < 0) {
1900 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1901 				  gfar_irq(grp, TX)->irq);
1902 			goto err_irq_fail;
1903 		}
1904 	}
1905 
1906 	return 0;
1907 
1908 rx_irq_fail:
1909 	free_irq(gfar_irq(grp, TX)->irq, grp);
1910 tx_irq_fail:
1911 	free_irq(gfar_irq(grp, ER)->irq, grp);
1912 err_irq_fail:
1913 	return err;
1914 
1915 }
1916 
1917 /* Bring the controller up and running */
1918 int startup_gfar(struct net_device *ndev)
1919 {
1920 	struct gfar_private *priv = netdev_priv(ndev);
1921 	struct gfar __iomem *regs = NULL;
1922 	int err, i, j;
1923 
1924 	for (i = 0; i < priv->num_grps; i++) {
1925 		regs= priv->gfargrp[i].regs;
1926 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1927 	}
1928 
1929 	regs= priv->gfargrp[0].regs;
1930 	err = gfar_alloc_skb_resources(ndev);
1931 	if (err)
1932 		return err;
1933 
1934 	gfar_init_mac(ndev);
1935 
1936 	for (i = 0; i < priv->num_grps; i++) {
1937 		err = register_grp_irqs(&priv->gfargrp[i]);
1938 		if (err) {
1939 			for (j = 0; j < i; j++)
1940 				free_grp_irqs(&priv->gfargrp[j]);
1941 			goto irq_fail;
1942 		}
1943 	}
1944 
1945 	/* Start the controller */
1946 	gfar_start(ndev);
1947 
1948 	phy_start(priv->phydev);
1949 
1950 	gfar_configure_coalescing_all(priv);
1951 
1952 	return 0;
1953 
1954 irq_fail:
1955 	free_skb_resources(priv);
1956 	return err;
1957 }
1958 
1959 /* Called when something needs to use the ethernet device
1960  * Returns 0 for success.
1961  */
1962 static int gfar_enet_open(struct net_device *dev)
1963 {
1964 	struct gfar_private *priv = netdev_priv(dev);
1965 	int err;
1966 
1967 	enable_napi(priv);
1968 
1969 	/* Initialize a bunch of registers */
1970 	init_registers(dev);
1971 
1972 	gfar_set_mac_address(dev);
1973 
1974 	err = init_phy(dev);
1975 
1976 	if (err) {
1977 		disable_napi(priv);
1978 		return err;
1979 	}
1980 
1981 	err = startup_gfar(dev);
1982 	if (err) {
1983 		disable_napi(priv);
1984 		return err;
1985 	}
1986 
1987 	netif_tx_start_all_queues(dev);
1988 
1989 	device_set_wakeup_enable(&dev->dev, priv->wol_en);
1990 
1991 	return err;
1992 }
1993 
1994 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1995 {
1996 	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1997 
1998 	memset(fcb, 0, GMAC_FCB_LEN);
1999 
2000 	return fcb;
2001 }
2002 
2003 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2004 				    int fcb_length)
2005 {
2006 	/* If we're here, it's a IP packet with a TCP or UDP
2007 	 * payload.  We set it to checksum, using a pseudo-header
2008 	 * we provide
2009 	 */
2010 	u8 flags = TXFCB_DEFAULT;
2011 
2012 	/* Tell the controller what the protocol is
2013 	 * And provide the already calculated phcs
2014 	 */
2015 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2016 		flags |= TXFCB_UDP;
2017 		fcb->phcs = udp_hdr(skb)->check;
2018 	} else
2019 		fcb->phcs = tcp_hdr(skb)->check;
2020 
2021 	/* l3os is the distance between the start of the
2022 	 * frame (skb->data) and the start of the IP hdr.
2023 	 * l4os is the distance between the start of the
2024 	 * l3 hdr and the l4 hdr
2025 	 */
2026 	fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2027 	fcb->l4os = skb_network_header_len(skb);
2028 
2029 	fcb->flags = flags;
2030 }
2031 
2032 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2033 {
2034 	fcb->flags |= TXFCB_VLN;
2035 	fcb->vlctl = vlan_tx_tag_get(skb);
2036 }
2037 
2038 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2039 				      struct txbd8 *base, int ring_size)
2040 {
2041 	struct txbd8 *new_bd = bdp + stride;
2042 
2043 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2044 }
2045 
2046 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2047 				      int ring_size)
2048 {
2049 	return skip_txbd(bdp, 1, base, ring_size);
2050 }
2051 
2052 /* This is called by the kernel when a frame is ready for transmission.
2053  * It is pointed to by the dev->hard_start_xmit function pointer
2054  */
2055 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2056 {
2057 	struct gfar_private *priv = netdev_priv(dev);
2058 	struct gfar_priv_tx_q *tx_queue = NULL;
2059 	struct netdev_queue *txq;
2060 	struct gfar __iomem *regs = NULL;
2061 	struct txfcb *fcb = NULL;
2062 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2063 	u32 lstatus;
2064 	int i, rq = 0, do_tstamp = 0;
2065 	u32 bufaddr;
2066 	unsigned long flags;
2067 	unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2068 
2069 	/* TOE=1 frames larger than 2500 bytes may see excess delays
2070 	 * before start of transmission.
2071 	 */
2072 	if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2073 		     skb->ip_summed == CHECKSUM_PARTIAL &&
2074 		     skb->len > 2500)) {
2075 		int ret;
2076 
2077 		ret = skb_checksum_help(skb);
2078 		if (ret)
2079 			return ret;
2080 	}
2081 
2082 	rq = skb->queue_mapping;
2083 	tx_queue = priv->tx_queue[rq];
2084 	txq = netdev_get_tx_queue(dev, rq);
2085 	base = tx_queue->tx_bd_base;
2086 	regs = tx_queue->grp->regs;
2087 
2088 	/* check if time stamp should be generated */
2089 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2090 		     priv->hwts_tx_en)) {
2091 		do_tstamp = 1;
2092 		fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2093 	}
2094 
2095 	/* make space for additional header when fcb is needed */
2096 	if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2097 	     vlan_tx_tag_present(skb) ||
2098 	     unlikely(do_tstamp)) &&
2099 	    (skb_headroom(skb) < fcb_length)) {
2100 		struct sk_buff *skb_new;
2101 
2102 		skb_new = skb_realloc_headroom(skb, fcb_length);
2103 		if (!skb_new) {
2104 			dev->stats.tx_errors++;
2105 			kfree_skb(skb);
2106 			return NETDEV_TX_OK;
2107 		}
2108 
2109 		if (skb->sk)
2110 			skb_set_owner_w(skb_new, skb->sk);
2111 		consume_skb(skb);
2112 		skb = skb_new;
2113 	}
2114 
2115 	/* total number of fragments in the SKB */
2116 	nr_frags = skb_shinfo(skb)->nr_frags;
2117 
2118 	/* calculate the required number of TxBDs for this skb */
2119 	if (unlikely(do_tstamp))
2120 		nr_txbds = nr_frags + 2;
2121 	else
2122 		nr_txbds = nr_frags + 1;
2123 
2124 	/* check if there is space to queue this packet */
2125 	if (nr_txbds > tx_queue->num_txbdfree) {
2126 		/* no space, stop the queue */
2127 		netif_tx_stop_queue(txq);
2128 		dev->stats.tx_fifo_errors++;
2129 		return NETDEV_TX_BUSY;
2130 	}
2131 
2132 	/* Update transmit stats */
2133 	tx_queue->stats.tx_bytes += skb->len;
2134 	tx_queue->stats.tx_packets++;
2135 
2136 	txbdp = txbdp_start = tx_queue->cur_tx;
2137 	lstatus = txbdp->lstatus;
2138 
2139 	/* Time stamp insertion requires one additional TxBD */
2140 	if (unlikely(do_tstamp))
2141 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2142 						 tx_queue->tx_ring_size);
2143 
2144 	if (nr_frags == 0) {
2145 		if (unlikely(do_tstamp))
2146 			txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2147 							  TXBD_INTERRUPT);
2148 		else
2149 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2150 	} else {
2151 		/* Place the fragment addresses and lengths into the TxBDs */
2152 		for (i = 0; i < nr_frags; i++) {
2153 			/* Point at the next BD, wrapping as needed */
2154 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2155 
2156 			length = skb_shinfo(skb)->frags[i].size;
2157 
2158 			lstatus = txbdp->lstatus | length |
2159 				  BD_LFLAG(TXBD_READY);
2160 
2161 			/* Handle the last BD specially */
2162 			if (i == nr_frags - 1)
2163 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2164 
2165 			bufaddr = skb_frag_dma_map(priv->dev,
2166 						   &skb_shinfo(skb)->frags[i],
2167 						   0,
2168 						   length,
2169 						   DMA_TO_DEVICE);
2170 
2171 			/* set the TxBD length and buffer pointer */
2172 			txbdp->bufPtr = bufaddr;
2173 			txbdp->lstatus = lstatus;
2174 		}
2175 
2176 		lstatus = txbdp_start->lstatus;
2177 	}
2178 
2179 	/* Add TxPAL between FCB and frame if required */
2180 	if (unlikely(do_tstamp)) {
2181 		skb_push(skb, GMAC_TXPAL_LEN);
2182 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2183 	}
2184 
2185 	/* Set up checksumming */
2186 	if (CHECKSUM_PARTIAL == skb->ip_summed) {
2187 		fcb = gfar_add_fcb(skb);
2188 		/* as specified by errata */
2189 		if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2190 			     ((unsigned long)fcb % 0x20) > 0x18)) {
2191 			__skb_pull(skb, GMAC_FCB_LEN);
2192 			skb_checksum_help(skb);
2193 		} else {
2194 			lstatus |= BD_LFLAG(TXBD_TOE);
2195 			gfar_tx_checksum(skb, fcb, fcb_length);
2196 		}
2197 	}
2198 
2199 	if (vlan_tx_tag_present(skb)) {
2200 		if (unlikely(NULL == fcb)) {
2201 			fcb = gfar_add_fcb(skb);
2202 			lstatus |= BD_LFLAG(TXBD_TOE);
2203 		}
2204 
2205 		gfar_tx_vlan(skb, fcb);
2206 	}
2207 
2208 	/* Setup tx hardware time stamping if requested */
2209 	if (unlikely(do_tstamp)) {
2210 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2211 		if (fcb == NULL)
2212 			fcb = gfar_add_fcb(skb);
2213 		fcb->ptp = 1;
2214 		lstatus |= BD_LFLAG(TXBD_TOE);
2215 	}
2216 
2217 	txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2218 					     skb_headlen(skb), DMA_TO_DEVICE);
2219 
2220 	/* If time stamping is requested one additional TxBD must be set up. The
2221 	 * first TxBD points to the FCB and must have a data length of
2222 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2223 	 * the full frame length.
2224 	 */
2225 	if (unlikely(do_tstamp)) {
2226 		txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2227 		txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2228 					 (skb_headlen(skb) - fcb_length);
2229 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2230 	} else {
2231 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2232 	}
2233 
2234 	netdev_tx_sent_queue(txq, skb->len);
2235 
2236 	/* We can work in parallel with gfar_clean_tx_ring(), except
2237 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2238 	 * when we were reading the num_txbdfree and checking for available
2239 	 * space, that's because outside of this function it can only grow,
2240 	 * and once we've got needed space, it cannot suddenly disappear.
2241 	 *
2242 	 * The lock also protects us from gfar_error(), which can modify
2243 	 * regs->tstat and thus retrigger the transfers, which is why we
2244 	 * also must grab the lock before setting ready bit for the first
2245 	 * to be transmitted BD.
2246 	 */
2247 	spin_lock_irqsave(&tx_queue->txlock, flags);
2248 
2249 	/* The powerpc-specific eieio() is used, as wmb() has too strong
2250 	 * semantics (it requires synchronization between cacheable and
2251 	 * uncacheable mappings, which eieio doesn't provide and which we
2252 	 * don't need), thus requiring a more expensive sync instruction.  At
2253 	 * some point, the set of architecture-independent barrier functions
2254 	 * should be expanded to include weaker barriers.
2255 	 */
2256 	eieio();
2257 
2258 	txbdp_start->lstatus = lstatus;
2259 
2260 	eieio(); /* force lstatus write before tx_skbuff */
2261 
2262 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2263 
2264 	/* Update the current skb pointer to the next entry we will use
2265 	 * (wrapping if necessary)
2266 	 */
2267 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2268 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2269 
2270 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2271 
2272 	/* reduce TxBD free count */
2273 	tx_queue->num_txbdfree -= (nr_txbds);
2274 
2275 	/* If the next BD still needs to be cleaned up, then the bds
2276 	 * are full.  We need to tell the kernel to stop sending us stuff.
2277 	 */
2278 	if (!tx_queue->num_txbdfree) {
2279 		netif_tx_stop_queue(txq);
2280 
2281 		dev->stats.tx_fifo_errors++;
2282 	}
2283 
2284 	/* Tell the DMA to go go go */
2285 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2286 
2287 	/* Unlock priv */
2288 	spin_unlock_irqrestore(&tx_queue->txlock, flags);
2289 
2290 	return NETDEV_TX_OK;
2291 }
2292 
2293 /* Stops the kernel queue, and halts the controller */
2294 static int gfar_close(struct net_device *dev)
2295 {
2296 	struct gfar_private *priv = netdev_priv(dev);
2297 
2298 	disable_napi(priv);
2299 
2300 	cancel_work_sync(&priv->reset_task);
2301 	stop_gfar(dev);
2302 
2303 	/* Disconnect from the PHY */
2304 	phy_disconnect(priv->phydev);
2305 	priv->phydev = NULL;
2306 
2307 	netif_tx_stop_all_queues(dev);
2308 
2309 	return 0;
2310 }
2311 
2312 /* Changes the mac address if the controller is not running. */
2313 static int gfar_set_mac_address(struct net_device *dev)
2314 {
2315 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2316 
2317 	return 0;
2318 }
2319 
2320 /* Check if rx parser should be activated */
2321 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2322 {
2323 	struct gfar __iomem *regs;
2324 	u32 tempval;
2325 
2326 	regs = priv->gfargrp[0].regs;
2327 
2328 	tempval = gfar_read(&regs->rctrl);
2329 	/* If parse is no longer required, then disable parser */
2330 	if (tempval & RCTRL_REQ_PARSER) {
2331 		tempval |= RCTRL_PRSDEP_INIT;
2332 		priv->uses_rxfcb = 1;
2333 	} else {
2334 		tempval &= ~RCTRL_PRSDEP_INIT;
2335 		priv->uses_rxfcb = 0;
2336 	}
2337 	gfar_write(&regs->rctrl, tempval);
2338 }
2339 
2340 /* Enables and disables VLAN insertion/extraction */
2341 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2342 {
2343 	struct gfar_private *priv = netdev_priv(dev);
2344 	struct gfar __iomem *regs = NULL;
2345 	unsigned long flags;
2346 	u32 tempval;
2347 
2348 	regs = priv->gfargrp[0].regs;
2349 	local_irq_save(flags);
2350 	lock_rx_qs(priv);
2351 
2352 	if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2353 		/* Enable VLAN tag insertion */
2354 		tempval = gfar_read(&regs->tctrl);
2355 		tempval |= TCTRL_VLINS;
2356 		gfar_write(&regs->tctrl, tempval);
2357 	} else {
2358 		/* Disable VLAN tag insertion */
2359 		tempval = gfar_read(&regs->tctrl);
2360 		tempval &= ~TCTRL_VLINS;
2361 		gfar_write(&regs->tctrl, tempval);
2362 	}
2363 
2364 	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2365 		/* Enable VLAN tag extraction */
2366 		tempval = gfar_read(&regs->rctrl);
2367 		tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2368 		gfar_write(&regs->rctrl, tempval);
2369 		priv->uses_rxfcb = 1;
2370 	} else {
2371 		/* Disable VLAN tag extraction */
2372 		tempval = gfar_read(&regs->rctrl);
2373 		tempval &= ~RCTRL_VLEX;
2374 		gfar_write(&regs->rctrl, tempval);
2375 
2376 		gfar_check_rx_parser_mode(priv);
2377 	}
2378 
2379 	gfar_change_mtu(dev, dev->mtu);
2380 
2381 	unlock_rx_qs(priv);
2382 	local_irq_restore(flags);
2383 }
2384 
2385 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2386 {
2387 	int tempsize, tempval;
2388 	struct gfar_private *priv = netdev_priv(dev);
2389 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2390 	int oldsize = priv->rx_buffer_size;
2391 	int frame_size = new_mtu + ETH_HLEN;
2392 
2393 	if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2394 		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2395 		return -EINVAL;
2396 	}
2397 
2398 	if (priv->uses_rxfcb)
2399 		frame_size += GMAC_FCB_LEN;
2400 
2401 	frame_size += priv->padding;
2402 
2403 	tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2404 		   INCREMENTAL_BUFFER_SIZE;
2405 
2406 	/* Only stop and start the controller if it isn't already
2407 	 * stopped, and we changed something
2408 	 */
2409 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2410 		stop_gfar(dev);
2411 
2412 	priv->rx_buffer_size = tempsize;
2413 
2414 	dev->mtu = new_mtu;
2415 
2416 	gfar_write(&regs->mrblr, priv->rx_buffer_size);
2417 	gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2418 
2419 	/* If the mtu is larger than the max size for standard
2420 	 * ethernet frames (ie, a jumbo frame), then set maccfg2
2421 	 * to allow huge frames, and to check the length
2422 	 */
2423 	tempval = gfar_read(&regs->maccfg2);
2424 
2425 	if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2426 	    gfar_has_errata(priv, GFAR_ERRATA_74))
2427 		tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2428 	else
2429 		tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2430 
2431 	gfar_write(&regs->maccfg2, tempval);
2432 
2433 	if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2434 		startup_gfar(dev);
2435 
2436 	return 0;
2437 }
2438 
2439 /* gfar_reset_task gets scheduled when a packet has not been
2440  * transmitted after a set amount of time.
2441  * For now, assume that clearing out all the structures, and
2442  * starting over will fix the problem.
2443  */
2444 static void gfar_reset_task(struct work_struct *work)
2445 {
2446 	struct gfar_private *priv = container_of(work, struct gfar_private,
2447 						 reset_task);
2448 	struct net_device *dev = priv->ndev;
2449 
2450 	if (dev->flags & IFF_UP) {
2451 		netif_tx_stop_all_queues(dev);
2452 		stop_gfar(dev);
2453 		startup_gfar(dev);
2454 		netif_tx_start_all_queues(dev);
2455 	}
2456 
2457 	netif_tx_schedule_all(dev);
2458 }
2459 
2460 static void gfar_timeout(struct net_device *dev)
2461 {
2462 	struct gfar_private *priv = netdev_priv(dev);
2463 
2464 	dev->stats.tx_errors++;
2465 	schedule_work(&priv->reset_task);
2466 }
2467 
2468 static void gfar_align_skb(struct sk_buff *skb)
2469 {
2470 	/* We need the data buffer to be aligned properly.  We will reserve
2471 	 * as many bytes as needed to align the data properly
2472 	 */
2473 	skb_reserve(skb, RXBUF_ALIGNMENT -
2474 		    (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2475 }
2476 
2477 /* Interrupt Handler for Transmit complete */
2478 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2479 {
2480 	struct net_device *dev = tx_queue->dev;
2481 	struct netdev_queue *txq;
2482 	struct gfar_private *priv = netdev_priv(dev);
2483 	struct txbd8 *bdp, *next = NULL;
2484 	struct txbd8 *lbdp = NULL;
2485 	struct txbd8 *base = tx_queue->tx_bd_base;
2486 	struct sk_buff *skb;
2487 	int skb_dirtytx;
2488 	int tx_ring_size = tx_queue->tx_ring_size;
2489 	int frags = 0, nr_txbds = 0;
2490 	int i;
2491 	int howmany = 0;
2492 	int tqi = tx_queue->qindex;
2493 	unsigned int bytes_sent = 0;
2494 	u32 lstatus;
2495 	size_t buflen;
2496 
2497 	txq = netdev_get_tx_queue(dev, tqi);
2498 	bdp = tx_queue->dirty_tx;
2499 	skb_dirtytx = tx_queue->skb_dirtytx;
2500 
2501 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2502 		unsigned long flags;
2503 
2504 		frags = skb_shinfo(skb)->nr_frags;
2505 
2506 		/* When time stamping, one additional TxBD must be freed.
2507 		 * Also, we need to dma_unmap_single() the TxPAL.
2508 		 */
2509 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2510 			nr_txbds = frags + 2;
2511 		else
2512 			nr_txbds = frags + 1;
2513 
2514 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2515 
2516 		lstatus = lbdp->lstatus;
2517 
2518 		/* Only clean completed frames */
2519 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2520 		    (lstatus & BD_LENGTH_MASK))
2521 			break;
2522 
2523 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2524 			next = next_txbd(bdp, base, tx_ring_size);
2525 			buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2526 		} else
2527 			buflen = bdp->length;
2528 
2529 		dma_unmap_single(priv->dev, bdp->bufPtr,
2530 				 buflen, DMA_TO_DEVICE);
2531 
2532 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2533 			struct skb_shared_hwtstamps shhwtstamps;
2534 			u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2535 
2536 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2537 			shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2538 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2539 			skb_tstamp_tx(skb, &shhwtstamps);
2540 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2541 			bdp = next;
2542 		}
2543 
2544 		bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2545 		bdp = next_txbd(bdp, base, tx_ring_size);
2546 
2547 		for (i = 0; i < frags; i++) {
2548 			dma_unmap_page(priv->dev, bdp->bufPtr,
2549 				       bdp->length, DMA_TO_DEVICE);
2550 			bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2551 			bdp = next_txbd(bdp, base, tx_ring_size);
2552 		}
2553 
2554 		bytes_sent += skb->len;
2555 
2556 		dev_kfree_skb_any(skb);
2557 
2558 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2559 
2560 		skb_dirtytx = (skb_dirtytx + 1) &
2561 			      TX_RING_MOD_MASK(tx_ring_size);
2562 
2563 		howmany++;
2564 		spin_lock_irqsave(&tx_queue->txlock, flags);
2565 		tx_queue->num_txbdfree += nr_txbds;
2566 		spin_unlock_irqrestore(&tx_queue->txlock, flags);
2567 	}
2568 
2569 	/* If we freed a buffer, we can restart transmission, if necessary */
2570 	if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2571 		netif_wake_subqueue(dev, tqi);
2572 
2573 	/* Update dirty indicators */
2574 	tx_queue->skb_dirtytx = skb_dirtytx;
2575 	tx_queue->dirty_tx = bdp;
2576 
2577 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2578 }
2579 
2580 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2581 {
2582 	unsigned long flags;
2583 
2584 	spin_lock_irqsave(&gfargrp->grplock, flags);
2585 	if (napi_schedule_prep(&gfargrp->napi)) {
2586 		gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2587 		__napi_schedule(&gfargrp->napi);
2588 	} else {
2589 		/* Clear IEVENT, so interrupts aren't called again
2590 		 * because of the packets that have already arrived.
2591 		 */
2592 		gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2593 	}
2594 	spin_unlock_irqrestore(&gfargrp->grplock, flags);
2595 
2596 }
2597 
2598 /* Interrupt Handler for Transmit complete */
2599 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2600 {
2601 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2602 	return IRQ_HANDLED;
2603 }
2604 
2605 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2606 			   struct sk_buff *skb)
2607 {
2608 	struct net_device *dev = rx_queue->dev;
2609 	struct gfar_private *priv = netdev_priv(dev);
2610 	dma_addr_t buf;
2611 
2612 	buf = dma_map_single(priv->dev, skb->data,
2613 			     priv->rx_buffer_size, DMA_FROM_DEVICE);
2614 	gfar_init_rxbdp(rx_queue, bdp, buf);
2615 }
2616 
2617 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2618 {
2619 	struct gfar_private *priv = netdev_priv(dev);
2620 	struct sk_buff *skb;
2621 
2622 	skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2623 	if (!skb)
2624 		return NULL;
2625 
2626 	gfar_align_skb(skb);
2627 
2628 	return skb;
2629 }
2630 
2631 struct sk_buff *gfar_new_skb(struct net_device *dev)
2632 {
2633 	return gfar_alloc_skb(dev);
2634 }
2635 
2636 static inline void count_errors(unsigned short status, struct net_device *dev)
2637 {
2638 	struct gfar_private *priv = netdev_priv(dev);
2639 	struct net_device_stats *stats = &dev->stats;
2640 	struct gfar_extra_stats *estats = &priv->extra_stats;
2641 
2642 	/* If the packet was truncated, none of the other errors matter */
2643 	if (status & RXBD_TRUNCATED) {
2644 		stats->rx_length_errors++;
2645 
2646 		atomic64_inc(&estats->rx_trunc);
2647 
2648 		return;
2649 	}
2650 	/* Count the errors, if there were any */
2651 	if (status & (RXBD_LARGE | RXBD_SHORT)) {
2652 		stats->rx_length_errors++;
2653 
2654 		if (status & RXBD_LARGE)
2655 			atomic64_inc(&estats->rx_large);
2656 		else
2657 			atomic64_inc(&estats->rx_short);
2658 	}
2659 	if (status & RXBD_NONOCTET) {
2660 		stats->rx_frame_errors++;
2661 		atomic64_inc(&estats->rx_nonoctet);
2662 	}
2663 	if (status & RXBD_CRCERR) {
2664 		atomic64_inc(&estats->rx_crcerr);
2665 		stats->rx_crc_errors++;
2666 	}
2667 	if (status & RXBD_OVERRUN) {
2668 		atomic64_inc(&estats->rx_overrun);
2669 		stats->rx_crc_errors++;
2670 	}
2671 }
2672 
2673 irqreturn_t gfar_receive(int irq, void *grp_id)
2674 {
2675 	gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2676 	return IRQ_HANDLED;
2677 }
2678 
2679 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2680 {
2681 	/* If valid headers were found, and valid sums
2682 	 * were verified, then we tell the kernel that no
2683 	 * checksumming is necessary.  Otherwise, it is [FIXME]
2684 	 */
2685 	if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2686 		skb->ip_summed = CHECKSUM_UNNECESSARY;
2687 	else
2688 		skb_checksum_none_assert(skb);
2689 }
2690 
2691 
2692 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2693 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2694 			       int amount_pull, struct napi_struct *napi)
2695 {
2696 	struct gfar_private *priv = netdev_priv(dev);
2697 	struct rxfcb *fcb = NULL;
2698 
2699 	/* fcb is at the beginning if exists */
2700 	fcb = (struct rxfcb *)skb->data;
2701 
2702 	/* Remove the FCB from the skb
2703 	 * Remove the padded bytes, if there are any
2704 	 */
2705 	if (amount_pull) {
2706 		skb_record_rx_queue(skb, fcb->rq);
2707 		skb_pull(skb, amount_pull);
2708 	}
2709 
2710 	/* Get receive timestamp from the skb */
2711 	if (priv->hwts_rx_en) {
2712 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2713 		u64 *ns = (u64 *) skb->data;
2714 
2715 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2716 		shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2717 	}
2718 
2719 	if (priv->padding)
2720 		skb_pull(skb, priv->padding);
2721 
2722 	if (dev->features & NETIF_F_RXCSUM)
2723 		gfar_rx_checksum(skb, fcb);
2724 
2725 	/* Tell the skb what kind of packet this is */
2726 	skb->protocol = eth_type_trans(skb, dev);
2727 
2728 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2729 	 * Even if vlan rx accel is disabled, on some chips
2730 	 * RXFCB_VLN is pseudo randomly set.
2731 	 */
2732 	if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2733 	    fcb->flags & RXFCB_VLN)
2734 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2735 
2736 	/* Send the packet up the stack */
2737 	napi_gro_receive(napi, skb);
2738 
2739 }
2740 
2741 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2742  * until the budget/quota has been reached. Returns the number
2743  * of frames handled
2744  */
2745 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2746 {
2747 	struct net_device *dev = rx_queue->dev;
2748 	struct rxbd8 *bdp, *base;
2749 	struct sk_buff *skb;
2750 	int pkt_len;
2751 	int amount_pull;
2752 	int howmany = 0;
2753 	struct gfar_private *priv = netdev_priv(dev);
2754 
2755 	/* Get the first full descriptor */
2756 	bdp = rx_queue->cur_rx;
2757 	base = rx_queue->rx_bd_base;
2758 
2759 	amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2760 
2761 	while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2762 		struct sk_buff *newskb;
2763 
2764 		rmb();
2765 
2766 		/* Add another skb for the future */
2767 		newskb = gfar_new_skb(dev);
2768 
2769 		skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2770 
2771 		dma_unmap_single(priv->dev, bdp->bufPtr,
2772 				 priv->rx_buffer_size, DMA_FROM_DEVICE);
2773 
2774 		if (unlikely(!(bdp->status & RXBD_ERR) &&
2775 			     bdp->length > priv->rx_buffer_size))
2776 			bdp->status = RXBD_LARGE;
2777 
2778 		/* We drop the frame if we failed to allocate a new buffer */
2779 		if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2780 			     bdp->status & RXBD_ERR)) {
2781 			count_errors(bdp->status, dev);
2782 
2783 			if (unlikely(!newskb))
2784 				newskb = skb;
2785 			else if (skb)
2786 				dev_kfree_skb(skb);
2787 		} else {
2788 			/* Increment the number of packets */
2789 			rx_queue->stats.rx_packets++;
2790 			howmany++;
2791 
2792 			if (likely(skb)) {
2793 				pkt_len = bdp->length - ETH_FCS_LEN;
2794 				/* Remove the FCS from the packet length */
2795 				skb_put(skb, pkt_len);
2796 				rx_queue->stats.rx_bytes += pkt_len;
2797 				skb_record_rx_queue(skb, rx_queue->qindex);
2798 				gfar_process_frame(dev, skb, amount_pull,
2799 						   &rx_queue->grp->napi);
2800 
2801 			} else {
2802 				netif_warn(priv, rx_err, dev, "Missing skb!\n");
2803 				rx_queue->stats.rx_dropped++;
2804 				atomic64_inc(&priv->extra_stats.rx_skbmissing);
2805 			}
2806 
2807 		}
2808 
2809 		rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2810 
2811 		/* Setup the new bdp */
2812 		gfar_new_rxbdp(rx_queue, bdp, newskb);
2813 
2814 		/* Update to the next pointer */
2815 		bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2816 
2817 		/* update to point at the next skb */
2818 		rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2819 				      RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2820 	}
2821 
2822 	/* Update the current rxbd pointer to be the next one */
2823 	rx_queue->cur_rx = bdp;
2824 
2825 	return howmany;
2826 }
2827 
2828 static int gfar_poll(struct napi_struct *napi, int budget)
2829 {
2830 	struct gfar_priv_grp *gfargrp =
2831 		container_of(napi, struct gfar_priv_grp, napi);
2832 	struct gfar_private *priv = gfargrp->priv;
2833 	struct gfar __iomem *regs = gfargrp->regs;
2834 	struct gfar_priv_tx_q *tx_queue = NULL;
2835 	struct gfar_priv_rx_q *rx_queue = NULL;
2836 	int work_done = 0, work_done_per_q = 0;
2837 	int i, budget_per_q = 0;
2838 	int has_tx_work;
2839 	unsigned long rstat_rxf;
2840 	int num_act_queues;
2841 
2842 	/* Clear IEVENT, so interrupts aren't called again
2843 	 * because of the packets that have already arrived
2844 	 */
2845 	gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2846 
2847 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2848 
2849 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2850 	if (num_act_queues)
2851 		budget_per_q = budget/num_act_queues;
2852 
2853 	while (1) {
2854 		has_tx_work = 0;
2855 		for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2856 			tx_queue = priv->tx_queue[i];
2857 			/* run Tx cleanup to completion */
2858 			if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2859 				gfar_clean_tx_ring(tx_queue);
2860 				has_tx_work = 1;
2861 			}
2862 		}
2863 
2864 		for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2865 			/* skip queue if not active */
2866 			if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2867 				continue;
2868 
2869 			rx_queue = priv->rx_queue[i];
2870 			work_done_per_q =
2871 				gfar_clean_rx_ring(rx_queue, budget_per_q);
2872 			work_done += work_done_per_q;
2873 
2874 			/* finished processing this queue */
2875 			if (work_done_per_q < budget_per_q) {
2876 				/* clear active queue hw indication */
2877 				gfar_write(&regs->rstat,
2878 					   RSTAT_CLEAR_RXF0 >> i);
2879 				rstat_rxf &= ~(RSTAT_CLEAR_RXF0 >> i);
2880 				num_act_queues--;
2881 
2882 				if (!num_act_queues)
2883 					break;
2884 				/* recompute budget per Rx queue */
2885 				budget_per_q =
2886 					(budget - work_done) / num_act_queues;
2887 			}
2888 		}
2889 
2890 		if (work_done >= budget)
2891 			break;
2892 
2893 		if (!num_act_queues && !has_tx_work) {
2894 
2895 			napi_complete(napi);
2896 
2897 			/* Clear the halt bit in RSTAT */
2898 			gfar_write(&regs->rstat, gfargrp->rstat);
2899 
2900 			gfar_write(&regs->imask, IMASK_DEFAULT);
2901 
2902 			/* If we are coalescing interrupts, update the timer
2903 			 * Otherwise, clear it
2904 			 */
2905 			gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2906 						  gfargrp->tx_bit_map);
2907 			break;
2908 		}
2909 	}
2910 
2911 	return work_done;
2912 }
2913 
2914 #ifdef CONFIG_NET_POLL_CONTROLLER
2915 /* Polling 'interrupt' - used by things like netconsole to send skbs
2916  * without having to re-enable interrupts. It's not called while
2917  * the interrupt routine is executing.
2918  */
2919 static void gfar_netpoll(struct net_device *dev)
2920 {
2921 	struct gfar_private *priv = netdev_priv(dev);
2922 	int i;
2923 
2924 	/* If the device has multiple interrupts, run tx/rx */
2925 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2926 		for (i = 0; i < priv->num_grps; i++) {
2927 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2928 
2929 			disable_irq(gfar_irq(grp, TX)->irq);
2930 			disable_irq(gfar_irq(grp, RX)->irq);
2931 			disable_irq(gfar_irq(grp, ER)->irq);
2932 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2933 			enable_irq(gfar_irq(grp, ER)->irq);
2934 			enable_irq(gfar_irq(grp, RX)->irq);
2935 			enable_irq(gfar_irq(grp, TX)->irq);
2936 		}
2937 	} else {
2938 		for (i = 0; i < priv->num_grps; i++) {
2939 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2940 
2941 			disable_irq(gfar_irq(grp, TX)->irq);
2942 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2943 			enable_irq(gfar_irq(grp, TX)->irq);
2944 		}
2945 	}
2946 }
2947 #endif
2948 
2949 /* The interrupt handler for devices with one interrupt */
2950 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2951 {
2952 	struct gfar_priv_grp *gfargrp = grp_id;
2953 
2954 	/* Save ievent for future reference */
2955 	u32 events = gfar_read(&gfargrp->regs->ievent);
2956 
2957 	/* Check for reception */
2958 	if (events & IEVENT_RX_MASK)
2959 		gfar_receive(irq, grp_id);
2960 
2961 	/* Check for transmit completion */
2962 	if (events & IEVENT_TX_MASK)
2963 		gfar_transmit(irq, grp_id);
2964 
2965 	/* Check for errors */
2966 	if (events & IEVENT_ERR_MASK)
2967 		gfar_error(irq, grp_id);
2968 
2969 	return IRQ_HANDLED;
2970 }
2971 
2972 /* Called every time the controller might need to be made
2973  * aware of new link state.  The PHY code conveys this
2974  * information through variables in the phydev structure, and this
2975  * function converts those variables into the appropriate
2976  * register values, and can bring down the device if needed.
2977  */
2978 static void adjust_link(struct net_device *dev)
2979 {
2980 	struct gfar_private *priv = netdev_priv(dev);
2981 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2982 	unsigned long flags;
2983 	struct phy_device *phydev = priv->phydev;
2984 	int new_state = 0;
2985 
2986 	local_irq_save(flags);
2987 	lock_tx_qs(priv);
2988 
2989 	if (phydev->link) {
2990 		u32 tempval = gfar_read(&regs->maccfg2);
2991 		u32 ecntrl = gfar_read(&regs->ecntrl);
2992 
2993 		/* Now we make sure that we can be in full duplex mode.
2994 		 * If not, we operate in half-duplex mode.
2995 		 */
2996 		if (phydev->duplex != priv->oldduplex) {
2997 			new_state = 1;
2998 			if (!(phydev->duplex))
2999 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3000 			else
3001 				tempval |= MACCFG2_FULL_DUPLEX;
3002 
3003 			priv->oldduplex = phydev->duplex;
3004 		}
3005 
3006 		if (phydev->speed != priv->oldspeed) {
3007 			new_state = 1;
3008 			switch (phydev->speed) {
3009 			case 1000:
3010 				tempval =
3011 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3012 
3013 				ecntrl &= ~(ECNTRL_R100);
3014 				break;
3015 			case 100:
3016 			case 10:
3017 				tempval =
3018 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3019 
3020 				/* Reduced mode distinguishes
3021 				 * between 10 and 100
3022 				 */
3023 				if (phydev->speed == SPEED_100)
3024 					ecntrl |= ECNTRL_R100;
3025 				else
3026 					ecntrl &= ~(ECNTRL_R100);
3027 				break;
3028 			default:
3029 				netif_warn(priv, link, dev,
3030 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3031 					   phydev->speed);
3032 				break;
3033 			}
3034 
3035 			priv->oldspeed = phydev->speed;
3036 		}
3037 
3038 		gfar_write(&regs->maccfg2, tempval);
3039 		gfar_write(&regs->ecntrl, ecntrl);
3040 
3041 		if (!priv->oldlink) {
3042 			new_state = 1;
3043 			priv->oldlink = 1;
3044 		}
3045 	} else if (priv->oldlink) {
3046 		new_state = 1;
3047 		priv->oldlink = 0;
3048 		priv->oldspeed = 0;
3049 		priv->oldduplex = -1;
3050 	}
3051 
3052 	if (new_state && netif_msg_link(priv))
3053 		phy_print_status(phydev);
3054 	unlock_tx_qs(priv);
3055 	local_irq_restore(flags);
3056 }
3057 
3058 /* Update the hash table based on the current list of multicast
3059  * addresses we subscribe to.  Also, change the promiscuity of
3060  * the device based on the flags (this function is called
3061  * whenever dev->flags is changed
3062  */
3063 static void gfar_set_multi(struct net_device *dev)
3064 {
3065 	struct netdev_hw_addr *ha;
3066 	struct gfar_private *priv = netdev_priv(dev);
3067 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3068 	u32 tempval;
3069 
3070 	if (dev->flags & IFF_PROMISC) {
3071 		/* Set RCTRL to PROM */
3072 		tempval = gfar_read(&regs->rctrl);
3073 		tempval |= RCTRL_PROM;
3074 		gfar_write(&regs->rctrl, tempval);
3075 	} else {
3076 		/* Set RCTRL to not PROM */
3077 		tempval = gfar_read(&regs->rctrl);
3078 		tempval &= ~(RCTRL_PROM);
3079 		gfar_write(&regs->rctrl, tempval);
3080 	}
3081 
3082 	if (dev->flags & IFF_ALLMULTI) {
3083 		/* Set the hash to rx all multicast frames */
3084 		gfar_write(&regs->igaddr0, 0xffffffff);
3085 		gfar_write(&regs->igaddr1, 0xffffffff);
3086 		gfar_write(&regs->igaddr2, 0xffffffff);
3087 		gfar_write(&regs->igaddr3, 0xffffffff);
3088 		gfar_write(&regs->igaddr4, 0xffffffff);
3089 		gfar_write(&regs->igaddr5, 0xffffffff);
3090 		gfar_write(&regs->igaddr6, 0xffffffff);
3091 		gfar_write(&regs->igaddr7, 0xffffffff);
3092 		gfar_write(&regs->gaddr0, 0xffffffff);
3093 		gfar_write(&regs->gaddr1, 0xffffffff);
3094 		gfar_write(&regs->gaddr2, 0xffffffff);
3095 		gfar_write(&regs->gaddr3, 0xffffffff);
3096 		gfar_write(&regs->gaddr4, 0xffffffff);
3097 		gfar_write(&regs->gaddr5, 0xffffffff);
3098 		gfar_write(&regs->gaddr6, 0xffffffff);
3099 		gfar_write(&regs->gaddr7, 0xffffffff);
3100 	} else {
3101 		int em_num;
3102 		int idx;
3103 
3104 		/* zero out the hash */
3105 		gfar_write(&regs->igaddr0, 0x0);
3106 		gfar_write(&regs->igaddr1, 0x0);
3107 		gfar_write(&regs->igaddr2, 0x0);
3108 		gfar_write(&regs->igaddr3, 0x0);
3109 		gfar_write(&regs->igaddr4, 0x0);
3110 		gfar_write(&regs->igaddr5, 0x0);
3111 		gfar_write(&regs->igaddr6, 0x0);
3112 		gfar_write(&regs->igaddr7, 0x0);
3113 		gfar_write(&regs->gaddr0, 0x0);
3114 		gfar_write(&regs->gaddr1, 0x0);
3115 		gfar_write(&regs->gaddr2, 0x0);
3116 		gfar_write(&regs->gaddr3, 0x0);
3117 		gfar_write(&regs->gaddr4, 0x0);
3118 		gfar_write(&regs->gaddr5, 0x0);
3119 		gfar_write(&regs->gaddr6, 0x0);
3120 		gfar_write(&regs->gaddr7, 0x0);
3121 
3122 		/* If we have extended hash tables, we need to
3123 		 * clear the exact match registers to prepare for
3124 		 * setting them
3125 		 */
3126 		if (priv->extended_hash) {
3127 			em_num = GFAR_EM_NUM + 1;
3128 			gfar_clear_exact_match(dev);
3129 			idx = 1;
3130 		} else {
3131 			idx = 0;
3132 			em_num = 0;
3133 		}
3134 
3135 		if (netdev_mc_empty(dev))
3136 			return;
3137 
3138 		/* Parse the list, and set the appropriate bits */
3139 		netdev_for_each_mc_addr(ha, dev) {
3140 			if (idx < em_num) {
3141 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3142 				idx++;
3143 			} else
3144 				gfar_set_hash_for_addr(dev, ha->addr);
3145 		}
3146 	}
3147 }
3148 
3149 
3150 /* Clears each of the exact match registers to zero, so they
3151  * don't interfere with normal reception
3152  */
3153 static void gfar_clear_exact_match(struct net_device *dev)
3154 {
3155 	int idx;
3156 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3157 
3158 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3159 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3160 }
3161 
3162 /* Set the appropriate hash bit for the given addr */
3163 /* The algorithm works like so:
3164  * 1) Take the Destination Address (ie the multicast address), and
3165  * do a CRC on it (little endian), and reverse the bits of the
3166  * result.
3167  * 2) Use the 8 most significant bits as a hash into a 256-entry
3168  * table.  The table is controlled through 8 32-bit registers:
3169  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3170  * gaddr7.  This means that the 3 most significant bits in the
3171  * hash index which gaddr register to use, and the 5 other bits
3172  * indicate which bit (assuming an IBM numbering scheme, which
3173  * for PowerPC (tm) is usually the case) in the register holds
3174  * the entry.
3175  */
3176 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3177 {
3178 	u32 tempval;
3179 	struct gfar_private *priv = netdev_priv(dev);
3180 	u32 result = ether_crc(ETH_ALEN, addr);
3181 	int width = priv->hash_width;
3182 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3183 	u8 whichreg = result >> (32 - width + 5);
3184 	u32 value = (1 << (31-whichbit));
3185 
3186 	tempval = gfar_read(priv->hash_regs[whichreg]);
3187 	tempval |= value;
3188 	gfar_write(priv->hash_regs[whichreg], tempval);
3189 }
3190 
3191 
3192 /* There are multiple MAC Address register pairs on some controllers
3193  * This function sets the numth pair to a given address
3194  */
3195 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3196 				  const u8 *addr)
3197 {
3198 	struct gfar_private *priv = netdev_priv(dev);
3199 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3200 	int idx;
3201 	char tmpbuf[ETH_ALEN];
3202 	u32 tempval;
3203 	u32 __iomem *macptr = &regs->macstnaddr1;
3204 
3205 	macptr += num*2;
3206 
3207 	/* Now copy it into the mac registers backwards, cuz
3208 	 * little endian is silly
3209 	 */
3210 	for (idx = 0; idx < ETH_ALEN; idx++)
3211 		tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3212 
3213 	gfar_write(macptr, *((u32 *) (tmpbuf)));
3214 
3215 	tempval = *((u32 *) (tmpbuf + 4));
3216 
3217 	gfar_write(macptr+1, tempval);
3218 }
3219 
3220 /* GFAR error interrupt handler */
3221 static irqreturn_t gfar_error(int irq, void *grp_id)
3222 {
3223 	struct gfar_priv_grp *gfargrp = grp_id;
3224 	struct gfar __iomem *regs = gfargrp->regs;
3225 	struct gfar_private *priv= gfargrp->priv;
3226 	struct net_device *dev = priv->ndev;
3227 
3228 	/* Save ievent for future reference */
3229 	u32 events = gfar_read(&regs->ievent);
3230 
3231 	/* Clear IEVENT */
3232 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3233 
3234 	/* Magic Packet is not an error. */
3235 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3236 	    (events & IEVENT_MAG))
3237 		events &= ~IEVENT_MAG;
3238 
3239 	/* Hmm... */
3240 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3241 		netdev_dbg(dev,
3242 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3243 			   events, gfar_read(&regs->imask));
3244 
3245 	/* Update the error counters */
3246 	if (events & IEVENT_TXE) {
3247 		dev->stats.tx_errors++;
3248 
3249 		if (events & IEVENT_LC)
3250 			dev->stats.tx_window_errors++;
3251 		if (events & IEVENT_CRL)
3252 			dev->stats.tx_aborted_errors++;
3253 		if (events & IEVENT_XFUN) {
3254 			unsigned long flags;
3255 
3256 			netif_dbg(priv, tx_err, dev,
3257 				  "TX FIFO underrun, packet dropped\n");
3258 			dev->stats.tx_dropped++;
3259 			atomic64_inc(&priv->extra_stats.tx_underrun);
3260 
3261 			local_irq_save(flags);
3262 			lock_tx_qs(priv);
3263 
3264 			/* Reactivate the Tx Queues */
3265 			gfar_write(&regs->tstat, gfargrp->tstat);
3266 
3267 			unlock_tx_qs(priv);
3268 			local_irq_restore(flags);
3269 		}
3270 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3271 	}
3272 	if (events & IEVENT_BSY) {
3273 		dev->stats.rx_errors++;
3274 		atomic64_inc(&priv->extra_stats.rx_bsy);
3275 
3276 		gfar_receive(irq, grp_id);
3277 
3278 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3279 			  gfar_read(&regs->rstat));
3280 	}
3281 	if (events & IEVENT_BABR) {
3282 		dev->stats.rx_errors++;
3283 		atomic64_inc(&priv->extra_stats.rx_babr);
3284 
3285 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3286 	}
3287 	if (events & IEVENT_EBERR) {
3288 		atomic64_inc(&priv->extra_stats.eberr);
3289 		netif_dbg(priv, rx_err, dev, "bus error\n");
3290 	}
3291 	if (events & IEVENT_RXC)
3292 		netif_dbg(priv, rx_status, dev, "control frame\n");
3293 
3294 	if (events & IEVENT_BABT) {
3295 		atomic64_inc(&priv->extra_stats.tx_babt);
3296 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3297 	}
3298 	return IRQ_HANDLED;
3299 }
3300 
3301 static struct of_device_id gfar_match[] =
3302 {
3303 	{
3304 		.type = "network",
3305 		.compatible = "gianfar",
3306 	},
3307 	{
3308 		.compatible = "fsl,etsec2",
3309 	},
3310 	{},
3311 };
3312 MODULE_DEVICE_TABLE(of, gfar_match);
3313 
3314 /* Structure for a device driver */
3315 static struct platform_driver gfar_driver = {
3316 	.driver = {
3317 		.name = "fsl-gianfar",
3318 		.owner = THIS_MODULE,
3319 		.pm = GFAR_PM_OPS,
3320 		.of_match_table = gfar_match,
3321 	},
3322 	.probe = gfar_probe,
3323 	.remove = gfar_remove,
3324 };
3325 
3326 module_platform_driver(gfar_driver);
3327